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Summary 

The increasing water consumption as a result of population growth and economic 

development, especially in fast growing developing countries, puts an increasing 

strain on the sustainable use of the globe’s finite freshwater resources and poses a 

key challenge for the future. The objective of the thesis is to evaluate past, current 

and future water footprints (WFs), water scarcity and virtual water (VW) flows at 

both river basin and national level in China, focusing on the agricultural sector, high 

spatial resolution modelling, uncertainties, inter- and intra-annual variation and 

benchmarks. The parts of the research that are carried out on river basin level focus 

on the Yellow River Basin (YRB). The main research goal has been translated into 

five subsequent studies:  

Sensitivity and uncertainty in WF accounting in crop production, in a case 

study for the Yellow River Basin: The study aims to investigate the sensitivity of 

the WF of a crop to changes in input variables and parameters and to quantify the 

uncertainties in green, blue, and total consumptive (green plus blue) WFs of crops 

due to uncertainties in input variables at the scale of a river basin. The 

‘one-at-a-time’ method was applied to analyse the sensitivity of the crop WF to 

fractional changes of different individual input variables and parameters, and Monte 

Carlo simulations were used to assess the uncertainties in estimated WFs resulting 

from uncertainties in a few key input variables. The consumptive WFs of crops 

were found to be most sensitive to changes in ET0 and Kc. Blue WFs were more 

sensitive to input variations than green WFs. Uncertainties in key input variables 

together generate an uncertainty of ± 30% (at 95% confidence interval) in the 

estimated WFs of crops.  

Inter- and intra- annual variation of WF of crops and blue water scarcity in the 

Yellow River Basin: The study estimates inter-annual variability of green, blue and 

grey WFs of crop production over the period 1961-2009 as well as the monthly 

variation of blue water scarcity over 1978-2009 in the YRB. The average annual 
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overall green and blue WFs of crops in the period 2001-2009 were 14% and 37% 

larger, respectively, than in the period 1961-1970. The annual nitrogen- and 

phosphorus-related grey WFs of crop production grew over the study period by 

factors of 24 and 36, respectively. The green-blue WF per tonne of crop reduced 

significantly due to improved crop yields, while the grey WF increased because of 

the growing application of fertilizers. On average, the YRB faced moderate to 

severe blue water scarcity during seven months (January-July) per year. Even in the 

wettest month in a wet year, half of the basin still suffered severe blue water 

scarcity. 

The effect of inter-annual variability of consumption, production, trade and 

climate on crop-related green and blue WFs and inter-regional VW trade in 

China: The study quantifies the effect of inter-annual variability of consumption, 

production, trade and climate on consumptive WFs and VW trade in China for the 

period of 1978-2008. It is shown that the historical increase in crop yields has 

helped to reduce the consumptive WF per tonne of crops. As a result, the increases 

in consumptive WFs of crop production (by 7%) and crop consumption (by 6%) 

were much smaller then the increases in produced and consumed crop quantities 

over the study period. Historically, the net VW flow within China was from the 

water-rich South to the water-scarce North, but intensifying North-to-South crop 

trade reversed the net VW flow since 2000. During the whole study period, China’s 

inter-regional VW flows went dominantly from areas with a relatively large blue 

WF per unit of crop to areas with a relatively small blue WF per unit of crop, which 

in 2008 resulted in a trade-related blue water loss of 7% of the national total blue 

WF of crop production.  

Consumptive WF and VW trade scenarios for China with a focus on crop 

production, consumption and trade: The study assesses green and blue WFs and 

VW trade in China under alternative scenarios for 2030 and 2050 focusing on the 

agricultural sector. Changes in five driving factors were considered: climate, 

harvested crop area, technology, diet, and population. Four scenarios (S1-S4) were 

constructed by making use of three of IPCC’s shared socio-economic pathways 

(SSP1-SSP3) and two of IPCC’s representative concentration pathways (RCP2.6 
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and RCP8.5). The results show that, across the four scenarios and for most crops, 

the green and blue WF per tonne of crop will decrease, as well as the WF per capita 

related to food consumption. Changing to a less-meat diet can generate a reduction 

in the WF of food consumption of 44% by 2050 as compared to 2005. In all 

scenarios, as a result of the projected increase in crop yields and thus overall growth 

in crop production, China will reverse its role from net VW importer to net VW 

exporter and attain food self-sufficiency. All scenarios show that China could meet a 

high degree of food self-sufficiency while simultaneously reducing water 

consumption in agriculture.  

Benchmark levels for the consumptive WF of crop production for different 

environmental conditions, with a case study for winter wheat in China: The 

study explores which environmental factors should be distinguished when 

determining benchmark levels for the consumptive WF of crops. Benchmark levels 

for the consumptive WF of winter wheat production in China were determined for 

all separate years in the period 1961-2008 for China as a whole, for rain-fed versus 

irrigated croplands, for wet versus dry years, for warm versus cold years, for four 

different soil classes and for two different climate zones. We simulate consumptive 

WFs of winter wheat production with the crop water productivity model AquaCrop 

at a 5 by 5 arc min resolution, accounting for water stress only. It is found that, 

when determining benchmark levels for the consumptive WF of a crop, it is most 

useful to distinguish between different climate zones. WF benchmarks for the 

humid zone are 26-31% smaller than for the arid zone. If actual consumptive WFs 

of winter wheat throughout China were reduced to the benchmark levels set by the 

best 25% of total national production, distinguishing between benchmark levels for 

the arid areas and the humid areas, the water saving in an average year would be 53% 

of the current water consumption at winter wheat fields in China. The majority of 

the yield increase and associated improvement in water productivity can be 

achieved in southern China. 

Conclusion: The current work contributes to the advance of the field of water 

footprint assessment in different ways. First, FAO’s crop water productivity model 
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AquaCrop has been implemented in large scale WF simulations for the first time in 

the thesis. Second, it offers the first comprehensive study of sensitivities and 

uncertainties in WF accounting. Third, it adds to the few studies carried out thus far 

on the inter- and intra- annual variation of WF of crops, blue water scarcity and VW 

trade, through one case study for the YRB, and another study for China as a whole. 

Fourth, it is the first study showing WF and VW trade scenarios for China 

accounting for both climate change and various socio-economic drivers. Finally, the 

work contributes to the development of knowledge on how to determine 

benchmarks as reference levels for consumptive WFs in crop production, by 

exploring the relevance of different environmental factors when developing WF 

benchmarks. 

 
 
  



1 

 
 

1. Introduction 

 
  



2 
 

1.1  Background 

Freshwater is a basic source of life and key resource in achieving food security and 

supporting sustainable economic development (Vörösmarty et al., 2000; Falkenmark and 

Rockström, 2004; Vörösmarty et al., 2010; Liu et al., 2015). In the period 1961-2013, the 

global population increased by a factor 2.3, global irrigated area doubled (FAO, 2014b) and 

global fertilizer consumption (total of nitrogen, phosphorus and potassium) increased by a 

factor 5.7 (IFA, 2013). Currently, agriculture accounts for 70% of the global withdrawal of 

blue water (surface and ground water resources) (FAO, 2014a), mostly for irrigation, and 92% 

of the global blue water consumption (Hoekstra and Mekonnen, 2012). Nutrient leaching 

and runoff from intensively fertilized croplands has caused substantial degradation of water 

quality and eutrophication of major freshwater bodies and coastal and marine ecosystems 

(Vitousek et al., 2009). According to Mekonnen and Hoekstra (2015), 48% of the global 

population is living in river basins in which the waste assimilation capacity is insufficient to 

take up the actual nitrogen water pollution. The excessive water consumption and pollution 

by the agricultural sector are constraining water availability for industry and households and 

worsening the quality of water for drinking. The total volume of accessible blue water for 

humans is limited due to the high spatial and temporal variability of water resources (Oki 

and Kanae, 2006). The increasing pressure by humans on the globe’s finite fresh water 

resources is the biggest threat to ecosystem health. Meanwhile, green water (rainwater 

stored in the soil) plays an important role in food production as well (Savenije, 2000; 

Falkenmark and Rockstrom, 2006), accounting for 87% of consumptive water use for global 

crop production (1996-2005) (Mekonnen and Hoekstra, 2011). By focusing on blue water, 

most studies and current water managers overlook the benefits derived from green water as 

well as the increasing competition over this resource. In order to better understand water 

scarcity, it is necessary to quantitatively estimate the full consumptive water use in the 

agriculture sector, including both green and blue water (Shiklomanov, 2000; Falkenmark 

and Rockström, 2004; Hoekstra et al., 2012).  

Globalization of supply chains has led to increasing trade of commodities across economic 

and hydrological system boundaries and significantly increased consumption of imported 

water-intensive commodities that are produced elsewhere. In most cases, consumers are 
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unaware of how their consumption decision can affect freshwater resources in the locations 

where the commodities are produced (Hoekstra and Chapagain, 2008; Hoff, 2009; Yang et 

al., 2013; Vörösmarty et al., 2015). The introduction of the idea of virtual water (VW) trade 

by Allan (1998) led to the recognition of the fact that water scarce regions can profit from 

import of water-intensive commodities, thus saving local water resources. In addition, VW 

trade can generate global water savings if water-intensive products are traded from areas 

with relatively high water productivity to areas with relatively low water productivity 

(Chapagain et al., 2006; Konar et al., 2011). Hoekstra (2003) introduced the water footprint 

(WF) concept, measuring multi-dimensionally (in volume, location and time) both direct 

and indirect freshwater appropriation of an activity, product, producer or consumer. Unlike 

the traditional production-based and blue-water-focused water use indicators, the three 

components of the WF – green WF (rainwater consumption), blue WF (surface or ground 

water consumption) and grey WF (water required to assimilate aquatic pollution) – provide 

a comprehensive measure of water use to inform water resources management (Herva et al., 

2011; Hoekstra et al., 2011). The WF can be evaluated for different entities, including a 

process step, a product, a consumer, a geographically delineated area, a business or 

humanity as a whole (Hoekstra et al., 2011). The WF of consumers within a certain 

geographic area can be divided into an internal WF (water consumed within the area itself to 

produce goods that are consumed locally) and an external WF (water consumed in other 

areas to produce commodities imported by and consumed in the considered area) (Hoekstra 

et al., 2011).  

During the last two decades, a number of water scarcity indicators have been developed and 

used to measure and map the level of human water use in comparison to water resources 

availability (Savenije, 2000; Brown and Matlock, 2011; Mekonnen, 2011; Hoekstra et al., 

2012; Wada, 2013). The most widely used water scarcity indicators have been the annual 

runoff-to-population ratio (Falkenmark, 1989) and the annual withdrawal-to-runoff ratio, 

also called the withdrawal-to-availability ratio (Raskin et al., 1997; Vörösmarty et al., 2000; 

Alcamo et al., 2003; Oki and Kanae, 2006). Given the importance of sustaining crucial 

ecological functions, environmental flow requirements were incorporated into scarcity 

metrics, by subtracting environmental flow requirements from the available water resources 
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(Smakhtin et al., 2004b). However, the above water scarcity indicators have measured water 

scarcity at annual basis, which under-values the importance of the temporal mismatch 

between water demand and water availability within the year (Savenije, 2000). The 

shortcoming regarding the variation of water consumption and availability within the year 

has been addressed by Wada et al. (2011). Another weakness of above water scarcity 

indicators is that water use is measured in terms of water withdrawal, while only the 

consumed proportion of the total withdrawal contributes to water scarcity, since return flows 

can be reused (Perry, 2007). Therefore, a more reliable indicator of blue water scarcity is the 

ratio of the blue WF in a catchment area to the maximum sustainable blue WF, whereby the 

latter is taken as the natural runoff in the catchment minus environmental flow requirements, 

measured on a monthly basis (Hoekstra et al., 2012).  

As the world’s most populous country, China has been facing increasingly severe water 

scarcity, caused by a large and growing population, rapid socio-economic development, 

poor water resources management and the fact that water resources are very unevenly 

distributed within the country (Jiang, 2009). Due to the spatial distribution of precipitation 

(Figure 1.1), China’s water resources are unevenly distributed between the North and the 

South. The drier North has 19% of the national blue water resources, while 45% of the total 

population and 65% of the total arable land is located in the North (Jiang, 2015). Over the 

period 1978-2008, China’s irrigated area has increased by 31%, of which 77% happened in 

the water-scarce North, which has worsened the water shortage problems in large river 

basins in the North (Jiang, 2015). For instance, the Yellow River Basin (YRB) accounts for 

only 2% of national blue water resources, while inhabiting 12% of the national population, 

accounting for 13% of the total national grain production and generating 14% of the 

country’s GDP (YRCC, 2013). Driven by increasing competition over water resources 

among different sectors, the total blue water withdrawal in the YRB has reached 86% of the 

basin’s total blue water resources in 2009, of which 59% was for irrigation (Ringler et al., 

2010; YRCC, 2011). China’s current water management is unsustainable, focusing on 

supply augmentation by engineering projects and ignoring the challenge to resolve the 

imbalance between supply- and demand-management (Jiang, 2015; Zhao et al., 2015). The 

on-going South-North Water Transfer Project might help alleviate the pressure on physical 
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water availability in the North, but the long-term efficiency of the project is being 

challenged by several problems, such as the pollution of transferred water, limitation of 

water availability in the South and large environmental and ecological impacts in the water 

source areas (Yang, 2014; Barnett et al., 2015). Besides, the North annually exports a huge 

amount of VW (~52 billion m
3 
y

-1
 in 1999) through food transfer to the South, which raises 

the question why real water should be transferred to the North in order to return it in virtual 

form (Ma et al., 2006).  

 

Figure 1.1 Average annual precipitation (mm y
-1

) in China for 1961-2009. Data source: 

Harris et al. (2014). 

Water issues in China could be thornier with the expected socio-economic development, the 

growing population and potential future climate change (Liu and Savenije, 2008; Piao et al., 

2010; Dalin et al., 2015; Jiang, 2015). The shift of the Chinese diet towards more 

water-intensive food items (e.g. meat products, oil crops and sugar crops) could lead to 

increasing water consumption in food production, thus putting an additional pressure on the 

already scarce water resources (Liu and Savenije, 2008). The pressure can further be 

exacerbated given China’s governmental plan to pursue self-sufficiency in major grain 

products (NDRC, 2008; SCPRC, 2014b). At the same time, the projected warming of the 
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climate in the coming decades could influence water availability (Piao et al., 2010; Jiang, 

2015). The gap between water scarcity in the North and relative water abundance in the 

South can further widen given predicted decreases in water resources in the North for 

2021-2050 as compared to 1961-1990 in the latest representative concentration pathways 

RCP 2.6 (by 1.3%) and RCP 8.5 (by 2.3%) (Wang and Zhang, 2015). Current governmental 

monitoring programs focus on measuring water withdrawals and irrigation efficiency, but 

lack integrated monitoring of the drivers of changes in water quantity and quality, so that 

proactive adaptive management is difficult (Liu and Yang, 2012). Thus, a systematic and 

comprehensive assessment that describes China’s past, current and future water 

consumption and water scarcity as affected by human activities and climate change is 

necessary and urgent.  

1.2  Water footprint accounting 

Estimating the water footprints of agricultural products requires spatially and temporally 

explicit data on land use, soil types, climate, crop parameters, irrigation, and fertilizer 

application. Given the recent advances in geographic information systems (GIS) and 

availability of open global GIS datasets with regard to the input data required for calculating 

WFs of agricultural production, WF accounting at a high spatial resolution taking into 

account the heterogeneity in climate and other input parameters can now be realized 

(Mekonnen, 2011). Global green and blue WFs of crop production have been mapped at a 

spatial resolution of 30 by 30 arc minute (Rost et al., 2008; Liu et al., 2009; Fader et al., 

2010; Hanasaki et al., 2010; Liu and Yang, 2010) and even at 5 by 5 arc minute (Mekonnen 

and Hoekstra, 2010; Siebert and Doll, 2010; Mekonnen and Hoekstra, 2011; Tuninetti et al., 

2015). The global grey WF related to anthropogenic nitrogen (N) loads from croplands to 

groundwater and surface water has been mapped at 5 by 5 arc min level by Mekonnen and 

Hoekstra (2011), assuming simple leaching-runoff ratios, and the additional grey WF related 

to N loads from the domestic and industrial sectors has been estimated by Hoekstra and 

Mekonnen (2012). Mekonnen and Hoekstra (2015) have improved the global grey WF map 

related to anthropogenic N loads by implementing a more advanced soil balance approach 

for estimating N loads from croplands (Bouwman et al., 2013).  
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Water footprint calculations at a high spatial resolution are based on a large set of 

assumptions with respect to modelling structure, parameter values, datasets for input 

variables and period considered that could cause a divergence in outcomes (Mekonnen and 

Hoekstra, 2010; Hoekstra et al., 2011). However, there are only a few studies on the 

sensitivities in WF accounting. Examples include the assessment of the sensitivity of the 

WF of maize to climate variables in the Po Vally in Northern Italy by Bocchiola et al. (2013), 

the assessment of the sensitivity of the WF of fresh algae cultivation to changes in 

evaporation estimation method by Guieysse et al. (2013), and the global sensitivity analysis 

to explore the sensitivity of the WF of crops to input parameter variability by Tuninetti et al. 

(2015). 

Assessment of the variability of WFs and VW flows across different years and analysis of 

long-term trends is also still in it infancy. Most studies on WF accounting and VW trade 

analysis refer to a certain year or to the average of a certain period, like a five- or ten-year 

period. For the case of China, where changes over the past few decades have been very 

quick, only a few studies are available on long-term variability and trends in WFs, mostly 

for a small part of the country such as the capital city Beijing (Zhang et al., 2012; Sun et al., 

2013a) or an irrigation district (Sun et al., 2012a). One study focuses on analysing the 

driving factors of the increasing blue WF of food consumption in China as a whole (Zhao 

and Chen, 2014).  

Scenario analysis is a popular tool to explore how alternative futures might unfold from 

current conditions under alternative human choices (Polasky et al., 2011; Ercin and 

Hoekstra, 2014). The first scenario analyses related to WF and VW trade have become 

available only recently, with Fader et al. (2010) and Liu et al. (2013) assessing the global 

green and blue WF of crop production under climate change scenarios by the late 21st 

century. Zhao et al. (2014) did a similar study for China. Global scenarios for WFs and VW 

trade under alternative socio-economic developments have been developed by Ercin and 

Hoekstra (2014). Dalin et al. (2015) considered future changes in VW trade related to food 

products under different socio-economic scenarios in China. Though Konar et al. (2013) 

have shown the responses in the WFs of major crops and associated global VW trade 
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network under scenarios that consider both climate change and socio-economic 

developments, they have not assessed responses in the WF of total crop production and 

consumption. 

The WF of growing a crop depends on environmental conditions (e.g. climate, soil) and 

management conditions (e.g. irrigation technology, mulching practice) (Zwart et al., 2010; 

Mekonnen and Hoekstra, 2011; Tuninetti et al., 2015). WF benchmarks can serve as 

reference and reduction target for producers who have WFs above the benchmark (Hoekstra, 

2013; 2014). WF benchmarks of a crop (in m
3 
t
-1

) can be set, for example, as the WF that is 

not exceeded by the best 20-25% of the total production in a geographic area with similar 

environmental conditions. A global WF benchmark for one crop type is also meaningful, to 

show a reasonable WF target achievable in practice everywhere worldwide. A WF 

benchmark for a specific crop can also be defined based on the best-available technology 

(e.g. irrigation technology) (Hoekstra, 2014). Mekonnen and Hoekstra (2014) have 

established global consumptive (green plus blue) and degradative (grey) WF benchmark 

values, separately, for a large number of crops based on gridded actual WF values for 

1996-2005 at a spatial resolution of 5 by 5 arc min. Chukalla et al. (2015) explored 

reduction potentials for consumptive WFs of crops by applying different types of irrigation 

technologies, strategies and mulching practices. The variation of consumptive WFs of a crop 

is closely linked to different types of soils (Tolk and Howell, 2012), variability of climatic 

variables like precipitation and reference evapotranspiration (Zwart et al., 2010) and 

whether crops are irrigated or rain-fed (Mekonnen and Hoekstra, 2010; 2011). It is still not 

clear, however, which of these factors should be considered as most important when 

developing benchmark levels for the consumptive WF of crops.  

1.3  Research objective and thesis outline 

The overall objective of the thesis is to systematically evaluate past, current and future WFs, 

water scarcity and VW flows at both river basin and national level in China, focusing on the 

agricultural sector, high spatial resolution modelling, uncertainties, inter- and intra- annual 

variation and benchmarks. The thesis has been designed into five sub-research subjects, 

which will be reported in Chapters 2-6:  
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 Sensitivity and uncertainty in crop WF accounting, in a case study for the Yellow River 

Basin (Chapter 2);  

 Inter- and intra-annual variation of WF of crops and blue water scarcity in the Yellow 

River Basin (Chapter 3); 

 The effect of inter-annual variability of consumption, production, trade and climate on 

crop-related green and blue WFs and inter-regional VW trade in China (Chapter 4);  

 Consumptive WF and VW trade scenarios for China with a focus on crop production, 

consumption and trade (Chapter 5); 

 Benchmark levels for the consumptive WF of crop production for different 

environmental conditions: a case study for winter wheat in China (Chapter 6). 

Chapter 2 analyses the sensitivity of and uncertainties in accounting green and blue WFs of 

crop production at a high spatial resolution, related to variability and uncertainties in 

important input variables at the scale of a river basin, considering maize, soybean, rice and 

wheat in the YRB over 1996-2005. The sensitivity of the WF per tonne of crop to seven 

different input variables and parameters are presented, as well as the uncertainty ranges in 

the estimated WFs from uncertainties in four key input variables.  

Chapter 3 estimates the WFs of crop production in the YRB over the period of 1961-2009 

and assesses the monthly blue water scarcity for 1978-2009, by comparing the total blue WF 

of agriculture, industry and households in the basin to the maximum sustainable blue WF. 

The inter-annual variation of green, blue and grey WFs of seventeen crops, and the monthly 

blue water scarcity in the YRB are shown at a high spatial resolution level so that the spatial 

distribution is also observed.  

Chapter 4 investigates the inter-annual developments of green and blue WFs of both 

production and consumption for twenty-two crops and associated inter-regional VW trade 

within China from 1978, the start of the economic reform in the country, to 2008. The study 

shows how the pressure on water resources in the North increased by intensive agricultural 

production and how the inter-regional VW network within China changed over time.  

Chapter 5 is a scenario study for China for 2030 and 2050, developing four scenarios with 
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regard to the green and blue WFs of crop production and consumption, and national VW 

trade. Five driving factors were considered in developing the scenarios: climate change, 

changes in harvested crop area, technology development, shifts in diet and population 

growth.   

Chapter 6 explores which environmental factors need to be distinguished when setting 

benchmarks for the consumptive (green-blue) WF of crop production. The study takes 

winter wheat production in China over 1961-2008 as study case and analyses differences in 

benchmarks for the consumptive WF of the crop when distinguishing between rain-fed and 

irrigated crops, between wet and dry years, between cold and warm years, between different 

soil classes and between different climate zones. 

Finally, Chapter 7 concludes the thesis by putting the main findings in the previous chapters 

into perspective.  
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2. Sensitivity and Uncertainty in Crop Water Footprint 
Accounting: a Case Study for the Yellow River Basin1 

Abstract 

Water Footprint (WF) Assessment is a fast growing field of research, but as yet little 

attention has been paid to the uncertainties involved. This study investigates the sensitivity 

of and uncertainty in crop WF (in m
3 
t
-1

) estimates related to uncertainties in important input 

variables. The study focuses on the green (from rainfall) and blue (from irrigation) WF of 

producing maize, soybean, rice, and wheat at the scale of the Yellow River Basin in the 

period 1996-2005. A grid-based daily water balance model at a 5 by 5 arc min resolution 

was applied to compute green and blue WF of the four crops in the Yellow River Basin in 

the period considered. The one-at-a-time method was carried out to analyse the sensitivity of 

the crop WF to fractional changes of seven individual input variables and parameters: 

precipitation (PR), reference evapotranspiration (ET0), crop coefficient (Kc), crop calendar 

(planting date with constant growing degree days), soil water content at field capacity (Smax), 

parameters yield response factor (Ky) and maximum yield (Ym). Uncertainties in crop WF 

estimates related to uncertainties in four key input variables: PR, ET0, Kc, and crop calendar 

were quantified through Monte Carlo simulations.  

The results show that the sensitivities and uncertainties differ across crop types. In general, 

the WF of crops is most sensitive to ET0 and Kc, followed by the crop calendar. Blue WFs 

were more sensitive to input variability than green WFs. The smaller the annual blue WF is, 

the higher its sensitivity to changes in PR, ET0, and Kc. The uncertainties in the total WF of 

a crop due to combined uncertainties in climatic inputs (PR and ET0) were about ± 20% (at 

95% confidence interval). The effect of uncertainties in ET0 was dominant compared to that 

of PR. The uncertainties in the total consumptive WF of a crop as a result of combined key 

input uncertainties were on average ± 30% (at 95% confidence level).    

                                                             
1
 Chapter is based on: Zhuo, Mekonnen and Hoekstra (2014) Hydrology and Earth System Sciences 

18 (6), 2219-2234 
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2.1  Introduction 

More than two billion people live in highly water stressed areas (Oki and Kanae, 2006), and 

the pressure on freshwater will inevitably be intensified by population growth, economic 

development and climate change in the future (Vörösmarty et al., 2000). The water footprint 

(WF) (Hoekstra, 2003) is increasingly recognized as a suitable indicator of human 

appropriation of freshwater resources and is becoming widely applied to get better 

understanding of the sustainability of water use. In the period 1996-2005, agriculture 

contributed 92% to the total WF of humanity (Hoekstra and Mekonnen, 2012).   

Water footprints within the agricultural sector have been extensively studied, mainly 

focusing on the WF of crop production, at scales from a sub-national region (Aldaya and 

Llamas, 2008; Zeng et al., 2012; Sun et al., 2013a), and a country (Ma et al., 2006; Hoekstra 

and Chapagain, 2007a; Kampman et al., 2008; Liu and Savenije, 2008; Bulsink et al., 2010; 

Ge et al., 2011) to the globe (Hoekstra and Chapagain, 2007b; Liu and Yang, 2010; Siebert 

and Doll, 2010; Mekonnen and Hoekstra, 2011; Hoekstra and Mekonnen, 2012).The green 

or blue WF of a crop is normally expressed by a single volumetric number referring to an 

average value for a certain area and period. However, the WF of a crop is always estimated 

based on a large set of assumptions with respect to the modelling approach, parameter 

values, and datasets for input variables used, so that outcomes carry substantial uncertainties 

(Mekonnen and Hoekstra, 2010; Hoekstra et al., 2011).  

Together with the carbon footprint and ecological footprint, the WF is part of the “footprint 

family of indicators” (Galli et al., 2012), a suite of indicators to track human pressure on the 

surrounding environment. Nowadays, it is not hard to find information in literature on 

uncertainties in the carbon footprint of food products (Röös et al., 2010; 2011) or 

uncertainties in the ecological footprint (Parker and Tyedmers, 2012). But there are hardly 

any sensitivity or uncertainty studies available in the WF field (Hoekstra et al., 2011), while 

only some subjective approximations and local rough assessments exist (Mekonnen and 

Hoekstra, 2010; 2011; Hoekstra et al., 2012; Mattila et al., 2012). Bocchiola et al. (2013) 

assessed the sensitivity of the WF of maize to potential changes of certain selected weather 

variables in Northern Italy. Guieysse et al. (2013) assessed the sensitivity of the WF of fresh 



13 
 

 

algae cultivation to changes in methods to estimate evaporation.  

In order to provide realistic information to stakeholders in water governance, analysing the 

sensitivity and the magnitude of uncertainties in the results of a WF Assessment in relation 

to assumptions and input variables would be useful (Hoekstra et al., 2011; Mekonnen and 

Hoekstra, 2011). Therefore, the objectives of this study are (1) to investigate the sensitivity 

of the WF of a crop to changes in input variables and parameters, and (2) to quantify the 

uncertainty in green, blue, and total consumptive WFs of crops due to uncertainties in input 

variables at scale of a river basin. The study focuses on the water footprint of producing 

maize, soybean, rice, and wheat in the Yellow River Basin, China, for each separate year in 

the period 1996-2005. Uncertainty in this study refers to the uncertainty in WF that 

accumulates due to the uncertainties in inputs that is propagated through the accounting 

process and is reflected in the resulting estimates (Walker et al., 2003). 

2.2  Study area 

The Yellow River Basin (YRB), drained by the Yellow River (or ‘Huang He’), is the second 

largest river basin in China with a drainage area of 795×10
3
 km

2
 (YRCC, 2011). The Yellow 

River is 5,464 km long, originates from the Bayangela Mountains of the Tibetan Plateau, 

flows through nine provinces (Qinghai, Sichuan, Gansu, Ningxia, Inner Mongolia, Shaanxi, 

Shanxi, Henan and Shandong), and finally drains into the Bohai Sea. The YRB is usually 

divided into three reaches: the upper reach (upstream of Hekouzhen, Inner Mongolia), the 

middle reach (upstream of Taohuayu, Henan province) and the lower reach (draining into 

the Bohai Sea) (Figure 2.1). 

The YRB is vital for food production, natural resources and socioeconomic development of 

China (Cai et al., 2011). The cultivated area of the YRB accounts for 13% of the national 

total (MWR, 2015). In 2000, the basin accounted for 14% of the country’s crop production 

with about 7 million ha of irrigated land at a total agriculture area in the basin of 13 million 

ha (Ringler et al., 2010). The water of the Yellow River supports 150 million people with a 

per capita blue water availability of 430 m
3
 per year (Falkenmark and Widstrand, 1992). The 

YRB is a net virtual water exporter (Feng et al., 2012) and suffering severe water scarcity. 
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The blue water footprint in the basin is larger than the maximum sustainable blue water 

footprint (runoff minus environmental flow requirements) during eight months a year 

(Hoekstra et al., 2012). 

 

Figure 2.1 The three reaches of the Yellow River Basin. 

 

2.3  Method and data 

2.3.1  Crop water footprint accounting 

Annual green and blue water footprints (WF) of producing maize, soybean, rice, and wheat 

in the YRB for the study period were estimated. The green and blue WF per unit mass of 

crop (m
3
 t

-1
) were calculated by dividing the green and blue crop water use (CWU, m

3
 ha

-1
) 

by the crop yield (Y, t ha
-1

), respectively(Hoekstra et al., 2011). The total WF refers to the 

sum of green and blue WF.  

A grid-based dynamic water balance model, developed by Mekonnen and Hoekstra (2010; 

2011), is used to compute different components of CWU according to the daily soil water 

balance. The model has a spatial resolution of 5 by 5 arc minute (about 7.4 km × 9.3 km at 
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the latitude of the YRB). The daily root zone soil water balance for growing a crop in each 

grid cell in the model can be expressed in terms of soil moisture (S[t], mm) at the end of the 

day (Mekonnen and Hoekstra, 2010): 

S[t] = S[t−1] + I[t] + PR[t] + CR[t] − RO[t] − ET[t] − DP[t]                                       (2.1) 

where S[t−1] (mm) refers to the soil water content on day (t-1), I[t] (mm) the irrigation 

water applied on day t, PR[t] (mm) precipitation, CR[t]  (mm) capillary rise from the 

groundwater, RO[t]  (mm) water runoff, ET[t]  (mm) actual evapotranspiration and DP[t] 

(mm) deep percolation on day t.  

CWUgreen and CWUblue over the crop growing period (in m
3 
ha

-1
) were calculated from the 

accumulated corresponding ET (mm day
-1

):  

CWUgreen = 10 × ∑ ETgreen

lgp

d=1

                                                                                          (2.2) 

CWUblue = 10 × ∑ ETblue

lgp

d=1

                                                                                               (2.3) 

The accumulation was done over the growing period from the day of planting (d=1) to the 

day of harvest (lgp, the length of growing period in days). The factor 10 (m
3 
mm

-1 
ha

-1
) is 

applied to convert the mm to m
3 
ha

-1
. The daily ET (mm day

-1
) was computed according to 

Allen et al. (1998) as: 

ET = Ks[t] × Kc[t] × ET0[t]                                                                                                (2.4) 

where Kc[t] is the crop coefficient, Ks[t] a dimensionless transpiration reduction factor 

dependent on available soil water and ET0[t] the reference evapotranspiration (mm day
-1

). 

The crop calendar and Kc values for each crop were assumed to be constant for the whole 

basin as shown in Table 2.1. Ks[t] is assessed based on a daily function of the maximum and 

actual available soil moisture in the root zone: 
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Ks[t] = {

S[t]

(1 − p) × Smax[t]
 ,     S[t] < (1 − p) × Smax[t]  

1 ,                    otherwise

                                      (2.5) 

where Smax[t] is the maximum available soil water in the root zone (mm, when soil water 

content is at field capacity), and p the fraction of Smax that a crop can extract from the root 

zone without suffering water stress, which is a function of ET0 and Kc. 

WF of the four crops in the YRB was estimated covering both rain-fed and irrigated 

agriculture. In the case of rain-fed crop production, blue CWU is zero and green CWU (m
3
 

ha
-1

) was calculated by aggregating the daily values of ET over the length of the growing 

period. In the case of irrigated crop production, the green water use was assumed to be equal 

to the ET for the case without irrigation. The blue water use was estimated as the CWU 

simulated in the case with sufficient irrigation water applied minus the green CWU in the 

same condition but without irrigation (Mekonnen and Hoekstra, 2010; 2011). 

