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SUMMARY 
 

This thesis studies the extent to which the geometry of rivers around the globe can be determined 

in an automated manner, based on openly available optical Earth Observational (EO) satellite 

sensors. Knowledge of the course of a river allows for the bathymetry to be estimated. Currently, 

the course of a river, at any given point in time, is derived by means of visual inspection based on 

geographical maps, which may be time-consuming. Automating this process can therefore be 

highly beneficial. The utilization of remote sensing technology is investigated to observe the 

dynamics of rivers at frequent time intervals. Google Earth Engine is adopted for the analysis, 

interpretation and manipulation of multispectral satellite data.  

 

In order to detect surface water within a multispectral satellite image, water indices are utilized, 

followed by a HAND-map and an image thresholding approach (Otsu’s method). The purpose of 

a water index is to enhance water features, the HAND-map to avoid potential errors due to 

shadows, and Otsu’s method to reduce the resulting grayscale image to a binary surface water 

mask, separating foreground (water) from background features. To estimate the bounds of a river 

under cloudy circumstances, multiple historical images are sampled to generate a composite, 

representing the water occurrence of a river over time in the form of a binary image. Historical 

images are weighted based on the date they were sampled, in order to reduce the impact of 

varying surface water widths over time. The composite is used to estimate segments of a river 

that were initially unknown due to the presence of clouds. 

 

The resulting surface water mask is converted to a smooth river polygon. River widths are 

subsequently derived based on a Euclidian distance map in combination with a centerline, which 

is obtained by extracting a skeleton from a Voronoi diagram, followed by a pruning procedure. 

 

The approach has been validated based on two river polygons provided by Rijkswaterstaat, 

representing a segment of the Meuse and the Rhine. The estimated geometries based on EO 

satellite imagery were found to be highly similar to that of the two river polygons. Throughout 

2016, for a segment of the Meuse, deviations between +2 and -2 meters (+1.53% and -1.53%) as 

well as +1 and -8 meters (+0.76% and -6.11%) were found compared to data provided by 

Rijkswaterstaat, for cloudless and cloudy images respectively. For the segment that comprises of 

the Rhine and the Waal, deviations between +29 and -15 meters (+7.36% and -3.81%) as well as 

+17 and -13 meters (+4.31% and -3.30%) were found for cloudless and cloudy images 

respectively, for the same year. Furthermore, a comparison towards a recently build database 

consisting of global river widths from Landsat imagery (GRWL; Allen and Pavelsky, 2018) 

revealed clear similarities. 

 

Although the estimation of the geometry of rivers in a more or less automated manner was found 

to be achievable, its global applicability remains limited to a local scale. Currently, the biggest 

limitation is the fact that the amount of usable memory is capped within GEE. Computations were 

found to be too resource-demanding, limiting the maximum size of a river polygon that can be 

generated.  Furthermore, the estimation of the geometry of a river is found to be limited to rivers 

that are at least three to four times wider than the corresponding satellite’s spatial resolution in 

order to obtain usable results. Rivers that are relatively relative narrow (<100 meters) were 

found to be difficult to identify using either Sentinel-2 or Landsat 8 multispectral satellite data. 
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1 INTRODUCTION 
 

1.1 BACKGROUND 
River monitoring is an essential aspect in providing safety against floods, sufficient amount of 

available water and safe navigation for ships. Traditionally, people have inhabited places close to 

rivers or lakes to ensure fresh water supply for a variety of purposes. Kummu et al. (2011) stated 

that over 50% of the population across the globe lives closer than 3 kilometers to a surface 

freshwater body, and that only 10% of the population lives further than 10 kilometers away. 

Additionally, the competitiveness as well as the economic viability of ports is directly linked to 

the condition of the waterway network, providing access to smooth and safe transport by water.  

 

To provide answers to questions related to flood safety, water availability and safe navigation of 

ships by means of numerical models, information about the bathymetry of rivers is required. 

However, bathymetric data of rivers is generally limited. This is due to the fact that (1) the 

collection of data requires a significant amount of time and effort, (2) the collection of data is 

often deemed as expensive or even (3) because rivers change their course throughout time. To 

solve this problem, Deltares, an independent institute for applied research in the field of water, 

developed a rapid assessment tool which aims to “rapidly assess a river’s suitability for inland 

navigation based on state-of-the-art scientific knowledge and freely available data sources” 

(Zervakis, 2015). More specifically, the tool aims to provide quantitative information regarding 

geometrical, hydrological and geographical river aspects as well as navigational bottlenecks and 

the costs of required interventions, based on open source data. As a result, the tool allows for 

policymakers to evaluate a river’s navigation potential without the need for extensive input data 

(Beltman, 2016).  

 

The Deltares Rapid Assessment Tool for Inland Navigation (D-RATIN) performs a total of three 

steps. Firstly, the D-RATIN attempts to reconstruct a river’s bed-levels by combining a 

geometrical and physics-based model with interpolated bathymetric data. Subsequently, a 1D 

SOBEK model is set-up to calculate water depths based on the generated river bathymetry. Lastly, 

a route optimization algorithm using a cost-function is applied in order to obtain the optimal 

route, calculate the volume of dredging and the costs of the needed river interventions for a given 

ship dimension (Beltman, 2016).  

 

1.2 PROBLEM DEFINITION 
In the current version of the D-RATIN, both the physics-based dataset and the interpolated 

dataset, which are fused to assess a river’s bed-levels, are reliant on a curvilinear grid that defines 

how the input data is stored, manipulated and displayed. Additionally, the curvilinear grid serves 

as guideline for the direction of the flow relevant for the curvature of a river. However, in order 

to compute such a grid, knowledge about the course of a river and its corresponding banks is 

required.  

 

The course of a river, at any instance in time, can be expressed through its width, that is the 

distance between a river’s banks as well as the direction of flow. This particular information can 

be derived from a geometric shape: a river polygon. A river polygon can be interpreted as a two-

dimensional shape consisting of three or more vertices. The D-RATIN utilizes a river polygon to 
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delineate a river and compute the above-mentioned curvilinear grid. In the current build, a river 

polygon is either obtained through a given dataset or is determined based on visual inspection 

(i.e. by manually drawing the shape on the basis of a geographical map). The main problem of the 

current procedure is that the estimation of the geometry of a river by means of visual inspection 

may be highly time-consuming, depending on the overall size and complexity of a river (in terms 

of its shape). 

 

1.3 RESEARCH GAP 
State-of-the-art remote sensing techniques allow for the continuous monitoring of rivers at 

multiple scales around the globe. Various studies have been performed in the past to improve the 

separability between water and background features based on optical Earth Observation (EO) 

sensors (Manavalan et al., 1993; Frazier and Page, 2000; Ozesmi and Bauer, 2002; Sun et al, 2011; 

Acharya et al., 2016; Olthof, 2017).  Optical EO sensors make use of visible, near infrared and 

shortwave infrared light to form images of the Earth’s surface based on the reflectance of solar 

radiation from objects on the ground.  The ability of a surface to reflect radiant energy differs per 

material, allowing for the detection, extraction and monitorization of surface water over time. 

Especially methods based on water indices were proven to be effective, which are calculated 

based on a ratio between different spectral bands (specific range of wavelengths within the 

electromagnetic spectrum such as red, green or infrared) (McFeeters, 1996; Xu, 2006; Duan & 

Bastiaanssen, 2013; Hui et al., 2008; Murray et al., 2012). However, these methods rely on a 

threshold value to separate water from non-water features, that vary on a case-by-case basis as 

a result of slightly varying spectral properties of open water across the globe. More recent studies 

provide methods to automatically determine an optimal water thresholding value instead of 

doing so manually, allowing for the detection of water bodies in a more automated manner (Li 

and Sheng, 2012; Li and Wang, 2012; Donchyts et al., 2016; Xie et al., 2016; Zhang et al., 2018).  

 

The most problematic issue is that optical remote sensors remain hindered by cloud obstructions, 

limiting their applicability to favorable weather conditions. Optical EO sensors combined with 

Synthetic Aperture Radar (SAR) technology can potentially solve this issue due to the ability of 

SAR to penetrate clouds. However, the application of the two data sources in tandem is currently 

limited due to inconsistent data availability, distinct physical properties that optical and SAR 

instruments sense, and dissimilar data delivery platforms (Markert et al, 2018). Cloudless 

composite multispectral satellite images are often generated to deal with cloud obstructions (e.g. 

percentile or interval mean composites). However, this is in most cases only suitable to detect 

long-term changes, or water bodies that change relatively slowly over time (e.g., Potapov et al., 

2012; Hansen et al., 2013; Donchyts et al., 2016). Furthermore, the detection of surface water has 

been investigated on a global scale, where long-term surface water changes have been mapped 

in detail based on inter-annual composites of multispectral satellite images in combination with 

water indices (Aqua Monitor; Donchyts et al., 2016).  

 

Although much has been achieved in the recent years towards the detection of surface water, an 

all-inclusive approach, specifically focused on the detection of rivers, that allows for the geometry 

of a river to be estimated on a global level, at more or less any point in time1, in an automated 

manner2, does not yet seem to exist. The extent to which this can be achieved is explored. 

                                                 
1 Assuming that satellite images are indeed available for a certain date of interest.  
2 That is, the requirement of limited user-input, such as the area of interest and a specific point in time. 
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Even though this research specifically addresses a problem related to estimation of the 

bathymetry of a river (that is, the D-RATIN), an automated method that allows for estimation of 

the geometry of a river from multispectral satellite images offers value for other purposes as well. 

For example, a series of river polygons may be used to obtain knowledge of the behavior of a river 

over time, or to extend and improve flood maps.  

 

1.4 RESEARCH OBJECTIVE & QUESTIONS 
The objective of this thesis is to investigate the extent to which the geometry of rivers can be 

determined in an automated manner, based on openly available multispectral satellite images. 

Furthermore, there is a need to explore the extent to which the geometry of rivers can be 

estimated on a global scale.  Four research questions have been formed to guide the study 

towards the objective. These are as follows: 

 

1. How can river bounds be detected in an automated manner, in case a multispectral 

satellite image is subject to common disturbances, such as clouds, haze or fog? 

 

2. How can river widths be determined in an automated manner, based on openly 

available multispectral satellite imagery? 

 

3. What is the global applicability of river polygons? 

 

4. What is the sensitivity of parameters that directly influence the geometry of a 

river polygon? 

 
 

1.5 THESIS OUTLINE 
The structure of this thesis is laid out as follows (see Figure 1.1): 

 

▪ Chapter 2 provides an overview of commonly used remote sensing techniques by 

reviewing the current literature, specifically targeted at the detection of surface water 

using optical EO sensors.  

 

▪ Chapter 3 describes the steps taken to estimate the geometry of a river based on optical 

EO sensors. Mostly existing concepts from various fields are combined to do so.  

 
▪ Chapter 4 features the results. In this chapter, the method is validated, the global 

applicability of river polygons is assessed and the limitations are listed. 

 

▪ Chapter 5 describes the sensitivity analysis, which provides insight into the dependency 

of the estimated river geometry towards influential variables. 

 

▪ Chapter 6 presents the discussion. 

 

▪ Chapter 7 describes the conclusions and the recommendations. 
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Figure 1.1 ─ Overview of the research project (RQ = research question). 

Additionally, a total of six appendices that provide supplementary information are included. 

Links to the developed scripts can be found in Appendix E. 

 

▪ Appendix A: Otsu thresholding & Canny edge detection; 

▪ Appendix B: Morphological operators; 

▪ Appendix C: Overlapped river polygons; 

▪ Appendix D: River classification scheme; 

▪ Appendix E: Scripts & typical memory usage; 

▪ Appendix F: Inaccurate estimates under highly variable conditions. 
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2 LITERATURE REVIEW: OVERVIEW OF THE 

CURRENT REMOTE SENSING TECHNIQUES 
 

This chapter provides an overview of commonly used remote sensing techniques described by 

the current literature, specifically targeted at the detection of surface water. Firstly, commonly 

used remote sensors and satellites are investigated (§2.1). Subsequently, methods that allow for 

the detection of surface water are explored (§2.2). Thereafter, challenges related to the detection 

of rivers are researched (§2.3). Lastly, the main conclusions of the literature study are formulated 

(§2.4). 

 

2.1 OPTICAL EARTH OBSERVATION SENSORS  
Remote sensing technology offers effective ways to observe surface water dynamics and allows 

for continuous monitoring of the Earth’s surface at multiple scales (Huang et al., 2018). Due to 

the availability of spatially and temporally frequent observational data of physical attributes 

about the Earth’s surface, the dynamics of rivers can be detected at frequent time intervals.  

 

Recent studies related to surface water and flood inundation mainly focus on making use of 

satellite-based optical Earth Observation (EO) sensors to detect changes of surface water bodies. 

Generally, there are two categories of sensors that are able to measure surface water –microwave 

sensors and optical sensors. Microwave sensors are able to function day and night under any 

weather conditions and have the ability to penetrate cloud coverage in addition to certain 

vegetation coverage. Schumann and Moller (2015) conducted a detailed review of microwave 

remote sensing for flood inundation and found Synthetic Aperture Radar (SAR) to be the most 

suitable sensor type for monitoring flood inundation. Optical EO sensors are only able to capture 

features in case of favorable weather conditions. Nevertheless, optical EO sensors are the 

preferred source of information due to their straightforward interpretability of water features 

(Bioresita et al., 2018). They have been widely used in terms of surface water detection due to 

high availability of data, as well as suitable spatial and temporal resolutions (Huang et al., 2015). 

Although optical EO sensors are often preferred over SAR technology for the detection of surface 

water, the combination of both sensors for this purpose have recently been investigated 

thoroughly since the recent launch of both Sentinel-1 (SAR; 03-04-2014) and Sentinel-2 (optical 

EO; 23-06-2015). However, the application of the two data sources in tandem is currently still in 

its early stages due to inconsistent data availability, distinct physical properties that optical and 

SAR instruments sense, and dissimilar data delivery platforms (Markert et al, 2018). This limits 

the use for the purpose of surface water detection. 

 

One of the most important factors that decides the usage between different optical remote 

sensors in terms of surface water detection is the spatial resolution. Spatial resolution refers to 

the area of ground observed within a pixel and determines the level of detail captured by the 

sensors. Another important aspect is a satellite’s temporal resolution, which is defined as the 

period of time required for a satellite to revisit a specific geographic location (revisit period). 

Although various optical sensors, containing different spatial and temporal resolutions, are 

available, medium spatial resolution sensors (5-200 meters per pixel) with a relatively high 

revisit period (5-30 days) have widely been used over the past years to detect surface water of 

all kinds (e.g., Acharya et al., 2016; Donchyts et al., 2016; Du et al., 2014; Gao et al., 2016; Ji et al., 
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2015; Li et al., 2016; Liu et al., 2016; Singh et al., 2016; Xie et al., 2016; Yang et al., 2015). 

Multispectral satellite data acquired through Landsat EO satellites is often used, with Landsat 8 

providing the highest spatial resolution−30 meters per pixel (functional since 11-02-2013). 

Alternatively, Sentinel-2 EO data can be used since 23-06-2015, which provides a spatial 

resolution of 10 meters. Both Du et al. (2016) and Yang et al. (2017) have verified its ability to 

map surface water bodies.    

 

Huang et al. (2018) provides on overview of the most commonly used satellite for surface water 

detection as well as their features. This is illustrated in Table 2.1. In this study, data originating 

from the medium-resolution EO sensors, specifically the Landsat-8 and Sentinel-2 satellites, is 

used. The main reasons for the selection of these two satellites is that a combination provides 

relatively high-resolution EO data (Sentinel-2: 10 × 10 m per pixel; Landsat 8: 30 × 30 per pixel), 

is freely accessible, and provides sufficiently available data − from 11-02-2013 up to now. Other 

optical EO sensors are either of commercial nature or provide data of much lower spatial 

resolution compared to Landsat 8 and Sentinel-2. 

 
Table 2.1 ─ Commonly used remote sensors for surface water detection (Huang et al., 2018).  

Category Satellite/sensor Number of bands Spatial resolution 
(m) 

Temporal resolution 
(day) 

Data 
availability 

Coarse > 200 m NOAA/AVHRR 5 1,100 0.5 1978‐ 
  MODIS 36 250–1,000 0.5 1999‐ 
  Suomi NPP‐VIIRS 22 375–750 0.5 2012‐ 
  MERIS 15 300 3 2002‐2012 
  Sentinel‐3 OLCI 21 300 2 2016‐ 
Medium 5-200 m Landsat 4–9 15–80 16 1972‐ 
  SPOT 4–5 2.5–20 26 1986‐ 
  Aster 14 15–90 16 1999‐ 
  Sentinel‐2 MSI 13 10–60 5 2015‐ 
High < 5 m IKONOS 5 1–4 1.5–3 1999‐ 
  QuickBird 5 0.61–2.24 2.7 2001‐ 
  WorldView 4–17 0.31–2.40 1–4 2007‐ 
  RapidEye 5 5 1–5.5 2008‐ 
  ZY‐3 4 2.1–5.8 5 2012‐ 
  GF‐1/GF‐2 5 1–16 4–5 2013‐ 

 

2.2 SURFACE WATER DETECTION METHODS 
Essentially, the principle of extracting any kind of surface cover type from optical images is based 

on an object’s ability to reflect radiant energy within a certain spectral channel. This can be 

interpreted as a range of wavelengths within the electromagnetic spectrum, such as ultraviolet, 

visible or infrared light. The main principle of surface water detection from multispectral satellite 

images is the significantly lower reflectance of water in infrared channels, compared to that of 

other land cover types. Researchers at the United States Geological Survey (USGS) Spectroscopy 

Laboratory have measured the spectral reflectance of thousands of materials in a lab and 

compiled the results, proving the noticeably of lower reflectance values in infrared channels 

(official publication: Kokaly et al., 2017; data release: Kokaly et al., 2017). A comparison between 

the reflectance of water and other land cover types is presented in Figure 2.1. 
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Figure 2.1 ─ Reflectance values of common land cover objects, including water.  Collected from United States 

Geological Survey (USGS) digital spectral library (https://speclab.cr.usgs.gov/spectral-lib.html#description). 

Based on the relatively low reflectance of water, various techniques have been developed for 

detecting surface water from multispectral satellite imagery. Yang et al. (2015) ultimately 

grouped water body identification methods using the following categories:  

 

1. Digitizing through visual interpretation, which is considered to be a highly accurate 

method, but extremely labor intensive and therefore difficult to repeat.  

