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“Soms denk ik uren na en heb ik nog niks op papier,

een andere keer bereik ik precies datzelfde in vijf minuten.”

Herman Finkers





Preface

Na vier jaar en een beetje is mijn proefschrift af. Dit werk beschrijft de toepassing van

bodemvochtinformatie voor waterbeheer. Aan de start van dit promotieonderzoek was

het gebruik van bodemvochtinformatie in Nederlandse waterbeheer beperkt. Echter, re-

centelijke ontwikkelingen zoals de droge zomer van 2018 hebben het belang van bodem-

vochtinformatie benadrukt. Ik hoop dan ook dat ik met dit proefschrift heb bijgedragen

om met bodemvochtgegevens waterbeheer robuust voor de toekomst te maken.

Het onderzoek heeft mij op mooie plekken binnen en buiten Nederland gebracht. Zo

schrijf ik dit voorwoord in San Francisco, waar ik de AGU-conferentie bezoek. Verder

denk ik dan aan zomerscholen op het Italiaanse eiland Capri en in Reading, een work-

shop in Bonn, en conferenties in Wenen. Mede door deze bezoeken vond ik het een

voorrecht om aan een promotieonderzoek te werken. Al staat alleen mijn naam op de

voorkant van dit boekwerk, uiteraard heb ik dit onderzoek niet kunnen uitvoeren zon-

der inbreng van anderen. Dit voorwoord wil ik dan ook graag gebruiken om een aantal

personen te bedanken voor hun hulp en steun in de afgelopen jaren.

Denie, hartelijk bedankt voor je begeleiding. Je gaf me altijd veel vrijheid in het on-

derzoek, maar je was er altijd om de rode draad in zicht te houden. Hoewel ons vaste

wekelijkse bespreekmoment niet echt een vast wekelijks bespreekmoment was, had je

altijd tijd om bij te praten. Niet alleen hadden we goede inhoudelijke discussies, gelukkig

was er ook genoeg ruimte voor humor tijdens deze gesprekken. Dit kon ik altijd erg

waarderen. Heel veel succes met je nieuwe baan als opleidingsdirecteur, ik weet zeker

dat deze functie goed bij je past.

Dimmie, bedankt voor je inzet en waardevolle input tijdens het onderzoek. Je bood me de

kans om als gast bij Deltares aan mijn onderzoek te werken. Voor mij was dit een goede

manier om kennis te maken met de manier van werken bij een niet-academische partij.
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Ik denk terug aan goede samenwerkingen met je collega’s, onder andere met Albrecht

en Stef, wat uiteindelijk tot een mooie publicatie heeft geleid. Ook de discussies met

verschillende collega’s tijdens ko�e- en lunchpauzes kon ik erg waarderen. Ik kijk dan

ook erg positief terug naar de tijd aan de Princetonlaan en Daltonlaan.

Suzanne, jij bood me in de zomer van 2015 de kans om een promotieonderzoek uit te

voeren. Naast inhoudelijke feedback heb je me erg geholpen met de organisatie rond

het onderzoek. Daarnaast krijg ik de mogelijkheid om na mijn promotieonderzoek aan

de vakgroep verbonden te blijven. Ik hoop dan ook op een goede voortzetting van onze

samenwerking in de toekomst.

Ik wil alle betrokkenen bij het OWAS1S-project bedanken voor de samenwerking. Harm-

Jan, ik heb veel met je uitgevoerd de afgelopen jaren. Wat mij betreft hebben we een

mooie bijdrage aan het project kunnen leveren. Hopelijk gaan we nog een keer moun-

tainbiken in de toekomst . Coleen, thank you very much for your cooperation and

advice on my work. The three of us were a good team in my opinion. I wish you all

the best for the future. Martine en Rogier, bedankt voor jullie input tijdens de project-

meetings. Ook een groot dank aan de medewerking van alle projectpartners (Deltares,

HKV, HydroLogic, Provincie Overijssel, Rijkswaterstaat, STOWA, waterschappen Aa en

Maas, Drents Overijsselse Delta en Vechtstromen en ZLTO).

Heren van HR W-211, bedankt voor de mooie momenten afgelopen jaren. Johan, gelukkig

toch nog iemand met voetbalverstand bij de afdeling. Koen, bedankt voor alle slechte

grappen. Pim, mooi dat je weer helemaal terug bent, onder andere bedankt voor een

mooie tijd in San Francisco. Collega’s bij WEM, hartelijk dank voor de gezelligheid.

Iedereen bedankt voor de ko�emomenten, de lunchwandelingen, de voetbalwedstrijden

van SouthWEMton, �etstochten op de race�ets, de deelnames aan de Batavierenrace en

ik vergeet vast andere activiteiten. Ook wil ik Anke, Dorette, Joke en Monique hartelijk

danken voor hun hulp (en lekkere ko�e).

Last, but not least wil ik me richten op vrienden en familie. De vele borrels, concerten,

Schwalbeweekenden, Schwintersportvakanties, �etsweekenden en andere vakanties boden

me goede a�eiding. Hopelijk gaan we hier mee door in de toekomst.

In het speciaal, Laura, Thijs, mama en papa, bedankt dat jullie er altijd voor me zijn en

dat ik altijd bij jullie terecht kan. Weet dat dit zeer gewaardeerd wordt!

Wat mij rest, is het volgende: ik wens jullie veel plezier bij het lezen van dit werk!

Michiel
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Summary

Water in the unsaturated part of the soil subsurface is referred to as soil moisture. Soil

moisture and related processes are often considered as key components of the hydrolo-

gical cycle, a�ecting hydrological, meteorological, biological, and biogeochemical pro-

cesses. The dry period in the summer of the year 2018 highlighted the necessity of under-

standing soil moisture dynamics and integrating related information in water manage-

ment approaches. However, the application of soil moisture information in operational

water resources management is limited. One of the reasons is the lack of measurement

data. Recently, the increasing availability of high-resolution soil moisture data retrieved

using remote sensing methods has led to new possibilities for utilization in water man-

agement.

The research aim of this work was to show the potential use of high-resolution soil mois-

ture information for operational water resources management. We followed a research

framework in which the needs of water managers were identi�ed. In addition, we fo-

cused on retrieving accurate soil moisture information on both regional and local spatial

scales. Furthermore, we discussed several applications to integrate the research �ndings

in operational water management.

Firstly, interviews with operational water management experts illustrated that evidence-

based information such as measurement data, system knowledge, meteorological fore-

casts, hydrological model output, and legislation is used for decision-making in Dutch

regional operational water management. It also became clear that the experts consid-

erably depend on experiential information, which leads to opinion-based bypasses in

decision-making. In addition, we found that hydrological models play a minor role in

decision-making in comparison with other evidence-based information sources. We re-

commend that decision-makers should focus on the development of structured methodo-

logies for integrating both evidence-based and experiential information in decision sup-
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port systems. Such systems should deliver tailor-made information in an understandable

format at the right time. Indicators could be used as tools to deliver such information.

Also, when investing in new technologies, education of water managers is an important

aspect which should be taken into account.

Secondly, we found that the accuracy of root zone soil moisture estimates of a hydro-

logical metamodel can be increased using a data assimilation scheme. Data assimil-

ation schemes allow to merge models with up-to-date observations of current water

system conditions. To implement such a scheme for the unsaturated zone metamodel

MetaSWAP, we developed a data assimilation tool using the open-source framework

OpenDA. A perturbed observations Ensemble Kalman Filter was used to assimilate SMAP

satellite L3 Enhanced observations of surface soil moisture. The surface soil moisture ob-

servations increased the accuracy of regional root zone soil moisture model estimates

in terms of the Root Mean Square Error (RMSE) and bias goodness-of-�t measures. On

local scales, the results largely depend on how well the SMAP data re�ect �eld condi-

tions. Notably, we were able to update model estimates of root zone soil moisture using

observations of surface soil moisture. This �nding increases the value of remote sens-

ing data, as satellite-based soil moisture retrievals generally only provide information

about the top part of the unsaturated zone. We expect that the increasing availability

of high-resolution remotely sensed soil moisture data and developments in data stor-

age and computational environments will lead to an increase in the application of data

assimilation schemes in operational water resources management.

Thirdly, we showed the potential of a novel data-driven method for soil moisture mod-

elling. We found that transfer function-noise (TFN) models can accurately describe soil

moisture conditions. Impulse-response functions are used to describe the response of

soil moisture to stress series such as precipitation and reference crop evapotranspir-

ation. The TFN models were trained using SMAP satellite L3 Enhanced surface soil

moisture data. We found that TFN models produce soil moisture estimates of similar

accuracy as the remote sensing data using the RMSE goodness-of-�t measure. However,

care should be taken when interpreting TFN modelling results in extreme situations due

to the data-driven nature of the method. A sensitivity analysis showed that the TFN

training period considerably a�ects the performance of TFN models in both regular and

extreme periods. Furthermore, the parameters of the impulse-response functions de-

scribe water system characteristics. However, more research is necessary to relate these

parameters to physical phenomena.

Finally, this research provides several recommendations for further research. We recom-
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mend to continue to study the relationship between the various spatiotemporal scales

covered by soil moisture datasets, to consider additional data assimilation applications

for operational water resources management, and to explore TFN modelling. Speci�c-

ally, we encourage to explore the possibilities of TFN soil moisture modelling for prac-

tical applications, such as short term soil moisture predictions using model ensembles,

data gap �lling, the development of historical soil moisture time series, and satellite

validation studies. Additionally, several improvements for water management are pro-

posed, focusing on the development of structured methodologies for integrating new in-

formation types. Also, the applicability of indicators to create easy-to-interpret inform-

ation for water managers is promising. We challenge both researchers and water man-

agers to continue to invest in these approaches, as the call for optimized, consistent, and

sustainable water management becomes increasingly important in the future.
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Samenvatting

Water in het onverzadigde deel van de bodem wordt bodemvocht genoemd. Bodem-

vocht en bijbehorende processen zijn belangrijke componenten van de hydrologische

cyclus. Bodemvocht beïnvloedt onder andere hydrologische, meteorologische, biologis-

che, en biochemische processen. De droge periode in de zomer van het jaar 2018 toonde

aan dat het belangrijk is om bodemvochtdynamiek te begrijpen en dergelijke kennis

te integreren in waterbeheer. Echter, het gebruik van bodemvochtinformatie in oper-

ationeel waterbeheer is beperkt, onder andere doordat bodemvochtmetingen beperkt

beschikbaar zijn. Omdat de beschikbaarheid van bodemvochtgegevens verkregen via

satellietobservaties signi�cant stijgt, zijn er nieuwe kansen om bodemvochtinformatie

te gebruiken in waterbeheer.

Het onderzoeksdoel van dit werk was om de potentie van hoge resolutie bodemvochtin-

formatie aan te tonen voor operationeel waterbeheer. We hebben een onderzoekskader

gevolgd waarin onder andere de behoeften van waterbeheerders zijn geïdenti�ceerd.

Daarnaast hebben we gefocust op het verkrijgen van bodemvochtinformatie op zowel re-

gionale als lokale ruimtelijke schalen. Verder hebben we verscheidende toepassingen be-

sproken om de onderzoeksresultaten te integreren in operationeel waterbeheer.

Allereerst, uit interviews met operationele waterbeheerexperts blijkt dat informatie zoals

meetgegevens, systeemkennis, meteorologische voorspellingen, modelberekeningen en

wetgeving wordt gebruikt voor besluitvorming in het Nederlandse regionale operationele

waterbeheer. Daarnaast steunen de experts aanzienlijk op ervaringsgerichte kennis, wat

kan leiden tot suboptimale beslissingen. Verder blijkt dat hydrologische modellering

een relatief kleine rol speelt in besluitvorming vergeleken met andere vormen van in-

formatie. We bevelen aan dat besluitvormers zich moeten richten op het ontwikkelen

van gestructureerde methoden om de verschillende informatietypen te integreren in bij-

voorbeeld beslissingsondersteunende systemen. Op maat gemaakte informatie kan via
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dergelijke system in een begrijpelijk formaat aangeleverd worden op het juiste moment.

Het gebruik van indicatoren maakt het mogelijk om informatie in een begrijpelijk form-

aat aan te leveren. Tenslotte moet er aandacht besteed worden aan het overbrengen van

nieuwe kennis aan waterbeheerders.

Ten tweede is de nauwkeurigheid van modelsimulaties met betrekking op wortelzone-

bodemvocht vergroot door gebruik te maken van een data-assimilatiemethode. Data-

assimilatiemethoden maken het mogelijk om hydrologische modellen te integreren met

up-to-date observaties van watersysteemcondities. Wij hebben een data-assimilatietool

ontwikkeld voor het onverzadigd zone metamodel MetaSWAP door gebruik te maken

van de open-source OpenDA-software. Het L3 Enhanced oppervlaktebodemvochtproduct

afkomstig van de SMAP-satelliet is geassimileerd door het toepassen van een perturbed
observations Ensemble Kalman Filter. Het integreren van de oppervlaktebodemvochtin-

formatie zorgt er voor dat de nauwkeurigheid van regionale modelsimulaties van wor-

telzonebodemvocht verhoogd wordt. De resultaten op lokale schaal hangen sterk af van

hoe goed de SMAP-satellietobservaties de lokale schaal representeren. De resultaten

laten zien dat het mogelijk is om de nauwkeurigheid van modelsimulaties van diepere

bodemlagen te verhogen gebruikmakend van oppervlaktebodemvochtobservaties. Bodem-

vochtsatellietobservaties leveren over het algemeen informatie over de bovenste paar

centimeter van de bodem. De resultaten van dit onderzoek verhogen daardoor de waarde

van dergelijke satellietobservaties voor waterbeheertoepassingen. Wij verwachten dat

de toenemende beschikbaarheid van bodemvochtsatellietobservaties van hoge resolu-

tie en bijbehorende ontwikkelingen in dataopslag en rekenkracht zullen leiden tot meer

implementaties van data-assimilatiemethoden in operationeel waterbeheer.

Ten derde hebben we de potentie van een innovatieve datagedreven modelleermeth-

ode voor bodemvochtdynamiek aangetoond. Transfer function-noise (TFN) modellen

kunnen accuraat bodemvochtcondities beschrijven. De bodemvochtdynamiek wordt

beschreven door het combineren van neerslag- en verdampingstijdreeksen en impuls-

responsfuncties. De impuls-responsfuncties beschrijven de verandering van bodem-

vocht door respectievelijk neerslag en verdamping. De parameters van deze functies

worden afgeleid uit een optimalisatieprocedure waarbij het SMAP L3 Enhanced op-

pervlaktebodemvochtproduct gebruikt wordt als trainingsdataset. De TFN-modellen

hebben een vergelijkbare nauwkeurigheid als de SMAP-satellietobservaties. Echter di-

ent rekening gehouden te worden met de nauwkeurigheid van de TFN-modellen in ex-

treme situaties door de datagedreven aard van deze aanpak. Een gevoeligheidsanalyse

laat zien dat het selecteren van de juiste trainingsperiode een grote invloed heeft op de
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nauwkeurig van de TFN-modellen in zowel reguliere als extreme situaties. Daarnaast

kunnen de impuls-responsfuncties gebruikt worden om watersysteemkarakteristieken

af te leiden. Meer onderzoek is nodig om de impuls-responsfuncties te koppelen aan

fysische processen en variabelen.

Tot slot volgen er een aantal aanbevelingen uit dit onderzoek voor vervolgonderzoek.

We adviseren om de relatie tussen de verschillende ruimtelijke en temporele bodem-

vochtschalen verder uit te zoeken. Ook raden we aan om aanvullende toepassingen

van data-assimilatiemethoden voor operationeel waterbeheer te onderzoeken. Verder

raden we aan om de mogelijkheden van TFN-modellering voor bodemvochtsimulaties

verder te verkennen. Voorbeelden zijn verschillende toepassingen voor bodemvocht-

voorspelling op korte termijnen waarbij ensembletechnieken gebruikt kunnen worden

om onzekerheidsschattingen te maken, het vullen van ontbrekende gegevens in tijdser-

ies, het ontwikkelen van historische bodemvochttijdseries en satellietvalidatiestudies.

Daarnaast stellen we een aantal mogelijkheden voor waterbeheer voor. Een belangrijk

aspect is het ontwikkelen van gestructureerde methoden voor het integreren van nieuwe

informatietypen voor besluitvorming. Daarnaast is het aanbieden van indicatoren om

de toepasbaarheid van informatie te verhogen interessant om het gat tussen onderzoek

en praktijk te overbruggen. We dagen zowel onderzoekers als waterbeheerders uit om

te blijven investeren in zowel onderzoek als het toepassen van bovengenoemde meth-

oden, gezien consistent, geoptimaliseerd en duurzaam waterbeheer in toenemende mate

belangrijk wordt in de toekomst.
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\ (k ) Volumetric moisture content at pressure headk [<3 <−3]

\r Residual soil moisture content [<3 <−3]

\s Saturated soil moisture content [<3 <−3]

U6 Scale parameter [<−1]

=6 Soil pore size distribution parameter [–]

 Hydraulic conductivity [</30~]

I Elevation above a datum [<]

C Time step [30~].

- Model mean state [<3 <−3]

% Model state error covariance matrix [(<3 <−3)2]

\obs

8
Observed soil moisture estimates [<3 <−3]

\
pred

8
Predicted soil moisture estimates [<3 <−3]

# Number of observations [–]

\obs
Averaged observed soil moisture estimate [<3 <−3]

\pred
Averaged predicted soil moisture estimate [<3 <−3]

A Pearson correlation coe�cient [–]

ℎ Observed soil moisture state [<3 <−3]

#BCA4BB Number of stress series [–]

ℎ8 Change in soil moisture state due to a stress series 8 [<3 <−3]
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3 Baseline soil moisture state [<3 <−3]

=A4B Residual time series [<3 <−3]

'8 Value of a stress series 8 [<<]

Θ8 Impulse-response transfer function of the corresponding stress series 8

B Step response function [<3 <−3]

1 Block response function [<3 <−3]

� Unit step response of the state variable due to an input stress [<3 <−3]

0 Decay rate parameter [30~−1]

= Shape parameter [–]

Γ(=) Gamma function of the form (= − 1)! [–]

h White noise [<3 <−3]

U Decay parameter [30~]

f2
ℎ

Variance of the SMAP soil moisture observations [(<3 <−3)2]

f2= Variance of the TFN model residuals [(<3 <−3)2]

�)02C Actual evapotranspiration [<<]

�)A4 5 Makkink reference crop evapotranspiration [<<]

\ 5 2 Soil moisture content at �eld capacity [<3 <−3]

\0FB Available water storage [<3 <−3]

\F? Soil moisture content at wilting point [<3 <−3]
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1.1 Soilmoisture information forwatermanagement

Water systems all over the world are a�ected by climate variability and increasing socio-

economic developments. Historically, water management practices in the Netherlands

have been strongly driven by �ood events (for example in 1993 and 1995), drought events

(for example in 1976 and 2003), and socio-economic trends (for example the introduc-

tion of Building with Nature concepts) (Haasnoot and Middelkoop, 2012; PBL, 2012;

De Vriend et al., 2014; Whelchel et al., 2018). The recent drought caused by the 2018

European heatwave had considerable impacts on water management, agriculture, and

nature reserve protection (Vogel et al., 2019; Arcadis, 2019). Figure 1.1 and Figure 1.2

show surface water systems in the eastern part of the Netherlands which ran dry in

the summer periods of 2018 and 2019. The drought period activated governmental in-

stitutions and water authorities in the Netherlands to re-evaluate management policies.

Hence, the grand challenge for national and regional water managers is to optimize

water availability for di�erent functions according to users’ demands. Among others,

reliable and up-to-date information on the current hydrological conditions is essential

for skilful management of water systems.

Soil moisture is a central component of the hydrological cycle (Vereecken et al., 2008;

Seneviratne et al., 2010; Petropoulos et al., 2015; Zhuo and Han, 2016). Soil moisture

is the water in the unsaturated soil above the groundwater table. Although only ac-

counting for approximately 0.01 – 0.05% of global freshwater resources (UNESCO, 1971;

Shiklomanov, 1993; Dingman, 2002), soil moisture a�ects hydrological, meteorological,

biological, and biogeochemical processes and interacts with the atmosphere, vegetation,

surface water and deeper groundwater layers. For example, the availability of soil mois-

ture a�ects evapotranspiration rates, which in�uence atmospheric processes. Also, ve-

getation growth depends on root water uptake, which is related to the water availability

near root systems. Moreover, the soil saturation degree controls the amount of overland

�ow due to severe precipitation events. Furthermore, soil moisture conditions determine

the recharge rate of groundwater aquifers.

Soil moisture is often considered as the missing link in available hydrological data. While

data on discharges, surface water levels, groundwater levels, precipitation, and evapo-

transpiration are more or less integrated into operational water resources management,

the application of soil moisture data is limited. A main reason is the limited availability

of soil moisture �eld observations (Cassiani et al., 2006). It has long been recognized

that remote sensing data can provide estimates of environmental variables and �uxes
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Figure 1.1: A stream in the Netherlands (the Schipbeek) that has run dry during the 2018 European

heat wave. Source: RTV Oost/Jan Colijn.

Figure 1.2: Also in 2019 many streams ran dry in the Netherlands, like the Hooge Laarsleiding in

the Eastern part of the Netherlands. Photo was taken on September 21 2019 by the author.
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(Moradkhani, 2008; Reichle, 2008; Ma et al., 2015; STOWA, 2016; Zhuo and Han, 2016;

Sadeghi et al., 2018). For many years, water managers have been interested in remote

sensing as a source of high-resolution spatially distributed data. While several initiat-

ives have been employed to utilize remotely sensed soil moisture products (e.g. Crow and

Ryu, 2009; Drusch et al., 2009; De Rosnay et al., 2013; Wanders et al., 2014b), operational

application is still limited in water resources management. Recently, the emergence of

high-resolution remotely sensed soil moisture products has lead to new opportunities for

integrating soil moisture information in water management approaches. We de�ne soil

moisture products as soil moisture data retrieved from satellite observations. Sentinel-1

and SMAP are examples of satellites providing high-resolution soil moisture data (En-

tekhabi et al., 2010; Hornacek et al., 2012; Petropoulos et al., 2015; Benninga et al., 2019).

This research focused on the integration of high-resolution soil moisture information

obtained from remote sensing products in operational water resources management.

We studied how to integrate soil moisture information in operational water resources

management using both qualitative and quantitative methods.

This chapter provides contextual information on soil moisture (Section 1.2), the relev-

ance of this study (Section 1.3), the problem statement (Section 1.4), the general research

aim and questions (Section 1.5), and the research methodology (Section 1.6). Section 1.7

gives an outline for the dissertation.

1.2 Context

1.2.1 Subsurface processes

First, we give an overview of soil subsurface processes. Several zones can be distin-

guished for hydrological applications. Figure 1.3 shows a schematization of the soil sub-

surface. Generally, a distinction is made between the unsaturated and saturated zones

(Freeze and Cherry, 1979). The unsaturated zone, also known as the vadose zone, is

the part of the subsurface where soil pores are not entirely �lled with water. Water is

retained in the pores by negative pressure heads. The less negative the pressure head,

the more saturated the soil is. Water in the unsaturated zone is referred to as soil mois-

ture. Various non-linear processes related to precipitation, evapotranspiration, capillary

forces, and in�ltration to deeper layers control soil moisture dynamics. Often, soil mois-

ture is expressed as a volumetric moisture content (\ ), which is the dimensionless ratio
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Figure 1.3: Schematization of the soil subsurface. The various zones often distinguished in hy-

drological applications are shown.

of moisture volume to soil volume:

\ =
F

+
, (1.1)

where F is the water volume in a soil volume [<3
] and + is the soil volume [<3

].

The soil moisture content can also be described using pressure heads. The relationship

between pressure head and volumetric moisture content is characterized by water reten-

tion curves, also known as pF curves. These curves can be described using the relation

de�ned by Van Genuchten (1980):

\ (k ) = \r +
\s − \r

[1 + (U |k |)=6 ]1−1/=6
, (1.2)
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where k is the pressure head [<], \ (k ) is the volumetric moisture content at pressure

head k [<3 <−3], \r is the residual soil moisture content [<3 <−3], \s is the saturated

soil moisture content [<3<−3], U6 is a scale parameter inversely proportional to the air

entry value [<−1], and =6 is a parameter related to the pore size distribution [–]. These

parameters are soil-speci�c. The Staring series provides the parameters for the soil types

found in the Netherlands (Wösten et al., 2001). The dataset BOFEK2012 provides the

spatial distribution of the Staring series in the Netherlands (Wösten et al., 2013).

Furthermore, Figure 1.3 shows the capillary fringe and root zone within the unsaturated

zone. The capillary fringe forms the transition of the unsaturated zone into the saturated

zone. In this zone, capillary tension causes soil pores to almost completely �ll with

water. The root zone is the part of the unsaturated zone in which vegetation roots can

be found. The depth of the root zone depends on both vegetation and soil type. Root

zone soil moisture is de�ned as the amount of moisture in the root zone. The root zone

and related processes such as root water uptake and evapotranspiration are vital for

hydrological and agricultural applications. The soil porosity, �eld capacity, and wilting

point limits are often associated with the root zone. During a precipitation event, the

soil pores start �lling due to in�ltration of water from the surface. The soil porosity is

the maximum amount of soil volume (or pores) that can be �lled by water. If the soil

moisture content is equal to the soil porosity, the soil is saturated. During and after

a precipitation event, water will drain to deeper layers. After both precipitation and

gravitational drainage have stopped, the soil is at �eld capacity. This situation describes

the maximum amount of water available for vegetation. The soil moisture content at

which vegetation starts to wither is the wilting point. Generally, the soil still contains

water at wilting point, although roots are not able to extract the water.