The crop yield is influenced by water stress (Mekonnen and Hoekstra, 2010). The actual 

harvested yield (Y, t ha
-1

) at the end of crop growing period for each grid cell was estimated 

using the equation proposed by Doorenbos and Kassam (1979): 

Y = Ym × [1−Ky  (1 − 
∑ ET

lgp
d=1

CWR
)]                                                                                 (2.6) 

where Ym  is the maximum yield (t ha
-1

), obtained by multiplying the corresponding 

provincial average yield values by a factor of 1.2 (Reynolds et al., 2000). Ky is the yield 

response factor obtained from Doorenbos and Kassan (1979). CWR refers to the crop water 

requirement for the whole growing period (mm period
-1

) (which is equal to Kc  ET0).  
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Table 2.1 Crop characteristics for maize, soybean, rice and wheat in the Yellow River Basin. 

  
Crop coefficients 

Planting 
date 

Growing 
period 
(days) 

Relative crop growing stages 

  
Kc_ini Kc_mid Kc_end L_ini L_dev L_mid L_late 

Maize 0.70 1.20 0.25 1-Apr 150 0.20 0.27 0.33 0.20 

Soybean 0.40 1.15 0.50 1-Jun 150 0.13 0.17 0.50 0.20 

Rice 1.05 1.20 0.90 1-May 180 0.17 0.17 0.44 0.22 

Wheat 0.70 1.15 0.30 1-October 335 0.48 0.22 0.22 0.07 

Sources: Allen et al. (1998); Chen et al. (1995); Chapagain and Hoekstra (2004). 

 

2.3.2  Sensitivity and uncertainty analysis 

The estimation of crop WF requires a number of input variables and parameters to the model, 

including: daily precipitation (PR), daily reference evapotranspiration (ET0), crop 

coefficients (Kc) in the different growing stages, crop calendar (planting date and length of 

the growing period), soil water content at field capacity (Smax), yield response factor (Ky) 

and maximum yield (Ym). The one-at-a-time method (see below) was applied to investigate 

the sensitivity of CWU, Y and WF to changes in these inputs. The uncertainties in WF due 

to uncertainties in PR, ET0, Kc, and crop calendar were assessed through Monte Carlo 

simulations. We assumed that systematic errors in original climate observations at stations 

had been removed already. Uncertainties in variables PR, ET0 and Kc were assumed random, 

independent and close to a normal (Gaussian) distribution (Troutman, 1985; Meyer et al., 

1989; Ahn, 1996; Droogers and Allen, 2002; Xu et al., 2006b). 

 Sensitivity analysis 

The ‘one-at-a-time’ or ‘sensitivity curve’ method is a simple but practical way of sensitivity 

analysis to investigate the response of an output variable to variation of input values (Hamby, 

1994; Sun et al., 2012b). With its simplicity and intuitionism, the method is popular and has 

been widely used (Ahn, 1996; Goyal, 2004; Xu et al., 2006a; Xu et al., 2006b; Estevez et al., 

2009). The method was performed by introducing fractional changes to one input variable 

while keeping other inputs constant. The ‘sensitivity curve’ of the resultant relative change 



18 
 

in the output variable was then plotted against the relative change of the input variable. The 

sensitivity analysis was carried out for each year in the period 1996-2005. For each cropped 

grid cell, we varied each input variable within a certain range. Then, the annual average 

level of the responses in CWU, Y, and (green, blue, and total) WF of the crops for the basin 

as a whole were recorded. With respect to the input variables PR, ET0 and Kc, we shifted 

each within the range of ± 2SD (2× standard deviation of input uncertainties), which 

represents the 95% confidence interval for uncertainties in the input variable. In terms of the 

crop calendar, we varied the planting date (D) within ±30 days with constant growing 

degree days (GDD) and relative length of crop growing stages (Allen et al., 1998) (Table 

2.1). The cumulative GDD (℃ day), measuring heat units during crop growth, has vastly 

improved expression and prediction of the crop’s phenological cycle compared to other 

approaches such as time of the year or number of days (McMaster and Wilhelm, 1997). In 

the study, a crop’s GDD was calculated per year, following the most widely used ‘Method 1’ 

(McMaster and Wilhelm, 1997), by summing the difference of the daily base temperature 

and the average air temperature over the reference crop growing period in days (Table 2.1). 

The base temperature is the temperature below which crop growth does not progress. The 

base temperature of each crop was obtained from FAO (Raes et al., 2011). Parameters Smax, 

Ky and Ym were varied within the range of ±20% of the default value. 

 Uncertainty analysis 

The advantage of uncertainty analysis with Monte Carlo (MC) simulation is that the model 

to be tested can be of any complexity (Meyer, 2007). MC simulations were carried out at the 

basin level to quantify the uncertainties in estimated WF due to uncertainties in individual or 

multiple input variables. The uncertainty analysis was carried out separately for three years 

within the study period: 1996 (wet year), 2000 (dry year), and 2005 (average year). For each 

MC simulation, 1,000 runs were performed. Based on the set of WF estimates from those 

runs, the mean (μ) and standard deviation (SD) is calculated; with 95% confidence, WF falls 

in the range of μ ± 2SD. The SD will be expressed as a percentage of the mean. 

 Uncertainties in input variables and parameters 

Uncertainties in the Climate Research Unit Time Series (CRU-TS) (Harris et al., 2014) grid 
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precipitation values used for WF accounting in this study come from two sources: the 

measurement errors inherent in station observations, and errors which occur during the 

interpolation of station data in constructing the grid database (Phillips and Marks, 1996; 

Fekete et al., 2004; Zhao and Fu, 2006). Zhao and Fu (2006) compared the spatial 

distribution of precipitation as in the CRU database with the corresponding observations 

over China and revealed that the differences between the CRU data and observations vary 

from - 20% to 20% in the area where the YRB is located. For this study, we assume a ± 20% 

range around the CRU precipitation data as the 95% confidence interval (2SD = 20%). 

The uncertainties in the meteorological data used in estimating ET0 will be transferred into 

uncertainties in the ET0 values. The method used to estimate the CRU-TS ET0 dataset is the 

Penman-Monteith (PM) method (Allen et al., 1998). The PM method has been 

recommended for its high accuracy at station level within ± 10% from the actual values 

under all ranges of climates (Jensen et al., 1990). With respect to the gridded ET0 calculation, 

the interpolation may cause additional error (Phillips and Marks, 1996; Thomas, 2008b). 

There is no detailed information on uncertainty in the CRU-TS ET0 dataset. We estimated 

daily ET0 values (mm day
-1

) for the period 1996-2005 from observed climatic data at 24 

meteorological stations spread out in the YRB (CMA, 2008) by the PM method. Then we 

compared, station by station, the monthly averages of those calculated daily ET0 values to 

the corresponding monthly ET0 values in the CRU-TS dataset (Figure2.2a). The differences 

between the station values and CRU-TS values ranged from -0.23 to 0.27 mm day
-1

 with a 

mean of 0.005 mm day
-1 

(Figure 2.2b). The standard deviation (SD) of the differences was 

0.08 mm day
-1

, 5% from the station values, which implies an uncertainty range of ± 10% 

(2SD) at 95% confidence interval. The locations of CMA stations were different from the 

stations used for generating the CRU dataset (Harris et al., 2014) (see Figure 2.2c), which 

was one of the sources of the uncertainty. We added the basin level uncertainty in monthly 

ET0 values due to uncertainties in interpolation (± 10% at 95% confidence level) and the 

uncertainty related to the application of the PM method (another ± 10% at 95% confidence 

level) to arrive at an overall uncertainty of ± 20% (2SD) for the ET0 data. We acknowledge 

that this is a crude estimate of uncertainty, but there is no better.  
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Figure 2.2 Differences between monthly averages of daily ET0 data from CRU-TS and 

station-based values for the Yellow River Basin, 1996-2005. 
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We used the Kc values from Table 2.1 for the whole basin. According to Jagtap and Jones 

(1989), the Kc value for a certain crop can vary by 15%. We adopted this value and assumed 

the 95% uncertainty range falls within ± 15% (2SD) from the mean Kc values. Referring to 

the crop calendar, we assumed that the planting date for each crop fluctuated within ± 30 

days from the original planting date used, holding the same length of GDD for each year. 

Table 2.2 summarises the uncertainty scenarios considered in the study. 

 

Table 2.2 Input uncertainties for crop water footprint accounting in the Yellow River Basin. 

Input variable Unit 
95% confidence interval 
of  input uncertainties 

Distribution of input 
uncertainties 

Precipitation (PR) mm day
-1

 ± 20% (2SD*) Normal 

Reference 
evapotranspiration (ET0) 

mm day
-1

 ± 20% (2SD) Normal 

Crop coefficient (Kc) - ± 15% (2SD) Normal 

Planting date (D) days ± 30 Uniform (discrete) 

*2SD: 2×Standard deviation of input uncertainties. 

 

 

 

2.3.3  Data 

The GIS polygon data for the YRB were extracted from the HydroSHEDS dataset (Lehner 

et al., 2008). Total monthly PR, monthly averages of daily ET0, number of wet days, and 

daily minimum and maximum temperatures at 30 by 30 arc minute resolution for 1996-2005 

were extracted from CRU-TS-3.10.01 (Harris et al., 2014). Figure 2.3 shows PR and ET0 for 

the YRB in the study period. Daily values of precipitation were generated from the monthly 

values using the CRU-dGen daily weather generator model (Schuol and Abbaspour, 2007). 

Daily ET0 values were derived from monthly average values by curve fitting to the monthly 

average through polynomial interpolation (Mekonnen and Hoekstra, 2011). Data on 

irrigated and rain-fed areas for each crop at a 5 by 5 arc minute resolution were obtained 

from the MIRCA2000 dataset (Portmann et al., 2010). Crop areas and yields within the 
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YRB from MIRCA2000 were scaled to fit yearly agriculture statistics per province of China 

(NBSC, 2013). Total available soil water capacity at a spatial resolution of 5 by 5 arc minute 

was obtained from the ISRIC-WISE version 1.2 dataset (Batjes, 2012). 

 

 

Figure 2.3 Monthly precipitation (PR) and monthly averages of daily ET0 in the Yellow River 

Basin from the CRU-TS database, for the period 1996-2005. 

 

2.4  Results 

2.4.1  Sensitivity of CWU, Y, and WF to variability of input variables 

 Sensitivity to variability of precipitation (PR) 

The average sensitivities of CWU, Y, and WF to variability of precipitation for the study 

period were assessed by varying the precipitation between ± 20% as shown in Figure 2.4. 

An overestimation in precipitation leads to a small overestimation of green WF and a 

relatively large underestimation of blue WF. A similar result was found for maize in the Po 

valley of Italy by Bocchiola et al. (2013). The sensitivity of WF to input variability is 

defined by the combined effects on the CWU and Y. Figure 2.4 shows the overall result for 

the YRB, covering both rain-fed and irrigated cropping.  
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For irrigated agriculture, a reduction in green CWU due to smaller precipitation will be 

compensated with an increased blue CWU, keeping total CWU and Y unchanged. Therefore, 

the changes in Y were due to the changes in the yields in rain-fed agriculture. The relative 

changes in total WF were always smaller than ± 5% because of the opposite direction of 

sensitivities of green and blue WF, as well as the domination of green WF in the total. In 

addition, in terms of wheat only, both Y and total WF reduced with less precipitation. 

Purposes of modern agriculture are mainly keeping or improving the crop production as 

well as reducing water use. The instance for wheat indicates that Y (mass of a crop per 

hectare) might decrease in certain climate situations in practice although the WF (referring 

to drops of water used per mass of crop) reduced. On the other hand, it can be noted that the 

sensitivity of CWU, Y, and WF to input variability differs across crop types, especially 

evident in blue WF. Regarding the four crops considered, blue WF of soybean is most 

sensitive to variability in precipitation and blue WF of rice is least sensitive. The 

explanation lies in the share of blue WF in total WF. At basin level, the blue WF of soybean 

accounted for about 9% of the total WF, while the blue WF of rice was around 44% of the 

total, which is the highest blue water fraction among the four crops. The larger sensitivity of 

the blue WF of soybean to change in precipitation compared to that of rice shows that the 

smaller the blue water footprint the larger its sensitivity to a marginal change in 

precipitation. 
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Figure 2.4 Sensitivity of CWU, Y and WF to changes in precipitation (PR), 1996-2005. 

 Sensitivity to variability of ET0 and Kc 

Figure 2.5 shows the average sensitivity of CWU, Y, and WF to changes in ET0 within a 

range of ± 20% from the mean for the period 1996-2005. The influences of changes in ET0 

on WF are greater than the effect of changes in precipitation. Both green and blue CWU 

increase with the rising ET0. An increase in ET0 will increase the crop water requirement. 

For rain-fed crops, the crop water requirement may not be fully met, leading to crop water 

stress and thus lower Y. For irrigated crops under full irrigation, the crop will not face any 

water stress, so that the yield will not be affected. The decline in yield at increasing ET0 at 

basin level in Figure 2.5 is therefore due to yield reductions in rain-fed agriculture only. 

Due to the combined effect of increasing CWU and decreasing Y at increasing ET0, an 
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overestimation in ET0 leads to a larger overestimation of WF. The strongest effect of ET0 

changes on blue WF was found for soybean, with a relative increase reaching up to 105% 

with a 20% increase in ET0, while the lightest response was found for the case of rice, with a 

relative increase in blue WF of 34%. The sensitivities of green WF were similar among the 

four crops. The changes in total WF were always smaller and close to ± 30% in the case of a 

± 20% change in ET0. 

As shown in Eq.2.4, Kc and ET0 have the same effect on crop evapotranspiration. Therefore, 

the effects of changes in Kc on CWU, Y, and WF are exactly the same as the effects of ET0 

changes. The changes in total WF were less than ± 25% in the case of a ± 15% change in Kc 

values. 

 

Figure 2.5 Sensitivity of CWU, Y and WF to changes in reference evapotranspiration (ET0), 

1996-2005. 
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 Sensitivity to changing crop planting date (D) 

The responses of CWU, Y, and WF to the change of crop planting date with constant GDD 

are plotted in Figure 2.6. There is no linear relationship between the cropping calendar and 

WF. Therefore, no generic information can be summarised for the sensitivity of WF of crops 

to a changing cropping calendar. But some interesting regularity can still be found. With the 

late sowing dates, the crop growing periods in days became longer for rice and soybean 

while shorter for maize and wheat. WF was smaller with late planting date for all four crops, 

which is mainly due to the decrease in the blue and green CWU for maize, rice and wheat, 

as well as relatively larger decrease of green CWU for soybean. Apparently, the reduction in 

CWU of maize and wheat was due to shortening of the growing period. Meanwhile, we 

found a reduced ET0 over the growing period with delayed planting of the rice and soybean, 

which led to a decrease in the crop water requirement. This is consistent with the result 

observed for maize in western Jilin Province of China by Qin et al. (2012) and North China 

(Sun et al., 2007; Jin et al., 2012) based on local field experiments. Late planting, 

particularly for maize, rice and wheat, could save water, particular blue water, while 

increasing Y. The response of wheat yield did not match with the field experiment results in 

North China by Sun et al. (2007). The difference was because they set a constant growing 

period when changing the sowing date of wheat, not taking the GDD into consideration. 

With late planting of soybean, the reduction of PR was larger than the reduction of crop 

water requirement of soybean, resulting in a larger blue WF. Since blue WF is more 

sensitive to ET0 and PR than green WF, the relative change in blue WF was always more 

than green WF. When planted earlier, both green and blue WF of maize increased because of 

increased CWU with longer growing period. Although growing periods for rice and soybean 

were shorter with earlier sowing, the increased rainwater deficit resulted in more blue CWU 

and less green CWU for irrigated fields and a slight increase in total WF with little change 

in Y. Meanwhile, a different response curve was observed for wheat with earlier planting. 

The explanation for the unique sensitivity curve for wheat is that the crop is planted in 

October after the rainy season (June to September) and the growing period lasts around 335 

days (Table 2.1), which leads to a low sensitivity to the precise planting date. However, as 

interesting as the phenomenon found in the Figure 2.6, the Y and total WF both dropped (by 
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0.25% and 0.3% to 30 days earlier planting, respectively) when changing more than 15 days 

earlier than the reference sowing date of wheat. A similar instance also arose for rice with 

delaying the sowing date: reduction of Y by 0.2% and total WF by 9.3% with delaying the 

planting day by 30 days. As a comparison, we also show the responses of CWU, Y, and WF 

to the change of crop planting date with constant crop growing days in Figure 2.7. The same 

phenomenon shown in Figure 2.5 was also valid for maize, rice and soybean in Figure 2.7. 

 
Figure 2.6 Sensitivity of CWU, Y and WF to changes in crop planting date (D) with constant 

growing degree days (GGD), 1996-2005.  
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Figure 2.7 Sensitivity of CWU, Y and WF to changes in crop planting date (D) with constant 

crop growing days, 1996-2005.  

 

Therefore from perspective of the agricultural practice, the response of both crop production 

and crop water consumption with change in the planting date should be considered in 

agricultural water saving projects. In general, the results show that the crop calendar is one 

of the factors affecting the magnitude of crop water consumption. A proper planning of the 

crop-growing period is, therefore, vital from the perspective of water resources use, 

especially in arid and semi-arid areas like the YRB. However, our estimate, which was 

based on a sensitivity analysis by keeping all other input parameters such as the initial soil 

water content constant, could be different from the actual cropping practice. There are 

techniques to maintain or increase the initial soil moisture, for instance by storing off-season 
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rainfall (through organic matter) in the cropping field. 

 Sensitivity to changes of soil water content at field capacity (Smax) 

The sensitivity curves of CWU, Y and WF to the changes of the Smax within ±20% are 

shown in Figure 2.8. The total WF varied no more than 1.3% to changes in the Smax. The 

maximum sensitivity was found for rice. But the responses of blue and green WF were 

different per crop type. Blue WF reduced while green WF increased with higher Smax for 

maize, soybean, and rice. For wheat we found opposite. Figure 2.8 shows that CWU and Y 

become smaller with higher Smax. In the model, higher Smax with no change in the soil 

moisture defines a higher water stress in crop growth, resulting in smaller Ks, ET (Eq. 2.4 

and 2.5), and thus lower Y (Eq. 2.6). 
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Figure 2.8 Sensitivity of CWU, Y and WF to changes in the field capacity of the soil water 

(Smax), 1996-2005.  

 

 Sensitivity to parameters for yield simulation 

The yield response factor (Ky) and maximum yield (Ym) are important parameters defining 

the Y simulation (Eq.2.6). They are always set with a constant default value for different 

crop. It is clear from the equation that crop WF is negatively correlated to Ym: a 20% 

increase in Ym results in a 20% increase in Y and a 20% decrease in the WFs. Figure 2.9 

shows the sensitivity of Y and WF of each crop to changes in the values of Ky within ±20% 

of the default value. The figure shows that an increase in Ky leads to a decrease in simulated 

Y and an increase in the WFs. Due to the difference in the sensitivity of crops to water stress, 

different crops have different default Ky values, leading to different levels of sensitivity in Y 

and WF estimates to changes in Ky with crop types. Among the four crops, maize had the 

highest while wheat had the lowest sensitivity in Y and WF to the variation of Ky. 

 

Figure 2.9 Sensitivity of Y and WF to changes in yield response factor (Ky), 1996-2005. 

 

2.4.2  Annual variation of sensitivities in crop water footprints 

As an example of the annual variation of sensitivities, Table 2.3 presents the sensitivity of 

blue, green and total WF of maize to changes in PR, ET0, Kc, D, Smax, and Ky for each 

specific year in the period 1996-2005. As can be seen from the table, the sensitivity of green 

WF to the PR, ET0, Kc, D, and Smax was relatively stable around the mean annual level. But 

there was substantial inter-annual fluctuation of sensitivity of blue WF for all four crops. For 
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each year and each crop, the slope (S) of the sensitivity curve of change in blue WF versus 

change in PR, ET0, and Kc was computed, measuring the slope at mean values for PR, ET0, 

and Kc. The slopes (representing the percentage change in blue WF over percentage change 

in input variable) are plotted against the corresponding blue WF (Figure 2.10). The results 

show that – most clearly for maize and rice –the smaller the annual blue WF, the higher the 

sensitivity to changes in PR, ET0, or Kc. As shown by the straight curves through the data 

for maize (Figure 2.10), we can roughly predict the sensitivity of blue WF to changes in 

input variables based on the size of blue WF itself. The blue WF of a specific crop in a 

specific field will be more sensitive (in relative terms) to the three inputs in wet years than 

in dry years, simply because the blue WF will be smaller in a wet year. 

 

Table 2.3 Sensitivity of annual water footprint (WF) of maize to input variability at the level of 

the Yellow River Basin, for the period 1996-2005. 

  
WF 

(m
3
/t) 

Changes in the WF to variability of input variables (%) 

  PR ET0 Kc D Smax Ky 

  -20% 20% -20% 20% -15% 15% -30d  30d -20% 20% -20% 20% 

Blue WF                         

1996 201 27 -18 -52 72 -41 52 51 -51 -3.2 1.4 -4.1 4.1 

1997 381 17 -14 -47 55 -36 41 19 -25 0.9 0.9 -9.4 8.0 

1998 209 25 -16 -53 70 -42 51 31 -42 4.1 -1.6 -5.6 4.8 

1999 308 26 -18 -50 67 -39 49 44 -42 1.9 -1.3 -7.5 6.2 

2000 342 18 -14 -46 54 -35 40 48 -45 0.6 0.3 -8.6 6.8 

2001 439 15 -12 -44 50 -34 37 38 -33 0.4 0.8 -9.8 7.4 

2002 296 23 -18 -51 62 -39 46 23 -24 6.7 -3.1 -5.8 5.1 

2003 233 29 -21 -56 72 -44 53 45 -41 0.8 0.3 -4.9 5.0 

2004 260 24 -17 -49 65 -39 47 51 -43 1.0 -0.1 -7.2 6.4 

2005 288 25 -17 -50 71 -39 51 39 -37 1.2 -1.0 -9.9 6.9 

Mean 295 23 -16 -50 64 -39 47 39 -38 1.4 -0.3 -7.3 6.1 

Green WF                         

1996 754 -1.4 0.9 -18 18 -14 14 12 -17 -0.5 0.2 -4.1 4.1 

1997 820 -2.0 1.3 -19 18 -14 13 10 -14 -1.0 0.6 -9.4 8.0 

1998 792 -1.3 0.7 -19 18 -14 14 12 -11 -0.8 0.4 -5.6 4.8 

1999 864 -2.1 1.3 -19 18 -14 13 12 -13 -0.8 0.6 -7.5 6.2 

2000 831 -2.0 1.3 -19 18 -14 13 12 -15 -0.8 0.5 -8.6 6.8 

2001 819 -2.3 1.7 -19 17 -14 13 11 -15 -0.8 0.5 -9.8 7.4 

2002 865 -1.7 1.2 -18 18 -14 13 12 -15 -0.7 0.3 -5.8 5.1 
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2003 882 -1.4 1.0 -19 18 -14 14 12 -16 -0.6 0.4 -4.9 5.0 

2004 838 -1.5 0.9 -19 18 -14 14 13 -13 -0.8 0.6 -7.2 6.4 

2005 733 -2.1 1.6 -19 17 -14 13 10 -11 -0.7 0.5 -9.9 6.9 

Mean 820 -1.8 1.2 -19 18 -14 13 12 -14 -0.8 0.5 -7.3 6.1 

Total WF                         

1996 955 4.7 -3.1 -26 29 -20 22 20 -24 -1.1 0.5 -4.1 4.1 

1997 1200 3.9 -3.6 -28 30 -21 22 13 -18 -0.4 0.7 -9.4 8.0 

1998 1001 4.2 -2.8 -26 29 -20 22 16 -17 0.2 0.0 -5.6 4.8 

1999 1172 5.3 -3.7 -27 31 -21 23 20 -21 -0.1 0.1 -7.5 6.2 

2000 1172 3.7 -3.1 -27 28 -20 21 23 -24 -0.4 0.5 -8.6 6.8 

2001 1257 3.6 -3.1 -27 28 -21 21 20 -21 -0.4 0.6 -9.8 7.4 

2002 1160 4.7 -3.7 -27 29 -20 22 15 -17 1.2 -0.5 -5.8 5.1 

2003 1116 4.9 -3.5 -26 30 -20 22 19 -21 -0.4 0.3 -4.9 5.0 

2004 1098 4.4 -3.3 -26 29 -20 22 22 -20 -0.4 0.4 -7.2 6.4 

2005 1021 5.4 -3.6 -28 32 -21 24 18 -19 -0.2 0.1 -9.9 6.9 

Mean 1115 4.5 -3.3 -27 30 -20 22 19 -20 -0.2 0.3 -7.3 6.1 

 

 

 

Figure 2.10 The slope (S) of the sensitivity curve for the blue WF for each crop for each year 

in the period 1996-2005 (vertical axis) plotted against the blue WF of the crop in the 

respective year (x-axis). The graph on the left shows the relative sensitivity of blue WF to PR; 

the graph on the right shows the relative sensitivity of blue WF to ET0 or Kc. The sensitivities 

to ET0 and Kc were the same. The trend lines in both graphs refer to the data for maize.  

 

 

2.4.3  Uncertainties in WF per tonne of crop due to input uncertainties 

In order to assess the uncertainty in WF (in m
3
 t

-1
) due to input uncertainties, Monte Carlo 

(MC) simulations were performed at the basin level for 1996 (wet year), 2000 (dry year), 

and 2005 (average year). For each crop, we carried out a MC simulation for four input 
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uncertainty scenarios, considering the effect of: (1) uncertainties in PR alone, (2) 

uncertainties in ET0 alone, (3) combined uncertainties in the two climatic input variables 

(PR+ET0), and (4) combined uncertainties in all four key input variables considered in this 

study (PR+ET0+Kc+D). The uncertainty results in blue, green and total WF of the four crops 

for the four scenarios and three years are shown in Table 2.4. 

The uncertainties are expressed in terms of values for 2SD as a percentage of the mean 

value; the range of ± 2SD around the mean value gives the 95% confidence intervals. 

In general, for all uncertainty scenarios, blue WF shows higher uncertainties than green WF. 

Uncertainties in green WF are similar for the three different hydrologic years. Uncertainties 

in blue WF are largest (in relative sense) in the wet year, conform our earlier finding that 

blue WF is more sensitive to changes in input variables in wet years. The uncertainties in 

WF due to uncertainties in PR are much smaller than the uncertainties due to uncertainties 

in ET0. Uncertainties in PR hardly affect the assessment of total WF of crops in all three 

different hydrologic years. Among the four crops, soybean has the highest uncertainty in 

green and blue WF. The uncertainty in total WF for all crops is within the range of ± 18 to 

20% (at 95% confidence interval) when looking at the effect of uncertainties in the two 

climate input variables only, and within the range of ± 28 to 32% (again at 95% confidence 

interval) when looking at the effect of uncertainties in all four input variables considered. In 

all cases, the most important uncertainty source is the value of ET0. Figure 2.11 shows, for 

maize as an example, the probability distribution of the total WF (in m
3 

t
-1

) given the 

uncertainties in the two climatic input variables and all four input variables combined.
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Table 2.4 Values of 2×Standard deviation for the probability distribution of the blue, green and total WF of maize, soybean, rice and 

wheat, expressed as % of the mean value, from the Monte Carlo simulations. 

Crop 
Perturbed 
inputs 

1996(wet year)   2000(dry year)   2005(average year) 

Blue WF Green WF Total WF   Blue WF Green WF Total WF   Blue WF Green WF Total WF 

Maize 

P 14 4 0.2   10 4 0.2   8 4 0 

ET0 48 12 20   38 12 20   36 12 18 

P+ET0 48 12 20   42 12 20   38 14 20 

P+ET0+Kc+D 88 21 34   78 20 36   66 19 32 

Soybean 

P 22 1.2 0.2   18 2 2 
 

14 2 0.8 

ET0 56 16 18   50 14 16   40 14 16 

P+ET0 62 16 18   56 14 18   44 14 18 

P+ET0+Kc+D 87 26 29   92 25 31   66 25 28 

Rice 

P 10 6 0   8 6 0   7 6 0 

ET0 34 12 20   30 12 20   30 12 20 

P+ET0 34 12 20   32 12 20   32 13 20 

P+ET0+Kc+D 70 18 31   66 21 32   61 19 29 

Wheat 

P 14 2 0.4   14 2 0.4   16 2 0 

ET0 48 16 20   46 16 18   52 16 18 

P+ET0 52 16 20   48 16 18   54 16 18 

P+ET0+Kc+D 85 24 26   83 24 31   88 22 30 
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Figure 2.11 Probability distribution of the total WF of maize given the combined uncertainties 

in PR and ET0 (graphs at the left) and given the combined uncertainties in PR, ET0, Kc and D 

(graphs at the right), for the years 1996, 2000 and 2005. 
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2.5  Conclusions and discussion 

This paper provides the first detailed study of the sensitivities and uncertainties in the 

estimation of green and blue water footprints of crop growing related to input variability and 

uncertainties at river basin level. The result shows that at the scale of the Yellow River Basin: 

(1) WF is most sensitive to errors in ET0 and Kc followed by the crop planting date and PR, 

and less sensitive to changes of Smax, Ky, and Ym; (2) blue WF is more sensitive and has 

more uncertainty than green WF; (3) uncertainties in total (green + blue) WF as a result of 

climatic uncertainties are around ± 20% (at 95% confidence level) and dominated by effects 

from uncertainties in ET0; (4) uncertainties in total WF as a result of all uncertainties 

considered are on average ±30% (at 95% confidence level); (5) the sensitivities and 

uncertainties in WF estimation, particularly in blue WF estimation, differ across crop types 

and vary from year to year.  

An interesting finding was that the smaller the annual blue WF (consumptive use of 

irrigation water), the higher the sensitivity of the blue WF to variability in the input 

variables PR, ET0, and Kc. Furthermore, delaying the crop planting date was found to 

potentially contribute to a decrease of the WF of spring or summer planted crops (maize, 

soybean, rice). Optimizing the planting period for such crops could save irrigation water in 

agriculture, particularly for maize and rice. Although the conclusion closely matches the 

result from several experiments for maize carried out in some regions in North China (Sun 

et al., 2007; Jin et al., 2012; Qin et al., 2012), such information should be confirmed further 

by future field agronomic experiments.  

The study confirmed that it is not enough to give a single figure of WF without providing an 

uncertainty range. A serious implication of the apparent uncertainties in Water Footprint 

Assessment is that it is difficult to establish trends in WF reduction over time, since the 

effects of reduction have to be measured against the background of natural variations and 

uncertainties. 

The current study shows possible ways to assess the sensitivity and uncertainty in the WF of 

crops in relation to variability and errors in input variables and parameters. Not only can the 
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outcomes of this study be used as a reference in future sensitivity and uncertainty studies on 

WF, but the results also provide a first rough insight in the possible consequences of 

changes in climatic variables like precipitation and reference evapotranspiration on the WF 

of crops. However, the study does not provide the complete picture of sensitivities and 

uncertainties in Water Footprint Assessment. Firstly, the study is limited to the assessment of 

the effects from only part of all input variables and parameters; uncertainties in other 

parameters were not considered, like for instance uncertainties around volumes and timing 

of irrigation, parameters affecting runoff and deep percolation. Secondly, there are several 

models available for estimating the WF of crops. Our result is only valid for the model used 

which is based on a simple soil water balance (Allen et al., 1998; Mekonnen and Hoekstra, 

2010) and which considers water as the main factor in the yield estimation (Eq. 2.6). Thirdly, 

the quantification of uncertainties in the input variables considered is an area full of 

uncertainties and assumptions itself. Besides, the uncertainty range of an input variable, 

especially for climatic inputs, is location specific. Thus the level of input uncertainties will 

be different in different places, resulting in a different level of uncertainties in crop WFs. 

Therefore, the current result is highly valuable for the region of the YRB and should be 

referenced with caution at other regions. Furthermore, the uncertainties in water footprint 

estimation are scale dependent and decline with growing extent of the considered study 

region. Our study is carried out for the aggregated crop WF estimation for the whole basin 

scale. The result should be interpreted with caution at a higher resolution.  

Therefore, in order to build up a more detailed and complete picture of sensitivities and 

uncertainties in Water Footprint Assessment, a variety of efforts needs to be made in the 

future. In particular, we will need to improve the estimation of input uncertainties, include 

uncertainties from other input variables and parameters, and assess the impact of using 

different models on WF outcomes. Finally, uncertainty studies will need to be extended 

towards other crops and other water using sectors, to other regions and at different spatial 

and temporal scales. 
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3. Inter- and Intra-annual Variation of Water Footprint of 
Crops and Blue Water Scarcity in the Yellow River Basin 
(1961-2009)2 

Abstract 

The Yellow River Basin (YRB), the second largest river basin of China, has experienced a 

booming agriculture over the past decades. But data on variability of and trends in water 

consumption, pollution and scarcity in the YRB are lacking. We estimate, for the first time, 

the inter- and intra-annual water footprint (WF) of crop production in the YRB for the 

period 1961-2009 and the variation of monthly blue water (ground and surface water) 

scarcity for 1978-2009, by comparing the blue WF of agriculture, industry and households 

in the basin to the maximum sustainable level. Results show that the average overall green 

(from rainfall) and blue (from irrigation) WFs of crops in the period 2001-2009 were 14% 

and 37% larger, respectively, than in the period 1961-1970. The annual nitrogen- and 

phosphorus-related grey WFs (water required to assimilate pollutants) of crop production 

grew by factors of 24 and 36, respectively. The green-blue WF per tonne of crop reduced 

significantly due to improved crop yields, while the grey WF increased because of the 

growing application of fertilizers. The ratio of blue to green WF increased during the study 

period resulting from the expansion of irrigated agriculture. In the period 1978-2009, the 

annual total blue WFs related to agriculture, industry and households varied between 19 and 

52% of the basin’s natural runoff. The blue WF in the YRB generally peaks around 

May-July, two months earlier than natural peak runoff. On average, the YRB faced moderate 

to severe blue water scarcity during seven months (January-July) per year. Even in the 

wettest month in a wet year, about half of the area of the YRB still suffered severe blue 

water scarcity, especially in the basin’s northern part. 

