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Chapter 1 General introduction 
 

1.1 Scientific background 

River basins are substantially impacted by natural climate variability and human 

activities. With little human activity, hydrological systems are primarily controlled 

by natural climate variability. As the human population has dramatically increased 

and many regions involve intensive human activities, human influence can no 

longer be neglected and should be seriously considered as an important player in 

the hydrologic cycle (e.g. Savenije et al., 2014).  

IPCC (2012) has documented there is evidence from observations gathered since 

1950 of change in some extremes of, for instance, precipitation and discharge. 

There is medium confidence that some regions of the world have experienced 

more intense and longer droughts, whereas, in some other regions, there have been 

statistically significant trends in the number of heavy precipitation events. Both 

natural variability and human influence are important factors for those increased 

climate extremes which likely trigger disasters in river basins. It therefore requires 

a better understanding of climate and human impacts on hydrological systems. 

Human impacts on the environment both directly and indirectly (Wagener et al., 

2010). Indirect human influence on the water cycle refers mainly to the effect of 

anthropogenic changes in climate. This is, for instance, associated with greenhouse 

gas emissions. Direct human influence is attributed to human actions on river 

basins, including but not limited to hydroelectricity generation, irrigation, 

groundwater abstraction, and land use and cover change (LUCC). Due to the 

complex interaction of climatic, environmental, and human factors, the effects of 

human influence and climate cannot simply be added. A major scientific challenge 

lies in separating human effects on river basins from the climate variability. In 

order to achieve that, data availability and focused hydrologic component selection 

are prerequisite.  

1.2 Selection of study area 
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In this dissertation, the Yangtze River basin is taken as the study area. This basin 

has experienced a trend of increasing frequency of extreme events and faces 

numerous forms of human alterations (IPCC, 2001; Dai et al., 2008; Yang et al., 

2010), such as the Three Gorges Dam (TGD) construction and intensive irrigation. 

Some studies (Dai et al., 2008; Yang et al., 2010; Guo et al., 2012; Wang et al., 2013) 

have documented that the operation of the TGD could have a direct impact on 

Yangtze River flow and river-lake interaction in the middle and lower reaches of 

the Yangtze River basin. Moreover, the Yangtze River basin has been documented 

as one of areas with the highest irrigation density in the world, which may affect 

the distribution of water resources in the basin (Siebert et al., 2005). Therefore, the 

Yangtze River basin is an interesting case study area to investigate the effects of 

climate variability and human activities on the hydrological system. 

1.3 Focused hydrological component and data availability 

Important variables in the hydrology of catchments include precipitation, 

evapotranspiration (ET), runoff, and terrestrial water storage (TWS). There have 

been a considerable number of studies addressing the influence of climate 

variability and human activities on the water resources of the Yangtze River basin, 

however, most of them focus on river flows rather than TWS changes (e.g. Dai et 

al., 2008; Yang et al., 2010). As a key component of terrestrial and global 

hydrological cycles, TWS strongly influences water, energy, and biogeochemical 

fluxes, thereby playing a major role in the Earth’s climate system (Famiglietti, 2004). 

It is not only an indicator of the Earth’s climate variability, but also affects various 

components of the Earth’s hydrological cycle (Niu and Yang, 2006). 

From a historical perspective, there is limited information about the TWS 

distribution in time and space, as TWS is not routinely assessed like other 

hydrometeorological variables. Isolated datasets are available for only a few 

regions and rarely for periods of more than a few years. Moreover, the in situ 

observations are point measurements, and not always representative for larger 

spatial domains (Famiglietti et al., 2008; van der Velde et al., 2008). Fortunately, 

progress in satellite remote sensing and corresponding retrieval techniques enables 

large scale monitoring of land-surface bio-geophysical properties (e.g. TWS, 

temperature). Previous researches (e.g. Tapley et al. 2004a, b) have shown that, 
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using measurements of the Earth’s gravity field, spatial TWS changes can be 

inferred on a monthly scale. The first space mission that employs this technology is 

the Gravity Recovery and Climate Experiment (GRACE) launched on 17 March 

2002.  

Global Data assimilation products such as Interim Reanalysis Data (ERA-Interim) 

and Global Land Data Assimilation System (GLDAS) combine the virtues of in situ 

data, remotely sensed observations, and modeling. The models in these systems 

simulate the main components of TWS and, by fusing these components with other 

data sources, reduce uncertainties in the hydrological interpretations. These 

systems have been extensively applied in TWS and related studies, and have, for 

example, been utilized in analysis of regional, continental, and global TWS 

variations (Seneviratne et al., 2004; Chen et al., 2005; Syed et al., 2008).  

The main components of TWS such as soil moisture (SM) and snow water 

equivalent (SWE) can also be simulated by land surface models (LSMs). This 

simulated TWS may have higher accuracy than publicly available global data 

assimilation products, because of the improved atmospheric forcing data and more 

realistic representations of physical processes for the study area. 

Therefore, it is interesting, promising, and important to focus on spatial and 

temporal TWS variations and, by using remote sensing and land surface modeling 

techniques and compiling data from various sources, explore the impacts of 

climate variability and human activities on the hydrological system of the Yangtze 

River basin. 

1.4 Objectives 

The overall objective of this PhD research is to investigate the spatiotemporal 

effects of climate variability and human activities on the TWS of the Yangtze River 

basin. In order to achieve this, the specific objectives are designed and listed as 

follows: 

1) To obtain the reliable TWS estimates by evaluating data assimilation 

products and/or reconstructing the water budget from LSMs for the study 

area. 
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2) To investigate the effects of climate variability on the TWS variations based 

on the reliable TWS estimates over the past three decades. 

3) To investigate the spatial human effects on the TWS variations, by 

combing the reliable TWS estimates, earth observation and field 

measurements. 

 

Figure 1.1. Flowchart of research and dissertation structure 

 

1.5 Dissertation Outline 

Figure 1.1 shows the structure of this PhD research and how it is related to the 

objectives. Chapter 2 introduces the study area and data used in this dissertation. 

Chapters 3, 4, and 5 are the preparation for the ultimate goal, and aim to obtain 

reliable TWS estimates by evaluating the data assimilation products, the Interim 

Reanalysis Data (ERA-Interim) and Global Land Data Assimilation System 

(GLDAS), and/or reconstructing the water budget from LSMs of the study area. 

More specifically, Chapter 3 evaluates the public data assimilation products in the 
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study area for the data reliability on further investigation. Chapters 4 and 5 focus 

on improving the physical processes of LSMs and reconstructing the water budget 

of the study area, in order to obtain reliable TWS estimates. Based on the 

knowledge of Chapters 3-5, Chapters 6 and 7 select the most reliable TWS 

estimates, concentrate on the ultimate goal of this thesis and represent the main 

scientific contributions. Chapter 8 summarizes this PhD research, draws final 

conclusions, and gives an outlook for the future. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



General introduction  

 

6 
 

 

 

 

 

 

 

 

 

 

 



 

 
 

 

 

 

 

 

 

CHAPTER 2 

Study Area and Data 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 2 

7 
 

Chapter 2 Study area and data 
 

2.1 Study area 

The Yangtze River, the longest river in Asia and the third longest river in the world, 

forms a basin of 1.8 million square kilometers (km2), which is one-fifth of the land 

area of the People’s Republic of China and home to one-third of the China’s 

population. The river originates in the Qinghai-Tibetan Plateau and flows 6300 km 

eastwards to the sea. The upper Yangtze reaches, the headwaters, extend from the 

westernmost point, at Tuotuohe, to Yichang. The middle reaches extend from 

Yichang to Hukou, and the lower reaches extend from Hukou to the river mouth 

near Shanghai (Figure 2.1). The climate in the Yangtze River basin is governed by 

the monsoon, and different climatic systems control the upper and the lower 

Yangtze River. The amount of annual precipitation (rainfall and snowfall) within 

the basin tends to decrease inland. Precipitation at the headstream is less than 40 

cm yr-1, whereas the lower reaches receive 160 cm yr-1. The wet season from April 

to October forms a specific weather phenomenon of the middle and lower reaches, 

and 85% of the annual precipitation occurs during this period. 

 

Figure 2.1.Elevation map of the study area, the Yangtze River basin. The green stars denote the locations 

of the main gauging stations. 
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As also shown in Figure 2.1, Cuntan, Yichang, Hankou, and Datong are four main 

hydrological gauging stations located along the mainstream of the Yangtze, 

receiving discharge from catchment area of 0.86, 1.01, 1.49, and 1.80×106 km2, 

respectively. Cuntan forms the entrance to TGR, which extends more than 600 km 

along the mainstream of the Yangtze River. Yichang is located 37 km downstream 

from TGD, and Hankou is located in the middle reaches of the river. Datong is the 

gauging station before the river flows into the sea, and it is used to represent the 

runoff change in the entire Yangtze River basin. The three largest natural lakes in 

the Yangtze River basins are Dongting Lake, Poyang Lake and Tai Lake (Figure 

2.2). 

 

Figure 2.2.The blue polygons represent the three largest natural lakes (Dongting Lake, Poyang Lake, 

and Tai Lake). Rivers are delineated in blue, and the Yangtze River basin boundary in purple. The 

position of the Three Gorges Dam is depicted by a green triangle. Squares A, B, C and D represent the 

selected regions in Chapter 7. 

As the largest hydrological system in China, the Yangtze River is historically, 

economically and culturally important to the country. The Yangtze River is a major 

water resource for households, industry, and agriculture of the basin, and the 

prosperous Yangtze River Delta generates roughly 20% of the gross domestic 

product of China. Moreover, water from the Yangtze River has enormous potential 

for generation of hydroelectricity, and it is transferred to the Yellow River basin in 

arid northern China, to alleviate water scarcity in that basin. Thus, the hydrological 

situation of the basin is profoundly important for the people living there, and 
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sustainable water management is indispensable. However, using water resources 

sustainably is challenging because of the many factors involved, including climate 

change, the natural variability of the resource, as well as pressures due to human 

activities. 

2.2 Data 

2.2.1 Global data assimilation products 

2.2.1.1 ERA-Interim 

ERA-Interim reanalysis dataset, produced by European Centre for Medium-Range 

Weather Forecasts (ECMWF), contains physical data of atmosphere and surface 

analyses covering the period from 1979 to the present based on the ECMWF 

Integrated Forecast System (IFS) release Cy31r2 (Berrisford et al., 2011; Simmons et 

al., 2006). The reanalysis incorporates a forecast model with three fully coupled 

components for atmosphere, land surface and ocean waves, and assimilates 

various types of observations, including satellite and ground based measurements. 

It uses the Tiled ECMWF Scheme for Surface Exchanges over Land (Viterbo et al., 

1995) to simulate heat and water exchanges between land and atmosphere. The 

TESSEL model structure includes four soil layers (0-7, 7-28, 28-100, and 100-289 cm) 

for each type of vegetation scheme and each type of snow scheme. As the latest 

global atmospheric reanalysis produced by ECMWF, it has been confirmed that the 

performance of this system is substantially improved in certain key aspects (the 

representation of the hydrological cycle, the quality of the stratospheric circulation, 

and the consistency in time of the reanalyzed fields) compared to ERA-40 (Dee et 

al., 2011). 

2.2.1.2 ERA-Interim/Land 

The ERA-Interim/Land dataset, produced by the European Centre for Medium-

Range Weather Forecasts (ECMWF), describes the evolution of the soil (moisture 

and temperature) and snowpack covering the period from 1979 to 2010 (Balsamo et 

al., 2015). It is based on the latest ECMWF land surface model, HTESSEL, driven by 

meteorological forcing from the ERA-Interim atmospheric reanalysis and 

precipitation adjustments based on the Global Precipitation Climatology Project 
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(GPCP) v2.1. ERA-Interim uses the Tiled ECMWF Scheme for Surface Exchange 

over land (Viterbo et al., 1995; van den Hurk et al., 2000) to simulate heat and 

water exchanges between land and atmosphere. This system has been confirmed to 

perform well in certain key aspects (the representation of the hydrological cycle, 

the quality of the stratospheric circulation, and the consistency in time of the 

reanalyzed fields) (Dee et al., 2011). ERA-Interim/Land preserves closure of the 

water balance and includes a number of parameterizations improvements in the 

land surface scheme with respect to the original ERA-Interim dataset (Balsamo et 

al., 2015), which makes it suitable for this study. Moreover, Balsamo et al. (2015) 

showed the quality of ERA-Interim/Land through a comparison with ground-

based and remote sensing observations. The ERA-Interim/Land reanalysis data can 

be freely downloaded from the website http://apps.ecmwf.int/datasets/data/in-

terim_full_daily/. 

2.2.1.3 GLDAS-Noah 

The Global Land Data Assimilation System (GLDAS) supplies users with a model 

output of state-of-the-art land surface schemes created with atmospheric variables 

that originate from various data sources. The model has been forced by multiple 

datasets: bias-corrected ECMWF Reanalysis data for the time period 1979-1993, 

bias-corrected National Center for Atmospheric Research (NCAR) Reanalysis data 

for 1994-1999, NOAA/GDAS atmospheric analysis fields for 2000 and a 

combination of NOAA/GDAS atmospheric analysis fields, spatially and temporally 

disaggregated NOAA Climate Prediction Center Merged Analysis of Precipitation 

(CMAP) fields, and observation-based downward shortwave and longwave 

radiation fields, using the method of the Air Force Weather Agency’s AGRicultural 

METeorological modeling system (AGRMET), for the period 2001 to the present 

(Rui, 2011).  

2.2.2 Data for land surface modeling 

2.2.2.1 Atmospheric forcing 

The Institute of Tibetan Plateau Research, Chinese Academy of Sciences (hereafter 

ITPCAS) provides an atmospheric forcing data set for China (He, 2010). The 

ITPCAS forcing data merged the observations collected at 740 operational stations 

http://apps.ecmwf.int/datasets/data/in-terim_full_daily/
http://apps.ecmwf.int/datasets/data/in-terim_full_daily/
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of the China Meteorological Administration (CMA) to the corresponding Princeton 

meteorological forcing data (Sheffield et al., 2006) producing near-surface air 

temperature, pressure, wind speed, and specific humidity. The precipitation field 

has been produced by combining three precipitation data sets, including 

precipitation observations from 740 operational stations, the Tropical Rainfall 

Measuring Mission (TRMM) 3B42 precipitation products (Huffman et al., 2007), 

and GLDAS precipitation data. The GLDAS precipitation data were only used to 

replace TRMM 3B42 data that are not available beyond 40°N. The Global Energy 

and Water Cycle Experiment – Surface Radiation Budget (GEWEX-SRB) shortwave 

radiation data and Princeton forcing data were been combined and corrected by 

radiation estimates from CMA station data using a hybrid radiation model (Yang 

et al., 2006), to produce downward shortwave radiation. The downward longwave 

radiation is calculated by the model of Crawford and Duchon (1999) based on the 

produced near-surface air temperature, pressure, specific humidity, and 

downward shortwave radiation. The temporal and spatial resolutions of the 

ITPCAS forcing data are 3 hourly and 0.1°, respectively. This dataset can be 

obtained at http://westdc.westgis.ac.cn/data/7a35329c-c53f-4267-aa07-e0037d913a21.  

2.2.2.2 Vegetation and soil data 

The United States Geological Survey (USGS) 30 arc-second global 24-category 

vegetation type (land-use), the hybrid State Soil Geographic Database (STATSGO) 

Food and Agriculture Organization (FAO) soil texture data sets, and a monthly 

green vegetation fraction (GVF) database based on the 5-yr (1985-90) Advanced 

Very High Resolution Radiometer (AVHRR) the Normalized Difference Vegetation 

Index (NDVI) data are used as model input. The annual mean deep soil temperate 

data are used in the model as bottom boundary layer conditions for soil models. 

All the static data we used are provided by National Center for Atmospheric 

Research (NCAR), and can be downloaded at http://www2.mmm.ucar.edu/wrf/us-

ers/download/get_sources_wps_geog.html .   

2.2.3 Remotely sensed data 

2.2.3.1 GRACE 

http://westdc.westgis.ac.cn/data/7a35329c-c53f-4267-aa07-e0037d913a21
http://www2.mmm.ucar.edu/wrf/us-ers/download/get_sources_wps_geog.html
http://www2.mmm.ucar.edu/wrf/us-ers/download/get_sources_wps_geog.html
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The GRACE Tellus land products, providing monthly terrestrial water storage 

(TWS) variations with spatial sampling of 1°, have been processed by the Center 

for Space Research (CSR, University of Texas, USA), Jet Propulsion Laboratory 

(JPL, NASA, USA) and German Research Centre for Geosciences (GFZ, Potsdam, 

Germany), and are freely available at the website ftp://podaac-

ftp.jpl.nasa.gov/allData/tellus/L3/land_mass/RL05/netcdf/. The data are based on 

the RL05 spherical harmonics from CSR, JPL and GFZ, and have additional post 

processing steps, summarized online at ftp://podaac-

ftp.jpl.nasa.gov/allData/tellus/L3/land_mass/RL05/netcdf/. We used 96 months, 

from January 2003 to December 2010, of the GRACE Tellus land data computed by 

CSR. Due to the post-processing of GRACE observations, surface mass variations 

at small spatial scales tend to be attenuated. Therefore, it is necessary to multiply 

those GRACE Tellus land data by the scaling grid provided by JPL. The scaling 

grid is a set of scaling coefficients, one for each 1 degree bin of the land grids, and 

is intended to restore much of the signal removed by the post processing steps, 

such as destriping, filtering, and truncation described in Landerer and Swenson 

(2012). 

It should be noted that, in Chapter 5, GRACE data are not used to evaluate the 

simulated TWS, but the simulated evapotranspiration (ET) through a water 

balanced approach (Rodell et al., 2004). The GRACE based ET has been proved to 

be valuable for assessing modeled ET (Rodell et al., 2004), and can be used to 

examine from the Surface Energy Balance System (SEBS) modelled ET output. 

2.2.3.2 GPCC 

Precipitation data from the Global Precipitation Climatology Centre (GPCC) were 

used to further support the results. GPCC offers a gauged-based, gridded, monthly 

precipitation dataset for the global surface for the period 1901-2010. It is based on 

about 67200 stations with at least 10 years of data, and recommended for use in 

global and regional water balance studies, the calibration/validation of remote 

sensing based rainfall estimates, and the verification of numerical models 

(Schneider et al., 2011). In this study, we used the GPCC Full Data Reanalysis 

Version 6 with a spatial resolution of 1.0˚. 

ftp://podaac-ftp.jpl.nasa.gov/allData/tellus/L3/land_mass/RL05/netcdf/
ftp://podaac-ftp.jpl.nasa.gov/allData/tellus/L3/land_mass/RL05/netcdf/
ftp://podaac-ftp.jpl.nasa.gov/allData/tellus/L3/land_mass/RL05/netcdf/
ftp://podaac-ftp.jpl.nasa.gov/allData/tellus/L3/land_mass/RL05/netcdf/
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2.2.3.3 Water level of lakes 

The monthly water level data for the three largest natural lakes (Dongting Lake, 

Poyang Lake and Tai Lake) (Figure 2.2) in the study area were obtained from the 

web database (HYDROWEB: http://www.legos.obsmip.fr/en/soa/hydrologie-

/hydroweb/), developed by LEGOS (Laboratoire d’Etude en Ge´ophysique et 

Oce´anographie Spatiale). This database is based on multi-satellite altimetry 

measurements and freely available for the study period (Crétaux et al., 2011). As 

the time series is not complete for the study period, we used linear interpolation to 

fill the missing months.  

2.2.3.4 MODIS land surface temperature 

Moderate Resolution Imaging Spectroradiometer (MODIS) land surface 

temperature (Tsfc) products were used as the ground ‘reference’ to evaluate the Tsfc 

modelling. The MODIS/Terra Tsfc and Emissivity Daily L3 Global 0.05Deg CMG 

(MOD11C1) products provide Tsfc two times per day, daytime around 10:30 A.M 

and nighttime around 10:30 P.M (local solar time). In Chapter 4, we selected 312 

daytime cloud free MODIS images from the MOD11C1 Tsfc product archive, 

covering the period 2005-2010. Our choice of daytime Tsfc product is supported by 

the fact that parameterization of roughness lengths plays a more important role in 

the daytime Tsfc simulation than in the nighttime one (Chen et al., 2011). MODIS 

data are freely available on this website: https://lpdaac.usgs.gov/products/mo-

dis_products_table. 

2.2.3.5 MODIS NDVI 

The Moderate Resolution Imaging Spectroradiometer (MODIS) derived the NDVI 

product is designed to provide consistent spatial and temporal comparisons of 

vegetation conditions. The monthly MODIS NDVI during the study period 2003-

2010, with 0.05 of spatial resolution, was used as a surrogate of vegetation 

coverage in Chapter 7. 

2.2.4 Field data 

2.2.4.1 Discharge 

http://www.legos.obsmip.fr/en/soa/hydrologie-/hydroweb/
http://www.legos.obsmip.fr/en/soa/hydrologie-/hydroweb/
https://lpdaac.usgs.gov/products/mo-dis_products_table
https://lpdaac.usgs.gov/products/mo-dis_products_table
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The observed discharge data of the main hydrological gauging stations (Cuntan, 

Yichang, and Datong) in the Yangtze River basin were provided by Bureau of 

Hydrology, Changjiang (also called Yangtze) Water Resources Commission.  

2.2.4.2 Water supply and use 

The yearly water supply data from surface and groundwater, and the consumption 

data for living, industry, agriculture, and biology in this basin are obtained from 

the Ministry of Water Resources of China. 

2.2.5 SEBS 

We used monthly ET estimated from the Surface Energy Balance System (SEBS) to 

evaluate the Noah and Noah-MP simulations in Chapter 5. This simulation is 

forced by ITPCAS meteorological data, and has been validated by 11 China flux 

stations, including bare soil, alpine meadow, forest, cropland, orchard, grassland, 

and wetland land covers (Chen et al., 2014). It is of interest to note that GRACE-

based ET and SEBS-estimated ET are fully independent of each other, as the former 

is estimated through the water balance, whereas the latter is based on the energy 

balance. 

2.2.6 Others 

The Global Map of Irrigation Areas (GMIA) version 5, provided by the global 

water information system (AQUASTAT) of the Food and Agriculture Organization 

(FAO), was used to calculate the irrigated area and expressed in hectares per cell 

(Siebert et al., 2013).  

Drainage fraction 𝑓𝑑 was derived from global-scale information on drainage in rain 

fed and irrigated agriculture as compiled by Feick et al. (2005). 

The in situ measurements of TGR water volume changes was obtained from the 

China Three Gorges Corporation (http://www.ctg.com.cn), as used by Wang et al. 

(2011). 

 

http://www.ctg.com.cn/
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Chapter 3 Evaluation of data assimilation products for 

terrestrial water storage analysis 
 

This chapter is based on: 

 

Huang, Y., M. S. Salama, M. S. Krol, R. van der Velde, A. Y. Hoekstra, Y. Zhou, and 

Z. Su, 2013: Analysis of long-term terrestrial water storage variations in the 

Yangtze River basin. Hydrol. Earth Syst. Sci., 17, 1985-2000.  

 

3.1 Abstract 

This chapter evaluates the reliability of the data assimilation products, Interim 

Reanalysis Data (ERA-Interim) and Global Land Data Assimilation System 

(GLDAS), for studying the natural terrestrial water storage (TWS) of the Yangtze 

River basin. The accuracy of these datasets is validated using 26 years (1979-2004) 

of runoff data from the Yichang gauging station and compared with 32 years of 

independent precipitation data obtained from the Global Precipitation Climatology 

Centre Full Data Reanalysis Version 6 (GPCC) and NOAA’s PRECipitation 

Reconstruction over Land (PREC/L). In addition, in order to assess the impact of 

the lack of some components such as surface water and groundwater on the 

matchup, we compared TWS derived from ERA-Interim to those derived from 

GRACE observations for a 7-year period at the basin scale. 
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3.2 Introduction 

Terrestrial water storage (TWS) is determined by all physical phases of water 

stored above and below the surface of the Earth, including soil moisture, snow and 

ice, canopy water storage, groundwater, etc. From a historical perspective, there is 

limited information about the TWS distribution in time and space, as TWS is not 

routinely assessed like other hydrometeorological variables. Isolated datasets are 

available for only a few regions and rarely for periods of more than a few years. 

Moreover, the in situ observations are point measurements, and not always 

representative for larger spatial domains (Famiglietti et al., 2008; van der Velde et 

al., 2008). Fortunately, progress in satellite remote sensing and corresponding 

retrieval techniques enables large scale monitoring of land-surface bio-geophysical 

properties (e.g. TWS, temperature). This may potentially improve our 

understanding of the spatially heterogeneous hydrometeorological processes.  

Advances in microwave remote sensing have demonstrated their use in providing 

large-scale soil moisture information, resulting in satellite missions specifically 

dedicated to soil moisture (Entekhabi et al., 2010). Microwave observations can, 

however, only provide information on the top few centimeters of the soil. In 

addition, Tapley et al. (2004a, b) and others have shown that, using measurements 

of the Earth’s gravity field, terrestrial water storage change (TWSC) may be 

inferred on a monthly scale. The first space mission that employs this technology is 

the Gravity Recovery and Climate Experiment (GRACE) launched on 17 March 

2002. 

Data assimilation products such as Interim Reanalysis Data (ERA-Interim) and 

Global Land Data Assimilation System (GLDAS) combine the virtues of in situ data, 

remotely sensed observations, and modeling. The models in these systems 

simulate the main components of TWS and, by fusing these components with other 

data sources, reduce uncertainties in the hydrological interpretations. These 

systems have been extensively applied in TWS and related studies, and have, for 

example, been utilized in regional, continental, and global TWS variation analysis 

(Chen et al., 2005; Seneviratne et al., 2004; Syed et al., 2008). As well, these systems 
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offer long-term records of data, making them potential for long-term analysis, 

while remotely sensed data and in situ observations are most likely time limited. 

High reliabilities of these data assimilation products are essential for TWS and 

related studies. In this study, the regional accuracies and reliabilities of the ERA-

Interim and GLDAS-Noah datasets therefore are assessed in the study area, the 

Yangtze River basin. The assessed results will be compared to the improved land 

surface modeling results in Chapters 4 and 5, in order to examine the natural 

spatial and temporal variation in TWS in Chapters 6 and 7. 

3.3 Terrestrial water storage estimation 

TWS is generally defined as all phases of water stored above and below the surface 

of the Earth: soil moisture, canopy water storage, snow water equivalent and 

ground water, surface water storage, etc. Our analysis of storage is, however, 

limited to the total soil moisture column (TSM) and snow water equivalent (SWE) 

and does not give a complete description of the lateral and vertical distribution of 

water storage unless surface and groundwater components are added to the land 

model used here. We also neglect canopy water storage (CWS), although this is 

included in the GLDAS-Noah simulation. The reason is that CWS in the Yangtze 

River basin is negligible in comparison with soil moisture (Zhong et al., 2010). 

Therefore, TWS is expressed as equation (3.1), where N is an index representing the 

month of the year. 

 

𝑇𝑊𝑆𝑁 = 𝑇𝑆𝑀𝑁 + 𝑆𝑊𝐸𝑁 ,     (3.1) 

 

The monthly change in terrestrial water storage (𝑇𝑊𝑆𝐶𝑁) can be calculated at each 

pixel as follows: 

 

𝑇𝑊𝑆𝐶𝑁 = {𝑇𝑆𝑀𝑁 + 𝑆𝑊𝐸𝑁} − {𝑇𝑆𝑀𝑁−1 + 𝑆𝑊𝐸𝑁−1} ,      (3.2) 

 

This method elicits promising results and also compares well with the Gravity 

Recovery and Climate Experiment (GRACE) estimation and the monthly basin-

scale terrestrial water balance approach from flux variables (Chen et al., 2009; 
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Rodell et al., 2004; Syed et al., 2008). The ERA-Interim soil profile includes four 

layers of 7, 21, 72, and 189 cm depth (forming a total of 289 cm), while the Noah 

soil profile includes four layers of 10, 30, 60, and 100 cm (200 cm in total). In order 

to be able to compare the TWS information obtained from both these datasets, we 

only considered the first 200 cm of soil in both cases. 

 
Figure 3.1.Spatially averaged time series of ERA-Interim estimated (red curve), GLDAS-Noah estimated 

(blue curve) and observed (black curve) runoff of the upper Yangtze reaches between January 1979 and 

December 2004. 

 

3.4 Results 

The regional accuracies and reliabilities of the ERA-Interim and GLDAS-Noah 

datasets are assessed by comparing their spatially averaged time series of runoff 

for the upper Yangtze River, generated by the observed discharge at the Yichang 

gauging station for the period 1979 to 2004. This procedure is based on the method 

of Balsamo et al. (2009) and implemented as follows.  

a. ERA-Interim/GLDAS-Noah. Firstly, we computed the accumulated monthly 

runoff from ERA-Interim/GLDAS-Noah data at each pixel during the period 

1979 to 2004. Secondly, we calculated the spatial-mean of the accumulated 

monthly runoff (mm) of all pixels located in the upper reaches of the 

Yangtze River basin.  

b. Discharge at the Yichang gauging station. Firstly, we computed the 

accumulated monthly discharge (m3) from the daily discharge data (m3 s-1) of 

the Yichang station. Secondly, we divided this figure by the area of the 
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upper reaches. The second stop is supported by the fact that the Yichang 

station forms the exit points of the upper reaches of the Yangtze River basin. 

Figure 3.1 shows that the ERA-Interim modeled runoff fits the observed values 

better than the GLDAS-Noah modeled runoff does, for the period between 1979 

and 2004. The coefficient of determination (R-squared) and the root mean square 

error (RMSE) between the modeled and observed values for ERA-Interim (RE-O2, 

RMSEE-O) are 0.87 and 4.19 mm, respectively, while for GLDAS-Noah (RG-O2, 

RMSEG-O), they are 0.68 and 14.58 mm, respectively. Note that the runoff is 

consistently underestimated by GLDAS-Noah, which is also confirmed by Zaitchik 

et al. (2010). GLDAS-Noah outputs show errors in 1996 and 1997. Apparently, 

ERA-Interim datasets show higher accuracy and reliability for the Yangtze River 

basin. 

 
Figure 3.2.Spatially averaged time series of standardized anomalies of the annual precipitation in the 

middle and lower Yangtze reaches, based on PREC/L (blue curve), GPCC (red curve), ERA-Interim 

(black circle curve) and GLDAS-Noah (gray diamond curve) data from 1979 to 2010. 

 

To explore the quality of these datasets further and as precipitation arguably forms 

the most critical input into an accurate TWS, precipitation estimates of ERA-

Interim and GLDAS-Noah are compared with products from the GPCC and 

PREC/L, which are derived more directly from observations. The spatially 

averaged time series of standardized annual anomalies have been computed and 

compared for these four datasets. The result (see Figure 3.2) shows a notable error 

in 1996 concerning GLDAS-Noah. GPCC and PREC/L fit very well (their R-squared 
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value is 0.86). Generally speaking, ERA-Interim precipitation fits PREC/L and 

GPCC better than GLDAS-Noah does. The R-squared between ERA-Interim and 

PREC/L (RE-P2) and between ERA-Interim and GPCC (RE-G2) are 0.49 and 0.66, 

respectively, while the R-squared between GLDAS-Noah and PREC/L (RG-P2) and 

between GLDAS-Noah and GPCC (RG-G2) are 0.18 and 0.13, respectively. ERA-

Interim generally shows good agreement with GPCC and PREC/L. 

 

In situ measurements of soil moisture are invaluable for the calibration and 

validation of a land surface model and satellite-based soil moisture retrieval. 

Unfortunately, there is a very low sampling rate with only 1 sample being 

available in the Yangtze River basin from the International Soil Moisture Network 

(ISMN) (Dorigo et al., 2011). However, the error structures of the ERA-Interim and 

GLDAS-Noah soil moisture products have been estimated using the triple 

collocation technique by Dorigo et al. (2010) and Scipal et al. (2008). ERA-Interim 

reanalyzed soil moisture is characterized by a relatively low mean global error of 

0.018 m3 m−3 (Dorigo et al., 2010), which is fairly consistent with the average error 

(a mean global error of 0.020 m3 m−3) obtained by Scipal et al. (2008) by applying 

the triple collocation model to three satellite-based and model-based soil moisture 

products. It is found that the errors of soil moisture estimates in the Yangtze River 

basin are at an intermediate level. This can also be confirmed by the high 

correlation with ASCAT retrievals for the years 2007 and 2008 (Dorigo et al., 2010) 

and ERS-2 retrievals for the years 1998, 1999, and 2000 (Scipal et al., 2008). In 

addition, Liu et al. (2011) has shown that there is a high correlation coefficient (R) 

between GLDAS-Noah and ASCAT retrievals for the Yangtze River basin in 2007. 