 

2. Density slicing of a single infrared band, which applies a fixed threshold to a given spectral 

band to derive a water map (Frazier and Page, 2000). This is done by dividing the pixel 

values of a single band into intervals (e.g. in the form of a histogram), followed by 

assigning a color to each interval, allowing for an analysis of the differences between 

colors. 

 

3. Calculating spectral (water) indices, which combines two or more bands by mathematical 

ratios to derive water pixels from an image (e.g., Chen et al., 2014; Chowdary et al., 2008; 

Choi & Bindschadler, 2004; Feyisa et al., 2014; Fisher et al., 2016; Hoberg et al., 2015; Hui 

et al., 2008; McFeeters, 1996; Mohammadi et al., 2017; Salomonson & Appel, 2004; Xu, 

2006). 

 

4. Either supervised or unsupervised3 classification methods (e.g., Manavalan et al., 1993; 

Ozesmi and Bauer, 2002), used to generate land cover maps from which water maps could 

be extracted. 

 

Additionally, decision trees were built using multispectral bands to detect surface water bodies 

(e.g., Acharya et al., 2016; Olthof, 2017; Sun et al., 2011). Huang et al. (2018) concluded that the 

problem with a majority of the methods is that their classification rules are difficult to build and 

therefore are often not robust enough to be universally applicable. Donchyts (2018) also stated 

                                                 
3 In supervised classification, classes within an image are predicted based on labeled data (e.g. sample/training data). 
In unsupervised classification, data is unlabeled, and the algorithm is left to its own devise to predict the classes 
within an image, based on underlying structures.   
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that, even though most recent methods provide better classification accuracy between water and 

non-water coverage, they mostly require manual threshold adjustments to provide the best 

results. This largely impacts their application on global scale, due to the need for manual 

adjustments per location. 

 

Surface water detection on the basis of water indices have been widely studied over the past 

decades (grouped as (3) by Yang et al., 2015) and its ability to separate water from background 

features (non-water) has proven to be effective. This works by applying a mathematical ratio 

between two or more spectral bands of a multispectral satellite image, allowing for the 

identification of a threshold value that separates water from non-water features. Early studies 

proposed the Tasseled Cap Wetness (TCW) (Crist, 1985) to separate water and non-water 

surfaces, and the Normalized Difference Vegetation Index (NDVI), a vegetation index which has 

been used to detect water and floods in some studies (Domenikiotis et al., 2003). More useful 

indices are the Normalized Difference Water Index (NDWI) (McFeeters, 1996) and the modified 

NDWI (MNDWI) (Xu, 2006). The NDWI has been widely used during the first 10 years of the 21st 

century (Chowdary et al., 2008; Hui et al., 2008). The MNDWI became widely accepted as the 

more stable and reliable index after that period, due to the fact that the short-wave infrared band 

is able to reflect more subtle characteristics of water compared to the near-infrared band used in 

the NDWI. Although the MNDWI is generally favored to discriminate water from land, it is found 

to be much more sensitive to snow and cold clouds. This is because, even though snow generally 

has a higher reflectance than water, reflectance in the short-wave infrared band as well as the 

green band is more or less equal to that of water. In fact, the Normalized Difference Snow Index 

(NDSI) is often used to identify surface areas covered by snow (Choi and Bindschadler, 2004; 

Salomonson and Appel, 2004). Later, in 2009, Ji et al. suggested that adjustment of the threshold 

value based on the location could usually achieve better extraction results. Li and Sheng (2012) 

then developed an automated method for mapping glacier lake dynamics using NDWI, and Allen 

and Pavelsky (2015) adopted the scheme to generate a land-water mask for North America, based 

on the MNDWI. Donchyts et al. (2016) subsequently developed an adaptive threshold detection 

method based on the MNDWI, thus allowing water pixels to be classified in an automated manner.  

 

Although more water indices allowing for the detection of surface water were introduced quite 

recently, such as the Automated Water Extraction Index (AWEI) (Feyisa et al., 2014) and Water 

Index (WI2015) (Fisher et al., 2016), no index was proven to perform the best across all water and 

non-water pixel types according to research conducted by Fisher et al. (2016) based on Landsat’s 

30 meters resolution imagery. A water extraction method that performs perfectly for all 

satellites/sensors has therefore yet to be formed. An overview of the aforementioned popular 

water indices including their corresponding equations is presented in Table 2.2. 
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Table 2.2 ─ Popular water indices including their equations. 𝜌 represents the spectral reflectance of a band. “Nir” 

refers to the near-infrared band and both “swir1” and “swir2” refer to the short-wave infrared bands at different 

wavelengths (1.55-175 µm and 2.08-2.35 µm respectively). 

Indices Spectral index equations 

NDWI 𝜌𝑔𝑟𝑒𝑒𝑛 − 𝜌𝑛𝑖𝑟

𝜌𝑔𝑟𝑒𝑒𝑛 + 𝜌𝑛𝑖𝑟
 

MNDWI 𝜌𝑔𝑟𝑒𝑒𝑛 − 𝜌𝑠𝑤𝑖𝑟1

𝜌𝑔𝑟𝑒𝑒𝑛 + 𝜌𝑠𝑤𝑖𝑟1
 

AWEI 4 × (𝜌𝑔𝑟𝑒𝑒𝑛 − 𝜌𝑠𝑤𝑖𝑟1) − (0.25 × 𝜌𝑛𝑖𝑟 + 2.75 × 𝜌𝑠𝑤𝑖𝑟2) 

WI2015 1.7204 + 171 × 𝜌𝑔𝑟𝑒𝑒𝑛 + 3 × 𝜌𝑟𝑒𝑑 − 70 × 𝜌𝑛𝑖𝑟 − 45 × 𝜌𝑠𝑤𝑖𝑟1 − 71 × 𝜌𝑠𝑤𝑖𝑟2 

 

2.3 SURFACE WATER DETECTION CHALLENGES FOR RIVERS 
Although the application of water indices to detect surface water from a multispectral satellite 

images have been used widely, and, more recently successfully in an automated manner, the most 

serious issue is that optical EO sensing data is easily affected by cloud obstructions. This limits its 

applicability to favorable weather conditions, and poses a problem considering that the fact that 

multispectral satellite data free of clouds is not always available. It was found that this severely 

hindrances the detection of surface water in tropical regions in particular, whereas arid regions 

stand out as particularly cloudless (Mercury et al, 2012; Gunderson & Chodas, 2011; Wylie et al., 

2005). For images of the Landsat series specifically, Pekel et al. (2016) found that more cloudless 

observations are available during dry seasons than wet seasons.  

 

Cloudless composite images are usually generated to deal with cloud obstructions, which are 

often based on average reflectance composites instead of instantaneous images, or percentiles 

are employed to estimate the average cloud-free reflectance values (e.g., Potapov et al., 2012; 

Hansen et al., 2013; Donchyts et al., 2016). Another commonly used approach to build the 

composite is to iterate through all pixels over multiple satellite images, where pixels that are 

found to be the “least cloudy” are identified and combined into a single image. These types of 

pixels can be obtained by looking for various properties belonging to clouds −  that is, their 

brightness in red, green, blue and infrared bands, their reasonably cool temperature and their 

distinction from snow. However, the disadvantage of these methods is that they are in most cases 

only suitable to detect long-term changes, or water bodies that change relatively slowly over time. 

In case of rivers that rapidly alter their course over time, changes towards the stream width4 may 

not be captured. 

 

Donchyts (2018) recently introduced a new approach which allows for the detection of surface 

water of a partially visible water body by analyzing multiple cloud-free historical images, in which 

accurate estimates of the surface water body can be established using a probability density 

function. The method was applied and validated based on a large reservoir, on the assumption 

that the morphology of the water body does not change significantly. However, its application to 

rivers, specifically, has not been demonstrated. Nonetheless, unlike the typical composite 

approach, which is suitable for long-term changes, this particular method shows good potential 

to estimate the course of rivers that are partially covered by clouds. In theory, a set of cloud-free 

images of a river can be sampled over a certain time span (e.g. 1 month). Assuming that the course 

                                                 
4 In this thesis, stream width is defined as the wetted width of flowing water within a channel, or river. 
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of a river does not drastically change, its bounds can be estimated by combining said images, 

resulting in the average representation of the course of a river over time. 

 

Lastly, another approach is to merge optical EO sensors with SAR technology, due to the fact that 

SAR is able to avoid cloud obstructions and optical EO techniques provide proven methods to 

interpret water features (Ward et al., 2014). However, the combination of the two data sources 

is, as mentioned earlier in §2.1, still a challenge due to inconsistent data availability, distinct 

physical properties and dissimilar data delivery (Markert et al, 2018). 

 

Besides the hindrance by clouds, other common issues in regard to the detection of surface water 

from multispectral satellite imagery exist. Most notably, cloud shadows, hill shadows and snow 

cover, all of which are often mistakenly interpreted as water. However, methods introduced over 

the past years have been able to mostly avert these issues to a large extent. Digital elevation model 

(DEM) data is often used as supplementary information to eliminate the confusion caused by 

shadows (Gianinetto et al., 2006; Qi et al., 2009). Zhu & Woodcock (2012) and Zhu & Woodcock 

(2014) describe methods to detect cloud shadows and snow by relying on information of view 

angle of the satellite sensor in combination with the position of the sun (solar azimuth and solar 

zenith). Tan et al., (2013) used the same framework in addition to a Digital Elevation Map (DEM) 

allowing for the detection hill shadows. Furthermore, modified DEMs such as the Height Above 

the Nearest Drainage (HAND; Renno et al., 2008) and the Multi-resolution Valley Bottom Flatness 

(MrVBF; Gallant and Downling, 2003) have been developed to identify areas with a higher 

probability of water presence. Both models have successfully been used in the removal of most 

misinterpreted water pixels due to shadows and snow (Mueller et al., 2016; Donchyts et al., 2016; 

Huang et al., 2017; Donchyts, 2018). 

 

2.4 CONCLUSIONS 
Recent studies related to the detection of surface water mainly focus on making use of satellite-

based optical Earth Observation (EO) sensors. Data provided by Landsat 8 and Sentinel-2 

satellites is often consulted, as a result of their relatively high spatio-temporal resolution and 

spectral band availability. To separate water from background features, water indices are 

regularly employed due to their effectiveness, and straightforward implementation (e.g. NDWI, 

MNDWI, AWEI and WI2015). The most problematic issue is that optical remote sensors remain 

hindered by cloud obstructions, limiting their applicability to favorable weather conditions. 

Optical EO sensors combined with SAR technology may potentially solve this issue in the future, 

due to the ability of SAR to penetrate clouds. However, the application of the two data sources in 

tandem is currently limited due to inconsistent data availability, distinct physical properties that 

optical and SAR instruments sense, and dissimilar data delivery platforms. Cloudless composite 

multispectral satellite images are often constructed to avoid cloud obstructions. However, this is 

in most cases only suitable to detect long-term changes. A recently introduced approach, where 

surface water is estimated based on multiple cloud-free images, shows great potential towards 

the estimation of water under cloudy circumstances. However, its applicability to rivers 

specifically has not been demonstrated. Furthermore, methods introduced over the past years 

have largely been able to mitigate the negative impact of cloud shadows, hill shadows and snow 

cover − often misinterpreted as water –by means of additional information, such as the satellite 

view angle, the position of the sun (solar azimuth and solar zenith), DEMs and specially modified 

DEMs such as HAND and MrVBF.    
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3 METHOD 
This chapter covers the steps taken to estimate the geometry of a river based on EO satellite 

imagery. Firstly, the study area is selected (§3.1). Next, the datasets used are briefly described 

(§3.2). Thereafter, the approach towards the avoidance of image disturbances is explained, and, 

the steps undertaken to detect the bounds of a river from a cloudy multispectral satellite image 

are described (§3.3). Subsequently, common remote sensing interpolation techniques are 

investigated in order to allow for a more accurate representation of the course of a river (§3.4). 

Thereafter, a method is proposed that allows for the derivation of river widths from a river 

polygon (§3.5). Lastly, it is shown how this information can be used to exclude potentially 

undesirable water bodies (§3.6).  

 

3.1 STUDY AREA: TRINITY RIVER, TEXAS, USA 
One of the main objectives is that the overall method should ultimately be applicable to more or 

less any river in the world5. Therefore, it would be senseless to limit the research to one specific 

study area. However, to provide demonstrative evidence, an initial study area has been selected; 

a small section of the Trinity River located close by Galveston Bay, Texas, USA. The Trinity River 

is single-threaded, roughly 6 kilometers long, about 100 meters wide and displays a high-degree 

of sinuosity at the location of interest. Both Landsat 8 and Sentinel-2 satellites offer plentiful 

cloudless and cloudy satellite images for this specific area. Furthermore, the Trinity River is 

sufficiently wide that it is detectable by both satellites (the worst-case scenario is a 30 × 30 

meters spatial resolution). Rivers showing signs of braiding or anastomosing characteristics were 

initially avoided due to their complexity. The initially chosen study area is displayed in Figure 3.1. 

 

 
  

Figure 3.1 ─ Study area: Trinity River, Texas, USA (Phillips et al., 2004; Map data © 2018 Google). 

                                                 
5 (1) Assuming said river is sufficiently wide that it is detectable by either the Landsat 8 or the Sentinel-2 satellite and 
(2) multispectral satellite images are available. 

Study area 
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3.2 DATA RESOURCES 
Three raw input datasets were used as a basis in order to generate the water mask from which 

later river polygons are derived. Two of which are datasets acquired from multispectral satellites: 

Landsat-8 and the fairly recently launched Sentinel-2. Figure 3.1 provides information that is 

relevant for both satellites, that is: spatial resolution, revisit interval, data availability and spectral 

band availability. The combined usage of both satellites provides a relatively high spatial 

resolution, allowing for the accurate detection of the smaller features of a river. Furthermore, 

both the relatively low revisit interval and the data availability ensure that sufficient satellite 

images are available, covering a time span of roughly 5 years (11-02-2013 up to now). The 

availability of red, green, near-infrared and short-wave infrared bands provide the necessary data 

to calculate water indices, allowing for the detection of water features from a multispectral 

satellite image. Specifically, the MNDWI is utilized for its ability to discriminate water from land 

and is widely regarded as a stable and reliable water index. However, the MNDWI is sensitive to 

snow and ice, since it makes use of the short-wave infrared band, which is also used to separate 

snow from clouds (NDSI). Donchyts et al. (2018) shows that a good separation between water 

and snow/ice can be achieved by using the near-infrared band instead of the short-wave infrared 

band, which is less sensitive to snow/ice content. In fact, substituting the short-wave infrared 

band for the near-infrared band results in the NDWI. Therefore, this particular index is used 

under the presence of snow or ice.  

 
Table 3.1 ─ Spatial resolution, revisit interval, data availability and number of available bands for Landsat 8 and 

Sentinel-2 satellites.  

Dataset Type Spatial 

resolution (pixel 

size) 

Revisit interval 

(days) 

Data availability Number of 

bands 

Landsat 8 Multispectral 

imagery 

30 x 30 m 16 April 11, 2013 – 

now 

9 

Sentinel-2 Multispectral 

imagery 

10 x 10 m* 5 June 23, 2015 – 

now 

12 

HAND Normalized 

elevation dataset 

30 x 30 m    

*The short-wave infrared channel has a spatial resolution of 20 x 20 meters, which is rescaled to 10 x 10 meters. 

 

Furthermore, the Height Above Nearest Drainage (HAND) 30 meters resolution dataset, which is 

derived from the Shuttle Radar Topography Mission (SRTM) Digital Elevation Model (DEM), is 

used as a topographic mask to detect and exclude pixels where potential errors occur due to 

shadows. Water is often erroneously detected in areas of terrain shadow, because shadows are 

generally spectrally similar to water, appearing as a scattering of flood pixels in hilly regions. The 

HAND model is based on a calculated drainage network, from which a nearest drainage map is 

generated. Each pixel on this map contains an elevation difference with its associated nearest 

drainage pixel. Therefore, as opposed to DEM, the HAND model is not based on absolute heights, 

but is the normalized (or relative), local height, defined as the vertical distance from a hillslope 

surface cell to a nearby drainage cell. A study by Huang et al. (2017) verified that elevation 

information directly acquired from DEM is sometimes unsuitable for the mapping of surface 

water and that a HAND model is recommended over DEM for global purposes. 

 

Google Earth Engine (GEE) is used for the analysis and manipulation of the data resources. This 

is a cloud-based geospatial processing platform that allows for planetary-scale geospatial 
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analysis, providing access to publicly available remotely sensed imagery and cloud-based 

computing power. 

 

Although the addition of more data sources such as Landsat 7 or even Open Street Maps were 

considered, their inclusion was deemed not feasible within the given available amount of time 

and were thus excluded to narrow down the overall scope. 

 

3.3 AVOIDANCE OF IMAGE DISTURBANCES 
Clouds, haze and fog are a common phenomenon in remote sensing imagery and a significant 

concern for most land surface remote sensing applications. This is especially true for images that 

have been obtained by means of optical EO satellites, where these types of noise form a severe 

hindrance and may significantly impact the information that is required to accurately detect 

water.  The method as described by Donchyts et al. (2016) is firstly applied to the study area, 

allowing for the detection of surface water in an automated manner based on an adaptive 

thresholding procedure. The surface water detection technique relies on two key algorithms: 

Otsu thresholding and the Canny edge detector. The essence of the procedure is elaborated in 

Appendix A. In short: The edges of a surface water body are detected by initially applying the 

NDWI, followed by a Canny edge detector. Sharp changes (between water and land) are 

subsequently sampled by buffering (that is, expanding) the detected edges to obtain a bimodal 

distribution of water and land pixels. Thereafter, a threshold value is obtained by applying Otsu’s 

method, separating water from land. Lastly, the Canny edge detector is applied once more to the 

resulting surface water mask in order to detect the edges. The final result is depicted in Figure 

3.2 (1) and is based on a Landsat 8 image that is completely cloud-free. No adjustments were 

needed. However, the introduction of image disturbances, such as clouds, appear to be 

problematic (see Figure 3.2 (2)). 

 

 
Figure 3.2 ─ (1) Surface water detection of the Trinity River, Texas, USA based on a cloud-free multispectral satellite 

image and (2) the exact same method applied to a satellite image that is hindered by clouds (2). 