The saturated zone is the part of the subsurface where soil pores are fully �lled with wa-

ter. Water in the saturated zone is referred to as groundwater. The saturated zone can be

divided into permeable and impermeable layers. Permeable layers are known as aquifers

and typically consist of sand and gravel. An uncon�ned or phreatic aquifer is connected

to the unsaturated zone and allows water to seep from the soil surface to deeper layers

directly. A con�ned aquifer is generally bounded by an impermeable layer which pre-

vents water from seeping into the aquifer. Layers where groundwater �ow is limited due

to soil properties are referred to as aquitards. The soil of aquitards typically consists of

a mix of sand, clay, and silt. A completely impermeable layer is known as an aquiclude

and typically consists of clay. The boundary of the unsaturated and saturated zones is

de�ned by the (ground)water table (or level) in case of an uncon�ned aquifer.
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The various meteorological and hydrological processes associated with the subsurface

can be described using the hydrological cycle (Freeze and Cherry, 1979). The hydrolo-

gical cycle describes the circulation of water. Figure 1.4 shows a schematization of the

terrestrial part of the hydrological cycle. Water enters the terrestrial part in the form

of precipitation. Precipitation is intercepted by vegetation cover or temporarily stored

on the surface. Water in the surface storage will either evaporate, in�ltrate in the soil,

or end up as standing water and overland �ow to surface water if the soil in�ltration

capacity is exceeded. The term evapotranspiration describes both transpiration from

vegetation cover and evaporation from bare soil. Transpiration from the saturated zone

occurs in areas where vegetation roots tap in groundwater, for example, in wetlands

(Balugani et al., 2017). Evapotranspiration rates depend, among others, on the avail-

ability of soil moisture. Evapotranspiration reduction can occur in dry periods, which

is a mechanism which reduces evapotranspiration when only low amounts of moisture

are available. The �ow of water from the unsaturated to the saturated zone is known

as percolation or recharge. Vice versa, the �ow of water from the saturated to the un-

saturated zone is known as capillary rise, which can supply water to the unsaturated

zone from deeper layers. Inter�ow and drainage describe lateral unsaturated and satur-

ated �ow to surface water, respectively. As inter�ow does hardly occur in �at regions

like the Netherlands, modelling approaches for these regions often neglect this lateral

process to allow one-dimensional vertical unsaturated �ow assumptions (De Laat, 1980;

Van Walsum and Groenendijk, 2008).

1.2.2 Estimating soil moisture states

The limited availability of soil moisture data is a major reason that soil moisture in-

formation is not frequently used in water management. A particular challenge is that

the direct observation of soil moisture is challenging (Cassiani et al., 2006). A standard

technique of directly observing soil moisture is the gravimetric method, in which a soil

sample of a known volume and weight is dried in an oven at 105
◦
C (Walker et al., 2004).

The soil moisture content can be derived from the di�erence in soil weight before and

after drying. However, this method is time-consuming, has to be performed in a labor-

atory, and destroys the soil sample (Dobriyal et al., 2012). The latter implies that the

gravimetric method cannot be used for continuous measurements at the same location.

As a consequence, indirect non-destructive methods using converting algorithms have

to be applied. Therefore, we will use the term estimate rather than measure or observe in

the following sections.
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Surface storage

Unsaturated zone

Saturated zone

Vegetation storage

Surface water

Atmosphere

Transpiration

Drainage

Infiltration

EvaporationInterceptionPrecipitation

Overland flowInfiltration

Root uptake Interflow

Capillary riseRecharge

Figure 1.4: System representation of the terrestrial part of the hydrological cycle based on Freeze

and Cherry (1979). The rectangles indicate storage reservoirs, while the hexagons indicate �uxes.
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Alternatively, three indirect methods exist for estimating soil moisture states on various

spatiotemporal scales: in situ (Robinson et al., 2008; Dobriyal et al., 2012), remote sensing

(Petropoulos et al., 2015; Srivastava, 2017) and hydrological modelling (Šimůnek et al.,

2003; Ochsner et al., 2013; Vereecken et al., 2008). Generally, in situ methods provide

information on point scales, while remote sensing and modelling methods are applicable

on larger scales. Robinson et al. (2008) and Ochsner et al. (2013) de�ne point estimates on

a spatial scale of ≤ 1<2
, while larger-scale estimates have spatial scales of > 1<2

. The

next sections elaborate on the strengths and limitations of the three methods.

In situ

Soil moisture can be estimated by installing sensors in soils at various depths. Electro-

magnetic techniques such as Time Domain Re�ectometry (TDR) and Frequency Domain

Re�ectometry (FDR) are widely used. The moisture content can also be estimated us-

ing neutron probes, cosmic-ray neutron detectors, heat pulse sensors, and tensiomet-

ers. We refer to Walker et al. (2004), Robinson et al. (2008), Dorigo et al. (2011), and

Susha Lekshmi et al. (2014) for an overview of in situ estimation techniques.

Generally, in situ soil moisture estimates are considered accurate, as the sensors can be

calibrated using soil-speci�c calibration procedures (e.g. by applying the gravimetric

method). Furthermore, the estimates can have a high temporal resolution if the sensors

are autonomously monitoring. Also, because the sensors can be installed at various

depths, a higher vertical spatial resolution can be obtained. However, due to the nature

of in situ techniques, the horizontal spatial coverage is typically limited. A dense spa-

tial coverage of point-based in situ estimates is practically impossible due to budget and

other practical limitations. Therefore, the application of in situ techniques for continu-

ous monitoring of soil moisture on catchment scales is regarded as impractical. This

limitation poses a serious challenge, since in situ estimates are generally used for the

validation of remotely sensed soil moisture products, which cover much larger spatial

footprints than the in situ sensors.

A well known hub for accessing in situ soil moisture data is the International Soil Mois-

ture Network (ISMN) (Dorigo et al., 2011). The ISMN is a cooperation of the Global En-

ergy and Water Cycle Experiment (GEWEX), the Group on Earth Observations (GEO),

the Committee on Earth Observation Satellites (CEOS), and the European Space Agency

(ESA). The ISMN can be accessed at https://ismn.geo.tuwien.ac.at/en.

Examples in the Netherlands are the Twente (Dente et al., 2012; Van der Velde, 2018;

Van der Velde et al., 2019) and the Raam (Benninga et al., 2018) soil moisture and tem-

31

https://ismn.geo.tuwien.ac.at/en


C
h
a
p
t
e
r
1

C
h
a
p
t
e
r
1

53.0°N

52.0°N

51.0°N

2.0°E 3.0°E 4.0°E 5.0°E 6.0°E 7.0°E 8.0°E 9.0°E

Figure 1.5: Location of the Twente and Raam in situ soil moisture and temperature monitoring

networks in the Netherlands.

perature monitoring networks. The networks are maintained by the ITC faculty of the

University of Twente and Wageningen University & Research. Figure 1.5 shows the loc-

ation of the two networks in the Netherlands.

Remote sensing

Remote sensing provides a means to get spatially distributed information. Soil moisture

information can be retrieved using both multispectral and microwave sensors. How-

ever, multispectral methods show weak relationships to soil moisture in the presence

of vegetation covers (Petropoulos et al., 2015). Also, cloud cover signi�cantly impacts

multispectral soil moisture retrievals. Therefore, multispectral sensors are limitedly used

for soil moisture retrievals. Alternatively, both active and passive microwave sensors

are suitable to capture soil moisture dynamics. Microwave sensors show sensitivity to

soil moisture, particularly in the low frequency range (1–5 GHz) (Du et al., 2000). Active

sensors emit a microwave signal and detect the corresponding backscatter, while passive

sensors observe re�ected or emitted microwave signals from the soil surface. Examples

of satellite sensors providing active soil moisture microwave retrievals are ERS (Naeimi

et al., 2009), ASCAT (Wagner et al., 2013), and Sentinel-1 (Wagner et al., 2009; Benninga

et al., 2019). Examples of satellite sensors providing passive soil moisture microwave re-
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trievals are AMSR-E, (Njoku et al., 2003; Mladenova et al., 2014), AMSR2 (Imaoka et al.,

2010), SMOS (Kerr et al., 2001), and SMAP (Entekhabi et al., 2010).

Generally, soil moisture estimates from remote sensing sensors represent the upper part

of the unsaturated zone (up to a couple of centimetres depth), because microwave signals

have limited soil penetration depths. Therefore, remote sensing estimates are often re-

ferred to as surface soil moisture. We refer to Petropoulos et al. (2015) for an overview of

surface soil moisture retrievals from remote sensing. The relationship between surface

soil moisture and soil moisture at greater depth is complex, especially in dry periods

(Carranza et al., 2018). Extrapolating surface soil moisture to root zone soil moisture

information is not trivial, as complex non-linear processes concerning dry-down and

hysteresis have to be considered. Currently, no universal method exists for translat-

ing surface to root zone soil moisture information. Several studies show that statistical

methods (e.g. Albergel et al., 2008; Carranza et al., 2018) or hydrological modelling (e.g.

Sabater et al., 2007; Renzullo et al., 2014; Dumedah et al., 2015; Blyverket et al., 2019) can

help in extrapolating surface soil information to deeper layers.

Hydrological modelling

Hydrological modelling can be used to estimate soil moisture conditions on various spa-

tial and temporal scales, ranging from local �eld scale estimates to global soil water

storage analyses. Various process-based models exist for describing soil water �ow. Typ-

ically, they are based on physical laws for mass conservation and energy balances. Many

soil water �ow models apply the Richards equation to describe water movement in un-

saturated soils (Šimůnek et al., 2003; Vereecken et al., 2016). The transient form of the

one-dimensional Richards equation, formulated for a time step of one day, is:

m\

mC
=
m

mI

[
 (\ )

(
mk

mI
+ 1

)]
(1.3)

where  is the hydraulic conductivity of the soil [</30~],k is the pressure head [<], I

is an elevation above a datum [<], and C is the time step [30~]. As the Richards equation

is highly non-linear, it can be challenging to �nd stable numerical solutions (Vereecken

et al., 2016; Zha et al., 2019).

Generally, soil water �ow models are forced by meteorological data, such as precipitation

and evapotranspiration. On scales larger than �eld scales, these measurements are ob-

tained by remote sensing methods or interpolation of point measurements. The complex
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structure of the subsurface is implemented using various parametrizations of surface el-

evation, soil type, land use, vegetation type, and other characteristics. Parameter values

are generally obtained by applying calibration approaches using training data. Typic-

ally, these parameter sets are �xed in time. However, hydrological conditions are non-

stationary and vary considerably over time , which means that the optimal parameter set

of a hydrological model di�ers over time (Thirel et al., 2015; Beven, 2016). Furthermore,

the spatial discretization (e.g. model grid size and the resolution of input data) determ-

ines the spatial resolution of the model output. These aspects introduce uncertainties

due to the parametrization of soil physical and land use characteristics.

A distinct advantage of hydrological modelling is that models can o�er information on

similar spatial scales as remote sensing, however on a wider range of temporal scales.

While the temporal scale of remote sensing is related to satellite overpasses, models can

be run using hourly, daily, and other time steps. Furthermore, hydrological models have

the ability to simulate historical and future situations. Additionally, they can be used to

estimate the e�ects of water management measures on hydrological conditions. There-

fore, hydrological modelling is suitable for application in operational settings.

The Netherlands Hydrological Instrument (NHI) is an example of an operational tool for

water management in the Netherlands. NHI is an integrated process-based modelling in-

strument for unsaturated water �ow, groundwater �ow, surface water �ow, and surface

water distribution (De Lange et al., 2014). The instrument is used for decision-making

in operational water management and scenario analyses in the Netherlands. Due to the

operational setting, this instrument is particularly suitable for the research presented in

this dissertation. The NHI model codes and input data are freely available and can be

downloaded atwww.nhi.nu. Chapter 3 provides a detailed description of NHI.

1.3 Relevance

1.3.1 Impact

Soil moisture signi�cantly impacts other hydrological processes (Vereecken et al., 2008;

Seneviratne et al., 2010). For example, soil moisture governs the partitioning of pre-

cipitation into in�ltration and surface runo�, which a�ects groundwater recharge and

stream�ow (Brocca et al., 2010, 2017). Capturing soil moisture dynamics leads to a bet-

ter understanding of drought, �ood and heatwave events (McColl et al., 2017). Spinoni

et al. (2014) estimate that more than two billion people have been a�ected by droughts
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during the 20th century, causing eleven million deaths globally. Furthermore, Grillakis

(2019) states that understanding the role of soil moisture dynamics in the water cycle,

including the e�ect of climate change on soil moisture, is essential to project and mitig-

ate potential impacts on agriculture. Also, soil moisture variability can lead to increased

CO2 emissions from soils (Kechavarzi et al., 2010) and land subsidence in clayey areas,

wetlands and peatlands (Querner et al., 2012; Pritchard et al., 2015), which can lead to

the destabilization of soils containing construction foundations (Hawkins, 2013).

Drought issues

We can classify droughts in several stages to understand the role of soil moisture in

drought issues (Tallaksen and Van Lanen, 2004). The �rst stage of drought is meteor-
ological drought, which is characterized by precipitation de�cits. Precipitation de�cits

arise when evapotranspiration rates are larger than precipitation rates. A meteorological

drought can act as a signal value for the other drought stages. One speaks of agricul-
tural drought if the precipitation de�cit signi�cantly a�ects crop growth and vegetation

in nature areas. Soil moisture conditions play a vital role during agricultural droughts,

as crop growth is directly related to the water availability in the unsaturated zone. We

refer to a hydrological drought if the drought keeps increasing to an extent that surface

water and groundwater levels are impacted. Soil moisture also plays an important role in

hydrological droughts, as a decrease in soil moisture also leads to decreasing groundwa-

ter recharge rates and surface water supply. Eventually, a socio-economic drought occurs

when the drought is signi�cantly impacting economic activities and leads to reduced

water availability for functions like cooling facilities for energy producers and drinking

water extractions.

Each drought stage is in�uenced by the propagation of the drought in the previous stage.

Figure 1.6 re�ects the time scales on which the various stages of a drought play a role.

The dashed lines show the propagation of a drought anomaly, starting from a precipita-

tion de�cit to the e�ect on groundwater levels. Van Loon (2015) refers to the pathways

shown in Figure 1.6 with the term drought propagation. The pathways show that drought

periods in terms of soil moisture may have an substantial impact on groundwater dynam-

ics on longer time scales. Thus, the e�ect of an agricultural (or soil moisture) drought is

not directly tangible when monitoring groundwater observations. Water managers will

have to understand both the e�ects of the di�erent drought stages as well as the drought

propagation rate through the hydrological cycle to mitigate drought impacts.
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Figure 1.6: Propagation of a drought anomaly through the terrestrial part of the hydrological

cycle. The �gure is adapted from Changnon Jr (1987) and Van Loon (2015).
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Excess water issues

Soil moisture is also an important indicator in excess water situations. The soil mois-

ture content, the soil porosity, and in�ltration rates control how much water can be

stored in soils during extreme precipitation events. Pre-storm soil moisture conditions

partly determine whether precipitation will either in�ltrate to deeper soil layers or lead

to standing water or overland �ow. The accuracy of (�ash) �ood forecasting systems

greatly bene�t if up-to-date information on soil moisture is included (Crow and Ryu,

2009; Brocca et al., 2009, 2010; Tramblay et al., 2010; Sutanudjaja et al., 2014; Naz et al.,

2019). In particular, soil moisture information improves the understanding of �ood peak

heights (Wanders et al., 2014b).

1.3.2 Implications for water management

Several studies have investigated the implementation of soil moisture information in op-

erational water resources management (Wanders et al., 2014b; Kurtz et al., 2017; Deng

et al., 2019; He et al., 2019), meteorological forecasting (Drusch et al., 2009; De Rosnay

et al., 2013), and irrigation management (Brocca et al., 2018). Since soil moisture provides

valuable information for drought and �ood events as described in Section 1.3.1, inform-

ation on soil moisture dynamics is a valuable asset for water managers. For example,

the recent dry period in the summer of 2018 had an enormous impact on water systems

in the Netherlands, as Figure 1.1 and Figure 1.2 illustrate. Figure 1.7 shows the spa-

tially averaged daily soil moisture content for the years 2016–2018 based on data from

the in situ Twente soil moisture monitoring network (Dente et al., 2012; Van der Velde,

2018; Van der Velde et al., 2019); see Figure 1.5 for the location of the network. The

2018 time series clearly shows the impact of the 2018 summer heatwave in the months

July–August. The soil moisture content drops to the lowest levels observed in recent

years. However, it is remarkable that the soil was relatively wet in the spring of 2018

in comparison with 2016 and 2017. So, the soil moisture conditions at the beginning of

a year are not necessarily appropriate indicators for the soil moisture conditions in the

remainder of a year. Other explanatory variables, like meteorological conditions, are

essential to take into account for forecasting purposes.

This example highlights that water managers have to understand historical, present, and

soil moisture conditions. However, the application of soil moisture information in op-

erational water resources management is limited. Bastiaanssen et al. (2001) state that

although the possibilities of soil moisture remote sensing methods have progressed, ac-

cessing, applying, and understanding such information is a challenge for water man-

37



C
h
a
p
t
e
r
1

C
h
a
p
t
e
r
1

Jan Mar May Jul Sep Nov Jan

Month of year [-]

0.0

0.2

0.4

0.6

V
o
lu

m
et

ri
c

m
o
is

tu
re

co
n
te

n
t

[m
3
m
−

3
]

2016 2017 2018

Figure 1.7: Spatial average of daily in situ soil moisture over the Twente region at 20 cm soil depth

for the years 2016, 2017, and 2018. Data are retrieved from the Twente soil moisture monitoring

network maintained by ITC (Dente et al., 2012; Van der Velde, 2018; Van der Velde et al., 2019).

agers in the Netherlands. During the drought period of 2018, it became clear that Dutch

water managers still focus on drought indicators based on precipitation de�cit, sur-

face water and groundwater levels, and discharge rates rather than soil moisture condi-

tions. However, evaluations of the 2018 drought period show the importance of incor-

porating soil moisture information in operational water management (Arcadis, 2019;

STOWA, 2019). Several water authorities in the Netherlands are starting studies on

how to include such information in their daily operational management. Recently, sev-

eral initiatives have been launched to study how to integrate soil moisture inform-

ation in operational applications, such as the European projects EartH2Observe (ht
tp://www.earth2observe.eu) and IMPREX (http://www.imprex.eu),

OWAS1S by the University of Twente and Wageningen University & Research (http:
//www.owas1s.nl), OWASIS-NL by HydroLogic (https://business.esa
.int/projects/owasis-nl), and the deployment of various high-resolution

soil moisture products by VanderSat (https://www.vandersat.com).

1.4 Problem statement

Based on Sections 1.2 and 1.3, we formulate a problem statement. First, we elabor-

ate on the issues and challenges of integrating new information in operational water
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management. Next, we discuss the discrepancies between spatiotemporal scales of soil

moisture estimates. These issues lead to the introduction of a research framework in

section 1.6.

Incorporation of new information in water management

Several studies state that the emphasis of information producers should shift from pro-

ducing large amounts of data towards tailor-made information (Seager, 2001; Timmer-

man, 2015; STOWA, 2016). Because the perspectives of scientists and water managers

(or decision-makers) can be very di�erent for various problems, the needs of water man-

agers should be identi�ed (Acreman, 2005; Timmerman, 2015). Due to this science-policy

gap, decision-makers still need to have extensive knowledge for interpretation. The

knowledge centre for Dutch regional water managers (Stichting Toegepast Onderzoek
Waterbeheer, STOWA) identi�ed the science-policy gap as one of the main threats for

the application of remote sensing products in operational water management (STOWA,

2016). It is unknown to what extent water managers depend on their experiential (im-

plicit) knowledge in comparison with evidence-based information. Furthermore, to sup-

port robust operational water management, it is essential to have reliable hydrological

models which can evaluate water management optimization measures as well as provide

accurate information on the historical, present and future state of water systems. Water

authorities invest considerably in the development of hydrological models. Reinhard and

Folmer (2009) state that the application of hydrological models in Dutch water manage-

ment is widely accepted. However, the extent to which hydrological models are applied

for decision-making in operational water resources management is unknown and might

not be common practice (Borowski and Hare, 2006; Serrat-Capdevila et al., 2011; Leskens

et al., 2014). Therefore, we want to identify the current role of evidence-based informa-

tion, in particular hydrological models, in operational water management.

Relating soil moisture estimates on various spatiotemporal scales

Figure 1.8 visualizes the spatial and temporal scales covered by the soil moisture estim-

ation methods described in Section 1.2.2. In situ methods cover both small and large

temporal scales. However, they lack support for large horizontal spatial scales. Remote

sensing methods cover these large horizontal spatial scales. However, the temporal scale

of remote sensing is limited. Hydrological modelling covers both small and large spatial

and temporal scales. Additionally, considerable variability in soil moisture is found on

vertical scales. In situ measurements cover a limited soil volume at speci�c soil depths.
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Figure 1.8: The three main soil moisture estimation methods cover di�erent spatial and temporal

scales.

Remote sensing products typically capture the upper part of the soil. Hydrological mod-

els are often discretized as volume elements of speci�c surface area and depth as the

di�erent soil layers, shown in Figure 1.3, have to be conceptualized.

Operational water management needs consistent and reliable soil moisture information.

As the distinct advantages and limitations of the three main estimation methods partly

overlap, as shown in Figure 1.8, it is possible to relate the three methods (Houser et al.,

1998; Vischel et al., 2008; Rebel et al., 2012; Zhuo and Han, 2016; Brocca et al., 2017; Ford

and Quiring, 2019). In situ soil moisture data are often applied in validation studies, in

which the in situ data act as ground truth for remote sensing and modelling estimates

(e.g. Jackson et al., 2010; Crow et al., 2012; Van der Velde et al., 2019).

A valuable way of merging di�erent soil moisture data sources can be found in the �eld

of data assimilation. Data assimilation methods are promising tools to continuously up-

date process-based models, data-driven models and metamodels with new observations.

Sequential data assimilation methods can be used to update model states or parameters

at various time steps, which limits model error propagation. Moreover, such methods

can handle multiple sources of uncertainties. Several studies show the applicability of

data assimilation methods for soil moisture modelling (Houser et al., 1998; Moradkhani,
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2008; Reichle, 2008; Liu et al., 2012). Still, the application of sequential soil moisture

data assimilation in operational settings is limited. Furthermore, it is unclear how the

assimilation of soil moisture a�ects simulations of other hydrological variables, such as

groundwater levels, in integrated hydrological modelling (Brocca et al., 2017).

Innovative modelling approaches

Process-based unsaturated zone models require considerable computational power. Also,

the parametrization of the subsurface in the model is often a rough assumption, since

many parameters cannot be observed directly. Furthermore, it can be challenging to �nd

stable numerical solutions for process-based soil water �ow models (Vereecken et al.,

2016; Zha et al., 2019), as was discussed in Section 1.2.2. The availability of new high-

resolution remote sensing data enables exploring new data-driven and metamodelling

approaches as a replacement of process-based modelling approaches.

1.5 General research aim and questions

The overall aim of this research is to show the potential use of soil moisture information

as part of operational water resources management systems, in particular hydrological

models, using high-resolution remote sensing data. The following research questions

(RQs) are formulated:

RQ1 To what degree are hydrological models currently applied in operational water

management and how can their applicability be increased for operational water

management?

RQ2 To what extent can the assimilation of a high-resolution remotely sensed surface

soil moisture product increase the accuracy of an unsaturated zone hydrological

metamodel?

RQ3 To what extent can data-driven modelling, based on high-resolution remote sens-

ing data, be used to provide up-to-date soil moisture information for operational

water management?

1.6 Research methodology

We developed a research framework to tackle the challenges identi�ed in Section 1.4,

see Figure 1.9. The framework focuses on three aspects: identi�cation, accuracy and
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Figure 1.9: Flowchart showing the research framework and the relation between the research

steps.

applications. Firstly, RQ1 is studied in Chapter 2, where we identi�ed the information

needs of operational water managers. Next, RQ2 and RQ3 focused on retrieving accur-

ate soil moisture information on several spatial and temporal scales. RQ2 is studied in

Chapter 3, which focuses on the updating of a process-based hydrological model using a

data assimilation scheme and high-resolution remote sensing soil moisture data. RQ3 is

studied in Chapter 4, which focuses on data-driven soil moisture modelling. Last, several

potential applications of the �ndings of Chapters 2, 3 and 4 are discussed in Chapter 5,

focusing on both scienti�c and water management implications.

1.6.1 RQ1

We �rst have to understand which information is currently used and which information

is currently requested to integrate new soil moisture information in operational water

management. We identi�ed the various types of information used in regional opera-

tional water management using interviews with operational water management experts

at Dutch regional water authorities. Furthermore, we used the interviews to quantify
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the extent to which operational decisions are based on available information sources,

which we identi�ed as either evidence-based or experiential information. Speci�cally,

we used these results to identify challenges and propose improvements to increase the

application of various information types in operational water resources management,

based on a literature study.

1.6.2 RQ2

The accuracy of hydrological models partly depends on the training dataset used for

model calibration. Data assimilation is a means to incorporate up-to-date information

in the model simulations. We developed an open-source data assimilation tool based

on the OpenDA framework for the unsaturated zone metamodel MetaSWAP as part of

the Netherlands Hydrological Instrument (NHI). The framework is applied to update hy-

drological metamodel simulations by assimilating remotely sensed surface soil moisture

observations obtained from the SMAP satellite. We used a perturbed observations En-

semble Kalman �lter. A particular strength of the applied data assimilation scheme is

the opportunity to update root zone soil moisture estimates using surface soil moisture

observations by de�ning an appropriate error model. In situ soil moisture measurements

were used to validate the results on both regional and local spatial scales.

1.6.3 RQ3

RQ3 focuses on the application of a data-driven method for soil moisture modelling.

We applied transfer function-noise (TFN) modelling using remotely sensed surface soil

moisture observations for retrieving soil moisture conditions. TFN modelling is a statist-

ical time series modelling method to relate observed time series to input stresses using

a linear transformation of impulse-response functions. A distinct advantage of such a

method is that no prior assumptions of system processes are needed. Furthermore, TFN

modelling is much faster than commonly-used process-based modelling tools for unsat-

urated zone dynamics. Again, surface soil moisture observations from the SMAP satellite

were used to train the TFN models and in situ soil moisture measurements were used to

validate the model results.

1.7 Dissertation outline

The structure of the thesis is as follows: Chapter 2 focuses on the current information use

in regional operational water resources management in the Netherlands. Chapter 3 de-
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scribes a method for integrating remotely sensed surface soil moisture observations and

an integrated process-based hydrological metamodel using a data assimilation scheme.