It has been firmly proven that active microwave satellite-based (e.g. ASCAT) 

retrievals result in smaller errors in moderately to densely vegetated areas (e.g. the 

Yangtze River basin) than passive microwave products do (Liu et al., 2011). 

Therefore, the high correlation between ERA-Interim, or GLDAS-Noah, and active 

microwave satellite-based soil moisture retrievals provides some confidence in the 

EAR-Interim and GLDAS-Noah soil moisture qualities in the Yangtze River basin. 

 

Other components such as surface water and groundwater form a large proportion 

of the TWS. To assess their impact on the matchup, we compared TWS products 

derived from ERA-Interim to those derived from GRACE observations 
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(reprocessed Release-05, GRACE RL05) for a 7-year period (2004–2010). Figure 3.3 

shows that the magnitude of the spatially averaged TWS anomalies from these two 

datasets (ERA-Interim and GRACE RL05) is similar and exhibits the same variation, 

with a coefficient of determination as high as 0.79. This means that the ERA-

Interim product on TWS over a soil depth of 2 m is representative for the GRACE 

observations that are affected by water storage fluctuations in the entire air–land 

column, including surface water and groundwater. 

 

  

Figure 3.3.TWS anomalies [cm] averaged for a seven-year period (2004–2010) and obtained from ERA-

Interim (red line) and GRACE RL05 (blue line) datasets for the Yangtze River basin. 

 

3.5 Conclusions 

In terms of runoff simulation, the ERA-Interim data show higher accuracy and 

reliability than the GLDAS-Noah data for the upper reaches of the Yangtze River 

basin. Also, the precipitation of ERA-Interim generally shows good agreement 

with GPCC and PREC/L. In addition, the TWS estimated from ERA-Interim has 

good matchup with that from GRACE data at a basin scale. The foregoing indicates 

that ERA-Interim data perform better than GLDAS-Noah in the Yangtze River 

basin, and ERA-Interim is therefore more suitable to investigate the natural TWS 

variations in the study area. 
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Chapter 4 Effects of roughness length parameterizations 

on regional scale land surface modelling of alpine 

grasslands in the Yangtze River basin 

 

This chapter is based on: 

 

Huang, Y., M. S. Salama, Z. Su, R. van der Velde, D. Zheng, M. S. Krol, A. Y. 

Hoekstra, and Y. Zhou, ‘Effects of Roughness Length Parameterizations on 

Regional Scale Land Surface Modelling of Alpine Grasslands in the Yangtze River 

Basin.’ [Accepted subject to minor revisions at Journal of Hydrometeorology (JHM)]  

 

4.1 Abstract 

Current land surface models (LSMs) tend to largely underestimate the daytime 

land surface temperature (Tsfc) for high-altitude regions. This is partly due to 

underestimation of heat transfer resistance, which may be resolved through 

adequate parametrization of roughness lengths for momentum (z0m) and heat (z0h) 

transfer. In this chapter, we address the regional-scale effects of the roughness 

length parameterizations for alpine grasslands, and assess the performance of the 

Noah LSM using the updated roughness lengths compared to the original ones. 

The simulations were verified with various satellite products and validated with 

ground-based observations. More specifically, we designed four experimental 

setups using two roughness length schemes with two different parameterizations 

of z0m (original and updated). These experiments were conducted in the source 

region of the Yangtze River during the period 2005-2010 using the Noah LSM. The 

results show that the updated parameterizations of roughness lengths reduce the 

mean biases of the simulated daytime Tsfc in spring, autumn and winter by up to 

2.7 K, whereas larger warm biases are produced in summer. Moreover, model 

efficiency coefficients (Nash-Sutcliffe) of the monthly runoff results are improved 

by up to 26.3 %, when using the updated roughness parameterizations. In addition, 

the spatial effects of the roughness length parametrizations on the Tsfc simulations 
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are discussed. This study stresses the importance of proper parameterizations of 

z0m and z0h for LSMs, and highlights the need for regional adaptation of the z0m and 

z0h values. 

4.2 Introduction 

The Tibetan Plateau is geographically known as roof of the world or third pole of 

the earth. It not only plays an important role in the formation of the Asian 

monsoon (Yanai et al., 1992; Yanai and Wu, 2006), but also serves as the 

headwaters of several large rivers in Southeast Asia, such as the Indus, Mekong, 

Brahmaputra, Yellow and Yangtze Rivers. This area has experienced significant 

environmental changes, such as increased warming (e.g. Chen et al., 2014), 

enhanced frequency of drought (e.g. Ma and Fu, 2006), intensified land 

degradation and desertification (e.g. Fu and Wen, 2002). In addition, Immerzeel et 

al. (2010) have shown that the hydrologic cycle has changed in recent years, 

influencing runoff of rivers originating from the region. Reliable hydro-

meteorological simulations are required assets for understanding land-atmosphere 

interactions in the Tibetan Plateau and their response to climate change and 

human activities. 

The Tibetan Plateau is an arid and semiarid region mainly characterized by bare 

soil and grassland. Due to strong solar radiation, low air density and the influence 

of the Asian monsoon, the Tibetan Plateau has very distinct and complex diurnal 

and seasonal variations of the surface energy and water budget (Yang et al., 2009). 

Because of this, current land surface models (LSMs), e.g. Common Land Model 

(CLM), Simple Biosphere Model, version 2 (SiB2), and Noah LSM, tend to 

significantly underestimate the daytime land surface temperature (Tsfc) and 

overestimate sensible heat flux (H) in the Tibetan Plateau, particularly in dry 

conditions (Yang et al., 2007, 2009; Chen et al., 2011).  

 

In these LSMs, the bulk formulations based on the Monin-Obukhov similarity 

theory (MOST) have usually been employed to simulate the surface heat fluxes 

between the land surface and atmosphere (Garratt, 1994; Brutsaert, 1998; Su et al., 

2001). Su et al. (2001) have documented that, in order to accurately reproduce H 

through MOST, the roughness lengths for momentum (z0m) and heat (z0h) transfer 
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must be determined properly. Both parameters cannot be directly measured, but 

can be ideally determined using the bulk transfer equations from profile 

measurements of wind and temperature (Sun, 1999; Ma et al., 2002; Yang et al., 

2003) and/or from single-level sonic anemometer measurement (Sun, 1999; 

Martano, 2000; Ma et al., 2008). The importance of z0m and z0h to LSMs has been 

reported by many authors. For instance, LeMone et al. (2008) has pointed out that a 

proper representation of z0h is helpful to reproduce the observed Tsfc and H. Yang et 

al. (2009) has further confirmed that the underestimation of heat transfer 

resistances accounts for the daytime Tsfc underestimation in current LSMs for the 

Tibetan plateau. Based on these results, we argue that robust parameterizations of 

z0m and z0h are imperative for reliable surface heat flux estimates and Tsfc calculation 

in the Tibetan plateau.  

There are a number of theoretical and experimental studies on the 

parameterizations of z0m and z0h for LSMs. In general, z0m is estimated according to 

surface geometric characteristics, whereas z0h is calculated based on z0m through the 

parameterizations of kB-1 (kB-1=ln (z0m/z0h)). Brutsaert (1982, hereafter B82) combined 

the roughness Reynolds number Re* and vegetation characteristics (e.g. leaf area 

index, canopy height) to parameterize kB-1. Zilitinkevich (1995, hereafter Z95) 

proposed an empirical coefficient, known as the Zilitinkevich empirical coefficient 

(Czil), to relate the roughness Reynolds number Re* to kB-1, and since Chen et al. 

(1997), Z95 has been widely used in LSMs. Chen and Zhang (2009,  hereafter C09) 

found that the z0m and z0h of Z95 tend to be overestimated for short vegetation and 

underestimated for tall vegetation, and hence, on the basis of Z95, parametrized z0m 

and z0h as functions of canopy height. Similarly, Zheng et al. (2012, hereafter Z12) 

proposed to utilize green vegetation fraction (GVF) for the modification of Z95. In 

addition, Yang et al. (2008, hereafter Y08) assessed several schemes, including B82 

and Z95, and showed that z0m and z0h can be more realistically parameterized by 

taking into account friction velocity (u∗) and friction temperature (θ∗) in arid and 

semiarid regions of China. 

For the Tibetan Plateau, on the other hand, the studies on roughness length 

parameterizations were still very limited until 1998, when intensive field 

experiments and comprehensive observational networks started to develop (Koike, 

2004; Ma et al., 2008; Xu et al., 2008).  Since then, a number of progresses have been 

http://glcfapp.glcf.umd.edu/library/pdf/ijrs21_p1389.pdf
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made in the parameterizations of roughness lengths for the Tibetan Plateau. For 

instance, Chen et al. (2010) showed that Y08 can perform better in the Tibetan 

Plateau based on extensive evaluation of different roughness length schemes in 

LSMs. This study is very valuable; however it is limited to 2-month pre-monsoon 

episodes, and did not consider revising roughness length schemes other than Y08 

to operate on the Tibetan Plateau. This kind of revision was performed by Zheng et 

al. (2014), in which they used field measurements to revise the values of z0m for Z95, 

C09 and Z12 for a Tibetan site in different seasons. Zheng et al. (2014) showed that 

revising the values for z0m and z0h dramatically improves the performance of the 

Noah LSM on the simulations of Tsfc and surface heat fluxes at a point scale, and 

suggested using the C09 with the newly revised z0m for actual application, due to its 

consistent performance in different seasons.  

The impacts of roughness length parameterizations on Tsfc and surface heat fluxes, 

as well as water fluxes simulations at a regional scale are yet to be investigated for 

the Tibetan Plateau. In this study, we extend on the previous study of Zheng et al. 

(2014) by assessing parameterizations of roughness lengths for Tsfc and heat fluxes 

estimation at a regional scale for the Tibetan Plateau. Furthermore, we explore 

their effects on the simulations of water fluxes and states. We selected two 

roughness length parameterization schemes, Z95 and C09, with the original and 

the Zheng et al. (2014) derived roughness lengths for evaluation. Our selection was 

based on the common usage of Z95 in LSMs, whereas C09 has better performance 

than Y08 and Z12 (Zheng et al., 2014). Moreover, the Jinsha, Mintuo and Jialing sub 

basins (the source region) of the Yangtze River is taken as the study area (Figure 

4.1). This is mainly due to the fact that the source region of the Yangtze River has 

diverse hydro-meteorological conditions, and is relatively less influenced by 

human activities than the neighboring catchments such as the source region of the 

Yellow River basin.  

4.3 Noah land surface model 

The Noah LSM has been widely used for surface heat flux and hydrology 

simulations, and forms the land component of mesoscale and global weather 

forecasting models for investigating complex interactions between land and 

atmosphere (Dirmeyer et al., 2006; Zhang et al., 2011). It uses a Penman-based 
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approximation for latent heat flux (LE) to solve surface energy balance (Mahrt and 

Ek, 1984), a four-layer soil model with thermal conduction equations for simulating 

the soil heat transport, and the diffusivity form of Richards’s equation for soil 

water movement (Mahrt and Pan, 1984). A simple water balance model (SWB) is 

used by the Noah LSM to calculate the surface runoff (Schaake et al., 1996).  

4.3.1 Surface energy budget 

In general, the surface energy balance equation can be written as: 

4(1 ) ( )net sfcR S L T       ,     (4.1) 

0netR H LE G   ,     (4.2) 

In equation (4.1), Rnet is the net radiation (W m-2), S
and L

 are the downward 

shortwave and longwave radiation (W m-2), respectively. Tsfc is the land surface 

temperature (K),   is the Stefan-Boltzmann constant (= 5.67 10-8 W m-2 K-4),   is 

the surface albedo (-), and   is the surface emissivity (-). In equation (4.2), H is the 

sensible heat flux (W m-2), LE is the latent heat flux (W m-2), and G0 is the soil heat 

flux (W m-2). 

The sensible heat flux, H, is calculated through the bulk heat transfer equation 

based on the MOST (Garratt, 1994; Brutsaert, 1998):  

[ ]p h air sfcH c C u     ,     (4.3) 

where   is the air density (kg m-3), pc  is the specific heat capacity of dry air 

(=1005 J kg-1 K-1), hC  is the land-atmosphere exchange coefficient for heat (-), u is 

the wind speed (m s-1), air  is the potential air temperature (K), and sfc  is the 

potential temperature at the surface (K). It is worth noting that Ch is calculated 

based on the roughness lengths, which will be introduced later. 

In the Noah LSM, the potential evaporation (LEP) is calculated using a Penman-

based energy balance approach (Mahrt and Ek, 1984). The derivation of LEP 

imposes a saturated ground surface and zero canopy resistance while combining a 
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bulk aerodynamic formulation with a surface energy balance expression to yield a 

diurnally varying LEP. Assuming the surface exchange coefficient for water vapor 

(Cq), the diurnally dependent LEP can be written as: 

0( ) ( )

1

net q s

P

R G C u q q
LE

   


 
,     (4.4) 

where Δ is the slope of the saturated vapor pressure curve (kPa K-1), λ is the latent 

heat of vaporization (J kg-1); Cq is the exchange coefficient for water vapor; qs and q 

are the saturation and actual specific humidity (kg kg-1) at the first atmospheric 

model level, respectively. It is worth noting that Cq is assumed to be the same as Ch 

and calculated based on the roughness lengths, which will be introduced later. 

The actual evapotranspiration (ET) is calculated as the sum of three components, 

which are soil evaporation (Edir), evaporation of intercepted precipitation by the 

canopy (Ec), and transpiration through the stomata of the vegetation (Et). The soil 

evaporation extracted from the top soil layer is calculated as:  

1(1 )( ) fx

dir c P
wE f LE

s w

 

 


 


,     (4.5) 

where fc is the fractional vegetation cover, fx is an empirical constant taken equal to 

2.0, θs is the saturated soil moisture content, θw is the soil moisture content at 

wilting point, and θ1 is the soil moisture content in the first soil layer (all in m3 m-3). 

The direct evaporation of rain intercepted by the canopy is calculated as, 

0.5

max

( )c c P

cmc
E f LE

cmc
 ,     (4.6) 

where cmc  and maxcmc are the actual and maximum canopy moisture contents 

(kg m-2).  

Moreover, the evaporation from the root zone through the stomata, often referred 

to as transpiration, is determined following, 
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0.5

max

[1 ( ) ]t c c P

cmc
E f P LE

cmc
  ,     (4.7) 

where cP is the plant coefficient. 

The soil heat flux, G0, is calculated following Fourier’s Law using the temperature 

gradient between the surface and the mid-point of the first soil-layer: 

1

0

( )
( ) ( )

( )

sfc s

h h

T TT
G K K

Z dz
 


 


,     (4.8) 

where 1sT  is the temperature at the mid-point of the first soil layer (K), and hK  is 

the soil thermal conductivity (W m-1 K-1) that is a function of soil water content (𝜃) 

and soil properties. 

4.3.2 Runoff simulation and water budget 

The Noah surface infiltration scheme follows a simple water balance model 

(Schaake et al., 1996) for its treatment of the subgrid variability of precipitation and 

soil moisture. Surface water is generated when the rain intensity exceeds the 

infiltration capacity and is calculated as: 

maxsurfR P I  ,     (4.9) 

where surfR  is the surface runoff (m s-1), P is the rain intensity (m s-1), and maxI  is 

the maximum infiltration capacity (m s-1). 

maxI  can be written as:   

max

[1 exp( )]

[1 exp( )]

b

b

D kdt
I P

P D kdt




 
,     (4.10) 

where bD  is the total soil moisture deficit in the soil column (m3 m-3) and kdt is a 

constant (-) defined by, 
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s
ref

ref

K
kdt kdt

K
 ,     (4.11) 

where sK  is the saturated hydraulic conductivity (m s-1), refkdt  and refK  are 

experimentally determined parameters set to 3.0 (-) and 2.0×10-6 (m s-1) for large-

scale simulations, respectively. 

The base flow is calculated as follows:  

4( )baseR SLOPE K   ,     (4.12) 

where K is the hydraulic conductivity (m s-1), 4  is the moisture content in the 

fourth soil layer, and SLOPE is the slope coefficient (-).  

The water balance equation can be written as: 

P Q ET S   ,     (4.13) 

surf baseQ R R  ,     (4.14) 

where Q is the runoff (m s-1),  ET is the evapotranspiration (m s-1), and S  (m s-1) 

is the change in water storage. 

4.3.3 Roughness length parameterizations for the Noah LSM 

Z95 and C09 are two roughness length schemes which are currently utilized within 

the Noah LSM, and their formulations are shown in Table 4.1. In the scheme Z95, 

z0m is defined as a function of land cover, and the Reynolds number-dependent 

formulation proposed by Zilitinkevich (1995) is implemented for the z0h calculation. 

The Zilitinkevich’s coefficient (Czil) is an empirical constant and currently specified 

as 0.1 in the Noah LSM based on calibration with field data measured over 

grassland (Chen et al., 1997). As can be seen from Table 4.1, Czil is a key parameter 

for z0h calculation. However, Chen and Zhang (2009) found that the 

parameterization of Czil in Z95 is unable to reproduce the seasonal variations of z0h 

due to plant growth pattern, and proposed to relate Czil to canopy height. Therefore, 
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in the scheme C09, Czil was calculated based on z0m ( 00.4 /0.07
10 mz

zilC


 ), whereas 

the seasonal values of z0m was calculated based on GVF (Table 4.1). More 

specifically, the values of z0m for grassland in C09 are linearly interpolated between 

a minimum (z0m,min, equal to bare soil z0m when GVF=0) and a maximum (z0m,max, 

equal to fully vegetated z0m when GVF=1). This modification is based on a 

relationship derived from 12 AmeriFlux datasets collected over a variety of land 

covers and climate regimes.  

The surface exchange coefficient for heat (Ch) and water vapor (Cq) transfers are 

parameterized as functions of roughness lengths by Chen et al. (1997) as follows: 

2

0 0

0 0

[ln( ) ( ) ( )][ln( ) ( ) ( )]

/

m h

m m h h
m h

h q z z z z z z

z L L z L L

R
C C



       

  ,     (4.15) 

where z0m is the roughness length for momentum transport (m), z0h is the roughness 

length for heat transport, m  and  h  are the stability correction function for 

momentum and sensible heat transfer, respectively; L is the Obukhov length (m), z 

is the observation height (m), κ is the von Kármán constant (taken as 0.4), and R is 

related to the turbulent Prandtl number (Pr) and taken as 1.0. 

4.3.4 Implementation 

In this study, we employed version 3.4.1 of the Noah LSM, which is freely 

available at the website http://www.ral.ucar.edu/research/land/tech-

nology/lsm.php. The United States Geological Survey (USGS) 30-second global 24-

category vegetation (land-use) data were used as the land use data. The 

corresponding vegetation parameters and soil hydraulic and thermal parameters 

are obtained from the default database of the Noah LSM. The monthly GVF 

database for the Noah LSM is based on the 5-yr (1985-90) Advanced Very High 

Resolution Radiometer (AVHRR) the Normalized Difference Vegetation Index 

(NDVI) products. Four soil layers with thickness of 0.1, 0.3, 0.6, and 1.0 m are 

prescribed by the application of Noah in a default mode. The spin-up was 

completed by running the model repeatedly through 2004 until each of the 

variables, which include Tsfc, runoff and soil moisture, reaches equilibrium, when 

http://www.ral.ucar.edu/research/land/tech-nology/lsm.php
http://www.ral.ucar.edu/research/land/tech-nology/lsm.php
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each of the variables for the spin-up in the nth year meets the condition of the 

following equation: 

1 1| | 0.001| |n n nVar Var Var    ,     (4.16) 

where Var stands for each of the variables for the spin-up, n is the year number. 

 

 

Figure 4.1. Elevation map of the Jinsha, Mintuo and Jialing sub basins located in the upper reaches of 

the Yangtze. The black triangle represents the Cuntan hydrological station. The main stream of the 

Yangtze is delineated in blue, and the boundary of the three sub basins in black. 

 

4.4 Study area and data processing 

The Jinsha, Mintuo and Jialing sub basins in the upper reaches of the Yangtze, 

located in the central and eastern part of the Tibetan Plateau, are the study area. As 

shown in Figure 4.1, the source region of the Yangtze River lies in a high-altitude 

mountainous area. The Tuotuo River is the source of the Yangtze River, and 

originates from the glaciers of the Jianggendiru Snow Mountains in the Tanggula 

Mountain Range. 
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Figure 4.2. The distribution of vegetation based on the United States geological Survey (USGS) land 

cover classification. The classes 1 to 7 represent the land covers of the dryland cropland and pasture (1), 

irrigated cropland and pasture (2), cropland/grassland mosaic (3), grassland (4), shrubland (5), mixed 

shrubland/grassland (6), and others (7), respectively. It is noted that Class 4 represents the land cover of 

grassland. 

The climate in the study area is governed by the East Asian monsoon. As a result, it 

has a large southeast-northwest precipitation gradient, and the annual 

precipitation (rainfall and snowfall) amount within the study area tends to 

decrease inland. The annual precipitation amount is about 400 mm yr-1, and 85% of 

which occurs during the wet/warm season from May to October. This is a specific 

weather phenomenon of the Yangtze River basin. Under the unique plateau 

climate, the land cover of the study area mainly consists of grasslands (Figure 4.2). 

More specifically, these alpine grasslands vary from semi-arid steppe and shrub 

lands, to alpine steppe and moist alpine meadows, which are closely associated 

with the precipitation gradient across the plateau. 
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Table 4.1. Experiments with different parameterizations of roughness lengths (m) for momentum (z0m) 

and heat (z0h) transfer implemented in Noah LSM. Czil is the Zilitinkevich (1995) empirical coefficient, 

Re* is the roughness Reynolds number, u∗ is the friction velocity (m s-1), v is the kinematic molecular 

viscosity (taken as 1.5×10-5 m2 s-1). GVFnorm = (GVF-GVFmin)/(GVFmax-GVFmin)  

Experiment/Pa

rameterization  

Scheme Formulation Reference/Source 

Z95-original Z95 

0 0 exp( Re )h m zilz z C     

0Re /mu z v   

0.1zilC    

z0m = 0.120 for grassland 

Zilitinkevich(1995) 

 

Z95-updated Z95 

0 0 exp( Re )h m zilz z C     

0Re /mu z v   

0.1zilC    

z0m = 0.035 for grassland 

Zilitinkevich (1995) 

 

 

 

Zheng et al. (2014) 

C09-original C09 

0 0 exp( Re )h m zilz z C    

0Re /mu z v  

00.4 /0.07
10 mz

zilC


  

0 0 ,min 0 ,max(1 )m norm m norm mz GVF z GVF z    

z0m,min=0.100, z0m,max=0.120 for grassland 

 

 

Chen and Zhang 

(2009) 

C09-updated C09 

0 0 exp( Re )h m zilz z C    

0Re /mu z v  

00.4 /0.07
10 mz

zilC


  

0 0 ,min 0 ,max(1 )m norm m norm mz GVF z GVF z  

z0m,min=0.011, z0m,max=0.035 for grassland 

 

 

Chen and Zhang 

(2009) 

 

Zheng et al. (2014) 

 

The regional accuracy of the Noah runoff output is assessed by comparing the 

spatially averaged time series of runoff in the study area to the corresponding time 

series generated from the observed discharge at the Cuntan gauging station for the 

study period. The procedure of computing the spatially averaged time series of 

runoff is based on the method of Balsamo et al. (2009) and is implemented as 

follows. Firstly, the discharge data (m3 s-1) of the Cuntan station is accumulated to 

monthly discharge (m3 month-1), and divided by the area of the study area, because 
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the Cuntan gauging station is the outlet of the study area. Secondly, the daily 

runoff data simulated by the Noah LSM are accumulated to monthly values at each 

pixel during the study period. The spatially averaged time series of Noah runoff is 

then computed as the spatial-mean of these accumulated monthly values of all 

pixels located in the study area. 

The observed discharge data of the Cuntan station are barely influenced by 

significant aquifers operation or other human activities, as human activities mainly 

occur in the middle and lower reaches of the basin. More specifically, the Three 

Gorges Reservoir (TGR) has little influence on the discharge of the Cuntan station, 

as Cuntan forms the entrance to the TGR (Yang et al., 2010). According to the 

Global Map of Irrigation Areas (GMIA) provided by the global water information 

system (AQUASTAT) of Food and Agriculture Organization (FAO), the minority 

of irrigation occurs in the source region of the basin. Thus, the observed discharge 

of the Cuntan station is also not much affected by irrigation. In addition, the 

population in the source region of the basin is small, and therefore the effects of 

human water use on the observed discharge of the Cuntan station can be negligible.  

4.5 Experiments design 

To assess the effects of roughness length parameterizations on the Noah LSM 

simulations, we designed four numerical experiments with different configurations, 

i.e. Z95-original, Z95-updated, C09-original, and C09-updated (Table 4.1). These 

four experiments were conducted for the study area during the period 2005-2010. 

The first two experiments, Z95-original and Z95-updated, employ the Z95 scheme, 

whereas C09-original and C09-updated use the C09 scheme. The original Noah 

values of roughness lengths (z0m=0.12 m for grassland and z0m=0.1 m for bare soil) 

are used in Z95-original and C09-original, whereas Z95-updated and C09-updated 

use the revised z0m values (z0m=0.035 m for grassland and z0m= 0.011 m for bare soil) 

by Zheng et al. (2014). The values of z0m used in Z95-original and C09-original for 

the Noah LSM are publicly available in the vegetation parameter table, which are 

described at the official Noah LSM website (http://www.ral.ucar.edu/research/lan-

d/technology/lsm.php).  

http://www.ral.ucar.edu/research/lan-d/technology/lsm.php
http://www.ral.ucar.edu/research/lan-d/technology/lsm.php
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Figure 4.3. The mean bias errors of the Noah simulations at 11 A.M (local solar time) produced by Z95-

original (a*), Z95-updated (b*), C09-original (c*), and C09-updated (d*) during spring (*1), summer (*2), 

autumn (*3), and winter (*4) based on 312 daytime images of MOD11C1 Tsfc products (around 10:30 A.M, 

local solar time) during the period 2005-2010. Units: K. 

 

4.6 Results 

4.6.1 Impacts on Tsfc and surface energy budget modelling 

The mean bias errors (MBEs) between the Noah LSM simulations at 11 A.M (local 

solar time) and the selected 312 daytime images of MOD11C1 Tsfc in the period 

2005-2010 are computed for the different roughness length parameterizations and 

for four seasons (Figure 4.3). The histograms of the seasonal bias errors for 

grassland are depicted in Figure 4.4. Figures 4.3 and 4.4 both show that Z95-

original and C09-original generally underestimate the Tsfc in spring, autumn and 

winter. Especially in winter, the Tsfc is significantly underestimated in Z95-original 

and C09-original, with MBE of -7.6K (Figure 4.4(a4)) and -6.8K (Figure 4.4(c4)), 

respectively. These results are consistent with the previous finding that the Noah 
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LSM tends to underestimate the Tsfc during the daytime when applied to arid and 

semiarid regions (e.g. Hogue et al., 2005; Yang et al., 2009).  

 

Figure 4.4. The histograms of the bias errors of the Noah simulations at 11 A.M (local solar time) 

produced by Z95-original (a*), Z95-updated (b*), C09-original (c*), and C09-updated (d*) during spring 

(*1), summer (*2), autumn (*3), and winter (*4) based on 312 daytime images of MOD11C1 Tsfc products 

(around 10:30 A.M, local solar time) during the period 2005-2010. µ and σ respectively represent the 

mean value and the standard deviation of the histograms. Units: K. 

On average, Z95-updated reduces the MBEs relative to Z95-original by 2.7, 1.4 and 

1.4 K for spring, autumn and winter, whereas the MBE in summer has increased by 

1.9 K. Similarly, C09-updated produces less MBE values (1.7, 2.3 and 0.8 K) than 

C09-original in spring, autumn and winter, whereas larger MBE (4.3 K) is 

produced in summer. The use of Z95-updated and C09-updated has improved the 

spatial representativeness of the Noah LSM simulated Tsfc in the relatively high-

altitude regions, compared to the underestimated Tsfc values when using Z95-

orignal and C09-original. The relationship between the elevation and the quality of 

the results on Tsfc will be discussed later.  
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Table 4.2. Means (µ) and standard deviations (σ) of H, Rnet, LE, and G0 simulated by Z95-original, Z95-

updated, C09-original, and C09-updated which correspond to the evaluated Tsfc during different seasons. 

Units: W m-2. 

 
Spring Summer Autumn Winter 

µ σ µ σ µ σ µ σ 

H 

Z95-original 159 79 110 62 80 47 105 51 

Z95-updated 103 60 89 50 55 33 59 36 

C09-original 117 60 92 48 60 34 71 39 

C09-updated 70 40 67 33 39 21 35 22 

Rnet 

Z95-original 399 127 450 135 288 121 221 79 

Z95-updated 381 128 440 133 279 122 202 82 

C09-original 387 127 442 133 281 122 208 81 

C09-updated 371 125 421 128 272 117 191 79 

LE 

Z95-original 66 62 197 84 87 66 16 19 

Z95-updated 67 57 190 80 84 64 18 19 

C09-original 70 58 194 81 88 64 20 20 

C09-updated 71 51 175 72 81 57 24 19 

G0 

Z95-original 175 74 144 67 121 63 100 45 

Z95-updated 212 90 164 74 140 70 125 60 

C09-original 200 83 158 71 132 68 117 54 

C09-updated 232 94 183 77 152 72 131 63 

 

Table 4.2 lists the means (µ) and the standard deviations (σ) of H, Rnet, LE, and G0 

simulated by the four experiments which correspond to the evaluated Tsfc during 

different seasons. The mean values of H from Z95-original and C09-original are 

respectively much larger than those from Z95-updated and C09-updated. In other 

words, Z95-updated and C09-updated notably reduce H values by 21~56 W m-2 

compared to Z95-original and C09-original for all seasons. The standard deviations 

of H indicate that the shapes for H distribution from Z95-updated and C09-

updated become sharper and narrower than those of Z95-original and C09-original. 

As can also be seen from Table 4.2, Z95-updated and C09-updated produce 

averages of Rnet that are respectively about 9~21 W m-2 lower than Z95-original and 

C09-original, whereas Z95-updated and C09-updated produce averages of G0 that 
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are 14~37 W m-2 higher than Z95-original and C09-original. The mean values of LE 

produced by Z95-updated and C09-updated are very close to those simulated by 

Z95-original and C09-original, especially during spring and winter, and the 

differences between the H produced by the four experiments are notably larger 

than those between the LE and G0. This is not surprising because in the dry season 

the conditions (e.g. soil moisture and temperature) for the production of latent heat 

are not favorable, and the surface energy budget is dominated by H (Chen et al., 

2011).  

Table 4.3. MBE, R2, RMSE, RE and NSE between the observed and estimated runoff produced by Z95-

original, Z95-updated, C09-original, and C09-updated for the period 2005-2010. 

Experiment MBE(mm 

month-1) 

R2 RMSE(mm 

month-1) 

RE(mm 

month-1) 

NSE 

Z95-original -14.12 0.79 18.09 -0.51 0.38 

Z95-updated -12.72 0.80 16.61 -0.47 0.48 

C09-original -11.06 0.82 14.96 -0.42 0.58 

C09-updated -8.34 0.83 12.75 -0.34 0.69 

 

4.6.2 Impacts on water budget modelling 

The agreement between the simulations produced by numerical experiments and 

the observations is quantified using the following statistics: MBE, coefficient of 

determination (R2), root-mean-square error (RMSE), relative error (RE) and Nash-

Sutcliffe model efficiency coefficient (NSE) (Nash and Sutcliffe, 1970). NSE is 

commonly used to quantitatively describe the accuracy of hydrological model 

outputs, with a range from -∞ to 1, the closer to 1 the more accurate the model 

prediction (Moriasi et al., 2007). 
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Figure 4.5. Monthly time series of the observed and simulated runoff produced by Z95-original (a), Z95-

updated (b), C09-original (c), and C09-updated (d) during the period 2005-2010. 