Based on the study of literature, it was found that a recently introduced method by Donchyts 

(2018) is able to estimate the bounds of a relatively large surface water body under cloudy 

conditions with a high-degree of accuracy. However, its applicability towards rivers specifically 

was not demonstrated. Nonetheless, the method shows great potential towards the estimation of 

the bounds of a river of a cloudy satellite image. For this reason, its applicability towards rivers 

is further investigated. 

 

(1) Cloud-free satellite image (2) Cloudy satellite image 
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The general idea of the approach is to compute an underlying image that stores information of 

where and how often surface water occurred over time based on a series of cloudless historical 

images, which is defined as the water occurrence. Here, the frequency at which water occurred at 

a pixel can be any number between 0 and 1, where 1 means that water has been detected in every 

sampled image and 0 that water has never been detected. Sampling of historical observations 

allows for the prediction of a river’s course, which enables the possibility of estimating missing 

data points due to the presence of clouds. For example, a river’s course on the first of January, 

2017, can be predicted based on a combination of images taken in December, 2016, as well as 

images taken in February, 2017. As demonstrated by Donchyts (2018), the algorithm performs 

well for larger-sized water bodies under cloudy conditions. However, minor modifications were 

found to improve its overall reliability towards the estimation of the course of rivers under cloudy 

circumstances specifically. 

 

To identify surface water under cloudy circumstances, the algorithm compares the surface area 

of water that has been detected without any form of cloud-avoidance-procedure to the surface 

area of water that has been estimated based on historical imagery (referred to as the historical 

composite from now on). If the differences between their area is found to be large, the historical 

composite is selected as the most accurate representation of a water body. This is due to the fact 

that is it very likely that, in this case, a multispectral satellite image is largely, or even completely, 

obstructed by clouds, which makes it difficult to estimate its bounds. Otherwise, if their difference 

relatively small, the multispectral satellite image is likely to be hindered by some form of cloud 

obstruction, and the originally detected water body is merged with the historical composite. In 

this scenario, the size of the detected water from the historical composite is reduced by a 

morphological operation known as erosion6. This operation shrinks (erodes) the shape of the 

detected water body and thus reduces its overall size. This is a common operation within the field 

of computer vision and works, as essentially any filter, by taking a small grid of numbers (a 

kernel), which is then passed over the whole image, transforming it based on what those numbers 

are (see Appendix B for a description of how this works exactly). The historical composite is 

subsequently merged with the originally detected surface water mask by means of addition. The 

result is the originally detected water body, where possible missing gaps due to cloud 

obstructions are estimated using the eroded historical composite.  

 

Although this procedure works well for larger water bodies (e.g. lakes and reservoirs), it does, in 

its current form, not produce optimal results for rivers. This is largely attributed to the fact that 

the radius of the kernel, used to erode the bounds, is a fixed value. In Figure 3.3, the procedure is 

applied to the Trinity River, and the resulting surface water masks are displayed in binary form. 

Pixels that contain water are assigned the number 1 and pixels that do not contain water are 

assigned the number 0. By convention, 0 is associated to black, and 1 to white. Here, missing gaps 

as a result of clouds are estimated and thus “filled” by the historical composite. However, this is 

done insufficiently so, resulting in an underestimation of the width over the course of the Trinity 

River (see blue arrows). 

 

                                                 
6 For a more thorough explanation of erosion, as well as other morphological operators used frequently in this thesis, 
see Appendix B. 
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Figure 3.3 ─ (1) Original satellite image of a section of the Trinity River, (2) automatically detected surface water mask 

(SWM), (3) estimated surface water mask due to cloud obstructions based on the method described by Donchyts 

(2018).  

To improve the accuracy of the historical composite under cloudy circumstances, for rivers 

specifically, the proposition is to linearly scale the strength by which the historical composite is 

eroded, based on the differences between the total surface area of water of the originally detected 

surface water mask (that is, (2) in Figure 3.3) and the historical composite. Under cloudy 

circumstances, the total surface area of the historical composite is likely to be larger than the 

originally detected surface water mask, since the course of a river represented by the historical 

composite does not contain any gaps. This is true under the assumption that the geometry of a 

river has not changed significantly within the time window wherein historical images have been 

sampled. Furthermore, instead of relying on a historical composite that represents the average 

course of a river over time, weights are attached to the sampled historical images based on the 

date at which they were sampled, resulting in a historical composite that represents a weighted 

average. By doing so, the impact of variable discharge patterns towards the geometry of a river 

can be reduced, depending on the distribution of the weights, resulting in an estimate that is likely 

to be more in line with the originally detected surface water mask. The new set of rules followed 

to estimate the course of a river under cloudy circumstances is as follows: 

 

Let 𝑆𝑊𝑀1 be the detected surface water mask at the current instant in time, 𝑆𝑊𝑀2 the surface 

water mask of the historical composite, 𝐾 a set of real numbers ranging from 1 to 1.5, 𝐿 a set of 

real numbers ranging from 0 to 25, ω a kernel filled with 1’s (1 represents water), 𝑟 the radius of 

the kernel where min (𝐿) ≤ 𝑟 ≤ 𝑚𝑎𝑥 (𝐿), and 𝐴𝑆𝑊𝑀1 and 𝐴𝑆𝑊𝑀2 the total surface area  of water 

present in either surface water mask. The estimate of the new surface water mask under cloudy 

conditions is defined as: 

 

 𝑆𝑊𝑀𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒(𝑖, 𝑗) = 𝑆𝑊𝑀1(𝑖, 𝑗) + (𝑆𝑊𝑀2(𝑖, 𝑗)⊝ω) 

 
(3.3.1) 

where the radius 𝑟 of kernel ω equals: 

 

𝑟 =

{
 

 
𝑚𝑖𝑛 (𝐿), 𝑖𝑓 𝐴𝑟𝑎𝑡𝑖𝑜 > 𝑚𝑎𝑥 (𝐾)

𝑚𝑖𝑛(𝐿) − 𝑚𝑎𝑥(𝐿)

𝑚𝑎𝑥(𝐾) − 𝑚𝑖𝑛(𝐾)
(𝐴𝑟𝑎𝑡𝑖𝑜 −𝑚𝑖𝑛(𝐾)) + 𝑚𝑎𝑥 (𝐿), 𝑖𝑓 𝑚𝑖𝑛(𝐾) < 𝐴𝑟𝑎𝑡𝑖𝑜 < 𝑚𝑎𝑥 (𝐾)

𝑚𝑎𝑥 (𝐿), 𝑖𝑓 𝐴𝑟𝑎𝑡𝑖𝑜 < 𝑚𝑖𝑛 (𝐾)

 

 

with 𝐴𝑟𝑎𝑡𝑖𝑜 defined as 𝐴𝑟𝑎𝑡𝑖𝑜 =
𝐴𝑆𝑊𝑀2

𝐴𝑆𝑊𝑀1
.  

(1) Satellite image (2) Original SWM (3) Estimated SWM 
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In other words, the surface water mask at the current instant in time and the surface water mask 

of the historical composite are now always merged by means of addition. However, the influence 

of the historical composite towards the originally detected surface water mask depends on the 

difference between the total surface area of both surface water masks. In case it is found that the 

course of a river varies highly over time, and 𝐴𝑟𝑎𝑡𝑖𝑜 > 𝑚𝑎𝑥 (𝐾) is true, an option is provided to 

instead select the historical composite as a best estimate. However, this was found to be highly 

unlikely.  

 

The distribution between 𝐴𝑟𝑎𝑡𝑖𝑜 and the kernel radius 𝑟 is demonstrated in Figure 3.4 (left). The 

maximum kernel radius by which a river is eroded is limited at 25, since a radius that is too big is 

found to excessively erode the surface water mask of the historical composite, especially for 

rivers that are relatively narrow (<100 meters wide). In chapter 5, the sensitivity of various 

kernel radii is demonstrated. The sensitivity of 𝐾 for various maxima of the defined set of real 

values is also shown (that is, 1.5, 2, 3 and 5 as seen in Figure 3.4). 

 

Furthermore, a simple inverse distance weighting function as defined by Shepard (1968) is used 

in order to reduce the impact of sampled images that are relatively far off the considered point in 

time: 

 

 
𝑓(𝐼) =

∑ 𝑤𝑖𝑧𝑖(𝑥, 𝑦)
𝑛
𝑖=1

∑ 𝑤𝑖
𝑛
𝑖=1

, 𝑤𝑖 =
1

|𝑑(𝑥, 𝑥𝑖)|
𝑝

 

 

(3.3.2) 

 

where images further off from the reference image 𝐼 will have lower weights, 𝑧𝑖  is the value at a 

pixel within an image, 𝑤𝑖 is the weight (rescaled to [0-1]) by which values of a sampled image are 

multiplied,  𝑑  is the time in milliseconds from the sampled date 𝑥  to the considered date of 

interest 𝑥𝑖, and 𝑝 a positive real number, which defines the shape of the distribution by which 

sampled images are weighted. Various values can be used for 𝑝 (e.g. Figure 3.4 (right)), depending 

on the variability of the geometry of a river over time. A distribution with  𝑝 = 0.1 is assumed for 

the weights attached to the sampled images. The sensitivity of the historical composite towards 

various values for  𝑝 is later demonstrated in chapter 5.  

 
Figure 3.4 ─ The relationship between Aratio and the kernel radius r (left) as well as an example of various 
distributions for the assigned weights (right). 
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The result of the modified procedure for the exact same moment in time as seen in Figure 3.3 is 

presented in Figure 3.5. Differences between the original estimation and the modified procedure 

can clearly be observed.  

 

 
Figure 3.5 ─ (1) Original surface water mask, (2) previously estimated surface water mask and the (3) new estimation 

of the water mask, which is obtained by linearly scaling the erosion between the surface area of the historical composite 

and the originally detected image and applying weights to sampled historical images. 

The overall approach towards the estimation of the course of a river under cloudy circumstances 

is now as follows. Firstly, the MNDWI is calculated to enhance open water features while 

efficiently suppressing background noise. Additionally, the HAND dataset is used to exclude 

pixels that may result in potential errors due to shadows. Afterwards, the method described by 

Donchyts et al. (2016) is applied to generate a surface water mask in an automated manner, based 

on Otsu thresholding. The result is a binary image, where pixels that contain water are assigned 

the number 1 and pixels that do not contain water are assigned the number 0. Clouds have not 

been removed as of yet, and thus a significant number of pixels (white) are incorrectly classified 

as water. The first three steps are illustrated in Figure 3.6. 

 

 
Figure 3.6 ─ The generation of a surface water mask in an automated manner: (1) multispectral satellite image, (2) 

calculate the MNDWI and exclude pixels that may result in potential errors due to shadows or snow through the 

utilization of HAND, (3) apply Otsu thresholding to generate a surface water mask. 

Subsequently, the water occurrence composite based on historical data is generated. In order to 

do so, multispectral satellite images that are below a certain threshold value in terms of cloud 

coverage are filtered from the Landsat 8 and Sentinel-2 satellite databases. A percentage that is 

roughly equal or less than 15 was found to, generally, provide a relatively accurate representation 

of the course of a river. This percentage ensures that several images are considered in case of a 

(2) Previously estimated 
SWM 

(3) New SWM (1) Original SWM 

(1) Satellite image (2) MNDWI combined with 
HAND mask 

 

(3) Surface water mask 
(binary form) 
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relatively short sampling window (e.g. 1 month). However, in case plenty cloud-free images are 

available, this may be lowered to 10, or even 5, to assure only perfectly cloudless images are used 

to sample from, improving the estimate. 

 

Thereafter, for every historical image, a surface water mask is computed, resulting in a series of 

binary images. This is done by repeating (1), (2) and (3) as seen in Figure 3.6, but for the series 

of mostly cloudless sampled historical images. Thereafter, the binary images are summed and, 

divided over the total number of binary images, resulting in a composite image displaying the 

frequency of water over time, where each pixel is assigned a value between 0 and 1 as a result. 

Areas that inundate every so often, or clouds that have falsely been detected as water and are 

therefore not considered to be part of the main river course, can then be eliminated based on 

their low occurrence frequency. Due to the fact that the water occurrence composite is based on 

multiple historical satellite images, the frequency of which water occurs at a pixel is detectable. 

Relatively low values between 0 and 1 indicate that water has not occurred very frequently, 

meaning that it is likely to be the result of either a short-term flood or a misinterpreted cloud. A 

threshold value of 0.2 was found to, generally, exclude most of the misinterpreted pixels due to 

clouds, or water as a result of short-termed floods. This effectively means that every value that is 

equal or less than 0.2 is converted to 0 (black). In chapter 5, the sensitivity of this particular 

threshold value is demonstrated. The detection of water of multiple historical images, the water 

occurrence composite before the application of a threshold value, and the final water occurrence 

composite are illustrated in Figure 3.7. 

 

 
Figure 3.7 ─ The generation of a historical composite: (1) sample relatively cloudless multispectral satellite images 

and compute their surface water masks based on the procedure as seen in Figure 3.5, (2) construct the average course 

of a river of interest by summing all binary images and dividing the values of all pixels by the total amount of images, 

(3) eliminate all pixels of that are below a predefined threshold value. 

From there on, both the surface water mask (3) and the historical composite (4) are combined by 

means of multiplication. This means that pixels that have originally been assigned the value of 

water, 1, are indeed water in case they are multiplied by a positive value. Pixels that have 

originally been assigned the value of water but are multiplied by 0, are most likely clouds that 

mistakenly have been detected as water due to their similar spectral properties. The result is 

illustrated in Figure 3.8 (5). Subsequently, the historical composite is merged with the newly 

obtained surface water mask (as seen in 5), and possible overestimations of the historical 

composite, relative to the originally detected surface water mask, are eroded in an adaptive 

manner. This is done by calculating the difference between the originally detected surface water 

mask (5) and the historical composite (4), followed by the application of erosion (see Appendix 

B), based on the value for𝐴𝑟𝑎𝑡𝑖𝑜.  

4. Historical composite  
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Lastly, the edges are be detected by means of the Canny edge detector. This is done for 

visualization purposes, as the surface water mask is in fact all that is needed to determine the 

surface river widths, which is demonstrated in §3.5. 

 

 
Figure 3.8 ─ The detection of a river’s edges: (5) removal of falsely detected water pixels, (6) merge the detected water 

mask and the historical composite, (7) compute the edges by means of the Canny edge detector. 

 

3.4 CONVERSION TO A RIVER POLYGON AND SPATIAL 

INTERPOLATION METHODS 
In the previous segment it is demonstrated how the course of a river under cloudy circumstances 

can be estimated using multiple images from the past, in the form of a binary surface water mask. 

However, the obtained data is currently not represented in the desired spatial format. Geospatial 

data can be represented in two formats, either in the form of a raster or a vector (Burrough, 

1986). Raster data is based on a matrix of grid cells of uniform size and is especially suitable for 

capturing, storing and analyzing data, such as the elevation, land use or temperature. Vector data 

is comprised of coded points (vertices) and lines and is excellent for capturing and storing spatial 

details, such as the edges of features, in this case rivers. Multispectral satellite data is represented 

in raster format, where each pixel represents the reflectance across multiple wavelengths within 

the electromagnetic spectrum (bands). Google Earth Engine provides a built-in algorithm, which 

is able to convert the raster data of an image to vector data, based on homogeneous regions. This 

allows for the conversion of the final surface water mask ((6) in Figure 3.7) to a vector format, 

which indeed consists of a homogeneous form after the removal of non-water (black) pixels. 

Although this method certainly works, a disadvantage is that it remains unclear how it exactly is 

implemented, leaving room for potential unexplainable errors. Since the direct access to the 

source code of GEE is not permitted, the exact implementation remains unknown. However, there 

is a good chance that it is based off of work by Riekert (1993), where an algorithm is proposed 

allowing for the extraction of area objects from raster image data. Or, work by Lou et al. (2005), 

where a popular approach to vectorization of remote sensing images is presented based on the 

characteristics of raster data.  

 
Immediate conversion from raster data to vector data will not lead to the desired polygon, 

because of the fact that data is drawn from multispectral satellite images containing pixels with a 

resolution of 30 ×  30 meters, resulting in blocky polygons having the same pixel size (in case of 

Sentinel-2’s 10 ×  10 spatial resolution, the edges remain visibly jagged). In computer graphics 

and digital imaging, a common technique is resampling, allowing for the direct manipulation of a 

digital image, transforming it to another form. In this particular case, the reason is to create more 

vertices, allowing for a more accurate representation of the course of a river. This is of 

importance, since the river widths are later (§3.5) derived from the shape of the river polygon. 

(5) Exclude non-water pixels (6) Merge (4) and (5) 

 
(7) Detect edges 
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In the processing of satellite imagery, there are three common resampling techniques: nearest-

neighbor interpolation, bilinear interpolation and bicubic interpolation.  In terms of functionality, 

the main differences between the three techniques is that nearest-neighbor interpolation bases 

the new value for a pixel on the value of the nearest pixel, bilinear interpolation assigns the output 

pixel value by taking the weighted average (distance based) of the four nearest neighbors and 

bicubic interpolation does the same, but for 16 nearest neighbors and takes the gradient (or 

orientation) into account. The latter usually results in the smoothest edges. The trade-off is that 

bicubic interpolation is much slower in terms of computation speed compared to nearest-

neighbor interpolation. This is demonstrated in Appendix E by means of profiling the script, 

which is a tool that helps to identify bottlenecks by providing information about the CPU and 

memory usage. In §4.2 it is shown that the performance of the script is in fact of great importance, 

limiting the maximum size of the river polygon that can be rendered. In Google Earth Engine, 

nearest-neighbor is implemented by default when satellite data is projected on the map, therefore 

it is not necessary to discuss this technique. The effect of both bilinear and bicubic interpolation 

are explored, where the governing equations of bilinear and bicubic interpolation can be defined 

as 

 

 
𝑓(𝑥, 𝑦) =∑∑𝑎𝑖𝑗𝑥

𝑖𝑦𝑖
1

𝑗=0

1

𝑖=0

= 𝑎00 + 𝑎10𝑥 + 𝑎01𝑦 + 𝑎11𝑥𝑦 (3.3.1) 

 

 𝑓(𝑥, 𝑦) =∑∑𝑎𝑖𝑗𝑥
𝑖𝑦𝑖

3

𝑗=0

3

𝑖=0

 (3.3.2) 

 

where 𝑥 and 𝑦 are the coordinates of a new location, 𝑓(𝑥, 𝑦) the value of the pixel and 𝑎𝑖𝑗  the 

coefficients. Furthermore, 𝑎00 = 𝑓(0,0), 𝑎10 = 𝑓(1,0) − 𝑓(0,0), 𝑎01 = 𝑓(0,1) − 𝑓(0,0)  and 𝑎11 =

𝑓(1,1) + 𝑓(0,0) − (𝑓(1,0)) + 𝑓(0,1)) , assuming the known four corners are (0,0), (1,0), (0,1) 

and (1,1). The result of raster to vector conversion (R2V), as well as the application of both 

interpolation methods are shown in Figure 3.9, including a depiction of the smoothness of the 

edges for each approach. Here, Landsat 8 data serves as a basis. Clear differences are visible 

between the images, although the differences between bilinear and bicubic interpolation are 

relatively minor. Bicubic interpolation shows the most accurate edges.  