Chapter 4 elaborates on TFN modelling: a fast and easy-to-construct method for describ-

ing soil moisture dynamics based on remote sensing data. Chapter 5 discusses the results

of the thesis and focuses on the operational application of the various methods studied

in this research. Last, conclusions and recommendations are given in Chapter 6.
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CHAPTER 2

The role of

evidence-based information

in regional operational water

management in the Netherlands

This chapter is published as:

Pezij, M., Augustijn, D.C.M., Hendriks, D.M.D., and Hulscher, S.J.M.H. (2019) The role of evidence-based in-

formation in regional operational water management in the Netherlands. Environmental Science & Policy, 93,

75-82, doi:10.1016/j.envsci.2018.12.025.
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Abstract

The integration of evidence-based information in operational water management is es-

sential for robust decision-making. We investigated the current use of experiential and

evidence-based information in Dutch regional operational water management. Inter-

views with operational water managers at regional water authorities in the Nether-

lands reveal that they use both evidence-based and experiential information for decision-

making. While operational water management is shifting towards an evidence-based

approach, experiential information is still important for decision-making. To ful�l the

current information need, the operational water managers indicate they would like to

have access to high-resolution spatial data, value-added products, and tools for com-

munication to stakeholders. We argue that hydrological models are suitable tools to

support these needs. However, while several evidence-based information types are used

by operational water managers, hydrological models are limitedly applied. Hydrological

models are regarded as inaccurate for operational water management at desired spatial

scales. Also, operational water managers often struggle to correctly interpret hydrolo-

gical model output. We propose several means to overcome these problems, including

educating operational water managers to interpret hydrological model output and se-

lecting suitable indicators for evidence-based decision-making.

2.1 Introduction

Densely populated regions like the Netherlands need well-designed operational water

management for coping with varying water availabilities and demands (Haasnoot and

Middelkoop, 2012). Operational water management requires decision-making within

limited time intervals and involve multiple criteria related to for example �ood risk, wa-

ter supply, and navigability (Xu and Tung, 2008). These complex settings are character-

ized by large uncertainties (Ascough et al., 2008). It is challenging to take robust water

management decisions as one has to quantify and assess these uncertainties (Walker

et al., 2003; Warmink et al., 2017). Also, water managers have to operate under regulat-

ory, institutional, political, resources, and other constraints, which limit their capacity

to use new information (Morss et al., 2005).

Water managers generally use several information types for decision-making (Polanyi,

1966; Raymond et al., 2010), e.g. experiential and evidence-based information. Accord-

ing to Raymond et al. (2010), the classi�cation of information is arbitrary, which means

that there are multiple and overlapping ways of de�ning experiential and evidence-
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based information. Experiential information is linked to personal perspectives, intuition,

emotions, beliefs, know-how, experiences, and values which are not easily articulated

and shared (Timmerman, 2015). Evidence-based information can be described, commu-

nicated, written down and documented (Nonaka and Takeuchi, 1995). Evidence-based

decision-making can help to ensure that untested practices are not widely adopted, be-

cause they have been used previously (Sutherland et al., 2004).

Although evidence-based information can signi�cantly contribute to decision-making

in operational water management (Timmerman and Langaas, 2005), several studies state

that the science-practice gap limits the use of evidence-based information (Ward et al.,

1986; Brown et al., 2015). In other words, evidence-based information does not always

match the needs of operational water managers. Instead, managers rely on experiential

information for decision-making (Pullin et al., 2004). For example, Boogerd et al. (1997)

found that decision-making at regional water authorities in the Netherlands is mainly

based on personal expertise. Although the amount of available evidence-based inform-

ation has greatly increased in recent years, the dissemination of relevant information

for decision-making remains a challenge (OECD, 2014). The science-practice gap has to

be bridged to improve evidence-based decision-making in operational water manage-

ment (Cosgrove and Loucks, 2015; Timmerman, 2015). In this study, we investigated the

present application of experiential and evidence-based information in the Netherlands

and its impact on decision-making in operational water management.

Brown et al. (2015) show that the adoption of a scienti�c framework by operational wa-

ter managers will improve the credibility of evidence-based decision-making. Decision

support systems (DSSs) are designed as supporting frameworks to guide evidence-based

decision-making in operational water management. Hydrological models are often an

integral part of DSSs (Kersten and Mikolajuk, 1999; Zhang et al., 2013). In this chapter,

when we refer to hydrological models, we refer to the application of models in a DSS.

Several studies have shown the potential of hydrological models for decision-making

in operational water management. Hydrological modelling can help in increasing the

understanding of a problem and in de�ning solution objectives (Guswa et al., 2014), in

developing and evaluating promising control measures (Beven and Alcock, 2012), and in

providing con�dence in the solutions proposed (Kurtz et al., 2017). Not only can hydro-

logical models be used to manage and optimize water systems, model output can also be

used to create understanding among stakeholders (Hanington et al., 2017).

However, hydrological model output does not always comply with the needs of decision-

makers. Although approaches such as participatory modelling and indicator-based mod-
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elling are developed to decrease the science-practice gap, the application of hydrolo-

gical models by operational water managers is not common practice (Borowski and

Hare, 2006; Leskens et al., 2014; Serrat-Capdevila et al., 2011). In contrast, Reinhard and

Folmer (2009) state that the use of hydrological models in Dutch water management is

widely accepted. It is unknown how hydrological models contribute to decision-making

in present-day regional operational water management in the Netherlands.

The aim of this study is to investigate the current role of experiential and evidence-based

information, in particular hydrological models, for decision-making in regional opera-

tional water management in the Netherlands. We used expert interviews to study the

perspective of regional water managers, similar to the studies of Warmink et al. (2011)

and Höllermann and Evers (2017). A step-wise approach is applied; �rst, we studied how

experiential and evidence-based decision-making is integrated in Dutch regional opera-

tional water management. Secondly, we assessed the integration of hydrological models

in evidence-based operational water management.

This chapter is organised as follows: Section 2.2 describes the decision-making frame-

work applied in this study. Section 2.3 introduces the research methodology for the

interviews. Results are presented in section 2.4, and are discussed in section 2.5. Finally,

conclusions are drawn in section 2.6.

2.2 Decision-making framework

We set up a decision-making framework based on Dicks et al. (2014), see Figure 2.1. This

framework is used to analyse interviews with operational water managers to determine

which information they use in the decision-making process. The framework is based on

the following assumptions:

1. Water managers have to evaluate a water system condition.

2. Water managers collect both evidence-based and/or experiential information con-

cerning this condition.

3. Water managers will assess the water system condition using all available inform-

ation.

4. Taking a decision will lead to new water system conditions, which again have to

be evaluated in time.

Dicks et al. (2014) present two bypass routes that, in this case, operational water man-
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Limited guidance bypass
Decisions based on limited studies

Opinion-based bypass
Decisions based on experience

1. Water system condition

3. Full assessment

4. Decision

2. Information

Evidence-based

Experiential

Figure 2.1: Decision-making framework and typical bypasses, adapted from Dicks et al. (2014).

agers can take in decision-making. Firstly, water managers who base their decisions on

experiential rather than evidence-based information use the opinion-based bypass. Pul-

lin et al. (2004) described the opinion-based bypass as “relying on the status quo of con-

tinuing with an established but unevaluated practice”. Secondly, water managers who do

not incorporate all available evidence-based information in decision-making use the lim-

ited guidance bypass. Water managers are bound to time and other constraints, which

limits the ability to take all available information into account. These bypasses may lead

to sub-optimal water management decisions. For example, small-scale solutions, such

as locally adapting water levels by raising weir levels, may not have the desired e�ect

on catchment-wide scales.

We categorize the decisions as de�ned in the framework using two aspects that char-

acterize operational water management. These aspects are the situation type and the

situation urgency. Firstly, decisions are made for dry or wet situations. Secondly, the

decision urgency is a re�ection of the severity of the situation. We identify regular day-

to-day decisions and calamity decisions concerning extreme events. This leads to four

decision-making situations:

• Regular-Dry

• Regular-Wet

• Calamity-Dry

• Calamity-Wet
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Typically, decisions concerning dry periods are considered over a time span of weeks.

Dry periods often occur during summer. Operational water managers have to monitor

and maintain the supply of both surface water and groundwater resources. In regular

situations, operational water managers can deal with droughts by controlling a system

of pumps and weirs to optimize water supply. During calamity situations, water man-

agers focus on limiting water use by prioritizing important functions like drinking water

supply above functions like agriculture, which is a general tendency across the European

Union (Kampragou et al., 2011).

Decisions concerning wet situations are generally taken over a time span of hours to

days. For example, the supply of water regularly exceeds water demand in winter peri-

ods. Decreasing evapotranspiration rates lead to wet soils and shallow groundwater

levels. Often, soils cannot adequately cope with heavy precipitation events during such

periods, which lead to inundations. Operational water managers can control soil water

storage to an extent by adapting surface water levels. Calamity situations like the immin-

ent �ooding of streams and rivers can cause severe damage. Controlling the discharge

capacity of water infrastructure plays a large role during calamities.

2.3 Methodology

We set up a case study for investigating the use of experiential and evidence-based in-

formation for decision-making in regional operational water management.

2.3.1 Study area

We selected six regional water authorities out of a total of twenty-two to incorporate

various water management approaches in the Netherlands. Table 2.1 shows their main

characteristics and Figure 2.2 shows their management areas within the Netherlands. Aa

en Maas and Vechtstromen represent areas within the Netherlands situated above sea

level. These areas mainly consist of sandy soils and are generally free-draining, which

limit the ability to take control measures. Del�and and Zuiderzeeland represent the low-

lying areas within the Netherlands. Most of their management areas lies below sea level

and soils are mainly clayey and peaty. Since the water system of the latter authorities is

well regulated, water managers have several options for control measures. De Stichtse

Rijnlanden and Drents Overijsselse Delta have sandy, clayey, and peaty soils.
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Table 2.1: Selected regional water authorities. Statistics are obtained from Unie van Waterschap-

pen (2014).

Water authority

Inhabitants

[capita]

Surface area

[ha]

Characteristics

Aa en Maas 743,842 161,007 Elevated sandy soils

Del�and 1,200,000 40,547 Clayey polders

De Stichtse Rijnlanden 750,000 83,021 Elevated sandy soils and peaty polders

Drents Overijsselse Delta 600,000 255,500 Elevated sandy soils and clayey polders

Vechtstromen 800,000 227,045 Elevated sandy soils

Zuiderzeeland 400,000 150,000 Clayey polders

Figure 2.2: Management area of selected regional water authorities in the Netherlands.
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Table 2.2: Overview of interview respondents.

Work experience

Water authority <10 years ≥ 10 years Total

Aa en Maas 1 2 3

Del�and 1 1 2

De Stichtse Rijnlanden 1 1 2

Drents Overijsselse Delta 2 1 3

Vechtstromen 1 1 2

Zuiderzeeland 1 1 2

Total experts 7 7 14

2.3.2 Expert interviews

We interviewed operational water managers at the selected regional water authorities.

The daily tasks of these water managers, in this paper also referred to as experts, mainly

focus on surface water quantity management. Generally, the regional operational wa-

ter managers are responsible for a sub-catchment of the water authorities’ management

area. The limited size of these sub-catchments enables them to develop a good under-

standing of catchment dynamics and possible measures. At least one experienced and

one inexperienced operational water manager was interviewed at each authority. We

assume that operational water managers are experienced if they have at least 10 years

of work experience, similar to Warmink et al. (2011). In total 14 experts were individu-

ally interviewed, see Table 2.2. To limit researcher bias, supervisors at the regional water

authorities selected the experts. The interviews were set-up using a semi-structured ap-

proach. The interview questions were developed using a literature review and a test

interview at regional water authority Vechtstromen. Section 2.7 contains an overview

of the interview questions. The interview length was approximately one hour.

Using the decision-making framework (Figure 2.1), we wanted to identify three key as-

pects in the interviews: the conditions, problems and decisions which regional opera-

tional water managers have to cope with, which information water managers use for

these decisions, and how the various types of information are used for decision-making.

The experts were asked to indicate what type of information they use for decision-

making. Since the operational water managers did not use the same terminology, we

categorized their answers in information type groups. These information types are split

in experiential and evidence-based types according to the decision-making framework

de�ned in section 2.2. Furthermore, we asked the experts to indicate the importance

of each information type in the four decision-making situations de�ned in section 2.2.
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The experts had to �ll in a Microsoft Excel spreadsheet. A pie chart was updated to

directly show the experts the result of their input. The experts were allowed to adapt

their input until the results visualized in the pie chart �tted their opinion. This method

enabled the experts to re�ect on their input. The results were used to study to what

extent the experts apply experiential and/or evidence-based information for decision-

making. Also, these results indicate whether the experts use all available information

for decision-making, or if they use the limited guidance or opinion-bases bypasses as

de�ned in the decision-making framework. Next, the experts were asked to elaborate

on their opinion of the current application of hydrological models for decision-making

in regional operational water management. They were encouraged to comment on both

positive and negative aspects of hydrological model application. This resulted in the

identi�cation of improvement points for both model developers and operational water

managers. Last, the interview ended with an open question about the information which

operational water managers are currently missing for decision-making. We tried to ac-

tivate experts to not only talk about possible technological developments, but also about

social, institutional, and other developments.

2.4 Results

2.4.1 Information types

Operational water managers use a broad spectrum of information types. We identi�ed

six information types which are typically applied. These types are listed in Table 2.3.

Firstly, water managers typically use measurement data such as precipitation, runo� in

streams, groundwater levels in wells, etc. Next, water managers can use system know-

ledge such as surface elevation, land use, and soil type. Furthermore, meteorological

Table 2.3: Identi�ed information types.

Information type Examples

Measurement data Monitoring of discharge and groundwater levels

System knowledge Surface elevation, land use and soil type data

Meteorological forecasts Precipitation and temperature forecasts

Experience Prior experiences with an encountered situation, such

as the lowering of a weir during wet conditions based

on intuition

Hydrological model (output) Assessment of di�erent water management scenarios

Legislation Water level decrees and other laws
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forecasts of precipitation and temperature are valuable to make predictions of future

water system states. Also, operational water managers use their expertise and exper-

ience to take decisions. For example, a water manager can take a decision based on

prior experiences with an encountered problem. Such a decision can lead to the opinion-

based bypass (Figure 2.1). In addition, hydrological models are used for decision-making.

While the experts do not directly operate models, they often have access to hydrological

model output in a DSS. Hydrological models typically provide forecasts of hydrological

variables for a speci�c spatial domain, based on meteorological forecasts and other input

data. Last, operational water managers are bound to legislation and institutional policies.

For free-draining areas such as the more elevated sandy areas of Aa en Maas, De Stichtse

Rijnlanden, Drents Overijsselse Delta and Vechtstromen, water managers have to take

into account water level bounds that are pre-described in policy documents. However,

water managers are allowed to diverge from this pre-de�ned set in extreme situations.

Polder areas in the management area of De Stichtse Rijnlanden, Drents Overijsselse Delta

and Zuiderzeeland have much stricter de�ned water level rules which are described in

water level decrees. Water managers are not allowed to diverge from these decrees. The

bound and decrees are de�ned in cooperation with local stakeholders.

2.4.2 Importance of information types

Every expert agrees that they take decisions based on at least several information types.

Figure 2.3 shows the importance of each information type described in Section 2.4.1

in the four decision-making situations (Regular-Dry, Regular-Wet, Calamity-Dry, and

Calamity-Wet). The vertical axis in the �gure represents the importance of an informa-

tion type in each decision-making situation. The importance is de�ned as the contribu-

tion of an individual information type in a speci�c decision-making situation expressed

as a percentage. The error bars represent the sample spread by means of the unbiased

standard deviation. The variability between the experts is limited, indicating conformity

between expert opinions at di�erent regional water authorities.

Operational water managers depend in all decision-making situations mainly on meas-

urement data, system knowledge, meteorological forecasts, and experience. These in-

formation types contribute for more than eighty percent to decision-making. Hydrolo-

gical models and legislation each account for approximately three to eleven percent in

all decision-making situations. Experience is the most important information type in

every situation. Hydrological models form the least important information type, except

for the Calamity-Wet situation, for which legislation is least important.
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Figure 2.3: Information types used by operational water managers in the four decision-making

situations. the error bars represent the unbiased standard deviation.

The importance of each information type slightly di�ers per decision-making situation.

Experience is the most import in all situations, especially in the Regular-Dry situation.

The importance of measurement data is similar in the Regular-Dry, Regular-Wet, and

Calamity-Dry situations. However, measurement data become slightly less important in

the Calamity-Wet situation. Contrarily, the experts attach less value to system know-

ledge in the Calamity-Dry situation than in the other situations. During dry calamities,

the experts state that groundwater level measurement data become more relevant rel-

ative to system knowledge. Next, while the importance of meteorological conditions is

similar in Calamity-Dry and Calamity-Wet situations, the importance in less in Regular-

Dry and Regular-Wet situations. The contribution of hydrological models is relatively

small, although models become more important in Calamity-Wet situations. The experts

indicate that in those situations models are applied for discharge forecasts. Striking is

the relatively small contribution of legislation. The experts see this information type as a

boundary condition rather than an information source for decision-making. Legislation

is least important in the Calamity-Wet situation, likely because the aim of water man-

agement is to get rid of as much water as possible in such a situation. Legislation tends

to become a more important information source in Regular-Dry situations, as the water

management aim then shift towards maintaining water level bounds and decrees.
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2.4.3 Application of hydrological models

Figure 2.3 shows that hydrological models are less used for decision-making in regional

operational water management than other information types. Although most experts

see the potential of such tools, they give two reasons why hydrological models are lim-

itedly used. Firstly, the experts consider hydrological model output to be too inaccurate

and uncertain for their applications. Especially for local scale problems, model estim-

ates often do not comply with observations in their opinion. Secondly, several experts

have di�culties interpreting hydrological model output. The interpretation of such data

requires understanding of the processes on which the model is based. The experts of-

ten do not know on which assumptions, input data and forcing hydrological models are

based. Therefore, regional operational water managers tend to ignore model output for

decision-making.

2.4.4 Information needs

The experts suggested various improvements for the provision of information. We iden-

ti�ed three categories:

• Improved understanding of current water system conditions

The experts want access to up-to-date high-resolution spatial information about current

water system conditions. However, they struggle to get a system-wide understanding of

these conditions. For example, they �nd it hard to integrate measurement data to larger

spatial scales. Although the application of remote sensing data and hydrological models

is promising, such data are currently integrated insu�ciently in decision-making.

• Value-added products and triggers

Valuable information should be presented in an adequate way to water managers. Ac-

cording to the experts, information is not always presented to them in the way they

want to. For example, operational water managers are generally not directly interested

in groundwater level or soil moisture data; they rather want to know what the remaining

soil storage capacity is in a wet situation. Also, the experts sometimes have di�culties

interpreting the information provided.

• Tools for communication to stakeholders

Operational water managers have to be able to motivate their decisions to stakeholders.

However, the experts struggle with communicating their decisions to stakeholders like

nature conservation organizations, farmers, industry, etc. These stakeholders can have
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limited knowledge of water management or fail to overlook the “big picture”. The pro-

vision of proper information should not only contribute to decision-making itself, but

should also play a role in convincing stakeholders to accept decisions.

2.5 Discussion

2.5.1 Experiential versus evidence-based decision-making

Based on the de�nition in Section 2.1, we classify measurement data, system knowledge,

meteorological forecasts, hydrological model output, and legislation as evidence-based

information. Experience is classi�ed as experiential information. Figure 2.3 shows that,

in their perception, experts depend for approximately 75% on evidence-based inform-

ation and for 25% on experiential information. So, while Boogerd et al. (1997) stated

that regional water management in the Netherlands should increase the integration of

evidence-based information, this study shows that operational water management at

the selected regional water management authorities is based on both experiential and

evidence-based information.

Regional operational water managers considerably depend on experiential information

for decision-making. Since there is often no structured way to process the available

evidence-based information, the interpretation and expertise of operational water man-

agers remain important for decision-making. Because the hydrological system includes

many inherent uncertainties, decision-making will probably always partly depend on ex-

periential information. It is important to note that the interpretation of evidence-based

information can di�er per water manager.

One could argue that during regular conditions, operational water management func-

tions su�ciently using the currently applied information. However, the application of

experiential information may lead to the opinion-based bypass (Figure 2.1) and con-

sequently to sub-optimal decisions. Water managers are not able to validate the e�ect-

iveness of measures beforehand. Furthermore, if their decision has the desired e�ect,

no incentive will exist to check whether the decision could be optimized. In addition,

the lack of evidence limits posterior evaluation of experiential-based decisions. Finally,

experiential information is limited to individual operational water managers. This in-

formation will be lost if these managers stop working at the regional water authority.

So, there is a need to capture tacit knowledge as evidence-based information.

Therefore, e�orts should continue to integrate evidence-based with experiential inform-
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ation for decision-making in regional operational water management in the Netherlands.

Similar advice is given for water management in e.g. Japan (Nakanishi and Black, 2018),

South Africa and Canada, (Wolfe, 2009) and South Korea (Nam and Choi, 2014). Special

focus should be given to the development of structured methodologies for interpreting

evidence-based information. The continuing integration of hydrological models in DSSs

is suitable for structured decision-making and should therefore be encouraged.

2.5.2 Application of hydrological models for operational water
management

The results indicate that the importance of hydrological models for decision-making in

regional operational water management is substantially smaller than other evidence-

based information types. However, we consider hydrological models as suitable tools

which can help improving the three aspects identi�ed in Section 2.4.4. Firstly, hydrolo-

gical models can provide up-to-date high-resolution spatial information about current

water system conditions (Wood et al., 2011). Secondly, spatial information from hydro-

logical models can be used to retrieve value-added products interpretable for operational

water managers (Guswa et al., 2014; Kurtz et al., 2017). Thirdly, hydrological models are

suitable tools for deriving information in the form of indicators, which can be used in

the communication with stakeholders (Eden et al., 2016; Hanington et al., 2017).

Unfortunately, a gap exists between what hydrological model developers think models

should provide and what decision-makers demand from models. This gap has both a

social and a technical aspect (Leskens et al., 2014). The social gap concerns the fact that

model users do not see models as determinant tools for decision-making. Figure 2.3 in-

dicates that the experts consider hydrological models less important than other inform-

ation types. Decision-makers simply do not have the means or knowledge to investigate

all possible measures. This is represented as the limited guidance bypass in the decision-

making framework. Also, Section 2.4.3 discusses that the experts often do not have suf-

�cient knowledge to apply hydrological model output in decision-making. Therefore,

one should not underestimate the need to su�ciently educate decision-makers and other

stakeholders on the use and understanding of hydrological model output.

The technical gap relates to the discrepancy between the information deliverd by hy-

drological models and the information decision-makers need. The experts think that

model output generally contains large uncertainties and therefore hydrological models

are inaccurate and unreliable. Although hydrological models should indeed not be seen
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as perfect representations of reality, they can be applied to identify and quantify uncer-

tainties concerning water management decisions (Refsgaard et al., 2007; Todini, 2007;

Warmink et al., 2010).

Furthermore, the experts indicate that they have a need for a better representation of

information. Focusing on hydrological models, they state that model output is often

di�cult to comprehend for implementation in water management. Several studies a�rm

this statement. Colosimo and Kim (2016) state that decision-makers do not have the

time needed to review which information is available and needed for decision-making,

while Leskens et al. (2014) found that decision-makers tend to discard information which

seems to increase the complexity they already have to deal with. Hanger et al. (2013)

found that decision-makers generally do not have a lack of information, but a need for

better �ltered and accessible information. Therefore, scientists who wish to aid decision-

making must generally not o�er scienti�c knowledge, but rather develop information

that clearly applies to speci�c decision–making settings (Maiello et al., 2015).

One way of properly representing evidence-based information is the selection of suit-

able indicators. Indicators help operational water managers to retrieve system-wide in-

formation on historical, current and future time scales. Indicators have already been

developed for water resources management (Ioris et al., 2008; Juwana et al., 2012), river

management (Richter et al., 1996, 1997; De Girolamo et al., 2017), coastal zone manage-

ment (Diedrich et al., 2010), climate change adaptation (Hanger et al., 2013; Spiller, 2016),

ecosystem management (Guswa et al., 2014), forest management (Carvalho-Santos et al.,

2014), hydropower management (Kumar and Katoch, 2014), urban water system man-

agement (Dizdaroglu, 2015; Spiller, 2016), and agricultural management (Wang et al.,

2015). If suitable indicators are selected, model output can be made more understand-

able for operational water management. Furthermore, easy-to-interpret model output

can be used for communication with stakeholders. Future studies should focus on the

validation of suitable indicators for regional operational water management.

2.6 Conclusion

Regional operational water management in the Netherlands depends on both experi-

ential and evidence-based information for decision-making. We identi�ed by means of

interviews with regional operational water managers that these experts typically use six

information types for decision-making. Measurement data, system knowledge, meteor-

ological forecasts, hydrological models, and legislation are evidence-based information
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types, while the experience of water managers is experiential information. While the

experts largely depend on evidence-based information for decision-making, the experts

also depend considerably on experiential information. This may lead to opinion-based

bypasses and subsequently to sub-optimal decisions. Operational water managers can

improve the decision-making process by continuing e�orts to integrate evidence-based

information in structured methodologies.

Regional operational water managers depend signi�cantly less on hydrological models

than other evidence-based information types for decision-making. Although hydrolo-

gical models can help in improving the understanding of historic, current, and future wa-

ter system conditions, can help in deriving interpretable information, and can be used

as tools for communication with stakeholders, hydrological models are considered as

unreliable for decision-making. Also, operational water managers often have limited

knowledge to correctly interpret hydrological model output. We have proposed several

means to overcome these issues, for example by increasing e�orts to educate decision-

makers and other stakeholders, and the selection of suitable indicators for evidence-

based decision-making.