Figure 4.5 compares the observed runoff with the simulation produced by all 

experiments. All designed experiments are capable of capturing the observed 

temporal pattern of the runoff, most notably the extreme drought in 2006. In 

comparison to measured values, the Noah LSM with Z95-original and C09-original 

systematically underestimated runoff, especially during the warm season (May-

October). However, as can be seen in Figure 4.5 and Table 4.3, the Noah LSM with 

Z95-updated and C09-updated performs better on monthly runoff simulations 

than that with Z95-original and C09-original, respectively. We can also see from 

Figure 4.5 that the Noah LSM using C09 performs better on monthly runoff 

simulations than using Z95. In terms of NSE, the runoff simulations of the Noah 

LSM can be improved by 26.3% and 19.0% with Z95-updated and C09-updated 

compared to Z95-original and C09-orginal, and the runoff results produced by 

C09-updated have 81.6%, 43.7%, and 19.0% improvement on that of Z95-original, 

Z95-updated, and C09-original, respectively. The results show that the selection of 

appropriate roughness length parameterizations improves the accuracy of runoff 

products of the Noah LSM. 
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Figure 4.6. Spatially averaged monthly time series of (a) the GRACE-observed TWS anomalies and (b) 

ET produced by Z95-original (blue), Z95-updated (orange), C09-original (green), and C09-updated (red) 

during the period 2005-2010. 

We further verify the TWS anomalies simulated by the different experiments with 

the GRACE-observed TWS anomalies. As shown in Figure 4.6(a) and Table 4.4, the 

seasonal variations of the TWS from Z95-updated and C09-updated better match 

GRACE-observed TWS variations than those obtained from Z95-original and C09-

orginal in terms of NSE. Similar to runoff, the simulations of TWS anomalies are 

improved by implementing the scheme C09 in the Noah LSM in comparison with 

Z95. This further demonstrates the importance of adequate roughness length 

parameterizations for modelling the water budget.  



Effects of Roughness Length Parameterizations on Regional Scale Land Surface Modelling 

42 

 

Table 4.4. MBE, R2, RMSE, RE and NSE between the GRACE-observed and estimated TWS anomalies 

produced by Z95-original, Z95-updated, C09-original, and C09-updated for the period 2005-2010. 

Experiments 
MBE(mm 

month-1) 
R2 

RMSE(mm 

month-1) 

RE(mm 

month-1) 
NSE 

Z95-original 2.38 0.66 36.19 0.72 0.23 

Z95-updated 3.01 0.63 33.91 0.57 0.32 

C09-original 3.13 0.65 31.71 0.52 0.41 

C09-updated 3.88 0.63 30.03 0.33 0.47 

 

4.7 Discussion 

Equation (4.15) predicts that the values of z0m and z0h determine the surface 

exchange coefficient for heat transfer, Ch, which governs the total surface heat 

fluxes and affects Tsfc simulations. In the Z95 scheme, z0m and Czil are set to constant 

values, whereas z0h was described as a function of z0m and atmospheric conditions 

(e.g. wind speed). On the other hand, the C09 scheme estimates z0m as a function of 

GVF, and both Czil and z0h vary with z0m. This means that the dynamic of GVF 

greatly affects surface heat fluxes and Tsfc simulations when using the C09 scheme. 

The decrease of z0m leads to the increase of Czil, which will further reduce z0h and 

increase the heat transfer resistance, which is also shown in Table 4.5. 

Table 4.5. Averaged z0m, z0h and Czil produced by Z95-original, Z95-updated, C09-original, and C09-

updated which correspond to the evaluated Tsfc during different seasons. 

 Spring Summer Autumn Winter 

z0m z0h Czil z0m z0h Czil z0m z0h Czil z0m z0h Czil 

Z95-original 0.12 0.10 0.10 0.12 0.12 0.10 0.12 0.11 0.10 0.12 0.10 0.10 

Z95-updated 0.04 0.01 0.10 0.04 0.03 0.10 0.04 0.02 0.10 0.04 0.01 0.10 

C09-original 0.10 0.10 0.26 0.10 0.10 0.26 0.11 0.11 0.24 0.10 0.10 0.26 

C09-updated 0.01 0.01 0.84 0.03 0.03 0.67 0.02 0.02 0.76 0.01 0.01 0.85 
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Figure 4.7. The histograms of Ch corresponding to the evaluated Tsfc simulated by Z95-original (a*), Z95-

updated (b*), C09-original (c*), and C09-updated (d*) during spring (*1), summer (*2), autumn (*3), and 

winter (*4). 

The differences between the Ch produced by the four experiments in Figure 4.7 are 

consistent with that of the simulated Tsfc as shown in Figures 4.3 and 4.4, and 

surface heat fluxes (H, Rnet, LE, G0) as listed in Table 4.2. More specifically, the 

usage of Z95-original and C09-original in the Noah LSM generally underestimates 

the Tsfc for alpine grasslands in the study area in spring, autumn and winter. This 

indicates that the coupling of heat from the grasslands to the atmosphere is too 

strong, i.e. the values of Ch are overestimated. The overestimation of Ch will pump 

more H to heat the atmosphere and cool down the land surface. The end result of 

this cooling leads to lower upward longwave radiation (thus larger Rnet) and a 

lower soil temperature gradient (thus lower G0). On the other hand, using Z95-

updated/C09-updated in the Noah LSM produces smaller values of Ch (Figure 4.7), 

and therefore simulates higher Tsfc compared with using Z95-original/C09-original. 

As a result, the performance of the Noah LSM can be generally improved during 

spring, autumn, and winter. In contrast, using Z95-updated/C09-updated in the 

Noah LSM increases the warm biases in summer, when the Tsfc simulation results 

from the Noah LSM with Z95-original/C09-orignal match well with the Tsfc of 

MODIS.  
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Figure 4.8. The mean bias errors of the Noah simulations for different altitudes at 11 A.M (local solar 

time) produced by Z95-original (blue), Z95-updated (red), C09-original (green), and C09-updated 

(yellow) during spring (*1), summer (*2), autumn (*3), and winter (*4) based on 312 daytime images of 

MOD11C1 Tsfc products (around 10:30 A.M, local solar time) during the period 2005-2010. Units: K. 

The reason that the Noah LSM performs differently in summer is the distinct 

seasonal march of the surface water and energy budget in the central and eastern 

Tibetan Plateau. During the monsoon period (usually from June to September), the 

dry land surface becomes wet due to frequent rainfall events, and hence LE 

dominates the energy budget instead of H (Yang et al., 2008). This demonstrates 

that the Noah LSM with Z95-orignal/C09-orignal can perform well on Tsfc 

simulations for alpine grasslands during wet monsoon seasons, which is consistent 

with the assessment of the Noah LSM on the Tsfc simulations using observations in 

the Tibetan Plateau (Yang et al., 2008). This also implies that the schemes Z95 and 

C09 do not produce the seasonal variations of the Tsfc simulations in the Tibetan 

Plateau. We can also see from Figures 4.3 and 4.4 that the Noah LSM using the C09 
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scheme generally performs better for grasslands than that using the scheme Z95. 

This is because the scheme Z95 tends to largely underestimate the heat transfer 

resistances for short vegetation (grassland, crops, shrub) in dry conditions (e.g. 

Chen et al., 2011), and relating Ch to the GVF dynamic can more realistically 

represent surface exchange processes in LSMs (Chen and Zhang, 2009). 

As shown in Figure 4.8, the Noah LSM with Z95-updated/C09-updated improves 

the Tsfc simulation performance in the relatively high-altitude regions (above 4000 

m), which may suggest a relation between the Noah LSM of Tsfc and the elevation. 

This relationship was also confirmed by, for instance, Salama et al. (2012). This 

dependency is mainly attributed to the fact that the climatology and land cover 

conditions of the higher altitude central Tibetan Plateau are different from the 

lower elevation southeastern Tibetan Plateau (Figure 4.1). More specifically, due to 

the large southeast-northwest precipitation gradient of the Tibetan Plateau 

(ranging from 100 to 700 mm in mean annual precipitation), the southeastern 

plateau is relatively wetter than the central part (Yang et al., 2008). As a result, the 

distribution of the Tibetan grasslands is closely associated with the precipitation 

gradient across the plateau. The central plateau mainly consists of semi-arid steppe, 

whereas moist alpine meadow occurs in the relatively mesic southeastern plateau 

(Yang et al., 2010; Su et al., 2013). This further adds weight to the notion that the 

usage of Z95-updated and C09-updated is more suitable under dry conditions. It 

also indicates that the roughness length schemes Z95 and C09 have difficulties in 

estimating the reliable spatial distribution of daytime Tsfc for a region that has 

diverse climate and land surface conditions. Besides, this suggests that the 

vegetation types presented on the land surface in the Noah LSM should be further 

specified with respect to hydro-meteorological conditions, and the roughness 

length parameterizations should be selected and, if needed, modified according to 

these specified vegetation types. The grassland in the Tibetan Plateau, for instance, 

can be classified into arid alpine steppe, semi-arid alpine steppe, moist alpine 

meadows, etc.  

The standard deviations of the four experiments for the same season (shown in 

Figure 4.4) are very close, indicating that changing the roughness lengths only 

changes MBE without affecting the shape of the probability distribution of the 

errors. On the one hand, it means that the MBE can be used as the single indicator 
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for the evaluation of the simulated Tsfc. On the other hand, our results show that it 

is possible to model the probability distribution of the errors between Noah 

simulation and MODIS satellite observation, which can be used for data 

assimilation.  

Besides the Tsfc and surface heat fluxes simulations, the roughness length 

parameterizations have large effects on the simulations of the water budget 

components. As described in section 4.6, Z95-updated/C09-updated improves the 

monthly runoff and TWS simulations (Figures 4.5 and 4.6), which indicates that a 

more realistic representation of the heat transfer resistance can increase the Noah 

LSM simulation accuracy of the water fluxes and states. The improvement in 

runoff simulation is attributed to the increased amount of monthly runoff (Figure 

4.5 and Table 4.3), predominantly the increase of base flow (Figure 4.9).  

The fact that the Noah LSM with Z95-updated/C09-updated increases the monthly 

amount of base flow and benefits the TWS anomalies can be explained as follows. 

The higher Tsfc simulated by the Noah LSM with Z95-updated/C09-updated, due to 

the decreased Cq, will reduce the Rnet (equation (4.1)), lead to more G0 by raising the 

ground-soil temperature gradient (equation (4.8)), and consequently reduce the LEP 

(equation (4.4)). Moreover, the lower z0m means the decreased Cq (equation (4.15)), 

which will weaken the land-atmospheric coupling strength for momentum transfer 

and reduce the LEP (equation (4.4)). This decreased LEP could reduce the actual ET 

(equations (4.5) - (4.7)), which is consistent with that, as shown in Figure 4.6(b), the 

ET results of Z95-updated/C09-updated during the warm season are lower than 

that of Z95-original/C09-original. As ET decreases, less water is extracted from soil 

for ET, and more water is retained in the soil columns. As a result, the soil moisture 

of Z95-updated/C09-updated is higher than that of Z95-original/C09-original. The 

increased soil moisture favors the runoff generation, leading to an improved runoff 

simulation for Z95-updated/C09-updated. More specifically, the increased liquid 

soil moisture raises hydraulic conductivity (Campbell, 1974) and increases the soil 

drainage, leading to more base flow generation (equation (4.12)).  
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Figure 4.9. Monthly time series of (a) the surface runoff and (b) the base flow produced by Z95-original 

(blue), Z95-updated (orange), C09-original (green), and C09-updated (red) during the period 2005-2010. 

On the other hand, we can see from Figure 4.9(a) that the increased soil moisture 

content has a minor effect on the simulated surface runoff. This can be attributed to 

the fact that the moisture deficits in the soil columns are usually small during the 

wet monsoon period (Schaake et al., 1996), and hence the maximum infiltration 

capacities calculated based on equation (4.10) for the four experiments are very 

close. Consequently, the surface runoff simulation, which is determined by the rain 

intensity and the maximum infiltration capacity as shown in equation (4.9), does 

not vary largely. Likewise, the difference between the amounts of runoff from Z95 
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and from C09 is attributed to the difference between the values of Ch (Cq) from Z95 

and from C09. This demonstrates that the roughness length parameterizations, 

which determine Ch and Cq, play an important role in controlling the total amount 

of runoff in the LSM simulation for high-altitude catchments.  

It should be noted that the improvement in runoff simulation mainly occurs in the 

warm season (May-October). This is due to the fact that, during the cold season 

(November-April), the production of LE is very low due to the limitations of, for 

instance, soil moisture and temperature, and therefore the roughness lengths have 

a negligible effect on the ET simulation. It should be noted that snow cover is 

limited because of strong wind and little precipitation in the study area during the 

cold season (Malik et al., 2014), and hence the runoff production is little influenced 

by the snowpack. Moreover, it may be unfair to compare the Noah LSM simulated 

runoff directly (without river routing) with the discharge at the gauging station. 

However, we compare the runoff with the observation at a monthly scale rather 

than an hourly or a daily scale, thus the influence of the river routing on the 

comparison is minor, which is supported by Yang et al. (2011) and Cai et al. (2014).  

Although Z95-updated/C09-updated improves the Noah LSM simulations, the Tsfc 

and monthly runoff are still largely underestimated. This can be explained by the 

following reasons. The first one is the imperfect roughness length schemes for 

high-altitude regions under frozen soil conditions. When the water in the soil is 

frozen, the land surfaces tend to be smoother (Zheng et al., 2014). As such, the 

values of z0h and z0m are still overestimated within the Noah LSM leading to only a 

slight improvement in Tsfc simulation for the winter period even when using the 

Z95-updated/C09-updated parameterizations (Figures 4.3 and 4.4).  

The second explanation forms the inherent uncertainties associated with the 

simulation of the soil water flow and heat transport and their impact of the 

computed surface energy and water budgets. For instance, Yang et al. (2005, 2009) 

and Chen et al. (2013) have demonstrated that the absence of vertical soil 

heterogeneity in the model structure causes difficulties in the simulation of soil 

moisture and temperature profiles across the Tibetan Plateau by the Noah LSM. 

Furthermore, Su et al. (2013) pointed out that the simulation of freeze-thaw 

transitions in the soil play an important role in reliability of the modelled soil 
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moisture and temperature profiles. In addition, the soil column adopted by the 

Noah LSM has only a 2 m depth, and a free gravitational drainage is employed for 

the base flow production. The disadvantage of this setup is the inability to 

redistribute water across the soil column via the capillary rise and deeper layers 

including groundwater (Gulden et al., 2007; Niu et al., 2011). This can lead to dryer 

soils, and consequently an underestimation of the runoff as Niu et al. (2005) and 

Yang et al. (2011) have previously reported. 

The third reason is the forcing data. Inaccuracies existing in the forcing data may 

have substantial impacts on the land surface simulations. Chen et al. (2011) 

compared the daily averaged radiation fluxes of ITPCAS forcing data against that 

from field measurements at three dry-land sites in the Tibetan Plateau, and the 

results have shown that the ITPCAS data are dramatically improved in terms of 

radiation in comparison with the widely used GLDAS dataset, however the daily 

averaged longwave radiation of the ITPCAS forcing data is still notably 

underestimated. As incoming radiation fluxes play a key role for simulating 

surface energy partitioning and Tsfc, the underestimated incoming radiation can be 

one of the reasons that cause the underestimation of Tsfc.  

4.8 Conclusions 

In this chapter, we have addressed the regional scale effects of the roughness 

length parameterizations for grasslands on the Tibetan Plateau in the Noah LSM. 

Four numerical experiments with two different roughness schemes were 

conducted during the period 2005-2010 for the high-altitude hydrological 

catchment, the source region of the Yangtze basin in China. The experimental 

setups were based on physical process knowledge, verified with various satellite 

products and validated with ground-based observations. This study highlights the 

need for regional adaptation of the z0m and z0h values, and provides insight into the 

regional scale land surface modelling of high-altitude catchments. The main 

findings of this work are listed as follows: 

1). The usage of Z95-updated/C09-updated improves, validated by the MODIS 

products, the regional scale predictions of the Noah LSM with Z95-original/C09-

original on Tsfc for a high-altitude basin in spring, autumn and winter, but larger 
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warm biases are produced in summer. This implies that the roughness length 

schemes, Z95 and C09, cannot satisfactorily capture the seasonal variations of the 

Tsfc simulations in the Tibetan Plateau, and Z95-updated and C09-updated are more 

suitable in relatively dry conditions. 

2). Z95-updated/C09-updated improves the Tsfc simulation performance in the 

relatively high-altitude regions (above 4000 m), whereas larger warm biases are 

produced in low-altitude regions of the Tibetan Plateau. This indicates that the 

roughness length schemes, Z95 and C09, have difficulties in estimating the reliable 

spatial distribution of daytime Tsfc for a region that has diverse climate and land 

surface conditions. One feasible way to address this issue is the grasslands in the 

Tibetan Plateau are further classified into arid alpine steppe, semi-arid alpine 

steppe, moist alpine meadows, etc., and the roughness length parameterizations 

are selected and, if needed, modified according to these further specified 

vegetation types. 

3). The Noah LSM with Z95-original/C09-original largely underestimates the 

monthly runoff in the source region of the Yangtze River. However, by 

implementing Z95-updated/C09-updated, the monthly amount of runoff can be 

largely increased. Also, Z95-updated/C09-updated increases the agreement of the 

Noah TWS simulation with the GRACE-derived TWS. This demonstrates that the 

roughness length parameterization, in association with surface exchange 

coefficient for heat (Ch) and moisture (Cq) transfer, plays an important role in 

modelling water budget components for high-altitude catchments.  

4). The Noah LSM using the scheme C09 generally performs better than that 

using the scheme Z95 on the simulations of regional scale Tsfc and water budget 

components. It is therefore recommended to use C09-updated for LSM simulations 

in the central and eastern part of the Tibetan Plateau, particularly in dry conditions. 
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Chapter 5 Reconstruction of the Yangtze River basin 

water budget through integration of satellite, ground 

data and Noah-MP model simulations 
  

This chapter is based on: 

 

Huang, Y., M. S. Salama, M. S. Krol, X. Chen, Z. Su, and A. Y. Hoekstra, 

‘Reconstruction of the Yangtze River basin water budget through integration of 

satellite, ground data and Noah-MP model simulations’, in preparation for 

submission to Journal of  Geophysical Research: Atmospheres (JGR). 

 

5.1 Abstract 

In this study, we evaluate the regional-scale water budget simulations by the Noah 

land surface model (LSM) and its augmented version, with multi-parameterization 

options (Noah-MP). These simulations were performed for the Yangtze River basin, 

and driven by the high resolution (0.1°) meteorological data developed by the 

Institute of Tibetan Plateau, Chinese Academy of Sciences (ITPCAS). River 

discharge observed at the main gauging stations of the Yangtze River is used to 

assess the simulated runoff. Moreover, the simulated evapotranspiration (ET) is 

compared to ET derived through (1) water budget closure using GRACE observed 

terrestrial water storage anomalies and other observations, (2) an energy budget 

approach using the Surface Energy Balance Systems (SEBS). Results show that a 

good combination of schemes of the Noah-MP LSM can significantly reduce the 

mean bias error (MBE) and improve the model efficiency of monthly runoff 

simulation. This improvement can be mainly attributed to the improved physics of 

supercooled liquid water, frozen soil permeability and the lower boundary 

condition of soil moisture. We further compared the simulations to the Global 

Land Data Assimilation System (GLDAS) outputs, and results indicates that the 

Noah-MP simulations are superior, which benefits from more accurate atmosphere 

forcing data and the enhanced physics from the Noah LSM. 

http://agupubs.onlinelibrary.wiley.com/agu/jgr/journal/10.1002/%28ISSN%292169-8996/
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5.2 Introduction 

The natural water availability can be examined by analyzing the space-time 

distribution of water fluxes and states, which can be obtained from publicly 

available global data assimilation products. Global data assimilation products such 

as Interim Reanalysis Data (ERA-Interim) and Global Land Data Assimilation 

System (GLDAS) combine the virtues of in situ data, remotely sensed observations, 

and land surface modeling. These products have been extensively applied in 

hydrological studies, and are very valuable for water resources research. However, 

large inaccuracy may exist at basin scales (e.g. Xue et al., 2013), which is mainly 

attributed to, for instance, sparse observations and model imperfection. Therefore, 

basin scale land surface model (LSM) simulation is a good alternative to obtain 

natural variability of water states and fluxes.  

 

The inaccuracies of model simulations can be attributed to at least two main factors. 

The first is the uncertainties existing in forcing data, which have substantial 

impacts on the model results. For instance, Xue et al. (2013) evaluated the 

evapotranspiration (ET) in the upper Yangtze River basin reproduced using 

atmospheric forcing data adopted from global reanalysis, and reported that the 

inaccuracy of the ET estimates is mainly due to the errors in the forcing data. 

Another source of uncertainties is embedded within the physics adopted by the 

model. Each LSM utilizes a different set of parameterizations to represent the 

processes that govern the mass and heat exchanges at the land-atmosphere 

interface. For instance, Chen et al. (2011) and Zheng et al. (2014) have 

demonstrated, for study areas on the Tibetan Plateau, the range in performance of 

the Noah LSM produced with different ‘state-of-the-art’ roughness length 

parameterizations.  

 

The developers of the Noah LSM with multi-parametrizations options (hereafter 

Noah-MP, Niu et al., 2011; Yang et al., 2011) acknowledge the limitation of a single 

parameterization of the model physics, and provide multiple alternatives for each 

physical process. They tested the Noah-MP at local scale and global scale for the 

major river basins, and demonstrated that the suit of available parametrizations 

within the same model framework is an efficient way to quantify the uncertainties 



Chapter 5 

53 

 

induced by the model physics. Although the Yangtze River basin was taken as one 

of the basins for the evaluation of the Noah-MP LSM (Yang et al., 2011), only the 

monthly runoff climatology modeled by the Noah-MP LSM was compared with 

observation in terms of hydrological evaluation. Therefore, a more detailed 

hydrological evaluation of the Noah-MP LSM for the Yangtze River basin is 

necessary. 

In this study, we employ the Noah and Noah-MP LSM in the High-Resolution 

Land Data Assimilation System (HRLDAS), which are maintained by Research 

Application Laboratory (RAL) of National Center for Atmospheric Research 

(NCAR). USA. Both models are driven by a, high resolution meteorological data 

(0.1° × 0.1°, 3-hourly), which were produced by the Institute of Tibetan Plateau 

Research, Chinese Academy of Sciences (ITPCAS), to simulate monthly runoff and 

ET in the Yangtze River basin. The monthly runoff simulation during the period 

2005-2010 is validated with observations at main gauging stations in the basin, and 

the simulated ET is compared with the ET estimates derived through (1) water 

budget closure using GRACE observed terrestrial water storage anomalies and 

other observations, (2) an energy budget approach using the Surface Energy 

Balance Systems (SEBS). Through this evaluation, we can investigate to what 

extend an appropriate selection of the enhanced physical descriptions of the Noah-

MP improves the simulations of water fluxes and states the Yangtze River basin.  

5.3 Noah-MP description 

Noah-MP was enhanced from the original Noah LSM through an addition of 

improved physics and multi-parameterization options (Niu et al., 2011; Yang et al., 

2011). It separates the vegetation canopy from the ground surface rather than 

treating the surface layer as a bulk layer as the Noah LSM does, and introduces a 

semitile scheme to represent land surface heterogeneity, which computes 

shortwave radiation transfer through a modified two-stream radiation transfer 

scheme (Yang and Friedl, 2003; Niu and Yang, 2004) considering the 3-D structure 

of the canopy. A Ball-Berry type stomatal resistance scheme (Ball et al., 1987; 

Collatz et al., 1991, 1992; Sellers et al., 1996; Bonan, 1996) that related to 

photosynthesis and a short-term leaf dynamic model are available in Noah-MP. 

Moreover, a physically based three-layer snow model (Yang and Niu, 2003), a 
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frozen soil scheme that produces a greater soil permeability (Niu and Yang, 2006), 

and a simple groundwater model with a TOPMODEL-based runoff scheme (Niu et 

al., 2005, 2007) were integrated into the Noah LSM.  

5.4 Numerical experiments 

As described in Table 5.1, one numerical experiment with the Noah LSM version 3 

(hereafter Noah V3) and six experiments with different combinations of optional 

schemes of the Noah-MP LSM were designed and conducted in the study area (see 

Appendix A and B for details). We selected the same scheme options for all the six 

numerical experiments of Noah-MP, which are: (1) using Noah type for soil 

moisture factor for stomatal resistance, (2) using a modified two-stream 

approximation for radiation transfer, (3) using CLASS type for  ground snow 

surface albedo, (4) using Jordan’s (1991) scheme for partitioning precipitation into 

rainfall and snowfall, (5) using original Noah type for lower boundary condition of 

soil temperature, (6) using semi-implicit method for snow/soil temperature time 

scheme, (7) using the Ball-Berry model for canopy stomatal resistance, (8) using a 

process-based dynamic leaf model.  

All the experiments were run for 21 years (1990-2010) driven by ITPCAS data set at 

0.1° spatial and 3-hourly temporal resolution. All the experiments were initialized 

by the same GLDAS-Noah LSM L4 3 hourly 0.25 × 0.25 degree Version 2.0 data at 

UTC zero time on 1990-09-01. The model outputs during the period 2005-2010 were 

selected for analysis and evaluation, in order to match the period over which 

observational runoff data are available. The period 1990-2004 was used as the spin-

up time, and the spin-up was completed by running the Noah and Noah-MP LSM 

repeatedly through this period until each of the variables (i.e. runoff, ET and soil 

moisture (SM)) reaches equilibrium. The same soil type and vegetation type data 

sets were used in these experiments. Moreover, all the experiments used the same 

vegetation parameters and soil hydraulic and thermal parameters, which are 

obtained from the default database of HRLDAS.  

 

 



Chapter 5 

55 

 

Table 5.1. Experiments with Different Combinations of Schemes a 

 Supercooled 

liquid water 

Frozen soil 

permeability 

Runoff Ch 

Noah V3 Koren99 Koren99 Schaake96 Chen97 

EXP 1b Koren99 Koren99 Schaake96 Chen97 

EXP 2 NY06 NY06 Schaake96 Chen97 

EXP 3 NY06 NY06 Schaake96 M-O 

EXP 4 Koren99 Koren99 SIMGM Chen97  

EXP 5 NY06 NY06 SIMGM Chen97 

EXP 6 NY06 NY06 SIMGM M-O 

aKoren99, Koren et al. (1999); NY06, Niu and Yang (2006); Chen97, Chen et al. (1997); 

Schaake96, Schaake et al. (1996). 

b Although using the same selected processes here, EXP1 differs from the Noah LSM in 

many other aspects, such as radiation schemes, sensible and latent heat flux formulations, 

the skin temperature solution, and the canopy stomatal resistance calculation. 

 

5.5 Results and discussion 

The agreement between the simulations produced by numerical experiments and 

the observations is quantified using the following statistics: the mean bias error 

(MBE), the coefficient of determination (R2), the root mean square error (RMSE), 

and the Nash-Sutcliffe efficiency (NSE) for runoff (Nash and Sutcliffe, 1970). NSE is 

commonly used to quantitatively describe the accuracy of hydrological model 

outputs, with a range from -∞ to 1, the closer to 1 the more accurate the model 

prediction (Moriasi et al., 2007). A Taylor diagram is also used to concisely 

demonstrate how well patterns of observed and modeled runoff and ET match 

each other in terms of their correlation, their root-mean-square (RMS) difference 

and the ratio of their variance (Taylor, 2001). The centered RMS difference between 

the simulated and observed patterns is proportional to the distance to the point on 

the x-axis identified as ‘observed’, and the normalized standard deviation of the 

simulated pattern is proportional to the radial distance from the origin. 
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Figure 5.1. Observed, Noah V3 simulated, and EXP1-EXP6 produced monthly runoff during the period 

2005-2010 for the source region, upper reaches, and the entire Yangtze River basin, respectively. 

 

5.5.1 Runoff 

Figure 5.1 compares the observed runoff and simulated runoff produced by the 

Noah LSM, and the six experiments of the Noah-MP LSM in the source region, the 

upper reaches, and the entire basin, respectively. The Noah LSM systematically 

underestimates monthly runoff, especially in the Yangtze source region. EXP1 

produced runoff is slightly better than the Noah LSM, indicating that the 

unselected processes, for which the Noah-MP LSM differs from the Noah LSM, 

slightly enhance the runoff simulation in the basin.  
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Figure 5.2. EXP1, EXP2, EXP4, and EXP5 produced monthly total soil moisture content (SM) and liquid 

SM, during the period 2005-2010, for the source region, upper reaches, and the entire Yangtze River 

basin, respectively. 

 

EXP2 and EXP5 improve the runoff simulation through consistently producing 

more monthly runoff than EXP1 and EXP4, respectively. EXP2 and EXP5 favor the 

runoff simulation, by simply replacing Koren 99 (Koren et al., 1999) of EXP1 and 

EXP4 with NY06 (Niu and Yang, 2006) for the supercooled liquid water and frozen 

soil permeability schemes (Table 5.1). The major difference between Koren99 

(Koren et al., 1999) and NY06 (Niu and Yang, 2006) for supercool liquid water in 

frozen soil (θliq max,i) is the form of freezing-point depression equation (shown in 

equation (A1) and (A7)). Because of the extra term (1+8θice)2, Koren99 tends to 

produce more liquid water than NY06, and has the increased interface between soil 
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particles and liquid water due to the increase of ice crystals. This can explain why 

EXP1 and EXP4 has much more liquid water than EXP2 and EXP5, respectively, 

especially in winter, as shown in Figure 5.2. Furthermore, in terms of frozen soil 

permeability, NY06 uses the total SM (liquid soil water and soil ice content) to 

calculate the soil properties (soil matric potential and hydraulic conductivity), 

whereas they are defined by a function of liquid water volume in Koren99. When 

there is no or very little liquid water, the soil becomes too impervious that most of 

the snowmelt water flows laterally as surface runoff and little water infiltrates in to 

the soil, resulting in too high surface water and too low subsurface flow. Moreover, 

soil ice in NY06 has a smaller (nonlinear) effect on frozen fraction, resulting in 

more permeable soil than Koren99 does, because the latter assumes that soil ice has 

a linear effect on infiltration, leading to less infiltration. Therefore, It is not 

surprising that, in winter, EXP2 and EXP5 produce lower surface flow, but higher 

subsurface flow (not shown here), and higher total runoff (Figure 5.1) than EXP1 

and EXP4, respectively. In summer, soil ice content is near zero and has almost 

negligible effect on θliq max,i  and soil properties calculation, higher runoff produced 

by EXP2 and EXP5, thus, can be mainly attributed to the decreased ET due to the 

decreased soil moisture, as shown in Figure 5.3. 

 

We compared EXP5 modeled monthly runoff against EXP2 and measured runoff, 

to investigate how different runoff schemes affect runoff simulation in the Yangtze 

River basin. As shown in Figure 5.1, EXP5 dramatically increase the amount of 

runoff in winter, which is much closer to the runoff observation, and hence a 

smaller MBE than EXP2 (Table 5.2), especially in the source region. However, 

Figure 5.1 and 5.4 show clearly that EXP5 produced runoff performs worse in 

amplitude and timing than EXP2 does. In EXP5, a simple groundwater model with 

a TOPMODEL-based runoff scheme is used as its runoff scheme, which has a 

dynamic coupling between the bottom soil layer and an unconfined aquifer. The 

groundwater recharge and discharge, driven by gravity or capillary forces, serves 

as the lower boundary condition of soil moisture (Niu et al., 2007).  
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Figure 5.3. Observed, Noah V3 simulated, and EXP1-EXP6 produced monthly ET during the period 

2005-2010 for the source region, upper reaches, and the entire Yangtze River basin, respectively. 
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Figure 5.4. Taylor diagram (normalized) of (a) the observed, Noah V3 simulated, and EXP1-EXP6, (b) 

EXP5 with different decay factor f produced monthly runoff, during the period 2005-2010, for the source 

region (red), upper reaches (green), and the entire Yangtze River basin (blue). 