 

To reduce the number of vertices and optimize the polygon, it is then simplified. This is based on 

the Douglas-Peucker algorithm (Douglas and Peucker, 1973). Consider a set of points (𝑃0, … , 𝑃𝑛) 

on a piecewise linear curve. The algorithm firstly connects the start (𝑃0) and end points (𝑃𝑒𝑛𝑑) 

with a straight line. It then computes the distance of all intermediate vertices perpendicular to 

the straight line. The vertex that is the furthest away from the line of which the distance is larger 

than a prespecified threshold value, is marked and added to the simplification. This means that 

simplified line now connects 𝑃0 to 𝑃𝑛𝑒𝑤 and 𝑃𝑛𝑒𝑤 to 𝑃𝑒𝑛𝑑. The process is repeated, but now for all 

vertices between 𝑃0  and 𝑃𝑛𝑒𝑤 , as well as 𝑃𝑛𝑒𝑤  and 𝑃𝑒𝑛𝑑 , until no more vertices of the original 

curve are available of which the distance is greater than the prespecified threshold value.  
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Furthermore, the effect of bicubic interpolation using a Sentinel-2 multispectral satellite image is 

demonstrated in Figure 3.10. The resulting polygon using the Sentinel-2 dataset appears to 

produce slightly more accurate results based on visual interpretation. Images (5) in Figure 3.9 

and image (2) in Figure 3.10 are not repeated for bilinear interpolation, since they are, in fact, 

more or less similar. 

 

 
 
Figure 3.9 ─ Overview of the effect of raster to vector conversion (R2V) for bilinear and bicubic interpolation, based 

on Landsat 8 multispectral satellite data. The following images are displayed: (1) R2V without any sort of interpolation 

applied, (2) application of bilinear interpolation on (1), (3) application of bicubic interpolation on (1), (4) zoomed-in 

view of the result of both interpolation methods, (5) simplified geometry based on bicubic interpolation for 

optimization purposes. 

 

(5) R2V – Simplified geometry based on 
bicubic interpolation  (4) Edge smoothness 

(1) R2V – Nearest neighbor interpolation 

(2) R2V – Bilinear interpolation (3) R2V – Bicubic interpolation 
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Figure 3.10 ─ Overview of the effect of R2V conversion for bicubic interpolation, based on Sentinel-2 satellite data. 

The following images are displayed: (1) R2V without any sort of interpolation applied, (2) simplified geometry based 

on bicubic interpolation. 

 

3.5 DERIVATION RIVER WIDTHS 
The purpose of a river polygon is that it provides information about the course of a river. 

However, a river polygon does not provide direct information about its width. Based on existing 

concepts, a method is implemented that allows for the derivation of the river width from a river 

polygon, in an automated manner. The method consists of three main steps: 

 

1. Euclidian distance map (EDM); 

2. Centerline (Voronoi-based skeletonization followed by skeleton pruning); 

3. River widths. 

 

However, before doing so, a preprocessing step is applied−that is, relatively small water bodies 

that are present within the multispectral satellite image, thus disconnected from the main river 

of interest, are removed. To do so, morphological opening is applied. This is a variation on 

morphological erosion, as previously seen in §3.2, and is defined as erosion followed by dilation. 

Opening first shrinks (erodes) the shape of a detected water body, reducing its overall size, and 

subsequently enlarges (dilates) the detected water body. The whole point of the operation is to 

first apply erosion to such an extent that relatively small water bodies are completely removed. 

Since this operation affects the whole image, and thus the river of interest, this is followed by 

dilation to restore the river to its original size. Furthermore, as a result of dilation, small gaps 

which have been overlooked by the surface water detection algorithm are filled, improving the 

result. A typical kernel filled with 1’s (water pixel representation) is used to apply the operation. 

The result of the opening operation is depicted in Figure 3.11. Due to the fact that the current 

study area does not show a significant amount of water bodies surrounding the Trinity River, the 

operation is applied to a more fitting location: a segment of the Waal nearby Nijmegen, located in 

The Netherlands. This particular location contains a vast amount of water bodies, of various sizes 

and shapes, surrounding the Waal and thus makes the impact of the operation more noticeable. 

Note that there is a slight gap in the Waal (bottom right corner), which is the result of a bridge 

crossing the river. For relatively high resolutions (e.g. 10 × 10 meters), this is an unsolved issue 

as the river polygon is either split in two or remains connected (simply due to the fact that a 

30 × 30 meters resolution does not detect the bridge). 

(2) R2V – Simplified geometry based on 
bicubic interpolation 

(1) R2V – Nearest neighbor interpolation  
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Figure 3.11 ─ Comparison of two binary images, demonstrating the effect of the opening operator on the Waal 

including its neighboring water bodies. 

Secondly, the distance transform is computed in Euclidian space, and is generally used to compute 

medial axes, Voronoi diagrams, shortest-path computation and image segmentation (Fabbri et al., 

2008). The distance transform is an operator that computes the distance of each pixel to the 

nearest obstacle pixel and is ultimately based on the Euclidean distance given by: 

 

 
𝑑(𝑝, 𝑞) = √(𝑝𝑥 − 𝑞𝑥)

2 + (𝑝𝑦 − 𝑞𝑦)
2 (3.5.1) 

   

where 𝑑 is the distance from point 𝑝 to point 𝑞. In this case, the distance transform is obtained 

based on a set of boundary points, resulting in a distance map where each pixel contains the 

distance value to the closest boundary point. Therefore, more boundary points directly relates to 

a more accurate distance map.  Since the overall computation speed is of importance, a generally 

high-performant approach to the Euclidean Distance Transform (EDT) by Meijster (2004) has 

been used to compute the distance per pixel, denoted as: 

 

 𝐸𝐷𝑇(𝑥, 𝑦) = 𝑚𝑖𝑛{(𝑥 − 𝑖)2 + 𝐺(𝑖, 𝑦)} (3.5.2) 

 𝐺(𝑖, 𝑦) = 𝑚𝑖𝑛{(𝑦 − 𝑗)2 | 𝐹(𝑖, 𝑦) = 0} (3.5.3) 

 

where given an input image 𝐹 , the distance transform is firstly calculated for each column of 

pixels by performing a forward scan (top-to-bottom) followed by a backward scan, generating 

the image 𝐺. Secondly, the algorithm iterates through each row, from left to right and vice versa, 

calculating the minimum distance value for each pixel. The result of the EDT applied to a segment 

of the Trinity River is presented in Figure 3.12 (1) in the form of a gradient, where the distance 

of each pixel to the nearest boundary of each polygon is illustrated by its color. Here, a pixel that 

is farther away from the boundary is colored white.  

(2) Morphological opening (1) No modifications 

Waal Waal 
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Next, the medial axis of a polygon, also known as the skeleton, is computed based on the distance 

map. To do so, a Voronoi diagram is firstly generated based on a two-dimensional convolution 

between the distance map and a Laplacian-8-edge-detection structural element. This is based on 

work by Brandt et al. (1992). Let 𝐼(𝑥, 𝑦) be the image of the distance map and let 𝑓(𝑥, 𝑦) be the 

structural element. Then the discrete 2D convolution is 

 

 
(𝐼 ∗ 𝑓)(𝑥, 𝑦) =  ∑ ∑ 𝐼(𝑥 − 𝑢, 𝑦 − 𝑣) 𝑓(𝑢, 𝑣)

𝑘

𝑣=−𝑘

𝑘

𝑢=−𝑘

 (3.5.4) 

 

where (𝐼 ∗ 𝑓)  is the resulting image, 𝑘  the overall boundary conditions,  ∗  the convolution 

operator and 𝑓 the Laplacian-8-edge-detection structural element. 

 

Subsequently, a skeleton can be computed based off of the computed Voronoi diagram. Since a 

Voronoi diagram consists of convex polygons, which in turn consist of vertices, vertices of convex 

polygons that intersect with the original boundary of the Voronoi diagram (in other words, the 

boundary of the detected surface water body) are discarded, resulting in a skeleton (Figure 3.12 

(2)). Although there are various ways to compute a skeleton of a geometry (Tagliasacchi et al. 

(2016) provides an extensive overview of state-of-the-art approaches), the Voronoi-based 

approach was implemented since it can be computed relatively quickly. 

 

In the current form, the resulting skeleton contains undesirable branches as a result of the 

Voronoi-based approach, known as spurious branches. In order to remove the spurious branches 

in an automated manner, or, prune the skeleton, an approach by Solís Montero et al. (2012) has 

been implemented. The essence of the algorithm is quite straightforward and ultimately comes 

down to the following equation: 

 

 |𝑒𝑝 − 𝑏𝑝| ≤ 𝑠 × |𝑓 − 𝑏𝑝| (3.5.5) 

 

where 𝑏𝑝 is a branch point (a vertex on a skeleton where two or more lines meet), 𝑒𝑝 an end point 

of a branch (connected to only one line), 𝑠  an arbitrary scale multiplier and 𝑓  the closest 

boundary point relative to 𝑏𝑝 . The pruning criterion is as follows: Consider a branch of the 

skeleton {𝑏𝑝, … , 𝑒𝑝} with branch point 𝑏𝑝 and end point 𝑒𝑝 such that line between both points is 

not interrupted by other branch points. The branch {𝑏𝑝, … , 𝑒𝑝} is marked for removal if the end 

point 𝑒𝑝 lies inside of a circle that is centered around the nearest boundary point 𝑏𝑝, with a radius 

that is equal to the Euclidean distance |𝑓 − 𝑏𝑝|. The process is re-iterated until no more branches 

can be removed. In regard to D-RATIN− in some cases, the end-user may want to exclude 

relatively large branches that are not removed by default. Therefore, a scale factor 𝑠  is 

introduced, which allows for the amplification of the search radius. By default, the scale multiplier 

is set to 1. 

 

An overview of the three steps applied to the Trinity River is demonstrated in Figure 3.12. Here, 

the EDT is first shown. This is followed by the resulting Voronoi skeleton as well as the centerline, 

which was obtained by pruning the undesirable branches of the skeleton.  
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Figure 3.12 ─ Overview of the generation of a pruned skeleton: (1) EDM (a pixel that is farther away from a 
boundary point is colored white), (2) Voronoi skeleton, (3) centerline (purple).  

Information about the width of a river polygon can now be determined as follows. Firstly, the 

resulting centerline is masked (overlapped) by values of the EDM. This results in a centerline 

where every pixel contains information about its distance to the nearest boundary, in Euclidian 

space. Subsequently, the resulting values are multiplied by two in order to obtain the river width, 

instead of the distance from the boundary to the center. The final result is demonstrated in Figure 

3.13. Here, the river polygon of a segment of the Trinity River is displayed including its width by 

means of a centerline (left). The color gradient provides information about the width. 

Furthermore, the width of the Trinity River is displayed over its course (right). The river length 

starts at zero in the bottom right corner of Figure 3.13 (left). 

    
Figure 3.13 ─ Final estimation of the geometry of a segment of the Trinity River. 

3.6 EXCLUSION OF SURFACE WATER 
One of the current issues in terms of surface water detection based on a multispectral satellite 

image is that for every single pixel within an image the water content is computed, based on the 

utilization of a spectral index (in this case, the MNDWI). This means that, when the data is 

converted to a vector format, every water body, regardless of its size, will be included in the 

polygon. In order for the D-RATIN tool to provide quantitative information regarding 

geometrical, hydrological and geographical river aspects, the first step is to reconstruct the bed-

(1) EDT map (2) Voronoi skeleton (3) Centerline 

100m 

0m 

Final geometry 

150m 

0m 



3.    METHOD 

33 

 

levels of a river of interest. This requires the river polygon to exclude surface water data that may 

not be relevant, such as a nearby lake or pond.  

 
To exclude any surface water body that is not part of a river of interest, polygons are computed 

for every surface water body that is present within a multispectral satellite image. Subsequently, 

their mean widths are calculated based on the exact same approach as seen in §3.5. Polygons that 

do not fall within a user-specified width-threshold are excluded (e.g. only display water bodies of 

which the river width is between 100 and 150 meters). This approach only fails if another water 

body has the exact same width as a specific river of interest. Alternatively, another option to 

exclude water bodies that are not part of a river of interest is to only display the water body that 

contains the greatest number of vertices, or surface area. In terms of script performance, which 

is found to ultimately limit the maximum size of a river polygon (§4.2), this approach requires 

much less resources, since the width does not have to be computed for every water body within 

an image. Another advantage is that this particular approach operates in an automated manner. 

Since the overall area of interest is based on a user-defined custom shape, water bodies that may 

be larger than a river of interest can simply be excluded and will therefore not be detected in the 

first place. 

 
The remaining issue is that the method as described above does not exclude surface water that is 

part of a river of interest, such as a nearby harbor, or, any other segment or branch of a river of 

which the bathymetry may not be of importance. A simple geometry subtraction is proposed, 

allowing for the removal of any segment of a water body by manually drawing a custom shape at 

the desired location. 

 

In Figure 3.14, the removal of surface water within a multispectral satellite image is illustrated. 

As a result of the lack of water bodies surrounding the Trinity River, a segment of the Waal is once 

again illustrated for demonstrational purposes. Firstly, water bodies that are not part of the Waal 

are excluded. This can either be achieved by defining a width-threshold, or by defining the area 

of interest in such a way that the Waal contains the largest surface area/most vertices within an 

image. Furthermore, surface water that may not be relevant to the river bathymetry is excluded 

by defining two custom shapes (red). 

 

 
Figure 3.14 ─ Demonstration of the exclusion of surface water for a segment of the Waal. 

Waal Waal 

(2) Resulting polygon (1) Surface water removal 
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4 RESULTS AND EVALUATION 
 

In this chapter, the method as discussed in chapter 3 is applied to two study cases in order to 

validate its accuracy. The results are interpreted and evaluated. To do so, two study cases are 

selected based on river polygon data provided by Rijkswaterstaat; a segment of the Meuse and 

the Rhine, dated from 1995. These are in fact the river polygons that are used to date. Both river 

polygons were created based on geographical map information and are therefore assumed to be 

valid in terms of accuracy. Surface areas of river polygons that are generated in an automated 

manner by means of EO satellite data are compared to the surface areas of river polygons by 

Rijkswaterstaat. Furthermore, the river widths are compared. Although the river widths were not 

provided by Rijkswaterstaat, the approach as demonstrated in §3.5 is applied to derive them.   

 

Quite recently, Allan and Pavelsky (2018) built a database consisting of the global river widths 

from Landsat (GRWL) imagery to characterize the global coverage of rivers and streams, based 

on mean discharge data. To further validate the approach as presented in this thesis, the EO 

satellite-based river polygons are compared to the surface water masks of the GRWL database. 

Additionally, the river widths are compared. This is done for the same segments of the Meuse and 

the Rhine as previously mentioned. Although their dataset was also composed based on the usage 

of multispectral satellite imagery, relevant datasets that contain information about both the 

course and width of rivers seem to be scarce, and the recent advancements in terms of remote 

sensing applications allow for this kind of data to be obtained in an effective manner.  

 

Furthermore, the global applicability of the approach as described in chapter 3 is assessed by 

generating river polygons for a total of seven rivers around the world, each displaying various 

features (e.g. meandering, braiding, islands and varying sizes) (§4.2). This allows for the overall 

limitations to be assessed. 

 

4.1 VALIDATION 
Two river polygons of the Meuse and the Rhine dating from 1995 were provided by 

Rijkswaterstaat for comparison.  A randomly selected segment for both river polygons is chosen. 

The river geometry is compared to the EO satellite-derived river polygons. Due to the fact that 

rivers are dynamic by nature, this is done for four instances in time throughout 2016, in order to 

account for possible variations. EO satellite data is therefore sampled on the first of March, June, 

September and December. In case EO satellite is not available on one of the aforementioned dates, 

the most recent satellite image relative to the specific date of interest is selected. The comparison 

between the river polygons is done for a set of images that are considered to be cloudless−that 

is, satellite images of which less than 15% of the image is obstructed by clouds−and a set of 

images that are considered to be cloudy (≥ 15% is obstructed by clouds). For cloudy images, a 

period of 4 months was selected to generate the historical composite. First, the overall shape, the 

surface areas and the mean river widths of the river polygons are compared for the selected 

segment of the Meuse. This is demonstrated in Figure 4.1, as well as Table 4.1 and 4.2. Figure 4.1 

demonstrates the typical representation of the EO satellite-based river polygons (cyan), as well 

as the river polygons provided by Rijkswaterstaat (orange), under both cloudless and cloudy 

circumstances. In order to present a clear visualization of both polygons, the decision was made 

to cut the river polygons in half, diagonally. Since both river polygons show a high degree of 
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similarity, differences between the two are hardly noticeable if they are overlapping 7 . The 

corresponding surface areas and mean river widths acquired at four instances throughout 2016 

is presented in Tables 4.1. and 4.2. The data has been sampled for the same segment of the Meuse 

as seen in Figure 4.1. From a visual perspective, the shapes of the EO satellite-based river 

polygons show a high degree of similarity compared to the river polygon provided by 

Rijkswaterstaat. The results show that, for relatively cloudless images, the total surface area of 

the EO satellite-based river polygons deviate between +1.21% and -0.95% from its reference 

case−that is, the river polygon from 1995. The mean river widths deviate between +1.53% and -

1.53% from its reference case (+2 and -2 meters respectively). For cloudy images, the surface 

areas appear to deviate between +1.24% and -3.61%. Here, the mean river widths deviate 

between +0.76% and -6.11% from its reference case (+1 and -8 meters respectively).  

 

 

 
 

Figure 4.1 ─ Differences between an automatically generated river polygon (cyan) and a river polygon provided by 

Rijkswaterstaat (orange) for a segment of the Meuse, for both cloudless and cloudy satellite images.