 
  

                                                             
2
 Chapter is based on: Zhuo, Mekonnen, Hoekstra and Wada (2016b) Advances in Water Resources 

87, 29-41. 
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3.1  Introduction 

The increasing demand for fresh water by humanity is challenging the sustainable water use 

in many river basins around the world (Vörösmarty et al., 2010; Wada et al., 2011; Hoekstra 

et al., 2012). The Yellow River Basin (YRB, or “Huang He”), the second largest river basin 

of China, with a drainage area of 795×10
3 
km

2 
(YRCC, 2013), is well known as one of the 

world’s basins facing severe water scarcity. The YRB is now responsible for producing 13% 

of national grain production with only 2% of the national water resources (YRCC, 2013). In 

the last half century, with a booming agriculture and burgeoning population, of the total blue 

water (ground and surface water) consumption in the YRB by agriculture, industry and 

households increased from 17.8×10
9
 m

3
 in the 1960s (Liu and Zhang, 2002) to 39.3×10

9
 m

3
 

in 2009 (YRCC, 2011). Agriculture is by far the largest water user in the basin, accounting 

for 77% of the total blue water consumption, of which 91% is used for field irrigation (2009) 

(YRCC, 2011). In 2009, the total annual blue water withdrawal in the YRB for agriculture, 

industry and households reached 76.5% of the renewable water resources in the basin 

(YRCC, 2011). In recent years, competition among the different sectors over the limited 

water resources has intensified (Yunpeng et al., 2015). Meanwhile, when comparing the 

1960s to 2000s, precipitation and evaporation showed downward trends in most areas within 

the YRB (Xu et al., 2007; Liu and McVicar, 2012). The yearly natural runoff of the YRB 

decreased constantly in the 1990s (Xu et al., 2010) and reached its lowest value in 2002 

(~30.0×10
9
 m

3
), after which it increased again and remained fluctuating (at an average level 

of ~57.5×10
9
 m

3
) (YRCC, 2011). As a result of climatic variability, the inter-annual 

variability of natural water availability and water demand in the YRB are large, whereby 

demand in agriculture is typically high when availability is low. 

Unfortunately, data on variability of and trends in water consumption, pollution and scarcity 

in the YRB are lacking. Another problem is that traditional statistics like ‘annual gross 

water abstraction’ per sector and ‘irrigation efficiency’ in the agricultural sector do not 

provide a comprehensive picture of water use and water scarcity. For understanding water 

scarcity at catchment or river basin level, we need to measure net water abstraction 

(consumptive water use) rather than gross water abstraction, because return flows can be 

reused and thus do not contribute to water scarcity (Hoekstra et al., 2011). A similar 
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shortcoming exists with the indicator of irrigation efficiency, which measures losses 

between gross water abstraction and the volume of water that reaches the crop. Only a part 

of this so-called loss, namely the part that evaporates, is really lost to the catchment and will 

thus contribute to scarcity; a large part of the so-called loss refers to water that percolates 

and thus adds to the groundwater and remains available in the catchment (Perry, 2007). 

Another gap in traditional statistics is the focus on the use of blue water resources (ground 

and surface water), which is insufficient, given the fact that agriculture heavily relies on 

green water resources (rainwater) (Falkenmark and Rockström, 2004). Besides, water 

pollution and water scarcity are intricately linked, because the effect of pollutants becomes 

worse if groundwater and river flows get depleted. Finally, usual statistics on water use and 

scarcity are annual, while the key to understanding water use and scarcity is the recognition 

of intra-annual variability (Savenije, 2000). The water footprint (WF) – introduced by 

Hoekstra (2003) – is a comprehensive measure of human freshwater appropriation that 

addresses these shortcomings. 

The WF is a multi-dimensional indicator that measures consumptive water use of both 

rainfall and ground-surface water (the green and blue WF, respectively) and the water 

required to assimilate anthropogenic loads of pollutants to freshwater bodies (the grey WF) 

(Hoekstra et al., 2011). In geographic applications, several soil-water-balance models have 

been applied in order to map WFs at high spatial levels so that one can see where they are 

located (Rost et al., 2008; Hanasaki et al., 2010; Liu and Yang, 2010; Siebert and Doll, 2010; 

Mekonnen and Hoekstra, 2011). Rost et al. (2008) estimated, using the LPJmL model at 30 

arc min resolution level, total green and blue WFs of global crop production for 1971-2000. 

Hanasaki et al. (2010) evaluated, employing the H08 model at 30 arc min resolution level, 

global total green and blue WFs of major crops for 1985-1999. Liu and Yang (2010) 

estimated, based on the GEPIC model at 30 arc min resolution level, global total green and 

blue WFs of crop production for the year 2000. Siebert and Doll (2010) computed, with the 

GCWM model at 5 arc min resolution level, global total green and blue WFs of major crops 

worldwide for 1998-2002. Mekonnen and Hoekstra (2011) estimated, applying the Cropwat 

model at 5 arc min resolution level, the green, blue and grey WFs of crop production 

worldwide for 1996-2005. Cai et al. (2009) and Feng et al. (2012) applied an input-output 
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model to evaluate the WF and regional virtual water trade for the YRB from a consumptive 

perspective for 2002 and 2007, respectively. Hoekstra et al. (2012) estimated blue water 

scarcity for the major river basins in the world over the period 1996-2005, by taking, per 

basin, the ratio of blue WF to the maximum sustainable blue WF. Mekonnen and Hoekstra 

(2015) estimated, at 5 arc min grid level, the global grey WF related to nitrogen for the 

period of 2002-2010. These studies show that the blue WF in the YRB is relatively large 

during several months per year (Rost et al., 2008; Hanasaki et al., 2010; Siebert and Doll, 

2010; Hoekstra et al., 2012) and has the highest blue water proportion in total consumptive 

(green plus blue) water use among river basins around the world (Liu and Yang, 2010). 

Meanwhile, there is net virtual water export from the YRB (Cai et al., 2009; Feng et al., 

2012). The YRB faces severe blue water scarcity for four months per year, as a long-term 

average, mostly in spring time when runoff is still low while water consumption for 

irrigation starts to increase (Hoekstra et al., 2012). The nitrogen-related grey WF in the 

YRB has been estimated to be about eight times the annual natural runoff, in which implies 

a very high water pollution level (Mekonnen and Hoekstra, 2015). 

Although temporal and spatial variations in WFs are keys in understanding water scarcity, 

most existing geographic WF assessment studies consider one specific year or the average 

for a period of five to ten years. There are a few studies focusing on the long-term 

variability of green and blue WFs, for example, Zhuo et al. (2014) and Tuninetti et al. (2015) 

estimated WFs of four major crops in the YRB and globally, respectively, at 5 arc min grid 

level inter-annually over 1996-2005; Sun et al. (2012a) calculated WFs for grain production 

in the Hetao irrigation district over 1960-2008. But there are no water scarcity studies at a 

high temporal and spatial resolution for a series of years. 

The current study aims at investigating (i) the temporal and spatial variability of green, blue 

and grey WFs of crop production in the YRB for the period of 1961-2009; and (ii) the 

temporal and spatial variability of blue water scarcity in the YRB for 1978-2009. The YRB 

is usually divided into three reaches: the upper reach (upstream of Hekouzhen, Inner 

Mongolia), the middle reach (upstream of Taohuayu, Henan Province) and the lower reach 

(draining into the Bohai Sea) (YRCC, 2013). In Chapter 2 we considered inter-annual 
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variation of green and blue WFs of 4 major crops in the YRB over ten years (1996-2005). 

The current study improves upon the earlier study by assessing inter- and intra- annual 

variation of green, blue and grey WFs of 17 crops, and the blue water scarcity over several 

decades. Therefore, this is the first river basin study that combines a high temporal 

resolution (WF estimated per day; blue water scarcity estimated per month), a high spatial 

resolution (5×5 arc min), and a multi-year record including both dry and wet years. In 

addition, the study is innovative in applying a combined soil-water-balance and crop-growth 

model in estimating the green and blue WFs in crop production. Most of earlier WF studies 

(Liu and Yang, 2010; Siebert and Doll, 2010; Mekonnen and Hoekstra, 2011; Zhuo et al., 

2014) applied a soil-water-balance model in combination with an assumed simple linear 

relationship between yield and evapotranspiration (Doorenbos and Kassam, 1979). We 

applied, for the first time, the FAO crop water productivity model AquaCrop (Hsiao et al., 

2009; Raes et al., 2009; Steduto et al., 2009) to estimate WF of crops. AquaCrop separately 

simulates crop transpiration (Tr) and soil evaporation (E) and the daily Tr is used to derive 

the daily biomass gain via the normalized biomass water productivity of the crop (Steduto et 

al., 2009). Compared to other crop growth models, AquaCrop has a significantly smaller 

number of parameters and better balances between simplicity, accuracy and robustness 

(Steduto et al., 2007). The model performance regarding crop water use and yield simulation 

has been widely tested for a number of crops under diverse environments and types of water 

management (Farahani et al., 2009; Garcia-Vila et al., 2009; Andarzian et al., 2011; 

Stricevic et al., 2011; Abedinpour et al., 2012; Katerji et al., 2013; Yuan et al., 2013; Jin et 

al., 2014). This is the first time that the AquaCrop model is applied to simulate crop water 

use and yields for a whole river basin, by running the model per crop for each grid cell. 

Besides, we added a module that separates green and blue water evapotranspiration in order 

to be able to calculate green and blue WFs of crops. 

3.2  Method and data 

3.2.1  Estimating green and blue water footprints in crop production 

The WFs related to the production of seventeen major crops (listed in Table 3.1) in the YRB 

during the period 1961-2009 were estimated year by year with a daily time step at a 5 by 5 

arc min grid (~7.4 km × 9.3 km at the latitude of the YRB) following the accounting 
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framework of Hoekstra et al. (2011). The crops considered account for about 87% of the 

harvested area and 93% of crop production in 2009 (NBSC, 2013) . Per crop, the green WF 

of producing a crop within a grid cell (in m
3
 y

-1
) was estimated by multiplying the green 

water evapotranspiration (ET, m
3
 ha

-1
) over the growing period by the harvested area for the 

crop (in ha y
-1

). Similarly, the blue WF was estimated by multiplying the blue ET by the 

harvested area. The green or blue WF per unit of a crop (in m
3
 t

-1
) was calculated per grid 

cell by dividing the green or blue ET over the growing period by the crop yield (Y, t ha
-1

). 

The AquaCrop was used to simulate ET and Y for each type of crop per year per grid cell. 

Simulated Y per crop per year per grid cell was calibrated at provincial level, by scaling the 

model outputs in order to fit provincial crop yield statistics (NBSC, 2013). AquaCrop is a 

water-driven crop water productivity model with a dynamic daily soil water balance as Eq. 

2.1. 

The daily runoff (RO[t], mm) is estimated through the Soil Conservation Service 

curve-number equation (Rallison, 1980): 

RO[t] =
(PR[t] − 0.2 × S)2

PR[t] + S − 0.2 × S
                                                                                            (3.1) 

where PR[t] refers to the precipitation on day t, S (mm) to the potential maximum storage, 

which is a function of the soil curve number. The daily deep percolation (DP[t], mm) is 

defined by the drainage ability of the day given the actual soil water content between 

saturation and field capacity. The drainage ability is zero when the soil water content is 

lower than or equal to field capacity (Raes et al., 2011).  

By tracking daily incoming and outgoing water fluxes at the boundaries of the root zone we 

were able to separate the green and blue soil water balances at a daily basis. The capillary 

rise from groundwater (mm) is assumed to be zero because the ground water depth is 

considered to be much larger than 1m (Allen et al., 1998). In order to obtain initial soil 

water content at the beginning of the growing period, following the method and assumption 

from (Siebert and Doll, 2010), the initial soil water moisture was simulated from the 

maximum soil water content through two years rain-fed fallow land prior to the planting 
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date. The initial soil water moisture at the start of the growing period is assumed as green 

water.  

The contribution of precipitation (green water) and irrigation (IRR) (blue water) to surface 

runoff is calculated based on the respective magnitudes of precipitation and irrigation to the 

total green plus blue water inflow. The green and blue components in DP and ET are 

calculated per day based on the fractions of green and blue water in the total soil water 

content at the end of the previous day. The green soil water content (Sgreen) and blue soil 

water content (Sblue) are thus calculated as:  

green[t 1][t ]

green[t ] green[t 1] [t ] [t ] [t ] [t ] [t ]

[t ] [t ] [t 1]

[t ] blue[t 1]

blue[t ] blue[t 1] [t ] [t ] [t ] [t ] [t ]

[t ] [t ] [t 1]

SPR
S S (PR IRR RO ) (DP ET )

PR IRR S
IRR S

S S (PR IRR RO ) (DP ET )
PR IRR S














       



        



(3.2) 

In AquaCrop, the daily crop transpiration (Tr[t], mm) is used to derive the daily gain in 

above-ground biomass (B) via the normalized biomass water productivity of the crop (WP*, 

kg m
-2

): 

B = WP∗ × ∑
Tr[t]

ET0[t]

                                                                                               (3.3) 

The WP* is normalized for the carbon dioxide (CO2) concentration of the bulk atmosphere, 

the evaporative demand of the atmosphere (ET0) and crop classes (C3 or C4 crops). The 

normalization makes the model applicable to diverse locations and seasons (Raes et al., 

2011). The harvestable portion (the crop yield Y, t ha
-1

) of B at the end of the growing 

period is determined as product of B and the harvest index (HI, %): 

Y = HI ×  B                                                  (3.4) 

HI is adjusted to water and temperature stress depending on the timing and extent of the 

stress by an adjustment factor (fHI) from the reference harvest index (HI0):  

HI = fHI × HI0                                              (3.5) 



45 
 

 

Vanuytrecht et al. (2014) examined the sensitivity of Y to inputs in the AquaCrop model, 

and found that simulated Y is particularly sensitive to the root and soil parameters. 

Therefore, before running AquaCrop, input parameters on crop calendar, maximum 

effective root depth and HI0 for each crop were carefully selected from different sources for 

the current study (Table 3.1). Values of other crop parameters used in the study are taken 

from Raes et al. (2011). Several studies (Araya et al., 2010; Abedinpour et al., 2012; Katerji 

et al., 2013; Iqbal et al., 2014) have verified that the model performs at acceptable accuracy 

level in Y simulations and the accuracy level was relatively higher for irrigated crops than 

rain-fed crops. This is due to the fact that if the soil water content reaches below the 

threshold affecting the canopy senescence in the model, the simulated canopy will die 

resulting in an underestimated or even zero Y (Raes et al., 2011; Katerji et al., 2013). 

Therefore, in order to avoid such modelling failures at rain-fed fields, we set the initial soil 

moisture such that the soil water threshold for canopy senescence for each crop is met.  

3.2.2 Estimating grey water footprints in crop production 

The grey WF related to crop production refers to the volume of water needed to assimilate 

the fertilizers and pesticides applied to the field that reach groundwater through leaching or 

surface water through runoff or soil erosion (Hoekstra et al., 2011). In the current study, we 

consider the effect of nitrogen (N) and phosphorus (P), thus excluding the effect of other 

nutrients and fertilizers. At a 5×5 arc-minute grid and annual basis, we estimated the grey 

WF of crop production related to N and P from both mineral and manure fertilizers during 

the period 1961-2009. The grey WF per unit of crop (WFgrey, m
3 

t
-1

) was calculated 

following the formula (Hoekstra et al., 2011):  

grey

max nat

AR 1
WF

(c c ) Y

 



                                     (3.6) 

where α represents the leaching-runoff fraction, AR (kg ha
-1

) the application rate to the field 

(the sum of mineral and manure fertilizer), cmax (mg
 
l
-1

) the maximum acceptable 

concentration of the nutrient in the receiving water body, and cnat the natural concentration 

of the nutrient in the receiving water body. We used values for cmax and cnat from China’s 
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national surface water quality standard (MEP, 2002) and average values for α as suggested 

in Franke et al. (2013): 0.1 for N, 0.03 for P.  

The mineral and manure fertilizer application rates by crop and per grid cell were estimated 

following Liu et al. (2010). For both artificial fertilizer and manure, the fertilizer 

consumption volumes are expressed in terms of N and P amounts. The fertilizer volume per 

crop per year per grid cell was calculated from the total annual national fertilizer 

consumption for the crop times the production share of the grid cell. The correlated AR in a 

grid cell was calculated by dividing the crop-specific fertilizer volume by the harvested area 

of the crop. The manure input for a nutrient was calculated by multiplying the livestock 

density with animal specific excretion rates for the nutrient and excretion collection rates. 

Five types of livestock were considered: cattle, goats, sheep, pigs and poultry. Excreta can 

be produced in either stables or meadows (Liu et al., 2010). We only consider the excreta 

produced in a stable for manure supply. We used 90%, the share of the manure for cropland 

use in developing countries suggested by Smil (1999). Part of the N in animal manure is lost 

through NH3 volatilization. Following the assumption from Bouwman et al. (2013), 60% of 

the N in the manure is effective for fertilizer. 

3.2.3 Blue water footprints related to industry and municipal sectors 

The data on industrial and domestic water consumption for 1978-1997 are only available in 

the form of averages over five-year periods. The values for 1978-1982 and 1988-1992 for 

the YRB were directly available from YRCC (2006); the values for 1983-1987 and 

1993-1997 were estimated based on national water withdrawal for industry and household 

obtained from FAO (2014a). In the latter case, we assumed the blue water consumption to 

be a fraction of blue water withdrawal, taking the fraction equal as the average for the years 

1978-1992. Similarly, we assumed the blue water consumption in YRB to be a fraction of 

the national total equal as the average for the years 1978-1992. For the period 1998-2009, 

we use annual estimates for industrial and domestic water consumption from YRCC (2011). 

The blue WFs related to the industrial and municipal sectors in the YRB were downscaled 

to grid level based on a population density map of the YRB, which was extracted from the 
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2.5 arc min resolution population density map for China from CIESIN (2005). For 

downscaling industrial water use, it would have been preferred to use spatial data on 

industries within the basin, but in absence of such data we used the population density map, 

following Hoekstra et al. (2012). Monthly industrial and domestic water consumption was 

obtained by distributing the annual value equally over the 12 months without accounting for 

the possible variation. 

3.2.4 Blue water scarcity assessment 

Blue water scarcity in a catchment is defined as the ratio of the total blue WF (m
3
 y

-1
) to the 

maximum sustainable blue WF (m
3 

y
-1

) in that catchment during a specific time period 

(Hoekstra et al., 2011; Hoekstra et al., 2012). In this study, monthly blue water scarcity in 

the YRB during 1978-2009 was calculated at 5×5 arc min grid. The total blue WF was 

estimated by summing the crop-related blue WF as calculated in the current study and the 

blue WFs from the industrial and domestic sectors estimated based on YRCC (2011). The 

monthly maximum sustainable blue WF was calculated as the ‘natural runoff’ minus 

‘environmental flow requirement’. The monthly natural runoff for the study period was 

obtained from the hydrological model PCR-GLOBWB (Van Beek et al., 2011; Wada et al., 

2011; Wada and Bierkens, 2014) at a spatial resolution of 6×6 arc min (~ 9 km × 11 km in 

the YRB), which was resampled to a resolution of 5×5 arc min. The performance of the 

PCR-GLOBWB for the YRB is good in reproducing variability and magnitudes of monthly 

natural discharge (Van Beek et al., 2011). The ‘environmental flow requirement’ was 

estimated based on the presumptive standard proposed by Richter et al. (2012) and Hoekstra 

et al. (2011) and earlier applied by Hoekstra et al. (2012). According to this standard, 80% 

of monthly natural runoff is allocated to the environment. The maximum sustainable blue 

WF per grid cell was calculated as 20% of the total natural runoff from that cell and 

upstream grid cells, minus the blue WF in upstream grid cells. 

Blue water scarcity is classified into four levels (Hoekstra et al., 2012): ‘low’ when the blue 

WF is smaller than 20% of natural runoff, i.e. when the blue WF is smaller than the 

maximum sustainable blue WF; ‘moderate’ when the blue WF is between 20% and 30% of 
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natural runoff; ‘significant’ when the blue WF is between 30% and 40% of natural runoff; 

and ‘severe’ when the blue WF exceeds 40% of natural runoff. 

3.2.5 Data 

For the period 1961-2009, monthly precipitation, ET0 and temperature data at 30 arc min 

resolution were extracted from CRU-TS-3.10.01(Harris et al., 2014). Data on irrigated and 

rain-fed area for each crop at 5 arc min resolution were obtained from Portmann et al. 

(2010). For crops not available in this database, we used the 5 arc min crop area map from 

Monfreda et al. (2008). Yearly harvested areas and yields for each crop within the YRB 

were scaled to fit the yearly agriculture statistics at province level of China obtained from 

NBSC (2013). For tomatoes, we used estimates of FAOSTAT (FAO, 2014b), because 

NBSC (2013) does not contain tomato-specific statistics. The data on crop calendar, 

maximum root depth and reference harvest index are presented in Table 3.1. Soil texture 

data were obtained from ISRIC Soil and Terrain database for China at a 10 km
2
 resolution 

(Dijkshoorn et al., 2008). For hydraulic characteristics for each type of soil, the indicative 

values provided by AquaCrop were used. Data on total soil water capacity (in %vol) at a 

spatial resolution of 5 arc minute were obtained from Batjes (2012).  

Annual chemical fertilizer use statistics for China for the study period 1961-2009 were 

obtained from IFA (2013). Total fertilizer use in the YRB was estimated based on the ratio 

of the crop area in the YRB to the crop area in China as a whole. Total fertilizer use in the 

YRB per year was downscaled to crop-specific fertilizer use based on the data on fertilizer 

use per crop in China as reported by FAO (2007). Livestock density data for the year 2000 

were taken from Robinson et al. (2007). The livestock density data for other years were 

scaled with the yearly national stock statistics for different types of livestock obtained from 

NBSC (2013). The share of excretion produced in stables was obtained from Bouwman et al. 

(1997) and Liu et al. (2010) (Table 3.2). Following Bouwman et al. (2013), it was assumed 

that 90% of the manure was applied to crop fields and that 60% of the nutrients applied to 

the field in the form of manure is taken up by the plant. The livestock nutrient excretion 

rates by type of animal were obtained from the baseline data provided by Sheldrick et al. 
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(2003) (Table 3.2). The values for cmax and cnat for the calculation of grey WF were taken 

from the national surface water quality standard of China (MEP, 2002) (Table 3.3). 

Table 3.1. Crop characteristics used in the current study 
a
. 

Crop Planting date 
Relative crop growing stages 

HI0 

Max. rooting depth 
(m) 

Lini Ldev Lmid Llate Irrigated Rain-fed 

Winter wheat 15th October 0.48 0.22 0.22 0.07 40% 1.5 1.8 

Spring wheat 15th March 0.15 0.19 0.44 0.22 39% 1 1.5 

Rice 1st May 0.20 0.20 0.40 0.20 43% 0.5 1 

Maize 1st May 0.20 0.27 0.33 0.20 44% 1 1.7 

Sorghum 1st May 0.15 0.27 0.35 0.23 39% 1 2 

Millet 15th April 0.14 0.21 0.39 0.25 38% 1 2 

Barley 15th May 0.13 0.21 0.42 0.25 39% 1 1.5 

Soybean 1st June 0.13 0.17 0.50 0.20 44% 0.6 1.3 

Potato 1st May 0.19 0.23 0.35 0.23 59% 0.4 0.6 

Sweet potato 1st May 0.13 0.20 0.40 0.27 69% 1 1.5 

Cotton 1st April 0.17 0.28 0.31 0.25 38% 1 1.7 

Sugar beet 15th April 0.28 0.22 0.28 0.22 71% 0.7 1.2 

Groundnut 15th April 0.25 0.32 0.25 0.18 43% 0.5 1 

Sunflower 15th April 0.19 0.27 0.35 0.19 31% 0.8 1.5 

Rapeseed 15th March 0.20 0.40 0.20 0.20 25% 1 1.5 

Tomato 15th January 0.22 0.30 0.30 0.19 40% 0.7 1.5 

Apple 1st March 0.13 0.21 0.54 0.13 20% 0.7 1.5 

a
Sources: reference harvest indexes from Xie et al. (2011) and Zhang and Zhu (1990); planting 

dates from Chen et al. (1995); relative crop growing stages and maximum rooting depths from Allen 
et al. (1998) and Hoekstra and Chapagain (2007b). 
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Table 3.2 Share of excretion produced in stables and excretion rates per livestock category 
a
. 

Livestock 
Share of excretion produced 

in stables (%) 

Excretion rate (kg nutrient head
-1

 y
-1

) 

N P 

Cattle 46 50 10 

Goats 10 10 2 

Sheep 10 10 2 

Pigs 100 12 4 

Poultry 100 0.6 0.19 

a
Sources: shares of excretion produced in stables from Bouwman et al. (1997) and Liu et al. 

(2010); excretion rates from Sheldrick et al. (2003). 
 

 

 

Table 3.3. Water quality parameters for grey water footprint estimation in Yellow River 
Basin

a
. 

Chemical substance cmax (mg l
-1

) cnat (mg l
-1

) 

Phosphorous (P) 0.2 0.02 

Nitrogen (N) 1.0 0.2 

a
Source: For cnat, we took data for the best water quality level ‘I’ in MEP (2002). 

 

 

3.3  Results 

3.3.1  The water footprint of crop production 

Over the period 1961-2009, the average annual total green-blue WF of crop production in 

the YRB was 48.8×10
9 
m

3
 y

-1
, of which 25% was blue WF (12.4×10

9 
m

3
 y

-1
). The average 

annual grey WF was 86.7×10
9 

m
3
 y

-1
 related to N and 37.8×10

9 
m

3
 y

-1
 related to P. The 

annual variations of green, blue and grey WFs of crop production in the YRB over the study 

period are plotted in Figure 3.1. During the study period, the harvested area of crops 

considered in the YRB increased little (by about 5%), but the crop production increased by 

almost five-fold. In order to reach the rising targets for crop production, the irrigated area in 

the YRB has been expanded 1.5 times relative to the level in the 1960s, which resulted in a 

37% larger blue WF in the 2000s (14.4×10
9 
m

3
 y

-1
) compared to the 1960s (10.5×10

9 
m

3
 y

-1
). 

The increase in the green WF was less: it was 14% larger in the 2000s (38.4×10
9 

m
3
 y

-1
) 
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compared to the 1960s (33.7×10
9 
m

3
 y

-1
). As can be seen from Figure 3.1, annual green and 

blue WFs fluctuated inversely, i.e., with an increase in green WF the blue WF decreased. 

The intensification of crop production and fertilizer application has been one of main 

reasons for the severe water pollution in the YRB (Yunpeng et al., 2015). According to our 

estimates, the fertilizer-related grey WFs increased over the study period by 24 and 36 times 

for N and P, respectively. The large increase is not surprising considering the fact that over 

the period 1961-2009 total fertilizer use on crop land in China increased 38 and 90 times for 

N and P, respectively (IFA, 2013).  

The relative contribution of crops to the total green plus blue WF changed due to changes in 

cropping patterns in the YRB. In the period 1961-1965, the five biggest contributors to the 

green plus blue WF related to crop production were winter wheat (48%), spring wheat 

(8.9%), millet (8.8%), maize (8.3%), and soybean (6.1%), while for 2006-2009 these were 

winter wheat (41%), maize (21%), spring wheat (7.1%), apples (6.7%) and potatoes (5.2%). 

Over the study period, crops with increasing green-blue WF of production were winter 

wheat, rice, maize, potatoes, sunflower, groundnuts, sugar beet, rapeseed, tomatoes and 

apples. Crops with decreasing green-blue WF were spring wheat, sorghum, millet, barley, 

soybean, sweet potatoes and cotton (Table 3.4). Sunflower has the strongest increase in its 

total WF of production during the study period, which is driven by the huge extension of 

sunflower planting areas in the YRB (from 1.3 k ha in 1961 to 203 k ha in 2009). Sorghum 

has the largest decrease in the total WF of production, which relates to the decrease in 

sorghum planting area by 90%.  

In the 2000s, about 62% (8.9×10
9 
m

3 
y

-1
) of the crop-related blue WF in the YRB was for 

wheat production and 21% (3.0×10
9 

m
3
 y

-1
) for producing maize. The blue WF of maize 

production increased nearly five-fold, from 0.65×10
9 
m

3
 y

-1
 in the 1960s to 3.0×10

9 
m

3
 y

-1
 in 

the 2000s. On the other hand, the blue WF of cotton, one of the biggest blue water 

consumers in the 1960s, dropped from 0.86×10
9 
m

3
 y

-1 
in the 1960s to 0.63×10

9 
m

3
 y

-1
 in the 

2000s, due to the decline in its irrigated area (~307k
 
ha in the 1960s to ~201kha in the 

2000s). Regarding the green WF, wheat and maize accounted for about 62% in the 2000s 

(43% from wheat, 19% from maize). For rapeseed, which is one of the fully rain-fed crops, 
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the green WF share increased from 1% (1960s) to 5% (2000s). Among the crops, maize had 

the largest grey WF related to both N (60% of the total) and P (48% of the total), followed 

by soybean (5% of total related to N, 12% of total related to P). 

The variation of the total crop-related green-blue WF at basin level is mainly caused by the 

increase in irrigated area and variation in climatic conditions (like PR and ET0). The 

increase of the irrigated area caused the overall increasing trend of the annual blue WF in 

the YRB, while climate variability contributed to the inter-annual fluctuation of the blue WF. 

We found that the blue WF decreases with increased PR and increases with increased ET0, 

which confirms the finding in Chapter 2 (Zhuo et al., 2014) that the blue WF of crop 

production is more sensitive to ET0 than to PR. 

 

 

Figure 3.1 Annual variability of green, blue and grey water footprints of crop production in 

the Yellow River Basin. Period: 1961-2009.  
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The upper, middle and lower reaches accounted for 23%, 49% and 28%, respectively, of the 

annual average green-blue WF of crop production in the YRB in the 2000s. Over the study 

period, the increase of the basin’s total blue WF mainly happened in the upper reach, while 

the increase in the total green WF was mainly in the lower reach. Figure 3.2 shows the 

relative contribution of the three reaches to the annual blue and green WFs of crop 

production in the basin over the period 1961-2009. Over the whole period, the middle reach 

had the largest share in both the blue and green WF in the basin as a whole, because of its 

larger share in the basin’s total cultivated area (~59% in 2009). With the construction and 

expansion of main irrigation zones (e.g. Qingtongxia and Hetao irrigation districts) in the 

arid and semi-arid upper reach, the crop-related WF in this reach as well as the share in the 

basin total constantly increased and doubled during the five decades. The share of the upper 

reach in the total blue WF in the YRB reached 37% in 2009. The blue WF in the lower 

reach fluctuated but remained more or less constant over the study period, although the 

share in the basin’s total blue WF diminished. The green WF in the relatively wet lower 

reach increased almost two times due to increased cultivation of rain-fed crops such as 

rapeseed. 

The spatial distribution of the total green-blue WF of crops in the YRB (Figure 3.3a) 

follows the distribution of the harvested crop area. The blue share in the total green-blue WF 

(Figure 3.3b) is obviously large in the places where the irrigated areas are most concentrated 

(Figure 3.3c). Also, blue WFs are larger in the drier area of the upper reach (> 60% of the 

total) than in the semi-arid middle reach and relatively wet lower reach (~40% of the total). 

The lower reach has high levels of both PR and ET0. In this region, there is a large potential 

to improve productivity in rain-fed agriculture. Increased production in the lower reach can 

contribute to the lessening of the need to produce in the drier regions of the basin and thus to 

the reduction of irrigation and blue WF in these regions. 
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Figure 3.2 The relative contribution of the upper, middle and lower reaches to the annual 

blue (upper graph) and green (lower graph) water footprints of crop production in the Yellow 

River Basin. Period: 1961-2009. 
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Figure 3.3 The spatial distributions of: (a) the average annual green-blue water footprint (WF) 

of crop production (mm), (b) the share of the blue WF in the total green-blue WF (%), and (c) 

the share of irrigated area in total harvested area (%) in the Yellow River Basin. Period: 

2001-2009. 
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3.3.2 The water footprint per tonne of crop 

Over the period 1961-2009, the green and blue WF per tonne of crop in the YRB reduced 

significantly, while the grey WF increased. This is shown for the case of cereal crops (wheat, 

rice, maize, sorghum, millet and barley) in Figure 3.4. The average green-blue WF of cereal 

crops in the YRB decreased from 6540 m
3
 t

-1
 in the 1960s to 1570 m

3 
t
-1

 in the 2000s. The 

sharp reduction of the green and blue WFs per tonne of cereals is a result of the improved 

crop yields. The land use for crop production within the YRB, adding up to around 10 

million hectare for the crops considered in this study, changed little during the five decades 

studied, but crop production increased by a factor five. Due to the expansion of the irrigated 

area, the ratio of blue to green WF increased. Meanwhile, the grey WF per tonne of cereals 

rose because of the increasing application rates of artificial fertilizer. Figure 3.4 shows how 

the reduction in consumptive water use (the green plus blue WF) was offset by an increase 

in degradative water use (the grey WF). The overall grey WF was determined by the 

N-related grey WF, which was generally bigger than the P-related grey WF. Among the 

crops studied, the grey WF of sorghum showed the strongest increase (Table 3.4). 