 

 

Figure 5.5. Observed, Noah V3, and EXP5 with different decay factor f produced monthly runoff for the 

source region of the Yangtze during the period 2005-2010. 

As shown in equation (B1-B3), runoff is exponentially dependent on the water 

table depth, and the decay factor, f, controls the shape and timing of the 

hydrograph recession curve and hence the seasonality of runoff. Because the decay 
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factor f affects the groundwater discharge and recharge, which gets smaller when f 

is greater, thus the coupling strength between the soil and the unconfined aquifer 

gets smaller. Figure 5.5 shows the time series of runoff produced by EXP5 with 

different value of the decay factor f. As f increases from the default value 6 to 25, 

the timing and magnitude of the runoff produced by EXP5 gets closer to that of 

EXP2, which uses free drainage as the lower boundary condition of soil hydrology. 

Figure 5.4b also depicts that, as f increases, EXP5 produced runoff has increased 

amplitude. This indicates that the groundwater dynamic plays an important role in 

runoff prediction and the lower boundary condition of soil moisture is the major 

contributor to runoff simulation. The problem of using free drainage at the model 

bottom as the lower boundary layer of soil moisture (EXP2) is that immediate 

removal of the drained water does not realistically represent the interactions of soil 

moisture, drained water and its underlying soil or aquifer, as the drained water 

should accumulate in its underlying soil or aquifer during wet seasons when 

recharge rates exceeds discharge rates, and be able to be drawn back to the soil 

column during dry seasons (Niu et al., 2011). In EXP5, the accumulated water in 

aquifer is allowed to, driven by capillary forces, draw back to the soil column in 

dry seasons, so more water is available for subsurface runoff generation, which can 

explain why EXP5 produced runoff is much higher in winter than EXP2. However, 

EXP5 produced runoff occurs later, and its peaks are smoother than EXP2 

produced and observed runoff, especially in the source region, which is also 

mainly attributed to the groundwater buffering effects. After comparing the NSE 

of EXP5 with different value of the decay factor f against observation, as shown in 

Table 5.2, we choose the value 15 (hereafter EXP5*) with which NSE reaches 

optimum in the source region, upper reaches and the entire basin. 

 

We compared EXP2 and EXP5 produced runoff against EXP3, EXP6 modeled and 

observed, respectively, to investigate the effects of two Ch schemes in the Noah-MP 

LSM on runoff simulation in the study area. EXP2 and EXP5, which uses Chen97’s 

Ch scheme, produces almost the same runoff as EXP3 and EXP6, which uses M-O Ch 

scheme, respectively. Results show that Chen97 and M-O Ch schemes do not bring 

much difference on runoff estimates in the study area. However, previous research 

(Yang et al., 2011) pointed out Ch scheme plays an important role not only in 

controlling skin temperature simulation, but also in runoff prediction. Because Ch is 
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an important parameter in potential ET calculation, runoff is also influenced to 

balance the water budget. Therefore, we cannot neglect the potential impacts of Ch 

on runoff simulation, although small difference is shown here. 

Table 5.2. MBE and NSE between observed and model estimated runoff for the period 2005-2010 

 The source region The upper reaches The entire basin 

MBE(mm/

month) 

NSE MBE(mm/m

onth) 

NSE MBE(mm/m

onth) 

NSE 

Noah  -14.41 0.35 -11.83 0.39 -10.22 0.64 

EXP1 -12.03 0.53 -9.06 0.59 -4.44 0.87 

EXP2 -10.81 0.61 -7.58 0.67 -2.52 0.90 

EXP3 -10.65 0.62 -7.57 0.68 -3.12 0.89 

EXP4 -10.08 0.37 -6.99 0.38 -2.26 0.85 

EXP5 -7.34 0.54 -3.69 0.54 -1.95 0.86 

EXP6 -7.22 0.55 -3.68 0.54 1.46 0.85 

EXP5, f=10 -7.94 0.59 -4.37 0.58 0.79 0.85 

EXP5, f=15 -8.53 0.62 -4.93 0.60 0.28 0.84 

EXP5, f=20 -8.94 0.63 -5.31 0.61 -0.07 0.83 

EXP5, f=25 -9.45 0.63 -5.65 0.62 0.23 0.83 

 

We compared EXP2 and EXP5 produced runoff against EXP3, EXP6 modeled and 

observed, respectively, to investigate the effects of two Ch schemes in the Noah-MP 

LSM on runoff simulation in the study area. EXP2 and EXP5, which uses Chen97’s 

Ch scheme, produces almost the same runoff as EXP3 and EXP6, which uses M-O Ch 

scheme, respectively. Results show that Chen97 and M-O Ch schemes do not bring 

much difference on runoff estimates in the study area. However, previous research 

(Yang et al., 2011) pointed out Ch scheme plays an important role not only in 

controlling skin temperature simulation, but also in runoff prediction. Because Ch is 

an important parameter in potential ET calculation, runoff is also influenced to 

balance the water budget. Therefore, we cannot neglect the potential impacts of Ch 

on runoff simulation, although small difference is shown here. 

 

As shown in Figure 5.4, the modeled runoff has the closest agreement for the entire 

basin, but poorest matches in the source region, indicating that the source region is 
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the most challenging part of the Yangtze River basin for land surface modeling. 

This is not surprising, because the source region is arid/semi-arid and high-altitude 

region, where land surface modelling still confronts difficulties and remains poorly 

performed. As shown in Table 5.2, EXP4, EXP5, and EXP6 produced runoff has 

remarkably smaller MBE than the Noah LSM, EXP1, EXP2 and EXP3 do, which 

indicates that the experiments using SIMGM runoff scheme perform better in the 

monthly runoff amount , especially in winter, than the ones with Schaake96 runoff 

scheme. However, the Noah LSM, EXP1, EXP2 and EXP3 generally perform better 

than EXP4, EXP5 and EXP6 in the Taylor diagram, which indicates that model runs 

with Schaake96 runoff scheme perform better than the ones with SIMGM runoff 

scheme in terms of timing and magnitude. This can be attributed to the 

suboptimum setting of the calibration parameter, the decay factor f, which controls 

the shape of timing of the hydrograph recession curve. We can also see that EXP2 

and EXP3, EXP5 and EXP6 perform slightly better than EXP1and EXP4, 

respectively, which demonstrate that supercooled liquid water and frozen soil 

scheme of NY06 is superior to Koren99 for monthly runoff modelling in the 

Yangtze River basin. 

5.5.2 ET and soil moisture 

We computed the statistics of the monthly ET, during the period 2005-2010, for all 

the designed numerical experiments in the source region, the upper reaches, and 

the entire basin, respectively, as shown in Figure 5.6. The correlations of monthly 

ET produced by the numerical experiments with SEBS ET, and GRACE-based ET 

are quite good, which are all above 0.8. These experiments produced ET generally 

has a better agreement with GRACE-based ET than SEBS ET, which has larger 

magnitude than others do, especially in the source region.  
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Figure 5.6. Taylor diagram (normalized) of (a) SEBS based, Noah V3 simulated, and EXP1-EXP6 

produced monthly ET, and (b) GRACE based,  Noah V3 simulated, and EXP1-EXP6 produced monthly 

ET during the period 2005-2010 for the source region (red), upper reaches (green), and the entire 

Yangtze River basin (blue). 

EXP1 and EXP4 produced ET has slightly closer agreements with SEBS and 

GRACE-based ET than EXP2 and EXP5, respectively, indicating that supercooled 

liquid water and frozen soil scheme of Koren99 performs slightly better than that 

of NY06 in the seasonality and magnitude of ET prediction. This is mainly due to 

the difference in summer, when NY06 produces a lower ET than Koren99 (Figure 

5.6). As mentioned previously, Koren99 produces more liquid water than NY06 

does, which is shown in Figure 5.2. It seems that Koren99 produces too much ice in 

winter, which makes the total SM even higher than that in summer. High soil ice 

fraction in Koren99 leads to high frozen fraction, which has a greater effect on 

frozen fraction than NY06, resulting in too low soil permeability. In Koren99, the 

soil keeps too much water in winter, thus the runoff becomes low. In summer, 

when soil ice is near zero, the frozen soil has negligible effect on runoff, thus the 

higher ET produced by Koren99 in summer can be attributed to its wetter soil than 

NY06.  

As also shown in Figures 5.2 and 5.3, ET produced by the experiments using the 

Noah-MP LSM with SIMGM, which has a smaller magnitude, fits the SEBS ET and 

GRACE-based ET slightly worse than the ones with free drainage, which is mainly 
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due to the different ET in summer. This indicates that the lower boundary 

condition of soil moisture has a greater effect on ET in summer than winter, which 

can be attributed to the fact that, in summer, ET is larger and more easily affected 

by soil moisture condition. However, the decay factor f seems have negligible 

effects on monthly ET at regional scale (not shown here). Moreover, the Noah LSM 

produced ET shows slightly better agreement than the ones produced by the 

Noah-MP LSM (EXP1-EXP6), which is due to the larger magnitude of the Noah 

LSM produced ET than others, as shown in Figure 5.3. However, Noah-MP (EXP1-

EXP6) significantly improves ET simulation in winter, when the Noah LSM 

produces too high ET, especially in the source region, and hence too low runoff.  

5.5.3 Comparison with GLDAS-Noah 

Figure 5.7 and Table 5.3 depict the comparisons of monthly observed, EXP5*, 

GLDAS-Noah, and the Noah LSM produced runoff in the source region, the upper 

reaches, and the entire basin, respectively. GLDAS-Noah produced runoff has 

large negative MBE, especially in the source region, and hence its model efficiency 

is poor. Although the Noah LSM also has large negative MBE, it performs better 

than GLDAS-Noah in terms of R2 and NSE. The Noah LSM simulated runoff has 

250%, 30% and 36% improvement, in terms of model efficiency (NSE), on the 

GLDAS-Noah produced runoff in the source region, the upper reaches, and the 

entire Yangtze River basin, respectively. This improvement can be attributed to the 

more accurate forcing data, because this data benefits from merging information of 

740 CMA operational stations, which is also confirmed by Chen et al. (2011). EXP5* 

remarkably reduces the MBE, and increases the model efficiency (NSE), which has 

77%, 54%, and 43% improvement on the Noah LSM produced runoff in the source 

region, the upper reaches, and the entire basin, respectively, and this improvement 

occurs both in summer and winter. This indicates that the hydrological simulation 

of the Yangtze River basin benefits quite a lot from the improved physics of Noah-

MP from the Noah LSM. The simulated runoff higher than observation is more 

reasonable, because the Yangtze River basin, especially the middle and lower 

reaches, involves intense water consumption such as irrigation, hydropower 

generation, and water supply, which makes the discharge from the gauging 
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stations smaller than its actual value. Furthermore, the ‘imperfect’ atmosphere 

forcing may also be a cause for the uncertainties of the modelling results. 

 

Figure 5.7. Observed, Noah V3, EXP5*(EXP5 with the decay factor f of 15),  and GLDAS-Noah V2 

produced monthly runoff, during the period 2005-2010, for the source region, upper reaches, and the 

entire Yangtze River basin, respectively. 
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5.6 Summary 

We conduct one numerical experiment with the Noah LSM and six experiments 

with different combinations of optional schemes of Noah-MP to investigate the 

major processes that control hydrology (runoff, ET, and soil moisture) in the 

Yangtze River basin. Results show that proper representation of the supercooled 

liquid water and frozen soil processes are important for modelling hydrological 

variables, especially for the arid and semi-arid region such as the source region of 

Yangtze. Furthermore, the lower boundary layer of soil moisture plays an 

important role in runoff generation and hence ET and soil moisture simulation. It 

can dramatically increase the monthly runoff amount in winter, which agrees well 

with the observation, although its magnitude and timing gets slightly worse. 

Moreover, although Ch  of M-O and Chen97 do not seem to bring much difference 

in this study, its role on controlling hydrological modelling should not be 

neglected.  

Table 5.3. MBE, R2, RMSE, and NSE between observed and model estimated runoff for the period 2005-

2010 

Model 

estimates 

Region MBE(mm/month) R2 RMSE(mm/month) NSE 

EXP5* The 

source 

region 

-8.53 0.76 20.93 0.62 

Noah V3 -14.41 0.78 21.46 0.35 

GLDAS-Noah -17.21 0.74 21.72 0.10 

EXP5* The 

upper 

reaches  

-4.93 0.68 20.40 0.60 

Noah V3 -11.83 0.74 19.63 0.39 

GLDAS-Noah -12.86 0.72 16.94 0.30 

EXP5* The 

entire 

basin 

0.28 0.90 21.92 0.84 

Noah V3 -10.22 0.95 20.17 0.64 

GLDAS-Noah -10.16 0.78 13.28 0.47 

 

We calibrated the decay factor f of SIMGM in EXP5 to adjust the coupling strength 

between soil columns and their underlying aquifer. The calibrated Noah-MP 

experiment (EXP5*) further improves the hydrological modelling in the study area. 
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We compared the runoff produced by the Noah LSM, EXP5*, and GLDAS-Noah 

against observation. The results show that the improvement of EXP5* compared 

with GLDAS-Noah production, in terms of water fluxes and states, comes from the 

more accurate atmosphere forcing data and the enhanced physics of the Noah-MP 

LSM. 
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Appendix A: Options for supercooled liquid water and frozen 

soil scheme in Table 5.1 

 

NY06 

When soil water freezes, water close to soil particles remains in liquid form due to 

the absorptive and capillary forces exerted by soil particles. Thus, only the 

excessive liquid water beyond θliqmax,I, the upper limit of the supercooled liquid 

water, can get frozen. θliqmax,I is derived from the following form of freezing-point 

depression equation: 

ѱ𝑠𝑎𝑡(
𝜃𝑙𝑖𝑞𝑚𝑎𝑥

𝜃𝑠𝑎𝑡
)−𝑏 =  

103𝐿𝑓(𝑇−𝑇𝑓𝑟𝑧)

𝑔𝑇
 ,      (A1) 

where 𝜃𝑙𝑖𝑞𝑚𝑎𝑥 is the maximum liquid water when the soil temperature is below the 

freezing point; 𝑇 and 𝑇𝑓𝑟𝑧 are soil temperature and freezing point (K), respectively 

(Fuchs et al., 1978); 𝐿𝑓 is the latent heat of fusion (J kg-1); g is the gravitational 

acceleration (m s-2); 𝜃𝑠𝑎𝑡 is the saturated soil water content (porosity); and ѱ𝑠𝑎𝑡 is 

the saturated soil matric potential depending on the soil texture, and b is the 

Clapp-Hornberger parameter. 

Additional water may be ice depending on the available energy. The liquid water 

content, thus, for the next time step (N+1) follows: 

𝜃𝑙𝑖𝑞
𝑁+1 = min(𝜃𝑙𝑖𝑞𝑚𝑎𝑥, 𝜃𝑁) ,      (A2) 

where 𝜃𝑁  is the total volumetric soil moisture at time step N, including liquid 

water content and ice content. The soil ice content (𝜃𝑖𝑐𝑒) is computed from the 

following equation: 

𝜃𝑖𝑐𝑒
𝑁+1 = min(𝜃𝑁 − 𝜃𝑙𝑖𝑞

𝑁+1, 𝜃𝑖𝑐𝑒
𝑁 + 𝑅𝑓𝑚 𝛥𝑡) ,      (A3) 

An area of a given GCM grid cell can be separated to permeable and impermeable 

areas. It assumes that the effects of these impermeable and permeable areas on 

infiltration can be linearly aggregated, and both the fractional permeable and 
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impermeable areas share the same total soil moisture of the grid cell. With these 

assumptions, the water flux within the soil of a GCM can be expressed as: 

𝑞 = (1 − 𝐹𝑓𝑟𝑧)𝑞𝑢 + 𝐹𝑓𝑟𝑧𝑞𝑓𝑟𝑧 ,      (A4) 

where 𝐹𝑓𝑟𝑧 is the fractional impermeable (frozen) area, and 𝑞𝑢 and 𝑞𝑓𝑟𝑧 are water 

flux in the unfrozen and frozen areas, respectively. Assuming 𝑞𝑓𝑟𝑧 = 0, the above 

equation can become: 

𝑞 = (1 − 𝐹𝑓𝑟𝑧)𝑞𝑢 =  −(1 − 𝐹𝑓𝑟𝑧)𝑘𝑢
𝜕(ѱ𝑢+𝑧)

𝜕𝑧
 ,      (A5) 

where  𝜃 =  𝜃𝑖𝑐𝑒 + 𝜃𝑙𝑖𝑞 is the total grid-cell volumetric soil moisture. 

The fractional impermeable area is parameterized as a function of soil ice content 

at a layer: 

𝐹𝑓𝑟𝑧 = 𝑒−𝛼(1−𝜃𝑖𝑐𝑒/𝜃𝑠𝑎𝑡) − 𝑒−𝛼 ,      (A6) 

where 𝛼 = 3.0 is an adjustable scale-dependent parameter. 

Koren99 

It proposed an alternative method for representing the maximum supercooled soil 

water by iteratively solving the following equation, a variant of the freezing-point 

depression equation: 

(1 + 8𝜃𝑖𝑐𝑒)2ѱ𝑠𝑎𝑡(
𝜃𝑙𝑖𝑞𝑚𝑎𝑥

𝜃𝑠𝑎𝑡
)−𝑏 =  

103𝐿𝑓(𝑇−𝑇𝑓𝑟𝑧)

𝑔𝑇
 ,      (A7) 

where 𝜃𝑙𝑖𝑞𝑚𝑎𝑥 is the maximum liquid water when the soil temperature is below the 

freezing point; 𝑇 and 𝑇𝑓𝑟𝑧 are soil temperature and freezing point (K), respectively 

(Fuchs et al., 1978); 𝐿𝑓 is the latent heat of fusion (J kg-1); g is the gravitational 

acceleration (m s-2); 𝜃𝑠𝑎𝑡 is the saturated soil water content (porosity); 𝜃𝑖𝑐𝑒 is the soil 

ice content; and ѱ𝑠𝑎𝑡 is the saturated soil matric potential depending on the soil 

texture, and b is the Clapp-Hornberger parameter. 

 

 



Chapter 5 

71 

 

Appendix B: Options for runoff and groundwater in Table 5.1 

 

SIMGM 

It uses a simple TOPMODEL-based runoff model (Niu et al., 2005) to compute 

surface runoff and base flow (groundwater discharge), which are both 

parameterizes as exponential functions of the water table depth. Below the bottom 

of the Noah soil column, an unconfined aquifer is used to account for the exchange 

of water between the soil and the aquifer. Surface runoff is parameterized as: 

𝑅𝑠𝑓 = 𝐹𝑠𝑎𝑡𝑝 + (1 − 𝐹𝑠𝑎𝑡)max (0, (p − I)) ,      (B1) 

where p  is the effective precipitation intensity (kg m-2 s-1), I  is maximum soil 

infiltration capacity (kg m-2 s-1), which is dependent on soil properties and moisture, 

and 𝐹𝑠𝑎𝑡 is the fraction of saturated area and is parameterized as: 

𝐹𝑠𝑎𝑡 = (1 − 𝐹𝑓𝑟𝑧)𝐹𝑚𝑎𝑥𝑒−0.5𝑓(𝑧∇−𝑧𝑏𝑜𝑡
′ ) + 𝐹𝑓𝑟𝑧 ,      (B2) 

where 𝐹𝑓𝑟𝑧 is a fractional impermeable area as a function of the soil ice content of 

the surface soil layer, 𝑧∇ is the water table depth (m), 𝑧𝑏𝑜𝑡
′  is the depth of the model 

bottom, which is 2 m, and 𝐹𝑚𝑎𝑥 is the potential or maximum saturated fraction for a 

grid cell and can be derived from high-resolution sub grid topography of a model 

grid cell using the TOPMODEL concepts. The default value of 𝐹𝑚𝑎𝑥 is 0.38, which is 

derived from the HYDRO1K 1 km topographic index (or wetness index, WI) data. 

Subsurface runoff (𝑅𝑠𝑏) is parameterized as  

𝑅𝑠𝑏 = 𝑅𝑠𝑏,𝑚𝑎𝑥𝑒−Ʌ−𝑓(𝑧∇−𝑧𝑏𝑜𝑡
′ ) ,      (B3) 

where 𝑅𝑠𝑏,𝑚𝑎𝑥 is the maximum subsurface runoff when the grid cell mean water 

table depth is zero, which is set 5.0×10-4  m s-1globally due to the calibration against 

global runoff data through sensitivity tests (Niu et al., 2007). Ʌ is the grid cell mean 

WI, the global mean of which is 10.46 derived from HYDRO1K 1 km WI data. 

The temporal variation of the water stored in the unconfined aquifer, Wa (mm), is 

parameterized as  
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𝑑𝑊𝑎

𝑑𝑡
= 𝑄 − 𝑅𝑠𝑏 ,      (B4) 

where Q is the recharge rate (mm s-1) , which is positive when water enters the 

aquifer. It is parameterized as 

𝑄 = −𝐾𝑏𝑜𝑡
−𝑧∇−(𝑓𝑚𝑖𝑐ѱ𝑏𝑜𝑡−𝑧𝑏𝑜𝑡)

𝑧∇−𝑧𝑏𝑜𝑡
 ,      (B5) 

where  𝐾𝑏𝑜𝑡 is hydraulic conductivity of the bottom soil layer (mm s-1). The 𝑓𝑚𝑖𝑐(0.2 

in this study) is the fraction of micropore content in the bottom layer soil, which is 

introduced to limit the upward flow (depending on the level of structural soil) and 

ranges from 0.0 to 1.0. When 𝑓𝑚𝑖𝑐  = 0.0 (structural soil or aquifers without 

microspores), equation (B5) is reduced to free drainage (𝑄 = 𝐾𝑏𝑜𝑡). When 𝑓𝑚𝑖𝑐 = 1.0 

(textural soil full of micropores), equation (B5) represents a maximum effect of 

groundwater on soil moisture (Niu et al., 2011). ѱ𝑏𝑜𝑡 is the matric potential (mm), 

and 𝑧𝑏𝑜𝑡(1.5 m in this study) is the midpoint of the bottom soil layer. 

Schaake96 

Its surface infiltration scheme follows a simple water balance model (Schaake et al., 

1996) for its treatment of the subgrid variability of precipitation and soil moisture. 

Surface water is generated when the rain intensity exceeds the infiltration capacity 

and is calculated as: 

Rsf  = P − Imax ,      (B6) 

where Rsf is the surface runoff [m s-1], P is the rain intensity [m s-1], and Imax is the 

maximum infiltration capacity [m s-1]. 

Imax can be written as: 

Imax = P
Db[1−exp (kdt)]

P+Db[1−exp (kdt)]
 ,      (B7) 

 

where Db is the total soil moisture deficit in the soil column [m3 m-3] and kdt is a 

constant [-] defined by, 

kdt = kdtref
Ks

Kref
 ,      (B8) 
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where Ks  is the saturated hydraulic conductivity [m s-1], kdtref and Kref  are 

experimentally determined parameters set to 3.0 [-] and 2.0 10-6 [m s-1] for large-

scale simulations, respectively. 

𝑅𝑠𝑏 = SLOPE ∗ K(θ) ,      (B9) 

where K(θ) is the hydraulic conductivity [m s-1], and 𝑆𝐿𝑂𝑃𝐸 is the slope of the 

earth’s surface [-].  
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Chapter 6 Analysis of long-term terrestrial water storage 

variations caused by climate variability in the Yangtze 

River basin  
 

This chapter is also based on: 

 

Huang, Y., M. S. Salama, M. S. Krol, R. van der Velde, A. Y. Hoekstra, Y. Zhou, and 

Z. Su, 2013: Analysis of long-term terrestrial water storage variations in the 

Yangtze River basin. Hydrol. Earth Syst. Sci., 17, 1985-2000.  

 

6.1 Abstract 

This chapter analyzes the 32 years of spatial and temporal total water storage (TWS) 

variations caused by climate variability in the Yangtze River basin. It shows that 

climate-induced TWS in the Yangtze River basin has decreased significantly since 

the year 1998. The driest period in the basin occurred between 2005 and 2010, and 

particularly in the middle and lower Yangtze reaches. The TWS figures changed 

abruptly to persistently high negative anomalies in the middle and lower Yangtze 

reaches in 2004. The year 2006 is identified as major inflection point, at which the 

system starts exhibiting a persistent decrease in TWS. Comparing these TWS 

trends with independent precipitation datasets shows that the recent decrease in 

TWS can be attributed mainly to a decrease in the amount of precipitation.  
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6.2 Introduction 

As a key component of terrestrial and global hydrological cycles, TWS strongly 

influences water, energy, and biogeochemical fluxes, thereby playing a major role 

in the Earth’s climate system (Famiglietti, 2004). TWS is not only an indicator of the 

Earth’s climate variability, but also affects various components of the Earth’s 

hydrological cycle (Niu and Yang, 2006). Soil moisture plays a key role in both the 

water and energy cycles through its impact on the energy partitioning at the 

surface, and soil moisture also has links with the biogeochemical cycle via plant 

transpiration and photosynthesis (Seneviratne et al., 2010). Snow cover has a 

strong influence on the onset of the summer monsoon and runoff production in 

spring (Ding et al., 2009). Therefore, the spatial and temporal variability in TWS 

due to climate change and human-induced impacts both form important 

components in the water and energy cycles, and should be taken into account in 

river basin management. 

 

As described in Chapter 1, global Data assimilation products such as Interim 

Reanalysis Data (ERA-Interim) and Global Land Data Assimilation System 

(GLDAS) combine the virtues of in situ data, remotely sensed observations, and 

modeling. The models in these systems simulate the main components of TWS and, 

by fusing these components with other data sources, reduce uncertainties in the 

hydrological interpretations. These systems have been extensively applied in TWS 

and related studies, and have, for example, been utilized in regional, continental, 

and global TWS variation analysis (Chen et al., 2005; Seneviratne et al., 2004; Syed 

et al., 2008). The main components of TWS such as soil moisture (SM) and snow 

water equivalent (SWE) can also be simulated by land surface models (LSMs). This 

simulated TWS may have higher accuracy than public global data assimilation 

products, because of the improved atmospheric forcing data and more realistic 

representation of physical processes for the study area. 

 

In Chapter 3, two public global data assimilation products, the ERA-Interim and 

GLDAS-Noah, have been evaluated, and the results show that apparently the ERA-

Interim datasets have higher accuracy and reliability for the Yangtze River basin. 

In Chapters 4 and 5, the Noah model simulation has achieved higher accuracy by 
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the improved atmospheric forcing data and more realistic representation of 

physical processes for the study area. However, the ERA-Interim datasets still 

perform relatively better, as shown in Figures 3.1 and 3.3. Therefore, the ERA-

Interim data are selected to investigate the TWS variations mainly controlled by 

the climate variability. 

 

In this study, we focus on the analysis of the long-term space-time variability in 

TWS of the Yangtze River basin, with the aim to improve our understanding of the 

water cycle and aid management of the water resources. The specific objectives of 

this chapter are (1) to use the ERA-Interim dataset to examine the climatology of 

the spatial pattern of TWS in the basin, and (2) to detect trends and abrupt changes, 

as well as their possible causes. 

6.3 Methods 

6.3.1 Statistical analysis 

Trend analyses involve linear regression and the non-parametric Mann-Kendall 

(MK) test (Mann, 1945; Kendall, 1975). A linear regression model is used to 

compute the annual trend in the TWS for each pixel. The MK test is a rand-based 

procedure and is applied to detect the significance of the trends.  The MK test 

statistics are given by  

𝑍 = {
(𝑠 − 1)/𝜎  

0
(𝑠 + 1)/𝜎

  𝑖𝑓  
𝑠 > 0
𝑠 = 0
𝑠 < 0

  , (6.1) 

where 

𝑠 =  ∑ ∑ 𝑆𝑔𝑛(𝑋𝑗−𝑋𝑖)   

𝑛

𝑗=𝑖−1

𝑛−1

𝑖=1

 

and 

𝑆𝑔𝑛(𝑋𝑗−𝑋𝑖) = {
+1  

0
−1

  𝑖𝑓  

𝑋𝑗−𝑋𝑖 > 0

𝑋𝑗−𝑋𝑖 = 0

𝑋𝑗−𝑋𝑖 < 0
  , (6.2) 
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The 𝜎 term is given by 

√1/18(𝑛(𝑛 − 1)(𝑛 − 5) − ∑ 𝑡(𝑡 − 1)(2𝑡 + 5)
𝑡

 

and 𝑋𝑗 and 𝑋𝑖 are the sequential data values, 𝑛 is the dataset record length, 𝑡 is the 

extent of any given tie (the number of annual maxima in a given tie), and  is the 

summation of all ties. Positive and negative values of  𝑍 indicate increasing and 

decreasing trends, respectively. The statistic 𝑍 follows a normal distribution 𝑁 (0, 1) 

(Burn and Hag Elnur, 2002; Yang et al., 2010). To analyze whether the trend is 

stationary in the TWS anomalies, the Mann-Kendall-Sneyers (MKS) test (Sneyers, 

1975) is also applied. This test, a sequential version of the MK test, enables not only 

detection of significant trends, but also approximation of the transition point in the 

temporal behavior of a series. Let 𝑥1, …,𝑥𝑛 be the data points. For each element 𝑥𝑖, 

the number 𝑛𝑖 of element 𝑥𝑗 proceeds it (𝑗 < 𝑖) such that 𝑥𝑗 < 𝑥𝑖 is computed. Under 

the null hypothesis (no trend), the test statistic 𝑡𝑘 = ∑ 𝑛𝑖
𝑘
𝑖=1  is normally distributed, 

with the mean and variance given by 

𝑡𝑘̅ = 𝐸(𝑡𝑘) =  
𝑘2 − 𝑘

4
 , (6.3) 

𝜎̅𝑡𝑘
2 = 𝑣𝑎𝑟(𝑡𝑘) =  

𝑘(𝑘 − 1)(2𝑘 + 5)

72
 , (6.4) 

Let  𝑈𝐹𝑘 = (𝑡𝑘 − 𝑡𝑘̅)/(𝜎𝑡𝑘
2)0.5  be the normalized variable, which is the forward 

sequence. This principle can be usefully extended to the backward sequence 𝑈𝐵𝑘, 

which is calculated using the same equation but with a reversed series of data. 

When points in the forward series are outside the confidence interval, this 

indicates the detection of a significantly increasing ( 𝑈𝐹 >0) or a significantly 

decreasing (𝑈𝐹<0) trend. If an intersection occurs between 𝑈𝐹 and 𝑈𝐵 within the 

confidence interval, this indicates an inflection (Li and Wang, 2004; Li et al., 2007; 

Moraes et al., 1998). 

6.3.2 Standardized anomalies 
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Annual standardized anomalies are calculated by using the monthly values 

subtracted with the annual mean and divided by the annual standard deviation of 

the annual mean, which can be expressed as follows: 

𝐴𝑖𝑗 =
𝑇𝑊𝑆𝑖𝑗 − 𝑇𝑊𝑆𝑗

̅̅ ̅̅ ̅̅ ̅

𝜎𝑗
, (6.5) 

with 

𝑇𝑊𝑆𝑗
̅̅ ̅̅ ̅̅ ̅ = 1/12 ∑ 𝑇𝑊𝑆𝑖𝑗

12

𝑖=1

 

 

𝜎𝑗 = (1/12 ∑(𝑇𝑊𝑆𝑖𝑗

12

𝑖=1

− 𝑇𝑊𝑆𝑗
̅̅ ̅̅ ̅̅ ̅)2)0.5 

where 𝐴𝑖𝑗 is the annual TWS standardized anomaly in the 𝑖th month of the 𝑗th year, 

𝑇𝑊𝑆𝑖𝑗 is the TWS in the 𝑖th month of the 𝑗th year, 𝑇𝑊𝑆𝑗
̅̅ ̅̅ ̅̅ ̅ is the mean TWS of the all 

months in the 𝑗th year, and 𝜎𝑗 is the standardized deviation of all months in the 𝑗th 

year. 