                                                 
7 However, for the sake of completeness, these images can be found in Appendix C. 

River polygon (01-04-2016; EO satellite) 
River polygon (1995; Rijkswaterstaat) 

River polygon (08-04-2016; EO satellite) 
River polygon (1995; Rijkswaterstaat) 
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Table 4.1 ─ Comparison between the total surface area and mean river width of various river polygons of a segment 

of the Meuse throughout 2016, based on fairly cloudless EO satellite images (< 15%cloud coverage), as well as the river 

polygon provided by Rijkswaterstaat (1995). 

 

Table 4.2 ─ Comparison between the total surface area and mean river width of various river polygons of a segment 

of the Meuse throughout 2016, based on cloudy EO satellite images (≥ 15%cloud coverage), as well as the river polygon 

provided by Rijkswaterstaat (1995). 

 
To further assess the correctness of the width of the EO satellite-based river polygons, the GRWL 

dataset by Allan and Pavelsky (2018) is consulted. The river widths of both cloudless and cloudy 

images are compared to the GRWL dataset. Due to the fact that GRWL dataset relies on mean 

discharges, the mean discharges of the Meuse and the Rhine were determined based on gauging 

stations close by the locations of interest, based on data between 01-01-2000 and 01-01-2018. 

The data was retrieved from the Directorate-General for Public Works and Water Management8. 

A randomly selected date where the discharge roughly matched the average discharge was 

selected for comparison.  

 

The mean discharge for the selected segment of the Meuse was found to be ~260 m3/s at a gauge 

station nearby Megen. To further assess the validity of the approach as presented in §3.5, both a 

cloudless and cloudy multispectral satellite image were sampled on dates where the discharge is 

relatively close to ~260 m3/s−that is, on 02-11-2017 (~215 m3/s) and 17-11-2017 (~247 m3/s).  

 

In Figures 4.2 and 4.3, for both the cloudless and cloudy multispectral satellite images, river 

polygons are shown including their centerlines, as well as the surface water mask sourced from 

the GRWL dataset. In Figure 4.4, the computed river widths are compared to both the GRWL 

dataset as well as the river polygon provided by Rijkswaterstaat. Here, branches are excluded for 

the sake of direct comparison. Furthermore, data is sampled every 10 meters. In Figure 4.2, “start” 

and “end” denote the length over which the river width is sampled.  

 

                                                 
8 https://waterinfo.rws.nl/#!/kaart/Afvoer/Debiet___20Oppervlaktewater___20m3___2Fs/ 

River polygon origin Date [dd-mm-yyyy] Total surface area 
[m2] 

Relative 

difference 

[%] 

Mean river 

width [m] 

Relative 

difference 

[%] 

Rijkswaterstaat 1995 2,651,233 - 131 - 

EO satellite 12-03-2016 2,626,116 -0.95 129 -1.53 

EO satellite 20-07-2016 2,683,329 +1.21 133 1.53 

EO satellite 08-09-2016 2,627,686 -0.89 128 -2.29 

EO satellite 04-12-2016 2,662,584 +0.43 131 0.00 

River polygon origin Date [dd-mm-yyyy] Total surface area 
[m2] 

Relative 

difference 

[%] 

Mean river 

width [m] 

Relative 

difference 

[%] 

Rijkswaterstaat 1995 2,651,233 - 131 - 

EO satellite 09-03-2016 2,610,012 -1.55 129 -1.53 

EO satellite 07-06-2016 2,684,147 +1.24 132 0.76 

EO satellite 05-09-2016 2,655,368 +0.16 131 0.00 

EO satellite 14-12-2016 2,555,594 -3.61 123 -6.11 
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Figure 4.2 ─ The centerline (purple), river polygon (cyan), and surface water mask (magenta; Allen and Pavelsky, 

2018) for a segment of the Meuse, based on a cloudless multispectral image (17-11-2017).  

 

 
 
Figure 4.3 ─ The centerline (purple), river polygon (cyan), and surface water mask (magenta; Allen and Pavelsky, 

2018) for a segment of the Meuse, based on a cloudy multispectral image (02-11-2017).

Centerline 
River polygon 
GRWL Surface water mask 

START 

Centerline 
River polygon 
GRWL Surface water mask 

END 
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Figure 4.4 ─ Comparison between the river widths of the GRWL dataset (blue) and a cloudy (orange) and cloudless 

(red) multispectral satellite image at mean discharge, as well as the river width of the river polygon provided by 

Rijkswaterstaat (green), for a segment of the Meuse. 

 

Figure 4.4 demonstrates clear similarities between river widths derived from both cloudless and 

cloudy EO satellite images, the river polygon provided by Rijkswaterstaat and the GRWL dataset. 

The mean river widths were found to be 129, 125 and 131 meters respectively.  The mean river 

width of the GRWL dataset equals 133 meters. The peak at a river length of roughly 9000 meters 

as a result of a bifurcation is not present within the river polygon provided by Rijkswaterstaat 

and is therefore not noticeable in Figure 4.4.  

 

Furthermore, although this may be difficult to notice, it is found that, occasionally, the GRWL 

dataset may be slightly shifted compared to the EO satellite-based results (in terms of the river 

length). This can be attributed to the fact that the centerline is not always completely parallel to 

the bounds of a river. However, to be fair, this is not the case for the EO-satellite based centerline 

either, since it relies on a Voronoi-based skeleton. This shows that there definitely is room for 

improvement. For example, a comparison between the centerlines of both methods is illustrated 

in Figure 4.5. A jagged centerline, compared to a smooth centerline, will generally result in a slight 

overestimation of a river’s length. 

 

 
 
Figure 4.5 ─ Comparison between the quality of the centerline of the approach as seen in §3.5 (purple) and the GRWL 

dataset (black). 
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Beside the Meuse, the same procedure is applied to a segment of the Rhine one its tributaries 

(that is, the Waal). Figure 4.6 demonstrates the typical representation of the EO satellite-based 

river polygons (cyan), as well as the river polygons provided by Rijkswaterstaat (orange), under 

both cloudless and cloudy circumstances. For the sake of completion, the Pannerden Canal is also 

shown. Similar to the selected segment of the Meuse, the shapes of the EO satellite-based river 

polygons appear to show a high degree of similarity compared to the river polygon provided by 

Rijkswaterstaat.  

 

 

 
 

 

Figure 4.6 ─ Differences between an automatically generated river polygon (cyan) and a river polygon provided by 

Rijkswaterstaat (orange) of a segment of the Rhine and two of its tributaries (Waal and Pannerden Canal), for both 

cloudless and cloudy satellite images. 

River polygon (15-02-2017; EO satellite) 
River polygon (1995; Rijkswaterstaat) 
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Firstly, both the surface areas and the mean river widths are compared for the selected segment 

of the Rhine, as well as a segment of the Waal, at four instances in time throughout 2016. The 

Pannerden Canal is ignored. The results are presented in Tables 4.3 and 4.4. The results show 

that the total surface area of the EO satellite-based river polygons under cloudless circumstances 

deviate between +10.07% and -2.42% from its reference case throughout 2016. For the same 

period, the mean river widths deviate between +7.36% and -3.81% from the point of reference 

(+29 and -15 meters respectively). For cloudy EO satellite-based images, the river polygons were 

found to deviate between +6.92% and -1.40% in terms of the total surface area. The 

corresponding mean river widths were found to deviate between +4.31% and -3.30% from the 

reference case (+17 and -13 meters respectively). 

 
Table 4.3 ─ Comparison between the total surface area and mean river width of various river polygons of a segment 

of both the Rhine and the Waal throughout 2016, based on fairly cloudless EO satellite images (< 15%cloud coverage), 

as well as the river polygon provided by Rijkswaterstaat (1995).  

 
Table 4.4 ─ Comparison between the total surface area and mean river width of various river polygons of a segment 

of both the Rhine and the Waal throughout 2016, based on cloudy EO satellite images (≥ 15%cloud coverage), as well 

as the river polygon provided by Rijkswaterstaat (1995).  

 

Additionally, the river widths of both a cloudless and cloudy EO-satellite images and the GRWL 

dataset are compared at mean discharge. Furthermore, the river widths are compared to the river 

polygon provided by Rijkswaterstaat. The mean discharge for the selected segment of the Rhine 

was found to be ~2122 m3/s at a gauge station nearby Lobith. Both a cloudless and cloudy (based 

on a 4-month sampling time span) multispectral satellite image were sampled on 26-01-2017 

(~2289 m3/s) and 27-07-2016 (~2337 m3/s). In Figures 4.7 and 4.8, for both the cloudless and 

cloudy multispectral satellite images, river polygons are shown including their centerlines, as 

well as the surface water mask sourced from the GRWL dataset. In Figure 4.9, the river widths 

are compared at mean discharge. Here, Pannerden Canal is excluded. For both the river polygon 

provided by Rijkswaterstaat as well as the EO satellite-based river polygons, data is sampled 

every 10 meters. In Figure 4.7, “start” and “end” denote the length over which the river width is 

sampled. 

 

River polygon 

origin 

Date [dd-mm-yyyy] Total surface area 
[m2] 

Relative 

difference 

[%] 

Mean river 

width [m] 

Relative 

difference 

[%] 

Rijkswaterstaat 1995 8,499,401 - 394 - 

EO satellite 11-04-2016 9,073,245 +6.75 409 +3.81 

EO satellite 07-06-2016 9,355,440 +10.07 423 +7.36 

EO satellite 08-09-2016 8,334,131 -1.94 381 -3.30 

EO satellite 04-12-2016 8,293,886 -2.42 379 -3.81 

River polygon 

origin 

Date [dd-mm-

yyyy] 

Total surface area 
[m2] 

Relative 

difference 

[%] 

Mean river 

width [m] 

Relative 

difference 

[%] 

Rijkswaterstaat 1995 8,499,401 - 394 - 

EO satellite 09-03-2016 8,860,073 +4.24 400 +1.52 

EO satellite 10-07-2016 9,087,488 +6.92 411 +4.31 

EO satellite 18-09-2016 8,419,329 -0.94 383 -2.79 

EO satellite 17-12-2016 8,380,131 -1.40 381 -3.30 
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Figure 4.7 ─ The centerline (purple), river polygon (cyan), and surface water mask (magenta; Allen and Pavelsky, 

2018) for a segment of the Rhine and the Waal/Pannerden Canal, based on a cloudless multispectral image (26-01-

2017). 

 

 
Figure 4.8 ─ The centerline (purple), river polygon (cyan), and surface water mask (magenta; Allen and Pavelsky, 

2018) for a segment of the Rhine and the Waal/Pannerden Canal, based on a cloudy multispectral image (27-07-

2016). 
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Figure 4.9 ─ Comparison between the river widths of the GRWL dataset (blue) and a cloudy (orange) and cloudless 

(red) multispectral satellite image at mean discharge, as well as the river width of the river polygon provided by 

Rijkswaterstaat (green), for a segment of the Rhine and Waal (as seen in Figure 4.10). 

The geometries derived from both cloudless and cloudy EO satellite images, the river polygon 

provided by Rijkswaterstaat and the GRWL dataset were found to be highly similar (see Figure 

4.9). The mean river widths equal 402, 408, 394 and 393 meters respectively. Larger deviations 

at certain river lengths (e.g. 4300 and 13500 meters) can be attributed to the fact that the 

estimated river polygon is found to be wider than the water mask of the GRWL dataset. However, 

upon closer inspection based on visual interpretation, no clear overestimations of the river 

widths could be observed. 

 

All in all, the results of the EO-satellite based river polygons show a high-degree of similarity 

towards the river polygons provided by Rijkswaterstaat as well as the GRWL dataset. Throughout 

2016, for a segment of the Meuse, deviations between +2 and -2 meters (+1.53% and -1.53%) as 

well as +1 and -8 meters (+0.76% and -6.11%) were found compared to data provided by 

Rijkswaterstaat, for cloudless and cloudy images respectively. For a segment that comprises of 

the Rhine and the Waal, deviations between +29 and -15 meters (+7.36% and -3.81%), and +17 

and -13 meters (+4.31% and -3.30%) were found for cloudless and cloudy images respectively, 

for the same year. Additionally, further investigation towards the validity of EO satellite-based 

river geometries (Figures 4.4 and 4.9) showed clear similarities towards the river polygons 

provided by Rijkswaterstaat as well as the GRWL dataset. 
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4.2 GLOBAL APPLICABILITY & LIMITATIONS 
To assess the global applicability of the formed procedure, polygons were generated for seven 

rivers around the world. Alabyan and Chalov (1998) suggested a classification scheme where a 

river is classified based on its “structural level” (valley bottom, flood channel or low water 

channel) and its plan outline (straight, sinuous and branched). The scheme is outlined in 

Appendix D. In order to make sure most of the river types are covered, rivers were selected based 

on this particular classification scheme, each displaying various features (e.g. meandering, 

braiding, point bars, medial bars, islands and varying sizes), and under different climate 

conditions. In Figure 4.10 the selected locations are displayed on a geographical map. The results 

are demonstrated in Figures 4.11-4.17 for both Landsat 8 and Sentinel-2.  Furthermore, typical 

resulting centerlines for complex shapes are presented in Figure 4.18 and Figure 4.19. Both the 

date of interest as well as cloud content within a multispectral satellite image were selected at 

random. In terms of the overall global applicability of the method, the following limitations were 

found: 

 

▪ The generation of river polygons is limited to rivers that are at least three to four times 

the width of the corresponding satellite’s spatial resolution in order to obtain usable 

results (based on Landsat-8 and Sentinel-2’s spatial resolution of 10 × 10 and 30 × 30 

meters respectively). Relatively small water features can simply not be detected when the 

spatial resolution is too coarse. For example, in Figures 4.11 and 4.14, areas where this is 

indeed the case are highlighted by means of orange colored circles. Furthermore, the 

temporal resolution is limited to 16 and 5 days respectively (Landsat 8 and Sentinel-2). A 

more frequent revisit period would allow for historical images to be sampled within a 

smaller time window, which is likely to result in more accurate estimates under cloudy 

circumstances. 

 

▪ Similar to a river polygon, if a river is found to be relatively narrow, the centerline can 

often not be computed, or is incomplete. This can be seen in Figure 4.19, and generally 

occurs if a river is less than 75 meters wide. This, in fact, has to do with the number of 

vertices present within a polygon. Vertices at more frequent intervals result in a more 

accurate EDM, ultimately producing a more accurate skeleton. Generally, frequent 

intervals between the vertices are needed for relatively narrow channels in order to 

generate an accurate centerline. However, it is found that if the number of vertices is 

increased, parts of the centerline may still fail. In fact, there is a chance that the same 

problem occurs in case of a relatively low number of vertices. A post 9  on the GEE 

developers forum by Donchyts reveals that this is most likely a bug within GEE. Since the 

same polygon-intersection-approach is used to generate the centerline, this remains an 

unresolved issue for now. Some kind of workaround is necessary to avoid this issue.

                                                 
9 https://groups.google.com/forum/#!searchin/google-earth-engine-
developers/intersection$20bug%7Csort:date/google-earth-engine-developers/z65gS-IfaqQ/sQmpLXNDEQAJ 
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▪ The operations needed to execute the computation and thus generate a river polygon 

including information about its width may be too memory intensive, ultimately resulting 

in the computation to time out. This severely limits the maximum size of the river polygon 

and thus its global applicability. The following two reasons were found to be the main 

cause: 

 
• The number of concurrent queries in GEE is limited by Google (memory limit). As 

a result, river polygons that are relatively wide (e.g. Amazon River), or relatively 

lengthy (~50 km+, depending on their width) often fail to compute, or may take a 

very long time to do so. Optimizations of some sort or access to more memory is 

required to solve this issue. By profiling the script (see Appendix E), it was found 

that the utilization of resampling techniques as well as the projection scale (pixel 

resolution) are the main causes, and that there is a direct relation between the 

quality of a river polygon and its maximum possible size. Although larger river 

polygons can be generated than the ones showed in Figures 4.11-4.17, their 

accuracy and thus usability may be lacking (e.g. as seen in Figure 3.6 (1)). 

 
• The corresponding script was written with the overall performance in mind but 

could most certainly be optimized in terms of computation speed. However, since 

this was not part of the main objective, and due to limited amount of available 

time/relative inexperience with GEE’s built-in functions10/hidden source code, 

this was not further investigated. 

 

▪ In terms of data availability, the generation of river polygons is currently limited to 

multispectral satellite images originating from both Landsat 8 and Sentinel-2. Sentinel-2 

provides data from 23-06-2015 and onwards, whereas Landsat 8 provides data since 11-

04-2013. The usage of additional satellites allows for the extension of the total amount of 

available data to sample from (e.g. Landsat 7, which contains similar spectral bands to 

Landsat 8 and was launched on 15-04-1999).  

 

The estimation of the geometry of a river remains limited in terms of global applicability. The 

main issue is currently that the computation is found to be too resource-intensive in GEE, limiting 

the maximum size of a river polygon that can be generated. Script optimizations or access to more 

memory is required to solve this issue. Furthermore, it is of importance that a workaround is 

found to avoid a potentially incomplete centerline. Nonetheless, it is found that, generally, the 

geometry of a river can indeed be determined estimated on a global level. However, the 

applicability of the method is currently limited to a local scale.  

  

                                                 
10 See https://developers.google.com/earth-engine/api_docs for the API reference. 

https://developers.google.com/earth-engine/api_docs
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River Location 

(A) Danube nearby Budapest, Pest County, Hungary 

(B) Murray River nearby Robinvale, Victoria/New South Wales, Australia 

(C) Niger River nearby Segou, Segou Region, Mali 

(D) Magdalena River nearby La Dorada, Caldas/Cundinamarca, Colombia 

(E) Thanlyin River nearby Khe Kpyu, Kayah State, Myanmar 

(F) Irtysh River nearby Turtas, Tyumen, Russia 

(G) Yellowstone River nearby Forsyth, Montana, USA 

 
Figure 4.10 ─ An overview of the selected rivers and their locations (source: Map data © 2018 Google). 

 
Figure 4.11 ─ Typical resulting river polygons for the Danube in Budapest, Hungary, based on Landsat 8 and Sentinel-

2 data respectively. The third image (right) is a standard google maps image (source: Map data © 2018 Google). 
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Figure 4.12 ─ Typical resulting river polygons for the Murray River in Victoria/New South Wales, Australia, based on 

Landsat 8 and Sentinel-2 data respectively. The third image (right) is a standard google maps image (source: Map data 

© 2018 Google). 