 

 

Figure 3.4 The green, blue and grey water footprint per tonne of cereal (m
3
 t

-1
) and cereal 

yield (t ha
-1

) in the Yellow River Basin. Period: 1961-2009. 
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Figure 3.5 shows the spatial variation in the green-blue WF per tonne of cereal for five different 

decades. The WF within the YRB reduced from >3000 m
3 

t
-1

 in most areas in the 1960s to about 

500-2000 m
3 
t
-1 

in the 2000s. But some regions in the western part of the basin still have low water 

productivity (large WF per ton). The reason is that there is low precipitation and no or little irrigation 

in this region (see Figure 3.3c), causing high water stress and low crop yields. It is worth noting, 

though, that there is little cultivation activity in this region. In the 2000s, rapeseed had the largest 

consumptive water use (2678 m
3 
t
-1

) among the crops considered, followed by soybean (2214 m
3 
t
-1

).  

 

 

 

Figure 3.5 Spatial distribution of the decadal average green-blue water footprint (m
3 

t
-1

) of 

cereal crops in the Yellow River Basin in the period: 1961-1970 (left) and 2000-2009 (right). 
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Table 3.4 Percentage increases in water footprint of crop production in the Yellow River 

Basin from the period 1961-1970 to the period 2001-2009. 

Crop 

Increase in total WF (%) Increase in WF per tonne of crop (%) 

Green Blue Grey 
Total 

green-blue 
Green Blue Grey 

Total 
green-blue 

Winter wheat -1 18 280 4 -77 -73 -12 -76 

Spring wheat -27 25 333 -2 -52 -18 184 -36 

Rice 121 167 1320 135 -56 -46 225 -53 

Maize 125 362 1890 165 -80 -59 76 -77 

Sorghum -83 -86 1210 -83 -59 -66 3080 -60 

Millet -79 -77 809 -79 -42 -36 2470 -43 

Barley -73 -58 787 -73 -66 -46 1030 -65 

Soybean -37 -40 811 -38 -53 -46 662 -51 

Potato 46 196 1590 51 -66 -31 295 -65 

Sweet potato -41 -37 1170 -8 -45 -41 1080 -46 

Cotton -17 -27 634 -20 -64 -69 217 -67 

Sugar beet 76 - 3490 76 -63 - 645 -63 

Groundnut 266 409 1370 282 -66 -52 37 -64 

Sunflower 9110 14900 14100 9630 -44 -8 -13 -41 

Rapeseed 385 - 2510 385 -77 - 25 -77 

Tomato 251 357 1640 258 -57 -44 113 -56 

Apple 1248 1700 2310 1290 -69 -58 -44 -68 

 

 

3.3.3  Blue water scarcity within the Yellow River Basin 

The annual blue WF of crop production in the YRB accounts for 73% of the long-term 

average total blue WF in the basin (including the WF of the industrial and municipal 

sectors). Blue water scarcity in the YRB during the period 1978-2009 was assessed by 

comparing the total blue WF from agriculture, industry and households to the maximum 

sustainable blue WF. According to our estimate, the annual blue WF in the YRB as a whole 

accounted for 19-52% of the natural runoff, with 31% as the multi-year average, which is 

higher than the maximum sustainable level (~20% of the natural runoff). Figure 3.6 

compares, at an annual basis, the total blue WF and the blue WF of crop production alone to 

the maximum sustainable blue WF and also shows the annual precipitation at the YRB over 

the study period. The results show that, at yearly scale, relatively large total blue WFs 
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(resulting from additional water demands in agriculture) occur in relatively dry years, when 

the maximum sustainable blue WF is relatively small, thus enlarging the blue water scarcity. 

 

 

Figure 3.6 The total annual blue water footprint (WF), the annual blue WF of crop production, 

the maximum sustainable blue WF, and annual precipitation in the Yellow River Basin. 

Five-year averages for 1978-1997 and year-by-year for 1997-2009. 

 

In order to assess the monthly variability of the blue water scarcity in the YRB, Figure 3.7 

shows the monthly natural runoff, maximum sustainable blue WF, and blue WF for 

1978-2009. The peak of monthly blue WF within a year is asynchronous with the flood 

season in the basin. The blue WF generally peaks about two months earlier (May-July) than 

the natural runoff (July-September), which was also observed by (Hoekstra et al., 2012). 

Natural runoff is generally largest from June to October, following the rain season, while the 

blue WF is largest with the crop growing period from March to July and decreases with 

higher precipitation after July. As a long-term average, the basin experiences moderate to 

severe blue water scarcity for seven months per year (January-July), of which on average 

five months severe (generally March-July).  
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Figure 3.7 Monthly blue water footprint (WF) vs. maximum sustainable blue WF and natural 

runoff within the Yellow River Basin. Five-year averages for 1978-1997 and year-by-year for 

1997-2009. 

 

Figure 3.8 zooms in on the monthly blue water scarcity in the YRB for selected wet (2003), 

dry (2000, 2007) and average (2005) years in the most recent decade of the study period. 

Monthly blue WF generally peaks in May-July, but the peak in the wet year is much lower 

than in the average and dry years. Even in the wet year though, the basin experienced 

moderate to severe blue water scarcity during seven months per year. In the dry year of 

2007, there were eleven months in which the blue WF exceeded the maximum sustainable 

level. Within the study period, the highest value of the monthly blue water scarcity index 

was 20, observed in April 2000. Although water use for irrigation is the main cause of high 

blue water scarcity in the YRB, it incidentally happens that moderate to severe blue water 

scarcity occurs outside the cropping season, in the period November-February, due to the 

WF of industries and household. 
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Figure 3.8 Monthly blue water footprint (WF) vs. maximum sustainable blue WF and natural 

runoff within the Yellow River Basin of selected wet (2003), dry (2000, 2007) and average 

(2005) years. 

 

The spatial distributions of monthly blue water scarcity in the YRB in a dry year (2000) and 

a wet year (2003) are illustrated in Figure 3.9 for January, April (when blue WFs are 

growing while blue water availability is still low), July (when both water footprints and blue 

water availability are high) and October. The eastern part of the upper reach, the northern 

part of the middle reach, and most of the lower reach suffer severe blue water scarcity 

throughout the year. In both dry and wet years, about 90% of the basin is likely to face 

severe blue water scarcity till the start of the flooding season around June. During the last 

half of the year, the part located in the Tibetan Plateau (western part of the upper reach) has 

low blue water scarcity because of the absence of irrigation activities and because most of 

the total basin runoff is generated here. Due to the uneven distribution of the blue WF and 

available blue water resources across the YRB, about half of the basin still experiences 

severe blue water scarcity even in the flood season of the wet year even though the blue 
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water scarcity for the basin as a whole is low. This shows the relevance of considering blue 

water scarcity at a finer spatial scale than river basin level as is usually done.  

  

 

Figure 3.9 Monthly blue water scarcity in the Yellow River Basin in the months of January, 

April, July and October in a dry year (2000) and a wet year (2003). 
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3.3.4 Discussion 

The current study has been able to assess the inter- and intra-annual variation of the WF of 

crop production and the blue water scarcity over a few decades at a high spatial resolution in 

the YRB. Comparing the estimated blue and green WFs in total terms (in m
3 
y

-1
) (averaged 

for the period 1996-2005) with Mekonnen and Hoekstra (2011) shows that the blue WF 

estimated in the current study agrees better (by 3% lower) to the estimations by Mekonnen 

and Hoekstra (2011) than the green (by 33% lower) and total WF (26% lower). The current 

total blue WF in the YRB is 4% higher than the assessment by Cai and Rosegrant (2004) 

(for the year 1995). Green-blue WFs per tonne of crop were compared with three studies on 

the YRB (Cai et al., 2011; Mekonnen and Hoekstra, 2011; Zhuo et al., 2014) as shown in 

Figure 3.10. Differences are mostly within the range of ±30%, which has been reported as 

the uncertainty range for WF estimates generated from input uncertainties (Zhuo et al., 

2014). The comparison between current study with Mekonnen and Hoekstra (2011) and 

Zhuo et al. (2014) on green, blue and grey WFs of considered crops in the YRB were listed 

in Table 3.5. The models used and assumptions made in different studies may enhance the 

level of differences among WF studies. For example, our estimation on the green WF of 

rapeseed was more than two times the value from Mekonnen and Hoekstra (2011), because 

they calibrated the crop yield at national level while in the current study the calibration was 

at provincial level, and the rapeseed productivity in the YRB is lower than the national 

average level. Although we used the same input climate data sources as Zhuo et al. (2014), 

our estimates on the consumptive WF per unit of crop are lower because of the different 

assumptions on initial soil water content: Zhuo et al. (2014) assumed initial soil water 

content to be at its maximum, i.e. at soil water holding capacity, while in the current study 

we estimated initial soil water content based on the soil history before planting. The grey 

WF of crops presented in current study was much larger than values in the previous study 

(Mekonnen and Hoekstra, 2011), which can be explained by the fact that (i) we considered 

manure fertilizer in grey WF estimation, which was not considered in the the previous study 

and (ii) we used a very stricter assumption on the difference between the maximum 

allowable and natural N concentration (“cmax – cnat” in Eq.3.6) of 0.8 mg l
-1

 in current study 

versus 10 mg l
-1

 in Mekonnen and Hoekstra (2011). The current total grey WF of 193 m
3 
y

-1
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(2002-2009) of was 53% smaller than the estimate by Mekonnen and Hoekstra (2015) 

(2002-2010), given that we used a smaller leaching-runoff fraction of N (“α” in Eq.3.6) of 

0.1 instead of 0.18 (Mekonnen and Hoekstra, 2015) and we only focus on agriculture while 

the previous study also included industry and domestic sector. 

 

 

Figure 3.10 Comparison of estimated water footprints (WF) of crops with results from 

previous studies. Each data point refers to the WF of a crop. Period: 1996-2005 for 

Mekonnen and Hoekstra (2011) and Zhuo et al. (2014), and 2000-2009 for Cai et al. (2011). 

 

 

Table 3.5 Comparison between current study and previous studies on green, blue and grey water 
footprint of crops in the Yellow River Basin. Period: 1996-2005.  

  Green WF (m
3
 t

-1
) Blue WF (m

3
 t

-1
)  Grey WF (m

3
 t

-1
) 

Crop 
Current 
study 

Mekonnen 
and 

Hoekstra 
(2011) 

Zhuo 
et al. 

(2014) 
Current 
study 

Mekonnen 
and 

Hoekstra 
(2011) 

Zhuo 
et al. 

(2014) 
Current 
study 

Mekonnen 
and 

Hoekstra 
(2011) 

Wheat 1241 702 1955 510 532 203 463 313 

Rice 414 510 558 225 482 440 5164 215 

Maize 542 745 816 195 113 294 7682 293 

Sorghum 731 960 
 

45 35 
 

10771 113 

Millet 1383 1568 
 

89 30 
 

4993 222 

Barely 789 587 
 

61 32 
 

2245 143 

Soybean 1626 2370 2130 482 459 163 11075 241 

Potato 279 205 
 

15 15 
 

1002 102 

Sweet potato 36 257 
 

57 5 
 

1265 64 

Cotton 1205 1386 
 

494 343 
 

3366 601 
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Sugar beet 306 159 
 

0 0 
 

1578 97 

Groundnut 1621 1347 
 

296 108 
 

1080 262 

Sunflower 1096 2301 
 

145 264 
 

6106 467 

Rapeseed 2832 1272 
 

0 0 
 

6617 532 

Tomato 198 179 
 

19 5 
 

1631 106 

Apple 563 745 
 

72 23 
 

645 286 

 

 

The current study focused on the YRB, but the method used, combining data from climate 

observations, hydrological models and national statistics, can be applied to other basins as 

well. Of course, our study is based on a number of limitations. First of all, not all crops were 

included, although the crops included were responsible for 93% of total crop production in 

2009. Also, the WF of forestry and animal husbandry is not included in our simulations. On 

the other hand, the effects of reservoirs and inter-basin water transfers (the South to North 

Water Transfer Project) on the temporal and spatial patterns of blue water availability were 

not considered in the current assessment. Given the fact that blue water withdrawal from 

reservoirs or transfer projects can make up the blue water shortage in dry months, the 

maximum sustainable blue WF may have been under-estimated and the blue water scarcity 

over-estimated for some places and months within the basin. However, the presented results 

on blue water scarcity under natural background condition, at high spatial and temporal 

resolution, provide valuable information for improving blue water management (i.e. how to 

distribute the withdrawals from reservoirs and water transfer projects). By focussing on blue 

water scarcity, we excluded an assessment of green water scarcity and the effect of grey 

WFs on resultant water pollution levels throughout the basin.  

Even though based on the most recent insights (Richter et al., 2012), the assumed 

environmental flow requirement (80% of natural runoff) may seem too strict and be the 

reason for the high water scarcity in the basin. We tested the sensitivity of our water scarcity 

result by computing scarcity also when assuming an environmental flow requirement of 37% 

of natural runoff (Cai and Rosegrant, 2004; Smakhtin et al., 2004a) or 55% of natural runoff 

(Yang et al., 2009). We found that although the number of months facing moderate to severe 

blue water scarcity reduced from the current seven months (January-July) to four months 
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(March-June) with the lowest standard (37%), the spatial distribution of blue water scarcity 

did not change much even in the wettest month in a wet year, with more than half of the 

basin was still under significant to severe blue water scarcity. 

3.4  Conclusions 

We assessed the inter-annual variation of WF of crops in the YRB for 1961-2009 with a 

daily time step, as well as the blue water scarcity for the period 1978-2009 at monthly basis. 

The total blue WF of crop production, contributing 25% to the total green-blue WF as a 

long-term average, increased by 37% from the 1960s till the 2000s, while the green WF 

grew by 14%. The N- and P-related grey WFs increased by factors of 24 and 36, 

respectively, along with the increased use of fertilizers. Blue WFs of crop production were 

larger in years with lower water availability. The increase of the basin’s total blue WF in the 

study period mainly happened in the upper reach, and the share of the upper reach in the 

basin’s total blue WF exceeds the share of the lower reach since 1998. Green and blue WFs 

of crops per tonne reduced significantly (with a factor four for cereal crops) due to improved 

yields, but the benefits of increased water productivity were completely offset by the 

five-fold increase in crop production. Related to the expansion of the irrigated area, the 

proportion of the blue WF in the total green-blue WF increased. Grey WFs per hectare grew 

quicker than yields, with the net effect that grey WFs per tonne of crop increased.  

The analysis of blue water scarcity in the YRB showed that the assessment of water scarcity 

gives more insight when carried out at high spatial resolution level and monthly basis than 

when done at basin scale and annual basis. But even at basin scale, the annual total blue WF 

was 19 to 52% of annual natural runoff, and 31% as a long-term average. The annual figures, 

however, hide the fact that the period with relatively large blue WF (March-July) does not 

coincide with the period with largest runoff (June-October). On average, the basin faces 

moderate to severe blue water scarcity during seven months of the year (January-July), of 

which five months severe (generally March-July). The detailed spatial analysis reveals that 

the eastern part of the upper reach, the northern part of the middle reach, and most of the 

lower reach suffer severe blue water scarcity throughout the year. Even in the wettest month 

in a wet year, about half of the area of the YRB still suffered severe blue water scarcity, 
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especially in the basin’s northern part. 

Despite the severe water scarcity in the YRB, the Chinese government plans to expand the 

irrigated cropland area by 12% of the current till the year of 2030 (YRCC, 2013). Therefore 

the basin is bound to continue facing severe water scarcity in the years to come. Further 

improvements in crop water productivity will be necessary to prevent aggravation of the 

water scarcity problem. Water productivities can be improved through increasing yields, 

reducing non-beneficial evapotranspiration and enhancing effective use of rainfall 

(Mekonnen and Hoekstra, 2014). Other options include optimizing crop planting dates and 

choosing crops and varieties that yield more nutritional value per drop of water. Reducing 

fertilizer use through precision farming will be key in reducing water pollution. In addition, 

increasing crop imports instead of producing locally within the YRB during dry years will 

also help saving water (Chapagain et al., 2006; Konar et al., 2011). 
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4. The Effect of Inter-annual Variability of Consumption, 
Production, Trade and Climate on Crop-related Green and 
Blue Water Footprints and Inter-regional Virtual Water 
Trade in China (1978-2008)3 

Abstract 

Previous studies into the relation between human consumption and indirect water resources 

use have unveiled the remote connections in virtual water (VW) trade networks, which show 

how communities externalize their water footprint (WF) to places far beyond their own 

region, but little has been done to understand variability in time. This study quantifies the 

effect of inter-annual variability of consumption, production, trade and climate on WF and 

VW trade, using China over the period 1978-2008 as a case study. Evapotranspiration, crop 

yields and green and blue WFs of crops are estimated at a 55 arc min resolution for 22 

crops, for each year in the study period, thus accounting for climate variability. The results 

show that crop yield improvements during the study period helped to reduce the national 

average WF of crop consumption per capita by 23%, with a decreasing contribution to the 

total from cereals and increasing contribution from oil crops. The total consumptive WFs of 

national crop consumption and crop production, however, grew by 6% and 7%, respectively. 

By 2008, 28% of total water consumption in crop fields in China served the production of 

crops for export to other regions and, on average, 35% of the crop-related WF of a Chinese 

consumer was outside its own province. Historically, the net VW within China was from the 

water-rich South to the water-scarce North, but intensifying North-to-South crop trade 

reversed the net VW flow since 2000, which amounted 6% of North’s WF of crop 

production in 2008. South China thus gradually became dependent on food supply from the 

water-scarce North. Besides, during the whole study period, China’s domestic inter-regional 

VW flows went dominantly from areas with a relatively large to areas with a relatively small 

blue WF per unit of crop, which in 2008 resulted in a trade-related blue water loss of 7% of 

                                                             
3 Chapter is based on: Zhuo, Mekonnen and Hoekstra (2016a) Water Research 94, 73-85.
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the national total blue WF of crop production. The case of China shows that domestic trade, 

as governed by economics and governmental policies rather than by regional differences in 

water endowments, determines inter-regional water dependencies and may worsen rather 

than relieve the water scarcity in a country.  
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4.1  Introduction  

Since the beginning of this millennium the body of scientific literature on water footprint 

and virtual water trade assessment is expanding exponentially, as witnessed by the number 

of papers published on the topic in Web of Science. The water footprint (WF), as a 

multi-dimensional measure of freshwater used both directly and indirectly by a producer or 

a consumer, enables to analyse the link between human consumption and the appropriation 

of water to produce the products consumed(Hoekstra, 2013). The consumptive WF of 

producing a crop includes a green and blue component, referring to consumption of rainfall 

and irrigation water respectively, thus enabling the broadening of perspective on water 

resources as proposed by (Falkenmark and Rockström, 2004). The consumptive WF is 

distinguished from the degradative WF, the so-called grey WF, which represents the volume 

of water required to assimilate pollutants entering freshwater bodies. The WF of human 

consumption within a certain geographic area consists of an internal WF, referring to the 

WF within the area itself for making products that are consumed within the area, and an 

external WF, referring to the WF in other areas for making products imported by and 

consumed within the geographic area considered (Hoekstra et al., 2011). Thus, trade in 

water-intensive commodities like crops results into so-called virtual water (VW) flows 

between exporting and importing regions (Hoekstra, 2003). Crop trade saves water 

resources for an administrative region if it imports water-intensive crops instead of 

producing them domestically (Chapagain et al., 2006). 

WF and VW trade studies have been carried out for geographies at different scales, from the 

city (Zhang et al., 2011) to the globe (Hoekstra and Mekonnen, 2012). Despite the vast body 

of literature, little attention has been paid to the annual variability and long-term changes of 

WFs and VW flows as a result of climate variability and structural changes in the economy. 

Most work thus far focussed on employing different models and techniques to assess WFs 

and VW flows, considering a specific year or short period of years. The effects of long-term 

changes in spatial patterns of production, consumption, trade and climate on WFs and VW 

flows have hardly been studied. This is paramount, though, for understanding how human 

pressure on water resources develops over time and how changing trade patterns influence 

inter-regional water dependencies. 
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The objective of the current study is to quantify the effect of inter-annual variability of 

consumption, production, trade and climate on crop-related green and blue WFs and 

inter-regional VW trade, using China over the period 1978-2008 as a case study. First, we 

assess the historical development of the green and blue WFs related to crop consumption in 

China, per province. Second, we estimate, accounting for the climate variability within the 

period considered, the green and blue WFs related to crop production, at a 55 arc min 

resolution, year by year, crop by crop. Third, we quantify the annual inter-regional VW 

flows based on provincial crop trade balances for each crop. Finally, we estimate national 

water savings as a result of international and inter-regional crop trade. We consider 

twenty-two primary crops (Table 4.2), which covered 83% of national harvested crop area in 

2009 (NBSC, 2013) and 97% and 78% of the total blue and green WF of Chinese crop 

production in the period 1996-2005, respectively (Mekonnen and Hoekstra, 2011). In this 

study we exclude the grey WF of crops because of our focus on inter-annual variability and 

the fact that variability in climate plays a role particularly in estimating green and blue WFs, 

not in estimating grey WFs. We focus on the direct green and blue WF of crop growing in 

the field, thus excluding the indirect WF of other inputs into crop production, like the WF of 

machineries and energy used. The study area is Mainland China, which consists of 31 

provinces and can be grouped into eight regions (Figure 4.1). 

China is facing severe water scarcity (Jiang, 2009). Since the economic reforms in 1978, the 

Chinese people consume increasing levels of oil crops, sugar crops, vegetables and fruits 

(Liu and Savenije, 2008). Chinese crop consumption per capita rose by a factor 2.1 over the 

period 1978-2008 (FAO, 2014b), while China’s population grew from 0.96 to 1.31 billion 

(NBSC, 2013). In order to meet the increasing food demand, China’s crop production grew 

by a factor 2.8 from 1978 to 2008 (FAO, 2014b), with an increase of only 4% in total 

harvested area, but a 31% growth in irrigated area. The expansion of the irrigated area 

occurred mainly (77%) in the water-scarce North, which now has 51% of the national arable 

land, but only 19% of the national blue water resources (Zhang et al., 2009; Wu et al., 2010). 

Agriculture is the biggest water user in China, responsible for 63% of national total blue 

water withdrawals (MWR, 2014) and 88% of the total WF within China (Hoekstra and 

Mekonnen, 2012). Currently, the Yellow River basin in the North suffers moderate to severe 
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blue water scarcity during seven months of the year, mostly driven by agricultural water use 

(Zhuo et al., 2016b). The Yongding He Basin in northern China, a densely populated basin 

serving water to Beijing, faces severe water scarcity all year long (Hoekstra et al., 2012). It 

is estimated that about 64% of China’s total population, mainly from the North, regularly 

faces severe blue water scarcity (Mekonnen and Hoekstra, 2016). The competition between 

different sectors over water resources has become severe (Zhu et al., 2013), which has led to 

the adoption of the No. 1 Document by the State Council of China (SCPRC, 2010), 

announcing a four trillion CNY (~US$600 billion) investment over ten years to guarantee 

water supplies through the improvement of water supply infrastructure. This includes the 

construction of new reservoirs, drilling of wells, and implementation of inter-basin water 

transfer projects (Gong et al., 2011; Yu et al., 2011), as well as targets to increase water 

productivity.  

Today, China is the country with the largest WF related to crop consumption and the second 

largest WF related to crop production (Hoekstra and Mekonnen, 2012). Furthermore, China 

has substantive VW import through crop imports (Dalin et al., 2014). At present, net VW 

trade through crop trade is from the drier North to the wetter South (Ma et al., 2006; Cao et 

al., 2011). In 2005, China’s domestic food trade resulted in national net water saving overall, 

but a net loss of blue water (Dalin et al., 2014), as a result of differences in WF of crops (m
3 

t
-1

) among trading provinces (Mekonnen and Hoekstra, 2011).  

There have been quite a number of previous studies on the WF of Chinese crop consumption 

(Hoekstra and Chapagain, 2007b; Hoekstra and Chapagain, 2008; Liu and Savenije, 2008; 

Ge et al., 2011; Mekonnen and Hoekstra, 2011; Hoekstra and Mekonnen, 2012; Cao et al., 

2015), the WF of Chinese crop production (Hoekstra and Chapagain, 2007b; Hoekstra and 

Chapagain, 2008; Fader et al., 2010; Liu and Yang, 2010; Siebert and Doll, 2010; Ge et al., 

2011; Mekonnen and Hoekstra, 2011; Cao et al., 2014b; a), on China’s international VW 

imports and exports associated with crop trade (Hoekstra and Hung, 2005; Hoekstra and 

Chapagain, 2007b; Liu et al., 2007; Hoekstra and Chapagain, 2008; Fader et al., 2011; Dalin, 

2012; Hoekstra and Mekonnen, 2012; Chen and Chen, 2013; Shi et al., 2014)and on VW 

trade flows within China (Ma et al., 2006; Guan and Hubacek, 2007; Wu et al., 2010; Cao et 
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al., 2011; Han and Sun, 2013; Sun et al., 2013b; Dalin et al., 2014; Feng et al., 2014; Wang 

et al., 2014; Zhang and Anadon, 2014; Zhao and Chen, 2014; Fang and Chen, 2015; Jiang et 

al., 2015; Zhao et al., 2015). Despite all those studies, analyses of inter-annual variability 

and long-term changes in spatial WF and VW trade patterns are rare, not only in studies for 

China but in general. While in Chapter 3 we show the inter-annual variations in WFs of crop 

production as well as inter-annual variation of blue water scarcity (with a focus on the 

Yellow River basin), in the current study we also consider inter-annual variability in WFs of 

crop consumption and in inter-regional and international VW trade (for China as a whole). 

 

Figure 4.1 Provinces and regions of mainland China. 

 

4.2  Method and data  

The annual green and blue WFs of crop consumption (in m
3 
y

-1
) were estimated per crop per 

year at provincial level based on the bottom-up approach (Hoekstra et al., 2011). The WF 

related to consumption of a crop (m
3 

y
-1

) was calculated per year by multiplying the 

provincial crop consumption volume (t
 
y

-1
) with the WF of the crop for the province (m

3 
t
-1

). 

Crop consumption volumes per capita were obtained from the Supply and Utilization 

Accounts expressed in crops primary equivalent of FAO (2014b). We assumed consumption 
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per capita data the same for all provinces. For edible crops, we took the sum of the “food” 

and “food manufactured” columns and added an amount representing seed and waste. 

Regarding the latter amount, we took a part of the utilization for seed and waste based on 

the utilization of crops for food and food manufactured relative to the utilization of crops for 

feed. For cotton and tobacco, we took the “other use” column as consumed quantities. The 

WF of crops per province was calculated as: 

                  (4.1) 

in which Pprov[p] (t y
-1

) represents the production quantity of crop p, Ie[p] (t y
-1

) the imported 

quantity of crop p from exporting place e (other regions in China or other countries), 

WFprod,prov[p] (m
3 
t
-1

) the specific WF of crop production in the province, and WFprod,e[p] (m
3 

t
-1

) the WF of the crop as produced in exporting place e.  

The green and blue WFs of crop production were estimated year by year at 5×5 arc min 

resolution. The green and blue WF (in m
3 
t
-1

) of a crop within a grid cell is calculated as the 

actual green and blue evapotranspiration (ET, m
3 
ha

-1
) over the growing period divided by 

the crop yield (Y, t ha
-1

). ET and Y were simulated per crop per grid per year at daily basis 

using the plug-in version of FAO’s crop water productivity model AquaCrop version 4.0 

(Steduto et al, 2009; Reas et al., 2009; Hsiao et al., 2009). The separation of green and blue 

ET was carried out by tracking the daily green and blue soil water balances based on the 

contribution of rainfall and irrigation, respectively, following Chapter 3.  

Inter-regional VW flows (m
3 

y
-1

) related to crop trade were calculated per year by 

multiplying the inter-regional crop trade flows (t y
-1

) with the WF of the crop (m
3 
t
-1

) in the 

exporting region. Since inter-regional crop trade statistics are not available, we took the 

following steps:  

1) The provincial crop trade balance or net import of a crop (t y
-1

) was estimated as 

the total provincial crop utilization minus the provincial crop production. The national 

use of a crop for direct and manufactured food as given by FAO (2014b) was distributed 

prov prod,prov e prod,e

e
prov

prov e

e

P [ ] WF [ ] (I [ ] WF [ ])

WF [ ] =
P [ ] I [ ]

p p p p

p
p p

  






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over the provinces based on provincial populations. The national use of a crop for feed 

was distributed over provinces proportional to the national livestock units (LU) per 

province. LU is a reference unit which facilitates the aggregation of different livestock 

types to a common unit, via the use of a ‘livestock unit coefficient’ obtained by 

converting the livestock body weight into the metabolic weight by an exchange ratio 

(FAO, 2005). We used the livestock unit coefficients for East Asia from Chilonda and 

Otte (2006): 0.65 for cattle, 0.1 for sheep and goats, 0.25 for pigs, 0.5 for asses, 0.65 for 

horses, 0.6 for mules, 0.8 for camels, and 0.01 for chickens. Finally, we downscale 

national variations in crop stock to provincial level by assuming provincial stock 

variations proportional to the provincial share in national production. 

2) We assume that international crop imports and exports relate to the provinces with 

deficit and surplus of the crop, respectively (following Ma et al., 2006). Further we 

assume that crop-deficit provinces primarily receive from crop-surplus provinces within 

the same region and subsequently – if insufficient surplus within the region itself – from 

other crop-surplus regions.  

3) A crop-deficit region is assumed to import the crop preferentially from the 

crop-surplus region which has the highest agricultural export values to the crop-deficit 

region, according to the multi-regional input-output tables of the agricultural sector for 

the years 1997 (SIC, 2005), 2002 and 2007(Zhang and Qi, 2011). How source regions 

supply deficit regions is determined in a few subsequent rounds. The source regions per 

region per allocation round are listed in Table 4.1. We assume that in each round the 

crop source regions supply crops to the deficit regions proportionally to their deficit. 

The total crop-related net VW import (m
3 
y

-1
) of a province is equal to the international net 

VW import plus the inter-regional net VW import of the province. The WFs (m
3 
t
-1

) of crops 

imported from abroad were obtained from Mekonnen and Hoekstra (2011), assuming 

constant green and blue WFs of imported crops per source country. The provincial net VW 

export related to a certain crop export is calculated by multiplying the net crop export 

volume (t y
-1

) with the WF (m
3 
t
-1

) of the crop in the province.  
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Water savings through crop trade were estimated using the method of Chapagain et al. 

(2006). The international crop trade-related water saving of a province (m
3 

y
-1

) was 

calculated by multiplying the net international import volume of the province (t y
-1

) by the 

WF per tonne of the crop in the province (m
3
 t

-1
). The inter-regional crop trade-related water 

saving was estimated similarly, by multiplying the net inter-regional import volume of the 

province (t
 
y

-1
) with the WF per tonne of the crop in the province (m

3 
t
-1

). If a specific crop is 

imported and not grown in the province itself at all, the national average WF per tonne of 

the crop was used. Overall trade-related water savings follow from the difference in the WF 

of a crop in the importing and exporting province (Hoekstra et al., 2011). When calculated 

trade-related water savings are negative, we talk about trade-related ‘water losses’, which 

refer to cases whereby crops are traded from a region with relatively low water productivity 

to a region with relatively high water productivity. 

The GIS polygon for Chinese provinces was obtained from NASMG (2010). Provincial 

population statistics over the study period and numbers of the different livestock types were 

obtained from NBSC (2013), and data on China’s international trade per crop (in t y
-1

) from 

FAO (2014b). Data on monthly precipitation, reference evapotranspiration and temperature 

at 30×30 arc minute resolution were taken from Harris et al. (2014). Figure 4.2 shows the 

inter-annual variation of national average precipitation and reference evapotranspiration 

(ET0) across China over the period 1978-2008. Data on irrigated and rain-fed areas for each 

crop at 5×5 arc-minute resolution were taken from Portmann et al. (2010). For crops not 

available in this source, we used Monfreda et al. (2008). Harvested areas and yields for each 

crop were scaled per year to fit the annual agriculture statistics at province level obtained 

from NBSC (2013). For crops not reported in NBSC (2013), we used FAO (2014b). Soil 

texture data were obtained from Dijkshoorn et al. (2008). For hydraulic characteristics for 

each type of soil, the indicative values provided by AquaCrop were used. Data on total soil 

water capacity were obtained from Batjes (2012). 
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Table 4.1 Crop source regions per region for mainland China. 