Monthly standardized anomalies of the TWS are calculated by the monthly TWS 

minus the corresponding monthly value of the annual cycle, and then divided by 

the standard deviation of the values of the same months within the period 1979 to 

2010, in order to eliminate the influence of inter-annual variability for intra-annual 

analysis. Monthly standardized anomalies of the TWS can be expressed as follows: 

 

𝑀𝑖𝑗 =
𝑇𝑊𝑆𝑖𝑗 − 𝑇𝑊𝑆𝑖

̅̅ ̅̅ ̅̅ ̅

𝜎𝑖
, (6.6) 

with 

𝑇𝑊𝑆𝑖 = 1/32 ∑ 𝑇𝑊𝑆𝑖𝑗

2010

𝑗=1979

 

𝜎𝑖 = (1/32 ∑ (𝑇𝑊𝑆𝑖𝑗

2010

𝑖=1979

− 𝑇𝑊𝑆𝑖
̅̅ ̅̅ ̅̅ ̅)2)0.5 
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where 𝑀𝑖𝑗 is the monthly TWS standardized anomaly in the 𝑖th month of the 𝑗th 

year. The subscripts i and j represent the 𝑖th month and 𝑗th year, respectively; 

𝑇𝑊𝑆𝑖  is the TWS of the 𝑖 th month averaged over all the years; 𝜎𝑖  is the 

standardized deviation of 𝑖th month TWS over all the years. 

 

Figure 6.1.Spatial patterns of monthly averaged TWS annual standardized anomalies computed from 

ERA-Interim for the period January 1979 till December 2010. 

 

6.4 Results and discussion 

6.4.1 Climatology 

The spatial distribution of TWS and terrestrial water storage change (TWSC) 

climatological annual standardized anomalies derived from ERA-Interim are 

shown in Figures 6.1 and 6.2. After suffering the dry season (December-February), 

the southeast corner of the Yangtze River basin starts to become wet during March 

to May, due mainly to the south China rainfall belt extension and the mean 

precipitation increase in the lower basin (Ding and Chan, 2005; Qian et al., 2002). 
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High, positive TWS standardized anomalies emerge in most of the Yangtze basin 

during June to October (Figure 6.1), and show a large increase in July compared to 

June (Figure 6.2), corresponding with the intensive precipitation observed along 

the whole Yangtze River from mid-June to mid-July (Ding, 1992), called the Meiyu 

in China. According to the climatological rainfall differences between May and 

June and between June and July (Qian et al., 2002, Figure 4), the increased rainfall 

in June compared to May appears in the Plateau and in southwest China, with the 

center lying in the upper Yangtze reaches. 

 

 

Figure 6.2.Spatial patterns of monthly averaged TWSC annual standardized anomalies computed from 

ERA-Interim for the period January 1979 till December 2010. 

 

Another area of increased rainfall is located along the eastern coastland with its 

center in the lower Yangtze reaches. There is no obvious increase in rainfall in the 

central part of China. In July, the increased rainfall has migrated to the north of the 

lower Yangtze River basin, while rainfall is steadily increasing in the upper parts. 

This pattern of change in precipitation from May to July resembles the TWS 

pattern derived for ERA-Interim (Figure 6.1). After July, the TWS anomalies in the 
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middle and lower Yangtze reaches decrease sharply, while they stay quite high 

and positive in the upper Yangtze reaches till October, mainly due to the 

continuous rainy season from mid-June to mid-September. 

 

Figure 6.3.ERA-Interim estimated TWS annual trends between 1979 and 1997, and between 1998 and 

2010, in millimeters per year (gray grids cells represent insignificant trends; cells with an empty 

diamond indicate the trend surpasses the 95% confidence level; cells with a filled diamond indicate the 

trend surpasses the 99% confidence level; others indicate the trend surpasses the 90% confidence level). 
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This striking consistency between TWS and the rainfall pattern is not unexpected. 

That higher precipitation leads to higher soil moisture can generally be considered 

predictable, though there are a few exceptions. For instance, in the case of intense 

precipitation with rates beyond the infiltration rate, or precipitation over very wet 

or saturated areas, the rainfall anomalies will results in runoff anomalies rather 

than soil moisture (Dunne, 1978; Horton et al., 1933). Nevertheless, except in the 

extreme cases, there is an obvious and direct response of soil moisture to 

precipitation. On the other hand, the feedback, via the return path from soil 

moisture through evapotranspiration to precipitation, can also play an important 

role in the TWS variability, though a weaker one (Seneviratne et al., 2010). 

Abundant previous research (Dirmeyer, 2011; Jung et al., 2010; Wei et al., 2012) 

shows that the Yangtze River basin is dominated by wet soil moisture regimes, 

where soil moisture does not mainly control the variability in evapotranspiration 

and has only a minor impact on the change in rainfall. Dirmeyer (2011) also 

confirms that soil moisture neither typically provides feedback to the atmosphere 

nor has a damping effect on climate variability. Thus, it is reasonable to speculate 

that the TWS variability in the Yangtze River basin is mainly controlled by large-

scale atmospheric circulations, as is also established by Wei et al. (2012). Moreover, 

as displayed in Figure 6.1, the Yangtze River basin suffered the highest TWS 

anomalies during June-July, which implies a high flood risk during this period, 

since runoff is sensitive to soil moisture content under wet soil regimes. When soil 

moisture is very high and soil becomes saturated, high precipitation variability 

may lead to high runoff variability, which cannot be damped by soil moisture 

storage (Seneviratne et al., 2010). 

It should be recognized that the TWS pattern in the upper Yangtze reaches is 

completely different from that in the middle and lower Yangtze reaches, which 

may be explained by large-scale circulation and heterogeneous land-surface 

conditions. The upper Yangtze reaches are mainly influenced by the South Asian 

(or Indian) summer monsoon, and the middle and lower Yangtze reaches are 

controlled by the East Asian summer monsoon (Ding and Chan, 2005). The 

seasonal process of the Asian summer monsoon plays a crucial role in heat and 

moisture transport and the hydrological cycle. Related rainfall systems perform 

differently in the upper reaches than in the middle and lower reaches (Qian et al., 
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2002). Since the topography in the upper Yangtze reaches is totally different from 

that in the middle and lower reaches (Figure 2.1), land-surface heterogeneities in 

temperature are expected (Giorgi et al., 1997; Salama et al., 2012). The land cover 

and hydrological conditions differ in the two areas (Piao et al., 2010). The 

inhomogeneous surface results in heterogeneity in surface energy partitioning, 

which in turn has an impact on land–atmosphere interactions (Brunsell et al., 2011; 

Ma et al., 2008). Therefore, different responses are expected by land-surface 

systems in the upper Yangtze reaches than in the middle/lower reaches. For 

example, soil moisture exerts a significant positive control on the maximum and 

mean temperature in the middle/lower reaches during summer, while no 

significant control is elicited in the upper reaches. Furthermore, while soil moisture 

and precipitation are positively coupled in the upper Yangtze reaches, this 

coupling is negative for the middle and lower Yangtze reaches (Zhang et al., 2011). 

6.4.2 TWS trend analysis 

In Figure 6.3, the ERA-Interim dataset shows decreasing TWS trends over large 

parts of the Yangtze River basin between 1998 and 2010, which match the 

descending trend in the soil moisture column from microwave satellite 

observations between 1998 to 2008 (Jung et al., 2010). It shows significantly 

decreasing trends (most of which surpass the 95%, while some even surpass the 99% 

confidence level) in the middle and lower reaches, with a maximum of -3.93 mm 

yr-1. The upper reaches suffer milder decreases and even insignificant trends in 

some parts during the period 1998 to 2010. Between 1979 and 1997, it provides 

insignificant trends for most regions of the basin. This result indicates that the 

Yangtze River basin is drying up, the conclusion also reached by a new World 

Wide Fund for Nature (WWF) study (http://www.asianscientist.com/topnews-

/yangtze-river-basin-is-drying-up-wwf-china-2012/). 

 

The MKS test is applied to detect the transition points in the temporal behavior of 

TWS standardized anomalies based on the annual mean, the wet season mean and 

the dry season mean, respectively. The definition of wet season and dry season is 

based on the precipitation climatology of the Yangtze River basin. The Yangtze 

River basin experiences a distinct wet season from about May to late September or 

http://www.asianscientist.com/topnews-/yangtze-river-basin-is-drying-up-wwf-china-2012/
http://www.asianscientist.com/topnews-/yangtze-river-basin-is-drying-up-wwf-china-2012/
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early October. The corresponding dry season spans from late September or early 

October to spring. The summer monsoons contribute most of the wet season 

precipitation (Harvey and Tang, 2007). As seen in Figure 6.4, generally speaking, 

the spatially averaged TWS standardized anomaly trends are not significant (< 95 % 

confidence level) and not monotonic (i.e. with a transition point) during the period 

1979 to 2010. The only transition point during the 32-year period of 1979 to 2010, at 

which point the TWS standardized anomalies began to decrease sharply, occurred 

in 2006. This trend reaches the 95% confidence level in 2010. The transition point 

occurs one year earlier in the wet season, and two years later in the dry season. In 

the middle and lower Yangtze reaches, the transition point occurs around 2005 

both in the wet and in the dry season. It is noted that there is a significant 

downward trend in 2009 and 2010 after four years of insignificant decrease. It was 

the first time this happened since the start of the study in 1979. In the upper 

Yangtze reaches, the TWS standardized anomalies experience mainly downward 

trends during the wet seasons of the past 3 decades and increasing trends during 

the dry seasons. In addition, transition points occur several times (1982, 1989, 1995, 

2001, 2005 . . .) and in the period of 1986–1988, the decrease is significant in the wet 

season in the upper Yangtze reaches. We also examined the transition points 

through MKS of the TWS standardized anomalies in the middle and lower Yangtze 

reaches during June–July, and the result is exactly the same as in the wet season, 

though the TWS standardized anomalies do differ from each other. 

 

As seen in Figures 6.4 and 6.5, the past 6-year period (2005–2010) was the driest 

period in the Yangtze River basin (especially in the middle and lower reaches) 

since 1979. This result is quite consistent with the severe drought events 

documented for the basin by other research. Wei et al. (2012) documented that the 

Yangtze River basin suffered one of the driest rainy seasons during the 32-year 

period of 1979 to 2010 in 2005, and Yan et al. (2007) noted that a widespread 

drought occurred over the southwestern part of the basin that same spring, and 

that it was the most serious drought since 1979 till 2007. Then the worst drought in 

more than a century struck southwest China and Sichuan in the summer of 2006, 

and Dai et al. (2008) showed that the middle and lower Yangtze River reaches 

suffered the lowest level of the past 50 years during that flood season. In 2007, the 

area around the Yangtze River suffered a severe drought again. In some places the 
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water levels of the river dropped to their lowest levels since records began 142 

years ago. The drought was also severe in large areas of the normally wet south. 

Reservoirs and rivers shrunk and supplies of drinking water fell to alarmingly low 

levels. However, the extreme drought of 2009/2010 over southwestern Yangtze 

(including Yunnan, Sichuan and Guizhou) is the driest meteorological event with 

the lowest percentage rainfall anomaly and the longest rain-free period occurring 

during a winter season (October–February) in the past 50 years, and also the 

severest one with the lowest percentage rainfall anomaly since 1880, as 

documented by Yang et al. (2012). 

 

 

Figure 6.4.The forward (UF, red) and backward (UB, blue) Mann-Kendall statistic rank series for TWS 

standardized anomalies, per year (a, d, g), per wet season (b, e, h), and per dry season (c, f, i) during the 

period 1979 to 2010 for the upper reaches(a, b, c), the middle-lower reaches(d, e, f) and the whole (g, h, i) 

of the Yangtze River Basin(the horizontally dotted lines represent the critical values corresponding to 

the 95% confidence level) 
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Figure 6.5.The time series of the annual, wet season (May-October) and dry season averaged 

(November-April) TWS standardized anomalies for the upper Yangtze Reaches, the middle-lower 

Yangtze reaches and the whole Yangtze River Basin, respectively. 

 

Monthly standardized anomalies of precipitation from ERA-Interim, the GPCC, 

and PREC/L have been computed and compared to monthly standardized 

anomalies of TWS (not shown here) to examine possible correlation. The 

correlation between TWS anomalies from ERA-Interim and precipitation 

anomalies from ERA-Interim, the GPCC, and PREC/L concerning the Yangtze 

basin is reasonably high in the wet season (0.69, 0.53, and 0.49, respectively), but 

much lower, especially for GPCC and PREC/L, in the dry season (0.48, 0.21, and 

0.25, respectively). From a regional perspective, the middle and lower Yangtze 

reaches exhibited greater agreement between TWS from ERA-Interim and 

precipitation from the three datasets, than the upper Yangtze reaches did. The 

notable negative TWS anomalies in the middle and lower Yangtze reaches are in 

clear agreement with the significant decrease in precipitation seen in the ERA-

Interim data in the past 6 years; the GPCC and PREC/L data exhibit more gentle 

negative precipitation anomalies during this period and do not show any special 

difference to the prior period (not shown here). The differences can also be seen 

clearly in Figure 3.2, where there is a clear downward shift for ERA-Interim 

relative to both the GPCC and PREC/L data in the past 6 years. This shift matches 

the general decline in values relative to the GPCC data for the past decade, which 
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may be caused by a too low sea surface temperature (SST) in the ERA-Interim 

dataset, or fewer stations in the GPCC archive in recent years (Simmons et al., 

2010). PREC/L uses fewer gauging stations since the 1990s as well, thus it is 

difficult to assess the recent huge and sudden drop in the ERA-Interim figures only 

by comparing them to the GPCC and PREC/L data. However, the dramatic 

precipitation decrease in the middle and lower Yangtze reaches had been 

examined by Zhu et al. (2011, Figure 2) over the past decade (2000–2008), and the 

rainfall anomalies based on a 160-station precipitation dataset of the last 58 years 

(1951–2008) dropped sharply from positive to negative values around 2004. This 

pattern of precipitation is consistent with the dramatic decrease of precipitation 

seen in ERA-Interim data, changing from positive to negative values since 2004 in 

the middle and lower Yangtze reaches (Figure 3.2), suggesting that the recent drop 

in precipitation is most likely the biggest contributor to the massive decline in TWS 

in the middle and lower Yangtze reaches. Ding et al. (2008) pointed out that the 

recent change in the summer rainfall pattern in the Yangtze River is strongly 

related to the variability of the East Asian summer monsoon (EASM) through its 

moisture transport and supply. Zhu et al. (2011) stated that the eastward recession 

of the western Pacific subtropical high (WPSH) and the significant changes in the 

global sea surface temperature (SST) are the main causes of the rainfall deficit in 

the Yangtze River basin since the year 2000. Yan et al. (2007) and Liu et al. (2007) 

documented that the intensification and westward shift of the WPSH and the 

easterly anomaly over the northern Indian Ocean are two key causes of the 2005-

spring drought over southwestern China. The northward shift of the WPSH and 

the negative snow cover anomaly over the Tibetan Plateau are important 

contributors to the 2006-summer drought (Zou and Gao, 2007; Li et al., 2009). The 

extreme drought event of 2009/2010 over southwestern China is associated with 

the westward extension of the WPSH brought about by the Arabian Sea cyclonic 

anomaly and the El Nino Modoki event during 2009/2010. 

 

Since ERA-Interim TWS products do not include the impact of anthropogenic 

activity, such as the TGD and land cover change, in the model structure but rather 

in the assimilated observations, their effect on the regional climate in the Yangtze 

River basin is not obvious. However, some studies have tried to demonstrate the 

extent of human impact on the Yangtze River basin. For example, Dai et al. (2008) 
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and Yang et al. (2010) show that the TGD reservoirs could have a direct impact on 

the intra-annual changes in the downstream Yangtze discharges, leading to a 

dumping of the seasonal variations in the Yangtze River discharge in the middle 

and lower reaches. Miller et al. (2005) and Wu et al. (2006) also documented that 

the land use change associated with the TGD would alter the regional pattern of 

precipitation, wind, and temperature. It could also impact the hydrological cycle of 

the river basin, and may lead to changes in the soil–climate interaction, which 

would probably alter the current dumping effect of soil wetness on the climate 

variability. As shown in Figures 6.4 and 6.5, the consistent droughts in recent years 

and the operation of the TGD have occurred simultaneously. In 2003, the water 

level of the TGR reached 135 m. Coincidently, in 2004, the driest period of the past 

32 years began for the middle and lower Yangtze. Also, the whole basin suffered 

an abrupt change in 2006, when the TGR raised its water level from 135 to 156 m. 

This coincidence is very striking and may imply the possible connection between 

the TGD and the consistent droughts in recent years, even though there has been 

no irrefutable evidence to prove that the TGR is responsible for the extremely 

driest period that has occurred in the past several years, as the TGD has only been 

in operation for a short period. Apart from the TGR, numerous other reservoirs 

within the Yangtze catchment together reached 200 km3 (Yang et al., 2005), more 

than five times the storage capacity of the TGR. The impact of these reservoirs on 

the TWS should not be ignored. The Yangtze basin has witnessed remarkable 

changes in land use and cover induced by high population density and rapid but 

uneven economic growth (Long et al., 2006; Yin et al., 2010). These changes might 

alter the soil properties and soil–climate interactions, probably having great 

influence on the TWS and runoff distribution. It should be pointed out that the 

ERA-Interim TWS could contain significant uncertainties, as it relies heavily on 

satellite observations and modeling. Further investigation and analysis is needed 

to assess the significant impact of human activity on the TWS of the Yangtze River 

basin. 

6.5 Conclusions 

This study analyzes the spatial and temporal variations of the TWS in the Yangtze 

River basin during the period 1979 to 2010 based on ERA-Interim datasets. Linear 
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regression and the MK test have been used to detect trends and the significance of 

trends in TWS for each pixel in the whole basin. In addition, the MKS test has been 

used to detect transition points in the temporal series of the spatially averaged 

TWS annual standardized anomalies in the upper, middle/lower, and whole basin, 

respectively. We conclude that the TWS variations over the Yangtze River basin 

during the period 1979 to 2010 have the following characteristics: 

 

1) Most of the Yangtze basin exhibits the highest positive TWS anomalies during 

June–July, mainly due to the Meiyu rain event. This intensified rainfall not 

only results in very high positive TWS anomalies, but probably also leads to 

high runoff anomalies, causing floods across the basin. 

 

2) The Yangtze River basin is drying up, especially since the year 1998. The TWS 

variation is strongly correlated to the precipitation variation derived from 

ERA-Interim, the GPCC and PREC/L data, especially during the wet season 

and in the middle and lower reaches, suggesting the TWS variation is mainly 

controlled by precipitation. 

 

3) In the middle and lower Yangtze reaches, the TWS behavior changed abruptly 

and started to decrease in 2004. Coincidently, the TGR started impoundment 

in 2003. The year 2006 is detected as only transition point, initiating the TWS 

to suffer high negative anomalies, while the TGR raised its water level from 

135 to 156m that same year. Due to the short period of the TGD being in 

operation, it is hard to prove a link between the TGR and the consistent 

drought in recent years, but the coincidence suggests a possible connection. 

 

4) The past 6-year period (2005–2010) was the driest period in terms of TWS in 

the Yangtze River basin (especially in the middle and lower Yangtze reaches) 

since 1979. This is mainly the result of a dramatic decrease in precipitation. 
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Chapter 7 Human-induced changes in terrestrial water 

storage of the Yangtze River basin estimated from GRACE 

satellite data and land surface model simulations 
 

This chapter is based on: 

 

Huang, Y., M. S. Salama, M. S. Krol, Z. Su, A. Y. Hoekstra, Y. Zeng, and Y. Zhou, 

2015: Estimation of human-induced changes in terrestrial water storage through 

integration of GRACE satellite detection and hydrological modeling: A case study 

of the Yangtze River basin. Water Resources Research, 51, 8494-8516. 

 

7.1 Abstract 

Quantifying the human effects on water resources plays an important role in river 

basin management. In this study, we proposed a framework, which integrates the 

Gravity Recovery and Climate Experiment (GRACE) satellite estimation with 

macro-scale hydrological model simulation, for detection and attribution of spatial 

terrestrial water storage (TWS) changes. In particular, it provides valuable insights 

for regions where ground-based measurements are inaccessible. Moreover, this 

framework takes into account the feedback between land and atmosphere, and- 

innovatively puts forward several suggestions (e.g. study period selection, 

hydrological model selection based on soil moisture-climate interactions) to 

minimize the uncertainties brought by the interaction of human water use with 

terrestrial water fluxes. We demonstrate the use of the proposed framework in the 

Yangtze River basin of China. Our results show that, during the period 2003-2010, 

the TWS was continually increasing in the middle and south eastern reaches of the 

basin, at a mean rate of about 3 cm yr-1. This increment in TWS was attributed to 

anthropogenic modification of the hydrological cycle, rather than natural climate 

variability. The dominant contributor to the TWS excess was found to be intensive 

surface water irrigation, which recharged the water table in the middle and south 
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eastern parts of the basin. Water impoundment in the Three Gorges Reservoir 

(TGR) is found to account for nearly 20% of the human-induced TWS increment in 

the region where the TGR is located. The proposed framework gives water 

managers/researchers a useful tool to investigate the spatial human effects on TWS 

changes. 

7.2 Introduction 

IPCC (2012) has documented evidence, based on observations gathered since 1950, 

of change in the extremes of, for instance, precipitation and discharge. There is 

medium confidence that some regions of the world have experienced more intense 

and longer droughts, whereas, in some regions, there have been statistically 

significant trends concerning the number of heavy precipitation events. This may 

relate to indirect human influence on water resources, referring mainly to the 

effects of anthropogenic changes in climate, which are, for instance, associated 

with greenhouse gas emissions. Direct human influence is attributed to human 

alteration of river basins, including but not limited to hydroelectricity generation, 

irrigation, groundwater abstraction, and land use and cover change (LUCC). On 

the one hand, human activity can have a large amount of benefits. For example, 

man-made reservoirs can prevent floods, ease droughts, and generate electricity; 

irrigation can increase crop production. On the other hand, they commonly affect 

the distribution, quantity, and chemical quality of water resources, and are 

therefore very likely to have adverse effects. For instance, it is prevalent that 

increasing water withdrawal worsens water scarcity conditions in semiarid and 

arid regions (e.g. Pakistan, India, northeastern China, the Middle East, and North 

Africa), increasing uncertainties in sustainable food production and economic 

development (Hanasaki et al., 2008b; Kummu et al., 2010; Vӧrӧsmarty et al., 2010; 

Wada et al., 2011b). Moreover, water impoundment, for instance, in the Three 

Gorges Reservoir (TGR), can cause a large mass redistribution of water in a short 

period, likely leading to groundwater recharge and contamination (Wang et al., 

2011). Therefore, quantifying the relative effects of natural and human influences 

on river basins is essential for water management.  

In recent decades, a number of macro-scale hydrological models have been 

developed and continuously improved, in order to analyze the effects of human 
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actions on water resources at large scales. Alcamo et al. (2003a, b) developed the 

global water resources and use model WaterGAP, and estimated the water 

withdrawals and availability at a global scale. Dӧll et al. (2009) used the WaterGAP 

Global Hydrological Model (WGHM) to estimate and analyze globally the river 

flow alterations due to water withdrawals and reservoirs. Furthermore, Dӧll et al. 

(2012) used WGHM to estimate the impact of water withdrawals on continental 

water storage variations. Hanasaki et al. (2008a, b) developed the integrated water 

resources assessment model H08 to stimulate both natural and anthropogenic 

flows of water globally. Due to the fact that few of these efforts had addressed the 

issue of human impacts on the terrestrial water cycle by explicitly representing 

them within the framework of land surface models (LSMs), Pokhrel et al. (2011) 

developed an integrated modeling framework (MATSIRO) for assessing the impact 

of anthropogenic water regulation on surface energy balance. Furthermore, Wada 

et al. (2014) substantially improved the PCR-GLOBWB model (Wada et al., 2010, 

2011a, b; van Beek et al., 2011) by, for instance, explicitly taking into account the 

mutual feedback between water supply and demand. These models are very 

valuable to analyze the human perturbation on global water resources; however, 

they have their own deficiencies and may contain large uncertainties at a regional 

scale. For example, Pokhrel et al. (2011) pointed out that there are certain 

limitations in their model, including the lack of explicit representations of water 

table dynamics, water diversions, and evaporation from large reservoirs. Moreover, 

WGHM does not consider the mutual feedback between human water use and 

terrestrial water fluxes. In addition, as documented by Wada et al. (2014), the 

improved PCR-GLOBWB model is limited to semiarid and arid regions, and 

unable to reproduce changes in the distribution within countries. 

Several studies have tried to analyze, at a regional scale, the effects of human 

actions on water resources, by comparing the simulated naturalized situation of 

the hydrological system with the real situation (Barco et al., 2010; Lorenzo-Lacruz 

et al., 2010; Mair and Fares, 2010). Furthermore, van Loon and van Lanen (2013) 

proposed an observation-modeling framework to make the distinction between 

water scarcity (human causes) and drought (natural causes). This framework gives 

water managers a useful tool to separate natural and human effects on the 

hydrological system. However, there are some limitations and issues. First of all, it 
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cannot be used in data-scarce regions, because the basic requirements of the 

framework are the observed data: meteorological data for the entire period, 

hydrological data for the period without human influence, and hydrological data 

for the period with human influence. Second, the framework is not suitable for 

large basins with high geographic diversity, because it does not provide 

information about changes in spatial distribution of hydrological variables. One 

possible scenario is that the spatial human effects are cancelled out at basin scale, 

which gives water managers the illusion of an absence of human effects on the 

hydrological system. Third, strategies are needed to address the uncertainties 

introduced by the feedback between human water use and terrestrial water fluxes. 

These uncertainties include two main parts. The first part is that the observed 

meteorological data are influenced by human actions. For instance, Pokhrel et al. 

(2011), Lo and Famiglietti (2013), and others have documented that irrigation alters 

the surface energy balance, influencing local weather and climate. The second part 

is the impact of climate variability on human actions. For instance, climate 

variability may change irrigation water demand, and consequently affect water 

withdrawal, allocation and consumption (Thomas, 2008; Wisser et al., 2008). 

Emerging advances in hydrologic remote sensing fill the gaps in data availability 

and water monitoring. The Gravity Recovery and Climate Experiment mission 

(GRACE) (Tapley et al., 2004b), comprising twin satellites launched in March 2002, 

offers a valuable tool to measure temporal and spatial terrestrial water storage 

(TWS) variations. The GRACE data have been used to validate macro-scale 

hydrological models (e.g. Dӧll et al., 2009; Pokhrel et al., 2011), or applied to 

estimate human-induced changes in groundwater storage (e.g. Rodell et al., 2009; 

Feng et al., 2013; Voss et al., 2013). However, the GRACE data are mainly used to 

estimate groundwater depletion or water impoundment in reservoirs rather than 

groundwater recharge. This may be attributed to two factors. First, the 

groundwater recharge caused by, for instance, large scale irrigation is more 

complex than groundwater depletion caused by groundwater pumping. The 

reason for this is that irrigation is influenced by both climate and humans, and may 

alter surface energy balance and hence influence regional climate. Second, the 

human-induced groundwater recharge at a large basin scale may not be significant 

enough to attract the attention of water managers/researchers, and since GRACE 
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data may contain significant errors for relatively small domains, the majority of 

GRACE applications are still at large scales. The GRACE based groundwater 

depletion studies did not explicitly consider the uncertainties generated by climate 

influences on their groundwater depletion estimates, an issue that will be 

addressed in this chapter.  

 

Figure 7.1.The framework for detection and attribution of spatial TWS changes at basin scales. 

Here, we propose a framework, which combines the virtues of GRACE satellite 

estimation and hydrological model simulation, for detection and attribution of 

spatial TWS changes. The advantages of this framework are listed as follows. First, 

the observational data requirement is low, as publicly available datasets are mainly 

used. Second, it takes into account the feedback between human water use and 

climate variation. Third, it encourages water managers to, especially for large river 

basins, locate and analyze regions with observed human effects (ROHs) and 

further explore the causes, rather than focus solely on basin-average analysis. This 
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framework integrates GRACE satellite detection with macro-scale hydrological 

modeling, and gives water managers and researchers a useful tool to investigate 

the spatial human effects on TWS in various climate regimes.  

This framework is illustrated by its application in the Yangtze River basin. The 

GRACE data have rarely been applied in a water rich basin to estimate spatial 

effects of human-induced changes on TWS mainly caused by large-scale irrigation. 

The Yangtze River basin experiences intensive human activity. For instance, the 

basin has been documented as one of the areas with the highest irrigation density 

in the world (Siebert et al., 2005), and intensive irrigation could also have 

substantial impact on TWS changes (Dӧll et al., 2012; Zhang et al., 2015). Although 

the Yangtze River basin was, in the above-mentioned previous studies, routinely 

taken as one of the major basins in the world for global water assessment, the 

human effects on the basin were rarely highlighted or validated by GRACE users 

and macro-scale hydrological modelers. This may be due to the difficulty of 

resolving the effects of human-induced TWS change on a sub basin scale.  

In this chapter, we first, in section 7.3, explain the framework for detection and 

attribution of spatial TWS changes. The application of the framework to the case 

study area is illustrated in section 7.4 and discussed in section 7.5. Finally, the 

conclusion is drawn in section 7.6. 

7.3 The framework for detection and attribution of spatial 

TWS changes 

The framework designed for detection and attribution of spatial TWS changes is 

depicted in Figure 7.1. It integrates two fully independent methodologies, using (1) 

GRACE satellite data combined with LSMs and (2) macro-scale hydrological 

modeling, to cross-check the estimated human-induced TWS changes.  

The left side of Figure 7.1 shows the method, subtracting LSM estimates from 

GRACE-observed TWS values, to preliminarily estimate the spatial effects of 

human-induced changes on TWS (equation (7.1)), as GRACE data detect TWS 

changes affected by both climate variability and human activities, whereas LSM 

simulations represent the climate-related TWS changes.  
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𝑇𝑊𝑆human = 𝑇𝑊𝑆GRACE − 𝑇𝑊𝑆natural  ,     (7.1) 

where 𝑇𝑊𝑆human  is the estimated human-induced TWS variation, 𝑇𝑊𝑆GRACE  is the 

GRACE-derived TWS variation, and 𝑇𝑊𝑆natural  is the natural part of TWS 

variation estimated from the LSM. TWS is expressed as equivalent water height 

(EWH) (cm). 

The inter-annual trend is computed, at each grid, by means of linear regression of 

the annual mean values of the estimated human-induced TWS. It should be noted 

that the estimated inter-annual trend does not explicitly consider seasonal 

variations, and hence the influence of seasonal variations on the estimated trends 

needs to be discussed. Uncertainty in inter-annual human-induced TWS trend is 

estimated by propagating errors from the GRACE-observed TWS trend and the 

LSM simulated TWS trend. 

𝜎ℎ_𝑡 = √𝜎g_t 2 + 𝜎l_t
2 ,     (7.2) 

where 𝜎ℎ_𝑡  , 𝜎g_t   and 𝜎l_t   are the uncertainty for human-induced TWS trend, 

GRACE-based TWS trend and LSM simulated TWS trend, respectively. These 

values are provided by GRACE land products. 

Uncertainty in GRACE-derived TWS trend, at each pixel, is computed in two steps: 

Firstly, we estimate the monthly error of GRACE-derived TWS by using 

measurement error and leakage error as:  

𝜎𝑔 = √𝜎l
2 + 𝜎m

2,     (7.3) 

 

where σg is the error for GRACE-based TWS, σl is the leakage error, and σm is the 

measurement error. 

Secondly, we propagate the monthly error of GRACE-observed TWS onto the 

least-squares-estimated inter-annual trend based on Morrison (2014) as follows: 

𝜎𝑔_𝑡 = 𝑁𝑚𝑜𝑛𝑡ℎ𝑠 ∗ 𝜎𝑔√𝑛[𝑛 ∑ 𝑥𝑖
2 + (∑ 𝑥𝑖

𝑛
𝑖=1 )2𝑛

𝑖=1 ] [𝑛 ∑ 𝑥𝑖
2 − (∑ 𝑥𝑖

𝑛
𝑖=1 )2]𝑛

𝑖=1⁄ ,     (7.4) 
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where 𝑥𝑖, 𝑛, and 𝑁𝑚𝑜𝑛𝑡ℎ𝑠  are the sequential data values, the dataset record length 

of the monthly GRACE-based TWS anomalies, and the number of months for one 

year, respectively.  