Acknowledgments

This work is part of the OWAS1S research programme (Optimizing Water Availability

with Sentinel-1 Satellites) with project number 13871, which is partly �nanced by the

Netherlands Organisation for Scienti�c Research (NWO). We want to thank all OWAS1S

programme partners for their contributions. Furthermore, we want to thank all experts

for their cooperation and time. Finally, we want to thank the various contact persons at

the regional water authorities for arranging the interviews.

2.7 Appendix A

This appendix shows the questions of the semi-structured interviews performed in this

chapter.

1. Do you wish to remain anonymous?

2. What is your function at the regional water authority?

3. How long are you working as [function] at the regional water authority?

4. What are the problems which you have to deal with?
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5. What are the decisions which you have to make?

6. Who else is involved in taking these decisions?

7. Which information do you use in decision-making?

8. Why do you use this information for decision-making?

9. What do you think of the application of hydrological models in regional opera-

tional water management?

10. Which information do you want to have for decision-making?
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Abstract

Combining metamodels with data assimilation schemes allows the incorporation of up-

to-date information in metamodels, o�ering new opportunities for operational water

resources management. We developed a data assimilation scheme for the unsaturated

zone metamodel MetaSWAP using OpenDA, which is an open-source data assimilation

framework. A twin experiment showed the feasibility of applying an Ensemble Kalman

Filter as a data assimilation method for updating metamodels. Furthermore, we assessed

the accuracy of root zone soil moisture model estimates when assimilating the regional

SMAP L3 Enhanced surface soil moisture product. The model accuracy is assessed using

in situ soil moisture measurements collected at 12 locations in the Twente region, the

Netherlands. Although the accuracy of the model estimates does not improve in terms

of correlation coe�cient, the accuracy does improve in terms of Root Mean Square Er-

ror and bias. Therefore, the assimilation of surface soil moisture observations has value

for updating root zone soil moisture model estimates. In addition, the accuracy of the

model estimates improves on both regional and local spatial scales. The increasing avail-

ability of remotely sensed soil moisture data will lead to new possibilities for integrating

metamodelling and data assimilation in operational water resources management. How-

ever, we expect that signi�cant investments in computational capacities are necessary

for e�ective implementation in decision-making.

3.1 Introduction

The application of integrated physically-based hydrological models is increasing in wa-

ter resources management (Guswa et al., 2014; Kurtz et al., 2017). Such modelling tools

are used for water resources management on various spatial and temporal scales. Wa-

ter managers can use model output for decision-making while taking into account un-

certainties of, among others, input data, boundary and initial conditions, and model

structure (Beven and Alcock, 2012). To reduce the uncertainties inherent to integrated

physically-based hydrological modelling, data assimilation schemes are often applied

(Liu et al., 2012; Weerts et al., 2014). Data assimilation aims to �nd an optimal combin-

ation of merging hydrological model state estimates with observations. Several studies

have shown the value of data assimilation schemes for integrated surface-subsurface

modelling (Camporese et al., 2009a,b; Zhang et al., 2016; Botto et al., 2018; Zhao and

Yang, 2018), some speci�cally focusing on operational applications (Hendricks Franssen

et al., 2011; De Rosnay et al., 2013; Kurtz et al., 2017; He et al., 2019).
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Combining integrated physically-based modelling with data assimilation schemes often

need considerable computational capacities, which limit the application of data assim-

ilation schemes in operational water resources management. Several studies propose

metamodelling as a tool to signi�cantly decrease computation times (Van Walsum and

Groenendijk, 2008; Ratto et al., 2012; Razavi et al., 2012; Fraser et al., 2013; Berends et al.,

2018). Haberlandt (2010) de�nes a metamodel as “a substitute for a complex simula-

tion model consisting of simpli�ed, but often non-linear and dynamic relationships.

Metamodels can be trained using results from simulation experiments with available

process models, expert knowledge and observations if available”. The decrease in com-

putational time is a trade-o�, since metamodels generally have lower accuracies than

the models from which they are derived (Fraser et al., 2013). Metamodels are usually

based on models which are calibrated using training datasets. Such datasets consist of

a speci�c period of hydrological observations. Since physically-based models typically

include parameters which are di�cult to obtain for large spatial domains (Yilmaz et al.,

2010), calibration is an important aspect of hydrological model development (Beven and

Binley, 1992). However, it is practically impossible to monitor hydrological variables

in situ on catchment scales due to time and budget constraints. Remote sensing data

provide a means for monitoring across large spatial domains.

A recent development is the emergence of high-resolution satellite-based surface soil

moisture observations (Petropoulos et al., 2015; Balsamo et al., 2018). Soil moisture is

a key variable in integrated hydrological modelling, since the unsaturated zone relates

atmospheric, land surface and subsurface processes (Brocca et al., 2017). Satellite-based

soil moisture products provide valuable information for hydrological models if they are

used in combination with data assimilation schemes (Houser et al., 1998; Moradkhani,

2008; Reichle, 2008; Liu et al., 2012). Several studies investigated the applicability of

remotely sensed soil moisture data for data assimilation by using data products from

satellites such as AMSR-E (Sahoo et al., 2013; Wanders et al., 2014a,b), ASCAT (Gruber

et al., 2015; Loizu et al., 2018), SMOS (Lievens et al., 2015; Srivastava et al., 2015), H-SAF

(Laiolo et al., 2015), SMAP (Koster et al., 2018; Blyverket et al., 2019), a combination of

AMSR-2 and SMOS (Gevaert et al., 2018) and a combination of Sentinel-1 and SMAP

(Lievens et al., 2017).

Ratto et al. (2012) state that integrating metamodelling with data assimilation schemes

could signi�cantly contribute to the operational use of metamodels and remotely sensed

soil moisture products for decision-making in operational water resources management.

In this study, we use the Netherlands Hydrological Instrument (NHI), a tool used for
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decision-making in operational water resources management in the Netherlands. NHI

is an integrated physically-based modelling framework developed for hydrological sim-

ulations on several spatial scales (De Lange et al., 2014). A few studies focus on the com-

bination of the unsaturated zone metamodel MetaSWAP as part of NHI and the assim-

ilation of actual evapotranspiration estimates (Schuurmans et al., 2011; Hartanto et al.,

2017), however not on assimilating soil moisture observations. The goal of this study

is to evaluate the applicability of a data assimilation scheme for updating root zone soil

moisture estimates of a metamodel using a regional surface soil moisture product based

on SMAP satellite data (Chan et al., 2018). The main research question is: to what extent

can we increase the accuracy of root zone soil moisture estimates of a metamodel by

assimilating satellite-based regional surface soil moisture observations?

Section 3.2 gives a description of the data assimilation framework, the metamodel, the

data, and the research methodology. Results are shown in section 3.3 and discussed in

section 3.4. Conclusions are drawn in section 3.5. A list of abbreviations can be found in

section 3.6. Finally, the data assimilation theory is found in section 3.7.

3.2 Methodology

3.2.1 Data assimilation framework

We apply a sequential data assimilation scheme that applies statistical uncertainty meas-

ures for assigning weights to both model estimates and observations. Sequential data

assimilation improves the accuracy of model estimates in two ways. Firstly, these meth-

ods update model states, which lead to more accurate model estimates at the update

step. Secondly, the updated model state estimates are used as input for the next mod-

elling time step, which reduces model error propagation. Sequential data assimilation

schemes require calculation of the model mean state - and corresponding model state

error covariance matrix % . Due to the size of % in hydrological model calculations, it

is generally not feasible to explicitly calculate % . An alternative approach is the En-

semble Kalman Filter (EnKF), which is a sequential data assimilation scheme suitable

for high-dimensional systems (Evensen, 1994). The EnKF is a Monte Carlo implement-

ation of Kalman �ltering for non-linear problems. The EnKF uses a sample of evolved

model states to estimate the covariance matrix % . This ensemble of model runs is cre-

ated by perturbing model forcing, parameters and/or states. The model perturbations

should represent total model uncertainty and require the development of an error model.

Among others, Reichle et al. (2002) and Crow and Wood (2003) showed the potential of
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applying an EnKF in soil moisture modelling. We refer to 3.7 for a description of EnKF

data assimilation theory.

We implemented an EnKF scheme using OpenDA, which is an open-source framework

for implementing data assimilation schemes in hydrological modelling (www.openda
.org). Applications of OpenDA can be found in Ridler et al. (2014) and Van Velzen

et al. (2016). OpenDA is a relatively easy-to-implement solution for coupling hydro-

logical models and data assimilation schemes. We coupled this framework with the

unsaturated zone metamodel MetaSWAP (described in section 3.2.2) by means of the

OpenDA black-box wrapper. Implementation of the black-box wrapper does not require

changes in model code and allows for reading and editing of model input and output

�les. The source code of OpenDA, including the MetaSWAP black-box wrapper, is freely

accessible at: https://github.com/OpenDA-Association/OpenDA. For

the remainder of this chapter, we refer to this coupling as MetaSWAP-OpenDA.

3.2.2 Model description

The NHI modelling framework consists of coupled hydrological models for unsaturated

�ow, saturated �ow, and surface water �ow and distribution (De Lange et al., 2014). Fig-

ure 3.1 shows a schematic overview of the models and the coupling between them. The

models are coupled in a modular way, which means that individual models can run in-

dependently. In this research, we use the subsurface part of the Landelijk Hydrologisch

Model (LHM), which is the Dutch national application of NHI. The subsurface part con-

sists of two coupled hydrological models: the metamodel MetaSWAP (Van Walsum and

Groenendijk, 2008) represents unsaturated zone dynamics and MODFLOW-2005 (Har-

baugh et al., 2017) represents saturated zone dynamics. The subsurface part of LHM is

schematized on a rectangular grid with a spatial resolution of 250 < by 250 < and a

simulation time step of one day.

MetaSWAP

The Soil-Vegetation-Atmosphere-Transfer (SVAT) model MetaSWAP computes the ver-

tical transfer of water in a one-dimensional column between the atmosphere and the

saturated zone (Van Walsum and Groenendijk, 2008). MetaSWAP is a metamodel based

on the open-source SWAP model (Van Dam et al., 2008). SWAP solves unsaturated soil

water �ow on �eld scales by applying the Richards equation. MetaSWAP applies a sim-

pli�ed approach in which the one-dimensional partial di�erential Richards equation is

replaced by two ordinary di�erential equations: an equation for vertical variations as-
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Figure 3.1: Software codes covering the various hydrological domains within the Netherlands

Hydrological Instrument (NHI) (De Lange et al., 2014). The red dashed box indicates the subsurface

part applied in this study.

suming steady state �ow and an equation accounting for variations in time. Steady state

solutions are stored in a database of pre-computed soil saturation pro�les at discrete

intervals of soil moisture conditions and groundwater depths. The unsaturated zone is

discretized into up to 18 vertical aggregation boxes, starting with the root zone and end-

ing with a box extending into the saturated zone. These boxes are linked as reservoirs.

The soil saturation degree of each box is retrieved from the pre-computed database dur-

ing each time step.

MetaSWAP needs several spatial datasets as input. The Actueel Hoogtebestand Neder-

land (AHN) is used as a digital elevation model (Actueel Hoogtebestand Nederland,

2019). The Landelijk Grondgebruik Nederland (LGN) dataset supplies land cover data

(Hazeu, 2014). Precipitation and Makkink reference evapotranspiration rasters obtained

from KNMI data are used as model forcing (KNMI, 2018b,a). The BOFEK2012 dataset sup-

plies soil physical parameters for 72 soil units in the Netherlands (Wösten et al., 2013).

Van Walsum and Van der Bolt (2013) veri�ed the MetaSWAP meta-approach for these

soil units by comparing transpiration output of MetaSWAP with transpiration output of

the SWAP model. The meta-approach leads to faster calculation times in comparison

with SWAP, while the transpiration output of MetaSWAP did not deviate more than 5%
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from the SWAP output.

The metamodelling concept of MetaSWAP has implications for applying data assimila-

tion procedures. Firstly, vegetation dynamics are parametrized using a pre-de�ned root

zone depth growth pattern. As the root zone depth varies in the growing season, also

the depth of the �rst aggregation box of MetaSWAP varies. Data assimilation results

are therefore only comparable for periods with similar root zone depths, like summer

or winter periods. Secondly, the data assimilation procedure requires a model restart

after each update step. The use of a single precision format in the model restart �les in-

troduces small di�erences in the restarted model run (Van Walsum, 2017). Section 3.4.1

discusses the e�ect of the model restart on model accuracy.

MODFLOW

MODFLOW-2005 is a software package for simulating 3D groundwater �ow (Harbaugh

et al., 2017). The schematization of MODFLOW in LHM consists of seven layers. These

seven aquifers and aquitards represent the hydrogeological layers distinguished in the

Dutch national hydrogeological database REGIS (De Lange et al., 2014). MODFLOW

is coupled to MetaSWAP using a shared state variable (Van Walsum and Veldhuizen,

2011), phreatic groundwater head for MODFLOW and groundwater level for MetaSWAP

respectively. During each time step, groundwater levels are determined by iteration of

MODFLOW and MetaSWAP. The iteration stops when the di�erence in groundwater

head of MODFLOW and MetaSWAP is within a pre-de�ned limit.

Data assimilation for MetaSWAP-MODFLOWmodels

The potential of data assimilation for coupled MetaSWAP-MODFLOW models has been

studied before. Schuurmans et al. (2011) assimilated satellite-based actual evapotranspir-

ation data using a constant gain Kalman �lter to update actual evapotranspiration model

estimates. Furthermore, Hartanto et al. (2017) used satellite-based actual evapotranspir-

ation data in combination with a Particle Filter to improve discharge simulations. Due

to the availability of high-resolution soil moisture observations, we extend the �ndings

of Schuurmans et al. (2011) and Hartanto et al. (2017) by assessing the applicability of

soil moisture observations to update soil moisture states of MetaSWAP.

In the aforementioned studies, the MetaSWAP grid was scaled with a single factor per

time step, therefore not accounting for the spatial distribution of the observations. The

OpenDA framework enables assimilation of multiple observations at various locations.
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Figure 3.2: Overview of the Twente region in the Netherlands. Elevation data are based on the

AHN elevation dataset. Also, the stations of the Twente soil moisture monitoring network are

shown.

3.2.3 Study area

The study area is the Twente region in the east of the Netherlands, see Figure 3.2. The

region includes part of the Dinkel and Regge catchments and is situated in a temperate

marine climate zone (Hendriks et al., 2014). Annual precipitation rates vary between

800 and 850 << (Kaandorp et al., 2018). The region is relatively �at with an elevation

between 3 to 85<.0.B.; . and has a size of approximately 40 :< by 50 :<. Glacial ridges

form elevated features in the landscape. The main soil types are sand and loamy sand,

while the main land use is agriculture. The water system is free-draining and water

management is mainly performed by operating a system of weirs and pumps.

3.2.4 Data

We use the SMAP (Soil Moisture Active Passive) L3 Enhanced Radiometer-only daily

gridded soil moisture product for the data assimilation scheme (Entekhabi et al., 2010;

Chan et al., 2018; O’Neill et al., 2018). The value of SMAP data for hydrological data

assimilation has been shown in several studies (Kolassa et al., 2017; Lievens et al., 2017;

Koster et al., 2018; Blyverket et al., 2019). The delivery of the enhanced SMAP soil mois-

ture products was motivated by the gap that emerged after failure of the SMAP radar

(Chan et al., 2018; Das et al., 2018). The 9 km resolution of the enhanced data products

is achieved through an optimal interpolation technique applied to the antenna temper-
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ature from which the brightness temperature )b is calculated. Subsequently, the same

soil moisture retrieval procedure is followed as is applied to the native )b data. We use

the baseline SMAP L3 Enhanced product, which relies on the Single Channel Algorithm

at V-polarization (SCA-V). The SMAP L3 Enhanced product is available approximately

every 2 to 3 days for the Twente region. Colliander et al. (2017) found that SMAP soil

moisture products generally perform well in the Twente region. Chan et al. (2018) as-

sessed the accuracy of the enhanced SMAP L3 products in the Twente region using in

situ soil moisture measurements at 5 cm soil depth from the Twente network (see next

section) for the period April 2015 – October 2016 and found an unbiased root mean

square error (uRMSE) of 0.056 <3 <−3. For this study, we used the soil moisture re-

trievals from the morning satellite overpasses. During the morning, the moisture and

temperature pro�les across the soil-vegetation system are more uniform, which is one of

the assumptions underlying retrieval algorithms. Indeed, Chan et al. (2018) found more

reliable soil moisture estimates for data collected in the morning compared to the data

collected in the afternoon.

Furthermore, we use in situ soil moisture measurements from a monitoring network op-

erating since 2009. The network is maintained by the faculty of ITC of the University of

Twente. The network consists of 20 stations equipped with Decagon Em50 data loggers

and probes for measuring both soil moisture and soil temperature (Dente et al., 2012).

Decagon EC-TM probes were installed when the network was �rst developed. Gradu-

ally, the probes were replaced by the 5TM probes. Soil type speci�c calibration functions

have been developed for both sensors. The expected accuracies are 0.023<3<−3 for the

EC-TM probes and 0.027<3 <−3 for the 5TM probes respectively. The station locations

are shown in Figure 3.2. The sensors are installed in agricultural �elds, except station 20,

which is installed in a forest area. The stations provide a reading every 15 minutes since

July 2009 at nominal soil depths of 5, 10, 20, 40 and 80 cm. Installation of the monitor-

ing network is similar to the installation of the Raam soil moisture monitoring network

described in Benninga et al. (2018). The in situ measurements are used to validate the

assimilation results.

3.2.5 Error model: noise de�nition

We perturb the MetaSWAP ensemble members for the EnKF scheme by adding noise to

the model forcing. Syed et al. (2004) show that precipitation and potential evaporation

are the most dominant forcing terms for the hydrological cycle. In addition, uncertain-

ties in precipitation measurements dominate errors in subsurface and runo� predictions
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(McMillan et al., 2011). Tian et al. (2013) show that a multiplicative error model outper-

forms an additive error model for daily precipitation measurements. We perturb input

rasters of daily precipitation and daily Makkink reference evapotranspiration with Gaus-

sian white multiplicative noise. The noise is described using the distribution mean and

standard deviation. We assume that the errors in the input data are not systematic and

therefore, in the case of multiplicative noise, the distribution mean is set equal to one.

The standard deviation of the precipitation error distribution function is often arbitrarily

set ranging from 15% (Weerts and El Serafy, 2006) up to 50% (Pauwels and De Lannoy,

2006) of the nominal precipitation value. We found that the model ensemble does not

collapse when using a standard deviation de�ned as 25% of the maximum daily precip-

itation rate. The average annual maximum daily precipitation rate in the Twente area is

close to 30<< for the years between 1961 to 2014 (Rahimpour Golroudbary et al., 2017;

KNMI, 2018b). Correspondingly, we assume that the error distribution of the precipita-

tion input has a standard deviation of 7.5<<. In a similar way, we assume a standard de-

viation of 2<< for the reference evapotranspiration input (KNMI, 2018a). Furthermore,

using the KNMI precipitation and reference evapotranspiration datasets, we found that

the correlation length of precipitation and reference evapotranspiration is larger than

our region of interest (approximately 40 :< by 50 :<). Therefore, we assume a spatial

correlation length of 50 :< for the noise in every direction, which means that the spatial

anisotropy of precipitation �elds is not considered.

In addition, the SMAP observations are perturbed with Gaussian white additive noise.

For data assimilation applications, Drusch et al. (2009) and De Rosnay et al. (2013) de�ned

the soil moisture satellite observational error as a standard deviation with a value of 0.010

<3<−3. We use a standard deviation of 0.056<3<−3 for de�ning the satellite observation

error. This error was found by Chan et al. (2018), which focuses on the SMAP product

and the Twente region.

3.2.6 Experimental setup

We set up two experiments to assess the applicability of the EnKF for updating soil

moisture estimates of the metamodel MetaSWAP. First, we test the MetaSWAP-OpenDA

data assimilation implementation by performing a synthetic experiment often referred to

as a twin experiment. Then, we evaluate data assimilation in a real-world application on

regional and local spatial scales using the SMAP satellite data. The �owcharts visualized

in Figure 3.3 show the research steps for the two experiments.
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1. Twin experiment

2. SMAP data assimilation

TWIN-truth

TWIN-OL TWIN-EnKF

LHM model

Synthetic
observations

Initial model
estimate

Updated
model

estimate

OpenDA

Assessment

LHM model

OpenDA
Regional soil

moisture
estimate

SMAP L3
Enhanced

In situ data

Updated
model

estimate

Local soil
moisture
estimate

Validation

SMAP-OL

Figure 3.3: Flowcharts visualizing experimental setup: (1) Synthetic twin experiment and (2)

SMAP data assimilation experiment.
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Twin experiment

A twin experiment allows testing of a data assimilation implementation in an idealized

situation (Remy et al., 2002; Robinson and Lermusiaux, 2002; Irrgang et al., 2017). The

goal is to assess whether the EnKF scheme improves the accuracy of soil moisture model

estimates when all error statistics are known. The twin experiment is performed for the

in situ station locations and for a period of two months: May 1 2015 to July 1 2015. The

twin experiment consists of three model runs:

TWIN-truth This run represents the true state of root zone soil moisture in

the period May 1 2015 to July 1 2015. The run produces synthetic

soil moisture observations which are assimilated in the TWIN-

EnKF run. The synthetic observations are assumed to be perfectly

accurate.

TWIN-OL This run represents a reference simulation without data assimil-

ation, also known as an open loop (OL) run. To resemble an im-

perfect model, we perturbed the forcing data of this run. White

multiplicative noise with a nominal value of 2% is added to the

forcing data to resemble model uncertainty.

TWIN-EnKF This run applies the EnKF using the MetaSWAP-OpenDA frame-

work to correct root zone soil moisture by assimilating the syn-

thetic soil moisture observations from the TWIN-truth run. The

run contains the same uncertainty as the TWIN-OL run by using

the same perturbed forcing data.

In general, increasing the ensemble size will lead to a better representation of model

uncertainty (Zhang et al., 2016). However, due to computational limitations, one has to

�nd a balance between computational costs and appropriate ensemble size (He et al.,

2019). To determine the number of ensemble members, we varied the ensemble size (8,

16, 32, and 64 members) and assessed the corresponding Root Mean Square Error (RMSE)

of the TWIN-EnKF run. We found that at least 32 ensemble members are needed to get

a good representation of model uncertainty, see Figure 3.5.

The twin experiment is successful if the accuracy of the TWIN-EnKF soil moisture es-

timates increases with respect to the soil moisture estimates of the TWIN-OL run. The

accuracy is assessed using three performance indicators: the RMSE for the absolute devi-

ation, the model bias for the systematic deviation, and the Pearson correlation coe�cient
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A for the dynamics. The RMSE is de�ned as:

'"(� =

√√√√ #∑
8=1

(
\obs

8
− \pred

8

)
2

#
, (3.1)

in which \obs

8 are the observed soil moisture estimates (in this case the synthetic obser-

vations from the TWIN-truth run), \
pred

8
are the predicted soil moisture estimates (from

the TWIN-OL and TWIN-EnKF runs), and # is the number of observations. The closer

the RMSE is to zero, the more accurate the model predictions are.

Next, the model bias is de�ned as:

�80B =

#∑
8=1

(
\obs

8 − \
pred

8

)
#

. (3.2)

Again, the closer the bias is to zero, the less biased the model predictions are.

Last, the Pearson correlation coe�cient A is de�ned as:

A =

#∑
8=1

(
\obs − \obs

) (
\pred − \pred

)
√

#∑
8=1

(
\obs − \obs

)
2

√
#∑
8=1

(
\pred − \pred

)
2

(3.3)

in which \obs
and \pred

are the averaged observed and predicted soil moisture estimates.

The correlation coe�cient A can range between -1 and 1. A value of 1 (-1) indicates a

perfect positive (negative) linear relationship between \obs
and \pred

.

Assimilation of SMAP observations

Next, we performed an EnKF data assimilation run with the SMAP L3 Enhanced observa-

tions. An EnKF run is performed for the full year 2016 to capture soil moisture variability

in both wet and dry periods. 32 ensemble members are used to resemble model uncer-

tainty. The ensemble members are initialized with a spin-up period between January 1

2014 and January 1 2016. Furthermore, a deterministic model run without data assimila-

tion is performed. We refer to this run as SMAP-OL to distinguish between this run and

the TWIN-OL run. The updated soil moisture model estimates and the open loop run are
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validated by evaluating the RMSE, model bias, and correlation coe�cient A performance

indicators using the in situ soil moisture measurements. The in situ measurements are

daily averaged.

Both satellite soil moisture and in situ soil moisture observations are inherently di�erent

with respect to each other. In situ soil moisture measurements contain signi�cant uncer-

tainties related to accuracy, precision, and spatial support (Susha Lekshmi et al., 2014).

These uncertainties limit validation possibilities on local scales. Upscaling in situ meas-

urements to regional averages reduce sampling errors (Cosh et al., 2006; Crow et al.,

2012; Zhao and Yang, 2018). Therefore, we evaluate the results on both regional and

local spatial scales. A typical regional scale is the management area of a regional water

authority, which is approximately the size of the study area. We de�ne �eld scale as a

typical local scale, which is resembled by individual soil moisture monitoring stations.

First, the regional scale applicability of the SMAP L3 Enhanced product for data assimil-

ation is assessed by evaluating the performance indicators for both the in situ data and

the model estimates. The in situ data and model estimates are spatially averaged. We

refer to these results as SMAP-EnKF-AVG. The following twelve stations have a com-

plete data series for the year 2016 and are used for the averaging: 1, 2, 4, 7, 9, 12, 13, 15,

17, 18, 19, 20. The locations are shown in Figure 3.2. Then, the local scale applicability

of the SMAP L3 Enhanced product is assessed by evaluating the performance indicators

for the same stations used for the regional averaging.