 
Region* Provinces 

Crop source regions per allocation round 

1 2 3 4 5 6 7 

R1 Northeast (N) Heilongjiang, Jilin, Liaoning R3 R7 R6 R8 R5 R4 R2 

R2 Jing-Jin (N) Beijing, Tianjin R3 R7 R1 R6 R8 R5 R4 

R3 North Coast (N) Hebei, Shandong R7 R1 R6 R8 R2 R5 R4 

R4 East Coast (S) Jiangsu, Shanghai, Zhejiang R6 R7 R3 R1 R8 R5 R2 

R5 South Coast (S) Fujian, Guangdong, Hainan R6 R8 R7 R3 R1 R4 R2 

R6 Central 
Shanxi (N), Henan (N), Anhui 

(N), Hubei (S), Hunan (S), 
Jiangxi (S) 

R3 R7 R1 R8 R5 R4 R2 

R7 Northwest (N) 
Inner Mongolia, Shaanxi, 
Ningxia, Gansu, Qinghai, 

Xinjiang 
R6 R3 R8 R1 R5 R4 R2 

R8 Southwest (S) 
Sichuan, Chongqing, 

Guangxi, Yunnan, Guizhou, 
Tibet 

R7 R1 R6 R3 R5 R4 R2 

* N = North China; S = South China. 

 

 

 
Figure 4.2 Inter-annual variation of national average precipitation and reference 

evapotranspiration (ET0) across China over the period 1978-2008. Data source: Harris et al. 

(2014). 

 

 



78 
 

4.3  Results 

4.3.1 Water footprint of crop consumption 

Over the study period 1978-2008, Chinese annual per capita consumption of the 22 

considered crops has grown by a factor 1.4, from 391 to 559 kg cap
-1

. The national average 

WF per capita related to crop consumption reduced by 23%, from 625 m
3 
cap

-1
 (149 m

3 
cap

-1 

blue WF) in 1978 to 481 m
3 

cap
-1 

(94 m
3 

cap
-1 

blue WF) in 2008 (Figure 4.3), which was 

mainly due to the decline in the WF per tonne of crops (Table 4.2). The decline in the WF 

per tonne of crop resulted from improved crop yields within China as well as the expanded 

international import of crops from other countries with relatively small WF. The share of the 

WF related to the consumption of oil crops (soybean, groundnuts, sunflower and rapeseed) 

in the total consumptive WF per capita grew from 8% in 1978 to 21% in 2008 (Figure 4.3), 

as a result of the increased proportion of oil crops in Chinese consumption.  

 

Figure 4.3 National average water footprint per capita (m
3 

cap
-1 

y
-1

) related to crop 

consumption in China by crop group (lower graph). Period: 1978-2008. The figures represent 

crop consumption for food, thus excluding crop consumption for feed. 
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Table 4.2 National average water footprint per tonne of crop consumed in China for the 

years 1978 and 2008.  

 
1978 2008 

Green WF Blue WF Total WF Green WF Blue WF Total WF 

 m
3 

t
-1

 m
3 

t
-1

 m
3 

t
-1

 m
3 

t
-1

 m
3 

t
-1

 m
3 

t
-1

 

Wheat 2080 817 2897 839 312 1151 

Maize 1412 121 1534 754 66 819 

Rice 1486 615 2101 961 384 1345 

Sorghum 1080 88 1168 714 45 759 

Barley 839 558 1397 832 198 1030 

Millet 2042 184 2225 1811 133 1945 

Potato 264 7 271 189 7 196 

Sweet potato 74 40 114 67 21 88 

Soybean 3718 677 4395 2024 110 2134 

Groundnut 3165 395 3560 1345 191 1536 

Sunflower seed 2177 289 2466 1087 184 1270 

Rapeseed 4292 0 4292 1736 0 1736 

Seed cotton 5093 539 5632 1278 503 1781 

Sugar cane 208 3 211 120 1 121 

Sugar beet 372 0 372 66 0 66 

Spinach 100 8 107 79 4 83 

Tomato 126 3 129 68 2 70 

Cabbage 181 15 196 130 7 137 

Apple 1367 157 1524 314 39 353 

Grape 1011 304 1314 316 104 421 

Tea 33518 226 33744 8517 144 8662 

Tobacco 2381 84 2465 1633 13 1646 

National averages are calculated weighing the water footprints of domestically produced and imported 
crops. 

 

Due to differences in the WF (in m
3 

t
-1

) of the consumed crops in the different provinces, 

there were differences among provinces in terms of WFs per capita, ranging from 367 to 

604 m
3 
cap

-1 
y

-1
 for the total consumptive WF and from 29 to 228 m

3 
cap

-1 
y

-1
 for the blue 
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WF in the year 2008. Fourteen provinces, mostly located in Southwest, Northeast, North 

Coast and East Coast, have a WF per capita below the national average (Figure 4.4). The 

three provinces with the largest WF per capita related to crop consumption in 2008 were 

Ningxia (604 m
3 

cap
-1 

y
-1

), Guangxi (587 m
3 

cap
-1 

y
-1

) and Guangdong (586 m
3 

cap
-1 

y
-1

). 

Chongqing had the smallest WF per capita (367 m
3 
cap

-1 
y

-1
). Provinces with a blue WF per 

capita smaller than the national average are mostly located in Southwest, Northeast and East 

Coast. The three provinces with the largest blue WF per capita in 2008 are all located in the 

semi-arid Northwest: Inner Mongolia (228 m
3 

cap
-1 

y
-1

), Xinjiang (214 m
3 

cap
-1 

y
-1

) and 

Ningxia (213 m
3 
cap

-1 
y

-1
). Anhui had the smallest blue WF per capita (29 m

3 
cap

-1 
y

-1
). 

 

 

Figure 4.4 China’s provincial average total and blue water footprints per capita (m
3 
cap

-1 
y

-1
) 

related to crop consumption in the year of 2008. The figures refer to crop consumption for 

food, thus excluding crop consumption for feed. 

 

Although the total consumption of the 22 considered crops doubled between 1978 and 2008, 

with 37% of population growth in China, the national WF related to crop consumption 

increased only by 6%, from 599 to 632 billion m
3 
y

-1 
(Figure 4.5), thanks to the decline in 

the WF of crops (m
3 
t
-1

). The share of North China in the total national consumptive WF of 

crop consumption decreased from 48 to 44% over the study period, amongst other driven by 

the slightly faster population growth in the South. At provincial level, Shanghai had the 

largest increase in the WF of crop consumption, a 2.3 times increase over the study period 
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(from 4.6 to 10.5 billion m
3 
y

-1
), followed by Beijing with a 2.0 times increase (from 4.4 to 

8.6 billion m
3 
y

-1
). This was mainly driven by the doubling of the population in these two 

megacities (from 11.0 to 21.4 million in Shanghai and from 8.7 to 17.7 million in Beijing). 

 

 

Figure 4.5 Water footprint of crop consumption in China (left), and the relative contributions 

of North and South China to the total (right). Period: 1978-2008. The figures refer to crop 

consumption for food, thus excluding crop consumption for feed.  

 

4.3.2 Water footprint of crop production 

The total green plus blue WF in China of producing the 22 crops considered increased over 

the period 1978-2008 by 7%, from 682 billion m
3 
y

-1
 (23% of blue) to 730 billion m

3 
y

-1
 (19% 

of blue) (Figure 4.6), while total production of those crops grew by a factor 2.2. The 

relatively modest growth of the WF can be attributed to a significant decrease in the WFs 

per tonne of crop, which in turn result from an increase in crops yield. The national average 

WF of cereals (wheat, rice, maize, sorghum, millet, and barley), for example, decreased by 

46%, from 2136 m
3 
t
-1

 (540 m
3 
t
-1

 blue WF) to 1146 m
3 
t
-1

 (249 m
3 
t
-1

 blue WF), due to an 

almost two-fold increase in cereal yield (from 2.9 to 5.6 t ha
-1

) (Figure 4.7). These findings 

correspond to long-term decreases in WFs per tonne found in a case study for the Yellow 

River basin in Chapter 3. Inter-annual climatic variability contributed to the fluctuations in 
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consumptive WFs (m
3
 t

-1
) over the years. When comparing the fluctuations in the average 

green and blue WFs of a cereal crop in China over the period 1978-2008 (as shown in 

Figure 4.7) to the variations in annual precipitation and ET0 over the same period (Figure 

4.2), we find that the blue WF inversely relates to precipitation, and that the green and total 

consumptive WFs show a weak positive relation to ET0. In years with relatively large 

precipitation, the ratio of blue to total consumptive WF is generally smaller, a finding that 

could be expected because irrigation requirements will generally be less. 

 

 

Figure 4.6 Consumptive water footprint of crop production in China, and the relative 

contributions of North and South China to the total. Period: 1978-2008.  

 

The total harvested area of the considered crops increased by 16% in the North and 

decreased by 13% in the South. The harvested area and the total consumptive WF of crop 

production decreased in the provinces that have relatively high urbanization levels (Beijing, 

Tianjin, Shanghai, Chongqing, Zhejiang, Fujian, Hubei, and Guangdong) and are mostly 

located in the water-rich South. The most significant drop in the total consumptive WF of 

crop production (a 65% decrease) was in Shanghai and Zhejiang, with halved harvested 

areas. At the same time, the other provinces mostly located in the water-scarce North, 

experienced increases in the total consumptive WF of crop production. The most significant 
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increase (fivefold) in the total consumptive WF was observed in Inner Mongolia, which is 

located in the semi-arid Northwest, where the harvested area expanded by a factor 3.5 and 

the irrigated area by a factor 2. The contribution of the water-scarce North to the WF of 

national crop production increased from 43% in 1978 to 51% in 2008 as a result of 

increasing cropping area in the North compared to the South and increased irrigation in the 

North (Figure 4.6). 

 

 

Figure 4.7 Green and blue water footprint per tonne of a cereal crop (m
3
 t

-1
) and cereal crop 

yield (t ha
-1

) in China over the period 1978-2008. 

 

Figure 4.8 shows the spatial distribution of the total consumptive WF (in mm y
-1

) of crop 

production, as well as the share of blue in the total, averaged over the period 1999-2008. 

Large total consumptive WFs correlate with large overall harvested areas and/or the 

production of relatively water-intensive crops, while a large share of blue WF in the total 

reflects the presence of intensive irrigated agriculture. In the semi-arid Northwest and North 

Coast, blue WF shares exceed 40%, with Xinjiang having the highest share (54%), followed 

by Hebei (43%) and Ningxia (35%).  

Cereals (wheat, maize, rice, sorghum, millet and barley) accounted for 74% of the overall 

consumptive WF of the 22 crops considered, 87% of the blue WF, and 71% of the green WF. 
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More than half of the total blue WF within China was from rice fields (51%), followed by 

wheat (28%). Rice (32%) and wheat (20%) together also shared half of the total green WF. 

 

 

Figure 4.8 Spatial distribution of consumptive water footprints [mm y
-1

] of crop production 

(left) and the share of the blue water footprint in the total (right) in China. Period: 1999-2008. 

 

4.3.3 Crop-related inter-regional VW flows in China 

China’s annual net VW import from abroad nearly tripled over the period 1978-2008 (from 

34 to 95 billion m
3 
y

-1
). The external WF related to crop consumption in China as a whole 

was 6% of the total in 1978 and 13% in 2008. The inter-regional VW flows within China 

were larger than the country’s international VW flow. The sum of China’s inter-regional VW 

flows was relatively constant over the period 1978-2000 (with an average of 187 billion m
3 

y
-1

), and rose to a bit higher level during the period 2001-2008 (average 207 billion m
3 
y

-1
) 

(Figure 4.9). With a total consumptive WF of Chinese crop production in 2008 of 730 

billion m
3 
y

-1
 and a total gross inter-regional VW trade of 207 billion m

3 
y

-1
, we find that 28% 

of total water consumption in crop fields in China serves the production of crops for export 

to other regions. When we consider blue water consumption specifically, we find the same 

value of 28%. Further we find that, on average, in 2008, 35% of the crop-related WF of a 

Chinese consumer is outside its own province. For some provinces we find much larger 
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external WFs in 2008: 92% for Tibet (83% in other provinces, 10% abroad), 88% for 

Beijing (68% in other provinces, 20% abroad) and 86% for Shanghai (66% in other 

provinces, 20% abroad). 

The estimated inter-regional trade of the crops considered increased by a factor 2.3 over the 

study period, but the sum of inter-regional VW trade flows increased only modestly due to 

the general decline in WFs per tonne of crops traded. Trade in rice is responsible for the 

largest component in the inter-regional VW trade flows, although its importance is declining: 

rice-trade related inter-regional VW flows contributed 48% to the total inter-regional VW 

flows in China in 1978, but 30% in 2008. More and more rice was transferred from the 

Central region, which has a relatively large WF per tonne of rice, to deficit regions. Rice 

production in Central accounted for 38% of total national rice production in 1978 and 44% 

in 2008. The South Coast became a net rice importer since 2005 due to its increased rice 

consumption (11% of national rice consumption in 2008) and reduced rice production (from 

15% of national rice production in 1978 to 9% in 2008). Wheat- and maize-related 

inter-regional VW flows increased over the period 1978-2008 by 62% and 60%, respectively, 

due to the estimated increased inter-regional trade volumes of the two staple crops (from 9 

to 36 million t y
-1

 for wheat, and from 17 to 51 million t y
-1

 for maize), driven by North 

China’s increased share in national crop production but decreased share in national crop 

consumption. 
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Figure 4.9 China’s inter-regional vs. international virtual water flows. Period: 1978-2008. 

 

Historically, VW flows within China went from South to North, but over time the size of 

this flow declined and since the year 2000 the VW flow – related to the 22 crops studied 

here – goes from North to South (Figure 4.10). In 2008, the North-to-South VW flow is 

related to twelve of the twenty-two considered crops (wheat, maize, sorghum, millet, barley, 

soybean, cotton, sugar beet, groundnuts, sunflower seed, apples and grapes). Still, other 

crops, most prominently rice, go from South to North. The main driving factor of the 

reversed VW flow is the faster increase of production in the North and the faster increase of 

consumption in the South. By 2008, the crop-related net VW flow from North to South has 

reached 27 billion m
3 
y

-1
, equal to 7% of the total consumptive WF of crop production in the 

North. 
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Figure 4.10 Net virtual water transfer from North to South China resulting from inter-regional 

crop trade. Period: 1978-2008. 

 

Figure 4.11 presents the net VW trade balances of all provinces for the years 1978 and 2008, 

for total VW trade as well as for blue and green VW trade separately, with positive balances 

reflecting net VW import and negative balances indicating net VW export. The figure also 

shows total, blue and green net VW flows between North and South and the international 

net VW flows towards the North and South. International net VW imports to both North and 

South increased. With regard to blue water, China was a net VW exporter to other countries 

in the 1978, which was mainly from the South and mostly related to rice exports. With the 

increased crop consumption of the Chinese population, China as a whole became a net blue 

VW importer in 1990 and remained since.  

Over the whole study period, we find a blue VW flow from South to North. It is the green 

VW flow, and with that the total VW flow, that reversed direction in the study period. This 

is the first study that shows this, because previous studies didn’t distinguish between the 

green and blue components in the VW flow between North and South. The reason for the 

continued blue VW flow from South to North is the continued trade of rice in this direction. 

The provinces Zhejiang, Guangdong and Fujian, all located in the South, have changed from 

net VW exporters to net VW importers, in the years 1999, 1987 and 1981, respectively. By 
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2008, Guangdong was the largest net VW importing province (36 billion m
3 
y

-1
), followed 

by Sichuan (18 billion m
3 

y
-1

) and Zhejiang (15 billion m
3 

y
-1

). In the meantime, the 

provinces Henan and Shandong in the North became net VW exporters, in 1993 and 1983, 

respectively. In 2008, the three largest crop-related net VW exporters were Heilongjiang (21 

billion m
3 
y

-1
), Jiangxi (12 billion m

3 
y

-1
) and Anhui (10 billion m

3 
y

-1
). 
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 (a) 

 
(b) 

 
 (c)  

 
 

Figure 4.11 China’s provincial crop-related total (a), green (b) and blue (c) net virtual water 

imports for 1978 (left) and 2008 (right). The net virtual water flows between the North and 

South and the international net virtual water flows of the North and South are shown by 

arrows, with the numbers indicating the size of net virtual water flows in billion m
3 
y

-1
. 
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The inter-regional VW network related to crop trade has changed significantly over the 

study period (Figure 4.12). The Jing-Jin, Northwest, and Southwest regions were all-time 

net VW importers. The net VW import of Jing-Jin, where Beijing is located, from other 

regions has more than doubled, from 4.5 to 9.7 billion m
3 
y

-1
, which can be explained by the 

84% growth of its population. Central was net VW exporter over the whole study period, 

with a net VW export increasing from 28 to 52 billion m
3 
y

-1
. East Coast and South Coast 

have changed from net VW exporter in 1978 to net VW importer in 2008, while North Coast 

reversed in the other direction. The direction of the net VW flow from South Coast to 

Northeast has been reversed during the study period due to a reversed direction of rice trade 

between the two regions. While Northeast shifted from a net importer of rice to a net 

exporter, the reverse happened in South Coast. 

 

 
Figure 4.12 Inter-regional virtual water flows in China as a result of the trade in 22 crops for 

1978 and 2008. The widths of the ribbons are scaled by the volume of the virtual water flow. 

The colour of each ribbon corresponds to the export region. The net virtual water exporters 

are shown in green segments, the net virtual water importers are shown in red segments. 
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4.3.4 National water saving related to international and inter-regional 
crop trade 

As shown in Figure 4.13, China’s total national water saving as a result of international crop 

trade highly fluctuated, amounting to 41 billion m
3 

y
-1

 (6% of total national WF of crop 

production) in 1978 and 108 billion m
3 
y

-1 
(15% of total national WF of crop production) in 

2008. From 1981 onwards, inter-regional crop trade in China started to save increasing 

amounts of water for the country in total, reaching to 121 billion m
3 

y
-1

 (17% of the total 

national WF of crop production)
 
by 2008. Inter-regional crop trade in China did not lead to 

an overall saving of blue water; instead, the trade pattern increased the blue WF in China as 

a whole, due to the fact that blue WFs per tonne of crop in the exporting regions were often 

larger than in the importing regions. The blue water loss resulting from inter-regional trade 

was 20 billion m
3 
y

-1
 (13% of national blue WF of crop production) in 1978 and 9 billion m

3 

y
-1 

(6% of national blue WF of crop production) in 2008. The decrease was the result of the 

increased blue water productivity over the years. 

 

Figure 4.13 National water saving (WS) as a result of China’s international and inter-regional 

crop trade over the period 1978-2008. 

 

Table 4.3 lists the national water saving related to international and inter-regional trade of 

China, per crop, for both 1978 and 2008. In recent years, soybean plays the biggest role in 

the national water saving of China through international crop trade, which confirms earlier 
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findings (Liu et al., 2007; Shi et al., 2014; Chapagain et al., 2006; Dalin et al., 2014). We 

found that before 1997 the largest national water saving related to international trade was for 

wheat trade. In 2008, international trade of only four of the 22 crops considered (soybean, 

rapeseed, cotton and barley) resulted in national water saving for China. The international 

export of tea led to the greatest national water loss in 2008.  

Most of the national water saving related to inter-regional crop trade in 2008 was due to 

trade in rapeseed, wheat and groundnuts. Due to the increasing inter-regional trade of 

rapeseed (from 0.8 million t y
-1

 in 1978 to 5 million t y
-1

 in 2008), the generated water 

saving increased by a factor 4.5 over the study period. The biggest contributor to the 

national water loss through inter-regional crop trade was rice, with a national water loss of 

29 billion m
3 

y
-1

 (11% of total consumptive WF of rice production) in 2008. Particularly 

inter-regional trade in rice and wheat led to blue water losses. 

 

Table 4.3 National water saving (WS) through international and inter-regional crop trade of 

China.  

 

National WS through 
international crop trade 

(billion m
3 

y
-1

)  

National WS through 
inter-regional crop 

trade 

(billion m
3 

y
-1

) 

Blue WS through 
inter-regional crop 

trade 

(billion m
3 

y
-1

) 

1978 2008 

 

1978 2008 

 

1978 2008 

Wheat 33.8 -0.6 

 

23.9 59.6 

 

-10.4 -3.2 

Maize 1.6 -0.9 

 

13.2 3.5 

 

3.6 -0.6 

Rice -4.9 -1.6 

 

-55.7 -28.9 

 

-17.2 -10.7 

Sorghum 0.0 -0.1 

 

-1.1 0.0 

 

0.2 0.1 

Barley -0.0 0.3 

 

0.0 -0.0 

 

-0.0 -0.0 

Millets -0.1 -0.0 

 

3.7 0.7 

 

1.2 0.3 

Potato -0.0 -0.1 

 

0.7 0.2 

 

0.2 0.1 

Sweet potato -0.0 -0.0 

 

0.3 0.2 

 

-0.5 0.1 

Soybean 0.4 86.1 

 

1.7 -1.3 

 

1.0 0.7 

Groundnut -0.1 -0.9 

 

3.5 10.2 

 

1.8 4.3 

Sunflower -0.0 -0.2 

 

0.1 0.1 

 

0.1 0.1 
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Rapeseed -0.0 20.4 

 

13.7 64.9 

 

0.0 0.0 

Sugar beet 0.0 -0.0 

 

-0.1 0.2 

 

-0.0 -0.0 

Sugar cane 0.0 0.0 

 

-0.0 3.0 

 

0.1 0.3 

Cotton  12.9 9.4 

 

0.1 0.0 

 

0.2 -0.3 

Spinach -0.0 -0.0 

 

0.0 0.1 

 

0.0 0.0 

Tomato -0.0 -0.0 

 

0.8 7.3 

 

0.0 0.1 

Cabbage -0.0 -0.1 

 

-0.0 -0.0 

 

-0.0 -0.0 

Apple -0.1 -0.9 

 

-0.4 0.6 

 

-0.0 -0.1 

Grape -0.0 -0.0 

 

-0.0 -0.2 

 

-0.0 -0.5 

Tea -2.7 -2.5 

 

-0.0 0.3 

 

0.0 0.0 

Tobacco -0.0 -0.2 

 

0.4 0.2 

 

0.1 0.1 

Total 40.7 108.1 

 

4.6 120.6 

 

-19.6 -9.3 

 

 

4.3.5 Discussion 

We compared the national average WF of each crop (in m
3 
t
-1

) as estimated in the current 

study with three previous studies that gave average values for different periods: Mekonnen 

and Hoekstra (2011) for 1996-2005, Liu et al. (2007) for 1999-2007 and Shi et al. (2014) for 

1986-2008 (Figure 4.14). Our estimates of crop WFs match well with previous reported 

values, with R-square values of 0.96, 0.89 and 0.98 for the three studies, respectively.  

 

Figure 4.14 Comparison of current estimates of national average consumptive water 

footprint of each crop (in m
3 
t
-1

) with results from Mekonnen and Hoekstra (2011), Liu et al. 

(2007) and Shi et al. (2014).  
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A number of limitations should be taken into account when interpreting the results of this 

study. First, in simulating WFs of crops, a number of crop parameters, such as harvest index, 

cropping calendar and the maximum root depth for each type of crop, were taken constant 

over the whole period of analysis. Second, the annual variation of the initial soil water 

content for each crop (at the beginning of the growing season) in each grid cell was not 

taken into consideration. Third, we assumed, per crop, that the changes in cropping area 

over the study period only happened in grid cells where a harvested area for that crop 

existed around the year 2000 according to the database used (Monfreda et al., 2008; 

Portmann et al., 2010). Fourth, in estimating WFs of crop consumption, the spatial variation 

of per capita crop consumption levels (e.g. urban vs. rural) was ignored due to lack of data. 

Finally, the specific trade flows between crop surplus and crop deficit regions were 

estimated assuming static multi-regional input-output tables as explained in the method 

section.  

The various assumptions that have been taken by lack of more accurate data translate to 

uncertainties in the results. The assumptions on harvest indexes and maximum root depths 

mainly affect the magnitude of modelled crop yield levels; the effect of uncertainties in 

these model parameters has been minimized by the fact that we calibrated the simulated 

yields in order to match provincial yield statistics. Regarding assumed cropping calendars 

and initial soil water content values, a detailed sensitivity analysis to these two variables has 

been carried out by Zhuo et al. (2014) for the Yellow River basin, the core of Chinese crop 

production, and by Tuninetti et al. (2015) at global level. By varying the crop planting date 

by ±30 days, Zhuo et al. (2014) found that the consumptive WF of crops generally 

decreased by less than 10% with late planting date due to decreased crop ET and that crop 

yields hardly changed. By changing the initial soil water content by ±1 mm m
-1

, Tuninetti et 

al. (2015) showed that an increment in the initial soil water content resulted in decreases in 

consumptive WF due to higher yield. Again, the effects on yield simulations were 

diminished by calibration to fit yield statistics. Since none of the factors mentioned can 

influence the order of magnitude of the outcomes, the broad conclusions with respect to 

declining WFs of crops (m
3
 t

-1
), declining WFs per capita (m

3
 y

-1 
cap

-1
), increasing total WFs 

of consumption and production (m
3
 y

-1
) and the reversing of the VW flow between South 
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and North China, are solid. 

4.4  Conclusions 

For China as a whole, even though the per capita consumption of considered crops grew by 

a factor of 1.4 over the study period, China’s average WF per capita (m
3 
cap

-1 
y

-1
) related to 

crop consumption decreased by 23%, owing to improved yields. Due to the population 

growth (37%), the total consumptive WF (m
3 
y

-1
) of Chinese crop consumption increased by 

6%, with a tripled net VW import as a result of importing crops from other countries. The 

production of the 22 crops considered doubled, while the harvested area increased only 

marginally (4%). The increased crop yields in China have led to significant reductions in the 

WF of crops (e.g. halving the WF per tonne of cereals), resulting in a slight increase (7%) in 

the total consumptive WF of crop production. About 28% of total consumptive water use in 

crop fields in China serves the production of crops for export to other regions. About 35% of 

the crop-related WF of a Chinese consumer is outside its own province. By 2000, the North 

has become net VW exporter through crops to the South. This is in line with the findings in 

earlier studies (e.g. Ma et al., 2006; Cao et al., 2011; Dalin et al., 2014), but we add the 

nuance that the North-South VW flow concerns green water. There is still a blue VW flow 

from the South to the North, although this flow more than halved over the study period. 

If these trends continue, this will put an increasing pressure on the North‘s already limited 

water resources. The on-going South-North Water Transfer Project (SNWTP) may alleviate 

this pressure to a certain extent, but might be insufficient (Barnett et al., 2015). The Middle 

Route of the South-North Water Transfer project, which is operational since late 2014, is 

transferring 3 billion m
3
 of blue water per year to support agriculture, with the aim to 

increase irrigated land by 0.6 million ha in the drier North (SCPRC, 2014a). The 

Government’s plan to expand irrigated agriculture by using the transferred water for 

irrigation will stimulate crop export from the North and thus further increase the blue VW 

transfer from North to South. The blue water supply through the SNWTP will thus not 

significantly reduce the pressure on water resources in the North, but rather support 

agricultural expansion. Efforts to reduce water demand will be needed to address the 

growing water problems in China.  
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Crop yield improvements have led to a drop in the WF of crops (m
3 

t
-1

), but further 

reduction in the WF is possible. Setting WF benchmark values for the different crops, taking 

into account the agro-ecological conditions of the different regions, formulating targets to 

reduce the WFs of crops to benchmark levels and making proper investments to reach these 

targets will be important steps toward further reduction of the WF (Hoekstra, 2013). As the 

economy grows, the per capita consumption of water-intensive goods such as animal 

products and oil crops will increase, putting further pressure on China’s already scarce water 

resources (Liu and Savenije, 2008). Thus, efforts are necessary to influence the food 

preferences of the population in order to curb the increasing consumption of meat, dairy and 

water-intensive crops, which is useful from a health perspective as well (Du et al., 2004).  

The case of China shows that domestic trade, as governed by economics and governmental 

policies rather than by regional differences in water endowments, determines inter-regional 

water dependencies and may worsen rather than relieve the water scarcity in a country. 
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Appendix 4A An example of assessing the water footprint related to crop consumption in China: wheat in the year 2006. 

 
A. National total crop utilization and supply accounts are obtained from FAO (2014). 
B. Statistics on provincial population and livestock are obtained from NBSC (2013). 
C. Positive value means import. Negative value means export. 
D. Provincial “crop trade balance” refers to net crop import.  
E. “Food” is equal to the sum of ”food directly” and ”food manufactured” obtained from FAO (2014). 

  

FoodE Feed Seed Waste Otheruse Production Stock var.

International

tradeC

Inter-regional

trade

Crop trade

balanceD Blue Green Total Blue Green Total Blue Green Total Blue Green Total Blue Green Total Blue Green Total

Beijing 1601 61 1109 15 49 31 28 300 -8 12 928 940 177 74 251 0.5 23 23 533 578 1111 534 601 1134 574 680 1254 681 646 1327

Tianjin 1075 62 745 15 33 21 19 499 -13 5 342 347 335 165 500 0.2 8 9 197 213 410 197 222 419 629 501 1130 502 365 866

Hebei 6898 1102 4778 274 219 141 120 11897 -307 -231 -5827 -6058 9030 5320 14350 -175.3 -103 -279 -4423 -2606 -7028 -4598 -2709 -7307 729 3726 4455 3885 2289 6174

Shanxi 3375 322 2338 80 105 68 59 2271 -59 6 431 437 1570 1540 3110 0.2 11 11 77 480 557 77 490 568 609 1522 2130 1524 1878 3402

Inner Mongolia 2415 1241 1673 308 86 55 42 1722 -44 6 481 487 1940 549 2489 0.2 12 12 303 349 652 303 361 664 1016 1817 2833 1820 738 2558

Liaoning 4271 712 2959 177 136 88 74 31 -1 44 3359 3403 17 16 33 1.7 82 84 1931 2092 4023 1933 2174 4107 568 1799 2367 1800 2022 3822

Jilin 2723 670 1886 166 89 57 47 3 0 29 2214 2243 3 2 5 1.1 54 55 1273 1379 2652 1274 1433 2708 569 1148 1717 1149 1292 2440

Heilongjiang 3823 783 2648 194 123 79 67 930 -24 29 2177 2206 483 504 987 1.1 53 54 1252 1356 2608 1253 1409 2662 554 1569 2123 1570 1731 3302

Shanghai 1964 35 1360 9 59 38 34 113 -3 18 1372 1390 65 138 203 0.7 34 34 213 1744 1957 214 1777 1991 186 270 456 270 1856 2126

Jiangsu 7656 533 5303 132 236 152 133 9016 -233 -108 -2719 -2827 1210 12700 13910 -14.5 -152 -166 -365 -3830 -4195 -379 -3982 -4361 132 748 880 762 8003 8765

Zhejiang 5072 287 3513 71 155 100 88 157 -4 49 3726 3775 13 281 294 1.9 91 93 578 4734 5312 580 4825 5405 151 569 720 568 4887 5455

Anhui 6110 487 4232 121 189 122 106 10390 -268 -204 -5148 -5352 978 18300 19278 -19.2 -359 -379 -485 -9067 -9551 -504 -9426 -9930 90 409 499 427 7986 8413

Fujian 3585 369 2483 92 112 72 62 16 0 37 2769 2805 0 35 35 1.4 68 69 496 3081 3577 497 3149 3646 177 470 647 469 3002 3471

Jiangxi 4339 503 3006 125 136 88 76 20 -1 44 3365 3409 0 95 95 1.7 82 84 603 3744 4347 604 3827 4431 177 568 745 568 3682 4249

Shandong 9309 1387 6448 345 294 190 162 20130 -520 -464 -11707 -12171 9730 14300 24030 -224.3 -330 -554 -5659 -8316 -13975 -5883 -8646 -14529 455 3140 3595 3339 4907 8247

Henan 9392 2191 6506 544 305 197 163 29365 -758 -797 -20094 -20891 5900 27800 33700 -160.1 -754 -914 -4037 -19023 -23061 -4197 -19778 -23975 182 1267 1449 1400 6598 7999

Hubei 5693 793 3944 197 179 116 99 3111 -80 20 1485 1504 134 8540 8674 0.8 36 37 266 1652 1918 267 1688 1955 87 367 454 367 9363 9730

Hunan 6342 1219 4393 303 203 131 110 29 -1 67 5046 5113 0 86 86 2.6 124 126 904 5616 6520 907 5739 6646 177 831 1008 830 5331 6161

Guangdong 9442 665 6541 165 291 187 164 3 0 96 7249 7345 0 8 8 3.7 177 181 1299 8067 9366 1302 8245 9547 178 1244 1422 1242 7869 9111

Guangxi 4719 903 3269 224 151 98 82 6 0 50 3769 3818 2 24 26 1.9 92 94 2009 2692 4701 2011 2784 4795 527 1843 2370 1844 2571 4415

Hainan 836 143 579 36 27 17 15 0 0 9 664 673 0 0 0 0.3 16 17 119 739 858 119 755 875 178 110 288 110 696 806

Chongqing 2808 447 1945 111 89 57 49 476 -12 23 1765 1788 4 1070 1074 0.9 43 44 941 1260 2201 942 1304 2245 418 870 1288 870 2185 3055

Sichuan 8169 2189 5659 544 269 173 142 4436 -114 32 2433 2465 250 7930 8180 1.2 60 61 1297 1738 3035 1299 1797 3096 225 1359 1584 1360 8545 9905

Guizhou 3690 838 2556 208 120 77 64 451 -12 34 2552 2586 28 1520 1548 1.3 62 64 1361 1823 3184 1362 1885 3247 458 1252 1710 1253 3070 4323

Yunnan 4483 1292 3105 321 148 96 78 930 -24 37 2806 2843 514 2730 3244 1.4 69 70 1496 2004 3500 1497 2073 3570 534 1772 2306 1774 4235 6008

Tibet 285 639 197 159 15 10 5 265 -7 2 126 128 72 134 206 0.1 3 3 67 90 158 67 93 161 355 75 430 75 122 197

Shaanxi 3699 430 2562 107 116 75 64 3901 -101 -33 -843 -877 1670 6050 7720 -14.3 -52 -66 -361 -1308 -1669 -375 -1359 -1735 423 1160 1584 1175 4257 5432

Gansu 2547 691 1764 172 84 54 44 2607 -67 -16 -405 -421 1590 3720 5310 -9.8 -23 -33 -247 -578 -826 -257 -601 -858 605 1143 1748 1153 2697 3850

Qinghai 548 543 380 135 22 14 10 594 -15 -1 -17 -18 131 617 748 -0.2 -1 -1 -4 -18 -22 -4 -19 -23 220 89 310 90 422 512

Ningxia 604 137 418 34 20 13 11 833 -22 -12 -304 -316 951 473 1424 -13.8 -7 -21 -347 -173 -520 -361 -180 -541 1115 499 1614 512 255 766

Xinjiang 2050 865 1420 215 71 46 36 3962 -102 -79 -1994 -2073 2560 1020 3580 -51.1 -20 -71 -1288 -513 -1801 -1339 -534 -1873 619 940 1559 983 392 1374

ChinaA 129523 22539 89721 5600 4130 2665 2254 108466 -2800 -1296 0 -1296 39358 115740 155098 -657 -600 -1257 0 0 0 -657 -600 -1257 355 1081 1436 34371 103891 138263

WF of food consumption

(106m3/y)

Virtual w ater trade

balance (106m3/y)Supply (103 t)Utilization (103 t)

WF of crop production

(106m3/y)

Net virtual w ater import

as result of International

crop trade (106m3/y)

Net virtual w ater import

as result of Inter-regional

crop trade(106m3/y)

WF of consumed crop

(m3/t)Province
PopulationB

(104)

Livestock

(104LU)
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5. Consumptive Water Footprint and Virtual Water Trade 
Scenarios for China with a Focus on Crop Production, 
Consumption and Trade4 

Abstract 

The study assesses green and blue water footprints (WFs) and virtual water (VW) trade in 

China under alternative scenarios for 2030 and 2050, with a focus on crop production, 

consumption and trade. We consider five driving factors of change: climate, harvested crop 

area, technology, diet, and population. Four scenarios (S1-S4) are constructed by making 

use of three of IPCC’s shared socio-economic pathways (SSP1-SSP3) and two of IPCC’s 

representative concentration pathways (RCP 2.6 and RCP 8.5) and taking 2005 as the 

baseline year. Results show that, across the four scenarios and for most crops, the green and 

blue WFs per tonne will decrease compared to the baseline year, due to the projected crop 

yield increase, which is driven by the higher precipitation and CO2 concentration under the 

two RCPs and the foreseen uptake of better technology. The WF per capita related to food 

consumption decreases in all scenarios. Changing to the less-meat diet can generate a 

reduction in the WF of food consumption of 44% by 2050. In all scenarios, as a result of the 

projected increase in crop yields and thus overall growth in crop production, China will 

reverse its role from net VW importer to net VW exporter. However, China will remain a big 

net VW importer related to soybean, which accounts for 5% of the WF of Chinese food 

consumption (in S1) by 2050. All scenarios show that China could attain a high degree of 

food self-sufficiency while simultaneously reducing water consumption in agriculture. 