Moreover, uncertainty in LSM simulated TWS trend ( σl_t ), at each pixel, is 

estimated as the standard deviations of the trends computed from LSMs, as used 

by Famiglietti et al. (2011) and Voss et al. (2013) in similar cases: 

𝜎𝑙_𝑡 = √𝜎e_t 2 + 𝜎r_t
2 ,     (7.5) 

where 𝜎e_t and 𝜎r_t  are the uncertainties for the employed LSM simulated TWS 

trend and the referenced LSM simulated TWS trend, respectively. 

After the preliminary estimates of human-induced TWS changes, several ROHs are 

selected for further examination. This does not only allow us to explore specific 

causes at regional scales, but also to reduce uncertainties at grid scales, as 

increasing the size of the region when calculating a regional average generally 

reduces errors and uncertainties considerably (Landerer and Swenson, 2012). The 

selection of ROHs is primarily based on the extent of the discrepancy between the 

GRACE-derived TWS and LSM simulations, hydro-meteorological conditions, and 

types of human activity. The selection of the study period is also an important step 

in the framework. We selected the period during which the inter-annual and 

seasonal variability in the estimated TWS from the LSM are rather stationary 

(natural ‘stationary’ period) for the study. By selecting this period mathematical 

artefacts caused by the subtraction of a large negative LSM simulated TWS trend 

from the GRACE-derived one can to a certain extent be avoided, and the 

uncertainties caused by the feedback between human water use and terrestrial 

water fluxes reduced. More specifically, for the period when the climate is 

relatively stationary, the change in irrigation water demand related to climate 

variability is small, and hence the estimates from the method, subtracting the LSM 

simulated TWS from the GRACE derived TWS, largely exclude the uncertainties 

caused by the influence of climate variability on human activities (e.g. irrigation, 

water withdrawal, water consumption).  

From a historical perspective, the satellite-based estimates of human-induced TWS 

are validated by ground-based measurements such as water level measurements. 
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However, these field data are available for only a few regions, and rarely for 

periods of more than a few years. Besides, in situ observations are point 

measurements, and not always representative for larger spatial domains 

(Famiglietti et al., 2008). Therefore, modeling of the human effects on TWS changes 

is a valuable alternative, especially for data-limited regions (Figure 7.1, the first 

approach for validation). For the regions with in situ measurements of water levels, 

it is recommended to apply data assimilation, which combines the virtues of in situ 

measurements and model simulation of the human effects on TWS, to validate the 

GRACE satellite based estimates of human-induced TWS changes (Figure 7.1, the 

second approach for validation).  

As models have their own deficiencies and limitations, model selection for 

validation in individual regions is no trivial matter. In order to minimize the 

uncertainties caused by the feedbacks between human activities and climate 

variation, information on evapotranspiration (ET) drivers is used to select a 

hydrological model for validation of ROHs or a certain ROH. Jung et al. (2010) and 

Seneviratne et al. (2010) have documented that there is evidence from observations 

and modeling that, in terms of ET-soil moisture (SM) coupling strength, regions 

can be roughly classified into two categories: ET supply limited (SM-limited) 

regions and ET demand limited (energy-limited) regions. In ET supply limited 

regions, ET is largely governed by the availability of SM, whereas, in ET demand 

limited regions, ET is mainly controlled by net radiation and not sensitive to SM. 

As a result, models that consider the effects of human actions on surface energy 

balance and the potential climate feedbacks should be chosen for ET supply 

limited regions, since human actions (e.g. irrigation area extension, reservoirs 

construction) largely change SM, and hence have non-negligible impact on 

regional climate. On the other hand, such models may not perform well in ET 

demand limited regions, because the realistic representations of other processes are 

more important than land-atmosphere coupling. It should be noted that some 

regions may switch between ET demand limited and ET supply limited regimes 

over the course of the year (e.g. Ryu et al., 2008), and may also be dependent on 

land cover (e.g. Zhang et al., 2001; Zaitchik et al., 2006). Since we focus on inter-

annual trends of ROHs in this framework, ROHs are classified according to the ET 

regime dominant during the study period, for which the Supplementary Figure 2 
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of Jung et al. (2010) and Figure 8 of Seneviratne et al. (2010) offer valuable 

information. 

Previous studies (e.g. Seneviratne and Stockli, 2008; Teuling et al., 2009) have 

illustrated that drivers of ET vary with climate regimes, with a relatively high 

correlation coefficient of ET and SM in dry regimes, next to a  relatively high 

correlation coefficient of ET and radiation in wet regimes. Despite regional 

variations, human actions are associated with climate regimes, and hence with ET-

SM coupling strength. A large amount of groundwater withdrawal tends to occur 

in dry regions, whereas surface water is more likely to be predominantly used in 

wet regions. Therefore, groundwater depletion usually occurs in ET supply limited 

regions, whereas groundwater recharge caused by surface water irrigation is more 

likely to take place in ET demand limited regions. These assumptions can be cross-

checked in this framework, and further supported by data (e.g. discharge, lake 

volumes, vegetation cover fraction) from various sources.  

7.4 Application of the framework to the Yangtze River 

basin 

7.4.1 Preliminary estimates of human-induced TWS variations 

We preliminarily applied a linear regression model, at each pixel, to the annual 

mean values of the satellite estimated human-induced TWS anomalies. Figure 7.2 

illustrates the inter-annual trends of human-induced TWS variations with the unit 

of cm yr-1 EWH for the period 2003-2010. The trends of human-induced TWS 

variations obtained from GRACE and Noah-MP (Figure 7.2a) show a very similar 

spatial pattern to those computed from GRACE and ERA-Interim/Land (Figure 

7.2b). This is because they stem from the trends of the GRACE data (Figure 7.2c), as 

both Noah-MP and ERA-Interim/Land simulations have no significant trends 

during the study period. The human-induced TWS shows sharp positive trends in 

the middle and lower reaches, with a maximum of more than 5 cm yr-1, while a 

negative trend is observed in the upper reaches. Figure 7.3 depicts the uncertainties 

of the human-induced TWS trends of the study area, which are generally larger in 

the upper reaches of the basin than in the middle and lower reaches. Those 

uncertainties were estimated by propagating errors from the GRACE-observed 
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TWS trend and LSM simulated TWS trend (equation (7.2)). The uncertainties in 

GRACE-derived TWS trends were computed according to equations (7.3) and (7.4). 

The uncertainties in Noah-MP, ERA-Interim/Land simulated TWS trends were 

respectively estimated as the standard deviations of the trends computed from the 

used LSM and from GLDAS-Noah (equation (7.5)).  

 

Figure 7.2. Inter-annual trends of (a) estimated human-induced TWS from GRACE and Noah-MP 

simulations, (b) estimated human-induced TWS from GRACE and ERA-Interim/Land reanalysis data, 

and (c) estimated TWS from GRACE data, with the spatial resolution of 1º in the Yangtze River basin 

for the period 2003-2010; the gray line represents the Yangtze mainstream. The diamond and triangle 

represent the location of the TGD and the Cuntan hydrological station, respectively. Squares A, B, C 

and D represent the selected regions. Units: cm yr-1 
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Figure 7.3.Uncertainties in the annual trends of human-induced water storage based on (a) GRACE 

and Noah-MP simulations, (b) GRACE and ERA-Interim/Land reanalysis data in the Yangtze River 

basin; Units: cm yr-1 

 

7.4.2 ROHs and study period selection 

Based mainly on the growth rates of the first estimated human-induced TWS 

changes, we defined the Regions A, B, C and D as ROHs for further examination 

(Figure 7.2). Region A is located in the upper reaches of the Yangtze River basin, 

while Regions B, C and D are in the middle and lower reaches (Figure 2.2). It 

should be noted that Region B includes the hydraulic basin of China’s TGR. The 

positive GRACE-observed TWS trend of Region B, thus, was affected by the TGR 

water impoundment (Wang et al., 2011). Figure 7.4 shows the spatially averaged 

monthly time series of the estimated human-induced TWS anomalies in Regions A, 

B, C, and D. It depicts that, interestingly, the largest human-induced TWS increase 

occurred in Region C, with a mean rate of 3.7 ± 0.8 cm yr-1 based on GRACE and 
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Noah-MP, and a rate of  3.9 ± 1.1 cm yr-1 based on GRACE and ERA-Interim/Land, 

respectively. Regions B and D experienced smaller water increment during the 

period 2003-2010. In contrast, there is a small negative trend in Region A. Also 

shown in Figure 7.4 is that there is no significant trend in the Noah-MP or ERA-

Interim/Land simulated TWS. Therefore, the period 2003-2010 can be used as study 

period. Besides, the seasonal variability of the estimated human-induced TWS 

changes is rather stationary (Figure 7.4), indicating that, during 2003-2010, seasonal 

variations have little influence on the computed linear trends. 

 

Figure 7.4. Spatially averaged monthly time series of GRACE-observed TWS (blue star curve), Noah-

MP estimated TWS (orange circle curve), ERA-Interim/Land (EI) estimated TWS (red circle curve), 

human-induced TWS (green/black diamond curve) variations (as anomalies), and the best-fit linear 

human-induced TWS trend (green/black line) for Regions A to D during the period 2003-2010. The 

trends of human-induced TWS variations from GRACE and Noah-MP, in Regions A, B, C, and D, are -

0.5±0.5, 1.1±1.1, 3.7±0.8, and 1.9±0.7 cm yr-1, and from GRACE and ERA-Interim/Land are -0.7±1.0, 

1.3±0.6, 3.9±1.1 and 1.4±0.6 cm yr-1, respectively. 
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7.4.3 ROHs classification based on ET drivers 

Jung et al. (2010) and Teuling et al. (2009) have estimated the drivers of ET based 

on model and observational data. Seneviratne et al., (2010) have explicitly 

explained land-atmosphere coupling, the processes controlling ET, and the 

existence of distinct ET regimes. According to these previous studies, the Yangtze 

River basin, especially the middle and lower reaches, has consistently been 

diagnosed as an ET demand limited regime. This is not surprising, because the 

climate of the Yangtze River basin is predominantly humid, creating a sufficiently 

high SM level. 

7.4.4 Validation 

Due to the very weak coupling strength between SM and ET, the human activities 

that change SM (e.g. irrigation) have little impact on ET in the ET demand limited 

regime. Therefore, the models that consider the feedbacks between land and 

atmosphere do not have particular advantages. MATSIRO and PCR-GLOBWB 2.0 

are two of the most advanced models that take into account the feedbacks between 

land and atmosphere. However, MATSIRO lacks explicit representations of water 

table dynamics (Pokhrel et al., 2011), and the assumption of PCR-GLOBWB 2.0, 

using the fraction of daily accumulated base flow to simulate allocation of surface 

water and groundwater to satisfy the water demands, is unrealistic in humid 

regions where people predominantly rely on surface water resources (Wada et al., 

2014). Additionally, the impact of irrigation return flow was neglected. Therefore, 

neither is suitable to use for validation in the Yangtze River basin. 

In this case study, we select the method of Döll et al. (2012) to quantify the impacts 

of surface water and groundwater withdrawal and consumption on TWS 

variations. This is due to the fact that, although it does not consider the feedback 

between human water use and terrestrial water fluxes, or equate water demand 

with either water withdrawals or consumptive water use, it uniquely estimates 

water withdrawals according to source, for instance, accounting for the difference 

between water withdrawals from groundwater and water withdrawals from 

surface water. For a humid basin like the Yangtze, this hydrological model is 

therefore suitable for evaluating the impacts of human water use on TWS. 
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As Dӧll et al. (2012) concentrated on the impact of water use on seasonal variations 

in TWS rather than trends in the global-scale analysis, and the estimates were 

based on the data during the period 1998-2002, their modeling results cannot be 

used to validate the estimated human-induced TWS changes from GRACE and 

LSMs in this case study. In addition, according to the officially released water use 

data, water withdrawals are generally used for four sectors: domestic, 

manufacturing, irrigation and environment, which are different from the water use 

sectors defined in Dӧll et al. (2012). We therefore modified the equations (1) and (3) 

of Dӧll et al. (2012), and recomputed the impact of groundwater and surface water 

use on groundwater and surface water storages. 

Water withdrawals for all sectors and sources result in return flow (𝑊𝑈-𝐶𝑈) to 

surface water. It is assumed that the return flow of the irrigation water withdrawn 

from either surface water or groundwater partly runs off directly to surface water 

bodies, while the other part recharges groundwater before running to surface 

water bodies. The water withdrawals for other uses are assumed to directly flow 

into surface water even if the water source is groundwater. Therefore, the surface 

and groundwater storages are artificially changed, respectively, by net abstraction 

of surface water 𝑁𝐴𝑠  and net abstraction of groundwater  𝑁𝐴𝑔 , which are 

computed as follows: 

𝑁𝐴𝑠 = [𝐶𝑈𝑠𝑑 + 𝐶𝑈𝑠𝑒+ 𝐶𝑈𝑠𝑚 + 𝑊𝑈𝑠𝑖] − [(1 − 𝑓𝑟𝑔𝑖 )(𝑊𝑈𝑔𝑖 − 𝐶𝑈𝑔𝑖+𝑊𝑈𝑠𝑖 − 𝐶𝑈𝑠𝑖) +

(𝑊𝑈𝑔𝑑 − 𝐶𝑈𝑔𝑑 + 𝑊𝑈𝑔𝑚 − 𝐶𝑈𝑔𝑚+𝑊𝑈𝑔𝑒 − 𝐶𝑈𝑔𝑒)] ,      (7.6) 

 

𝑁𝐴𝑔 = 𝑊𝑈𝑔 − [𝑓𝑟𝑔𝑖 (𝑊𝑈𝑔𝑖 − 𝐶𝑈𝑔𝑖+𝑊𝑈𝑠𝑖 − 𝐶𝑈𝑠𝑖)] ,     (7.7) 

where 𝑁𝐴 is net abstraction (km3 yr-1); 𝑊𝑈  is withdrawal use (km3 yr-1); 𝐶𝑈  is 

consumptive use (km3 yr-1);   frgi  is groundwater fraction of return flow from 

irrigation (𝑊𝑈-𝐶𝑈), and of the subscripts g represents groundwater, s represents 

surface water, d represents domestic, e represents environment, i represents 

irrigation, and m represents manufacturing. It should be noted that net abstractions 

from groundwater and net abstractions from surface water can be positive or 

negative. Positive values indicate water storage losses, whereas negative values 

indicate storage gains. The sum of 𝑁𝐴𝑠  and 𝑁𝐴𝑔  is equal to consumptive water use. 
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Due to the unavailability of water withdrawal and consumption data for some 

sectors, only 𝑁𝐴𝑠 for irrigation is calculated in this study. 

Irrigation 𝐶𝑈 is computed by multiplying irrigation 𝑊𝑈 by irrigation water use 

efficiencies. We use the default values of irrigation water use efficiencies, 0.378 for 

surface water use and 0.7 for groundwater use, implemented in WaterGAP for 

China.  

Groundwater recharge is highly dependent on artificial drainage, which causes 

water to bypass the groundwater store, thus the groundwater fraction 𝑓𝑟𝑔𝑖  of 

return flow is calculated as a function of the fraction of irrigated area that is 

artificially drained 𝑓𝑑: 

𝑓𝑟𝑔𝑖 = 0.8 − 0.6 𝑓𝑑  ,     (7.8) 

where the values 0.8 and 0.6 are taken from Dӧll et al. (2012). In this study, the 

spatial yearly return flows are computed by weighting the total yearly return flows 

from irrigation (𝑊𝑈-𝐶𝑈) with the irrigation area percentage, due to a lack of 

detailed spatial distribution of water supply and consumption data in the study 

area (Table 7.1).  

 

As shown in Table 7.1, a huge amount of water (about 180×109 m3) is used in the 

Yangtze River basin every year, and approximately 95% of the water supply 

originates from surface water. Water used for irrigation takes up a large portion of 

the total water supply, accounting for more than 50% (around 94.8×109 m3) of total 

water use, while the rest of the water supply is used for domestic, manufacturing, 

etc. 
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Figure 7.5. (a) Irrigated area, in km2, (b) Fraction of return flows frgi from irrigation to groundwater, and 

(c) Yearly average net abstraction of groundwater 𝑁𝐴𝑔 , in cm yr-1, for the period 2005-2010, with the 

spatial resolution of 5 minutes. Negative net abstraction of groundwater indicates groundwater storage 

gains. 
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Table 7.1.  Water supply, use, and consumption in the Yangtze River basin during the period 2005-2010 

(×109 m3) 

 Surface 

water 

withdra

wal 

Ground

water 

withdra

wal 

Total 

water 

supply/

use 

WUi WUm WUd WUe WUgi WUsi CUgi CUsi WU-

CU 

NAg  

2005 175.6 7.9 184.2 94.3 64.6 23.2 2.2 4.1 89.9 2.8 34.0 57.1 -36.9 

2006 179.7 8.3 188.4 94.3 67.9 23.8 2.5 4.1 90.0 2.9 34.0 57.2 -36.6 

2007 
185.3 8.1 194.0 93.3 72.9 24.6 3.2 3.9 89.1 2.7 33.7 56.6 -36.4 

2008 186.2 8.3 195.2 94.8 71.8 25.1 3.5 4.0 90.5 2.8 34.2 57.5 -36.8 

2009 187.9 8.5 197.0 97.0 72.0 26.0 2.0 4.2 92.5 2.9 35.0 58.8 -37.6 

2010 189.0 8.5 198.3 94.8 74.7 26.9 2.0 4.1 90.4 2.9 34.2 57.4 -36.6 

averag

e 184.0 8.3 192.9 94.8 70.6 24.9 2.6 4.1 90.9 2.8 34.2 57.4 -36.8 

𝑊𝑈𝑔𝑖  is the withdrawal water from groundwater used for irrigation; 𝑊𝑈𝑠𝑖 is the withdrawal water 

from surface water for irrigation; 𝑊𝑈𝑖  is the withdrawal water from surface water and groundwater 

for irrigation; 𝑊𝑈𝑚 is the withdrawal water from surface water and groundwater for manufacturing; 

𝑊𝑈𝑑  is the withdrawal water from surface water and groundwater for domestic; 𝑊𝑈𝑒  is the 

withdrawal water from surface water and groundwater for environment; 𝐶𝑈𝑔𝑖 is the consumptive 

water use from groundwater for irrigation; 𝐶𝑈𝑠𝑖 is the consumptive water use from surface water for 

irrigation; WU - CU  is the return flow from irrigation to surface water ultimately;  𝑁𝐴𝑔 is the net 

abstraction of groundwater. 

Figure 7.5a illustrates that Region C and the river mouth are the most intensive 

irrigation areas of the Yangtze River basin, and Figure 7.5b shows that the lower 

reaches of the basin receive slightly smaller fractions of the return flows from 

irrigation to groundwater, due to the fact that the lower reaches are more 

artificially drained. Figure 7.5c exhibits the spatial pattern of yearly average net 

abstraction of groundwater (  𝑁𝐴𝑔 ), which was calculated from the values of 

irrigation areas, fractions of the return flows (𝑓𝑟𝑔𝑖 ), and water use and supply data 

released by the Ministry of Water Resources of China (Table 7.1). Great negative 

values in the middle and lower reaches of the basin indicate that large amounts of 

irrigated water recharged groundwater, especially in Region C. We further 

computed the spatially averaged time series of net abstraction of groundwater in 

Regions A, B, C, and D, respectively, as shown in Table 7.2. In the selected four 

ROHs, Region C experienced the greatest groundwater gains, with a mean rate of 

4.2 cm yr-1. The groundwater also increased in Regions B and D during the study 

period, but at a lower rate than in Region C, namely 1.2 and 3.0 cm yr-1, 

respectively.   
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Table 7.2. The human-induced net groundwater gain (−𝑁𝐴g ) and groundwater recharge, calculated 

using the method of Döll et al. (2012) in Regions A, B, C, and D. It should be noted that, in order to 

facilitate a comparison of the alternative estimates, the increments in the estimated human-induced 

TWS based on GRACE and LSMs (Figure 7.4) are also shown here. Units: cm yr-1. 

 Region A Region B Region C Region D 

−𝑁𝐴g  0.2 1.2 4.2 3.0 

Groundwater recharge 0.3  1.5 5.2 3.6 

GRACE-Noah-MP -0.5 1.1 3.7 1.9 

GRACE-ERA-Interim/Land -0.7 1.3 3.9 1.4 

 

7.5 Discussion 

In this chapter, we designed a framework for detection and attribution of spatial 

TWS changes, and took the Yangtze River basin as an example to investigate the 

spatial effects of human-induced changes on TWS. The human-induced TWS 

variations in the Yangtze River basin have been preliminarily estimated from 

GRACE remotely sensed data and LSM simulations over the 8-year period studied. 

GRACE detected TWS variations were affected by both climate variability and 

human interference, whereas the LSMs we used in this study simulated only the 

natural part of TWS variations taking no account of human activities. Without 

consideration of the feedback between human water use and terrestrial water 

fluxes, the human-induced TWS variations can thus be inferred from GRACE data 

by isolating the LSM simulated TWS, given auxiliary information on the other 

components of TWS. 

Two sets of LSM simulated TWS data were used in this study, one was simulated 

by Noah-MP and driven by the ITPCAS meteorological data, and the other used 

ERA-Interim/Land data. GRACE senses all phases of water stored above and 

below the surface of the Earth, and hence the GRACE-observed TWS variations 

include the combined contributions of SM, canopy water storage, snow water 

equivalent, ice, biomass, surface water and groundwater. The estimated TWS of 

both Noah-MP and ERA-Interim/Land, however, lacks certain components due to 

missing processes and storage parameters, although these differ for the two. More 

specifically, the Noah-MP estimated TWS only includes SM, canopy water storage, 
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snow water equivalent and groundwater, whereas the estimated TWS from ERA-

Interim/Land is limited to SM and snow water equivalent. Ice and biomass account 

for a tiny percentage of TWS in the Yangtze River basin, and thus have negligible 

impacts on TWS variations (Yang et al., 2011). Compared to the Noah-MP 

simulated TWS, canopy water storage and groundwater components are missing 

in the ERA-Interim/Land produced TWS. However, canopy water storage in the 

Yangtze River basin is negligible in comparison with SM (Yang et al., 2011), 

thereby having little impact on TWS variations. Moreover, the ERA-Interim/Land 

model, HTESSEL, has a deep soil reservoir to mimic shallow groundwater storage 

variations taking into account a capillary connection between groundwater and 

evaporation to avoid warm biases. Consequently, the estimated TWS from ERA-

Interim/Land to some extent reflects the groundwater variations, although it does 

not explicitly model groundwater (Balsamo et al., 2009). Furthermore, missing or 

poor model representations of, for instance, snow, surface water bodies and 

groundwater, predominantly affect the amplitudes of seasonal variations in TWS 

rather than natural inter-annual trends (Swenson and Wahr, 2006; Swenson and 

Milly, 2006; Syed et al., 2008). This is due to the fact that the physical consistency 

(i.e. closure of the water and energy budgets) is maintained by constructing in 

LSMs, and hence the LSM simulated TWS can largely represent the natural 

variability of meteorological fields.      

Since simulated TWS from the LSMs does not account for all the components of 

TWS (e.g. surface water storage component), which is contrary to GRACE-derived 

TWS, our proposed method to estimate the human impacts is recommended for 

catchments with negligible changes in those components. Moreover, the use of two 

models is supported by the current developments in LSMs, whereby ensemble 

models are employed to average bias (Yang et al., 2011). Although these models 

have their own limitations, and using only two models does not necessarily reduce 

the errors, the comparable simulations from two validated models may improve 

our confidence in the obtained natural variability of TWS.      

As shown in Figure 7.2, both the trends in estimated human-induced TWS 

variations from GRACE-Noah-MP (Figure 7.2a) and from GRACE-ERA-

Interim/Land (Figure 7.2b) show very similar patterns to GRACE (Figure 7.2c), 

which illustrates that neither LSMs simulated TWS exhibits significant trends 
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during the study period. This demonstrates that the estimated human-induced 

TWS trends were not mathematical artifacts caused by subtraction of large 

negative LSM simulated TWS trends from GRACE TWS trends, and indicates that 

TWS trends, mainly originated from the GRACE solutions, were very likely caused 

by anthropogenic modification to the hydrological cycle rather than natural climate 

variability. 

The estimated human-induced TWS changes from GRACE and LSMs can be 

validated by quantifying the impacts of water uses on surface and groundwater. 

The Yangtze River basin involves intensive human activities, such as irrigation, 

and dam construction. The basin is rich in surface water with approximately 95% 

of the water supply originating from surface water, while the other 5% is from 

groundwater (Table 7.1). Water used for irrigation takes up a large amount of the 

water supply, and accounts for more than 50% (around 94.8×109 m3) of total water 

use. The irrigated water is partly consumed by ET and outflow to the surface water 

bodies, whereas the other part recharges groundwater. Approximately 57.4×109 m3 

of water was available to return to surface and groundwater storage per year 

(Table 7.1), with 55%~80% recharging groundwater (Figure 7.5b). Due to irrigation, 

the mean net groundwater gain was nearly 36.8 × 109 m3 yr-1 (Table 7.1). As shown 

in Figure 7.5c, the middle and lower reaches of the basin experience large amounts 

of net groundwater gain due to irrigation. The spatial pattern of net 

abstraction/gain of groundwater matches the pattern of estimated human-induced 

TWS changes based on GRACE and LSMs well (Figure 7.2). 

Four ROHs (Regions A, B, C, and D) within the study area were chosen based on 

TWS growth rates (Figure 7.2) for further examination and comparison. It should 

be noted that Region B is the hydraulic basin of the TGR, and that we selected this 

region to quantify the impacts of TGR impoundment on TWS changes. As shown 

in Figure 7.4, Region C experienced dramatic human-induced TWS increment at a 

mean rate of 3.7 ± 0.8 cm yr-1 estimated from GRACE and Noah-MP, and a rate of 

3.9 ± 1.1  cm yr-1 estimated from GRACE and ERA-Interim/Land, respectively. 

Regions B and D also show positive human-induced TWS trends, although less 

than Region C, while Region A exhibits no significant trend. This is consistent with 

the yearly average net gain of groundwater, estimated based on the method of Döll 

et al. (2012) (Table 7.2): 0.2, 1.2, 4.2, and 3.0 cm yr-1 added to groundwater storage 
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in Regions A, B, C, and D, respectively. The quantification of the impact of water 

use on groundwater storages, based on the method of Döll et al. (2012), is fully 

independent of the human-induced estimates from GRACE and LSMs, thus the 

high consistency between these methods verifies the estimated values and patterns 

of human-induced TWS, and also indicates that groundwater recharge from 

intensive surface water irrigation is an important contributor to the TWS increases 

in Regions B, C, and D. 

 

Figure 7.6. Monthly standardized anomalies of water level (blue curve) and trends (blue line), during 

the study period, for (a) Donging Lake, (b) Poyang Lake, (c) Tai Lake, and (d) the three lakes’ average, 

respectively. 

Surface water storage (e.g. lakes, rivers) merits consideration. As shown in Figure 

5.7, the monthly discharge from the main hydrological gauging stations (Cuntan, 

Yichang, and Datong) and from model simulations on the Yangtze River 

mainstream are rather stationary except in 2006. Similarly, it can be clearly seen 

from Figure 7.6 that no trends are exhibited in water level variations for the three 

largest natural lakes (Dongting Lake, Poyang Lake, and Tai Lake), provided by 

HYDROWEB during the study period. In combination with the information that 

there was no rise in the water surface areas of Dongting Lake and Poyang Lake 

estimated from remotely sensed data (Hervé et al., 2011), we can infer that the lake 

volumes of Dongting Lake and Poyang Lake did not experience positive trends 

during the study period. It should be noted that these two lakes, Dongting Lake 
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and Poyang Lake, are located in Region C (Figure 2.2). Therefore, rivers and 

natural lakes did not contribute to the GRACE-observed TWS trends in the 

Yangtze River basin, at least in Region C, during the study period. 

Groundwater and surface water are physically connected by the hydrologic cycle, 

and their interactions depend on the physiographic and climatic setting of the 

landscape. Due to the fact that these interactions take many forms, and so far have 

not been well investigated in the Yangtze River basin, we cannot elaborate on the 

processes of groundwater and surface water interaction. However, it is reasonable 

that the surface-water bodies exhibited no trends while groundwater was 

continually increasing, because, first of all, the inter-annual changes in surface-

water bodies may not be sufficiently sensitive to changes in groundwater, as water 

that recharges groundwater originally comes from the surface water bodies. 

Second, the surface water bodies may gain water from inflow of groundwater in 

some stream reaches and lose water in other reaches, depending on the 

comparison between the altitude of the water table in the vicinity of streams and 

the altitude of the stream-water surface. Third, in some regions, the groundwater 

system may be disconnected from streams by an unsaturated zone, where changes 

in groundwater storage do not affect the flow of streams (Winter et al., 1998).  

Groundwater flow is much slower than riverine flows, thus the part of irrigated 

water that recharges groundwater can accumulate underground. Therefore, the 

GRACE-derived TWS (Figure 7.2c) was continuously increasing. It should be noted 

that Figure 7.4 shows a decline in the GRACE-derived and human-induced TWS 

during 2006, which is inconsistent with the estimates based on the method of Döll 

et al. (2012). More specifically, the GRACE-derived TWS decreased by 3.7 cm on 

average in Region B and 6.7 cm in Region C in 2006 relative to the previous year 

2005, whereas the estimated human-induced net groundwater gains were 1.2 cm in 

Region B and 4.2 cm in Region C (Table 7.2). This inconsistency can be explained 

by the 2006 extreme drought. As previously mentioned, an extreme drought 

occurred in 2006 in the Yangtze River basin. Dai et al. (2010) have shown that 

groundwater discharge along the middle and lower reaches plays an important 

role in the compensation of runoff and river level reduction in drought years. The 

total groundwater discharge was found to account for 31% of the increased river 

discharge between Yichang and Datong in 2006. However, the net abstractions of 

http://www.water.ca.gov/groundwater/groundwater_basics/hydrocycle.cfm
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groundwater estimated from the method of Döll et al. (2012) consider no such 

compensation. It is also interesting that the net groundwater gain is very high in 

the Yangtze delta (Figure 7.5c), which is not captured by GRACE data (Figure 7.2). 

This might be due to the fact that the Yangtze delta was formed by a series of 

Chenier shell ridges that gradually extended the deltaic plain seaward through the 

sedimentary deposition of the Yangtze River, and that groundwater flow rates are 

relatively high in these high permeability materials. The net gain of groundwater, 

thus, very likely flows away from the delta to neighboring regions. 

 

Figure 7.7. Groundwater resources map with aquifer systems in the Yangtze River basin (WHYMAP, 

2008). Blue, green, and brown colors represent the areas in major groundwater basins (Area 1), with 

complex hydrological structure (Area 2), and with local and shallow aquifers (Area 3), respectively. 

Light and dark colors represent the areas with relatively low and high recharge rate. 

There are other factors that were not considered in the quantification of net 

groundwater recharge. First, the underlying soil and geology may partly explain 

the differences in groundwater variations between the four regions. As shown in 

Figure 7.7, Region C is largely underlain by a major groundwater basin, with a 

high available recharge rate of 10~30 cm yr-1 or a very high recharge rate of more 

than 30 cm yr-1. Regions B and D, located in areas with local and shallow aquifers 

or complex aquifers, also have a high recharge rate of 10~30 cm yr-1. In contrast, 

Region A has a relatively low groundwater recharge rate of less than 10 cm yr-1 

(WHYMAP, 2008). The groundwater replenishment in Regions B, C and D, thus, 

occurs easily when there is a water surplus, particularly in Region C. Second, the 

decrease of NDVI (Figure 7.8) in Regions B, C and D indicates deterioration of the 
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vegetation during the study period. The importance of vegetation in controlling 

water recharge in a natural system has been illustrated by previous studies (Wang 

et al., 2004; Scanlon et al., 2005, 2006), which show that changing land cover from 

vegetated to non-vegetated conditions increases groundwater recharge, as the 

decrease of vegetation cover reduces the ability of soil to retain water for plant use. 