As described in section 3.2.2, data assimilation results using the MetaSWAP-model are

only comparable for periods with similar root zone depths. Therefore, we split the year

2016 in a summer and winter period. The length of the summer period depends on the

parametrized vegetation type. The root zone depth of the grass vegetation type varies

between 0.20< in winter and 0.40< in summer. The root zone depth of the maize veget-

ation type varies between 0.10< in winter and 0.40< in summer. The root zone depth of

the forest vegetation type does not vary. To de�ne a summer period for this vegetation

type, we split the year in half. Table 3.1 shows the parametrized vegetation type and

summer period length. Since the �rst aggregation box of MetaSWAP represents the root

zone up to 40 cm depth, we use the in situ measurements at 10 cm depth for the winter

period and the in situ measurements at 20 cm depth for the summer period. Because

the model result is an aggregate of the root zone soil moisture pro�le, we consider the

measurements at these depths representative for the winter and summer periods. Since

the most abundant vegetation type in the list of selected stations is grass, we assume that

the summer period of grass is representative for the regional average results.
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Table 3.1: Vegetation type and length of summer period for each station as parametrized in the

MetaSWAP model.

Station Vegetation type Summer period

1 Grass April 1 – November 1

2 Grass April 1 – November 1

4 Grass April 1 – November 1

7 Maize June 1 – October 12

9 Grass April 1 – November 1

12 Grass April 1 – November 1

13 Grass April 1 – November 1

15 Grass April 1 – November 1

17 Maize June 1 – October 12

18 Grass April 1 – November 1

19 Grass April 1 – November 1

20 Forest April 1 – October 1

3.3 Results

3.3.1 Twin experiment

First, we show the synthetic twin experiment results. Figure 3.4 shows the performance

indicators for the TWIN-OL and TWIN-EnKF runs. As described in section 3.2.6, the

TWIN-OL run represents a model run with randomly added errors. The TWIN-EnKF

run is the result of assimilating synthetic observations of perfect accuracy to update the

soil moisture model state estimates.

In general, the results indicate that the MetaSWAP-OpenDA implementation is able to

correct for synthetically added errors for which the error structure is known. In terms

of RMSE and model bias, the accuracy of model estimates improves in the TWIN-EnKF

run in comparison with the TWIN-OL run. The RMSE of the TWIN-OL run ranges from

0.0013 to 0.010<3<−3, while the RMSE of the TWIN-EnKF run ranges from 0 to 0.0032

<3 <−3. The bias of the TWIN-OL run ranges from 0.0010 to 0.0090<3 <−3, while the

bias of the TWIN-EnKF run ranges from 0.00010 to 0.0024 <3 <−3. Furthermore, in

terms of correlation coe�cient r, the accuracy of model estimates generally increases

in the TWIN-EnKF run compared with the TWIN-OL run. The correlation coe�cient

of the TWIN-OL run ranges from 0.98 to 1 [−], while the correlation coe�cient of the

TWIN-EnKF run ranges from 0.99 to 1 [−]. However, the accuracy of the TWIN-EnKF

run is lower for three stations (7, 11, and 16) in terms of correlation coe�cient.

Furthermore, we assessed whether the ensemble size of 32 members is su�cient. Fig-
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Figure 3.4: (a) RMSE, (b) model bias and (c) correlation coe�cient A for TWIN-OL and TWIN-

EnKF runs. Arrows show if the skill of the TWIN-EnKF run is higher or lower than the TWIN-OL

run.

ure 3.5 shows the change in RMSE of the TWIN-EnKF run when increasing the number

of ensemble members. The RMSE of the ensemble mean decreases for larger ensemble

sizes. The decrease in RMSE �attens out for an ensemble size larger than 32. Therefore,

we assume that an ensemble of 32 members is a good balance between accuracy and

computational requirements.

3.3.2 SMAP assimilation: regional comparison

This section presents the �ndings of assimilating SMAP data into the metamodel MetaSWAP.

Figure 3.6 shows the EnKF data assimilation results for the regional soil moisture estim-

ates in the year 2016. The regional estimates are obtained by spatially averaging the soil

moisture model estimates of each in situ location. A visual comparison of the SMAP-

OL and SMAP-EnKF-AVG runs shows an improvement for both the winter and summer

periods of the SMAP-EnKF-AVG run, except in the beginning of May. Furthermore, the

accuracy slightly improves in the period between January 1 – April 1.

Table 3.2 shows the RMSE, model bias, and correlation coe�cient for the winter and

summer periods. In terms of RMSE and model bias, the accuracy improves in the SMAP-

EnKF run in comparison with the SMAP-OL run. The decrease in RMSE and model bias

is larger in the summer period. In terms of correlation coe�cient, the accuracy of model

estimates decreases in the SMAP-EnKF run in comparison with the SMAP-OL run. The

decrease in correlation coe�cient is smaller in the summer period.
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Figure 3.5: The decrease in RMSE of the TWIN-EnKF run when the ensemble size is varied from
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Figure 3.6: Regional soil moisture estimates in the Twente region in the year 2016. The black

dashed line is the spatially averaged deterministic SMAP-OL run. The orange line represents the

spatially averaged updated root zone soil moisture estimates. We refer to these data as SMAP-

EnKF-AVG. The green line represents the spatially averaged in situ soil moisture measurements.

The blue dots represent the spatially averaged SMAP L3 Enhanced surface soil moisture observa-

tions. The grey area indicates the summer period. In the winter period, the in situ soil moisture

measurements at 10 cm depth are used. In the summer period, the in situ soil moisture measure-

ments at 20 cm depth are used.
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3.3.3 SMAP assimilation: local comparison

An overview of the local-scale assimilation results is shown in Table 3.2. For the winter

period, in terms of RMSE, the assimilation increases the accuracy of local soil moisture

estimates for 8 out of 12 stations. In terms of model bias, the assimilation increases

the accuracy for 7 out of 12 stations. In terms of correlation coe�cient, the assimilation

increases the accuracy for 3 out of 12 stations. For the summer period, in terms of RMSE,

the assimilation increases the accuracy of local soil moisture estimates for 10 out of 12

stations. In terms of model bias, the assimilation increases the accuracy for 11 out of 12

stations. In terms of correlation coe�cient, the assimilation increases the accuracy for

5 out of 12 stations. Furthermore, the EnKF corrects the low correlation found during

the summer period in the SMAP-OL run for station 17. However, the EnKF is not able

to correct for the negative correlation found during the winter period in the SMAP-OL

run for station 2.

Next, we focus on local results for two stations: station 9 where the updated estimates

clearly improve, and station 7 for which the accuracy declines. Figure 3.7 shows the

assimilation results for station 9. The accuracy of the model estimates increases in the

EnKF run, similar to the patterns found for the regional soil moisture estimates. In terms

of RMSE and model bias, the accuracy of model estimates improves in both the winter

and summer period. In terms of correlation coe�cient, the accuracy of model estimates

improves in the summer period and declines in the winter period.

Figure 3.8 shows the assimilation results for station 7. Since the parametrized vegetation

type at this station is maize, the length of the summer period is di�erent than for station

9, see Table 3.1. While the accuracy of model estimates slightly improves in terms of

RMSE and correlation coe�cient, the accuracy in terms of model bias declines in the

winter period. Furthermore, the accuracy of model estimates shows no improvement

in terms of RMSE and model bias and a small decline in terms of correlation coe�cient

in the summer period. The EnKF does not signi�cantly a�ect the model estimates. A

possible explanation is that the SMAP L3 Enhanced product does not re�ect local root

zone conditions for this station. A thick clay layer can be found below the root zone at

station 7. In addition, the subsurface of the �eld contains pipes which drain excess water

during wet winter periods.
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Figure 3.7: Results for station 9 in the year 2016. For a detailed description of the visualized

features, see Figure 3.6.
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Figure 3.8: Results for station 7 in the year 2016. For a detailed description of the visualized

features, see Figure 3.6.
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3.4 Discussion

3.4.1 Application of data assimilation for metamodelling: twin
experiment

We assessed whether data assimilation can be a tool to integrate soil moisture obser-

vations into unsaturated zone metamodels. The metamodelling concept of MetaSWAP

depends on the database with pre-calculated soil saturation pro�les. Updating this data-

base is a time-consuming process. The twin experiment and SMAP-EnKF runs show

that data assimilation is a good alternative to update the metamodel. The twin exper-

iment indicates that applying an EnKF with perfectly accurate synthetic observations

increases the accuracy of the soil moisture estimates of MetaSWAP and does not lead to

model instabilities or other spurious model behaviour. We conclude that the MetaSWAP-

OpenDA implementation is suitable for assimilating soil moisture observations into the

metamodel MetaSWAP. Also, we found that an ensemble size of 32 members gives a

good representation of model uncertainty. It is important to note that, although Fig-

ure 3.4 shows that the accuracy of soil moisture estimates increases in the TWIN-EnKF

run, also an inherent model uncertainty exists that cannot be mitigated using data as-

similation. The EnKF reduces the RMSE to a lower limit, even when using observations

of perfect accuracy. This inherent uncertainty is among others caused by the restart

procedure of MetaSWAP after each update step, as is described in section 3.2.2.

3.4.2 Application of data assimilation for metamodelling: SMAP
experiment

Table 3.2 shows that the MetaSWAP-OpenDA implementation has value in an exper-

iment with SMAP L3 Enhanced surface soil moisture observations. The accuracy of

model estimates improves on both regional and local scales in terms of RMSE and model

bias. The improvement is larger for the summer period than for the winter period. In

terms of correlation coe�cient, the improvement in accuracy is less distinct. In the

winter period, only three stations show an improvement in correlation coe�cient, in the

summer period, almost half of the stations show an improvement in correlation coe�-

cient. The larger variability of the SMAP surface soil moisture observations with respect

to the in situ root zone measurements might explain the impact of the assimilation on

the correlation coe�cient. Also, the availability of SMAP observations in�uences the ef-

fectiveness of the assimilation. For example, less SMAP observations are available in the

period January 1 2016 – April 1 2016 in comparison with the rest of 2016. Consequently,
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the model state is less often updated during the SMAP-EnKF run in the period up to

April 1 2016, a�ecting the performance of the EnKF in the de�ned winter period.

3.4.3 Regional versus local spatial scales

The SMAP L3 Enhanced product corresponds well with the in situ measurements on a

regional scale (Chan et al., 2018). Therefore, the accuracy of regional-scale soil moisture

model estimates increase after assimilation of the SMAP L3 Enhanced product in terms

of RMSE and model bias. Data assimilation results on local scales largely depend on how

well the SMAP L3 Enhanced product represents local �eld conditions. We want to stress

that both the in situ measurements and LHM simulations contain uncertainties, e.g.

they might not be representative for local �eld conditions, as explained in section 3.2.6.

New remote sensing products from satellites such as Sentinel-1 are expected to make

the leap from regional to local �eld scales (Balsamo et al., 2018). For example, Bauer-

Marschallinger et al. (2019) developed a high-resolution surface soil moisture product

based on Sentinel-1 satellite data and a change-detection algorithm. The spatial resolu-

tion of this product is 1 :< by 1 :<. We expect that such high-resolution surface soil

moisture products will lead to new possibilities for soil moisture data assimilation in

operational water resources management.

Furthermore, the model bias and correlation coe�cient show that while the EnKF is able

to correct for systematic model errors, the variability of the SMAP L3 Enhanced surface

soil moisture product does not always re�ect dynamics in deeper layers. Carranza et al.

(2018) show a strong vertical variability between soil moisture at 5 and 40 cm depth in

the Twente region. The vertical variability forms a challenge for data assimilation ap-

plications, since most (if not all) remotely sensed soil moisture data concerns surface

soil moisture due to sensor constraints. However, the SMAP-EnKF run shows that a

root zone soil moisture model can be updated by assimilating SMAP surface soil mois-

ture observations. The results in Table 3.2 show that assimilating the 9 :< resolution

surface SMAP L3 Enhanced observations increases the accuracy of local soil moisture

model estimates for more than half of the stations. Thus, the SMAP surface soil mois-

ture product has signi�cant value in data assimilation approaches. Renzullo et al. (2014),

Dumedah et al. (2015), and Blyverket et al. (2019) also show the value of assimilating

satellite-based surface soil moisture observations into a hydrological model to update

root zone soil moisture estimates. We want to accentuate the impact of the SMAP ob-

servation on December 6 2016. This observation signi�cantly impacts the assimilation

run, as visible in Figure 3.6 and Figure 3.7. The in situ measurements do not indicate a
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steep reduction in soil moisture on that day, so the SMAP observation may be erroneous.

Temperatures dropped below 0
◦
C on December 6 2016, which probably signi�cantly af-

fected the SMAP reading. Similarly, the SMAP L3 Enhanced product does not re�ect �eld

conditions well during May 2016, signi�cantly a�ecting the assimilation run.

3.4.4 Implications for operationalwater resourcesmanagement

The assimilation of high-resolution remotely sensed soil moisture products leads to new

possibilities for integrated physically-based hydrological models in operational water

resources management. Pezij et al. (2019a) found that hydrological models are currently

not considered by Dutch regional operational water managers as important tools for

decision-making. Among others, regional operational water managers identi�ed model

accuracy as a limiting factor, which limits application. Data assimilation is a tool to

increase the accuracy and hence the application of hydrological modelling in operational

water management.

Yet, combining data assimilation schemes and integrated physically-based modelling for

operational water resources management is currently limited due to, among others, com-

putational requirements (Sun et al., 2016). Even with the application of metamodels

for simulating hydrological processes at �eld scale, high performance computing (HPC)

facilities are often required for e�cient implementation of data assimilation schemes.

Furthermore, the implementation of remote sensing data in operational management re-

quires additional investments in data acquiring, processing and storage facilities. How-

ever, we expect that due to the development of new computational methods, these chal-

lenges become less of an issue in the future (He et al., 2019). For example, Kurtz et al.

(2017) show the potential of combining data assimilation and integrated physically-

based hydrological modelling with cloud computing techniques for operational water re-

sources management. Ma et al. (2015) identi�es several promising tools, such as cluster-

based HPC systems and cloud computing for fast calculations, and parallel �le systems

for big data storage. However, the implementation of such tools requires investments

in computational infrastructure. We expect that in the future research and investments

into these promising new tools will increase, which will help to integrate the application

of data assimilation schemes in operational water resources management.
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3.5 Conclusions

We assessed the applicability of satellite-based regional-scale surface soil moisture ob-

servations to increase the accuracy of root zone soil moisture estimates of an unsaturated

zone metamodel. This study shows that combining metamodels with data assimilation

schemes allows incorporating new information in metamodels. Therefore, integrating

satellite-based soil moisture observations and hydrological metamodelling lead to new

opportunities for operational water resources management.

A data assimilation scheme was developed for the metamodel MetaSWAP using the

open-source data assimilation framework OpenDA. A synthetic experiment, known as

a twin experiment, showed the value of integrating metamodelling and an Ensemble

Kalman Filter (EnKF) data assimilation scheme. Furthermore, the applicability of the

9 :< resolution SMAP L3 Enhanced surface soil moisture product for the MetaSWAP-

OpenDA framework was assessed for the year 2016. On a regional scale, the updated

root zone soil moisture model estimates show a larger skill in terms of RMSE and model

bias. In terms of correlation coe�cient, the skill of the updated root zone soil mois-

ture model estimates is slightly lower than in the open loop run. The decline is partly

explained by the larger variability of the assimilated surface soil moisture observations

with respect to the in situ root zone soil moisture measurements. On a local scale, sim-

ilar results were found. However, the applicability of the SMAP L3 Enhanced product

on local scales depends on how well the SMAP product represents local �eld conditions.

In addition, we show that the assimilation of surface soil moisture observations leads to

increased accuracy of root zone soil moisture model estimates. The improvement of the

soil moisture model estimates is larger in the summer period than in the winter period

of 2016. The limited availability of SMAP L3 Enhanced soil moisture observations in the

�rst months of 2016 might explain this di�erence. The limited availability is caused by,

among others, freezing of the soil in winter periods.

As a �nal remark, the increasing availability of high-resolution surface soil moisture

products will lead to new opportunities for data assimilation schemes in operational

water resources management. Nevertheless, signi�cant developments and investments

in terms of computation capacities are required for operational application of remote

sensing data in data assimilation schemes. However, recent developments in HPC and

cloud computing are expected to contribute to the integration of data assimilation in

operational water resources management.
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3.6 Appendix A

To improve readability, the acronyms are alphabetically summarized in the following

list:

AHN: Actueel Hoogtebestand Nederland (Elevation Map The Netherlands)

AMSR-2: Advanced Microwave Scanning Radiometer 2

AMSR-E: Advanced Microwave Scanning Radiometer for EOS

ASCAT: Advanced Scatterometer

BOFEK2012: Bodemfysische Eenhedenkaart (Soil Physical Units Map)

DA: data assimilation

EnKF: Ensemble Kalman Filter

HPC: High-Performance Computing

H-SAF: Satellite Application Facility on Support to Operational Hydrology and

Water Management

KNMI: Koninklijk Nederlands Meteorologisch Instituut (Royal Dutch Meteorolo-

gical Institute)

LGN: Landelijk Grondgebruik Nederland (National Land Use the Netherlands)

LHM: Landelijk Hydrologisch Model (National Hydrological Model)

NHI: Netherlands Hydrological Instrument
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OL: Open Loop

REGIS: Regionaal Geohydrologisch Informatie Systeem (Regional Geohydrological

Information System)

RMSE: Root Mean Square Error

uRMSE: Unbiased Root Mean Square Error

SCA-V: Single Channel Algorithm at V-polarization

SMAP: Soil Moisture Active Passive

SMOS: Soil Moisture and Ocean Salinity

SVAT: Soil-Vegetation-Atmopshere-Transfer

SWAP: Soil-Water-Atmosphere-Plant

3.7 Appendix B

Due to the size of the model state error covariance matrix % in hydrological model pre-

dictions, it is generally not feasible to explicitly calculate % . An alternative approach

is to estimate % using a sample of evolved model states, leading to a lower rank es-

timation of % . This ensemble of model runs is created by perturbing model forcing,

parameters and/or states. The model perturbations ([) have to be de�ned in such a way

that the model ensemble represents total model uncertainty. This method, introduced

by Evensen (1994), is generally known as an Ensemble Kalman Filter (EnKF). We ap-

ply a stochastic (or perturbed observations) EnKF (Burgers et al., 1998; Houtekamer and

Mitchell, 1998).

Applying an EnKF consists of a forecast (f) and analysis step (a). The forecast and ana-

lysis model state ensembles are represented as:

G f =
[
G f

1
, G f

2
, ...G f

#

]
, (3.4)

Ga =
[
Ga

1
, Ga

2
, ...Ga

#

]
, (3.5)

where G f
is the forecasted model state, Ga

is the analysis model state, and # is the en-

semble size. The subscript indicates the ensemble member. Model states of each en-
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semble member are propagated forward in time:

G f

9 =M
(
Ga

9

)
+ [ 9 , (3.6)

whereM is a model operator and [ 9 is the added model noise for ensemble member 9 .

Note that for the �rst forecast step, an initial model state estimate is used instead of the

previous analysis model state. The forecast mean state G f
and model state forecast error

covariance matrix % f
are:

G f =
1

# − 1

#∑
9=1

G f

9 , (3.7)

% f =
1

# − 1

#∑
9=1

(
G f

9 − G f

) (
G f

9 − G f

))
, (3.8)

where) denotes the transpose of a matrix or vector. The mean G f
and covariance % f

are

used to calculate the Kalman gain  :

 = % f�)
(
�% f�) + '

)−1
, (3.9)

where � is a transformation matrix. This matrix is used to transform the observations

to the model state space. ' is a covariance matrix based on perturbed observations and

is de�ned as:

' =
1

# − 1

#∑
9=1

(
3 9 − 3

) (
3 9 − 3

))
, (3.10)

where 3 9 are perturbed observations (with the addition of noise), which are de�ned

as:

3 9 = ~ + n 9 , (3.11)

where ~ are observations and n8 are perturbations sampled from a normal distribution

89



C
h
a
p
t
e
r
3

C
h
a
p
t
e
r
3

N with zero mean and variance ':

n8 ∼ N(0, '). (3.12)

Next, the ensemble mean and error covariance matrix (Ga
and %a

) are updated:

Ga

9 = G
f

9 +  
(
3 9 − �G f

9

)
, (3.13)

Ga =
1

# − 1

#∑
9=1

Ga

9 , (3.14)

%a =
1

# − 1

#∑
9=1

(
Ga

9 − Ga

) (
Ga

9 − Ga

))
. (3.15)
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CHAPTER 4

Applying transfer function-noise

modelling to characterize soil

moisture dynamics

This chapter is submitted as:

Pezij, M., Augustijn, D.C.M., Hendriks, D.M.D., Hulscher, S.J.M.H. (submitted) Applying transfer function-noise

modelling to characterize soil moisture dynamics: a data-driven approach using remote sensing data.
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Abstract

The increasing availability of remotely sensed soil moisture data o�ers new opportun-

ities for data-driven modelling approaches as alternatives for process-based modelling.

This study presents the applicability of transfer function-noise (TFN) modelling for pre-

dicting unsaturated zone conditions. The TFN models in this study are trained using

SMAP L3 Enhanced surface soil moisture data. We found that soil moisture conditions

are accurately represented by TFN models when exponential distributions are used to

de�ne impulse-response functions. Impulse-response functions describe the response of

soil moisture to input stresses. A sensitivity analysis showed the importance of the selec-

ted training period, which should at least cover the full 2016 summer period, including

the growing season and the onset of autumn to correctly estimate the dry summer period

of 2018. The accuracy of the TFN models can be considerably increased by including the

dry summer period of 2018 in the training set. Furthermore, the �tted parameters of

the impulse-response functions provide valuable information in describing spatially dis-

tributed unsaturated zone characteristics such as the total response of soil moisture to a

unit stress of precipitation or evapotranspiration. These characteristics can help water

managers in making robust decisions. Finally, we encourage exploring the possibilities

of TFN soil moisture modelling for water management, as the prediction of soil moisture

conditions is a promising application for operational settings.

4.1 Introduction

Soil moisture is a key component of the hydrological cycle, linking surface and sub-

surface hydrological processes (Entekhabi and Rodriguez-Iturbe, 1994; Vereecken et al.,

2016). Among others, soil moisture governs the partitioning of precipitation into in�lt-

ration and runo�, a�ecting stream�ow and groundwater recharge (Brocca et al., 2010,

2017). Up-to-date information on soil moisture helps e�ective decision-making in oper-

ational water management, e.g. for drought assessments (Grillakis, 2019; Mishra et al.,

2017; Moravec et al., 2019; Sehgal and Sridhar, 2019), �ood predictions (Brocca et al.,

2017; Tramblay et al., 2010) and irrigation management (Brocca et al., 2018; Rai et al.,

2018). The soil moisture drought caused by the 2018 European heat wave signi�cantly

impacted water management and agricultural practices (Vogel et al., 2019), which shows

the importance of retrieving up-to-date soil moisture information.

Generally, three methods exist for estimating soil moisture on various spatiotemporal

scales: in situ (Dobriyal et al., 2012; Susha Lekshmi et al., 2014), remote sensing (Fang and
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Lakshmi, 2014; Petropoulos et al., 2015; Zhuo and Han, 2016) and hydrological modelling

(Vischel et al., 2008; Zhuo and Han, 2016). In situ soil moisture sensors provide accurate

information on local scales, since soil-speci�c calibration procedures can be performed.

However, in situ sensors typically have limited spatial coverage (Susha Lekshmi et al.,

2014). Remote sensing and hydrological modelling are alternative sources for providing

spatially distributed soil moisture information on larger scales. Remotely sensed soil

moisture information is often retrieved using activate and passive microwave sensors

(Petropoulos et al., 2015). The temporal coverage of remote sensing is limited in com-

parison with in situ methods, as satellite imagery is only available during satellite over-

passes. In addition, only surface soil moisture can be retrieved by remote sensing due

to sensor capabilities (Zhuo and Han, 2016). Furthermore, vegetation dynamics and sur-

face roughness signi�cantly a�ect remote sensing retrievals (Petropoulos et al., 2015;

Benninga et al., 2019).

Hydrological modelling provides a means to estimate soil moisture at various spatiotem-

poral scales (Vereecken et al., 2016; Brocca et al., 2017). The complexity of unsatur-

ated zone models ranges from simple conceptual lumped models to complex integrated

physically-based distributed models. Water managers often regard model accuracy as a

limiting factor for the application of hydrological modelling for decision-making in op-

erational water management, e.g. in the Netherlands (Pezij et al., 2019a). The accuracy

of hydrological models is partly based on which dataset is used for calibration. Data

assimilation can be applied to update model simulations with available observations,

although such schemes often require signi�cant computational power (Liu et al., 2012;

Weerts et al., 2014; Pezij et al., 2019b). Furthermore, process-based unsaturated zone

models are often based on the Richards equation, which is highly non-linear and poses

challenges for numerical solutions (Šimůnek et al., 2003; Vereecken et al., 2016). Further-

more, Richards-based models (e.g. SWAP or Hydrus) are generally developed for local

applications (Van Dam et al., 2008; Šimůnek and van Genuchten, 2008). Signi�cant com-

putational power is required to scale such models to regional applications (Van Walsum

and Groenendijk, 2008). Therefore, the application of Richards-type soil water �ow mod-

els is not trivial in operational water management on catchment scales.

Data-driven modelling methods are suitable alternatives for process-based modelling

(Todini, 2007; Solomatine and Ostfeld, 2008), especially when large amounts of data are

available, such as in the Netherlands. Among others, machine learning methods for

the prediction of soil moisture conditions are promising (Kolassa et al., 2017; Cai et al.,

2019). In this study, we show the applicability of transfer function-noise modelling for
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describing soil moisture dynamics in the Netherlands.

Transfer function-noise (TFN) modelling is a data-driven method to model an observed

time series by applying a linear transformation of deterministic input series known as

stress series (Von Asmuth et al., 2002). The stress series are transformed using impulse-

response (IR) functions. The IR functions contain information on the response of a wa-

ter system to input stresses such as precipitation. A TFN model is a fast and easy-to-

construct alternative for complex process-based models. TFN modelling does not need

prior assumptions on system characteristics, which is an interesting property since no

model structure is expected to work best everywhere (Peterson and Western, 2014). Fur-

thermore, due to their stochastic nature, TFN models can model system dynamics which

are not well explained by physical laws (Von Asmuth et al., 2002).