 
Figure 4.13 ─ Typical resulting river polygons for the Niger River in Segou, Mali, based on Landsat 8 and Sentinel-2 

data respectively. The third image (bottom) is a standard google maps image (source: Map data © 2018 Google). 

 
Figure 4.14 ─ Typical resulting river polygon for the Magdalena River nearby La Dorada, Colombia, based on Landsat 

8 and Sentinel-2 data respectively. The third image (right) is a standard google maps image (source: Map data © 2018 

Google). 
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Figure 4.15 ─ Typical resulting river polygon for the Thanlyin River nearby Khe Hpyu, Myanmar, based on Landsat 8 

and Sentinel-2 data respectively. The third image (right) is a standard google maps image (source: Map data © 2018 

Google). 

 
Figure 4.16 ─ Typical resulting river polygon for the Thanlyin River nearby Turtas, Russia, based on Landsat 8 and 

Sentinel-2 data respectively. The third image (right) is a standard google maps image (source: Map data © 2018 

Google). 

 
Figure 4.17 ─ Typical resulting river polygon for the Yellowstone River nearby Forsyth, USA, based on Landsat 8 and 

Sentinel-2 data respectively. The third image (bottom) is a standard google maps image (source: Map data © 2018 

Google). 
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Figure 4.18 ─ Typical resulting centerline for a segment of the Danube in Budapest, Hungary (Sentinel-2).   
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Figure 4.19 ─ Typical resulting centerlines for segments of the Magdalena River nearby Dora, Colombia, and the 

Thanlyin River nearby Khe Hpyu, Myanmar (Sentinel-2).   
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5. SENSITIVITY ANALYSIS 
 
In this chapter a sensitivity analysis is conducted to obtain insight into the dependency of the 

estimated geometry of a river towards influential variables. The sensitivity of selected 

parameters is analyzed based on the initially selected study area−that is the Trinity River.  

Surface area values of water and their relative differences are compared to assess the significance 

of a change. The same is done for the mean river widths11. The sensitivity of parameters related 

to the detection of water that have been examined in the past are not further investigated (e.g. 

the utilization of Otsu’s method to detect surface water in an automated manner as seen in 

Donchyts et al., 2016).  

 

Historical imagery: sampled time span 

Historical satellite images have been used to estimate the course of a river under circumstances 

where a satellite is obstructed by clouds, haze or fog. The time span over which historical data is 

sampled influences the estimated course of a river. To gain insight into the impact of this 

parameter towards the geometry of a river, the sensitivity is investigated. More specifically, the 

sensitivity of the estimated course of a river to varying time windows−that is, 1 month, 2 months, 

4 months, 8 months, 16 months and 32 months−is explored. Two cloudless multispectral satellite 

images of a segment of the Trinity River, taken on 26-10-2016 and 24-04-2017, are selected as 

point of references. Historical images are sampled relative to this date and merged with the 

originally detected surface water mask. For example, a time window of 2 months ranges from 26-

09-2016 up to 25-11-2016 (~-30 and +30 days from its point of reference, that is 26-10-2016 in 

this case). Both the changes towards the surface area and the mean river width are compared. 

Note that, to assess the sensitivity of various sampling windows towards the Trinity River, the 

historical composite is not eroded before it is merged with the detected surface water mask. The 

result is displayed in Figure 5.1, as well as Table 5.1 and Table 5.2. 

 
Figure 5.1─Senitivity of the Trinity River towards a gradually enlarged time window of the historical composite. 

 

                                                 
11 Note that, in some cases, mean river widths could not be derived from a surface water mask as a result of relatively 
narrow rivers bounds, or simply because the course of a river could not be reliably estimated. This is denoted with an 
asterisk (*). 
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Table 5.1 ─ Sensitivity of the Trinity River towards a gradually enlarged time window of the historical composite, in 

addition to the relative differences between the total surface areas and the mean river widths for a cloudless 

multispectral satellite image taken on 26-10-2016. 

 
Table 5.2 ─ Sensitivity of the Trinity River towards a gradually enlarged time window of the historical composite, in 

addition to the relative differences between the total surface areas and the mean river widths for a cloudless 

multispectral satellite image taken on 24-04-2017. 

 

The results show that the Trinity River is, generally, sensitive to the time span over which 

historical data is sampled. The relative differences for the satellite image taken on 26-10-2016 

show an increasing trend, whereas the relative differences for the satellite image taken on 24-04-

2017 vary quite heavily. Only after a period of roughly 16 months, the relative difference, for both 

cases, appears to somewhat stabilize. 

 

In general, the sensitivity of the estimated geometry of a river towards the varying sampling 

windows highly depends on two factors: (1) variations of the stream width over time and (2) the 

assumed weighted distribution, since the historical composite represents a weighted average. 

 
Historical imagery: threshold value 

To exclude pixels that have been falsely interpreted as water, or water that is in fact not part of 

the main river course as a result of a possible short-term flood, a threshold value was introduced. 

Values assigned to pixels of the historical composite are rescaled to a range of values between [0, 

1], where values that are less than a predefined threshold are set to 0. To investigate the 

sensitivity of this particular threshold value, a cloudy multispectral satellite image taken on 06-

10-2016 is selected, where threshold values of 0.1, 0.2, 0.4 and 0.8 are tested and their relative 

differences are compared. Since the number of images sampled affects the impact of the threshold 

value, this is done for a total of 5, 10, 20 and 40 images, respectively. In this case, a total of 5 

images translates to a time window of roughly 2 months, 10 to 4 months and 20 to 8 months and 

40 to 16 months. The results are demonstrated in Figure 5.2 and Figure 5.3., as well as and Table 

5.3. 

Months Total surface area 

[m2]  

Relative difference 

[%] 

Mean river width 

[m] 

Relative difference 

[%] 

0 1,041,184 - 100 - 

1 1,134,659 +8.98 107 +7.00 

2 1,136,599 +9.16 107 +7.00 

4 1,151,161 +10.56 108 +8.00 

8 1,163,050 +11.70 109 +9.00 

16 1,212,316 +16.44 113 +13.00 

32 1,186,237 +13.93 110 +10.00 

Months Total surface area 

[m2]  

Relative difference 

[%] 

Mean river width 

[m] 

Relative difference 

[%] 

0 1,136,305 - 107 - 

1 1,104,517 -2.80 105 -1.87 

2 1,289,814 +13.51 118 +10.28 

4 1,251,668 +10.15 115 +7.48 

8 1,252,269 +10.21 116 +8.41 

16 1,201,216 +5.71 112 +4.67 

32 1,245,420 +9.60 115 +7.48 
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Figure 5.2 ─ Sensitivity of the historical composite of the Trinity River towards an increasing threshold value, as well 

as an increasing number of sampled images.  

 

Table 5.3 ─Sensitivity data belonging to the Trinity River, showing the total surface area, the mean river width as well 

as their relative differences for varying threshold values and number of historical images. *A threshold value of 0.8 fails 

to detect the complete course of a river for 5, 10 and 20 historical images, resulting in unreliable mean river widths, 

and is therefore left out. 

 
The results show that, as the threshold value is increased, both the total surface area and the 

mean river width decreases. For relatively low threshold values, the relative differences remain 

quite small. For sampling periods of roughly 4 months (~10 images) and more, the Trinity River 

was found to be sensitive to a threshold value that is generally equal or larger than 0.4. Threshold 

values that are equal or higher than 0.8 caused the estimation of certain segments of the course 

of the Trinity River to fail, except for a sampling period of roughly 16 months (~40 images). 

Failure occurs, especially for relatively few numbers of sampled images, because not all historical 

Number of historical 

images 

Threshold 

value 

Total surface 

area [m2] 

Relative 

difference 

[%] 

Mean river 

width [m] 

Relative 

difference 

[%] 

5 (~2 months) 0.1 1,101,945  - 104 - 

 0.2 1,093,148 -0.80 104 0.00 

 0.4 1,078,268 -2.15 103 -0.96 

 0.8  *  * * * 

10 (~4 months) 0.1 1,138,206   108 - 

 0.2 1,117,384 -1.80 106 -1.85 

 0.4 1,047,037 -8.00 101 -6.48 

 0.8  *  * * * 

20 (~8 months) 0.1 1,158,282   109 - 

 0.2 1,109,489 -4.21 106 -2.75 

 0.4 1,073,355 -7.33 102 -6.42 

 0.8  *  * * * 

40 (~16 months) 0.1 1,178,365  - 111 - 

 0.2 1,149,998 -2.41 109 -1.80 

 0.4 1,122,992 -4.70 106 -4.50 

 0.8 937,605 -20.43 93 -16.22 
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images are completely cloudless. All images of which the cloud coverage is equal or less than 15% 

are considered. Although this percentage could be lowered, this is likely to result in much fewer 

images to sample from, depending on the location of interest. If variations happen towards the 

stream width, and relatively few images are sampled, there is a chance that this will not be 

captured. For example, consider a sampling period of 4 months. Here, 10 images are sampled, of 

which 4 are discarded due to their limited representation of the predefined area of interest (see 

Figure 5.3). Furthermore, for simplicity, assume that there is no weight value attached to a 

sampled image (∀𝑖 ∈ 𝐼;  𝑤𝑒𝑖𝑔ℎ𝑡 =  1 ). The result is a composite that fails to estimate the 

complete course of the river for a threshold value that is equal or larger than 0.5. For example, 

consider one pixel that is, under cloudless conditions, part of the Trinity River in the lower left 

corner of the set of images. The value that is assigned to the pixel equals 1 in three of the 

considered images, since water has been detected. However, as a result of cloud obstructions, the 

value that is assigned to said pixel equals 0 in the other three images since water could not be 

detected. The value that is assigned to the pixel of the water occurrence composite is therefore 
(1+1+1)

6
= 0.5, meaning that it if the threshold value is equal or greater than 0.5, the value of the 

pixel is set to 0 and is considered to be a background feature. All things considered, a river is only 

found to be sensitive to this parameter for relatively high threshold values. Generally, a value of 

0.2 is found to work well, which was also used to assess the global applicability. 

 

Figure 5.3 ─ A typical set of sampled images used to generate the water occurrence composite (sampling time window 

equals 4 months). 
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Weighted distribution 
To vary the contribution of a sampled image towards the historical composite, an inverse distance 

weighting function was introduced, where the weight attached to an image is based on the date 

at which it is sampled relative to the considered date of interest, as well as a power parameter 𝑝. 

The shape of the distribution by which sampled images are weighted depends on  𝑝 (see Figure 

5.4 (right)). The sensitivity of 𝑝  towards a segment of the Trinity River is investigated by 

generating a series of historical composites from a cloudy satellite image taken on 06-10-2016, 

for the set 𝐴 = {0, 0.2, 0.4, 0.8, 1.6, 3.2} where 𝑝𝑖  ∈ 𝐴. The sampling period is a total of 4 months, 

resulting in 11 images. The threshold value is set to 0.2, and thus every pixel that has been 

assigned a value that is less than 0.2 is set to 0. Both the total surface area and the mean river 

widths are compared (see Figure 5.4 (left) and Table 5.4).  

Figure 5.4 ─ Sensitivity of varying weight distributions towards the estimated historical composite of the Trinity River 
for a sampling period of 4 months (date of interest = 06-10-2016). 

Table 5.4 ─ Relative differences between varying total surfaces areas and mean river widths of the estimated historical 

composite for varying weight distributions, corresponding to a segment of the Trinity River. 

 

For varying weighted distributions between 0 and 1.6, only marginal differences can be observed. 

Compared to the historical composite that represents an average instead of a weighted average 

(𝑝 = 0) , this in fact reveals that the mean stream width of the Trinity River has not varied 

significantly over the period wherein images have been sampled. However, this does certainly 

not mean that the estimated historical composite is insensitive to various weighted distributions. 

In fact, the sensitivity of the estimated historical composite towards varying weighted 

distributions highly depends on variations of the water surface width over time. 

 

p Total surface area [m2] Relative difference [%] Mean river width [m] Relative difference [%] 

0 1,128,520 - 103 - 

0.1 1,128,333 -0.02 103 0.00 

0.2 1,117,045 -1.02 102 -0.97 

0.4 1,112,627 -1.41 102 -0.97 

0.8 1,115,772 -1.13 102 -0.97 

1.6 1,097,834 -2.72 101 -1.94 
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Adaptive erosion 

As described in §3.3, erosion was applied in an adaptive manner to influence the impact of the 

historical composite towards the detected surface water mask of the course of a river. The 

magnitude by which the historical composite is eroded depends on the relationship between 

𝐴𝑟𝑎𝑡𝑖𝑜  and kernel radius 𝑟 , where 𝐴𝑟𝑎𝑡𝑖𝑜  was defined as 
𝐴𝑆𝑊𝑀2

𝐴𝑆𝑊𝑀1
, with SWM1 being the surface 

water mask of the detected river, and SWM2 the surface water mask of the historical composite 

(𝐴 = total water surface area). The sensitivity of the historical composite of the Trinity River 

towards erosion is demonstrated by means of varying kernel radii. A cloudy multispectral 

satellite image, taken on 19-04-2016, was selected. The sampling period is a total of 4 months. 

The results are illustrated in Figure 5.5 and 5.6 as well as Table 5.5. Firstly, the detected surface 

water mask is merged with the historical composite (top row, third from the left in Figure 5.6). 

Here, no erosion is applied. Subsequently, the kernel radius by which the historical composite is 

eroded is gradually increased. Clearly, the stream width of the Trinity River is sensitive towards 

erosion applied to the historical composite. A gradual increase of the radius of the kernel leads to 

a steady decrease of both the total surface area and the mean river width.  

 
Figure 5.5 ─ Sensitivity of varying kernel radii (erosion) towards the geometry of the Trinity River. 

Table 5.5 ─ Relative differences between varying total surfaces areas and mean river widths of the Trinity River, for 

varying radii of the kernel (erosion). 
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0 1,434,067  - 131 - 

5 1,362,397 -5.00 125 -4.58 

10 1,293,911 -9.77 120 -8.40 

15 1,225,412 -14.55 115 -12.21 

20 1,199,274 -16.37 113 -13.74 

30 1,171,273 -18.33 111 -15.27 
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Figure 5.6 ─ The impact of erosion towards the derived surface water mask of the Trinity River, for various radii. The 

radius of the kernel from the top row, third image from the left, to bottom right are as follows:  0, 5, 10, 15, 20 and 30. 

Kernel radius size 

As described in §3.3, the size of the kernel radius 𝑟 is dependent on 𝐴𝑟𝑎𝑡𝑖𝑜, if and only if 𝐴𝑟𝑎𝑡𝑖𝑜 lies 

in between the upper and lower bounds of 𝐾, which was defined as a set of real values ranging 

from 1 to 1.5. The sensitivity of various distributions between 𝐴𝑟𝑎𝑡𝑖𝑜 and 𝑟 towards a segment of 

the Trinity River is investigated by increasing the upper bound of 𝐾 to 2, 3 and 5 (see Figure 

5.7−right). The maximum kernel radius is not adjusted, since it has been demonstrated that a 

radius that is too big excessively erodes the surface water mask (see Figure 5.6). For example, in 

theory this would mean that, if 𝐴𝑟𝑎𝑡𝑖𝑜  equals 1.5, 𝑟  would be either 0, 12.5, 18.75 or 21.88, 

depending on the upper bound of 𝐾, since the relationship between 𝐴𝑟𝑎𝑡𝑖𝑜 and 𝑟 is linear. Two 

cloudy images, taken on 06-10-2016 and 26-09-2017, are sampled to assess the impact of the 

distributions as shown in Figure 5.7 (right) towards the historical composite of the Trinity River. 

The results are shown in Figure 5.7 (left) and 5.8 as well as Table 5.6. The estimated mean river 

widths are not shown in Figure 5.7 (left), as a result of the inability to reliably estimate such 

values for most historical composites, since the river bounds were found to be too narrow to do 

so.           

 

An increase of 𝑚𝑎𝑥(𝐾), thus altering the linear relationship between 𝐴𝑟𝑎𝑡𝑖𝑜 and 𝑟, leads to more 

erosion for every value of 𝐴𝑟𝑎𝑡𝑖𝑜, as long as 𝐴𝑟𝑎𝑡𝑖𝑜 satisfies the upper and low bounds of 𝐾. This 

can be seen in Figure 5.7 and 5.8, as well as Table 5.6, showing a steady decrease of the total water 

surface area as the upper bound for 𝐾 is increased. Sampled cloudless images in the temporal 

proximity of 06-10-16 and 26-09-17 reveal total surface water areas of around ~1,100,000 m2, 

showing that a distribution with an upper bound of 𝐾 somewhere in between 1.5 and 2 might be 

optimal for the Trinity River. All in all, the resulting data reveals that the Trinity River, and most 

likely any river, is highly sensitive to varying distributions between   𝐴𝑟𝑎𝑡𝑖𝑜 and 𝑟.  Although it 

remains difficult to find an optimal value for 𝑟 , the usage of a linear distribution between 𝐴𝑟𝑎𝑡𝑖𝑜 

and 𝑟 allows for an estimation.
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Figure 5.7 ─ Sensitivity of varying distributions towards the total surface area of the estimated historical composite 
for a segment of the Trinity River, as a result of varying upper bounds of K. 

Table 5.6 ─ Relative differences between varying total surfaces areas and mean river widths of the estimated historical 

composite, for varying upper bounds of K. 

 

 
Figure 5.8 ─ The estimated historical composites for the distributions as illustrated in Figure 5.7, as a result of various 

values for the upper bound of K. Satellite images were taken on 06-10-2016 (upper row) and 26-09-2017 (lower row).  

Date Aratio max(K) 

Total surface 

area [m2] 

Relative 

difference [%] 

Mean 

river 

width [m] 

Relative 

difference [%] 

06-10-16 1.88 1.5 1,128,933  103 - 
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26-09-17 1.45 1.5 1,126,688  102 - 

  2 1,010,117 -10.35 96 -5.88 
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Opening 

As described in §3.5, opening served as a preprocessing step in order to remove relatively small 

water bodies that are present within a multispectral satellite image and fill small gaps of the 

surface water mask that might have been overlooked by the surface water detection algorithm. 

The sensitivity of this parameter with respect to changes towards the surface water mask is 

investigated by modifying the radius of the kernel. The results are illustrated in Figures 5.9 and 

5.10 as well as Table 5.7. Relatively small water bodies in comparison to the Trinity River are 

clearly sensitive to the operation. The Trinity River itself is largely unaffected, apart from its 

bounds, which are somewhat smoothed as a result of dilation. This is true up to a certain 

threshold value−in this case a radius of roughly 40 pixels−where water pixels can no longer be 

dilated since they have been removed by means of erosion. From this point onwards, the Trinity 

River becomes very sensitive to changes.  