This is consistent with the results that Regions B, C and D had a decrease in NDVI 

but an increase in groundwater storage. All of the above implies that the intensive 

surface water irrigation, leading to groundwater gains, forms a main contributor to 

the GRACE-derived TWS trends in the middle and lower reaches of the Yangtze 

River basin. 

Water impoundment in reservoirs can cause a large mass redistribution. Wang et 

al. (2011) proved that the water storage changes in the TGR can be captured by 

GRACE, which explains 76% of the monthly variability in in-situ measurements. 

Thus, the GRACE-derived TWS trend in Region B, where the TGR is located, was 

also affected by the TGR operations. The impounded water volume of the TGR was 

11.6, 5.6, and 6.1 km3 during the first filling stage in June 2003, the second filling 

stage in 2006, and the third filling stage in 2008, respectively. Due to the TGR 

impoundment, Region B experienced a TWS increment at a mean rate of 0.3 cm yr-1 

during the study period, as calculated by adding up the impounded water 

volumes of all three filling stages (23.3 km3) and dividing this figure by the area of 

Region B (about 1×105 km2) and the value of 8 (for the 8-year period). This value of 

0.3 cm yr-1 is relatively small (24%) compared to the net groundwater gain (−𝑁𝐴𝑔 ) 

in Region B (1.2 cm yr-1). Considering both water impoundment in the TGR and net 

groundwater gain due to irrigation, the total annual TWS trend of Region B 

amounts to 1.5 cm yr-1. This value is within the range of human-induced TWS 

changes estimated from GRACE-Noah-MP (1.1±1.1cm yr-1), and the estimate from 

GRACE-ERA-Interim/Land (1.3±0.6 cm yr-1). The TGR water impoundment, thus, 

accounted for nearly 20% of the human-induced TWS changes. However, Region B, 

where the TGR is located, exhibits a less significant trend than Region C does. This 

indicates that water impoundment in reservoirs is an important contributor, but 

not the dominant one to the large-scale TWS changes in the Yangtze River basin. 
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Figure 7.8. Spatial averaged annual NDVI changes (blue diamond curve) in summer and associated 

trends (blue line), during the study period, in Regions A, B, C and D. 

The feedback between human water use and terrestrial water fluxes needs careful 

consideration. On the one hand, human water use is influenced by climate 

variation. When using equation (7.1) to estimate the human-induced TWS changes, 

it includes the uncertainties caused by the influences of climate variation on 

human water use. Climate variability may change, for instance, irrigation water 

demand, and consequently change water use and withdrawal. The stable climate 

during the study period, however, does not cause big changes in water use, and 

can largely reduce the uncertainties. As mentioned previously, the climate in the 

Yangtze River basin has been relatively stationary for the period 2003-2010. As a 

result, the changes in water use caused by climate variability are small, which can 

also be confirmed by the small changes in irrigation water use data, as listed in 

Table 7.1. Therefore, the associated discrepancy between the estimated human-

induced TWS changes and the actual values is small. On the other hand, climate 

variation is influenced by human water use. As previously mentioned, the Yangtze 

River basin, especially the middle and lower reaches, is dominated by the ET 

demand limited regime, where terrestrial water fluxes are mainly controlled by net 

radiation rather than SM. Hence, human water use such as irrigation causes 

changes in SM, but has little influence on climate variation.  
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7.6 Conclusions 

In this study, we proposed a framework for detection and attribution of spatial 

TWS changes. This framework integrates GRACE satellite detection and macro-

scale hydrological models, and gives water managers and researchers a useful tool 

to investigate the spatial human effects on TWS in various climate regimes. 

Moreover, this proposed framework provides valuable insights for regions where 

in situ data are inaccessible. For regions with some in situ data of, for instance, 

groundwater levels, it is recommended to use data assimilation, which can 

combine the virtues of in situ data and hydrological modeling, rather than solely 

use point measurements, to validate GRACE satellite estimates. Furthermore, the 

framework takes into account the feedback between human water use and 

terrestrial water fluxes, and stresses the importance of selecting a climate 

stationary period as the study period and, based on SM-climate interactions, of 

choosing a suitable hydrological model to validate the GRACE detection, which is 

very different from previous GRACE applications (e.g. Rodell et al., 2009; Feng et 

al., 2013; Voss et al., 2013). 

This framework is illustrated by its application to the Yangtze River basin, due to 

the fact that GRACE data have rarely been applied in a water rich basin to estimate 

spatial effects of human-induced changes on TWS mainly caused by large-scale 

irrigation. For this basin, we conclude that the spatial pattern of TWS, especially in 

the middle and lower reaches, was changing during the period 2003-2010, and this 

change was occurring as a result of anthropogenic modification to the hydrological 

cycle rather than natural climate variability. Human activity such as intensive 

surface water irrigation and reservoir operation were increasing the TWS 

continuously in the middle and lower reaches, as was captured by subtracting LSM 

simulations from GRACE satellite data. This human-induced increase in TWS was 

mainly attributed to intensive surface water irrigation, which leads to groundwater 

gains. The TGR impoundment was also a noticeable cause for TWS change in the 

reservoir region and accounted for nearly 20% of the human-induced TWS 

increment. However, we should acknowledge the shortcomings, such as the 

absence of groundwater measurements and detailed information on reservoir 

construction and management in the case study.                         
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Chapter 8 Conclusions 
 

Effects of climate variability and human activities on river basins have received 

increasing attentions, as extreme weather and climate events occur more frequently 

in some regions (IPCC, 2012). Terrestrial water storage (TWS) strongly influences 

water and energy fluxes, thereby playing a major role in the Earth’s climate system 

(Famiglietti, 2004). A better understanding of TWS variability and its response to 

climate variability and human activity is thus important. However, mainly due to 

the fact that TWS is not routinely assessed like other hydrometeorological 

measurements, few studies have paid attention to TWS distribution in time and 

space.  

With this background, the main objective of the dissertation is to investigate the 

space-time variability in TWS and its response to climate variability and human 

activity in the Yangtze River basin. In order to achieve this, the publicly available 

data assimilation products, remotely sensed observations, in situ data and 

modelling techniques are used. I first focus on obtaining reliable climate-related 

TWS estimates by evaluating publicly available data assimilation products and/or 

reconstructing the water budget from land surface models (LSMs) for the Yangtze 

River basin (Chapters 3-5). Based on this, Chapter 6 analyzes the climate-related 

TWS variations in space and time, and Chapter 7 investigates the spatial effects of 

human-induced changes in TWS in the Yangtze River basin. 

8.1 Climate-related TWS estimation 

Chapter 3 evaluates the TWS estimates from the ERA-Interim Reanalysis Data 

(ERA-Interim) and the Global Land Data Assimilation System with Noah LSM 

(GLDAS-Noah). The regional accuracies and reliabilities of the ERA-Interim and 

GLDAS-Noah datasets are assessed by comparing their spatially averaged time 

series of runoff for the upper Yangtze River with the observed discharge for the 

period 1979-2004, and the results show that the ERA-Interim modeled runoff fits 

the observed values better than the GLDAS-Noah modeled runoff does. 
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Besides publicly available global data assimilation products, the TWS variations of 

the Yangtze River basin can also be estimated from LSM simulations. This 

simulated TWS may have higher accuracy than global data assimilation products, 

because of the improved atmospheric forcing data and more realistic 

representations of physical processes for the study area. Therefore, the ITPCAS 

atmospheric data, which have been proved to have higher accuracy in China than 

the GLDAS atmospheric data, are used to force the LSMs in Chapters 4 and 5. 

Moreover, the new roughness lengths derived by Zheng et al. (2014) are 

implemented in the Noah LSM for the regional scale land surface modelling of 

alpine grasslands in the Yangtze River basin (Chapter 4), and the Noah LSM with 

multi-parameterization options (Noah-MP) is used in Chapter 5 to investigate to 

which extent this augmented Noah LSM can improve the simulation accuracy of 

water states and fluxes. 

Chapter 4 assesses the effects of roughness length parameterizations on regional 

scale land surface modelling of alpine grasslands in the Yangtze River basin. The 

results show that the newly derived roughness lengths not only generally reduce 

the mean biases of daytime land surface temperature (Tsfc) simulation of the Noah 

LSM, but also largely improve the simulation performance of water budget 

components (e.g. runoff). On the other hand, the Noah LSM with the updated 

roughness lengths still largely underestimates the daytime Tsfc during the winter 

period and the monthly runoff, which can be attributed to the imperfect roughness 

length schemes, unrealistic representations of other processes, and the inaccuracies 

in the forcing data. Furthermore, it is recommended to use the roughness length 

scheme proposed by Chen and Zhang (2009) (C09) with the updated roughness 

length for momentum transfer (z0m) for the Noah land surface modelling of alpine 

grasslands, particularly in dry conditions. 

Alternative parameterizations within the same framework are compared in 

Chapter 5, in order to investigate which role of a specific process in controlling 

water fluxes and states in the Yangtze River basin. The results show that Noah-MP 

can significantly reduce the mean bias error (MBE) and improve the model 

efficiency of monthly runoff simulation compared to the Noah LSM. This 

improvement can be mainly attributed to the improved physics of supercooled 
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liquid water, frozen soil permeability and the lower boundary condition of soil 

moisture. 

8.2 TWS variations caused by climate variability 

Chapters 3, 4, and 5 show that the ERA-Interim datasets perform better in the 

Yangtze River basin than the GLDAS-Noah, the updated Noah LSM, and the 

Noah-MP in terms of runoff simulation. Therefore, Chapter 6 analyzes the spatial 

and temporal variations of the TWS in the Yangtze River basin during the period 

1979 to 2010 based on ERA-Interim datasets. The results show that the Yangtze 

River basin is drying up, especially since the year 1998. The TWS variation is 

strongly correlated to the precipitation variation derived from ERA-Interim, the 

GPCC and PREC/L data, especially during the wet season and in the middle and 

lower reaches, suggesting the TWS variation is mainly controlled by precipitation. 

Moreover, in the middle and lower Yangtze reaches, the TWS behavior changed 

abruptly and started to decrease in 2004. The past 6-year period (2005–2010) was 

the driest period in terms of TWS in the Yangtze River basin since 1979. This is 

mainly the result of a dramatic decrease in precipitation. 

8.3 Human-induced changes in TWS 

Chapter 7 proposed a conceptual framework for detection and attribution of 

human-induced changes in TWS. This framework integrates GRACE satellite 

detection and macro-scale hydrological models, and gives water managers and 

researchers a useful tool to investigate the spatial human effects on TWS in various 

climate regimes. Particularly, it provides valuable insights for regions where 

ground-based measurements are inaccessible, and takes into account the feedback 

between human water use and terrestrial water fluxes.  

This framework is illustrated by its application to the Yangtze River basin. For this 

basin, the spatial pattern of TWS, especially in the middle and lower reaches, was 

changing during the period 2003-2010, and this change was occurring as a result of 

anthropogenic modification to the hydrological cycle rather than natural climate 

variability. Human activities such as intensive surface water irrigation and 

reservoir operation were increasing the TWS continuously in the middle and lower 
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reaches. This human-induced increase in TWS was mainly attributed to intensive 

surface water irrigation, which leads to groundwater gains. The three gorges 

reservoir (TGR) impoundment was also a noticeable cause for TWS changes in the 

area where it is located, which accounted for nearly 20% of the human-induced 

TWS increment.  

8.4 General conclusions 

This dissertation has demonstrated the value of integration of earth observations 

with modeling techniques in understanding the effects of climate variability and 

human activities on river basins. It also highlights the importance of a spatial 

perspective in water resources investigation. Although there is no substitute for 

ground-based observational data, emerging advances in hydrologic remote sensing 

and hydrological models, combined with better understanding of the hydrologic 

cycle, allow us to gradually break the limit of in situ data unavailability, and 

construct a holistic picture of changing water availability for a particular region or 

across the globe. This PhD research reflects that science-informed perspective. 

8.5 Suggestions for future research 

Model simulation plays a key role in quantifying the effects of climate variability 

and human activity on water resources, particularly from a spatial perspective. In 

this dissertation, the natural TWS variations are mainly estimated from LSMs. 

Despite good progress made in land surface modelling in recent decades, it is still a 

challenge to achieve reliable simulations in certain regions (e.g. the Tibetan Plateau) 

or under certain conditions (e.g. dry conditions). Therefore, it is imperative to 

better understand land surface processes and further improve model physical 

parameterizations. In order to accomplish this, in situ measurements are crucial. 

Besides, a more inclusive model system which can explicitly represent the effects of 

human activity on water resources is necessary. With such a model system, human 

influence on water resources can also be quantified through comparison between 

the simulated situations with and without human intervention within the same 

framework, besides comparing the simulated naturalized situation of the 
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hydrological system with the observation (the real situation). This will offer great 

opportunities for regions where observations are unavailable. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Conclusions 

124 

 

 

 

 

 

 

 

 

 

 

 



Bibliography 

 

125 

 

Bibliography 
 

Alcamo, J., P. Döll, T. Henrichs, F. Kaspar, B. Lehner, T. Rösch, and S. 

Siebert, 2003a: Development and testing of the WaterGAP 2 global 

model of water use and availability. Hydrological Sciences Journal, 

48(3), 317-337. 

Alcamo, J., P. Döll, T. Henrichs, F. Kaspar, B. Lehner, T. Rösch, and S. 

Siebert, 2003b: Global estimates of water withdrawals and availability 

under current and future “business-as-usual” conditions. Hydrological 

Sciences Journal, 48(3), 339-348. 

Balsamo, G., A. Beljaars, K. Scipal, P. Viterbo, B. van den Hurk, M. Hirschi, 

and A. K. Betts, 2009: A Revised Hydrology for the ECMWF Model: 

Verification from Field Site to Terrestrial Water Storage and Impact in 

the Integrated Forecast System. Journal of Hydrometeorology, 10, 623-

643. 

Balsamo, G., et al., 2015: ERA-Interim/Land: a global land surface 

reanalysis data set. Hydrol. Earth Syst. Sci., 19(1), 389-407. 

Ball, J. T., I. E. Woodrow, and J. A. Berry, 1987: A model predicting 

stomatal conductance and its contribution to the control of 

photosynthesis under different environmental conditions, in Process in 

Photosynthesis Research, vol. 1, edited by J. Biggins, pp. 221-234, 

Martinus Nijhoff, Dordrecht, Netherlands. 

Barco, J., T. S. Hogue, M. Girotto, D. R. Kendall, and M. Putti, 2010: Climate 

signal propagation in southern California aquifers. Water Resources 

Research, 46, W00F05, doi:10.1029/2009WR008376. 

Berrisford, P., 2011: The ERA-Interim Archive: Version 2.0.  ECMWF. 

Bonan, G. B., 1996: A land surface model (LSM version 1.0) for ecological, 

hydrological, and atmospheric studies: Technical description and user's 

guide, NCAR tech. Note NCAR/TN-417+STR, 150 pp., Natl. Cent. for 

Atmos, Res., Boulder, Colo. 

Brunsell, N. A., D. B. Mechem, and M. C. Anderson, 2011: Surface 

heterogeneity impacts on boundary layer dynamics via energybalance 

partitioning, Atmos. Chem. Phys., 11, 3403–3416. 



Bibliography 

126 

 

 

Brutsaert, W., 1982: Evaporation into the Atmosphere: Theory, History and 

Applications. Springer, 319pp. 

Brutsaert, W., 1998: Land-surface water vapor and sensible heat flux: 

Spatial variability, homogeneity, and measurement scales. Water 

Resources Research, 34, 2433-2442. 

Burn, D. H., and M. A. Hag Elnur, 2002: Detection of hydrologic trends and 

variability. Journal of Hydrology, 255, 107-122. 

Cai, X., Z.-L. Yang, C. H. David, G.-Y. Niu, and M. Rodell, 2014: 

Hydrological evaluation of the Noah-MP land surface model for the 

Mississippi River Basin. Journal of Geophysical Research: Atmospheres, 

119, 2013JD020792.  

Campbell, G. S., 1974: A simple method for determining unsaturated 

conductivity from moisture retention data. Soil Science, 117 (6). pp. 

311-314. 

Chen, F., Z. Janjić, and K. Mitchell, 1997: Impact of Atmospheric Surface-

layer Parameterizations in the new Land-surface Scheme of the NCEP 

Mesoscale Eta Model. Boundary-Layer Meteorology, 85, 391-421.  

Chen, J. L., M. Rodell, C. R. Wilson, and J. S. Famiglietti, 2005: Low degree 

spherical harmonic influences on Gravity Recovery and Climate 

Experiment (GRACE) water storage estimates. Geophysical Research 

Letters, 32, L14405. 

Chen, J. L., C. R. Wilson, B. D. Tapley, Z. L. Yang, and G. Y. Niu, 2009: 

2005 drought event in the Amazon River basin as measured by GRACE 

and estimated by climate models, J. Geophys. Res., 114, B05404, 

doi:10.1029/2008jb006056. 

Chen, X., Z. Su, Y. Ma, S. Liu, Q. Yu, and Z. Xu, 2014: Development of a 

10-year (2001–2010) 0.1° data set of land-surface energy balance for 

mainland China. Atmos. Chem. Phys., 14, 13097-13117. 

Chen, Y., K. Yang, D. Zhou, J. Qin, and X. Guo, 2010: Improving the Noah 

Land Surface Model in Arid Regions with an Appropriate 

Parameterization of the Thermal Roughness Length. Journal of 

Hydrometeorology, 11, 995-1006. 



Bibliography 

 

127 

 

Chen, F., and Y. Zhang, 2009: On the coupling strength between the land 

surface and the atmosphere: From viewpoint of surface exchange 

coefficients. Geophysical Research Letters, 36, L10404.  

Chen, Y., K. Yang, J. He, J. Qin, J. Shi, J. Du, and Q. He, 2011: Improving 

land surface temperature modeling for dry land of China. Journal of 

Geophysical Research: Atmospheres, 116, D20104. 

Collatz, G. J., J. T. Ball, C. Grivet, and J. A. Berry, 1991: Physiological and 

environmental regulation of stomatal conductance, photosynthesis and 

transpiration: a model that includes a laminar boundary layer. 

Agricultural and Forest Meteorology, 54(2–4), 107-136. 

Collatz, G. J., M. Ribascarbo, and J. A. Berry, 1992: A coupled 

photosynthesis-stomatal conductance model for leaves of C4 plants. 

Aust. J. Plant Physiol., 19, 519-538, doi: 10.1071/PP9920519. 

Crawford, T. M., and C. E. Duchon, 1999: An Improved Parameterization for 

Estimating Effective Atmospheric Emissivity for Use in Calculating 

Daytime Downwelling Longwave Radiation. Journal of Applied 

Meteorology, 38, 474-480.  

Crétaux, J. F., et al., 2011: SOLS: A lake database to monitor in the Near 

Real Time water level and storage variations from remote sensing data. 

Advances in Space Research, 47(9), 1497-1507. 

Dai, Z., J. Du, J. Li, W. Li, and J. Chen, 2008: Runoff characteristics of the 

Changjiang River during 2006: Effect of extreme drought and the 

impounding of the Three Gorges Dam. Geophysical Research Letters, 

35(7), L07406. 

Dai, Z.-j., J.-z. Du, A. Chu, J.-f. Li, J.-y. Chen, and X.-l. Zhang, 2010: 

Groundwater discharge to the Changjiang River, China, during the 

drought season of 2006: effects of the extreme drought and the 

impoundment of the Three Gorges Dam. Hydrogeol J, 18, 359-369. 

Dee, D. P., et al., 2011: The ERA-Interim reanalysis: configuration and 

performance of the data assimilation system, Quarterly Journal of the 

Royal Meteorological Society, 137 (656), 553-597. 

Ding, Y. H., 1992: Summer monsoon rainfalls in China, J. Meteor. Soc. Jpn., 

70, 373–396. 



Bibliography 

128 

 

 

Ding, Y. H., and J. C. L. Chan, 2005: The East Asian summer monsoon: an 

overview. Meteorol. Atmos. Phys., 89, 117-142. 

 

Ding, Y., Z. Wang, and Y. Sun, 2008: Inter-decadal variation of the summer 

precipitation in East China and its association with decreasing Asian 

summer monsoon. Part I: Observed evidences. International Journal of 

Climatology, 28, 1139-1161. 

 

Ding, Y., Y. Sun, Z. Wang, Y. Zhu, and Y. Song, 2009: Inter-decadal 

variation of the summer precipitation in China and its association with 

decreasing Asian summer monsoon Part II: Possible causes. 

International Journal of Climatology, 29, 1926-1944. 

 

Dirmeyer, P. A., 2011: The terrestrial segment of soil moisture–climate 

coupling. Geophysical Research Letters, 38, L16702. 

 

Dirmeyer, P. A., R. D. Koster, and Z. Guo, 2006: Do Global Models Properly 

Represent the Feedback between Land and Atmosphere? Journal of 

Hydrometeorology, 7, 1177-1198. 

Dorigo, W. A., K. Scipal, R. M. Parinussa, Y. Y. Liu, W. Wagner, R. A. M. de 

Jeu, and V. Naeimi, 2010: Error characterisation of global active and 

passive microwave soil moisture datasets. Hydrol. Earth Syst. Sci., 14, 

2605-2616. 

Dorigo, W. A., and Coauthors, 2011: The International Soil Moisture 

Network: a data hosting facility for global in situ soil moisture 

measurements. Hydrol. Earth Syst. Sci., 15, 1675-1698. 

Dunne, T., 1978: Field studies of hillslope flow processes, in: Hillslope 

Hydrology, edited by: Kirkby, M. J., Wiley-Interscience, New York, 227–

293, 1978. 

 

Döll, P., K. Fiedler, and J. Zhang, 2009: Global-scale analysis of river flow 

alterations due to water withdrawals and reservoirs. Hydrol. Earth Syst. 

Sci., 13(12), 2413-2432. 

Döll, P., H. Hoffmann-Dobrev, F. T. Portmann, S. Siebert, A. Eicker, M. 

Rodell, G. Strassberg, and B. R. Scanlon, 2012: Impact of water 



Bibliography 

 

129 

 

withdrawals from groundwater and surface water on continental water 

storage variations. Journal of Geodynamics, 59–60(0), 143-156. 

Entekhabi, D., and Coauthors, 2010: The Soil Moisture Active Passive (SMAP) 

Mission. Proceedings of the IEEE, 98, 704-716. 

Famiglietti, J. S., 2004: Remote Sensing of TerrestrialWater Storage, Soil 

Moisture and Surface Waters, in: The State of the Planet: Frontiers and 

Challenges in Geophysics, Geophysical Monograph Series, 150, edited 

by: Sparks, R. S. J. and Hawkesworth, C. J., AGU, Washington, D. C., 

USA, 197–207. 

 

Famiglietti, J. S., D. Ryu, A. A. Berg, M. Rodell, and T. J. Jackson, 2008: 

Field observations of soil moisture variability across scales. Water 

Resources Research, 44, W01423, doi:10.1029/2006WR005804. 

Famiglietti, J. S., M. Lo, S. L. Ho, J. Bethune, K. J. Anderson, T. H. Syed, S. 

C. Swenson, C. R. de Linage, and M. Rodell, 2011: Satellites measure 

recent rates of groundwater depletion in California's Central Valley. 

Geophysical Research Letters, 38(3), L03403. 

Feick, S., S. Siebert, and P. Döll, 2005: A Digital Global Map of Artificially 

Drained Agricultural Areas. Frankfurt Hydrology Paper 04. Institute of 

Physical Geography, University of Frankfurt, Frankfurt am Main, 57 pp. 

Feng, W., M. Zhong, J.-M. Lemoine, R. Biancale, H.-T. Hsu, and J. Xia, 2013: 

Evaluation of groundwater depletion in North China using the Gravity 

Recovery and Climate Experiment (GRACE) data and ground-based 

measurements. Water Resources Research, 49(4), 2110-2118. 

Fu, C. B., and G. Wen, 2002: Several issues on aridification in the northern 

China (in Chinese). Climatic and Environmental Research, 7, 22-29. 

Fuchs, M., G. S. Campbell, and R. I. Papendick, 1978: An analysis of 

sensible and latent heat flow in a partially frozen unsaturated soil. Soil 

Sci. Soc. Amer. J., 42, 379–385. 

Garratt, J. R., 1994: The Atmospheric Boundary Layer. Cambridge 

University Press, 336 pp.  



Bibliography 

130 

 

Giorgi, F., J. W. Hurrell, M. R. Marinucci, and M. Beniston, 1997: Elevation 

Dependency of the Surface Climate Change Signal: A Model Study. 

Journal of Climate, 10, 288-296. 

Gulden, L. E., E. Rosero, Z.-L. Yang, M. Rodell, C. S. Jackson, G.-Y. Niu, P. 

J.-F. Yeh, and J. Famiglietti, 2007: Improving land-surface model 

hydrology: Is an explicit aquifer model better than a deeper soil profile? 

Geophysical Research Letters, 34, L09402. 

Guo, H., Q. Hu, Q. Zhang, and S. Feng, 2012: Effects of the Three Gorges 

Dam on Yangtze River flow and river interaction with Poyang Lake, 

China: 2003–2008. Journal of Hydrology, 416–417(0), 19-27. 

Hanasaki, N., S. Kanae, T. Oki, K. Masuda, K. Motoya, N. Shirakawa, Y. 

Shen, and K. Tanaka, 2008a: An integrated model for the assessment 

of global water resources – Part 1: Model description and input 

meteorological forcing. Hydrol. Earth Syst. Sci., 12(4), 1007-1025. 

Hanasaki, N., S. Kanae, T. Oki, K. Masuda, K. Motoya, N. Shirakawa, Y. 

Shen, and K. Tanaka, 2008b: An integrated model for the assessment 

of global water resources – Part 2: Applications and assessments. 

Hydrol. Earth Syst. Sci., 12(4), 1027-1037. 

Harvey, J. and L. Tang, 2007: Analysis of the Global Precipitation 

Climatology Project Data for Four Global River Basins, GPCPReport, 

GPCP, University of Maryland. 

 

He, J., 2010: Development of surface meteorological dataset of China with 

high temporal and spatial resolution, M.S.thesis, Inst. of Tibetan 

Plateau Res., Chin. Acad. of Sci., Beijing, China. 

Hervé, Y., et al., 2011: Nine years of water resources monitoring over the 

middle reaches of the Yangtze River, with ENVISAT, MODIS, Beijing-1 

time series, Altimetric data and field measurements. Lakes & Reservoirs: 

Research & Management, 16(3), 231-247. 

Hogue, T. S., L. Bastidas, H. Gupta, S. Sorooshian, K. Mitchell, and W. 

Emmerich, 2005: Evaluation and Transferability of the Noah Land 

Surface Model in Semiarid Environments.  Journal of Hydrometeorology, 

6, 68-84.  



Bibliography 

 

131 

 

Horton, R. E., 1933: The role of infiltration in the hydrologic cycle, Trans. 

Am. Geophys. Union, 14, 446–460. 

 

IPCC, 2001: Climate Change 2001: The Scientific Basis. Contribution of 

Working Group I to the Third Assessment Report of the 

Intergovernmental Panel on Climate Change, edited by: Houghton, J. T., 

Ding, Y., Griggs, D. J., Noguer, M., van der Linden, P. J., Dai, X., 

Maskell, K., and Johnson, C. A., Cambridge University Press, Cambridge, 

United Kingdom and New York, NY, USA, 881 pp. 

 

IPCC, 2012: Managing the Risks of Extreme Events and Disasters to 

Advance Climate Change Adaptation. A Special Report of Working 

Groups I and II of the Intergovernmental Panel on Climate Change 

[Field, C.B., V. Barros, T.F. Stocker, D. Qin, D.J. Dokken, K.L. Ebi, M.D. 

Mastrandrea, K.J. Mach, G.-K. Plattner, S.K. Allen, M. Tignor, and P.M. 

Midgley (eds.)]. Cambridge University Press, Cambridge, UK, and New 

York, NY, USA, 582 pp. 

Huffman, G. J., and Coauthors, 2007: The TRMM Multisatellite Precipitation 

Analysis (TMPA): Quasi-Global, Multiyear, Combined-Sensor 

Precipitation Estimates at Fine Scales. Journal of Hydrometeorology, 8, 

38-55. 

Immerzeel, W. W., L. P. H. van Beek, and M. F. P. Bierkens, 2010: Climate 

Change Will Affect the Asian Water Towers. Science, 328, 1382-1385. 

Jordan, R., 1991: A One-dimensional Temperature Model for a Snow Cover, 

Spec. Rep. 91-16, Cold Reg. Res. and Eng. Lab., U.S. Army Corps of 

Eng., Hanover, N. H. 

Jung, M., et al., 2010: Recent decline in the global land evapotranspiration 

trend due to limited moisture supply. Nature, 467(7318), 951-954. 

Kendall, M. G., 1975: Rank Correlation Measures, Charles Griffin, London. 

 

Koike, T., 2004: The Coordinated Enhanced Observing Period: An initial step 

for integrated global water cycle observation. WMO Bull., 53, 115–121.  

Koren, V., J. Schaake, K. Mitchell, Q. Y. Duan, F. Chen, and J. M. Baker, 

1999: A parameterization of snowpack and frozen ground intended for 



Bibliography 

132 

 

NCEP weather and climate models. Journal of Geophysical Research: 

Atmospheres, 104, 19569-19585. 

Kummu, M., P. J. Ward, H. de Moel, and O. Varis, 2010: Is physical water 

scarcity a new phenomenon? Global assessment of water shortage over 

the last two millennia, Environ. Res. Lett., 5(3), 034006. 

Landerer, F. W., and S. C. Swenson, 2012: Accuracy of scaled GRACE 

terrestrial water storage estimates. Water Resources Research, 48, 

W04531. 

LeMone, M. A., M. Tewari, F. Chen, J. G. Alfieri, and D. Niyogi, 2008: 

Evaluation of the Noah Land Surface Model Using Data from a Fair-

Weather IHOP 2002 Day with Heterogeneous Surface Fluxes. Monthly 

Weather Review, 136, 4915-4941. 

Li, C., Z. Yang, and X. Wang, 2004: Trends of Annual Natural Runoff in the 

Yellow River Basin. Water International, 29, 447-454. 

Li, L.-J., and Coauthors, 2007: Assessing the impact of climate variability 

and human activities on streamflow from the Wuding River basin in 

China. Hydrological Processes, 21, 3485-3491. 

Li, Y. H., H. M. Xu, and D. Liu, 2009: Features of the extremely severe 

drought in the east of South-west China and anomalies of atmospheric 

circulation in summer 2006, Acta Meterol. Sin., 67, 122–132.  

Liu, Y., E. X. Zhao, G. F. Peng, and S. Q. Yang, 2007: Severe drought in the 

early summer of 2005 in Yunnan and middle-high latitudes circulation, 

Arid. Meteor., 25, 32–37. (In Chinese) 

Liu, Y. Y., and Coauthors, 2011: Developing an improved soil moisture 

dataset by blending passive and active microwave satellite-based 

retrievals. Hydrol. Earth Syst. Sci., 15, 425-436. 

Lo, M.-H., and J. S. Famiglietti, 2013: Irrigation in California's Central Valley 

strengthens the southwestern U.S. water cycle. Geophys. Res. Lett., 40, 

301–306, doi:10.1002/grl.50108. 

Long, H. L., G. K. Heilig, J. Wang, X. B. Li, M. Luo, X. Q. Wu, and M. Zhang, 

2006: Land use and soil erosion in the upper reaches of the Yangtze 



Bibliography 

 

133 

 

River: some socio-economic considerations on China's Grain-for-Green 

Programme. Land Degradation & Development, 17, 589-603. 

Lorenzo-Lacruz, J., S. M. Vicente-Serrano, J. I. López-Moreno, S. Beguería, 

J. M. García-Ruiz, and J. M. Cuadrat, 2010: The impact of droughts and 

water management on various hydrological systems in the headwaters 

of the Tagus River (central Spain). Journal of Hydrology, 386(1–4), 13-

26. 

Ma, Y., M. Menenti, R. Feddes, and J. Wang, 2008: Analysis of the land 

surface heterogeneity and its impact on atmospheric variables and the 

aerodynamic and thermodynamic roughness lengths. Journal of 

Geophysical Research: Atmospheres, 113, D08113.  

Ma, Y., O. Tsukamoto, J. Wang, H. Ishikawa, and I. Tamagawa, 2002: 

Analysis of aerodynamic and thermodynamic parameters on the grassy 

marshland surface of Tibetan Plateau. Prog. Nat. Sci., 12, 36–40. 