However, the premise of realizing the presented scenarios is smart water and cropland 

management, effective and coherent policies on water, agriculture and infrastructure, and, as 

in scenario S1, a shift to a diet containing less meat.  

                                                             
4
 The Chapter has been submission to Environment International and being under review.  
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5.1  Introduction 

Intensified competition for finite water resources among different sectors is challenging the 

sustainability of human society. Agriculture is the biggest water consumer, accounting for 92% 

of global water consumption (Hoekstra and Mekonnen, 2012). In China, the world’s most 

populous country, agriculture was responsible for 64% of the total blue water withdrawal in 

2014 (MWR, 2015). About 81% of the nation’s water resources are located in the south, but 

56% of the total harvested crop area is located in the north (Piao et al., 2010; NBSC, 2013; 

Jiang, 2015). China is a net virtual water importer related to agricultural products (Hoekstra 

and Mekonnen, 2012). Local overuse of water threatens the sustainability of water resources 

in China (Hoekstra et al., 2012). China’s agricultural water management will be increasingly 

challenged by climate change, population growth, and socio-economic development (NDRC, 

2007; Piao et al., 2010; Jiang, 2015). 

The Chinese government pursues self-sufficiency in major staple foods (wheat, rice and 

maize) (NDRC, 2008; SCPRC, 2014b) and has set the ‘three red lines’ policy on sustainable 

agricultural blue water use, which sets targets regarding total maximum national blue water 

consumption (670 billion m
3 

y
-1

), improving irrigation efficiency (aiming at 55% at least) 

and improving water quality (SCPRC, 2010). However, risks to water security arise not only 

from blue water scarcity, but also from scarcity of green water (rainwater stored in soil), 

which limits the national food production potential (Falkenmark, 2013). An important 

question is whether China can pull off the political plan to attain both food and water 

security under climate change combined with population growth and socio-economic 

development. A question relevant for the world as a whole is how the development of 

Chinese food consumption and production, given future socio-economic changes and 

climate change, will impact on the country’s net crop trade and related net virtual water 

trade. 

This study assesses green and blue water footprints (WFs) and virtual water (VW) trade in 

China under alternative scenarios for 2030 and 2050, with a focus on crop production, 

consumption and trade. We consider five driving factors of change: climate, harvested crop 

area, technology, diet, and population. We consider 22 primary crops, covering 83% of 
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national harvested crop area (2009) (NBSC, 2013) and 97% and 78% of China’s total blue 

and green WFs of crop production (1996-2005), respectively (Mekonnen and Hoekstra, 

2011). We take the year 2005 as the baseline. The spatial resolution of estimating the WF of 

crop production is 5 by 5 arc min. 

WF is an indicator of water use in relation to production or consumption in the economy 

(Hoekstra, 2003). In the agricultural sector, the WF of crop production measures the 

consumption of rainfall at croplands over the crop growing period (the green WF), the 

consumption of groundwater and surface water as a result of irrigation (the blue WF), and 

the water pollution that results from the leaching and runoff of fertilizers and pesticides 

from croplands (the grey WF) (Hoekstra et al., 2011; Hoekstra, 2013). The green and blue 

WFs together are called the consumptive WF, while the grey WF is also called the 

degradative WF. In the current study, we focus on analysing the consumptive (green and 

blue) WF. The WF of the consumption in a country consists of an internal and external 

component. The internal WF refers to the WF within the country itself for making products 

that are consumed within the country. The external WF of national consumption refers to the 

WF in other areas for making products that are imported by and consumed within the 

country (Hoekstra et al., 2011). 

A number of WF and VW trade scenario studies are available, some at global level (Fader et 

al., 2010; Pfister et al., 2011; Hanasaki et al., 2013a; Hanasaki et al., 2013b; Konar et al., 

2013; Liu et al., 2013; Haddeland et al., 2014; Wada and Bierkens, 2014), others focussing 

on China (Thomas, 2008a; Mu and Khan, 2009; Xiong et al., 2010; Dalin et al., 2015; Zhu 

et al., 2015). Several studies suggest that blue water scarcity in China will increase as a 

result of a growing blue WF of crop production and a decreasing blue water availability in 

the course of the 21
st
 century (Mu and Khan, 2009; Xiong et al., 2010; Pfister et al., 2011; 

Hanasaki et al., 2013a; Hanasaki et al., 2013b; Haddeland et al., 2014; Wada and Bierkens, 

2014). However, the scenario analyses generally exclude the potential decrease of 

consumptive WFs per unit of crop under the combined effect of climate and technological 

progress. Besides, regarding the consumptive WF of crop production in climate change 

scenarios, the findings of several studies contradict each other. Zhu et al. (2015) find a 
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significant increased total blue WF for croplands in northwest, southeast and southwest 

China as a result of climate change under IPCC SRES B1, A1B and A2 scenarios by 

2046-2065. On the contrary, Liu et al. (2013) find that both blue and total consumptive WFs 

will decrease in the North China Plain and southern parts of China and increase in the other 

parts of the country under the IPCC SRES A1FI and B2 scenarios. Thomas (2008a) finds a 

decreased blue WF in north and northwest China by 2030, based on a climate change 

scenario extrapolated from a regression trend derived from the time series for 1951-1990. 

Fader et al. (2010) and Zhao et al. (2014) project a decline in consumptive WF per tonne of 

crops in China as a result of climate change under the IPCC SRES A2 scenario, owing to 

increased crop yields because of increased CO2 fertilization. By considering five 

socio-economic driving factors for 2050, Ercin and Hoekstra (2014) developed four global 

WF scenarios from both production and consumption perspectives. Under two of the global 

WF scenarios, China’s WF of agricultural production will increase, while it will decrease in 

the other two WF scenarios. Dalin et al. (2015) assess future VW trade of China related to 

four major crops and three livestock products by 2030 under socio-economic development 

scenarios. They find that the VW import of China related to major agricultural products 

tends to increase given socio-economic growth by 2030. Konar et al. (2013) assess future 

global VW trade driven by both climate change and socio-economic developments for 2030, 

and find that China will remain the dominant importer of soybean. But they consider only 

three crops (rice, wheat and soybean) and neglected changes in crop yield to climate 

changes. By taking a more comprehensive approach – studying 22 crops, looking at 

production, consumption as well as trade, and considering climate change as well as 

socio-economic driving factors – the current study aims to achieve a broader understanding 

of how the different driving forces of change may play out 

5.2  Method and data 

5.2.1  Scenario set-up 

Scenarios are sets of plausible stories, supported with data and simulations, about how the 

future might unfold from current conditions under alternative human choices (Polasky et al., 

2011). In the current study we build on the 5th IPCC Assessment Report (IPCC, 2014), 
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which employs a new generation of scenarios (Moss et al., 2010), including socio-economic 

narratives named shared socio-economic pathways (SSPs) (O’Neill et al., 2012) and 

emission scenarios named representative concentration pathways (RCPs) (van Vuuren et al., 

2011).  

Five SSPs (SSP1-SSP5) were developed within a two-dimensional space of socio-economic 

challenges to mitigation and adaptation outcomes (O’Neill et al., 2012) (Figure 5.1a). From 

SSP1 to SSP3, socio-economic conditions increasingly pose challenges and difficulties to 

mitigate and adapt to climate change. In order to cover the full range from the best to the 

worst possible future conditions of China, we choose to consider the two extreme scenarios 

SSP1 and SSP3. SSP1 represents a world with relatively low challenges to both climate 

change mitigation and adaptation, and SSP3 represents a world with relatively large 

challenges in both respects. In addition, we consider the middle of the road scenario SSP2 

with an intermediate level of challenges. In sustainability scenario SSP1, the world makes 

relatively good progress towards sustainability: developing countries have relatively low 

population growth as well as rapid economic growth; increasingly developed technology is 

put towards environmentally friendly processes including yield-enhancing technologies for 

land; the consumption level of animal products is low. In middle-of-the-road scenario SSP2, 

the typical trends of recent decades continue, with a relatively moderate growth in 

population; most economics are stable with partially functioning and globally connected 

markets. In fragmentation scenario SSP3, the world is separated into regions characterized 

by extreme poverty, pockets of moderate wealth and a bulk of countries that struggle to 

maintain living standards for a strongly growing population, and slow technology 

development.  

In this study, we constructed scenarios S1 to S4 by combining certain socio-economic 

scenarios with certain climate scenarios (Figure 5.1b). The assumptions for the four 

scenarios S1-S4 are summarised in Table 5.1. The five driving factors of change considered 

in this study have been quantified per scenario as will be discussed below. 
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(a)  (b)  

Figure 5.1 (a) SSPs in the conceptual space of socio-economic challenges for mitigation and 

adaptation. Source: O’Neill et al. (2012). (b) Definition of scenarios S1-4 used in the current 

study in the matrix of SSPs and RCPs. 

 

Table 5.1 Summary of the four scenarios S1-4 in the current study. 

 
S1 S2 S3 S4 

Shared socio-economic pathway SSP1 SSP2 SSP2 SSP3 

Population growth Relatively low Medium Medium Relatively high 

Diet Less meat Current trend Current trend Current trend 

Yield increase through technology 

development 
High Medium Medium Low 

Representative concentration pathway RCP 2.6 RCP 2.6 RCP 8.5 RCP 8.5 

climate outcomes (GCMs) CanESM2, GFDL-CM3, GISS-E2-R and MPI-ESM-MR 

Harvested crop area (IAM) IMAGE IMAGE MESSAGE MESSAGE 

 

 

 

Population. The SSPs of the IPCC consist of quantitative projections of population growth 

as given by IIASA (2013) (Table 5.2). 
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Table 5.2 Population projections for China under SSP1 to SSP3. 

  
2005 

2030 
 

2050 

  SSP 1 SSP 2 SSP 3 
 

SSP 1 SSP 2 SSP 3 

Population 
(million) 

1307.59 1359.51 1380.65 1398.88 
 

1224.52 1263.14 1307.47 

Source: IIASA (2013). 

 

Climate. The IPCC distinguishes four RCPs (RCP 2.6, 4.5, 6 and 8.5) based on different 

radiative forcing levels by 2100 (from 2.6 to 8.5 W/m
2
) (van Vuuren et al., 2011). In this 

study, we consider the two climate change scenarios RCP2.6 (also called RCP 3PD) (van 

Vuuren et al., 2007) and RCP8.5 (Riahi et al., 2007). RCP2.6 represents pathways below the 

10
th
 percentile and RCP8.5 pathways below the 90

th
 percentile of the reference emissions 

range (Moss et al., 2010). By combining the RCPs and SSPs, a matrix framework was 

proposed showing that an increased level of mitigation efforts corresponds to a decreased 

level of climate hazard (Kriegler et al., 2010). For the purpose of our study we constructed 

two scenarios S1 and S2 by combining climate scenarios forced by RCP2.6 with 

socio-economic scenarios SSP1 and SSP2, respectively. In addition we constructed two 

scenarios S3 and S4 that combine climate outcomes forced by RCP8.5 with SSP2 and SSP3, 

respectively (Figure 5.1b). Climate change projections by four Global Climate Models 

(GCMs) within the Coupled Model Intercomparison Project (CMIP5) (Taylor et al., 2012) 

were used: CanESM2 (Canadian Centre for Climate Modelling and Analysis), GFDL-CM3 

(NOAA Geophysical Fluid Dynamics Laboratory), GISS-E2-R (NASA Goddard Institute 

for Space Studies), and MPI-ESM-MR (Max Planck Institute for Meteorology). The models 

were selected from nineteen GCMs in such a way that the outcomes of the selected GCMs 

span the full range of projections for China on precipitation (mm) for spring and summer 

(March to July), when most crops grow. The projections by CanESM2 and GFDL-CM3 

represent relatively wet conditions and the projections by GISS-E2-R and MPI-ESM-MR 

relatively dry conditions (Table 5.3).  
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Table 5.3 Projected changes in national average precipitation (PR), maximum temperature 

(Tmax), minimum temperature (Tmin), reference evapotranspiration (ET0) and CO2 

concentration in China for the four selected GCMs for RCP2.6 and RCP8.5 by the years 2030 

and 2050 compared to 2005.  

Changes in climate 
variables 

RCP2.6 
 

RCP8.5 

Can
ESM
2 

GFDL-
CM3 

GISS
-E2-R 

MPI-E
SM-M
R 

  
Can
ESM
2 

GFDL-
CM3 

GISS-
E2-R 

MPI-E
SM-M
R 

Year: 2030 

Relative changes in annual 
PR 

15% 12% 1% 4% 
 

16% 8% 2% 7% 

Increase in Tmax (
o
C) 1.9 2.4 0.9 1.2 

 
2.2 2.6 1.4 1.6 

Increase in Tmin (
o
C) 1.7 2.0 0.5 0.9 

 
2.1 2.2 1.1 1.4 

Relative changes in annual 
ET0 

3% 5% 2% 2% 
 

3% 5% 3% 2% 

Relative changes in CO2 
concentration 

13% 
 

18% 

Year: 2050 

Relative changes in annual 
PR 

19% 20% 3% 5% 
 

24% 20% 6% 7% 

Increase in Tmax (
o
C) 2.2 3.1 0.9 1.3 

 
3.5 4.3 2.2 2.7 

Increase in Tmin (
o
C) 2.1 2.5 0.5 1.0 

 
3.5 3.7 1.8 2.6 

Relative changes in annual 
ET0 

3% 8% 2% 2% 
 

6% 11% 5% 5% 

Relative changes in CO2 
concentration 

17% 

 

42% 

 

 

Harvested crop area. We use the harmonized land use (HLU) scenarios provided at a 

resolution of 30 by 30 arc min from (Hurtt et al., 2011). We downscale the original data to a 

5 by 5 arc min resolution. The changes in cropland area, provided as a fraction of each grid 

cell, were obtained from the IMAGE model (van Vuuren et al., 2007) for the RCP2.6 

pathway and the MESSAGE model (Rao and Riahi, 2006; Riahi et al., 2007) for the RCP8.5 

pathway. We apply the projected relative changes in the cropland area per crop and grid cell 

to the current cropland area per crop and grid cell as provided by Portmann et al. (2010) and 

(Monfreda et al., 2008). The total harvested crop area for the selected crops in China is 

projected to increase by 19% from 2005 to 2050 in RCP2.6 and by 4% in RCP8.5.  
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Crop yield increase through technology development. According to a recent global yield 

gaps analysis for major crops (Mueller et al., 2012), it is possible to increase yields by 

45%-70% for most crops. For China’s case, studies are available only for wheat, maize and 

rice. Meng et al. (2013) reported that experimental attainable maize yield was 56% higher 

than the average (7.9 t ha
-1

) farmer’s yield in China for 2007-2008. Lu and Fan (2013) found 

that the yield gap for winter wheat is 47% of the actual yield in the North China Plain. 

Zhang et al. (2014) estimated that the national average yield gap for rice is 26% of the actual 

yield. With limited land and water resources available to expand the acreage of croplands, 

the only way to enlarge production is by yield increase (Huang et al., 2002). In a scenario 

analysis on potential global yield increases, De Fraiture et al. (2007) conclude that yield 

growth can reach 20-72% for rain-fed cereals and 30-77% for irrigated cereals as compared 

to the year 2000. Due to a lack of quantitative data on crop yield growth under each SSP, we 

took the values from De Fraiture et al. (2007) as a starting point by assuming a yield 

increase of 72% from 2000 to 2050 in SSP1, 46% in SSP2, and 20% in SSP3. Assuming a 

linear increase in the crop yield over time, corresponding yield increases over the period 

2005-2030 are 34% in SSP1, 22% in SSP2, and 10% in SSP3, and corresponding yield 

increases over the period 2005-2050 are 60% in SSP1, 40% in SSP2, and 18% in SSP3. 

 

Diet. We make use of the two diet scenarios for East Asia for 2050 by Erb et al. (2009). We 

assume the less-meat scenario for SSP1 and the current-trend scenario for SSP2 and SSP3. 

We assume that the conversion factor from the kilocalorie intake to kilogram consumption 

of each type of crop per capita remains constant over the years. As shown in Table 5.4, the 

share of animal products in the Chinese diet will decrease by 37% in the less-meat scenario 

and increase by 4.4% in the current-trend scenario, compared to baseline year 2005.  

 

Table 5.4 Two diet scenarios for China.  

Consumption per capita 
in kcal/day per category 

2005
a
 

2050 

Current-trend scenario
b
 Less-meat scenario 

Cereal 1458 1552 (6.4%) 1709 (17.2%) 

Roots 187 149 (-20.6%) 201 (7.6%) 

Sugar crops 60 85 (41.7%) 124 (106.7%) 
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Oil crops 246 288 (17.1%) 265 (7.8%) 

Vegetables and fruits 247 205 (-16.9%) 219 (-11.2%) 

Other crops 95 66 (-30.4%) 82 (-13.5%) 

Animal products 586 612 (4.4%) 372 (-36.5%) 

Total 2879 2956 (2.8%) 2973 (3.3%) 

a. Source: FAO (2014b); 

  b. Values were generated according to the scenarios for East Asia by Erb et al. (2009), with relative 
changes from 2005 level in brackets.  

 

5.2.2 Estimating water footprints and virtual water trade 

Following Hoekstra et al. (2011), green and blue WFs of producing a crop (m
3 

t
-1

) are 

calculated by dividing the total green and blue evapotranspiration (ET[t], m
3 

ha
-1

) over the 

crop growing period, respectively, by the crop yield (Y, t ha
-1

). Daily ET and Y were 

simulated, at a resolution level of 5 by 5 arc min, with the FAO crop water productivity 

model AquaCrop (Hsiao et al., 2009; Raes et al., 2009; Steduto et al., 2009). Following 

Chapter 3, the daily green and blue ET were derived based on the relative contribution of 

precipitation and irrigation to the daily green and blue soil water balance of the root zone, 

respectively. We considered multi-cropping of rice (i.e. twice a year in southern China) and 

assumed single cropping for other crops. The simulated Y of each crop for the baseline year 

was scaled to match provincial statistics (NBSC, 2013). The projected Y under climate 

scenarios was obtained by multiplying the scaled baseline Y by the ratio of the simulated 

future Y to the simulated baseline Y. 

The water footprint of food consumption (WFcons, food, m
3 
y

-1
) includes the WF related to the 

consumption of crops and crop products as well as the WF related to the consumption of 

animal products. The WF related to crop consumption (m
3 

y
-1

) under each scenario was 

obtained, per crop, by multiplying the crop consumption volume (Ccrop, food, t y
-1

) by the WF 

per tonne of the crop (WFcons, unit crop, m
3 
t
-1

). The WF related to the consumption of animal 

products (m
3 

y
-1

) was estimated by multiplying total animal products consumption (Canimal, 

food , kcal y
-1

) by the WF per kilocalorie of animal products (WFcons, unit animal, m
3 
kcal

-1
). 

Ccrop, food was calculated, per crop, as the crop consumption per capita (in kg cap
-1

 y
-1

) times 

the projected population. We consider the seed and waste as part of the food consumption. 
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The fraction of seed and waste in the crop consumption is assumed to be constant in the 

coming decades and calculated as the ratio of total waste and seed to the total crop use in the 

baseline year (FAO, 2014b). WFcons, unit crop was calculated, per crop, as:  

𝑊𝐹𝑐𝑜𝑛𝑠,𝑢𝑛𝑖𝑡 𝑐𝑟𝑜𝑝 =
𝑃𝑐𝑟𝑜𝑝 × 𝑊𝐹𝑝𝑟𝑜𝑑 + 𝐼𝑐𝑟𝑜𝑝 × 𝑊𝐹𝑖𝑝𝑟𝑜𝑑

𝑃𝑐𝑟𝑜𝑝 + 𝐼𝑐𝑟𝑜𝑝
                                         (5.1) 

where Pcrop (t y
-1

) is the total national production of the crop, Icrop (t y
-1

) the total import of 

the crop from outside the country; WFprod (m
3 
t
-1

) the water footprint of the crop produced 

domestically, and WFiprod (m
3 

t
-1

) the water footprint of the imported crop, taken as the 

global average WF of the crop as reported by Mekonnen and Hoekstra (2011). Under each 

scenario, Icrop equals to the sum of the crop consumption for food (Ccrop, food) and the crop 

consumption for feed (Ccrop, feed, t y
-1

) minus the national production of the crop (Pcrop). A 

negative value for Icrop means export. The crop import Icrop multiplied with WFiprod refers to 

the net VW import related to trade in the crop (m
3
 y

-1
).  

Ccrop, feed changes with animal products consumption, which is driven by population growth, 

personal income growth and diet changes (Rosegrant et al., 1999; Du et al., 2004; Bouwman 

et al., 2005; Keyzer et al., 2005; Liu and Savenije, 2008; Trostle, 2008; Nonhebel and 

Kastner, 2011; Shiferaw et al., 2011; Hoekstra and Mekonnen, 2012; Hoekstra and 

Wiedmann, 2014). Here we assume that the relative change in Ccrop, feed under each scenario 

is the same as the relative changes in the total consumption of animal products, which is 

driven by corresponding diet changes (Table 5.4) and population growth. Ccrop, feed in China 

for the baseline year 2005 was obtained from FAO (2014b). 

Values for WFcons, unit animal in China in the baseline year were obtained from Hoekstra and 

Mekonnen (2012). The WF of animal feed contributes 98% to the WF of animal products 

(Mekonnen and Hoekstra, 2012). Animal productivity was assumed to grow in the future as 

a result of higher offtake rates and higher carcass weights or milk or egg yields (Bruinsma, 

2003). Therefore, in each scenario, WFcons, unit animal was estimated by considering relative 

changes in the WF of animal feed (△WFfeed, %) and potential improvements in animal 

productivity (i.e. animal production output per unit mass of feed) (△productivity, %): 
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𝑊𝐹𝑐𝑜𝑛𝑠,𝑢𝑛𝑖𝑡 𝑎𝑛𝑖𝑚𝑎𝑙 =
𝑊𝐹𝑐𝑜𝑛𝑠,𝑢𝑛𝑖𝑡 𝑎𝑛𝑖𝑚𝑎𝑙[2005] × (1 + ∆WF𝑓𝑒𝑒𝑑)

(1 + ∆𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑣𝑖𝑡𝑦)
                        (5.2) 

△WFfeed was calculated as a weighted average of changes in the WF of feed crops (△WFfeed 

crops, %) and changes in the WF of other feed ingredients (i.e. pasture, crop residues and 

other roughages) (△WFfeed other, %), given their corresponding shares in the total WF of 

animal feed in China (pctfeed crops and pctfeed other, %): 

∆WF𝑓𝑒𝑒𝑑 = ∆𝑊𝐹𝑓𝑒𝑒𝑑 𝑐𝑟𝑜𝑝𝑠 × 𝑝𝑐𝑡𝑓𝑒𝑒𝑑 𝑐𝑟𝑜𝑝𝑠 + ∆𝑊𝐹𝑓𝑒𝑒𝑑 𝑜𝑡ℎ𝑒𝑟 × 𝑝𝑐𝑡𝑓𝑒𝑒𝑑 𝑜𝑡ℎ𝑒𝑟  (5.3) 

We assume that the composition of the animal feed in China stays constant. Currently, the 

selected crops account for 75% of the total feed crop consumption in quantity (FAO, 2014b) 

and contribute 70% and 86% to the green and blue WFs of feed crops consumed in China, 

respectively (Hoekstra and Mekonnen, 2012). For the feed crops that are not included in the 

current study, the △WFfeed other was assumed in line with the assumed crop yield increase 

under each scenario. The values of pctfeed crops and pctfeed others for green and blue WFs were 

obtained from Mekonnen and Hoekstra (2012). We use the projections on △productivity for the 

various types of animal products by Bouwman et al. (2005) for East Asia from 1995 to 2030, 

assuming a linear increase. We took a weighted average based on production of each type of 

animal product in the baseline year (NBSC, 2013), which implies an animal productivity 

increase of 4% by 2030 and 8% by 2050 compared to the baseline year 2005. 

China’s international virtual water trade was estimated per crop by considering the 

difference between the WF of crop production and the WF of crop consumption (in the form 

of food, feed, seed or waste) within China.  

5.2.3 Data 

The GIS polygon data for China were obtained from NASMG (2010). Climate data for 

baseline year 2005 on monthly precipitation (PR), reference evapotranspiration (ET0), 

maximum temperature (Tmax) and minimum temperature (Tmin) at a resolution of 30 by 30 

arc min were taken from Harris et al. (2014). The downscaled GCM outputs at 5 by 5 arc 

min grid level for China on monthly PR, Tmax and Tmin were obtained from Ramirez-Villegas 
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and Jarvis (2010). Since this dataset does not included data on ET0, we calculated monthly 

ET0 with inputs on temperature through the Penman-Monteith method introduced in Allen et 

al. (1998) for the baseline year 2005 and each climate scenario. Then the monthly ET0 under 

each climate scenario was corrected by adding the absolute changes in the calculated ET0 

from 2005 to the values of 2005 in CRU-TS database. The projected CO2 concentrations (in 

ppm) under the two RCPs were obtained from IIASA (2009). Data on irrigated and rain-fed 

areas for each crop at 5 by 5 arc min resolution were obtained from the MIRCA2000 dataset 

(Portmann et al., 2010). For crops not available in this database, we used the 5 by 5 arc min 

crop area map by Monfreda et al. (2008). Crop yield statistics at province level for the 

baseline year were taken from NBSC (2013). For crops not reported in NBSC (2013), we 

used national average values from FAOSTAT (FAO, 2014b). Soil texture data were 

obtained from the ISRIC Soil and Terrain database for China(Dijkshoorn et al., 2008). Data 

on total soil water capacity (in % vol) at a spatial resolution of 5 by 5 arc min were obtained 

from the ISRIC-WISE version1.2 dataset (Batjes, 2012). 

5.3  Results 

5.3.1 Water footprint of crop production  

For most of the crops studied, consumptive WFs per tonne of crop were projected to 

decrease across all scenarios. Taking cereal crops (wheat, rice, maize, sorghum, millet and 

barley) as an example, compared to the baseline year 2005, the consumptive WF per tonne 

of cereal crops reduced by 41%, 35%, 36% and 24% till 2050 under S1, S2, S3 and S4, 

respectively, averaged across the four GCMs. From Figure 5.2 we can see that the 

reductions in the WFs of cereal crops were mainly driven by significant increases in crop 

yields, which have larger impact than the relatively small changes in ET under each scenario. 

The effects of climate change on WF of crops can be observed by comparing scenarios S2 

and S3 under the same SSP and different RCPs. Positive effects on crop yields by increased 

CO2 fertilization have been widely reported (Yao et al., 2007; Tao and Zhang, 2011; Wada 

et al., 2013; Zhao et al., 2014), which is also shown in the current result. With relatively 

small differences in ET0 and precipitation for RCP 2.6 and RCP8.5 (see Table 5.3), scenario 

S3 for RCP8.5 with significant higher CO2 concentration had higher cereal yields than 
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scenario S2 for RCP 2.6 (Figure 5.2). The effect of the application of better technology on 

the WF can be observed by comparing S1 versus S2 (both RCP2.6) and S3 versus S4 (both 

RCP8.5). The scenarios with a higher level of technology development (S1 and S3) have a 

higher yield increase and a lower WF per tonne of crop. The increase in irrigated cereal 

yields is around 20% higher than the increase in rain-fed cereal yields under each scenario, 

which reflects the limits on yield increases by water stress on rain-fed fields. The reduction 

of the blue WF per tonne of cereal crop is higher than for the green WF under each scenario. 

This is because of the decrease in irrigation requirements and thus in blue ET as a result of 

projected increases in precipitation across the GCM scenarios for both RCP2.6 and RCP 8.5. 

The relative changes in the WF per tonne for the selected crops under the four scenarios are 

listed in Appendix 5C. 

 

 

Figure 5.2 Relative changes (RC) in water footprint (WF) per tonne of a cereal crop, cereal 

yield and average ET at cereal croplands in China across scenarios as compared to the 

baseline year 2005. 

 

Figure 5.3 shows maps of multi-GCM averaged projected changes in green, blue and total 

consumptive WF per tonne of cereal crop over the period 2005-2050 under RCP8.5. Under 



112 
 

this RCP, the national average green, blue and total consumptive WFs of cereal crops are 

projected to decrease by 7%, 19% and 10%, respectively. Reductions in both green and blue 

WFs of cereal crops larger than 40% were mostly located in Northwest China, which 

includes the upper and middle reaches of the severely water stressed Yellow River Basin, 

due to the projected increases in annual precipitation by more than 60% across GCM 

scenarios (see Appendix 5A). The projected wetter climate in the Northwest helps to reduce 

the water stress on rain-fed fields and the resulted yield loss. In most areas in the Northeast, 

the green and blue WF per tonne of crops was projected to increase by more than 40% as a 

result of the projected increase in ET0 and decrease in precipitation in the Northeast across 

the GCM scenarios (Appendix 5A, 5B).  
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Figure 5.3 Changes in green, blue and overall consumptive water footprint (WF) per tonne of 

cereal crop in China over the period 2005-2050 under RCP8.5. 

In Figure 5.4 we plotted the relative changes in WF per tonne of the crops studied against 

the corresponding relative changes in crop yield under each scenario. A reference line 

indicates the relative changes in WFs when only yields change (thus without the effect of 

changing ET on WFs). The vertical deviation of the dots from the line shows the impact of 

changing ET on WFs. The dots below the line, which is the majority, show the positive 

impact of reduced ET on reducing the WF per unit mass of crops.  

 

Figure 5.4 Relationship between relative changes in crop yields and relative changes in 

corresponding water footprint per tonne of crop. One dot refers to the projection for one crop 

under one GCM for one scenario for one year.  
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Over the period 2005-2050, the total national consumptive WF (in m
3 
y

-1
) of crop production 

increases by 18% under RCP2.6 (S1 and S2), and by 0.8% under RCP8.5 (S3 and S4), as a 

result of the combined effect of climate change and projected changes in harvested crop area. 

The impact of projected changes in harvested crop area under each RCP (19% increase from 

2005 to 2050 under RCP2.6 and 4% decrease under RCP8.5) on the total WF was 

significant, because average ET per hectare over croplands increases by only 3.1% from 

2005 to 2050 for RCP2.6 and by 5.6% for RCP8.5. The total green WF of crop production 

increases under both RCPs (by 21% from 2005 to 2050 under RCP2.6 and by 4% under 

RCP8.5). The total blue WF increases under RCP2.6 (by 4.3% to 2050) and decreases under 

RCP8.5 (by 10% to 2050). 