 

 
Figure 5.9 ─ Sensitivity of the total water surface area towards varying kernel radii (opening). 

Table 5.7 ─ Relative differences between varying total water surface areas for varying kernel radii (opening).  

 

*Note that in this case the total surface area represents all detected water within a surface water mask and not just 

the Trinity River.

125

130

135

140

145

150

155

0 10 20 30 40 50

A
R

EA
 [

M
2

]
x 

1
0

4

OPENING (KERNEL RADIUS) [METERS]

Opening (kernel radius) 
[pixels] 

Total surface area [m2] Relative difference [%] 

0 1,527,910 0 
10 1,510,615 -1.13 
20 1,496,848 -2.03 
30 1,466,926 -3.99 
40 1,443,545 -5.52 
50 1,304,355 -14.63 



5.    SENSITIVITY ANALYSIS 

59 

 

 
Figure 5.10─ The impact of opening towards the derived surface water masks of the Trinity River for varying kernel 

radii.  

Quality of the geometry 

Lastly, there are four more parameters that greatly affect the quality of the estimated geometry, 

that is the resampling method, projection scale, the extent to which a river polygon is simplified, 

and the number of vertices used to generate the EDM, which directly affects the quality of the 

centerline. The impact of various resampling techniques (nearest neighbor interpolation, bilinear 

interpolation and bicubic interpolation) towards a river polygon has already been demonstrated 

in §3.4 and is therefore not further discussed. 

 

Firstly, the projection scale− that is the pixel resolution− is found to be a highly sensitive 

parameter that dictates the overall quality of both the river polygon as well as the derived river 

widths. Although the used datasets are limited to pixel resolutions of 10 × 10 and 30 × 30 meters 

(Sentinel-2 and Landsat 8), rescaling the pixel resolution allows for manipulations to be executed 

at a higher resolution, such as 5 × 5 meters, at the expense of the overall computation duration. 

The sensitivity of the Trinity River towards various projection scales is demonstrated (see Figure 

5.11). Since the overall change in quality is difficult to measure, the sensitivity is demonstrated 

by means of visual interpretation. Noticeable differences can be observed to both the river 

polygon and the centerline. Specifically, simplified river polygons of relatively narrow rivers of 

which the pixel resolution is 20 × 20 meters or lower start to show large disparity in terms of the 

overall quality. The fact that the polygon breaks for lower resolutions makes sense, since fewer 

pixels are available when an image is downscaled, ultimately resulting in insufficient data points 

to render a polygon. The same applies to the centerline, since its overall quality, beside the 

interval at which vertices are computed (as mentioned in §4.2), is in fact based on the projection 

scale. 

 

Secondly, the extent to which a geometry is simplified heavily influences the shape of the 

geometry. In §3.4, it was briefly mentioned that the Douglas-Peucker algorithm is used to do so, 

reducing the number of vertices within a polygon. In fact, the result is very similar to a reduction 
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of the pixel resolution (Figure 5.11). An increase of the simplification scale results in fewer 

vertices present within a river polygon. 

 

Furthermore, the number of vertices that are used to compute the EDM affect the quality of the 

centerline. More specifically, the distance between those vertices is of importance, especially for 

very narrow channels, where a relatively high number of vertices is in fact necessary to compute 

the centerline. The differences for a small segment of the Trinity River can be seen in Figure 5.12.  

 

 
Figure 5.11 ─ The impact of various projection scales towards the quality of the estimated geometry of a river.

 
Figure 5.12 ─ The impact of the number of vertices used towards the quality of the EDM, and thus the centerline. 
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6. DISCUSSION 
 

On the basis of previously conducted research, as well as existing concepts from various fields, 

this thesis introduced an approach that allows for the geometry of rivers to be detected in a more 

or less automated manner, both under cloudless and cloudy circumstances, using multispectral 

satellite imagery. A high-degree of similarity was found between river widths derived from river 

polygons that were estimated by means of multispectral satellite imagery, and river polygons 

provided by Rijkswaterstaat, showing that the geometry of a river can be determined reasonably 

accurately. However, clear distinctions from the GRWL dataset were found. Furthermore, it was 

found the geometry of a river can be estimated on a global level. However, their applicability 

remains limited to a local scale, mainly due to the fact that computations were found to be too 

resource-intensive in terms of memory usage, restraining the maximum size of a river polygon 

that can be generated. 

 

Although the approach used to estimate the geometry of rivers based on multispectral satellite 

data appears to show reasonably accurate results, a critical evaluation of the study reveals the 

follows issues.  

 

First of all, water indices (MNDWI, and NDWI in the presence of snow/ice) have been utilized to 

highlight water features, based on its proven accuracy and reliability throughout various studies. 

In terms of global application, this is likely not optimal, since Fisher et al. (2016) stated that no 

index was proven to perform the best across all water types. Although the results demonstrate 

that the geometry of rivers can be estimated reasonably accurately, the utilization of multiple 

indices might be worthwhile to look into. 

 

Furthermore, interpolation techniques have been investigated to obtain more data points, 

resulting in a smoother representation of the bounds of a river. This was found to be necessary 

to derive reasonably accurate river widths from a river polygon, avoiding sudden large deviations 

due to a relatively large pixel resolution. However, doing so may introduce a small bias, which 

can result in a slight over- or underestimation of the estimated river width, since data points in 

between the known data points are estimated. 

 

The approach towards the estimation of the course of a river under cloudy circumstances is 

currently flawed in case the stream width is highly variable over time (e.g. as a result of a highly 

variable discharge pattern). Under cloudy conditions, at least one cloudless image of which the 

stream width is similar to the stream width of the river of interest needs to be sampled to provide 

a reasonably accurate estimate. For example, consider the through of a discharge wave in 

between two peaks, which occur within a relatively short time frame. Additionally, assume that 

at a certain date of interest, which happens to be at said through, the satellite image is severely 

obstructed by clouds, such that most of the water occurrence composite represents the best 

estimate of the course of the river. Furthermore, assume that in this case the stream width of the 

river of interest is relatively narrow. The time span over which images that contribute to the 

water occurrence composite are sampled happens to be during both peaks of the discharge wave, 

resulting in a clear overestimation of the stream width, which is inaccurate. Although weights 

have been assigned to the sampled images in order to attempt to reduce the impact of highly 

varying surface water widths, unless cloudless satellite images can be sampled before large 
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variations occur, the water occurrence composite will still result in an overestimation. Since the 

revisit interval of a satellite is limited to either 5 days or 16 days, and only relatively cloudless 

images are suitable for the estimation of the course of a river under cloudy conditions, this issue 

might be challenging to solve. Certainly, to avoid this issue, the end-user could, in this case, 

manually sample a cloudless image that represents a reasonably accurate estimation of the river 

of interest. However, the ultimate goal is to provide a solution that works in an automated manner. 

Unfortunately, this issue could not be resolved. In Appendix F, typical scenarios where the 

method fails to provide a reasonably accurate representation of the course of a river are 

demonstrated.  

 

To obtain an estimate of the geometry of a river under cloudy circumstances, a weight 

distribution of 𝑝 = 0.1 was assumed, as well as a linear relationship between the kernel radius 𝑟 

and 𝐴𝑟𝑎𝑡𝑖𝑜, which was defined as the total water surface area of the historical composite divided 

by the total water surface area of the detected river, with upper and lower bounds of 1 and 1.5 

respectively. Both distributions were found to be able to, generally, provide a reasonably accurate 

estimate of the course of a river (e.g. as seen in §4.1 and §4.2). However, depending on the 

variability of the water surface width over time, different values for 𝑝, 𝑟, or bounds for 𝐴𝑟𝑎𝑡𝑖𝑜 may 

provide a more accurate estimation. This requires further testing towards multiple river types 

across the globe. 

 

The accuracy of the method has been validated based on two river polygons provided by 

Rijkswaterstaat, showing reasonably good results. Additionally, similarities towards the GRWL 

dataset were found, for the same location. However, to truly obtain an understanding of the 

accuracy, and thus the overall usability on a global level, more tests on multiple river types across 

the globe are needed. 

 

It was found that there is a chance that the estimated centerline of a river polygon might be 

incomplete (see §4.2), which is likely attributed to a geometry-intersection bug12  within GEE. A 

workaround is necessary to avoid this issue in order to improve the reliability of an accurate 

result. 

 

Nevertheless, the utilization of remote sensing technology allows for a significant reduction of 

the time needed to estimate the geometry of a river. The applicability of the procedure as shown 

in chapter 3 allows for the geometry of a river to be estimated within roughly 1 to 3 minutes, 

depending on the overall size. The need to manually draw a river polygon using a geographical 

map is in most cases no longer needed, unless the course of a river is found to be undetectable by 

either Landsat 8 or Sentinel-2. Although the approach functions in a more or less automated 

manner, small tweaks may still me necessary to obtain optimal results, such as the time span over 

which historical images are sampled, the distribution of the weights assigned to the sampled 

images, the extent to which the geometry or centerline is simplified, or the projection scale. 

 

  

                                                 
12 See https://groups.google.com/forum/#!searchin/google-earth-engine-
developers/intersection$20bug%7Csort:date/google-earth-engine-developers/z65gS-IfaqQ/sQmpLXNDEQAJ 
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7. CONCLUSIONS AND RECOMMENDATIONS 
 

In this thesis, the extent to which the geometry of rivers around the globe can be determined in 

an automated manner, based on openly available optical Earth Observational (EO) satellite 

sensors, has been explored. This chapter consists of two sections. Firstly, the research questions 

are answered (§7.1). This leads to the objective of this research. Thereafter, recommendations 

for further work as well as recommendations for use are given (§7.2). 

 

7.1 CONCLUSIONS 
7.1.1 ANSWERS TO RESEARCH QUESTIONS 

The following questions have been formulated in §1.4 in order to provide an answer to the 

objective of this thesis.  

 

How can river bounds be detected in an automated manner, in case a multispectral 

satellite image is subject to common disturbances, such as clouds, haze or fog? 

In order to detect surface water within a multispectral satellite image, water indices (both 

MNDWI and NDWI) have been utilized, followed by a HAND-map and an image thresholding 

approach (Otsu’s method). The purpose of a water index is to enhance water features based on 

its reflective properties, the HAND-map to avoid potential errors due to shadows, and Otsu’s 

method to reduce the resulting grayscale image to a binary surface water mask, separating water 

from non-water features. To estimate the bounds of a river under cloudy circumstances, multiple 

cloudless historical images are sampled to generate a composite, representing the water 

occurrence of a river over time in the form of a binary image. Sampled images are weighted based 

on the date they were sampled to potentially reduce the impact of variations within the stream 

width over time. The composite is used to fill the gaps within the course of a river, which were 

initially undetectable due to the presence of clouds. The resulting surface water mask is then 

converted to a smooth polygon, providing information about the course of a river. 

 

How can river widths be determined in an automated manner, based on openly available 

multispectral satellite imagery?  

Based on existing concepts, a method is proposed that allows for the river widths to be derived 

from a river polygon in an automated manner. This approach consists of three steps. First, a 

Euclidian distance map (EDM) is computed based on the known vertices within a river polygon, 

representing the distance of each pixel to its nearest boundary−that is, the nearest vertex. 

Secondly, the centerline of a river polygon is generated, which is derived from a Voronoi diagram 

that has subsequently been skeletonized and pruned. Lastly, values of the EDM that intersect with 

the computed centerline are sampled, resulting in knowledge about the width of a river. 

 

The approach has been validated based on two river polygons provided by Rijkswaterstaat, 

representing a segment of the Meuse and the Rhine. The estimated geometries based on EO 

satellite imagery were found to be highly similar to that of the two river polygons. Throughout 

2016, for a segment of the Meuse, deviations between +2 and -2 meters (+1.53% and -1.53%) as 

well as +1 and -8 meters (+0.76% and -6.11%) were found compared to data provided by 

Rijkswaterstaat, for cloudless and cloudy images respectively. For the segment that comprises of 

the Rhine and the Waal, deviations between +29 and -15 meters (+7.36% and -3.81%), and +17 

and -13 meters (+4.31% and -3.30%) were found for cloudless and cloudy images respectively, 
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for the same year. Furthermore, the estimated geometries have been compared to a recently built 

database consisting of global river widths from Landsat imagery (GRWL), based on mean 

discharge data (Allen and Pavelsky, 2018). Similar river widths were found. 

 

What is the global applicability of river polygons? 

To assess the overall global applicability of the approach, river geometries have been estimated 

for seven rivers around the world, each displaying various features (e.g. meandering, braiding, 

point bars, medial bards, islands and varying sizes). Although reasonable representations of the 

bounds of the selected rivers could be estimated, it was found that the maximum size of a river 

polygon is limited, due to the fact that computations were found to be too resource-intensive in 

terms of memory usage. Optimizations of some sort are necessary to be able to resolve this issue, 

or access to more memory, since the maximum amount of usable memory is limited within GEE.  

Another notable constraint is that the generation of river polygons is limited to rivers that are at 

least three to four times the width of the corresponding satellite’s spatial resolution in order to 

obtain usable results. Relatively small water features were found to be undetectable using either 

Landsat 8 or Sentinel-2, of which the spatial resolution is 30 × 30  and 10 × 10  meters 

respectively. All in all, it was found that river geometries can be estimated global level, however 

their applicability is currently limited to a local scale. 

 

What is the sensitivity of parameters that directly influence the geometry of a river 

polygon? 

Beside the utilization of water indices to detect water, the estimated geometry of a river under 

cloudy conditions is found to be the most sensitive towards the following parameters: (1) the 

time span over which historical images are sampled, (2) the corresponding weights assigned to 

those images, (3) the severity of erosion,  and four parameters that directly affect the quality of 

the result, that is (4) the resampling technique, (5) the pixel resolution (projection scale), (6) the 

extent to which geometry is simplified and the (7) number of vertices used to generate the EDM, 

which directly affects the quality of the centerline. (1), (2) and (3) do not apply to cloudless 

conditions. The sensitivity towards varying sampling windows highly depends on variations 

within the stream width over time (e.g. as a result of a highly variable discharge pattern), as well 

as the distribution of the weights assigned to the sampled images. The sensitivity towards erosion 

depends on the size of the kernel radius. Furthermore, the shape of the geometry drastically 

changes if it is either bilinearly or bicubically interpolated. The same applies to different values 

for (5) and (6). 

 

7.2 RECOMMENDATIONS 
7.2.2 RECOMMENDATIONS FOR FURTHER WORK 

It has been shown that the geometry of rivers can be estimated on various locations around the 

globe using optical EO sensors. However, the applicability of the method is currently limited to a 

local scale (see §4.1 and §4.2). The following recommendations are proposed to not only allow 

for the estimation of the geometry of a river on a global scale, but to also improve the reliability 

of the method as a whole: 

 

1. In terms of the detection of surface water, this study utilizes the MNDWI as a result of its 

proven effectiveness to separate water from non-water features (NDWI in case of 

ice/snow). However, Fisher et al. (2016) stated that no index was proven to perform the 
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best across all water types. Further research towards to utilization of varying indices 

around the globe, and, an automated selection of a certain water index based on the 

properties of water will likely improve the results in terms of accuracy. However, more 

recent studies seem to steer into the direction of image classification methods based on 

machine learning, demonstrating   surprisingly good results (e.g. Chen et al., 2018 and 

Acharya et al., 2018). 

 

2. The approach towards the estimation of the course of a river under cloudy circumstances 

is currently flawed in case the water surface width is highly variable over time (e.g. as a 

result of a highly variable discharge pattern). Under cloudy conditions, at least one 

cloudless image of which the stream width is similar to the stream width of the river of 

interest needs to be sampled to provide a reasonably accurate estimate. Although weights 

have been assigned to the sampled images, in case of limited amount of available cloudless 

images to sample from within a short period of time, this does not prevent an over-or 

underestimation of the geometry of a river. Since the revisit intervals of satellites are fixed 

in time, and thus the number of usable images is limited, improved logic is necessary to 

avoid this issue. Even though, in this particular case, a proper cloudless image could be 

sampled manually to avoid this issue, this defeats the purpose of an automated method. 

 

3. Currently, to find the centerline within a Voronoi-based skeleton, polygons are 

intersected in order to figure out where the bounds of said polygons overlap. However, 

for some unexplainable reason, this sometimes fails in GEE. According to a post on the 

GEE developers forum by Donchyts, this is likely to be a bug13. A workaround has yet to 

be found. In order to ensure that generation of the centerline is reliable under any 

condition, it is highly recommended that a solution towards this issue is found. 

 

4. Furthermore, to be able to quickly sample the river widths from any start to end point 

within the estimated geometry, the implementation of a pathfinding algorithm along the 

centerline is recommended. 

 

5. Any form of obstruction, whether that is a cloud or a bridge, results in the inability to 

detect water.  Although most obstructions can be avoided based on historical satellite 

images, bridges cannot, which will often result in disconnected polygons. A workaround 

needs to be found to avoid this issue. 

 

6. Currently, the biggest limitation is the size of a geometry that can be estimated. Resultant 

objects that may be too big, or too numerous, could not be computed due to memory 

limitations within GEE. Optimizations of some sort are necessary to mitigate, or 

completely avoid this issue. 

 
7. The estimation of the geometry of a river ultimately depends on the freely available EO 

satellite data that is used−either Landsat 8 or Sentinel-2 data in this case. However, many 

                                                 
13 Example: https://code.earthengine.google.com/27e508824057efa520d1a68233a05198 
GEE developers forum post: https://groups.google.com/forum/#!searchin/google-earth-engine-
developers/intersection$20bug%7Csort:date/google-earth-engine-developers/z65gS-IfaqQ/sQmpLXNDEQAJ 
 
 

https://code.earthengine.google.com/27e508824057efa520d1a68233a05198
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more datasets are available with a much higher resolution, some of which are of 

commercial nature (e.g. as listed in Table 2.1).  Although the utilization of both Landsat 8 

and Sentinel 2 is usually sufficient, their resolution may be inadequate in case smaller 

water features are of importance. The addition of more datasets may improve the 

accuracy of the results, as well allow for more data to sample from. 

 
Based on the approach as outlined in this thesis, the estimation of the geometry of a river should, 

in theory, work on any scale, as long as a cloudless binary surface water mask of the river network 

can be computed. Under the assumption that this can be achieved for a large scale, and the issue 

as stated in (3) is resolved, it is expected that the geometry of the river network can be estimated 

reliably, assuming the resources are given to do so. 