Ma, Z., and C. Fu, 2006: Some evidence of drying trend over northern China 

from 1951 to 2004. CHINESE SCI BULL, 51, 2913-2925. 

Mahrt, L., and M. Ek, 1984: The Influence of Atmospheric Stability on 

Potential Evaporation. Journal of Climate and Applied Meteorology, 23, 

222-234.  

Mahrt, L., and H. Pan, 1984: A two-layer model of soil hydrology. Boundary-

Layer Meteorology, 29, 1-20. 

Mair, A., and A. Fares, 2010: Influence of groundwater pumping and rainfall 

spatio-temporal variation on streamflow. Journal of Hydrology, 393(3–

4), 287-308. 

Malik, M. J., R. van der Velde, Z. Vekerdy, and Z. Su, 2014: Improving 

modeled snow albedo estimates during the spring melt season. Journal 

of Geophysical Research: Atmospheres, 119, 7311-7331. 

Mann, H. B., 1945: Nonparametric Tests Against Trend, Econometrica, 13, 

245–259. 

Martano, P., 2000: Estimation of surface roughness length and displacement 

height from single-level sonic anemometer data. J. Appl. Meteor., 39, 

708–715.  



Bibliography 

134 

 

Miller, N. L., J. Jin, and C.-F. Tsang, 2005: Local climate sensitivity of the 

Three Gorges Dam, Geophys. Res. Lett., 32, L16704, 

doi:10.1029/2005gl022821. 

Moraes, J. M., G. Q. Pellegrino, M. V. Ballester, L. A. Martinelli, R. L. Victoria, 

and A. V. Krusche, 1998: Trends in Hydrological Parameters of a 

Southern BrazilianWatershed and its Relation to Human Induced 

Changes, Water Resour. Manage., 12, 295–311, 

doi:10.1023/a:1008048212420. 

Moriasi, D. N., J. G. Arnold, M. W. Van Liew, R. L. Bingner, R. D. Harmel, 

and T. L. Veith, 2007: Model evaluation guidelines for systematic 

quantification of accuracy in watershed simulations. Trans. ASABE, 50, 

885-900. 

Morrison, F. A., 2014: Obtaining Uncertainty Measures on Slope and 

Intercept of a Least Squares Fit with Excel’s LINEST. Michigan 

Technological University, Houghton 

Nash, J. E., and J. V. Sutcliffe, 1970: River flow forecasting through 

conceptual models part I — A discussion of principles. Journal of 

Hydrology, 10, 282-290. 

Niu, G.-Y., and Z.-L. Yang, 2004: Effects of vegetation canopy processes on 

snow surface energy and mass balances. Journal of Geophysical 

Research: Atmospheres, 109(D23), D23111. 

Niu, G.-Y., and Z.-L. Yang, 2006: Effects of Frozen Soil on Snowmelt Runoff 

and Soil Water Storage at a Continental Scale. Journal of 

Hydrometeorology, 7(5), 937-952. 

Niu, G.-Y., Z.-L. Yang, R. E. Dickinson, and L. E. Gulden, 2005: A simple 

TOPMODEL-based runoff parameterization (SIMTOP) for use in global 

climate models. Journal of Geophysical Research: Atmospheres, 110, 

D21106.  

Niu, G.-Y., Z.-L. Yang, R. E. Dickinson, L. E. Gulden, and H. Su, 2007: 

Development of a simple groundwater model for use in climate models 

and evaluation with Gravity Recovery and Climate Experiment data. 

Journal of Geophysical Research: Atmospheres, 112 (D7), D07103. 



Bibliography 

 

135 

 

Niu, G.-Y., and Coauthors, 2011: The community Noah land surface model 

with multiparameterization options (Noah-MP): 1. Model description and 

evaluation with local-scale measurements. Journal of Geophysical 

Research: Atmospheres, 116, D12109.  

Piao, S., and Coauthors, 2010: The impacts of climate change on water 

resources and agriculture in China, Nature, 467, 43–51. 

Pokhrel, Y., N. Hanasaki, S. Koirala, J. Cho, P. J. F. Yeh, H. Kim, S. Kanae, 

and T. Oki, 2011: Incorporating Anthropogenic Water Regulation 

Modules into a Land Surface Model. Journal of Hydrometeorology, 13(1), 

255-269. 

Qian, W., H. S. Kang, and D. K. Lee, 2002: Distribution of seasonal rainfall 

in the East Asian monsoon region, Theor. Appl. Climatol., 73, 151–168, 

doi:10.1007/s00704-002-0679-3. 

Rodell, M., J. S. Famiglietti, J. Chen, S. I. Seneviratne, P. Viterbo, S. Holl, 

and C. R. Wilson, 2004: Basin scale estimates of evapotranspiration 

using GRACE and other observations. Geophysical Research Letters, 31, 

L20504. 

Rodell, M., I. Velicogna, and J. S. Famiglietti, 2009: Satellite-based 

estimates of groundwater depletion in India. Nature, 460(7258), 999-

1002. 

Rui, H, 2011: README Document for Global Land Data Assimilation System 

Version 1 (GLDAS-1) Products. Goddard Earth Sciences Data and 

Information Services Center, NASA, USA. 

Ryu, Y., D. D. Baldocchi, S. Ma, and T. Hehn, 2008: Interannual variability 

of evapotranspiration and energy exchange over an annual grassland in 

California, J. Geophys. Res., 113, D09104, doi:10.1029/2007JD009263. 

Salama, M. S., R. Van der Velde, L. Zhong, Y. Ma, M. Ofwono, and Z. Su, 

2012: Decadal variations of land surface temperature anomalies 

observed over the Tibetan Plateau by the Special Sensor Microwave 

Imager (SSM/I) from 1987 to 2008. Climatic Change, 114, 769-781. 

Savenije, H. H. G., A. Y. Hoekstra, and P. van der Zaag, 2014: Evolving 

water science in the Anthropocene. Hydrol. Earth Syst. Sci., 18(1), 

319-332. 



Bibliography 

136 

 

Scanlon, B. R., R. C. Reedy, D. A. Stonestrom, D. E. Prudic, and K. F. 

Dennehy, 2005: Impact of land use and land cover change on 

groundwater recharge and quality in the southwestern US. Global 

Change Biology, 11(10), 1577-1593. 

Scanlon, B. R., K. E. Keese, A. L. Flint, L. E. Flint, C. B. Gaye, W. M. 

Edmunds, and I. Simmers, 2006: Global synthesis of groundwater 

recharge in semiarid and arid regions. Hydrological Processes, 20(15), 

3335-3370. 

Schaake, J. C., V. I. Koren, Q.-Y. Duan, K. Mitchell, and F. Chen, 1996: 

Simple water balance model for estimating runoff at different spatial 

and temporal scales. Journal of Geophysical Research: Atmospheres, 

101, 7461-7475. 

Schneider, U., A. Becker, A. Meyer-Christoffer, M. Ziese, and B. Rudolf, 

2011: Global Precipitation Analysis Products of the GPCC, Global 

Precipitation Climatology Centre (GPCC), Deutscher Wetterdienst, 

Offenbach a. M., Germany, December. 

Scipal, K., Holmes, T., de Jeu, R., Naeimi, V., and Wagner, W., 2008: A 

possible solution for the problem of estimating the error structure of 

global soil moisture data sets, Geophys. Res. Lett., 35, L24403, 

doi:10.1029/2008gl035599. 

Sellers, P. J., D. A. Randall, G. J. Collatz, J. A. Berry, C. B. Field, D. A. 

Dazlich, C. Zhang, G. D. Collelo, and L. Bounoua, 1996: A Revised Land 

Surface Parameterization (SiB2) for Atmospheric GCMS. Part I: Model 

Formulation. Journal of Climate, 9(4), 676-705.  

Seneviratne, S. I., and R. Stöckli, 2008: The Role of Land-Atmosphere 

Interactions for Climate Variability in Europe, in Climate Variability and 

Extremes during the Past 100 Years, edited by S. Brönnimann, J. 

Luterbacher, T. Ewen, H. F. Diaz, R. S. Stolarski and U. Neu, pp. 179-

193, Springer Netherlands. 

Seneviratne, S. I., P. Viterbo, D. Lüthi, and C. Schär, 2004: Inferring 

Changes in Terrestrial Water Storage Using ERA-40 Reanalysis Data: 

The Mississippi River Basin. Journal of Climate, 17, 2039-2057. 

Seneviratne, S. I., T. Corti, E. L. Davin, M. Hirschi, E. B. Jaeger, I. Lehner, B. 

Orlowsky, and A. J. Teuling, 2010: Investigating soil moisture–climate 



Bibliography 

 

137 

 

interactions in a changing climate: A review. Earth-Science Reviews, 99 

(3–4), 125-161. 

Sheffield, J., G. Goteti, and E. F. Wood, 2006: Development of a 50-Year 

High-Resolution Global Dataset of Meteorological Forcings for Land 

Surface Modeling. Journal of Climate, 19, 3088-3111.  

Siebert, S., P. Dӧll, J. Hoogeveen, J. M. Faures, K. Frenken, and S. Feick, 

2005: Development and validation of the global map of irrigation areas. 

Hydrol. Earth Syst. Sci., 9(5), 535-547. 

Siebert, S., V. Henrich, K. Frenken, and J. Burke, 2013: Global Map of 

Irrigation Areas version 5. Rheinische Friedrich-Wilhelms-University, 

Bonn, Germany / Food and Agriculture Organization of the United 

Nations, Rome, Italy. 

Simmons, A., S. Uppala, D. Dee, and S. Kobayashi, 2006: ERA-Interim: 

New ECMWF reanalysis products from 1989 onwards, ECMWF 

Newsletter, 110, 26–35. 

Simmons, A. J., K. M. Willett, P. D. Jones, P. W. Thorne, and D. P. Dee, 

2010: Low-frequency variations in surface atmospheric humidity, 

temperature, and precipitation: Inferences from reanalyses and 

monthly gridded observational data sets, J. Geophys. Res., 115, 

D01110, doi:10.1029/2009jd012442. 

Sneyers, R., 1975: Sur l’analyse statistique des séries d’observations, 

Secrétariat de l’Organisation Météorologique Mondiale, Genéve. 

Su, Z., T. Schmugge, W. P. Kustas, and W. J. Massman, 2001: An 

Evaluation of Two Models for Estimation of the Roughness Height for 

Heat Transfer between the Land Surface and the Atmosphere. Journal 

of Applied Meteorology, 40, 1933-1951. 

Su, Z., P. de Rosnay, J. Wen, L. Wang, and Y. Zeng, 2013: Evaluation of 

ECMWF's soil moisture analyses using observations on the Tibetan 

Plateau. Journal of Geophysical Research: Atmospheres, 118, 5304-

5318. 

Sun, J., 1999: Diurnal Variations of Thermal Roughness Height over a 

Grassland. Boundary-Layer Meteorology, 92, 407-427.  



Bibliography 

138 

 

Swenson, S., and J. Wahr, 2006: Post-processing removal of correlated 

errors in GRACE data. Geophysical Research Letters, 33, L08402. 

Swenson, S. C., and P. C. D. Milly, 2006: Climate model biases in 

seasonality of continental water storage revealed by satellite gravimetry, 

Water Resour. Res., 42, W03201, doi:10.1029/2005WR004628. 

Syed, T. H., J. S. Famiglietti, M. Rodell, J. Chen, and C. R. Wilson, 2008: 

Analysis of terrestrial water storage changes from GRACE and GLDAS. 

Water Resources Research, 44(2), W02433. 

Tapley, B. D., S. Bettadpur, M. Watkins, and C. Reigber, 2004a: The gravity 

recovery and climate experiment: Mission overview and early results. 

Geophysical Research Letters, 31, L09607. 

Tapley, B. D., S. Bettadpur, J. C. Ries, P. F. Thompson, and M. M. Watkins, 

2004b: GRACE Measurements of Mass Variability in the Earth System. 

Science, 305(5683), 503-505. 

Taylor, K. E., 2001: Summarizing multiple aspects of model performance in 

a single diagram. Journal of Geophysical Research: Atmospheres, 106, 

7183-7192. 

Teuling, A. J., et al., 2009: A regional perspective on trends in continental 

evaporation. Geophys. Res. Lett., 36, L02404, doi: 

10.1029/2008GL036584. 

Thomas, A., 2008: Agricultural irrigation demand under present and future 

climate scenarios in China. Global and Planetary Change, 60(3–4), 306-

326 

van Beek, L. P. H., Y. Wada, and M. F. P. Bierkens, 2011: Global monthly 

water stress: 1. Water balance and water availability. Water Resour. 

Res., 47, W07517, doi:10.1029/2010WR009791. 

van den Hurk, B. J. J. M., P. Viterbo, A. C. M. Beljaars, and A. K. Betts, 

2000: Offline validation of the ERA40 surface scheme, in ECMWF 

Tech.Memo 295, 43 pp., European Centre for Medium-Range Weather 

Forecasts, Reading, UK. (Available at http://www.ecmwf.in-

t/publications/library/ecpublications/_pdf/tm/001-300/tm295.pdf) 

http://www.ecmwf.in-t/publications/library/ecpublications/_pdf/tm/001-300/tm295.pdf
http://www.ecmwf.in-t/publications/library/ecpublications/_pdf/tm/001-300/tm295.pdf


Bibliography 

 

139 

 

van der Velde, R., Z. Su, and Y. Ma, 2008: Impact of Soil Moisture 

Dynamics on ASAR σ° and Its Spatial Variability Observed over the 

Tibetan Plateau, Sensors, 8, 5479–5491. 

van Loon, A. F., and H. A. J. van Lanen, 2013: Making the distinction 

between water scarcity and drought using an observation-modeling 

framework. Water Resour. Res., 49, 1483–1502, doi: 10.1002/wrcr.2-

0147. 

Viterbo, P., and A. C. M. Beljaars, 1995: An Improved Land Surface 

Parameterization Scheme in the ECMWF Model and Its Validation. 

Journal of Climate, 8(11), 2716-2748. 

Vӧrӧsmarty, C. J., et al., 2010: Global threats to human water security and 

river biodiversity. Nature, 467(7315), 555-561. 

Voss, K. A., J. S. Famiglietti, M. Lo, C. de Linage, M. Rodell, and S. C. 

Swenson, 2013: Groundwater depletion in the Middle East from GRACE 

with implications for transboundary water management in the Tigris-

Euphrates-Western Iran region. Water Resources Research, 49(2), 904-

914. 

Wada, Y., D. Wisser, and M. F. P. Bierkens, 2014: Global modeling of 

withdrawal, allocation and consumptive use of surface water and 

groundwater resources. Earth Syst. Dynam., 5(1), 15-40. 

Wada, Y., L. P. H. van Beek, C. M. van Kempen, J. W. T. M. Reckman, S. 

Vasak, and M. F. P. Bierkens, 2010: Global depletion of groundwater 

resources. Geophys. Res. Lett., 37, L20402, doi: 

10.1029/2010GL044571. 

Wada, Y., L. P. H. van Beek, and M. F. P. Bierkens, 2011a: Modelling global 

water stress of the recent past: on the relative importance of trends in 

water demand and climate variability. Hydrol. Earth Syst. Sci., 15(12), 

3785-3808. 

Wada, Y., L. P. H. van Beek, D. Viviroli, H. H. Dürr, R. Weingartner, and M. 

F. P. Bierkens, 2011b: Global monthly water stress: 2. Water demand 

and severity of water stress. Water Resour. Res., 47, W07518, doi: 

10.1029/2010WR009792. 



Bibliography 

140 

 

Wagener, T., M. Sivapalan, P. A. Troch, B. L. McGlynn, C. J. Harman, H. V. 

Gupta, P. Kumar, P. S. C. Rao, N. B. Basu, and J. S. Wilson, 2010: The 

future of hydrology: An evolving science for a changing world, Water 

Resour. Res., 46(5), W05301, doi: 10.1029/2009WR008906. 

 

Wang, J., Y. Sheng, C. J. Gleason, and Y. Wada, 2013: Downstream Yangtze 

River levels impacted by Three Gorges Dam. Environmental Research 

Letters, 8(4), 044012. 

Wang, X., C. de Linage, J. Famiglietti, and C. S. Zender, 2011: Gravity 

Recovery and Climate Experiment (GRACE) detection of water storage 

changes in the Three Gorges Reservoir of China and comparison with in 

situ measurements. Water Resources Research, 47(12), W12502. 

Wang, X.-P., R. Berndtsson, X.-R. Li, and E.-S. Kang, 2004: Water balance 

change for a re-vegetated xerophyte shrub area/Changement du bilan 

hydrique d'une zone replantée d'arbustes xérophiles. Hydrological 

Sciences Journal, 49(2), 283-295. 

Wei, J., P. A. Dirmeyer, M. G. Bosilovich, and R. Wu, 2012: Water vapor 

sources for Yangtze River Valley rainfall: Climatology, variability, and 

implications for rainfall forecasting. Journal of Geophysical Research: 

Atmospheres, 117, D05126. 

WHYMAP, 2008: World-wide Hydrogeological Mapping and Assessment 

Programme. Groundwater Resources of the World (1:25000000). 

BGR/UNESCO. 

Winter, T. C., J. W. Harvey, O. L. Franke, and W. M. Alley, 1998: Ground 

Water and Surface Water A Single Resource. U.S. Geological Survey 

Circular 1139, Denver, Colorado 

Wisser, D., S. Frolking, E. M. Douglas, B. M. Fekete, C. J. Vörösmarty, and A. 

H. Schumann, 2008: Global irrigation water demand: Variability and 

uncertainties arising from agricultural and climate data sets. Geophys. 

Res. Lett., 35, L24408, doi: 10.1029/2008GL035296. 

Wu, L., Q. Zhang, and Z. Jiang, 2006: Three Gorges Dam affects regional 

precipitation. Geophysical Research Letters, 33, L13806. 



Bibliography 

 

141 

 

Xu, X., and Coauthors, 2008: A new integrated observational system over 

the Tibetan Plateau. Bull. Amer. Meteor. Soc., 89, 1492–1496, doi: 

10.1175/2008BAMS2557.1.  

Xue, B.-L., L. Wang, X. Li, K. Yang, D. Chen, and L. Sun, 2013: Evaluation 

of evapotranspiration estimates for two river basins on the Tibetan 

Plateau by a water balance method, Journal of Hydrology, 492(0), 290-

297. 

Yan, H. M., X. Duan, and J. G. Cheng, 2007: Study on a severe drought 

event over Yunnan in spring 2005, J. Trop. Meteorol., 23, 300–306, 

2007. (In Chinese) 

Yanai, M., and G.-X. Wu, 2006: Effects of the Tibetan Plateau. The Asian 

Monsoon, Springer Berlin Heidelberg, 513-549.  

Yanai, M., C. Li, and Z. Song, I992: Seasonal heating of the Tibetan Plateau 

and its effects on the evolution of the Asian summer monsoon, J. 

Meteor. Soc. Japan, 70, 319-351. 

Yang, J., D. Gong, W. Wang, M. Hu, and R. Mao, 2012: Extreme drought 

event of 2009/2010 over southwestern China. Meteorol. Atmos. Phys., 

115, 173-184. 

Yang, K., Y. Y. Chen, and J. Qin, 2009: Some practical notes on the land 

surface modeling in the Tibetan Plateau. Hydrol. Earth Syst. Sci., 13, 

687-701. 

Yang, K., T. Koike, and D. Yang, 2003: Surface flux parameterization in the 

Tibetan Plateau. Bound.-Layer Meteor., 106, 245–262, 

doi:10.1023/A:1021152407334.  

Yang, K., T. Koike, and B. Ye, 2006: Improving estimation of hourly, daily, 

and monthly solar radiation by importing global data sets, Agricultural 

and Forest Meteorology, 137, 43-55. 

Yang, K., T. Koike, B. Ye, and L. Bastidas, 2005: Inverse analysis of the role 

of soil vertical heterogeneity in controlling surface soil state and energy 

partition. Journal of Geophysical Research: Atmospheres, 110, D08101. 



Bibliography 

142 

 

Yang, K., M. Rasmy, S. Rauniyar et al., 2007: Initial CEOP-based review of 

prediction skill of operational general circulation models and land 

surface models, J. Appl. Meteorol. Climatol., 85A, 99-116. 

Yang, K., and Coauthors, 2008: Turbulent flux transfer over bare-soil 

surfaces: Characteristics and parameterization. J. Appl. Meteor. 

Climatol., 47, 276–290, doi:10.1175/2007JAMC1547.1.  

Yang, R., and M. A. Friedl, 2003: Modeling the effects of three-dimensional 

vegetation structure on surface radiation and energy balance in boreal 

forests. Journal of Geophysical Research: Atmospheres, 108 (D16), 

8615. 

Yang, S. L., J. Zhang, J. Zhu, J. P. Smith, S. B. Dai, A. Gao, and P. Li, 2005: 

Impact of dams on Yangtze River sediment supply to the sea and delta 

intertidal wetland response. Journal of Geophysical Research: Earth 

Surface, 110, F03006. 

Yang, S. L., and Coauthors, 2010: Temporal variations in water resources in 

the Yangtze River (Changjiang) over the Industrial Period based on 

reconstruction of missing monthly discharges. Water Resources 

Research, 46, W10516. 

Yang, Z.-L., and G.-Y. Niu, 2003: The Versatile Integrator of Surface and 

Atmosphere processes: Part 1. Model description. Global and Planetary 

Change, 38, 175-189. 

Yang, Z.-L., and Coauthors, 2011: The community Noah land surface model 

with multiparameterization options (Noah-MP): 2. Evaluation over 

global river basins. Journal of Geophysical Research: Atmospheres, 116, 

D12110. 

Yin, R., Q. Xiang, J. Xu, and X. Deng, 2010: Modeling the Driving Forces of 

the Land Use and Land Cover Changes Along the Upper Yangtze River 

of China. Environmental Management, 45, 454-465. 

Zaitchik, B. F., A. K. Macalady, L. R. Bonneau, and R. B. Smith, 2006: 

Europe's 2003 heat wave: a satellite view of impacts and land–

atmosphere feedbacks. International Journal of Climatology, 26(6), 

743-769. 



Bibliography 

 

143 

 

Zaitchik, B. F., M. Rodell, and F. Olivera, 2010: Evaluation of the Global 

Land Data Assimilation System using global river discharge data and a 

source-to-sink routing scheme. Water Resources Research, 46, W06507. 

Zhang, L., W. R. Dawes, and G. R. Walker, 2001: Response of mean annual 

evapotranspiration to vegetation changes at catchment scale. Water 

Resources Research, 37, 701-708. 

Zhang, J., L. Wu, and W. Dong, 2011: Land-atmosphere coupling and 

summer climate variability over East Asia. Journal of Geophysical 

Research: Atmospheres, 116, D05117. 

Zhang, Z., B. F. Chao, J. Chen, and C. R. Wilson, 2015: Terrestrial water 

storage anomalies of Yangtze River Basin droughts observed by GRACE 

and connections with ENSO. Global and Planetary Change, 126(0), 35-

45. 

Zheng, W., and Coauthors, 2012: Improvement of daytime land surface skin 

temperature over arid regions in the NCEP GFS model and its impact on 

satellite data assimilation. Journal of Geophysical Research: 

Atmospheres, 117, D06117. 

Zheng, D., R. Van Der Velde, Z. Su, M. J. Booij, and A. Y. Hoekstra, 2014: 

Assessment of Roughness Length Schemes Implemented within the 

Noah Land Surface Model for High Altitude Regions, Journal of 

Hydrometeorology, 15, 921-937. 

Zhu, Y., H. Wang, W. Zhou, and J. Ma, 2011: Recent changes in the 

summer precipitation pattern in East China and the background 

circulation. Clim Dyn, 36, 1463-1473. 

Zhong, L., Y. Ma, M. S. Salama, and Z. Su, 2010: Assessment of vegetation 

dynamics and their response to variations in precipitation and 

temperature in the Tibetan Plateau. Climatic Change, 103, 519-535. 

Zilitinkevich, S. S. 1995: Non‐local turbulent transport: Pollution dispersion 

aspects of coherent structure of convective flows, in Air Pollution Theory 

and Simulation, vol. 1, Air Pollution III, edited by H. Power, N. 

Moussiopoulos, and C. A. Brebbia, pp. 53–60, Comput. Mech., Billerica, 

Mass. 



Bibliography 

144 

 

Zou, X. K. and H. Gao, 2007: Analysis of severe drought and heat wave 

over the Sichuan Basin in the summer of 2006, Adv. Clim. Chang. Res., 

3, 149–153. (In Chinese) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Summary 

 

145 

 

Summary 
 

Climate variability and human activity have substantial effects on hydrological 

systems. Understanding and quantifying the hydrological responses to climate 

variability and human activity are increasingly important in water managements 

in river basins. The research described in this dissertation takes the Yangtze River 

basin as the study area and focuses on understanding and quantifying the spatial 

effects of climate variability and human activities on the terrestrial water storage 

(TWS) variation of the basin. This contributes to a better understanding of 

hydrologic processes and provides insight in separating natural and human effects 

on the hydrological systems in river basins. 

This dissertation can be divided into two parts. The first part, Chapters 3 to 5, is the 

preparatory part, with the aim to produce and/or obtain reliable TWS estimates for 

further investigation. In this part,  the data assimilation products, the ERA-Interim 

Reanalysis Data (ERA-Interim) and Global Data Assimilation System (GLDAS) 

datasets, are assessed for the study area, the Noah and Noah-MP land surface 

models (LSMs) are used for hydro-meteorological simulations, and some model’s 

parameterizations are adopted to improve the simulation accuracy. The first part 

contributes to the land surface modeling at a regional scale, especially for the 

Tibetan Plateau which is one of the most challenging regions for land surface 

modelling. The evaluation of the revised roughness lengths for regional scale land 

surface modelling of high-altitude catchment in Chapter 4 and the reconstructed 

water budget for the Yangtze River basin in Chapter 5 provide useful information 

for other modelers and hydrological data users.  

The second part, Chapters 6 to 7, focuses on the ultimate goal of this dissertation 

and represents the main scientific contributions. Based on the first part, the ERA-

Interim produced TWS data are selected to investigate the impacts of climate 

variability on TWS variations in Chapter 6. In Chapter 7, besides the ERA-Interim 

data, a considerable amount of data from various sources including model results, 

remotely sensed data, and field measurements, are analyzed to investigate the 
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human effects on spatiotemporal TWS variations. The results show that, mainly 

due to a decrease in the amount of precipitation, the period 2005-2010 was the 

driest period in terms of TWS in the basin, especially in the middle and lower 

Yangtze reaches since 1979. The natural part of TWS variation was ‘stationary’ 

during that dry period, but the human-induced TWS was continually increasing in 

the middle and south eastern parts of the basin, at a mean rate of about 3 cm yr-1. 

The dominant contributor to the TWS excess was found to be intensive surface 

water irrigation, which recharged the water table in the middle and south eastern 

parts of the basin. Water impoundment of the Three Gorges Reservoir (TGR) was 

found to account for nearly 20% of the human-induced TWS increment in the 

region where the TGR is located. This attributed contribution of human-induced 

changes to the TWS is validated by quantifying the human impacts on surface 

water and groundwater storage changes based on combing field data with model 

simulation, and supported by additional data from various sources. 

This PhD research deals with an important, interesting and challenging topic with 

very limited field data. Although the case study is the Yangtze River basin, the 

method employed in this research can be widely used in other river basins, and the 

framework for detection and attribution of TWS changes proposed in Chapter 7 is 

suggested as a viable way to separate natural and human effects on the 

hydrological system.  
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Samenvatting 
  

Klimaat-variabiliteit en menselijke activiteit hebben substantiële effecten op 

hydrologische systemen. Begrip en kwantificatie van de hydrologische respons op 

klimaat-variabiliteit en menselijke activiteit zijn van toenemend belang voor het 

waterbeheer in stroomgebieden. Het onderzoek in deze dissertatie gebruikt het 

stroomgebied van de Yangtze rivier als studiegebied en richt zich er op de 

ruimtelijke effecten van klimaat-variabiliteit en menselijke activiteit op variaties in 

de terrestrische watervoorraden in het stroomgebied (TWS) te begrijpen en 

kwantificeren. Dit draagt bij aan een beter begrip van hydrologische processen en 

geeft inzicht in het ontrafelen van natuurlijke en menselijke effecten op de 

hydrologische systemen in stroomgebieden. 

Deze dissertatie bestaat uit twee delen. Het eerste deel, Hoofdstukken 3 tot 5, is het 

voorbereidende deel dat tot doel heeft betrouwbare schattingen van TWS te 

produceren en/of te verkrijgen voor nader onderzoek. In dit deel worden data-

assimilatie-producten, ERA-Interim Reanalysis Data (ERA-Interim) en Global Data 

Assimilation System (GLDAS) datasets, geëvalueerd voor het studiegebied; de 

Noah and Noah-MP landoppervlakte modellen (LSMs) worden gebruikt voor 

hydro-meteorologische simulaties en enkele modelparameterisaties worden 

aangepast om de nauwkeurigheid van simulaties te verbeteren. Het eerste deel 

draagt bij aan de landoppervlakte modellering op een regionale schaal, in het 

bijzonder voor het Tibetaans Plateau, een van de meest uitdagende gebieden voor 

de landoppervlakte modellering. De evaluatie van de aangepaste ruwheidslengtes 

voor regionale landoppervlakte modellering van de hoogvlakte in Hoofdstuk 4 en 

de reconstructie van de waterbalans voor het stroomgebied van de Yangtze in 

Hoofdstuk 5 verschaffen nuttige informatie voor andere modelleurs en gebruikers 

van hydrologische data. 

Het tweede deel, Hoofdstukken 6 en 7, gaat in op het uiteindelijke doel van de 

dissertatie en presenteert de belangrijkste wetenschappelijke bijdrages. Op basis 

van het eerste deel zijn TWS data, geproduceerd met ERA-Interim, geselecteerd om 

de gevolgen van klimaat-variabiliteit op TWS variaties te onderzoeken in 

Hoofdstuk 6. In hoofdstuk 7 wordt, naast de ERA-Interim data, een aanzienlijke 
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hoeveelheid data geanalyseerd uit verschillende bronnen, waaronder model 

resultaten, satellietwaarnemingen en veldmetingen, om de menselijke 

beïnvloeding van TWS variaties in ruimte en tijd te onderzoeken. Resultaten laten 

zien dat de periode 2005-2010 de droogste periode was sinds 1979 in termen van 

TWS in het stroomgebied, met name in de middenstroom en benedenstroom van 

de Yangtze, vooral veroorzaakt door een afname in de neerslaghoeveelheid. Het 

natuurlijke deel van de variaties in TWS was gedurende die droge periode 

‘stationair’, maar de menselijk-beïnvloede TWS was continu stijgend in de centrale 

en zuidoostelijke delen van het stroomgebied, met een gemiddelde toename van 

ongeveer 3 cm yr-1. De intensieve irrigatie uit oppervlaktewater, die het 

grondwater aanvulde in de centrale en zuidoostelijke delen van het stroomgebied, 

kan aangewezen worden als dominante bijdrage aan de verhoogde TWS. 

Wateropslag in de Three Gorges Reservoir (TGR) was verantwoordelijk voor bijna 

20% van de  menselijk-beïnvloede toename van TWS in de omgeving van de TGR. 

Deze identificatie van de menselijk-beïnvloede bijdrage aan de TWS wordt 

gevalideerd door de gevolgen van menselijke activiteiten voor de voorraden 

oppervlakte- en grondwater te kwantificeren op basis van een combinatie van 

veldwaarnemingen, model simulaties en ondersteund door additionele data uit 

verscheidene bronnen. 

Dit PhD onderzoek behandelt een belangrijk, interessant en uitdagend onderwerp 

met zeer beperkte veldwaarnemingen. Hoewel het Yangtze stroomgebied is 

gebruikt als studiegebied zijn de gebruikte onderzoeksmethoden breed inzetbaar 

in andere stroomgebieden, en kan het voorgestelde raamwerk voor de detectie en 

toerekening van TWS veranderingen uit Hoofdstuk 7 een waardevolle manier zijn 

om natuurlijke en menselijke effecten op het hydrologische systeem te ontrafelen. 
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