The applicability of TFN modelling for groundwater studies has been shown extensively

(Yi and Lee, 2004; Bakker et al., 2007; Manzione et al., 2010; Fabbri et al., 2011; Obergfell

et al., 2013; Sutanudjaja et al., 2013; Peterson and Western, 2014; Zaadnoordijk et al.,

2018; Bakker and Schaars, 2019). Among others, these studies show that TFN modelling

can be used to describe groundwater dynamics. In addition, the IR functions contain

valuable information on groundwater system characteristics, such as response times. A

commonly applied TFN modelling tool for groundwater modelling in the Netherlands is

Menyanthes (Von Asmuth et al., 2012).

The non-linearity of unsaturated zone dynamics can be accounted for by adding a process-

based soil moisture model on top of the TFN modelling approach (Peterson and Western,

2014). Ramirez-Beltran et al. (2008) showed the applicability of transfer functions for

soil moisture modelling using in situ soil moisture measurements as validation data. In

particular, we are interested in the application of TFN modelling as an innovative data-

driven method for explicitly calculating soil moisture dynamics, which has not been

studied before. The availability of new high-resolution remotely sensed soil moisture

data o�ers new opportunities for data-driven modelling methods such as TFN model-

ling (Petropoulos et al., 2015). We address the following research question in this study:

to what extent can transfer function-noise modelling describe and predict soil moisture

dynamics using remotely sensed soil moisture information?

This paper is organised as follows: Section 4.2 describes the research methodology. Sec-

tion 4.3 presents the results, which are discussed in Section 4.4. Finally, conclusions are

drawn in Section 4.5.
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4.2 Methodology

4.2.1 Transfer function-noise modelling

The approach applied in this study originates from TFN Autoregressive Moving Average

(ARMA) modelling (Box and Jenkins, 1970). TFN models are often applied in hydrolo-

gical applications, since they are fast and yield accurate predictions (Von Asmuth et al.,

2008). TFN modelling is comparable to the Unit Hydrograph approach often applied in

estimating river discharge rates (Sherman, 1932). A general form of a continuous-time

TFN model, formulated for soil moisture dynamics, is (Von Asmuth et al., 2008):

ℎ(C) =
#BCA4BB∑
8=1

ℎ8 (C) + 3 + =A4B (C), (4.1)

where ℎ(C) is the observed soil moisture state at time C [<3 <−3], #BCA4BB is the number

of stress series which in�uence the soil moisture state [–], ℎ8 (C) is the change in the soil

moisture state due to a stress series 8 at time C [<3 <−3], 3 is the baseline soil moisture

state [<3 <−3], and =A4B (C) is a residual time series [<3 <−3].

ℎ8 (C) is determined by solving a convolution integral in continuous time using impulse-

response (IR) functions (Von Asmuth et al., 2002). IR functions describe the variation

of the soil moisture state due to an individual stress series. The type and shape of the

functions depend on the type of stress and water system characteristics. ℎ8 (C) is de�ned

by the following convolution integral:

ℎ8 (C) =
C∫

−∞

'8 (g)Θ8 (C − g)3g, (4.2)

where '8 is the value of a stress series 8 [<<] at time C and Θ8 is an IR transfer function

of the corresponding stress series 8 . To solve Equation 4.2, Θ8 should be known. How-

ever, the IR functions are not known a priori and have to be estimated (Von Asmuth

et al., 2012). The IR functions can be estimated using the Prede�ned Impulse Response

Function In Continuous Time (PIRFICT) method (Von Asmuth et al., 2002; Von Asmuth

and Bierkens, 2005). The PIRFICT method de�nes IR functions as analytical expressions.

Von Asmuth et al. (2002) show that the PIRFICT method overcomes the following lim-

itations of estimating IR functions in regular TFN ARMA models: (1) PIRFICT allows

the use of data with an irregular time interval, and (2) since the distribution of the IR
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functions has to be de�ned a priori, the order of the IR functions does not have to be

de�ned in a Box-Jenkins model identi�cation procedure (Box and Jenkins, 1970). The

PIRFICT method allows selecting a typical IR function for a speci�c type of input series

(Von Asmuth et al., 2008). We assume that the main drivers of soil moisture dynam-

ics are precipitation (Entekhabi and Rodriguez-Iturbe, 1994; Vereecken et al., 2016) and

evapotranspiration (Syed et al., 2004). Therefore, we use time series of precipitation and

evapotranspiration as stress series for the TFN model.

An IR function can be expressed as a step response function:

B (C) =
∫ C

0

Θ(g)3g . (4.3)

A step response function describes the long-term response of soil moisture due to a con-

tinuous unit stress. The soil moisture response due to a unit stress is de�ned as the block

response. The block response can be derived from the step response function:

1 (C) = B (C) − B (C − 1) (4.4)

Von Asmuth et al. (2012) state that, independently of system properties, statistical distri-

butions such as the scaled gamma distribution �t the behaviour of many hydrogeological

systems. The scaled gamma step response function is a commonly applied IR function

for precipitation and evapotranspiration stress series in groundwater TFN modelling

(Von Asmuth et al., 2012). The scaled gamma IR function is de�ned as:

Θ(C) = �
C=−14G? (−C/060<)

060<
=Γ(=) (4.5)

where � corresponds to the unit step response of the state variable to the input stress

[<3 <−3], 060< is a shape parameter [30~], = is a shape parameter [–], and Γ(=) is the

gamma function of the form (= − 1)! [–]. Typical forms of the gamma block response

function are visualized in Figure 4.1.

Next to the gamma distribution, we studied whether an exponential distribution is a

better representation of the unit response of soil moisture to precipitation and evapo-

transpiration, as we expect that soil moisture shows a fast response to precipitation and
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Figure 4.1: Various forms of the (A) gamma and (B) exponential block response functions for

di�erent parameter values.

evapotranspiration. The exponential IR function is de�ned as:

Θ(C) = �

0
4G? (−C/0) (4.6)

where� corresponds to the unit step response of the state variable to the stress [<3<−3]

and 0 is a shape parameter [30~]. Figure 4.1 also shows typical forms of the exponential

block response function.

The parameters of the IR functions are unique for every location which is analysed (Bak-

ker et al., 2008). An initial estimate of the IR function parameters is used to evaluate the

TFN model equations. Furthermore, the residual time series =A4B (C), de�ned in equa-

tion 4.1, is modelled using a noise model, which is formulated as:

=A4B (C 9 ) = h (C 9 ) + 4G? (−
ΔC 9

U
)=A4B (C 9−1) (4.7)
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where h (C) is white noise resulting from a random process for time step 9 [<3 <−3], U

is a decay parameter [30~], and ΔC is the time step [30~] (Von Asmuth and Bierkens,

2005; Collenteur et al., 2019a). The subscript 9 indicates the day. The noise model allows

the application of a least squares objective function (Peterson and Western, 2014). The

goal of training a TFN model is to �nd optimal parameter sets for the IR functions used

in equations 4.1 and 4.2 by minimizing the objective function. More information on the

parameter estimation procedure and the noise model can be found in Von Asmuth and

Bierkens (2005).

4.2.2 Study area and data

We assessed the extent to which TFN modelling is applicable for soil moisture predictions

in the Twente region in the eastern part of the Netherlands, see Figure 4.2. The study area

is situated in a temperate marine climate zone (Hendriks et al., 2014), has an elevation

ranging between 3 to 85 m.a.s.l. and has a size of approximately 40 :< by 50 :<. The

main soil types are sand and loamy sand (Wösten et al., 2013). The primary land use is

agriculture. Annual precipitation varies between 800 and 850 mm.

We use two types of input stress series: precipitation and Makkink reference crop evapo-

transpiration. Makkink reference crop evapotranspiration (in the following evapotran-

spiration) describes the potential evapotranspiration from a reference surface covered

with grass (Makkink, 1957). Open source precipitation and evapotranspiration data from

the Royal Netherlands Meteorological Institute (KNMI) are used (KNMI, 2018a,b). The

precipitation data are based on radar data which are corrected using KNMI station data

by applying ordinary kriging. The precipitation data have a spatial resolution of 1 :< by

1 :<. The evapotranspiration data are based on extrapolating KNMI station data using

Thin Plate Spline interpolation. The station data are calculated by KNMI using incoming

shortwave radiation and mean daily temperature measurements at the KNMI stations.

The evapotranspiration data have a spatial resolution of 10 :< by 10 :<.

We use the SMAP (Soil Moisture Active Passive) L3 Enhanced radiometer-only daily

gridded soil moisture product to train the TFN models (Entekhabi et al., 2010; Chan

et al., 2018; O’Neill et al., 2018). The surface soil moisture estimates are obtained by pro-

cessing interpolated brightness temperature observations from the SMAP satellite (Das

et al., 2018). In general, SMAP soil moisture products perform well in the Twente region

(Colliander et al., 2017). Chan et al. (2018) found an unbiased root mean square error of

0.056<3 <−3 for the Twente region when assessing the SMAP L3 product using in situ

soil moisture measurements. The SMAP observations are available for the study area
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Figure 4.2: (A) Location of the Twente study area in the Netherlands, indicated by the blue rect-

angular shape. (B) Overview of the study area including the station locations of the in situ soil

moisture monitoring network and the footprint of the SMAP L3 Enhanced surface soil moisture

data for September 9 2017.

approximately every 2–3 days and have a spatial resolution of 9 :< by 9 :<. The foot-

print of the SMAP L3 Enhanced product in the Twente region is visualized in Figure 4.2.

We have analysed the SMAP data for the period January 1 2016 – January 1 2019.

Additionally, we use in situ soil moisture measurements from a monitoring network to

assess whether the TFN models can describe soil moisture �eld conditions. The monit-

oring network, operating since 2009, is maintained by the ITC faculty of the University
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of Twente (Dente et al., 2012; Van der Velde, 2018; Van der Velde et al., 2019). Both volu-

metric moisture content and soil temperature are measured at 20 locations in the Twente

region. The stations cover agricultural �elds, except station 20, which is installed in a

forest area. The station locations are shown in Figure 4.2. The monitoring network con-

sists of Decagon 5TM probes at 5, 10, 20, 40, and 80 cm soil depth and provide a reading

every 15 minutes. We use daily averaged measurements at 5 cm soil depth, since re-

motely sensed soil moisture data are limited to surface soil moisture (Petropoulos et al.,

2015; Benninga et al., 2019). Figure 4.2 provides an overview of the SMAP L3 Enhanced

footprint relative to the in situ locations in the study area. Seventeen pixels provide

information for the 20 stations.

4.2.3 TFN modelling library: Pastas

To set up the TFN models, we use the open source library Pastas (Collenteur et al., 2019b),

which is a Python 3 implementation of the TFN modelling approach described in sec-

tion 4.2.1. A description of Pastas can be found in Collenteur et al. (2019a). In order to

solve equation 4.1, we use a least squares optimization approach to �t the parameters of

the IR functions in Pastas (equations 4.5 and 4.6). More information on the Pastas library

can be found at https://pastas.readthedocs.io.

4.2.4 General work�ow

Figure 4.3 shows the general research work�ow. The work�ow focuses on three main

parts, indicated by the yellow boxes in the �gure. First, the TFN models are set up

and trained using SMAP data (SMAP training). Next, these models are validated using

SMAP data for a di�erent period (SMAP validation). Last, we assess the applicability of

the TFN models for estimating soil moisture on �eld scales using in situ measurements

(Field validation). We will elaborate on each research step. The numbers in the following

sections refer to the steps shown in Figure 4.3.

SMAP training

First, (1) the input datasets, which are described in section 4.2.2, are selected. The data-

sets are split in a (2) training set and a (3) validation set. The training set is used to

train the TFN models by deriving the parameter sets for the IR functions. The validation

set is used to assess the trained TFN model results. We want to use a training period

which covers at least the response time of the hydrological system that we observe. We

used the shape of the IR distributions to estimate the response time, see Section 4.3.3.
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1. Input data

5. Stress series for
training4. Observations

7. Pastas training
object

9. Parameter set for
IR functions

11. Pastas validation
object

10. Stress series for
validation

12. TFN soil
moisture predictions

15. In situ
measurements

14. SMAP
evaluation 

13. SMAP 
validation series

8. Solve using least
square optimization

6. Select distribution
for IR functions

16. Field scale
evaluation 

SMAP training SMAP validation

Field validation

Figure 4.3: Flowchart visualizing the research steps to set up and validate a TFN model with

SMAP observations and in situ measurements. The individual steps are described in Section 4.2.4.

Especially, we are interested in the predictive capabilities of the TFN model for the dry

summer period of 2018. Therefore, the training set covers the period January 1 2016 –

January 1 2018, while the validation set covers the period January 1 2018 – January 1

2019. Since more SMAP observations are becoming available, the training period can be

continuously extended in an operational setting.

We assessed the in�uence of the training period length by performing a sensitivity ana-

lysis in which both the length and period of training set are varied. The training periods

used for the sensitivity analysis are a summer period (April – October 2016), a winter

period (October 2016 – April 2017), the full year 2016 and the full year 2017. In addition,

we assessed the TFN model capabilities by switching the training and validation period:

January 1 2017 – January 1 2019 for the training set and January 1 2016 – January 1 2017

for the validation set. Section 4.4.1 elaborates on the results of the sensitivity analysis
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Table 4.1: Combinations of statistical distributions assessed for the IR functions.

Precipitation Evapotranspiration Code
Gamma Gamma GG
Exponential Exponential EE
Gamma Exponential GE
Exponential Gamma EG

and the implications for TFN modelling.

The SMAP soil moisture observations of the training set are used as the (4) observational

training dataset for the TFN model. Then, (5) the stress series are de�ned for the training

period. Subsequently, (6) a statistical distribution is de�ned for each stress series. Both

the observations and the stress series are added to a (7) Pastas model object. Next, Pastas

applies (8) a least squares optimization approach to �nd (9) optimal parameter sets for

the precipitation and evapotranspiration IR functions for each in situ location by solving

equation 4.1. These sets are assumed to best �t the SMAP soil moisture observations

for the training period. The sets can subsequently be used to estimate soil moisture

dynamics in the validation period.

We assessed the applicability of two distribution functions to de�ne the IR function of

each stress series: a gamma and an exponential distribution. Table 4.1 lists the combin-

ations. The explained variance percentage (EVP) is calculated to assess the applicability

of each combination. The EVP is de�ned as:

�+% = 100

f2
ℎ
− f2=
f2
ℎ

, (4.8)

where f2
ℎ

is the variance of the SMAP soil moisture observations [(<3 <−3)2] and f2= is

the variance of the TFN model residuals as de�ned in equation 4.1 [(<3<−3)2] (Von As-

muth et al., 2002). An EVP of 100% indicates a perfect simulation of the observations,

since no residuals exist in that case. As a rule of thumb, one generally accepts the results

of a TFN model if the EVP ≥ 70%.

Additionally, the noise series should not be autocorrelated. Autocorrelation would indic-

ate that the white noise assumption does not hold (Von Asmuth et al., 2002). We use the

Ljung-Box test to determine whether the noise series shows signi�cant autocorrelation

(Ljung and Box, 1978).
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SMAP validation

Next, we use SMAP observations from the year 2018 to validate the TFN models. We

de�ne (10) the precipitation and evapotranspiration stress series for the period January

1 2018 – January 1 2019. These series are used to (11) set up a Pastas model for the valid-

ation period. The (9) optimized parameter sets from the training set are applied to de�ne

the IR functions. Again, Pastas solves equation 4.1 using the de�ned IR functions, the

optimized parameter sets, and the stress series, resulting in (12) predictions of soil mois-

ture for the validation period. We use (13) the SMAP validation set to (14) assess the TFN

model results using the unbiased Root Mean Square Error (uRMSE), bias, and Pearson

correlation coe�cient. Appendix A provides a de�nition of these error metrics.

Field validation

Furthermore, we are interested in the applicability of the TFN models on �eld scales

compared to the regional scales represented by the SMAP observations. Therefore, we

use (15) in situ soil moisture measurements from the soil moisture monitoring network to

(16) evaluate the TFN model results on �eld scales using the error metrics. The evaluation

is performed for all in situ location for which measurement data is available for the

validation period. The following eleven stations provide data for the 2018 validation

period: 2, 4, 7, 9, 10, 11, 13, 14, 15, 16, and 17.

4.3 Results

4.3.1 Selection of distribution functions

First, we evaluated which combination of statistical distributions leads to the best �t of

the TFN models in terms of EVP. Figure 4.4 shows the spatially averaged EVP for the four

distribution combinations as de�ned in Table 4.1. The GG and GE combinations lead to

TFN models which cannot su�ciently explain soil moisture dynamics. Both the GG and

GE combinations score spatially averaged EVP values lower than 50%. The Exponential-

Exponential (EE) and Exponential-Gamma (EG) combinations show the best model be-

haviour. The EG combination leads to a rejection of the TFN model for one location, i.e.

station 16 (67%). The EVP of the EE combination is consistently larger than 70% for all

stations, exceeding the model acceptance criterion. Since the EE combination consist-

ently shows good accuracy, we use the exponential distribution for both the precipitation

and evapotranspiration IR functions in the remainder of the study.
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Figure 4.4: Spatially averaged EVP per combination of distributions for precipitation and evapo-

transpiration stress series.

The TFN models will be rejected when a gamma distribution is used for the precipitation

stress series. An exponential distribution is a better choice for the precipitation stress

series. The di�erence is less distinct for the evapotranspiration stress series. Either a

gamma or exponential distribution leads to similar results in terms of EVP. So, although

Von Asmuth et al. (2002) show that the gamma distribution is suitable to model the

response of groundwater head to recharge using precipitation stress series, the gamma

distribution is not the best choice for precipitation stress series when modelling surface

soil moisture dynamics.

4.3.2 Assessment of soil moisture modelling

We will show the TFN model results for the �rst in situ location for which �eld validation

data are available, which is location 2. Figure 4.5 shows the TFN model results, SMAP

observations, and in situ measurements for location 2 during the period January 1 2016

– January 1 2019. The in situ measurements are only shown for the validation period,

which is the year 2018. In both the training and validation period, the TFN model can

correctly simulate the summer-winter cycle of drying and wetting. Large deviations

between the SMAP observations and the TFN model results can be observed in winter

periods such as December 2016 and February 2018. The soil can freeze in winter periods,
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which signi�cantly a�ects SMAP satellite as well as in situ sensor readings (Van der

Velde et al., 2019). As temperature is not an input, the TFN model is not a�ected by this

limitation. On the other hand, the TFN model underestimates soil moisture during July-

August 2018. Last, the SMAP observations overestimate soil moisture in the transition

from summer to fall in 2018. Van der Velde et al. (2019) evaluated SMAP surface soil

moisture data in the Twente region and stated that “in the summer/fall of 2018, dry

spells were ended by a sequence of substantial rain events that exposed the disparity

in sampling depth between SMAP and the in situ sensors”. Shellito et al. (2016) and

Benninga et al. (2018) found similar results.

We quantify the accuracy of the TFN models by calculating the uRMSE, bias and cor-

relation coe�cient error metrics with respect to the SMAP observations for each in situ

location in the 2018 validation period. The dots in Figure 4.6 (SMAP validation 2018)

visualize the error metrics of the TFN models results with respect to the SMAP observa-

tions for the year 2018. The uRMSE varies between 0.059–0.070<3<−3 for all locations.
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Figure 4.5: (A) TFN model results for location 2. The yellow line indicates the TFN model results

in the training period. The green line indicates the TFN model results in the validation period.

The purple dots represent the SMAP observations, while the brown line represents the in situ

soil moisture measurements. (B) Corresponding precipitation stress series. (C) Corresponding

evapotranspiration stress series.
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Figure 4.6: Evaluation of the TFN model accuracy in terms of (A) unbiased root mean square

error, (B) bias, and (C) Pearson correlation coe�cient for the 2018 validation and 2016 sensitivity

analysis periods. We evaluated the TFN models against the SMAP data (SMAP validation) and the

TFN models versus in situ data (Field validation).
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Figure 4.7: Trained block response functions for precipitation and evapotranspiration at location

2 based on the 2016-2017 training set.

The bias varies between 0.0040–0.019 <3 <−3 for all locations. The correlation coe�-

cient varies between 0.79–0.82 [−] for all locations. Recognizing that the TFN models

do not consider the over- and underestimation of SMAP in frozen and dry conditions,

the TFN models perform well in predicting SMAP surface soil moisture. An implication

is that the trained TFN model can be used to estimate surface soil moisture and extend

SMAP data if precipitation and evapotranspiration data are available. Furthermore, one

could use the TFN models to construct historical surface soil moisture time series, since

the KNMI meteorological datasets cover a long period.

In addition, Figure 4.6 shows the RMSE of the TFN model results with respect to the

in situ measurements for eleven locations in the 2018 validation period (Field validation
2018). The spread in RMSE is more substantial than for the SMAP 2018 validation. Al-

though a fundamental di�erence exists in spatial scales represented by the SMAP satel-

lite footprint and the in situ measurements, the TFN models accurately predict �eld scale

soil moisture for seven out of eleven locations in terms of uRMSE, for four out of eleven

locations in terms of bias, and for all locations in terms of correlation coe�cient.
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4.3.3 Trained IR functions

The IR functions contain valuable information on the soil moisture response to the stress

series. As described in section 4.2.1, the block response function describes the response

of soil moisture to a unit stress of one day. Figure 4.7 shows the trained block response

functions of the precipitation and evapotranspiration stresses for location 2. As expec-

ted, the precipitation stress series has a positive impact on the soil moisture state, while

the evapotranspiration stress series decreases the soil moisture state. Also, the time scale

of the precipitation stress series is smaller than the time scale of the evapotranspiration

stress series. Furthermore, the initial response of soil moisture at day one is much lar-

ger for the precipitation stress series than for the evapotranspiration stress series. Sim-

ilar observations hold for all individual locations. These �ndings are physically reason-

able, since precipitation causes immediate spikes in soil moisture, while drydown due to

evapotranspiration takes place on longer time scales.

In addition, Figure 4.7 shows that the length of the precipitation IR function for location

2 is approximately 75 days, while the evapotranspiration IR function has a length of

approximately 150 days. The length of the IR functions can be interpreted as the system

response to that speci�c stress series. The training period of two year covers this length

multiple times. Therefore, we can conclude that the training period is of su�cient length

to estimate soil moisture dynamics in the Twente region.

4.4 Discussion

4.4.1 Veri�cation of TFN modelling approach

The results show that TFN modelling using the PIRFICT method can be applied to predict

surface soil moisture conditions in the Twente region using SMAP surface soil moisture

remote sensing data as training set. As part of the TFN model veri�cation, we assess

whether the noise series show autocorrelation using the Ljung-Box statistical test (Ljung

and Box, 1978). The autocorrelation is assessed considering a signi�cance level of 0.05

[–]. The Ljung-Box test shows that no signi�cant autocorrelation is observed for all

stations. Therefore, the white noise assumption holds for all stations.

In addition, because of the data-based nature of TFN models, there is a risk in extra-

polating results to situations for which no references are available in the training set

(Von Asmuth et al., 2012). For example, the TFN model of location 2 does not capture

the extremely dry summer period of 2018 well, as seen in Figure 4.5. According to the
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TFN model, the volumetric moisture content drops to almost 0 <3 <−3 in that period.

However, both the SMAP observations and the in situ measurements show that soil

moisture seems to have a physical lower limit of approximately 0.1 <3 <−3. The TFN

models do not identify the lower limit. This limitation might be explained by evapo-

transpiration reduction, which is a mechanism which reduces actual evapotranspiration

when only low amounts of moisture are available. Thus, evapotranspiration reduction

occurs in dry periods. Since the training period does not include long dry periods, the

TFN models do not consider evapotranspiration reduction. The in�uence of the training

period will be assessed in the next section.

4.4.2 Sensitivity of training period

We performed a sensitivity analysis on both the training set period and length based on

the RMSE error metric. Figure 4.8 shows the results of the sensitivity analysis. Soil mois-

ture dynamics at some stations cannot be properly explained using the 2016–2017 winter

period as training period. The di�erence between the summer of 2016, the year 2016,

2017, and 2016-2017 training periods is not signi�cant. The 2016–2017 winter period

shows the largest RMSE values. The 2016 summer training set shows the smallest RMSE

values. Figure 4.5 showed that the 2016-2017 training set leads to a large underestim-

ation of the 2018 dry summer period. The same �nding holds for the 2016 and 2017

training sets. Using the 2016 summer training set, the TFN models can simulate the dry

period of 2018 correctly. We refer to Figure 4.10 in Appendix B which shows the TFN

model results for location 2 when only the 2016 summer period is used as training set.

Thus, the TFN models can represent the drought period of 2018 when a representative

training period is selected.

The dry period in the summer of 2018 is an extreme event. Probably, the sensitivity

analysis results are case-speci�c and thus not generalizable. To test the applicability

of the TFN models in more regular situations, we switched the training and validation

set periods. The TFN models are trained for the period January 1 2017 – January 1

2019 and validated for the year 2016. The triangles in Figure 4.6 (SMAP validation 2016)

show the uRMSE, bias, and correlation coe�cient of the TFN models with respect to

the SMAP observations when the year 2016 is used as validation set. The 2016 results

have consistently higher accuracies than the SMAP 2018 validation results. The uRMSE

varies between 0.042 and 0.052<3<−3 for the locations. The bias varies between 0.0061

and 0.023<3 <−3 for the locations. The correlation coe�cient varies between 0.82 and

0.88 [−] for the locations.
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Figure 4.8: The results of the sensitivity analysis illustrating the e�ect of the training period

length. The box plots show the distribution of the RMSE of the TFN model with respect to the in

situ measurements in the 2018 validation period for di�erent training periods.

Furthermore, the star shapes in Figure 4.6 (Field validation 2016) show the error metrics

of the TFN models with respect to the in situ measurements when the year 2016 is used

as validation set. No apparent change in accuracy is found for the 2016 validation results

on �eld scales, which are represented by the in situ measurements. These results indic-

ate that a training period including the extreme dry summer of 2018 will lead to more

accurate TFN models for drought predictions, especially on spatial scales similar to the

SMAP satellite footprint.