 

7.2.1 RECOMMENDATIONS FOR USE 

In order to make use of the overall method, a total of three mandatory parameters require manual 

input by the end-user. Furthermore, several more optional parameters allow for the refinement 

of the results. What follows is a list of parameters that may be altered by the end-user.  

 

Mandatory input parameters:  

 

▪ Satellite selection 

A satellite of choice must be selected between Landsat 8 and Sentinel-2, which serves as 

the main data source. Note that the spatial resolutions of both satellites are 30 ×  30 and 

10 ×  10 meters respectively. Furthermore, Landsat 8 data is available from 11-04-2013 

and onwards. Sentinel-2 data is available from 23-06-2015 and onwards. In order to 

retrieve the most accurate river polygon, the Sentinel-2 is recommended. If Sentinel-2 

imagery is unavailable, Landsat-8 should be selected. 

 

▪ Date of interest 

A start and end date should be given, where the first (most recent relative to defined start 

date) multispectral satellite image in the list is selected.  

 

▪ Area of interest 

To define the specific river of interest, the bounds must be clearly defined. To do so, a 

square or polygon must be drawn on the presented geographical map. Surface water that 

is not located within the predefined bounds are excluded.  

 

Optional input parameters: 

 

▪ Historical data sampling range (defaults to 120 days) 

Wherever the course of a river is not visible due to possible image obstructions, the 

classification of a pixel is estimated based on a series of a historical images, resulting in a 

composite image representing the water occurrence. This parameter defines the amount 

of days that are considered, relative to a certain date of interest. For example: Assume the 

date of interest is set to 01-01-2018 and the parameter is set to 120 days, then all 

historical satellite images relative to that point in time are considered; that is, every 

satellite image between 03-09-2017 and 01-05-2018 (so, -120 and +120 relative to a 
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certain date of interest). Generally, a sampling time span of 4 months is found to be more 

than sufficient. 

▪ Historical data: cut-off threshold (defaults to 0.2) 

This parameter is directly related to “Range of historical data”. To compute a composite 

water occurrence image, which consists of a sum of binary images, pixel values that are 

below a certain threshold value are excluded. This is ultimately done to remove clouds 

and detect the general bounds of a river of interest. The setting is set to 0.2 by default, 

removing any pixel of which the sum of the binary images is less or equal than 20% of the 

total sum. It is demonstrated that this threshold value works well and is thus 

recommended.  

 

▪ Geometry subtraction (turned off by default) 

This parameter allows for the removal of any water body that is directly connected to the 

main river polygon, such as a harbor or a bifurcation. Multiple custom shapes can be 

drawn on the geographical map, resulting in any water body that is bounded by the shape 

to be excluded from the river polygon. Alternatively, the coordinates of the vertices of a 

custom shape may be provided. By default, this particular parameter does not influence 

the estimated river polygon in any way. 

 

▪ River width threshold range (turned off by default) 

To exclude water bodies from the river polygon that are considered to be irrelevant, a 

minimum and maximum river width may be defined. Any detected water body that does 

not fall within the given range is excluded. This may sometimes require a trial-and-error 

approach to do so successfully. This computation is found to be resource-intensive due to 

the fact that the mean width has to be computed for every water body present within an 

image.  Instead, it is recommended that the area of interest is selected in such a way, that 

the river of interest is the largest water body within an image, which will subsequently be 

recognized automatically. 

 

▪ Projection scale (defaults to 10 × 10 meters) 

This particular parameter is dedicated to the scale at which the river polygon and the 

corresponding centerline is projected (also known as the pixel resolution). A projection 

scale of 10 × 10 meters is recommended to produce seemingly accurate results. Higher 

projections scales are possible but becoming increasingly resource-intensive. Lower 

projection scales (e.g. 10 × 10  meters or 30 × 30  meters) are recommended for the 

estimation of the geometry of a river that is relatively large. 

 

▪ Maximum number of vertices per polygon (defaults to a cap of 500 vertices) 

The quality of both the Euclidian distance map and the Voronoi-based skeleton are based 

on the number of vertices within a river polygon. In turn, the number of vertices within a 

river polygon is directly related to the projection scale. To prevent calculations that may 

be too resource-intensive, the maximum number of vertices is capped at an arbitrary 

number (500) by default. 

 

▪ Prune scale factor (defaults to 1) 

In order to remove undesirable branches from the Voronoi-based skeleton, they are 

pruned based on the distance of a branch point to its nearest boundary, in Euclidian space. 
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To exclude branches that are relatively far away from a branch point, the search radius 

may be arbitrarily expanded by increasing the scale multiplier. 

▪ Simplification factor (defaults to 1.5 times the projection scale) 

For optimization purposes, the number of vertices within a river polygon are reduced by 

means of simplification (as explained in §3.4). A similar variable is available for the 

simplification of the centerline. 

 

▪ Resample (defaults to bilinear) 

In order to achieve a smooth river polygon, the initially obtained polygon is resampled. 

Bilinear interpolation was found to be faster over bicubic interpolation, while minimizing 

the loss of quality, and is recommended as the default option. Other options are bicubic 

or nearest neighbor interpolation (default in GEE). 

 

▪ Power parameter p (defaults to 0.1) 

This variable specifies the distribution of the weights (see Figure 5.4) that are assigned to 

the sampled images, used to generate the historical composite. 

 

▪ K (defaults to [1, 1.5]) 

This variable specifies the proportionality of the linear relationship between the kernel 

radius 𝑟 and and 𝐴𝑟𝑎𝑡𝑖𝑜. 
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APPENDIX A: OTSTU THRESHOLDING & CANNY 

EDGE DETECTOR 
 

A.1 OTSU THRESHOLDING 
The sole purpose of Otsu’s method (Otsu, 1975) in this thesis is to convert a gray level image, 

which is obtained by computing the spectral index (e.g. MNDWI) of a multispectral satellite image, 

to a binary image (consisting of water (white) and non-water pixels (black)). To do so, the method 

iterates through all possible threshold values and calculates the measure of spread for all pixel 

values at each side of the threshold. The threshold value separates the image into so called 

foreground and background pixels 𝑇0 and 𝑇1, where 𝑇0 = {0, 1,… , 𝑡}  and 𝑇1 = {𝑡, 𝑡 + 1,… , 𝑙} , 

with 𝑡  being the threshold value and 𝑙  the maximum gray level in the image (e.g., 256). The 

optimal threshold value is the value with the minimum within-class variance, which is the sum of 

the foreground and background variances multiplied by their associated weights. The within-

class variance is defined as: 

 

 𝜎𝑤
2(𝑡) = 𝑤𝑏(𝑡)𝜎𝑏

2(𝑡) + 𝑤𝑓(𝑡)𝜎𝑓
2(𝑡) 

 

(A. 1) 

where 𝜎𝑤
2  is the intra-class variance, 𝑡  the threshold value, 𝑤𝑏  and 𝑤𝑓  the weights of the 

background and foreground pixels, and 𝜎𝑏
2  and 𝜎𝑓

2  the variances of the background and 

foreground pixels respectively. Furthermore, the weights, means and variances are defined as: 

 

 
𝑤𝑏(𝑡) =∑ 𝑃(𝑖)

𝑡

𝑖=1
 (A. 2) 

 
𝑤𝑓(𝑡) =∑ 𝑃(𝑖)

𝑙

𝑖=𝑡+1
 

(A. 3) 

 
𝜇𝑏(𝑡) =

∑ 𝑖 × 𝑃(𝑖)𝑡
𝑖=1

𝑤𝑏(𝑡)
 

(A. 4) 

 
𝜇𝑓(𝑡) =

∑ 𝑖 × 𝑃(𝑖)𝑙
𝑖=𝑡+1

𝑤𝑏(𝑡)
 

(A. 5) 

 
𝜎𝑏
2(𝑡) =

∑ (𝑖 − 𝜇𝑏(𝑡))
2 × 𝑃(𝑖)𝑡

𝑖=1

𝑤𝑏(𝑡)
 

(A. 6) 

 
𝜎𝑓
2(𝑡) =

∑ (𝑖 − 𝜇𝑓(𝑡))
2 × 𝑃(𝑖)𝑙

𝑖=𝑡+1

𝑤𝑓(𝑡)
 

(A. 7) 

With 𝑃(𝑖) =
𝑖

𝑟×𝑐
, where 𝑖  is the observed gray value at a specific row 𝑟  and column 𝑐 . In an 

experimental study, Yousefi (2011) tested the performance of Otsu thresholding and found that 

Gaussian Otsu thresholding, an extension of the Otsu thresholding technique, performs faster 

than Otsu’s method. This approach maximizes the between-class variance, instead of minimizing 

the within-class variance: 

 

 𝜎𝑏
2(𝑡) = 𝜎2 − 𝜎𝑤

2(𝑡) = 𝑤𝑏 × 𝑤𝑓 × (𝜇𝑏(𝑡) − (𝜇𝑓(𝑡))
2 

 

(A. 8) 

where 𝜎2 is the total variance. The maximum of equation A.7 is used. 
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A.2 CANNY EDGE DETECTOR 
The Canny edge detector is a widely used method applied in computer vision systems and is a 

technique which allows for the accurate detection of edges in images (Canny, 1986). In this thesis, 

it is used on binary images where the boundaries between water and non-water pixels are clearly 

defined. The algorithm operates as follows: 

 

1. Image smoothing – Generally, edge detectors are prone to noise. Therefore, the image is 

smoothed with a square-sized Gaussian structural element, usually of 5 × 5 size. 

2. Gradient intensity calculation – The gradient magnitudes and directions are computed. 

The gradient magnitude defines the edge. A high gradient magnitude translates to a rapid 

change in color (an edge); a low gradient magnitude does not. The gradient direction, as 

the name implies, defines the orientation of the edge. Both terms are defined as follows: 

 𝐺 = √𝐺𝑥
2 + 𝐺𝑦

2 (A. 9) 

 𝜃 = 𝑡𝑎𝑛−1(
𝐺𝑦

𝐺𝑥
) (A. 10) 

where 𝐺𝑥 and 𝐺𝑦 are the 𝑥 and 𝑦 derivatives of the current pixel. The gradient directions 

are rounded to either 0, 45, 90 or 135 degrees (vertically, horizontally and two diagonals). 

3. Non-maximum suppression – Pixels that are not maximum values are suppressed, 

resulting in very thin edges. This is done by iterating over all pixels, followed by a scan 

that checks if the current pixel is a local maximum in its neighborhood. 

4. Hysteresis thresholding – This stage removes small pixel noises based on two threshold 

values of the intensity gradient, and discards pixels below a certain threshold.  

 

Google Earth Engine supplies a built-in interpretation of Canny’s edge detection algorithm which 

is utilized to compute the edges.
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APPENDIX B: MORPHOLOGICAL OPERATORS 
 
Morphological operators, specifically erosion, dilation and opening are applied in this thesis in 

order to perform manipulations on binary images, and are commonly used in the processing of 

digital images. A binary image can be interpreted as a two-dimensional grid in Euclidean space, 

where white pixels (1’s) represent the foreground−in this case water−and black pixels (0’s) 

serve as background pixels. By sliding a structural element, or a kernel−which is simply a 𝑛 ×𝑚-

sized matrix−to each position in the binary image (e.g. by iterating over the rows and columns of 

an image), it is possible to manipulate the values within a binary image (or any image for that 

matter). Differently shaped kernels can be obtained by strategically placing the values within the 

matrix (e.g. square, circle, cross, diamond). Erosion, dilation and opening can be explained as 

follows: 

 

 Erosion 

▪ Erosion shrinks (erodes) the connected sets of 1’s of a binary image and can be used for 

shrinking features or removing connections or branches. For example, assume a 3 × 3 

kernel filled with 1’s and a binary image filled with 1’s and 0’s. The kernel is moved over 

the binary image. If and only if the kernel completely overlaps a  3 × 3 space consisting of 

1’s within the binary image, the new binary image is assigned the value 1 at the current 

position of the center of the kernel. Wherever this is not the case, the resulting pixel values 

are 0. The erosion of binary image 𝐴 by the kernel 𝐵 can be written as: 

 

 𝐴⊝𝐵 =  {𝑏| 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑎 ∈ 𝐴, 𝑎 + 𝑏 ∈ 𝐵} (B.1) 

 

i.e., place the kernel anywhere within the binary image and if it is a subset, the origin of 

the kernel is part the eroded image. Here, ⊝ represents the erosion operator. An example 

is illustrated in Figure B.1. 

 

 
Figure B.1─ Erosion of binary image A by kernel B. 

Dilation 

▪ Dilation expands (dilates) the connected sets of 1’s of a binary image and can be used for 

growing features or filling holes and gaps. Like erosion, assume a 3 × 3 kernel filled with 

1’s that is moved over a binary image. This time, if one single coordinate that is assigned 

the value 1 within the kernel intersects a 1 within the binary image, the new binary image 

is assigned the value 1 at the current position of the center of the kernel. Otherwise, a 0 is 

assigned to the new binary image. The dilation of binary image 𝐴 by the kernel 𝐵 can be 

written as: 

 

A  B  
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 𝐴⊕ 𝐵 =  {𝑎 + 𝑏 | 𝑎 ∈ 𝐴 𝑎𝑛𝑑 𝑏 ∈ 𝐵} (B.2) 

 

 

i.e., the set of all possible additions of an element of 𝐴 and an element of 𝐵, where ⊕ 

represents the dilation operator. An example is illustrated in Figure B.2.  

 

 
Figure B.2─ Dilation of binary image A by kernel B. 

 Opening 

▪ Opening is simply erosion followed by dilation, and may be useful for removing noise (e.g. 

relatively small water bodies). The operator can be written as: 

 

 𝐴 ∘ 𝐵 = (𝐴⊖ 𝐵)⊕ B (B.3) 

 

where  ∘ denotes opening, ⊖ erosion and ⊕ dilation. 

 
  

A  B  
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APPENDIX C: OVERLAPPED RIVER POLYGONS 
 
The same images as demonstrated in Figure 4.1 and 4.6 are illustrated below. However, in this 

case, the EO satellite-based river polygons (cyan) and those provided by Rijkswaterstaat (orange) 

are overlapped.  

 

 
 

 
 

Figure C.1 ─ Differences between an automatically generated river polygon (cyan) and a river polygon provided by 

Rijkswaterstaat (orange) for a segment of the Meuse, for both cloudless and cloudy satellite images.
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Figure C.2 ─ Differences between an automatically generated river polygon (cyan) and a river polygon provided by 

Rijkswaterstaat (orange) for a segment of the Rhine, for both cloudless and cloudy satellite images.
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APPENDIX D: RIVER CLASSIFICATION SCHEME 
 

To assess the global applicability of the formed procedure, polygons were generated for seven 

rivers around the world. A variety of rivers were selected based on the classification scheme by 

Alabyan and Chalov (1998). The scheme is illustrated in Figure E.1. 

 

 
Figure D.1 ─ Classification of river channel patterns (Alabyan and Chalov, 1998). 
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APPENDIX E: SCRIPTS & TYPICAL MEMORY 

USAGE 
 
The scripts that have been created to estimate the geometry of a river in a more or less automated 

manner are presented below. The scripts are hosted on the GEE servers and are openly available 

for anyone to read. Comments are presented sparingly to keep the code clear. Script 1 depends 

on script 2 to run successfully. 

 

Script 1: RiverGeometryEstimate 

https://code.earthengine.google.com/de107e51a3401d61adb5ea41169f6144 

 

Script 2: WaterOccurrenceComposite 

https://code.earthengine.google.com/bc112c19943c34c40cbe913df7b2ab45 

 

Repository 

https://earthengine.googlesource.com/users/JThissen/ThesisScripts/

https://code.earthengine.google.com/de107e51a3401d61adb5ea41169f6144
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Furthermore, the result of profiling a typical script (in this case a segment of the Trinity River), 

revealing the utilized resampling techniques−and, indirectly the projection scale−to be the main 

culprit in terms of peak memory usage.  

 

 
Figure E.1 ─ Profiling results of a segment of the Trinity River based on bilinear interpolation as well as a  10 × 10 
meters pixel resolution. 
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Figure E.2 ─ Profiling results of a segment of the Trinity River based on bicubic interpolation as well as a  10 × 10 
meters pixel resolution. 

 
  



APPENDIX F: INACCURATE ESTIMATES UNDER HIGHLY VARIABLE CONDITIONS 

 

83 

 

 

APPENDIX F: INACCURATE ESTIMATES UNDER 

HIGHLY VARIABLE CONDITIONS 
 

The approach towards the estimation of the course of a river under cloudy circumstances is 

currently flawed in case the stream width is highly variable over time (e.g. as a result of a highly 

variable discharge pattern).  Under cloudy conditions, at least one cloudless image of which the 

stream width is similar to the stream width of the river of interest needs to be sampled to provide 

a reasonably accurate estimate. If such an image cannot be sampled, the method may fail under 

highly variable conditions. The scenarios where the method fails to provide a reasonably accurate 

representation of the course of a river are demonstrated in Figure F.1 and F.2.  
 

Scenario 1 

Consider a relatively narrow river, as depicted in Figure F.1 (1). Under cloudy conditions, several 

segments of the river are unknown due to the presence of clouds (2). In this scenario, the 

historical composite represents a vast overestimation (3). Since 𝐴𝑟𝑎𝑡𝑖𝑜 is larger than 𝑚𝑎𝑥(𝐾), the 

bounds of the historical composite are not eroded (see §3.3). (2) and (3) are subsequently 

merged, resulting in (4), which is a severe overestimation of the bounds of a river. 

 

 
Figure F.1 ─ Scenario for a relatively narrow river subject to highly variable surface water widths. 

Scenario 2 

Consider a relatively wide river, as depicted in Figure F.2 (1). Under cloudy conditions, several 

segments of the river are unknown due to the presence of clouds (2). In this scenario, the 

historical composite represents a vast underestimation (3). Since 𝐴𝑟𝑎𝑡𝑖𝑜 is larger than 𝑚𝑎𝑥(𝐾), 

the bounds of the historical composite are not modified. (2) and (3) are subsequently merged, 

resulting in (4), where “gaps” are severely underestimated. 

 

(1) Cloudless (2) Cloudy (3) Composite (4) End result 
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Figure F.2 ─ Scenario for a relatively wide river subject to highly variable surface water widths. 

 

(1) Cloudless (2) Cloudy (3) Composite (4) End result 