5.3.2 Water footprint of food consumption  

The water footprint of food consumption per capita in China decreases across all scenarios 

as compared to the baseline year (927 m
3 
cap

-1 
y

-1
), driven by the decreased WF per tonne of 

most crops. The largest decrease in the WF of food consumption per capita (by 44% to 2050) 

is observed under scenario S1 (Figure 5.5). This large decrease is due to the less-meat diet 

combined with the largest decrease in consumptive WF per unit of crops and animal 

products. S4 shows the most modest decrease in the WF of food consumption per capita (20% 

to 2050), which is due to diet type (current-trend diet) and a relatively low reduction level in 

the WFs per unit of crop and animal product compared to the other scenarios. In “current 

trend” diet scenarios (S2-4), animal product consumption was the largest contributor 

(~41-46%) to WF of food consumption followed by cereal consumption (~31-32%) and oil 

crop consumption (~14-18%). In the “less meat” scenario (S1), the WF of animal product 

consumption decreased significantly (by 65% from 2005 to 2050) and became the second 

largest contributor, after cereal consumption, to total WF of Chinese food consumption. 

This reduction was driven by decreases in both animal product consumption (by 37% to 

2050) and WF per unit calorie of animal products (by 43% to 2050).  
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Figure 5.5 Water footprint of food consumption per capita under the four scenarios of China. 

The total national consumptive WF of food consumption is projected to decrease across all 

scenarios, compared to the baseline level of 2005 (1212 billion m
3 

y
-1

) (Figure 5.6). Even 

under an increased population by 2030, we observe a decrease in the total WF of 

consumption. The main reason for this decrease is the decrease in WF per unit of consumed 

crop and animal products, and the fact that the population increase to 2030 remains modest. 

The more significant decrease by 2050 is a combination of the projected declining 

population and the further decrease in WFs per unit of crops and animal products. In S1, 

with the smallest population size and the largest decrease in WF per capita, the total WF of 

food consumption drops most, decreasing on average by 24% and 47% by 2030 and 2050, 

respectively. With the current-trend diet, the smaller decrease in the WF of food 

consumption in S4 compared to S2 and S3 results from the relatively large size of the 

population and the relatively high WFs per unit of crops and animal products.  

The reductions in blue WFs are higher than those in green WFs across all scenarios, in line 

with the higher reductions in the blue WFs per unit of production, which result from climate 

change and yield improvements through technology. The reduction in the green WF of 

food consumption in S1 is higher than in the other scenarios, as a result of larger 

share of roots and sugar crops in the diet and the low fraction of blue WF in the total 

consumptive WF per unit for roots and sugar crops (~2-3% for root crops and ~ 0-8% 

for sugar crops).  
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Figure 5.6 Changes in China’s green, blue and total consumptive water footprint of food 

consumption across scenarios, as compared to the baseline year 2005. The green, blue and 

overall consumptive water footprints in 2005 are 1030, 183, and 1212 billion m
3 

y
-1

, 

respectively. 

 

5.3.3 National virtual water trade related to crop products  

While in the baseline year 2005 China was a net virtual water importer (with respect to trade 

in the crops considered in this study), the country will have become net virtual water 

exporter by 2050, in all scenarios. In scenarios S1-S3 this is already the case in 2030. The 

potential reversal of China’s role in the global VW trade network was also reported by Ercin 

and Hoekstra (2014), but contradicts the projected increase in net VW import of major 

agricultural products by Dalin et al. (2015). However, the result of Dalin et al. (2015) was 

based on a totally different scenario, with decreasing irrigation area and reduced exports of 

crops. The current result shows an enhanced self-sufficiency in food supply and a potential 

contribution to the global VW trade network as an exporter. Table 5.5 presents the 

multi-GCM averaged net VW import related to crop trade across scenarios. The VW export 

of China under S1 is larger than in the other scenarios, with the net VW export as high as 38% 

of the total consumptive WF of crop production. This is the result of the relatively high 

increase in crop production, by the relatively high crop yield and expansion of harvested 
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crop area, and smaller crop consumption due to the projected population decrease and 

less-meat diet. In S4, China is still a net VW importer by 2030, due to the VW import 

related to the large soybean import, which is larger than the total VW export through all 

exported crops.  

 

Table 5.5 Net virtual water import of China related to trade in considered crops, for the 

baseline year 2005 and for 2030 and 2050 in the four scenarios. 

Net virtual water 
import (10

9
 m

3 
y

-1
) 

2005 
2030 

 
2050 

S1 S2 S3 S4 
 

S1 S2 S3 S4 

Green water 82 -133 -70 -3 65 
 

-267 -192 -139 -40 

Blue water 14 -39 -26 -9 9 
 

-71 -59 -48 -23 

Total 97 -172 -96 -12 73   -338 -250 -187 -62 

 

Figure 5.7 shows the multi-GCM averaged net VW import of China related to different 

crops under the four scenarios. China’s shift from net VW importer to net VW exporter 

occurs most in particular through the projected export of rice and wheat. In the baseline year, 

export of maize contributes most to China’s virtual water export, responsible for 86% of the 

crop-related VW exports of China. In the future, rice export is expected to become the 

biggest contributor to China’s virtual water export, accounting for 38% of total VW export 

in 2050 in S1, 42% in S2, 33% in S3, and 32% in S4. In S1, the net VW export related to 

rice export even becomes 53% of the total WF of rice production in China by 2050. China 

will remain a big VW importer related to soybean in all scenarios. According to Konar et al. 

(2013), China could become world’s largest VW importer through soybean trade in the 

future. In the baseline year, 61% of Chinese soybean consumption depends on import. By 

2050, the projected dependency on soybean imports is 24%, 37%, 45% and 55% in S1, S2, 

S3 and S4, respectively.   

The fraction of the external WF in the total WF of crop consumption decreases in all 

scenarios, most in S1 and least in S4 (Table 5.6). 



118 
 

 

Figure 5.7 Net virtual water import of China related to its trade in different crops, for the 

baseline year 2005 and for 2030 and 2050 in the four scenarios.  

 
Table 5.6 Fraction of the external water footprint (WF) in the total water footprint of 

Chinese crop consumption, in the baseline year and in 2030 and 2050 under the four 

scenarios. 

Fraction of external WF in 
total WF of crop 
consumption 

2005 
2030 

 
2050 

S1 S2 S3 S4 
 

S1 S2 S3 S4 

Green WF 17% 10% 12% 15% 17% 
 

5% 8% 10% 14% 

Blue WF 11% 6% 7% 8% 11% 
 

1% 2% 1% 6% 

Consumptive WF 15% 9% 11% 13% 16% 
 

5% 7% 9% 13% 

 

 

5.3.4 Discussion  

In Table 5.7 we compare the current results with the results from earlier studies where 

possible. The relative changes in WF per tonne of wheat and maize in China in the current 

study are in the same direction but much larger than the global average values as suggested 

by (Fader et al., 2010). The differences in magnitude originate from the different geographic 

scopes of the studies, but also from the fact that different climate scenarios and crop models 

are used. The relative changes in total blue WF at the current irrigated cropland in China 
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from the current study, which considers the impacts of both changing precipitation and ET0, 

are smaller than the estimates for Asia provided by Pfister et al. (2011), who considers the 

impact of changing precipitation only. The changes in WF of crop production in China 

found in the current study are much smaller than the figures presented by Ercin and 

Hoekstra (2014). The decrease in total WF of food consumption in scenario S1 in the 

current study is greater than the decrease in scenarios S3 and S4 in Ercin and Hoekstra 

(2014), which are based on the same less-meat diet scenario, but exclude the effect of 

reduced WFs per unit of food products by climate change that has been included in the 

current study. The relative changes in VW import related to soybean for S3 in the current 

study agree best with the result for the low-yield scenario in Konar et al. (2013).  
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Table 5.7 Comparison between the results from the current study and previous studies.  

  Current study Year Scenarios Other studies Year Scenarios Scope Sources 

Changes in 
consumptive WF 
per tonne of 
consumed crops 
(%) 

-27/-36 2005-50 RCP2.6  -0.43/-0.45 2041-70 SRES A2 Global 
Wheat Fader et 

al.(2010) 

-26/-39 
 

RCP8.5  
   

-44/-50 
 

RCP2.6  -0.35/-0.44 
  Global Maize 

-7/-23   RCP8.5        

Changes in total 
blue WF at 
current irrigated 
area (%) 

-8   RCP2.6 
-11 2000-50 

Precipitation 
increase in 
SRES A1B 

Asia 

Pfister et al. 
(2011) 

-2   RCP8.5   

Changes in total 
WF of production 
(%) 

17/17/0.8/0.8   S1/S2/S3/S4 89/127/-22/-22 
2000-50 
S1/S2/S3/S
4 

Global 
socio-econom
ic scenarios 

China 
Ercin and 
Hoekstra (2014) 

Changes in total 
WF of 
consumption (%) 

-47/-30/-33/-20     79/117/-29/-25     China 
Ercin and 
Hoekstra (2014) 

Net virtual water 
import (10

9
m

3
/y) 

60 (-19%)/71 
(-3%)/81(11%)/ 
90(21%) 

2030 S1/S2/S3/S4 
25 (-11%)/ 32 
(13%) 

2030 (low 
yield/ high 
yield) 

SRES A2 Soybean 
Konar et al. 
(2013) 

-338/-250/-187/-6
2 

2050 S1/S2/S3/S4 
-171/-152/        
-101/-63 

2050 
S1/S2/S3/S
4 

  
Agricultural 
products 

Ercin and 
Hoekstra (2014) 
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The current study has a number of limitations with regard to assumptions in modelling the 

WF of crops. First, we assumed a constant cropping calendar (planting date and length of 

cropping period) for each crop considered, which neglects the potential impact of 

temperature changes on the crop growing period as reported in previous studies (Yao et al., 

2007; Hatfield et al., 2011; Tao and Zhang, 2011). Second, we assumed constant initial soil 

water content at each grid among different scenarios. Third, we assumed a constant irrigated 

ratio for each grid cell because of lack of quantitative information in the harmonized land 

use projections that we used (Hurtt et al., 2011), which may cause over- or underestimation 

of the blue WF of crop production in China under different scenarios. Finally, we did not 

include the impacts of potential changes in fertilizer or pesticide inputs on crop production, 

neither did we consider water pollution as indicated by the grey WF. By focusing on the 

impact of water stress on crop growth in modelling, ignoring the potential impact of 

temperature stress (e.g. cold or heat stress) and biotic stress from weeds, insects and disease, 

we may overestimate crop production (Hatfield et al., 2011; Mueller et al., 2012). 

In addition, there are inherent uncertainties in scenario studies. All scenarios are based on 

assumptions regarding climate change and socio-economic developments like population 

growth, changes in diets, technological improvements and land use changes. Different 

GCMs result in different climate projections for a given emission scenario, which can be 

addressed by using the projections from multiple GCMs (Semenov and Stratonovitch, 2010), 

as we did in the current study, although we considered four GCMs only. Finally, the crop 

model used, the Aquacrop model in our study, and parameter values chosen, will inevitably 

result in different yield predictions when compared to studies based other models and 

parameter sets (Asseng et al., 2013).  

5.4  Conclusion 

The study provides a comprehensive analysis of the consumptive WF and VW trade of 

China by 2030 and 2050, focusing on the agricultural sector, developing four alternative 

scenarios forced by different levels of population growth and by changes in production, 

consumption and climate. The four scenarios differ in assumptions and outcomes, but the 

projected futures share a few commonalities:  
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(i) On average, the WF of producing a tonne of crop decreases due to the combined 

effect of climate change and technology improvements on yield increase. Wetter 

climate projections in Northwest China potentially reduce the local blue WF of 

crop production that can help to reduce the high blue water stress from the 

agriculture sector;  

(ii) The WF of food consumption per capita decreases, up to 44% by 2050 if diets 

change to less meat (scenario S1). The total national WF of food consumption 

also decreases across all scenarios;  

(iii) China will shift from net VW importer through crop trade to net VW exporter. 

However, China will remain depending on soybean imports. 

The results suggest that the target of the Chinese government to achieve higher 

self-sufficiency in food supply while simultaneously reducing the WF of crop production 

(SCPRC, 2010; MOA et al., 2015) is feasible. However, the premise of realizing the 

presented scenarios is smart water and cropland management, effective and coherent 

policies on water, agriculture and infrastructure, and, in scenario S1, a successful shift to a 

diet containing less meat.  
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Appendix 5A Relative changes in annual precipitation in China from 2005 to 2050 across 

GCMs for RCP2.6 (left) and RCP8.5 (right).  
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Appendix 5B Relative changes in annual reference evapotranspiration in China from 2005 

to 2050 across GCMs for RCP2.6 (left) and RCP8.5 (right).  
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Appendix 5C Relative changes in the green, blue and total consumptive water footprint (m
3 

t
-1

) of the 22 considered crops in China across scenarios, compared to the baseline year 

2005.  

Crop 
Relative 
changes in WF 
of a crop 

S1 S2 S3 S4 

2030 2050 2030 2050 2030 2050 2030 2050 

Wheat Green -20 -31 -12 -21 -18 -35 -9 -23 

 
Blue -31 -43 -24 -34 -23 -44 -15 -33 

 
Total -25 -36 -17 -27 -20 -38 -11 -27 

Rice Green -33 -44 -26 -36 -28 -42 -20 -31 

 
Blue -38 -48 -32 -40 -30 -44 -22 -33 

 
Total -34 -45 -27 -37 -28 -42 -20 -31 

Maize Green -37 -49 -30 -42 -4 -17 6 -2 

 
Blue -45 -57 -40 -51 -35 -46 -28 -36 

 
Total -38 -51 -32 -43 -10 -22 0 -8 

Sorghum Green -34 -44 -28 -36 -22 -32 -14 -19 

 
Blue -18 -33 -10 -24 -12 -25 -2 -11 

 
Total -33 -43 -27 -35 -22 -32 -13 -19 

Millet Green -43 -52 -37 -46 -41 -50 -34 -41 

 
Blue -37 -50 -30 -43 -37 -50 -30 -41 

 
Total -42 -52 -37 -45 -41 -50 -34 -41 

Barley Green -9 -25 0 -15 -21 -39 -13 -27 

 
Blue -34 -46 -28 -39 -35 -52 -28 -43 

 
Total -11 -27 -2 -16 -22 -40 -14 -28 

Soybean Green -33 -45 -26 -37 -28 -42 -21 -32 

 
Blue -47 -60 -41 -54 -35 -50 -28 -40 

 
Total -33 -46 -27 -38 -29 -43 -21 -32 

Sweet potato Green 7 -9 17 3 -26 -41 -18 -30 

 
Blue -31 -42 -24 -34 -34 -52 -26 -43 

 
Total 5 -11 15 2 -27 -42 -19 -31 

Potato Green 29 -13 42 -1 -19 -36 -10 -24 

 
Blue -27 -44 -20 -35 -27 -46 -19 -35 

 
Total 27 -14 40 -2 -19 -36 -11 -24 

Cotton Green -26 -38 -18 -29 -28 -43 -20 -32 

 
Blue -20 -36 -12 -27 -28 -46 -20 -36 

 
Total -25 -37 -17 -28 -28 -43 -20 -33 

Sugarcane Green 47 -6 62 7 -15 -27 -6 -13 

 
Blue 12 -9 23 4 -45 -57 -39 -49 

 
Total 47 -6 61 7 -15 -27 -6 -14 

Sugar beet Green -66 -72 -62 -68 -67 -73 -63 -68 

 
Blue 13 -10 24 3 -69 -75 -66 -70 

 
Total -66 -72 -62 -68 -67 -73 -63 -68 

Groundnut Green -16 -33 -8 -23 -25 -41 -17 -30 

 
Blue -25 -41 -17 -32 -26 -46 -18 -36 

 
Total -17 -34 -9 -24 -25 -41 -17 -31 

Sunflower Green -46 -55 -41 -49 -39 -52 -32 -43 

 
Blue -38 -51 -32 -43 -38 -53 -31 -44 

 
Total -46 -55 -40 -49 -39 -52 -32 -43 

Rape seed Green 3 -9 13 4 -13 -31 -4 -19 

 
Blue 

 
 

Total 3 -9 13 4 -13 -31 -4 -19 

Tomato Green 40 49 54 71 -3 -19 8 -4 

 
Blue -21 -26 -14 -16 -42 -62 -36 -55 
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Total 39 48 53 69 -4 -20 7 -5 

Cabbage Green -20 -30 -13 -20 -26 -41 -18 -29 

 
Blue -38 -75 -32 -71 -32 -44 -25 -33 

 
Total -21 -32 -14 -23 -26 -41 -18 -30 

Spinach Green -36 -43 -29 -35 -39 -41 -33 -30 

 
Blue -47 -56 -42 -50 -43 -58 -37 -51 

 
Total -38 -46 -32 -38 -40 -44 -33 -34 

Grape Green -31 -42 -24 -33 -29 -43 -21 -33 

 
Blue -29 -42 -22 -33 -24 -41 -16 -30 

 
Total -30 -42 -23 -33 -28 -43 -20 -32 

Apple Green -31 -41 -24 -32 -33 -48 -26 -38 

 
Blue -46 -55 -40 -49 -43 -59 -37 -52 

 
Total -32 -42 -25 -34 -34 -49 -27 -39 

Tea Green -27 -42 -20 -34 -24 -34 -16 -21 

 
Blue -51 -65 -46 -60 -52 -57 -46 -49 

 
Total -27 -42 -20 -34 -25 -34 -17 -22 

Tobacco Green -34 -45 -27 -37 -28 -42 -20 -31 

 
Blue -39 -53 -32 -47 -31 -48 -23 -38 

 
Total -34 -45 -27 -37 -28 -42 -20 -31 
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6. Benchmark Levels for the Consumptive Water Footprint of 
Crop Production for Different Environmental Conditions: a 
Case Study for Winter Wheat in China5 

Abstract 

Meeting growing food demands while simultaneously shrinking the water footprint (WF) of 

agricultural production is one of the greatest societal challenges. Benchmarks for the WF of 

crop production can serve as a reference and be helpful in setting WF reduction targets. The 

consumptive WF of crops, the consumption of rainwater stored in the soil (green WF) and 

the consumption of irrigation water (blue WF) over the crop growing period, varies spatially 

and temporally depending on environmental factors like climate and soil. The study explores 

which environmental factors should be distinguished when determining benchmark levels 

for the consumptive WF of crops. Hereto we determine benchmark levels for the 

consumptive WF of winter wheat production in China for all separate years in the period 

1961-2008, for rain-fed versus irrigated croplands, for four different soil classes and for two 

different climate zones. We simulate consumptive WFs of winter wheat production with the 

crop water productivity model AquaCrop at a 5 by 5 arc min resolution, accounting for 

water stress only. The results show that (i) benchmark levels determined for individual years 

for the country as a whole remain within a range of ±20% around long-term mean levels 

over 1961-2008; (ii) the WF benchmarks for irrigated winter wheat are 8-10% larger than 

those for rain-fed winter wheat; (iii) WF benchmarks for wet years are 1-3% smaller than 

for dry years, (iv) WF benchmarks for warm years are 7-8% smaller than for cold years, (v) 

WF benchmarks differ by about 10-12% across different soil texture classes; and (vi) WF 

benchmarks for the humid zone are 26-31% smaller than for the arid zone, which has 

relatively higher ET0 in general and lower yields in rain-fed fields. We conclude that when 

determining benchmark levels for the consumptive WF of a crop, it is useful to primarily 

distinguish between different climate zones. If actual consumptive WFs of winter wheat 

                                                             
5
 The Chapter has been submitted to Hydrology and Earth System Sciences.  
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throughout China were reduced to the benchmark levels set by the best 25% of Chinese 

winter wheat production (1224 m
3 
t
-1

 for arid areas and 841 m
3 
t
-1

 for humid areas), the water 

saving in an average year would be 53% of the current water consumption at winter wheat 

fields in China. The majority of the yield increase and associated improvement in water 

productivity can be achieved in southern China. 
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6.1  Introduction  

Half of the large river basins in the world face severe blue water scarcity for at least one 

month a year (Hoekstra et al., 2012). Agriculture is the largest consumer of water in the 

world and therefore responsible for a large part of the water scarcity in the world. Still, 

global food demand continues to increase, due to growing populations and changing diets. 

Meeting growing food demands and simultaneously reducing the water footprint (WF) of 

agricultural production is therefore one of the greatest societal challenges of our time (Foley 

et al., 2011; Hoekstra and Wiedmann, 2014). Increasing water productivity (t m
-3

) in 

croplands, i.e. reducing the WF of crops (m
3
 t

-1
), is recognized as an important way of 

producing more with the same water (or producing the same with less water). In order to 

know what is a reasonable production level given a certain amount of water consumption (or 

what is a reasonable volume of water consumption given a certain production level), we 

need reference values that indicate reasonable WF levels. (Hoekstra, 2013; 2014) has 

proposed to develop WF benchmarks for this purpose, which can be used for setting WF 

reduction targets. Such benchmarks could be global, but would preferably be 

context-specific, given the fact that the WF of growing a crop varies as a function of 

environmental factors such as climate and soil (Siebert and Doll, 2010; Mekonnen and 

Hoekstra, 2011; Tuninetti et al., 2015). 

The WF of a crop is determined by both environmental conditions (e.g. climate, soil texture, 

CO2 concentration in the air, groundwater level) and managerial factors (e.g. application of 

fertilizers and pesticides, irrigation technology and strategy, mulching practice) (Zwart et al., 

2010; Mekonnen and Hoekstra, 2011; Brauman et al., 2013). Benchmarks for the WF of 

growing a crop can, for example, be set by looking at what WF level is not exceeded by the 

best 20-25% of the total production in an area. Alternatively, benchmarks can be determined 

by estimating the WF associated with best-available technology and management practice 

(Hoekstra, 2013; 2014). Mekonnen and Hoekstra (2014) followed the first approach, by 

establishing global benchmarks for both the consumptive (green plus blue) WF and the 

degradative (grey) WF for a large number of crops, based on estimated WF values for 

1996-2005 at a spatial resolution of 5 by 5 arc minute. Chukalla et al. (2015) followed the 

second approach and explored reduction potentials of consumptive WFs for a few crops by 



132 
 

applying different alternative irrigation techniques and strategies and different alternative 

mulching practices. They found that the highest reduction (~29%) in the consumptive WF of 

a crop could be achieved when applying drip/subsurface drip irrigation in combination with 

deficit irrigation and synthetic mulching.  

Research in developing benchmark levels for the consumptive WF of crop production is still 

in its infancy. An important question that has been insufficiently addressed is which 

environmental factors should play a role when developing WF benchmarks. It is nice to 

have one global benchmark for the consumptive WF per crop, as a global reference, like the 

ones developed by Mekonnen and Hoekstra (2014), but it remains unclear whether it is 

reasonable to expect the same water productivity under different environmental conditions. 

In their global analysis, Mekonnen and Hoekstra (2014) found that a crop in a temperate 

climate generally has a smaller WF than the same crop in a tropical climate, but this can still 

be due to other factors (e.g. better management practices in temperate climates), so that this 

is not a sufficient finding to diversify benchmark levels based on the distinction between 

temperate and tropical. Besides, even though Mekonnen and Hoekstra (2014) found a 

difference between different climates, for each crop considered it was found that the 10% 

best global production (e.g. with smallest WFs) were always at least partly in the tropics as 

well. In other words, a WF benchmark developed in the temperate part of the world still 

offers a reference value that can be achieved in the tropics as well. Next to climate also soil 

affects evapotranspiration and yield and thus the WF of a crop. (Tolk and Howell, 2012), for 

example, analyse the variation of consumptive WFs of sunflower in relation to different 

types of soils. There has not been yet, though, a systematic study looking at how 

environmental factors influence the consumptive WFs of crops and to which extent it makes 

sense to diversify WF benchmark levels based on specific environmental factors. 

The current study aims to contribute to this discussion through an explorative study for 

winter wheat in China. We explore which environmental factors should be distinguished 

when determining benchmark levels for the consumptive WF of crops. We subsequently 

determine benchmark levels for the consumptive WF of winter wheat production in China 

for all separate years in the period 1961-2008, for rain-fed versus irrigated croplands, for 



133 
 

 

wet versus dry years, for warm versus cold years, for four different soil classes and for two 

different climate zones. Winter wheat in China accounts for 95% of total wheat production 

in China, which is the world biggest wheat producer (FAO, 2014b). Winter wheat covers 96% 

of China’s harvested wheat area and occurs across China’s different climate zones (NBSC, 

2013). In order to avoid interference from managerial factors that cause differences in 

evapotranspiration and yield, we simulate WFs by means of the water productivity model 

AquaCrop, at a resolution of 5 by 5 arc minute, considering only water stress and not taking 

into account other stresses such as from soil fertility, salinity, frost, or pest and diseases.  

 

6.2  Method and data 

The consumptive WF of growing a crop (m
3 

t
-1

) equals the total actual evapotranspiration 

(ET, m
3 

ha
-1

) over the cropping period divided by the crop yield (t ha
-1

). The soil water 

balance and crop growth were simulated at daily basis, at 5 by 5 arc minute resolution, with 

FAO’s crop water productivity model AquaCrop (Hsiao et al., 2009; Raes et al., 2009; 

Steduto et al., 2009), run for the whole period 1961-2008. Compared to other crop growth 

models, AquaCrop has a significantly smaller number of parameters and better balances 

between simplicity, accuracy and robustness (Steduto et al., 2007). The model performance 

regarding crop water use and yield simulation has been widely tested for a number of crops 

under diverse environments and types of water management (Farahani et al., 2009; 

Garcia-Vila et al., 2009; Andarzian et al., 2011; Stricevic et al., 2011; Abedinpour et al., 

2012; Katerji et al., 2013; Yuan et al., 2013; Jin et al., 2014). We used the same input data 

sources and crop parameters as reported in Chapter 4. In order to avoid the effects of 

non-environmental factors (e.g. technology, fertilization) on crop growth, only water stress 

is considered, which is determined by the water availability in the root zone. For irrigated 

fields, we assume that the applied irrigation volumes are equal to the net irrigation 

requirement. We simulated winter wheat production per grid cell over the years based on the 

harvested areas of around the year 2000 (Portmann et al., 2010); see Figure 6.1) in order to 

avoid in the simulations the effects of changes in where how much wheat is grown. 
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Figure 6.1 Harvested winter wheat areas in China in the year 2000 and fractions of the 

harvested areas irrigated. Data source: Portmann et al. (2010).  

Following Mekonnen and Hoekstra (2014), benchmark levels for the consumptive WF of 

crop production were determined by ranking the grid-level WF values from the smallest to 

the largest against the corresponding cumulative percentage of total crop production.  

In order to analyse differences in consumptive WFs in relatively dry versus relatively wet 

years, we evenly group the forty-eight considered years (1961-2008) into relative dry, 

average and relatively wet years. We ranked the years based on the annual precipitation over 

the cropping area of winter wheat in China (Figure 6.2a) and classified the sixteen years 

with the lowest precipitation into the group of dry years and the sixteen years with the 

highest precipitation into the group of wet years, with the other sixteen years remaining for 

the group of average years. The average annual precipitation levels of the relatively dry, 

average and relatively wet years are 760, 799 and 850 mm y
-1

, respectively.  

We also grouped the years considered into relatively cold, average and relatively warm 

years based on annual mean temperature (Figure 6.2b) and into years with relatively low, 

average and high ET0 (Figure 6.2c). The average annual mean temperatures of the relative 
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cold, average and warm years are 10.7, 11.2 and 11.8 ℃, respectively. The average annual 

ET0 values in the three categories of years are 874, 896 and 927 mm y
-1

. 

 

 

 
Figure 6.2 Annual precipitation (a), mean temperature (b), and ET0 (c) over the cropping 

area of winter wheat in China for the years in the period 1961-2008, ranked from lowest to 
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highest values. 

 

For determining WF benchmarks for different soil texture classes, the soil types in the 

USDA (U.S. Department of Agriculture) soil texture triangles were grouped into four soil 

classes (Raes et al., 2011): sandy soils, loamy soils, sandy clayey soils, and silty clayey soils. 

Each soil class has different ranges of field capacity, permanent wilting point and saturated 

water content (Table 6.1). The difference between soil water content and permanent wilting 

point defines the total available soil water content in the root zone. Given certain soil water 

content, a soil with a higher field capacity has less deep percolation. With the same water 

input from precipitation or irrigation and the same  soil water content, soils with a smaller 

saturated soil water content will generate more surface runoff (Raes et al., 2011). Figure 6.3 

shows the spatial distribution of the four soil classes across mainland China (Dijkshoorn et 

al., 2008).  

 

 

Table 6.1 Soil classes. 

Soil class Soil types 

Soil water content (vol %) 

Field capacity 
Permanent wilting 

point 
Saturatio

n 

Sandy 
Sand, loamy sand, sandy 
loam 

9 - 28 4 - 15 32 - 51 

Loamy  Loam, silt loam, silt 23 - 42 6 - 20 42 - 55 

Sandy clayey 
Sandy clay, sandy clay 
loam, clay loam 

25 - 45 16 - 34 40 - 53 

Silty clayey 
Silty clay loam, silty clay, 
clay 

40 - 58 20 - 42 49 - 58 

Source: Raes et al. (2011). 
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Figure 6.3 Soil classes across mainland China, generated from the ISRIC Soil and Terrain 

database for China. Data source: Dijkshoorn et al. (2008). 

 

For determining WF benchmarks for different climate zones, we classify climate based on 

UNEP’s aridity index (AI) (Middleton and Thomas, 1992; 1997). The AI is an indicator of 

dryness, defined as the ratio of precipitation to reference evapotranspiration, with five levels 

of aridity: hyper-arid (AI< 0.05), arid (0.05 < AI < 0.2), semi-arid (0.2 < AI < 0.5), dry sub 

humid (0.5 < AI < 0.65), and humid (AI > 0.65). To determine the geographic spread of the 

five climate zones in China we used the data on annual precipitation and ET0 averaged over 

the period 1961-2008 at 30 by 30 arc minute resolution from the CRU-TS-3.10.01 database 

(Harris et al., 2014) (Figure 6.4). In the current study, we group the five climate zones into 

two broad zones: the arid-semi-arid (Arid) zone (AI < 0.5) and the humid-semi-humid 

(Humid) zone (AI >0.5). 
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(a)    

(b)  

(c)  
 
Figure 6.4 Zoning of annual precipitation (a), annual reference evapotranspiration (b), and 

aridity (c) in China (1961-2008). Data source: Harris et al. (2014). 
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6.3  Result 

6.3.1  Benchmark levels for the consumptive WF as determined for 
different years and for rain-fed and irrigated croplands separately 

We calculated the benchmark levels at different production percentiles for the consumptive 

WF of winter wheat (m
3 

t
-1

) for the country as a whole, year by year, for the period 

1961-2008. The results are summarized in Figure 6.5. The benchmarks, determined per year 

and per production percentile, generally vary within ±20% of the long-term mean value over 

the period 1961-2008. We find that the best 10% of winter wheat production in China (with 

smallest WFs) has a maximum long-term average consumptive WF of 777 m
3 
t
-1

, which is 

larger than the maximum consumptive WF of the best 10% of wheat production globally 

(592 m
3 

t
-1

) that was reported by Mekonnen and Hoekstra (2014). We note here that the 

figures are not fully comparable, because Mekonnen and Hoekstra (2014) consider total 

wheat (both spring and winter wheat), use another model and consider another period. We 

find that the best 20% of winter wheat production in China has a maximum long-term 

average consumptive WF of 825 m
3 

t
-1

, which is smaller than the reported maximum 

consumptive WF of the best 20% of wheat production globally (992 m
3 
t
-1

). Finally, we find 

that the best 25% of winter wheat production in China has a maximum long-term average 

consumptive WF of 849 m
3 
t
-1

, which is again smaller than the maximum consumptive WF 

of the best 25% of wheat production globally (1069 m
3 
t
-1

). 

The national average consumptive WF of rain-fed winter wheat (1120 m
3 
t
-1

) is larger than 

the national average consumptive WF of irrigated winter wheat (1075 m
3 
t
-1

). However, the 

benchmark levels determined by the best 10%, 20% and 25% of production for rain-fed 

winter wheat are lower than for irrigated winter wheat. The reason is that the yields in 

rain-fed production are generally higher (9 t ha
-1

 on average) than the yields in irrigated 

production (5 t ha
-1

 on average) at benchmark levels. The highest rain-fed yields occur in the 

southern wet area with sufficient precipitation over the cropping period, so that little water 

stress results in high rain-fed yields. The WF benchmarks for irrigated winter wheat are 8% 

(for the 10
th
 production percentile) to 10% (for the 25

th
 production percentile) higher than 

for rain-fed winter wheat. 
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Figure 6.5 Benchmark levels for the consumptive WF of winter wheat in China at different 

production percentiles, considering all separate years in the period 1961-2008. Cross marks 

refer to the mean values; ranges refer to the 5% - 95% of accumulative frequencies.  

6.3.2  Benchmark levels for the consumptive WF for dry versus wet 
years 

In a relatively dry or wet year, when considering winter wheat areas in China as a whole, we 

do not find typically different consumptive WFs in winter wheat production (Table 6.2). The 

WF benchmarks are consistently higher in dry than in wet years (1-3%), but the differences 

between benchmark levels for the consumptive WF for dry versus wet years are small 

compared to the variations within the dry and wet year categories (±11-14%). 