Table 4.2 shows the performance of the soil moisture TFN modelling approach in com-

parison with the SMAP validation studies of Colliander et al. (2017) and Chan et al. (2018),

as well as the data-driven soil moisture modelling approach of Kolassa et al. (2017), who

also used SMAP observations as training data. As these studies applied spatially aver-

aged results for the Twente study area, the TFN model results are also spatially aver-

aged. Especially the TFN model validated for the year 2016 performs well as shown by

the uRMSE, bias, RMSE, and correlation coe�cient error metrics. The comparison with

the data-driven approach by Kolassa et al. (2017) shows that SMAP TFN modelling for

the year 2016 has a similar accuracy.
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Table 4.2: Spatially averaged error metrics (uRMSE, bias, RMSE, and r) for TFN model results

versus in situ measurements and a comparison with literature. NA indicates error metric is not

available. NumStat is the number of �eld stations included in the analysis.

Source Period uRMSE Bias RMSE r NumStat
[<3 <−3] [<3 <−3] [<3 <−3] [-] [-]

TFN versus in situ Jan 2018 - Jan 2019 0.083 0.028 0.12 0.86 11

TFN versus in situ Jan 2016 - Jan 2017 0.060 0.0014 0.063 0.86 7

Colliander et al. (2017) Apr 2015 - Mar 2016 0.044 0.014 0.046 0.92 5

Chan et al. (2018) Apr 2015 - Oct 2016 0.056 -0.0010 0.052 0.90 5

Kolassa et al. (2017) Apr 2016 - Mar 2017 0.057 NA NA 0.70 9

4.4.3 Water system characteristics

Generally, IR functions can provide information on characteristics of the system which

is observed. Among others, these functions describe the unit step response and response

time of groundwater dynamics when a groundwater system is observed (Bakker et al.,

2008; Zaadnoordijk et al., 2018). The exponential distribution applied in this work con-

sists of two parameters: � and 0, see equation 4.6. The parameter � relates to the total

change in soil moisture volume due to a unit stress. A large � indicates a large total

change in volume. The shape parameter 0 is related to the time scale on which a unit

stress a�ects soil moisture. A large 0 indicates a fast response.

Figure 4.9 shows the trained parameters for the precipitation and evapotranspiration IR

functions for all locations based on the 2016–2017 training set. The colours indicate the

station numbering as shown in Figure 4.2. Approximately, the lower numbers are situ-
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Figure 4.9: Distribution of (A) parameter � and (B) parameter 0 of the precipitation and evapo-

transpiration IR functions. The colourbar represents the 11 stations as shown in Figure 4.2.
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ated in the eastern part, while the higher numbers are situated in the western part of the

study area. No clear pattern can be found for parameter�, which represents the total soil

moisture change. The total change is probably related to soil physical characteristics and

vegetation dynamics. These features are quite similar for the locations in the study area,

with mainly sandy soils and grass vegetation, which is possibly why we do not observe

distinct di�erences. A valuable addition can be to study whether di�erent IR functions

and corresponding parameters are found in areas with other soil characteristics, such as

peaty or clayey areas, or areas with di�erent vegetation types.

On the other hand, a trend is seen in the spatial distribution of parameter 0, which de-

scribes the time scales of the IR functions. In general, if a large soil moisture response

time to precipitation is found at a speci�c location, the corresponding soil moisture re-

sponse time to evapotranspiration is relatively small and vice versa. The length scale

of the precipitation IR function is larger for locations in the western part of the study

area. A possible explanation is the local variation in precipitation patterns. Also, the

subsurface in the western part of the study area contains thick sand layers. Precipita-

tion in�ltrates relatively easy in sandy layers, which causes a slow response of shallow

moisture. Moraines of clay are found in the eastern part of the study area. Clay lay-

ers have low in�ltration rates, which results in a fast increase of soil moisture content.

However, more research is needed to generalize these �ndings.

Also, one should be careful in relating these parameters to physical processes as the

selection of an IR function is an assumption (Von Asmuth et al., 2012). For example,

Figure 4.7 shows that the time scale of the precipitation IR function is approximately

75 days. To our knowledge, this time scale cannot be directly connected to physical

phenomena. More research on the IR function parameters is needed to increase the

understanding of their physical meaning.

4.5 Conclusions

We studied the applicability of transfer function-noise modelling (TFN) for describing

and predicting soil moisture dynamics. TFN modelling is a fast alternative for process-

based models, taking only seconds to simulate a full year of daily soil moisture condi-

tions. TFN modelling is based on the assumption that soil moisture dynamics can be ex-

plained by linearly transforming precipitation and evapotranspiration stress series using

impulse-response (IR) functions. The SMAP L3 Enhanced surface soil moisture product

is used to train the TFN models. We found that exponential distributions describe the
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IR functions of both the precipitation and evapotranspiration stress series better than

gamma distributions.

TFN models describe soil moisture conditions well when comparing the TFN model res-

ults with the SMAP observations. In addition, the TFN model results were compared

with in situ soil moisture measurements to assess the �eld scale applicability of TFN

modelling. The accuracy of the TFN models mainly depends on the representation of

the SMAP satellite product for that speci�c spatial scale.

A practical application for operational water management is that the TFN modelling

approach can be used to estimate soil moisture dynamics using predictions of precip-

itation and evapotranspiration. The application is promising if su�cient training data

are available, although one should be careful when interpreting results in extreme situ-

ations, since the TFN models do not consider the physical lower and upper limits of soil

moisture. However, a sensitivity analysis showed that a suitable training period can sig-

ni�cantly increase the TFN model capabilities in both regular and extreme situations.

In addition, the IR function parameters potentially provide valuable information on wa-

ter system characteristics, such as response times of soil moisture to precipitation and

evapotranspiration. However, more research on the physical meaning of the parameters

is needed to understand their applicability. Concluding, we consider the applicability of

TFN modelling for explaining soil moisture dynamics promising and propose to explore

the possibilities of TFN modelling for operationally predicting soil moisture.
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4.6 Appendix A

The Root Mean Square Error (RMSE) is de�ned as:

'"(� =

√√√√√ #∑
9=1

(
\>1B
9
− \?A43

9

)
2

#
, (4.9)

in which \>1B9 are the SMAP soil moisture measurements for each day 9 [<3 <−3], \
?A43

9

are the TFN model results for each day 9 [<3<−3], and # is the number of observations

[–].

The unbiased Root Mean Square Error (uRMSE) is de�ned as:

D'"(� =

√√√√√ #∑
9=1

((
\>1B
9
− \>1B

)
−

(
\
?A43

9
− \?A43

))
2

#
, (4.10)

in which \>1B is the arithmetic mean of the SMAP soil moisture measurements [<3<−3]

and \?A43 is arithmetic mean of the TFN model results [<3 <−3].

The bias is de�ned as:

�80B = \>1B − \?A43 . (4.11)

The Pearson correlation coe�cient A is de�ned as:

A =

#∑
9=1

((
\>1B9 − \>1B

) (
\
?A43

9
− \?A43

))
√

#∑
9=1

(
\>1B
9
− \>1B

)
2

√
#∑
9=1

(
\
?A43

9
− \?A43

)
2

. (4.12)
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4.7 Appendix B
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Figure 4.10: TFN model results for location 2 when the summer 2016 period is used as training

period.

115





CHAPTER 5

Discussion

117



C
h
a
p
t
e
r
5

C
h
a
p
t
e
r
5

This chapter contains a discussion on the thesis results. First, we elaborate on the sci-

enti�c implications. Next, we show several applications for water management. Last, we

focus on the applicability of the results for other practical and scienti�c areas.

5.1 Scienti�c implications

5.1.1 Spatiotemporal variability of soil moisture

Section 1.4 discussed the spatiotemporal overlap and mismatch between the three main

methods of estimating soil moisture (in situ, remote sensing, and hydrological model-

ling). Each method leads to soil moisture estimates which have to be interpreted on a

di�erent spatiotemporal scale. The three methods can complement each other, although

critical evaluations are needed when applying integral approaches.

Data from the three soil moisture estimation methods were combined in this research

to retrieve more accurate soil moisture estimates. Chapter 3 showed how regional scale

remote sensing estimates can be used to update regional scale hydrological modelling

estimates by applying a perturbed observations EnKF data assimilation scheme, as seen

in Figure 3.6. On a local scale, the impact of the data assimilation scheme largely depends

on the representativeness of the remote sensing estimates concerning the spatial scale.

Chapter 4 showed that remote sensing estimates have value on �eld and local scales,

as the TFN models represent the in situ estimates as visualized in Figures 4.5 and 4.10.

In addition, the data assimilation approach enables to translate surface soil moisture in-

formation to root zone soil moisture information, extending purely statistical methods

(e.g. Albergel et al., 2008; Carranza et al., 2018). Furthermore, the approach integrated

the remote sensing data, which are available every 2–3 days for the Twente study area,

to daily information using the hydrological model. Also, the TFN models have value

in retrieving information on days for which no remote sensing imagery is available. A

more detailed discussion of the possibilities of TFN modelling is given in Section 5.1.3.

We expect that new sources of high-resolution remotely sensed soil moisture informa-

tion, for example from Sentinel-1 satellite retrievals (Bauer-Marschallinger et al., 2019;

Benninga et al., 2019) or combining SMAP and Sentinel-1 retrievals (Das et al., 2019), will

help to increase the e�ectiveness of these methods for relating soil moisture estimates

on both regional and �eld scales.

Substantial biases exist between in situ, remote sensing, and model estimates (both

process-based and TFN). The di�erences in both the horizontal and vertical spatial scales
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between in situ, remote sensing and hydrological modelling estimates lead to large un-

certainties in hydrological research, validation procedures and practical applications.

For example, the model results of Chapters 3 and 4 are validated using in situ soil mois-

ture estimates, which are valid on point scales. Although not investigated in this re-

search, several other approaches have been proposed to relate the various soil mois-

ture estimation methods. Ford and Quiring (2019) employed various soil moisture com-

parison and veri�cation methods to develop a comprehensive soil moisture validation

framework and assess the �delity of the three estimation methods. Crow and Wood

(2003) applied a model-based approach to upscale in situ estimates to be representative

on a satellite footprint scale. Van der Velde et al. (2019) showed the applicability of a sim-

ilar approach for the validation of a SMAP soil moisture product using the in situ soil

moisture estimates of the Twente network. Another approach is triple collocation ana-

lysis (Scipal et al., 2010; Gruber et al., 2016). Triple collocation analysis can be applied to

estimate the error structure of three soil moisture datasets (e.g. in situ, remote sensing,

and hydrological modelling) and serves as a valuable addition to harmonize the di�er-

ent spatiotemporal scales of the soil moisture estimation methods. Nonetheless, new

methods for in situ soil moisture estimation on �eld scales will have to be developed

and studied to overcome the di�erence in spatiotemporal scales. Future research should

continue to focus on developing methods to relate soil moisture estimates on various

spatiotemporal scales.

One can argue whether the soil moisture modelling assumptions and concepts applied

for point or �eld studies are still valid when moving towards regional, national, and

global studies. For example, the complexity of physical processes which have to be taken

into account di�ers when moving from �eld to larger spatial scales. Special attention is

needed during the development of soil moisture modelling tools to identify the relevant

spatiotemporal scales. Decades of research on process-based unsaturated zone mod-

elling led to complex hydrological models which heavily depend on rather coarse soil

physical and vegetation parametrizations (Vereecken et al., 2016). Chapter 3 and 4 show

that data-driven methods have the potential to integrate soil moisture information on

several spatiotemporal scales. A powerful aspect of many data-driven methods is that,

in general, they often do not need a priori assumptions on system characteristics, which

is an interesting property when studying subsurface processes. Already, data-driven

methods are an important research �eld in soil and hydrological sciences (Remesan and

Mathew, 2015). We expect that the application of these methods will keep growing,

especially with a focus on the integration with process-based modelling.
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5.1.2 Impact of soil moisture data assimilation on other
hydrological variables

The process-based hydrological modelling framework NHI applied in Chapter 3 consists

of several coupled components related to unsaturated zone (MetaSWAP), saturated zone

(MODFLOW) and surface water dynamics (Mozart and DM). The simulations of each

component a�ect other components, see Figure 3.1. For example, Crow and Ryu (2009),

Alavi et al. (2010), Brocca et al. (2010), Koster et al. (2018), and Naz et al. (2019) showed

that the assimilation of soil moisture data not only increases the accuracy of soil moisture

simulations, but also a�ects evapotranspiration, phreatic groundwater levels, and runo�

simulations. The next sections will describe the e�ect of assimilating SMAP surface soil

moisture observations on other simulated hydrological variables within the LHM model,

such as evapotranspiration and groundwater levels.

Evapotranspiration

Zhang et al. (2016) showed that assimilating soil moisture observations in an integ-

rated hydrological model improves the accuracy of evapotranspiration model estimates.

Evapotranspiration data can help in monitoring the growth and water demand of ve-

getation, which is valuable for agricultural activities. The unsaturated zone metamodel

MetaSWAP within LHM calculates actual evapotranspiration (�)02C ) using Makkink ref-

erence crop evapotranspiration input data (�)A4 5 ). �)02C depends on root extraction

rates, which in turn depend on the availability of soil moisture. The Feddes reduction

curve introduced by Feddes et al. (1978) describes the relation between soil moisture

availability and root extraction rates.

Figure 5.1 shows two �)02C simulations of the unsaturated zone model MetaSWAP for

station 1 of the Twente in situ soil moisture monitoring network (Dente et al., 2012),

based on the simulations described in Chapter 3. Figure 3.2 displays the location of

this station within the Twente study area. Overall, the assimilation of soil moisture

estimates does a�ect the actual evapotranspiration simulations. Small di�erences can

be observed between the open loop and the data assimilation run, as can be seen in the

lower panel. The lower panel shows that the change in �)02C is not strictly positive or

negative, indicating that the model is not correcting for biases in the evapotranspiration

simulations. Remarkable is the large increase of �)02C in the EnKF run around the end of

November. A model artefact causes this peak. The model cannot solve the water balance

terms during that time step and arti�cially adds water via a model variable known as

virtual water creation. Subsequently, the remaining water volume is removed from the

120



C
h
a
p
t
e
r
5

C
h
a
p
t
e
r
5

2016-01 2016-03 2016-05 2016-07 2016-09 2016-11 2017-01
0

2

4

6

8
E
T
a
c
t

[m
m

]

Station 1

Open loop DA
(A)

2016-01 2016-03 2016-05 2016-07 2016-09 2016-11 2017-01

Period [days]

−4

−2

0

2

4

6

8

C
h

an
ge

in
E
T
a
c
t

[m
m

]

(B)

Figure 5.1: (A) Actual evapotranspiration (�)02C ) model estimates of a LHM open loop run and

an EnKF data assimilation run updated with soil moisture observations. (B) Di�erence in �)02C
estimates between an open loop and an EnKF run.

model using the �)02C model output variable, causing the spike in �)02C . We want to

stress that the validation of �)02C data is challenging, since hardly any measurement

data on �)02C is available. However, we expect that recent and future breakthroughs

in the development of actual evapotranspiration data products will bridge this gap (e.g.

Martens et al., 2018; McCabe et al., 2019; Xu et al., 2019).

Groundwater

Carranza et al. (2018) showed that surface soil moisture shows high correlations with

soil moisture at greater depths during wet conditions in the Twente study area. They

refer to the correlated period as coupled conditions, while periods with low correlation

are referred to as decoupled conditions. In general, phreatic groundwater levels in the

Twente area are characterized as shallow, and the unsaturated zone is relatively thin.

The depth to the phreatic groundwater level varies between 0 and 12< (Van Thienen-

Visser et al., 2014), implying that the assimilation of surface soil moisture estimates in an

integrated hydrological model a�ects phreatic groundwater head simulations.
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Figure 5.2: Impact of MetaSWAP soil moisture data assimilation on MODFLOW groundwater

simulations for location 9 of the Twente soil moisture monitoring network. The unit of the ground-

water head is m +NAP, which is the height above the Dutch vertical reference datum.

Indeed, the assimilation of soil moisture observations a�ects simulated groundwater

levels due to the coupling of the MetaSWAP metamodel with the MODFLOW model,

as shown in Figure 3.1. Figure 5.2 shows two phreatic groundwater head simulations

of the MODFLOW model within LHM for station 9 of the in situ Twente soil mois-

ture monitoring network, based on the simulations described in Chapter 3. Note that

Figure 3.2 shows the location of this station within the Twente region. The blue line

represents groundwater observations from observation well B34F1353. The groundwa-

ter observations are obtained from DINOloket, the Dutch online database for subsurface

and groundwater data (https://www.dinoloket.nl). The black line shows the

groundwater head estimates of an open loop model run for a grid cell in which the

groundwater well is located. The red line shows the groundwater head estimates when

soil moisture observations are assimilated into the unsaturated zone model MetaSWAP

using the EnKF data assimilation scheme. Initially, the open loop run shows a large bias

with respect to the groundwater head observations. The EnKF run starts to deviate from

the open loop run in February 2016. In general, the accuracy of the EnKF run is higher

than the accuracy of the open loop run in terms of bias. Still, a large bias exists between

the EnKF run and the groundwater head observations.

These results should be interpreted with caution, as one could not expect that increasing

the accuracy of unsaturated zone �uxes would signi�cantly remove biases in groundwa-
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ter head simulations in short term simulations. Although related, groundwater dynamics

should be studied on much longer time scales than soil moisture dynamics. Therefore, it

would make sense to update both the soil moisture state as well as groundwater heads

in a data assimilation procedure to update phreatic groundwater levels. For example,

Zhang et al. (2016) found that univariate assimilation of either soil moisture or ground-

water head states improves the accuracy of the variable being assimilated, but does not

improve the accuracy of other variables. However, they show that the simultaneous as-

similation of soil moisture and groundwater head into a hydrological model improves the

accuracy of both the soil moisture and groundwater head simulations. Similar �ndings

were found by Camporese et al. (2009b). Moreover, He et al. (2019) show that assimilating

both surface water and groundwater head observations in a process-based hydrological

model increases the accuracy of both surface water and groundwater head simulations.

Although the application of multivariate data assimilation is promising, more research is

required before implementation in operational applications. For example, multivariate

data assimilation can lead to trade-o�s. Botto et al. (2018) shows that assimilating three

related variables (pressure head, soil moisture, and subsurface out�ow) in the CATHY

hydrological model using an EnKF scheme leads to a decrease in accuracy of other hy-

drological variables which were otherwise simulated well.

Outlook

We expect that, due to the increasing availability of hydrological observations, the ap-

plicability of data assimilation schemes for operational water resources management

will increase. Lessons might be learned from the meteorological sciences, as operational

weather forecasting centres already have considerable experience with integrating data

assimilation schemes into operational modelling and forecasting systems. Conversely,

weather centres can learn from the lessons learned in terrestrial data assimilation, as

subsurface processes concerning soil moisture signi�cantly a�ect meteorological pro-

cesses (Drusch et al., 2009; De Rosnay et al., 2013).

Although national water authorities might have su�cient in-house knowledge on data

assimilation schemes, regional water authorities generally lack such knowledge. In addi-

tion, water authorities may not have access to high-capacity computing facilities which

are often needed for data assimilation schemes due to budget constraints. The emergence

of parallel computing abilities (Rajabi et al., 2018) and new cloud computing techniques

o�er solutions for real-time applications (Bürger et al., 2012; Kurtz et al., 2017; Yang et al.,

2017). Also, the Model as a Service (MaaS) concept is promising (Chen et al., 2018). MaaS
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consists of a set of services which users such as water managers can use to quickly run

pre-built hydrological models which are run on cloud computing services. The MaaS

concept allows users to control model input and concepts and use their data for data

assimilation without having to implement data assimilation schemes themselves. An

example is the eWaterCycle project (https://www.ewatercycle.org), which

is an initiative to work collaboratively with existing hydrological models in one frame-

work. MaaS shows overlap with participatory modelling approaches, which are dis-

cussed in Section 5.2.3.

Last, the previous sections elaborated on the e�ect of soil moisture data assimilation

on updating of model state variables. Although not studied in this work, data assimila-

tion can also be used in parameter calibration studies. Several studies showed the value

of assimilating remotely sensed soil moisture information for calibrating parameters of

hydrological models (Wanders et al., 2014a; Shin et al., 2016; Baldwin et al., 2019). An

interesting application is updating of subsurface model parameters, as we found that

updating of a soil moisture state variable does not directly lead to increased accuracy

of groundwater simulations. Updating subsurface model parameters, such as hydraulic

conductivity, can lead to increased accuracy of groundwater modelling simulations as

shown by, for example, Hendricks Franssen et al. (2011).

5.1.3 Exploring the possibilities of TFN modelling

Since TFN modelling is a data-driven method, the applicability depends on the availabil-

ity of reliable training datasets. However, the sensitivity analysis performed in Chapter 4

shows that soil moisture TFN models already perform quite well using training set with a

length of half a year to one year. This �nding is an interesting property of TFN modelling

as hardly any long-term soil moisture datasets are available, besides the ESA CCI soil

moisture climate records (Gruber et al., 2019). In the following sections, we discuss four

possible TFN modelling applications which are interesting to study in the future.

Predicting soil moisture

The �tted IR functions of the TFN models can provide predictions of surface soil mois-

ture using predictions of precipitation and evapotranspiration. The Dutch meteorolo-

gical institute KNMI provides forecasts of these input variables. One could use ensemble

forecasting methods to include uncertainty aspects in the predictions. The TFN models

are especially suited for ensemble predictions due to the e�ciency and fast calculation

times. Additionally, projections of climate variability on historical time series of precip-
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itation and evapotranspiration can be used to assess the e�ect of climate change on soil

moisture dynamics by means of scenario analyses. On the other hand, the limitations of

TFN models should be taken into account. Changes in hydrology, land use, and soil type

are not considered due to the data-driven nature of the TFN approach.

Relate IR function parameters to physical phenomena

Chapter 4 elaborates on the spatial variation of the trained IR function parameters. The

variations could not be directly attributed to physical processes and spatial characterist-

ics. However, Bakker et al. (2007) and Bakker et al. (2008) show that the parameters of

IR functions in TFN groundwater modelling can be related to physical processes such as

the change in groundwater head. However, we were not able to relate the IR function

parameters, visualized in Figure 4.9, to physical processes concerning unsaturated zone

dynamics. Therefore, more research into the relationship between the parameters of IR

functions and physical processes is needed.

Fill data gaps

The occurrence of data gaps is inherent in satellite remote sensing studies. These gaps

exist for various reasons: Firstly, data are only available during satellite overpasses. Also,

satellite sensors are prone to malfunctioning. For example, the radiometer sensor of the

SMAP satellite temporarily stopped providing data during the summer of 2019. Lastly,

soil moisture retrievals by satellites are limitedly possible in periods where temperatures

drop below the freezing point, as low temperatures a�ect the di-electric properties of soil

water. The trained TFN models described in Chapter 4 are a means to �ll the data gaps.

Figures 4.5 and 4.10 show that the TFN models accurately predict soil moisture with

respect to the in situ data on days where the SMAP satellite data are not available. Thus,

the TFN models allow estimating soil moisture conditions during these gaps.

In addition, the TFN models can help in constructing historical long-term soil moisture

datasets. One would need long term input data series of precipitation and evapotranspir-

ation for the development of such datasets. Long-term historical time series of precip-

itation and evapotranspiration are available in the Netherlands via the meteorological

institute KNMI. These time series can be used in combination with the trained IR func-

tions to construct historical soil moisture time series. The validity of such soil moisture

time series can be assessed using, for example, long-term ESA CCI soil moisture data

(Gruber et al., 2019).
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Satellite validation studies

In situ soil moisture data are often used in remote sensing validation studies (Crow et al.,

2012; Dente et al., 2012; Wagner et al., 2013; Colliander et al., 2017; Van der Velde et al.,

2019). However, Figure 1.8 on page 40 shows that substantial di�erences in spatial scale

exist between in situ and remote sensing soil moisture estimates. The IR functions de-

rived in TFN modelling (Section 4.3.3) are interesting tools to identify which in situ data

can be used in the validation procedure, as the IR functions describe the system reaction

to input stresses. In such a study, both the IR functions for in situ and remote sensing

data should be derived. If the IR functions show similar system behaviour, the in situ

data are representative for the remote sensing footprints.

5.2 Applications for water management

We elaborate on various applications of the dissertation �ndings for water management

in the following sections.

5.2.1 Integrating evidence-based and experiential information

Chapter 2 concluded by stressing the need for the development of structured method-

ologies to increase the integration of evidence-based information in operational water

management. The structured methodologies are especially useful in mitigating the use

of the opinion-based and limited guidance bypasses as de�ned in Figure 2.1. For ex-

ample, Schuwirth et al. (2018) combine a multi-criteria decision support framework for

water quality assessments with modelling methods to predict the e�ectiveness of water

management alternatives, using scenario planning to include uncertainties concerning

climate variability and socio-economic developments. This example shows the utility of

structured methodologies for water management applications.

Decision support systems (DSSs) are tools speci�cally developed to integrate evidence-

based information in operational water resources management (Zhang et al., 2013). Al-

though several DSSs (Dutch: BOS, or beslissingsondersteunend systeem) have been de-

veloped in recent years, few examples of implementation in operational water manage-

ment are known (De Kok et al., 2008). For example, Junier and Mostert (2014) evaluated

the development and application of a DSS for the implementation of the Water Frame-

work Directive in the Netherlands. They found that the DSS was not used as much as

it was intended. Similar results were found in Chapter 2. For example, Figure 2.3 on
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page 55 shows that hydrological models in a DSS setting are not regarded as important

in comparison with other information sources. The interviewed experts indicated that

the trust in a DSS �rmly declines if an individual decision of the DSS leads to suboptimal

water system conditions, independently of the accuracy of the DSS in other situations. In

such (often calamity) situations, the experts rather depend on their experiential under-

standing of the water system. These �ndings are supported by Fabian et al. (2019), who

found that in nature conservation management, experiential information is considered

more important than evidence-based information. We should indeed acknowledge that

hydrological modelling approaches in DSSs are representations of the real world, so

uncertainties exist in the operational application of DSSs. However, water managers

probably overestimate their ability to estimate the e�ects of local measures on catch-

ment and management area scales (Cosgrove and Loucks, 2015; Loucks and Van Beek,

2017). Therefore, structured methodologies can help to �nd a balance in applying both

evidence-based and experiential information for decision-making in operational water

management. The framework shown in Figure 2.1 on page 49 provides a guide to develop

structured methodologies.

It would be helpful to develop a methodology for building trust in DSSs to increase

their applicability. De Kok et al. (2008) state that DSSs can serve several functions: being

library systems, learning tools, discussion instruments and operational decision-making

tools. An interesting aspect would be to use these di�erent functions to increase the trust

in DSSs. Initially, a DSS can be used as a reference work and as a learning tool. Once

water managers are familiar with DSSs, they can move towards operational applications.

Furthermore, the development and integration of hydrological models in DSSs should be

based on the needs of the users, for which participatory modelling approaches should

be used. De Kok et al. (2008) describe this process as appropriate modelling. Section 5.2.3

elaborates on the value of participatory modelling in the context of this research.

5.2.2 Translating data into information

It is not su�cient to only focus on how we can integrate hydrological modelling into

operational water management. Also, we have to focus on general methods for e�ect-

ively translating and presenting information. One way of translating data into rational

information for decision-making is the use of indicators. Indicators are qualitative or

quantitative parameters which o�er spatiotemporal information. Several studies pro-

pose the use of indicators to translate data into applicable and valuable information

(Juwana et al., 2012; Maiello et al., 2015; De Girolamo et al., 2017).
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Table 5.1: Drought categorization of the SWDI indicator as de�ned by Martinez-Fernandez et al.

(2015).

SWDI Drought categorization
>0 No drought (\ > \ 5 2 )

0 to -2 Mild

-2 to -5 Moderate

-5 to -8 Serious

-8 to -10 Severe

<-10 Extreme (\ < \F? )

Examples of soil moisture indicators which are useful for drought monitoring are the Soil

Water De�cit Index (SWDI) (Martinez-Fernandez et al., 2015), the Drought Severity Index

(DSI) (Cammalleri et al., 2016), the Soil Moisture Agricultural Drought Index (SMADI)

(Sanchez et al., 2016), and the Storage Capacity Indicator (SCI) (De Heus, 2019). Examples

of soil moisture indicators which are useful for �ood monitoring are the Soil Wetness

Index (SWI) (Mallick et al., 2009) and various relative soil moisture indices proposed by

Massari et al. (2014). Furthermore, wild�re risk soil moisture indicators give valuable

information in dry periods (Chaparro et al., 2015; Krueger et al., 2017).

We give an example application of the SWDI drought indicator for the dry summer

period of 2018, as Vogel et al. (2019) showed that heat waves will occur more frequently

in the future. Martinez-Fernandez et al. (2015) de�ne the SWDI as:

(,�� =
\ − \ 5 2
\0FB

∗ 10, (5.1)

\0FB = \ 5 2 − \F? , (5.2)

where \ 5 2 is the soil moisture content at �eld capacity [<3 <−3], \0FB is the available

water storage [<3 <−3], and \F? is the soil moisture content at wilting point [<3 <−3].

\0FB indicates the maximum amount of soil water available for vegetation and crops.

SWDI quanti�es agricultural drought by classifying the water availability for crops in

terms of severity. Table 5.1 shows the di�erent SWDI drought categories de�ned by

Martinez-Fernandez et al. (2015). The classi�cation helps water managers to interpret

the severity of dry spells.

Figure 5.3 shows an example of the SWDI indicator for two days in the year 2018 for the

Twente study area. The root zone soil moisture estimates used for calculating the SWDI
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Extreme
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Figure 5.3: SWDI indicator according to the categorization in Table 5.1 for January 1 and Au-

gust 1 2018 derived from MIPWA model output, which is based on the NHI modelling framework

(De Lange et al., 2014). Part of the Twente study area is shown. The white areas indicate built-up

areas, which are not considered by MIPWA.
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indicator, using equation 5.1, are obtained from a regional hydrological model (MIPWA),

which is part of the NHI modelling framework (De Lange et al., 2014). The concepts of

MIPWA are similar to the LHM model introduced in Chapter 3. The estimates have a

spatial resolution of 25< by 25<. Van Gurp (2016) assessed the suitability of MIPWA

for soil moisture modelling in the Twente study area. A model description can be found

in Chapter 3 and in Van Gurp (2016).

The upper panel of Figure 5.3 shows the SWDI indicator for January 1 2018, which is

a wet winter period. The lower panel shows the SWDI indicator for August 1 2018,

which is a dry summer period. Analogous to Figure 1.7, the SWDI indicator shows that

severe dry conditions existed during the 2018 summer period. The categories show that

the severity of the agricultural drought varied over the study area from a moderate to

extreme drought. The spatial distribution of the SWDI indicator allows water managers

to identify areas which need special attention. In addition, the temporal variation of the

SWDI indicator can be used to assess the development of a dry spell and the e�ectiveness

of drought measures.

De Heus (2019) validated the usefulness of the SWDI indicator for drought monitoring

in the Twente study area in cooperation with the Dutch regional water authority Vec-

htstromen. The water managers indicated that the SWDI indicator is useful to support

decision-making. In addition, the spatial distribution of SWDI helped the water man-

agers to gain new insights into the spatial variation of drought problems. Finally, the

SWDI indicator was considered as easy-to-use.

5.2.3 Participatory modelling

We discussed in Chapter 2 that water resources managers have di�culties interpreting

the output of hydrological models. As an example, the water managers indicate that they

often do not understand the assumptions behind model conceptualizations, which limits

application of hydrological modelling output. Traditionally, hydrological models are

developed and run by model developers in response to speci�c requests from decision-

makers, which Cash et al. (2006) and Feldman and Ingram (2009) describe as the loading-

dock model of decision support. Model developers prepare models, forecasts or other

information for general use without really understanding the end users’ needs, which is

another example of the science-policy gap, as discussed in Section 1.4.

A proposed method to overcome the science-policy gap regarding hydrological mod-

elling is participatory modelling. Participatory modelling is a process in which water
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managers are actively involved in model development and simulations (Hanger et al.,

2013; Moeseneder et al., 2015). This approach helps water managers to understand the

various modelling choices, as well as model developers getting a better understanding

of the water managers’ needs. In the following, we will give three examples of particip-

atory modelling approaches which were applied in the context of this dissertation. Last,

we will re�ect on the application of participatory modelling.

Firstly, we applied a participatory modelling approach in Chapter 4. An exploratory

study was conducted in cooperation with the Dutch regional water authority Vechtstro-

men. A student of the University of Twente was positioned at the regional water author-

ity for ten weeks, during which he focused on the development of an initial version of

the TFN models described in Chapter 4. The student worked in close cooperation with

water managers at the regional water authority. The authors of this work supervised the

student. The student and water managers regularly met to discuss the intermediate mod-

elling results. During these meetings, the student presented the recent �ndings, and the

water managers had the opportunity to provide feedback. The �nal results helped the

regional water authority in identifying the possibilities of TFN modelling for application

in operational water management (Rorink, 2019). Furthermore, the student had various

recommendations which helped to improve the work presented in Chapter 4.

Another example is the validation of a new hydrological subsurface model for the Dutch

regional water authority Aa en Maas. This regional water authority shows interest in the

application of soil moisture information to increase water management e�ectiveness. In

this context, an in situ soil moisture and temperature monitoring network consisting of

15 locations was developed and installed in cooperation with members of the OWAS1S

project team early 2016. The network is situated in the Raam catchment, which is located

in the management area of Aa en Maas. The location is shown in Figure 1.5. Benninga

et al. (2018) describe the development and characteristics of the Raam monitoring net-

work. All data from the network are freely available and have already resulted in several

studies concerning soil moisture applications (Droesen, 2017; Martens et al., 2018; Air-

langga and Liu, 2019; Carranza et al., 2019). The development of the network also led

to increasing interest in the forecasting of soil moisture and groundwater conditions by

the regional water authority, which led to the development of a new subsurface model-

ling instrument for Aa en Maas. A student of Wageningen University & Research was

positioned at the regional water authority and at the research institute Deltares where

the modelling instrument is developed. The student used the soil moisture data from

the network to validate model output (Droesen, 2017). Next, the student discussed his
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�ndings in meetings with water managers from the regional water authority and model

developers. Among others, this led to the selection of di�erent model input data concern-

ing soil physical characteristics. Furthermore, the �ndings of the student contributed to

the research methodology applied in Chapter 3.

Last, the MetaSWAP-OpenDA data assimilation framework applied in Chapter 3 was

developed using a participatory approach. The coupling of the operational hydrological

modelling instrument with the data assimilation framework is a result of a coopera-

tion with a research institute (Deltares), a consultancy �rm (HKV), and the authors of

this work. During meetings with the software developers of the OpenDA framework,

several code requirements were set. Based on these requirements, the software de-

velopers developed new software code which was subsequently tested by the user, who

in turn gave feedback to the software developers. As a �nal product, the MetaSWAP-

OpenDA framework was added to the o�cial release of the OpenDA software (http:
//www.openda.org/). The source code of the software can be found at https:
//github.com/OpenDA-Association/OpenDA.

The three examples give a good overview of how participatory modelling approaches

can help to increase the accuracy and applicability of hydrological models in opera-

tional water management. The participatory approach leads to feedback loops between

developers and water managers. Furthermore, the frequent meetings with water man-

agers help them become familiar with the processes and di�erent spatiotemporal scales

concerning soil moisture. In addition, water managers often consider hydrological mod-

els as unreliable for operational water resources management, as was found in Chapter 2.

Participatory modelling will help to increase the trust of water managers in hydrological

modelling approaches. In our opinion, model developers, policy-makers, and water man-

agers should be encouraged to invest in participatory modelling approaches.

Participatory modelling becomes increasingly included in hydrological model develop-

ment. For example, the hydrological models based on the NHI modelling framework,

such as the LHM model used in Chapter 3 and the MIPWA model discussed in Figure 5.3,

have been developed using a participatory approach (De Lange et al., 2014). However,

the people from the water authorities and other participating stakeholder organisations

who help to develop the models are not always the people who have to apply the models

in operational settings. Hence, it is vital that the right people from the water authorities

and stakeholder organisations are involved in the modelling process.
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5.3 Link to other research areas

Integrating new information in water management

The �ndings of this study show that integrating new information sources in water man-

agement is not just a matter of technical advances. Although the developers of new

information may have su�cient knowledge and experience to develop understandable

forms of information, external forces largely determine if such information is imple-

mented in water management (Junier and Mostert, 2014). Indeed, several studies stress

that the social aspect plays a large role in the integration of new information sources

in water management (e.g. Junier and Mostert, 2014; Leskens et al., 2014). Individually,

the technical and social aspects have been studied extensively. To develop a consistent

framework for integrating new information in water management, we should focus on

integrating both the technical and social aspects. Participatory modelling approaches as

described in Section 5.2.3 show great potential.

Additionally, serious gaming methods allow water managers to become familiar with

new technological advances and simultaneously build trust in new water management

methodologies (Den Haan et al., 2019). Furthermore, the storylines developed within

the Dutch RiverCare project (https://kbase.ncr-web.org/rivercare/
storylines-overview) are an interesting development. The storylines can be

used to get an easy-to-interpret overview of new methodologies, results, and applic-

ations of research output, allowing water managers to relate the new �ndings to their

management challenges (Cortes Arevalo et al., 2018). Such methods are also proposed by

Fabian et al. (2019) to increase the application of evidence-based information in nature

conservation management.

Soil moisture data assimilation for meteorological research

The land surface part of operational weather forecast modelling instruments is often

bounded by the unsaturated zone, as the availability of soil moisture in�uences evapo-

transpiration processes. The �ndings of Chapter 3 may help in increasing the accuracy

of meteorological forecasting, as operational assimilation of soil moisture information

can improve both regional and local soil moisture model estimates. Since data assimil-

ation schemes are already extensively used in operational numerical weather forecast-

ing, it should be relatively easy to include soil moisture data assimilation in such sys-

tems (Drusch et al., 2009; De Rosnay et al., 2013). SWM-EVAP is an example of a pro-

ject currently focusing on such applications. More information concerning this project
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can be found at https://www.knmi.nl/over-het-knmi/nieuws/onde
rzoek-naar-verdamping-voor-beter-waterbeheer.

Describing physical systems using TFN modelling

TFN modelling is already used for groundwater modelling applications. The �ndings on

TFN models in this research show potential for application in other research �elds. The

development of the PIRFICT method (Von Asmuth et al., 2002; Von Asmuth and Bierkens,

2005) lead to easier-to-implement TFN models, as the model identi�cation stage usually

needed in TFN modelling (Box and Jenkins, 1970) does not have to be performed. As

shown in Chapter 4, TFN models can describe both linear and non-linear systems. In

theory, they can be developed for each process or variable which can be described using

a set of input time series. The in�uence of each input time series on the desired process

or variable has to be described using a relatively simple statistical distribution function.

Furthermore, su�cient training data must be available. As a general rule of thumb, the

training data must at least cover the memory of the observed system.

As TFN models are powerful in the sense that they need limited computational require-

ments, these models have potential in research �elds focusing on hydraulic and mor-

phological systems. Model simulations in these �elds are generally computationally de-

manding, so often idealized modelling approaches (e.g. Campmans et al., 2017; Reef et al.,

2018; Damveld et al., 2019) and meta-modelling or emulation methods (e.g. Berends et al.,

2018; Bomers et al., 2019) are often applied to study system processes. TFN modelling is a

promising extension to these methods, e.g. for predictions and uncertainty assessments

using ensemble methods.
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6.1 Conclusions

We answer the research questions, formulated in Section 1.5, in the following section.

Research question 1

To what degree are hydrological models currently applied in operational water
management and how can their applicability be increased for operational water

management?

Chapter 2 focused on the current application of experiential and evidence-based inform-

ation in Dutch regional operational water management. A framework was developed to

identify which information is used by regional operational water managers, also referred

to as decision-makers. We found that water managers use evidence-based information

in the form of measurement data, system knowledge, meteorological forecasts, hydro-

logical models, and legislation. However, operational water managers also considerably

depend on experiential information, which may lead to opinion-based bypasses. Further-

more, water managers often take limited guidance bypasses (not taking into account all

available information), as they are limited due to time and budget constraints. In addi-

tion, regional operational water managers often regard evidence-based information in

the form of hydrological models as unreliable for decision-making in operational water

resources management. To improve the applicability of hydrological models, both sci-

entists and decision-makers should focus on several aspects. Decision-makers should

focus on developing structured methodologies for interpreting both evidence-based and

experiential information. Researchers have to focus on delivering the appropriate in-

formation in an understandable format at the right moment in time. Furthermore, edu-

cating decision-makers on hydrological model concepts and assumptions may help to

increase the understanding of the relationship between model results, implications for

water management, and what water managers observe in the �eld. The latter aspect will

also help water managers to understand the inherent uncertainties related to hydrolo-

gical modelling. Participatory approaches, serious gaming, and storylines show great

potential to build trust in new technological advances in hydrological modelling.

Research question 2

To what extent can the assimilation of a high-resolution remotely sensed surface soil
moisture product increase the accuracy of an unsaturated zone hydrological metamodel?

Chapter 3 focused on the utilization of high-resolution remotely sensed soil moisture
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information for process-based modelling. We found that integrating satellite-based soil

moisture observations and hydrological metamodel simulations using a data assimilation

scheme leads to new opportunities for operational water resources management. The

Bayesian background of data assimilation schemes allows combining the uncertainties

of both the remotely sensing data and soil moisture simulations into a new soil moisture

estimate of larger accuracy. A perturbed observations Ensemble Kalman Filter (EnKF)

was used to assimilate SMAP satellite L3 Enhanced surface soil moisture estimates into

the unsaturated zone metamodel MetaSWAP as part of the Netherlands Hydrological

Instrument (NHI). First, a synthetic experiment, commonly referred to as a twin experi-

ment, showed the value of applying an EnKF data assimilation scheme for state updating

of the MetaSWAP metamodel. Then, a data assimilation run was performed using the

SMAP surface soil moisture product for the year 2016. On a regional scale, the updated

soil moisture model simulations show a larger skill in terms of root mean square error

(RMSE) and model bias. The skill of the updated model simulations slightly decreases

in terms of correlation coe�cient, which can be explained by the larger variability of

the assimilated SMAP observations with respect to the in situ validation data. On a

local scale, the skill of updated soil moisture model simulations mainly depends on how

well the SMAP surface soil moisture observations represent local �eld conditions. A

particular challenge concerning soil moisture remote sensing is that satellite-retrieved

soil moisture is generally limited to the upper part of the soil. The results presented

in Chapter 3 show that the assimilation of surface soil moisture observations has value

in updating root zone soil moisture model simulations. We expect that recent and up-

coming developments in high-performance computing, data storage and data processing

facilities will increase the applicability of data assimilation methods for operational wa-

ter resources management. These developments will help operational water managers

to get an up-to-date overview of water system conditions.

Research question 3

To what extent can data-driven modelling, based on high-resolution remote sensing data,
be used to provide up-to-date soil moisture information for operational water

management?

Chapter 4 focused on a novel data-driven method for soil moisture modelling. We stud-

ied the applicability of transfer function-noise (TFN) modelling for explaining soil mois-

ture conditions. We found that exponential distributions can be used to de�ne impulse-

response (IR) functions, which describe the response of soil moisture to precipitation
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and reference evapotranspiration stress series. The TFN models were able to describe

soil moisture dynamics using the SMAP L3 Enhanced surface soil moisture product as

training data. In terms of RMSE, the TFN models shows similar accuracies with re-

spect to the SMAP data. Also, the TFN models have value on �eld scales if the SMAP

training data is representative for that particular scale. One should note that the avail-

ability of training data has a considerable e�ect on the TFN model results, especially in

extreme situations. A sensitivity analysis on the training period length showed that se-

lecting a suitable training period can positively a�ect the capabilities of the TFN model

in extreme situations. Furthermore, the parameters of the IR functions describe water

system characteristics, although more research is needed to relate the parameters to

physical phenomena. Concluding, TFN models are fast and easy-to-construct alternat-

ives for process-based modelling and can help in retrieving up-to-date information on

water system conditions in water management. Several promising applications of TFN

soil moisture modelling were identi�ed in Chapter 5, such as ensemble predictions of

soil moisture, the reconstruction of historical soil moisture time series, �lling of data

gaps and satellite validation studies.

Synthesis

The general research aim was to show the potential use of soil moisture information

as part of operational water resources management systems, in particular hydrological

models, using high-resolution remote sensing data. Besides the �ndings of Chapter 3

and Chapter 4, we have shown possible applications of in situ, remotely sensed and hy-

drological modelling based soil moisture information for operational water management

in Chapter 5. Furthermore, we have identi�ed several means for the integration of new

information in water management applications. We expect that, in the near future, the

increasing availability of high-resolution soil moisture data and the increasing availabil-

ity of computational power will lead to promising possibilities for research and practical

applications. Therefore, we want to give several recommendations for further research

and water management applications in the next section.
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6.2 Recommendations

6.2.1 Scienti�c implications

Estimating soil moisture conditions on various spatiotemporal scales

The various applications in this work show the utility of soil moisture information for

hydrological applications. Although the dissertation explored various ways to relate in

situ, remote sensing and hydrological modelling estimates, substantial di�erences exist

between the di�erent spatial and temporal scales of these methods. Therefore, research

should continue to focus on developing new methods to bridge the gap between �eld,

regional, national and global soil moisture scales. Research should focus on which spati-

otemporal scales are needed to solve speci�c issues related to water management. Also,

the relationship between surface soil moisture and deeper soil layers should be extens-

ively studied. As process-based methods are often complex, data-driven methods show

great potential to link these spatiotemporal scales.

Explore potential of multivariate data assimilation

Chapter 3 showed that the univariate assimilation of surface soil moisture estimates into

an unsaturated zone model improved root zone soil moisture simulations. Section 5.1.2

elaborated on the e�ect of the soil moisture assimilation on other hydrological vari-

ables. Increasing the accuracy of soil moisture simulations had a small e�ect on actual

evapotranspiration simulations, and slightly increased the accuracy of phreatic ground-

water level simulations in terms of bias. In particular, multivariate data assimilation ap-

proaches seem promising to update multiple hydrological variables in subsurface mod-

elling. We recommend exploring the assimilation of both soil moisture and groundwater

observations. Moreover, the opportunities of using �eld scale remote sensing soil mois-

ture observations for data assimilation schemes should be studied, as we expect that such

high-resolution estimates will become increasingly available in the near future.

Improve groundwater modelling using model parameter updating

Updating soil moisture state variables did not lead to a signi�cant increase in accuracy

of groundwater simulations. We encourage exploring the value of soil moisture data

assimilation for updating of subsurface model parameters used by the saturated zone

model MODFLOW as part of the NHI hydrological modelling framework. The OpenDA-

MetaSWAP data assimilation framework, developed and introduced in Chapter 3, allows

both updating of model state variables and parameters. In particular, we recommend to
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explore the value of data assimilation for updating subsurface model parameters such as

hydraulic conductivity, as such parameters are generally not observable.

Explore possibilities of TFN modelling

As TFN models are fast and easy to develop, they form competent alternatives for process-

based models. Section 5.1.3 elaborated on various possible applications of TFN modelling

for soil moisture modelling. In particular, it would be valuable to explore the possibilit-

ies for predicting soil moisture. As TFN models are fast, combining them with ensemble

predictions can help in identifying the uncertainties of soil moisture modelling. Further-

more, the parameters of the IR functions can help water managers to identify regions in

their management area which respond either fast or slow on input stresses like precipita-

tion. Such �ndings would help water managers to adapt water management practices on

a local scale. Also, the IR functions of both satellite and in situ soil moisture data can be

compared. The similarities or di�erences in system responses between the IR functions

provide valuable information on the overlap of spatiotemporal scales between satellite

and in situ data. Next, the SMAP satellite experienced malfunctioning in July 2019. The

TFN models can help in �lling the data gaps caused by the malfunctioning. Similarly,

when long-term datasets of stress series are available, one could develop historical soil

moisture time series. KNMI provides precipitation and crop reference evapotranspira-

tion up to tens of years back in time. The long-term historical soil moisture time series

can be used to study the e�ect of the changing climate on subsurface hydrology.

6.2.2 Practical implications

Develop structured methodologies

To integrate both evidence-based and experiential information in decision-making, we

encourage the development of structured methodologies for operational water resources

management. Structured methodologies will help to take robust and reliable decisions

based on both evidence-based and experiential information. The increasing development

of decision support systems, including hydrological model forecasting applications, are

a good starting point and should be encouraged. We should continue assessing whether

such systems provide the correct information in understandable formats to the right

people by re-identifying the needs of water managers. Furthermore, we should invest

in studies on how we can transfer uncertainty concepts to decision-makers, building

on studies like Walker et al. (2003), Morss et al. (2005), Beven and Alcock (2012), and

Warmink et al. (2017).
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Collect soil moisture data for operational water management settings

As national and regional water authorities show interest in using soil moisture informa-

tion, we encourage to increase the collection of soil moisture �eld measurements. Such

information would help in interpreting both remote sensing and hydrological model es-

timates and require relatively small investments. For example, the Dutch National Com-

mittee for Water Distribution (Landelijke Coördinatiecommissie Waterverdeling, LCW ),

issues a drought report (droogtemonitor) every month. Soil moisture information is a

valuable addition to this report. We have to create long-term soil moisture datasets with

a length of at least a couple of years to perform anomaly analyses. Also, both process-

based and data-driven modelling methods generally need as much input and validation

data as possible. Furthermore, the increasing availability of long-term in situ soil mois-

ture data would have great value for satellite validation studies and would increase our

understanding of climate change e�ects on the hydrology of the soil subsurface.

Apply new remote sensing data in operational settings

Analogous to the research framework (Figure 1.9), we recommend testing various applic-

ations of soil moisture remote sensing data for operational water management. Dutch

water authorities are already investing in remote sensing by buying tailor-made remote

sensing data. Also, the Netherlands Space O�ce maintains an online database consisting

of already processed remote sensing data which can be freely downloaded and used: ht
tps://www.spaceoffice.nl/nl/satellietdataportaal. Addition-

ally, the European Union and ESA developed Copernicus, the European Earth Obser-

vation Programme. A primary aim of Copernicus is the development of the Sentinel

satellite family, which provide satellite data for various applications in the earth sci-

ences. The Sentinel DataHub allows easy access to the Sentinel data: https://scih
ub.copernicus.eu/dhus. Subsequently, water managers are encouraged to use

the data in their daily practices to discover the utilization possibilities. This work shows

that such remote sensing data have value in data assimilation procedures (Chapter 3)

and data-driven modelling approaches (Chapter 4). We invite water managers to con-

tinue executing such ideas and see great potential in participatory approaches to merge

the knowledge of scientists, businesses, and decision-makers.

Enable easy access of soil moisture data and other relevant datasets

Various initiatives exist to publicly share soil moisture data, like the International Soil

Moisture Network. Both national and regional water authorities should support these
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initiatives. Furthermore, we encourage the inclusion of relevant datasets, for example,

indicators based on soil moisture data.

Invest in innovative information technology (IT) infrastructure

The increasing availability of high-resolution remote sensing data and hydrological mod-

elling leads to increasing requirements for data storage and processing facilities, high-

capacity computational environments, decision support systems, and many other IT ap-

plications. Water authorities and institutes should not underestimate the need to invest

in required infrastructural developments. As such systems are still quite expensive, it

might be helpful to seek collaborations, e.g. to start national, supranational, or even

global initiatives for developing IT infrastructure.

Educate water managers

During the execution of this research, we often found that operational water managers

in the Netherlands are not very familiar with the concepts of soil moisture processes.

Also, they are often either not familiar with or interested in new scienti�c develop-

ments. Consequently, water managers might take the opinion-based bypass (Figure 2.1),

which leads to sub-optimal decisions. To increase the understanding of water managers

and to inform them about recent developments, water managers must be encouraged to

embrace new technological advances and have to be educated accordingly. New ways

of presenting scienti�c �ndings, like innovative ways of presenting information in de-

cision support systems, can help in educating water managers. Not only researchers,

but also business �rms can help to improve this aspect. Hydrologists, operational water

managers as well as policy makers should be included in this process. Finally, a better

understanding of the physical concepts and processes by water managers would help

the integration of soil moisture information in operational water management.
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