 

Table 6.2 Benchmark levels for the consumptive WF benchmarks (m
3
 t

-1
) of winter wheat for 

relative dry, average and wet years in China.  

    Consumptive WF (m
3 

t
-1

) at different production percentiles* 

Crop   10th 20th 25th Average 

Winter wheat 

Dry years 787±69 837±70 858±71 1103±82 

Average years 763±107 826±72 849±74 1073±97 

Wet years 770±68 813±60 838±50 1048±77 

Irrigated winter wheat 
Dry years 822±118 862±110 876±112 1095±110 

Average years 814±97 856±97 881±98 1078±93 
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Wet years 799±97 850±100 870±96 1052±96 

Rain-fed winter wheat 

Dry years 757±44 802±57 812±56 1121±97 

Average years 736±62 771±70 783±70 1074±133 

Wet years 755±96 784±103 794±104 1164±561 

* Data are mean ± S.D. for the years 1961-2008. 

 

6.3.3  Benchmark levels for the consumptive WF for warm versus cold 
years 

Overall, considering irrigated and rain-fed croplands together, WF benchmarks for relatively 

warm years are 7-8% smaller than for relatively cold years, which is not much when seen in 

the context of fluctuations in the WFs within the three temperature categories (Table 6.3). In 

irrigated areas, WF benchmarks for warm years are 11% smaller, on average, than for cold 

years. In rain-fed areas, WF benchmarks for warm years are smaller than for cold years as 

well, but WF benchmarks in average years are not in between the WF benchmarks found for 

cold and warm years but higher than both. The lower values in cold years relate to lower ET, 

while the lower values in warm years relate to higher yields.  

Table 6.3 National consumptive WF benchmarks (m
3
 t

-1
) of winter wheat for relative cold, warm 

and average years in China.  

 
 Consumptive WF (m

3 
t
-1

) at different production percentiles* 

Crop  10th 20th 25th Average 

Winter wheat 

Cold years 795±101 848±63 870±67 1103±96 

Average years 794±79 840±66 864±58 1087±82 

Warm years 732±42 788±58 811±57 1033±70 

Irrigated winter wheat 

Cold years 862±86 902±87 924±87 1121±86 

Average years 810±107 863±102 878±96 1083±93 

Warm years 763±96 804±93 824±96 1022±98 

Rain-fed winter wheat 

Cold years 760±59 791±68 798±69 1088±144 

Average years 772±95 821±99 831±100 1218±553 

Warm years 716±31 744±40 761±44 1053±63 

* Data are mean ± S.D. for the years 1961-2008. 
 

 

The findings when considering different ET0 classes are similar when looking at the 
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different temperature classes (Table 6.4). Overall, considering irrigated and rain-fed 

croplands together, WF benchmarks for years with high ET0 are on average 5% smaller than 

for years with average ET0 and only 2% smaller than for years with low ET0. Again, 

differences between consumptive WFs for years with relatively low or high ET0 are small 

when seen in the context of fluctuations in the WFs within the three ET0 categories (±3-6%). 

Table 6.4 National consumptive WF benchmarks (m
3
 t

-1
) of winter wheat for relative low-, high- 

and average-ET0 years in China.  

    Consumptive WF (m
3 

t
-1

) at different production percentiles* 

Crop   10th 20th 25th Average 

Winter wheat 

Low-ET0 years 774±99 822±64 841±62 1065±82 

Average years 806±80 846±73 866±76 1095±107 

High-ET0 years 741±51 808±62 839±58 1065±70 

Irrigated winter wheat 

Low-ET0 years 831±111 874±108 892±106 1089±98 

Average years 820±105 868±96 887±96 1073±103 

High-ET0 years 784±93 827±97 847±97 1064±102 

Rain-fed winter wheat 

Low-ET0 years 749±55 774±56 781±54 1038±100 

Average years 784±90 828±98 841±98 1249±550 

High-ET0 years 716±72 755±59 767±58 1072±78 

* Data are mean ± S.D. for the years 1961-2008. 
 

 

6.3.4  Benchmark levels for the consumptive WF for different soil 
classes 

Tables 6.5 shows the consumptive WFs of winter wheat at different production percentiles 

in four soil classes in China. The simulated winter wheat production in sandy clayey soils 

accounts for 60% of national total, followed by the production in sandy soils (24%), silty 

clayey soils (8%) and loamy soils (8%) in average over the studied period. No consistent 

trends can be observed when we compare the benchmarks across the different soil classes. 

Overall, when we take irrigated and rain-fed fields together, the WF benchmarks for sandy 

soils are 10-12% lower than the WF benchmarks for loamy soils. More specifically, we find 

that the WF benchmarks for irrigated winter wheat in sandy soils are about 15% smaller 

than the WF benchmarks for the other three soil classes, due to relatively low ET. Without 

water stress, as is the case in the irrigated croplands, soil evaporation from sandy soils is less 
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than from the other soil types because of the fast percolation of water below the root zone in 

the sandy soils, causing lower ET over the cropping period (Asseng et al., 2001). At rain-fed 

fields with limited water availability, crop yields are mainly affected by the soil water 

holding capacity. Therefore, consumptive WFs in sandy soils are larger than in the other 

three soils, due to the smaller crop yield in case of poorer water holding capacity. The 

observed differences in WFs of winter wheat in different soil classes agree with the 

experimental observations by Tolk and Howell (2012) for the case of irrigated sunflower in 

a semiarid environment as well as with the fieldwork-based simulations by Asseng et al. 

(2001) for irrigated and rain-fed wheat in the Mediterranean climatic region of Western 

Australia.  

Table 6.5 Benchmark levels for the consumptive WF (m
3
 t

-1
) of winter wheat for different soil 

classes in China.  

    Consumptive WF (m
3 

t
-1

) at different production percentiles* 

Crop Soil class 10th 20th 25th Average 

Winter wheat 

Sandy 748±143 814±115 834±116 1017±125 

Loamy 846±53 912±77 928±73 1108±74 

Sandy clayey 788±76 848±61 881±66 1071±48 

Silty clayey 822±48 895±43 912±46 963±22 

Irrigated winter wheat 

Sandy 767±158 782±177 846±128 1000±126 

Loamy 931±91 937±93 996±70 1189±107 

Sandy clayey 879±98 932±98 969±102 1164±100 

Silty clayey 920±68 942±72 958±66 1070±52 

Rain-fed winter wheat 

Sandy 785±58 834±88 850±96 1151±272 

Loamy 757±77 822±73 843±73 1040±160 

Sandy clayey 764±66 799±68 818±70 1096±129 

Silty clayey 769±62 814±60 837±60 931±103 

* Data are mean ± S.D. for the years 1961-2008. 

 

6.3.5  Benchmark levels for the consumptive WF for different climate 
zones 

Consumptive WFs of winter wheat at different production percentiles in arid and humid 

zones in China are shown in Table 6.6. Significant differences between the benchmarks for 

different climate zones can be observed. Overall, considering irrigated and rain-fed 
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croplands together, WF benchmarks for the humid zone are 26% (for the 10th production 

percentile) to 31% (for the 25th production percentile) smaller than for the arid zone. The 

WF benchmarks for winter wheat in China as a whole (when we take the arid and humid 

zones together) are close to the benchmarks for the humid zone, caused by the fact that most 

(96% in average over the study period) of the simulated winter wheat production in China 

occurs in the humid zone. 

In the irrigated areas, WF benchmarks for the humid zone are 26-30% smaller than for the 

arid zone; in the rain-fed areas, they are 29-43% smaller. The relatively large WFs in 

rain-fed fields in the arid zone logically follow from the water stress and resultant low yields. 

For the irrigated fields, the larger WFs in the arid zone are caused by the relatively high ET0 

and ET. The results confirm the findings from previous studies that the WF of crops, 

especially rain-fed crops, is negatively correlated with precipitation and positively 

correlated with ET0 (Zwart et al., 2010; Zhuo et al., 2014).  The differences between the 

WF benchmarks for irrigated and rain-fed winter wheat are 7-9% in the humid zone and 

3-11% in the arid zone.  

Table 6.6 Benchmarks for the consumptive WF (m
3
 t

-1
) of winter wheat for different 

climate zones in China.  

    Consumptive WF (m
3 

t
-1

) at different production percentile* 

Crop 
Climate 
zones 

10th 20th 25th Average 

Winter wheat 

Arid 1042±100 1170±130 1224±125 1757±200 

Humid 776±70 819±66 841±66 1044±83 

Overall 777±72 825±67 849±65 1075±87 

Irrigated winter 
wheat 

Arid 1088±66 1205±73 1245±84 1399±163 

Humid 807±104 853±100 872±99 1055±97 

Overall 812±103 856±100 875±100 1075±99 

Rain-fed winter 
wheat 

Arid 1058±310 1311±406 1399±415 2919±1004 

Humid 749±70 784±78 795±79 1076±338 

Overall 750±70 785±78 796±78 1120±332 

* Data are mean ± S.D. for the years 1961-2008. 
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Figure 6.6 shows, for both the humid and arid part of China, for the various winter wheat 

production areas whether they contribute to the best 10% of national winter wheat 

production in that climate zone (in the sense of having smallest WFs), to the next best 10%, 

to the best 5% after that, or to the worst 75% (with WFs beyond the 25
th
 percentile 

benchmark). Within the arid zone, consumptive WFs below the 25
th
 percentile benchmark 

level were mostly located in Xinjiang province, with relatively high irrigation density (~98% 

of the harvested area). In the humid zone, consumptive WFs below the 25
th
 percentile 

benchmark level were gathered in the southwest, where ET0 is smaller than in other places 

(Figure 6.4b).  

 
Figure 6.6 Simulated consumptive water footprints (WFs) of winter wheat, categorized into 

four classes (the best 10% of production, the next best 10%, the second next best 5% and 

the worst 75% of production), accounting for different benchmark levels for humid versus arid 

part of China, for the year 2005 (climatic average year). 
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6.3.6  Water saving potential by reducing WFs to selected benchmark 

levels 

The WF benchmarks for different climate zones differ much more significantly (26-31%) 

than for different soils (10-12%). WF benchmarks differ even less if we compare irrigated 

versus rain-fed fields (8-10%), warm versus cold years (7-8%), or wet versus dry years 

(1-3%). Therefore, when determining benchmark levels for the consumptive WF of a crop, 

it seems most useful to primarily distinguish between different climate zones, at least in the 

case of winter wheat in China. In this section, we analyse the potential water saving if actual 

consumptive WFs of winter wheat throughout China were reduced to the climate-specific 

benchmark levels set by the best 10% of Chinese winter wheat production (1042 m
3 
t
-1

 for 

arid areas and 776 m
3 
t
-1

 for humid areas), the best 20% of Chinese winter wheat production 

(1170 m
3 
t
-1

 for arid areas and 819 m
3 
t
-1

 for humid areas), or the best 25% of Chinese winter 

wheat production (1224 m
3 
t
-1

 for arid areas and 841 m
3 
t
-1

 for humid areas). 

Taking the estimated consumptive WFs of winter wheat in 2005, an average climatic year, 

from Chapter 4, we find that consumptive WFs in 75% of the planted grids in arid zones and 

in 96% of the planted grids in humid zones are over the 25th percentile benchmarks. This is 

largely due to low actual versus potential yields. Figure 6.7 shows differences between 

actual provincial yields of winter wheat (NBSC, 2013) and the simulated yield potentials 

from the current study (assuming no crops stresses except water stress in rain-fed areas). 

The largest yield gaps occur in the southern provinces in the humid zone. The largest yield 

gap was observed in Fujian province.  

Table 6.7 shows the (green plus blue) water saving that would be achieved if actual 

consumptive WFs of winter wheat everywhere in China were reduced to the 

climate-differentiated WF benchmark levels set by the 10th, 20th and 25th percentiles of 

production, in an average year (2005). We find that if in both the arid and humid zone the 

actual consumptive WFs were reduced to the respective 25
th
 percentile benchmark level, the 

water saving in an average year would be 53% of the current water consumption at winter 

wheat fields in China, which is 201 billion m
3 
y

-1 
in absolute terms. We further find that the 

water saving potential in the arid zone is substantially higher than in the humid zone.  
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Figure 6.7 Differences between actual provincial yields of winter wheat in China in 2005 

(NBSC, 2013) and simulated yields from the current study (assuming no crop stress except 

for water stress in rain-fed areas), expressed as percentage of the simulated yield. 

 

Table 6.7 Water saving if actual consumptive WFs of winter wheat everywhere in China were 

reduced to the climate-differentiated WF benchmark levels set by the 10
th
, 20

th
 and 25

th
 

percentiles of production, in an average year (2005). 

Climate zones 

Water saving when actual consumptive WF of winter wheat everywhere in 
China were to be reduced to a certain percentile benchmark level 

10th 20th 25th 

Arid 83% 81% 80% 

Humid 49% 46% 45% 

Overall 56% 54% 53% 

* Data are mean ± S.D. for the years 1961-2008. 
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6.3.7  Discussion 

The consumptive WF of a crop in m
3
 t

-1
 most strongly depends on the crop yield in t ha

-1
 

and much less on the evapotranspiration from the crop over the growing period in m
3
 ha

-1
 

(Mekonnen and Hoekstra, 2011; Tuninetti et al., 2015). For evaluating our simulations of 

crop growth, we compared the current simulated averaged yields of winter wheat of Chinese 

provinces for 1961-1990 to the corresponding agro-climatic attainable yields at different 

agricultural input levels in the GAEZ database (FAO/IIASA, 2011) (Figure 6.8). The GAEZ 

agro-climatic attainable yields account for different levels of yield constraints from four 

factors in addition to water stress: (ii) pest, diseases and weed damages on plant growth, (ii) 

direct and indirect climatic damages on quality of produce, (iii) efficiency of farming 

operations, and (iv) frost hazards. Current simulated yields of irrigated winter wheat are 

closest to the agro-climatically attainable yields with intermediate input levels and the yields 

of rain-fed winter wheat are closest to the agro-climatically attainable yields with high input 

levels. The simulated national average yield in the current study (6.5 t ha
-1

) is 23% higher 

than the attainable wheat yield for China in the year 2000 (5.3 t ha
-1

) estimated by Mueller 

et al. (2012).  

Further research could explore whether crop varieties used should play a role when 

developing WF benchmarks, given the fact that some crop varieties may inherently be more 

productive than others. On the other hand, one could also consider that choosing a 

productive crop variety is part of the managerial choices. Since crop variety is not a given 

environmental condition but a choice, one could argue that accepting a less strict WF 

reference level for a less productive crop variety cannot be justified.  

An important remaining research question is also how combinations of specific techniques 

and practices can actually lead to the WF reductions that will be necessary in different 

locations if Chinese government would adopt certain WF benchmarks as targets to achieve 

greater water productivity. Suppose, for example, that two WF benchmarks for winter wheat 

were adopted in China: 1224 m
3 
t
-1

 for arid areas and 841 m
3 
t
-1

 for humid areas. Although 

the simulations suggest that these levels are feasible throughout the arid and humid zone, 

respectively, whatever is the soil, whether fields are rain-fed or irrigated, whether it is a cold 
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or warm year, and whether it is a dry or wet year, in some places it will be harder and more 

would need to be done than in other places. 

We studied benchmarks for combined green and blue WFs and did not look at each colour 

separately. For rain-fed lands, the benchmark levels presented in this study are obviously 

green WF benchmarks. For irrigated lands, the presented benchmark levels for overall 

consumptive WFs would need further specification into green and blue. Further research 

would need to be done to translate a certain benchmark level for the overall consumptive 

WF of a crop into a specific blue WF benchmark level per specific location as a function of 

the amount of rain per location, recognizing that the blue ratio in the WF will need to be 

larger if less green water is available. 

 

 

Figure 6.8 Comparison between the simulated yield of winter wheat and the agro-climatically 

attainable yield according to (FAO/IIASA, 2011) at provincial level in China. Averaged over 

the period 1961-1990. 

 

6.4  Conclusions 

Based on the case of winter wheat in China we find that (i) benchmark levels for the 

consumptive WF determined for individual years for the country as a whole remain within a 

range of ±20% around long-term mean levels over 1961-2008; (ii) the WF benchmarks for 

irrigated winter wheat are 8-10% larger than those for rain-fed winter wheat; (iii) WF 
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benchmarks for wet years are on average 1-3% smaller than for dry years, (iv) WF 

benchmarks for warm years are on average 7-8% smaller than for cold years, (v) WF 

benchmarks differ by about 10-12% across different soil texture classes; and (vi) WF 

benchmarks for the humid zone are 26-31% smaller than for the arid zone, which has 

relatively higher ET0 in general and lower yields in rain-fed fields. Therefore, we conclude 

that when determining benchmark levels for the consumptive WF of a crop, it is useful to 

primarily distinguish between different climate zones. We estimated that when in both the 

arid and humid zone the actual consumptive WFs are reduced to climate-specific benchmark 

levels set by the 25
th
 percentile of production, the water saving in an average year would be 

53% of the current water consumption at winter wheat fields in China, with greatest relative 

savings in the arid zone. 
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7. Conclusions and discussion 
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The current work contributes to the advance of the field of water footprint assessment in 

different ways. First, FAO’s crop water productivity model AquaCrop has been implemented 

in large scale WF simulations for the first time in the thesis (Chapters 3-6). A module to 

track, at daily basis, the green to blue ratio in soil moisture was developed in order to be 

able to separately estimate the green and blue fractions in ET and thus the green and blue 

fractions in the estimated total consumptive WF of crops. The modelling approach used in 

Chapters 3 and 4, making use of an advanced crop water productivity model and existing 

open-access global data sets on historical climate at a high spatial and temporal resolution, 

is applicable in similar WF studies for other river basins or countries in the world. 

Second, the thesis offers the first comprehensive study of sensitivities and uncertainties in 

WF accounting (Chapter 2), a key contribution to the development of the water footprint 

assessment research field as pointed out by Chenoweth et al. (2014). The consumptive WFs 

of the crops studied (maize, soybean, rice, and wheat) were found to be most sensitive to 

changes in inputs on the reference evapotranspiration ET0 and the crop coefficient Kc. 

Uncertainties in key input variables together can generate ±30% (at 95% confidence interval) 

of uncertainties in estimated WFs of crops. The recent global sensitivity analysis of WFs of 

the same four crops by Tuninetti et al. (2015) confirms our results on the sensitivity of WFs 

to ET0 and crop calendar. The general findings valid for both the YRB (Chapter 2) and the 

globe (Tuninetti et al., 2015) are (i) with an increased ET0, the WF of irrigated crops will 

increase through additional ET, while the WF of rain-fed crops will increase only if there is 

sufficient green water availability; (ii) shifting the planting date of spring and summer crops 

(e.g. rice and maize) may reduce the crop water requirement and thus lower the WF of 

crops.  

Third, this thesis adds to the few studies carried out thus far on the inter- and intra- annual 

variation of WF of crops, blue water scarcity and inter-regional virtual water trade, through 

one case study for the YRB (Chapter 3), and another study for China as a whole (Chapter 4). 

Reductions in consumptive WFs per tonne of crop, driven by growing crop yields during 

past decades, were observed across the country. As a result, the increases in annual total 

green and blue WFs in crop production were much smaller than the growth in total crop 
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production, and the WF per capita of crop consumption in China decreased by 23% over the 

period 1978-2008. How, counter-intuitively, the original virtual water flow from the 

water-rich South to the water-scarce North of China could reverse during the study period is 

explained in Chapter 4. The huge increase in the grey WF of crop production in the YRB 

(by factors of 24 and 36 for nitrogen and phosphorus, respectively) over the period 

1961-2009 reveals the significant negative impact of agriculture on freshwater quality 

(Chapter 3). The results point at the importance of controlling the overuse of fertilizers from 

both a water quality and resource use perspective. A limitation in doing long-term historical 

analyses as in Chapters 3-4 lies in the limited availability of time series for all relevant 

variables. In the current work, the temporal and spatial variation in a number of crop 

parameters (e.g. harvest index, cropping calendar and the maximum root depth of each type 

of crop) and the annual variation of initial soil water content at the beginning of the crop 

period were not considered. The spatial changes in harvested crop area were simply 

assumed as a fraction of each grid cell with cropping area around the year 2000, matching 

province totals to annual provincial statistics. Another limitation in the work is the focus on 

water stress in crop production, not considering other stresses, like temperature stress (cold 

or heat stress) and biotic stress (e.g. insects and diseases). 

Fourth, this is the first study showing WF and VW trade scenarios for China accounting for 

both climate change and various socio-economic drivers (Chapter 5). Changes in five 

driving factors were considered: climate, harvested crop area, technology, diet, and 

population. Four scenarios were constructed by making use of three of IPCC’s shared 

socio-economic pathways and two of IPCC’s representative concentration pathways. It is 

found that the historical trend of increasing crop yields as found in Chapter 4 is likely to 

continue into the future as a result of a projected wetter climate, an increasing CO2 

concentration and improved technology. Accordingly, consumptive WFs per tonne of crop 

will continue to decrease towards 2050. Partly due to the projected decrease of China’s 

population between 2030 and 2050, China may be able to attain its target of self-sufficiency 

in staple food supply and change into a net VW exporter through crop trade. Introducing the 

‘less meat’ diet can further help to reduce the WF of food consumption. The directions of 

change regarding the WFs of crops and national VW trade as found in all four scenarios in 
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the current work agree with previous studies (Fader et al., 2010; Pfister et al., 2011; Konar 

et al., 2013; Ercin and Hoekstra, 2014). It is acknowledged that the presented scenarios 

should not be interpreted as predictions; rather they sketch possible futures under different 

combinations of assumptions regarding main driving forces of change. The overall picture 

arising from the four presented scenarios for China is rather positive, but depends on a 

number of assumptions, including a wetter climate in the North with resultant increases in 

local rain-fed crop yields, improved yields in both irrigated and rain-fed agriculture from the 

adoption of better practices, a reducing population after 2030, and (in one of the scenarios 

presented) a changing diet towards less meat. 

Finally, the work contributes to the development of knowledge on how to determine 

benchmarks as reference levels for consumptive WFs in crop production, by exploring the 

relevance of different environmental factors when developing WF benchmarks (Chapter 6). 

The main finding is that benchmarks for the consumptive WFs in crop production can best 

be developed separately for different climate zones, which is an important difference with 

the earlier suggestion by Mekonnen and Hoekstra (2014) that one global benchmark for the 

WF per crop could suffice. Based on the current case study for winter wheat in China it 

seems unnecessary to develop different WF benchmarks for rain-fed versus irrigated crops, 

for different types of years (wet or dry, cold or warm) or for different soil classes, but further 

study for other crops and other regions in the world is needed to confirm this. The approach 

developed in this thesis to study the sensitivity of setting benchmark values for the WF of 

crop production to different environmental factors can be applied in future studies in this 

field.  

Future research is likely to add to and improve upon the current work in various ways. First, 

what is called a high spatial resolution in the current work may be seen as low in the near 

future, once better use of remote sensing will allow to do the sort of work undertaken in the 

current thesis at much higher spatial resolution. Second, where the current study basically 

relies on modelling in order to estimate ET and crop yields, a combined use of remote 

sensing products and modelling, validated by field observations, offers a new promising 

avenue. Third, given the fact that animal products account for nearly thirty percent of the 
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WF of humanity (Hoekstra and Mekonnen, 2012), future long-term assessments of WFs 

focusing on livestock production and consumption will be urgently needed. The current 

study included feed crops and studied the impact of less meat in the diet, but a thorough 

understanding of the relation between the consumption of animal products and water 

resources use will need to include a study of (changes in) the feed composition of animals 

and the feed conversion efficiency of different animals and breeds, factors that were out of 

the scope of the current work.  Fourth, in order to better understand the possible impact of 

consumptive WFs on catchment hydrology and to better inform policy making, the blue WF 

needs to be divided into surface water, renewable groundwater and fossil groundwater 

components (Hoekstra et al., 2011). Fifth, more future research should be done on green 

water scarcity (Schyns et al., 2015). In Chapter 3, we considered the long-term variation of 

blue water scarcity in the YRB, but it has to be acknowledged that green water plays a major 

role in crop production, even in irrigated agriculture, and that there is an upper limit to the 

sustainable use of green water resources in a basin (Hoekstra, 2014). Therefore, green water 

scarcity analysis over the long term is an essential element in understanding sustainable 

water consumption. Finally, for China, but also for other quickly developing countries, 

urbanization goes at a faster rate than economic growth (Yang, 2013), which will 

significantly influence inter-regional virtual water flows. The differences between the WFs 

of urban and rural consumption can be further analysed as well. Furthermore, even though 

the agricultural sector will remain the major water consumer, the WFs of the industrial and 

municipal sectors will increasingly become important, particularly in the regions of the 

urban centres.  
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Summary in Chinese 

在过去的几十年，伴随着人口不断增加和经济快速增长，尤其在大型快速发展中国家，增

长的水资源消耗使全球有限水资源的可持续利用困难重重并成为对未来人类社会及自然的关

键挑战之一。基于在大流域及国家尺度高空间分辨率水足迹计算方法，本研究以系统评估中国

过去、现在与未来的水足迹、水资源短缺及虚拟水流动为主要研究目的，以农业为主要研究对

象，针对水足迹评价研究中存在的不确定性、年度及年内变化及基准度制定等问题进行了探索

研究。因此，本论文由五个主题章节研究(第 2 章至第 5 章)组成： 

一、 作物消耗型水足迹计算中的敏感性与不确定性分析:以黄河流域为例 

本章以黄河流域四种主要作物为研究对象，利用‘one-at-a-time’方法及蒙特卡罗模拟

（Monte Carlo simulations）方法，分别对作物生长过程中蓝水及绿水足迹计算中由输入变

量内部变化及不确定性引起的输出结果敏感性与不确定性进行了定量分析。作物消耗型水足迹

（蓝水、绿水足迹之和）计算结果对输入变量中的参考作物蒸散量（ET0）与作物系数（Kc）的

变化最为敏感。蓝水足迹对输入变量较绿水足迹更为敏感。由关键输入变量中的不确定性综合

引起的作物水足迹计算结果中的不确定为±30% (95%置信度)。 

二、 黄河流域内作物生产水足迹与蓝水稀缺度（blue water scarcity）的年际及年内变化 

本章利用高空间分辨率作物水足迹计算及蓝水资源稀缺度评价方法，模拟分析了黄河流域

1961-2009 年间十七类主要农作物生产蓝水、绿水与灰水足迹的年际间变化，及 1978-2009 年

间全流域蓝水稀缺度的月际间变化。过去半个世纪黄河流域灌溉农业的快速发展（灌溉耕地的

增加）及农业生产投入（肥料使用）的激增使作物单产翻倍增长，单产水足迹（立方米/吨）

随之显著下降。因此，在所研究几十年间黄河流域作物生产年度总蓝水与绿水足迹（立方米/

年）仅增长 11%。然而，流域内与氮和磷相关的作物生产灰水足迹在同一时段分别增长了 24

和 26 倍，反映出成倍增长的化肥消耗对流域内水质的不利影响和严重威胁。每年黄河流域在

七个月间（一月到七月）面对中度到强度蓝水资源稀缺。即使在丰水年中降雨最多的月份，流

域内仍有一半区域承受强度蓝水稀缺。 

三、 中国作物产品的消费、生产、贸易及气候的年度变化对国内作物蓝水、绿水足迹及区域

间虚拟水贸易的影响 
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本章对 1978-2008 年间中国境内由作物产品的消费、生产、贸易及气候的年度变化引起的

二十二类作物消耗型水足迹（蓝水、绿水足迹）及国内区域间虚拟水贸易的时空变化进行了计

算与分析。期间由作物单产增加驱动单产水足迹显著下降。因而在这段总产量与消费量都迅猛

增长的时期，中国人均农作物消费水足迹下降了 23%，中国作物生产和消费所产生的年消耗型

水足迹只微量地分别增长了 7% 和 6%。于此同时，由于主要作物生产区的由南向北移动与持续

增加的由北向南的作物产品贸易，中国现今通过作物运输由缺水区到富水区的虚拟水“北水南

调”从 21 世纪初开始形成。每一个中国人农作物产品消费水足迹中有 35% 来自于其所在省外。

另外，国内区域间的虚拟水流动正由低单产蓝水足迹区向高单产蓝水足迹区，这在 2008 年产

生了相当于全国作物生产蓝水足迹总和的 7%的‘蓝水资源流失’。 

四、 不同未来情景模式中的中国农产品消耗型水足迹和虚拟水贸易 

本章构建分析了四种不同未来情景模式下2030年与 2050年的中国农产品生产和消费的蓝

水、绿水足迹和国家虚拟水贸易。在由政府间气候变化专门委员会 (IPCC) 第五次评估报告

（AR5）两个典型浓度路径 (RCP2.6 与 RCP8.5) 和三个共享的社会经济途径 (SSP1-3) 组成的

基本情景框架内，本章中四个未来情景（S1-4）的构建考虑了五个驱动变量：气候、作物收获

面积、技术进步、饮食结构与人口。分析得到：与基准年 2005 年相比，在所有情景模式中大

部分作物单产水足迹降低，从而人均食品消费水足迹也下降。若将国民饮食结构中肉类产品比

重适当减小，可以在 2050 年额外降低 44% 的人均食品消费水足迹。在所有情景模式中，在作

物单产提升即作物总产量升高基础上，加之预计放缓的人口增长，中国将进行角色转换从现在

的虚拟水净进口国转变为虚拟水净出口国。以上结果显示出中国有潜能在减少国家由农业生产

的水资源消耗量的同时，达到主粮自给的政府目标。 

 

五、 不同环境下作物生产消耗型水足迹基准初探：以中国冬小麦为例 

本章旨在探索在设定作物生产消耗型水足迹基准时对环境因素的区分。利用通过作物水

分生产率模型 AquaCrop、只考虑水分压力、在 5 弧分空间尺度上对 1961-2008 年间中国冬小麦

生产消耗型水足迹的模拟结果，分析比较了针对不同年间、灌溉与雨养、四种不同土壤种类以

及两种不同气候区情况下作物生产消耗型水足迹基准的不同。结果显示作物生产消耗型水足迹

基准的制定需考虑和针对不同的气候区域。中国冬小麦湿润区生产消耗型水足迹基准比干旱区

同级基准小 26-31%。若将现实冬小麦消耗型水足迹在湿润、干旱区分别下调至相应气候区中对

应于最好 25% 总产量的基准值，可减少现在中国冬小麦生产总耗水量的 53%。且相应水足迹下
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降的空间分布显示中国南方在作物单产和作物水分生产率的提高更具潜力。 

结论 

     本论文研究对水足迹评估领域前沿主要有以下五点贡献：第一，本论文研究实现了国际

粮农组织（FAO）作物水分生产模型 AquaCrop 在大尺度水足迹计算中的应用；第二，实现了第

一次对水足迹计算中敏感性和不确定性的综合分析评价；第三，在迄今为止仍只有极少数涉及

对作物水足迹、蓝水短缺以及虚拟水贸易长期年际及年内变化研究存在的情况下，本文通过黄

河流域及中国的相关研究补充提高了同类研究的时空覆盖度；第四，第一次展示了中国在同时

考虑未来气候变化及不同社会经济变化驱动因素下的水足迹与虚拟水贸易情景模式；最后，本

论文通过探索针对不同环境因素的作物生产消耗型水足迹基准值的变化及相应结论，进一步促

进了对于如何制定作物生产水足迹基准的知识发展。 
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PROPOSITIONS 

Accompanying the thesis 

Past, current and future water footprints, water scarcity and virtual water flows in China 

by La Zhuo 

 

1. Over the last five decades, green and blue water footprints per tonne of crop have reduced significantly across 

China, due to improved yields, but the benefits of increased water productivity have been offset by the 

increased crop production. 

2. Throughout the year, even in the wettest month in a wet year, about half of the area of the Yellow River Basin, 

the second largest river basin in China, suffered severe blue water scarcity. 

3. The emergence of the North-to-South net virtual water flow in China shows that economics and governmental 

policies rather than regional differences in water endowments have been the driver of domestic trade, creating 

inter-regional water dependencies and worsening the water scarcity in the driest part of the country. 

4. When determining benchmark levels for the consumptive water footprint of a crop, it is useful to primarily 

distinguish between different climate zones. 

5. In most cases, consumers are unaware of how their consumption decision can affect freshwater resources in 

locations where the commodities are produced (Hoekstra and Chapagain, 2008; Hoff, 2009; Yang et al., 2013; 

Vörösmarty et al., 2015). 

6. The water footprint concept enables visualizing the hidden freshwater used behind products and can assist in 

understanding the global character of freshwater demand and supply and in quantifying and mapping the 

effects of consumption and trade on water resources use (Hoekstra, 2003; Hoekstra and Chapagain, 2008; 

Hoekstra, 2013). 

7. Facing increasing limited water supply for feeding growing population, satisfying additional economic and 

social development and maintaining ecology across China, higher efficiency in use, better quality treatment and 

fair allocation of the local water, especially in the drier North, are the key to keep pace with rising demands, 

not depending only on pumping water from South to North across the country (Tso, 2004; Barnett et al., 2015).  

8. The water-resource challenge of the future is more complex then previously portrayed—it is not only a 

question of water allocation among irrigation, industry, and municipalities but involves difficult decisions for 

balancing green and blue water for food, nature and society (Falkenmark and Rockström, 2006). 

9. There is no happiness except in the realization that we have accomplished something. —Henry Ford 

 

These propositions are regarded as opposable and defendable, and have been approved as such by promoter Prof. dr. 

ir. A. Y. Hoekstra and co-promoter Dr. M. M. Mekonnen.  




