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SUMMARY 
 
Chapter 1 
The way to deal with the investigation into the ‘Flood level prediction for regulated 
rain-fed rivers’ is considered. It consists of a strategic and an operational part. The 
objectives, research questions, methodology, expected results and practical relevance 
of the study are clarified. 
  
The strategic part deals with the problem of durable flood protection measures and the 
operational part deals with a timely first-order prediction of the water levels, if a flood 
can be expected. 
 
To estimate the probability of occurrence of river floods, required to design river-
engineering works, other estimation methods, data series and data processing are used 
than so far. As society makes stringent requirements to the acceptable risk of flooding, 
the investigation is aimed at reducing uncertainties in the estimation of the probability 
of occurrence of floods. 
 
Operational flood level prediction requires a quick response to imminent flood events, 
so as to enable local managers and public services to take timely emergency 
measures. Therefore an algorithm is developed that yields a provisional first-order 
estimate of the peak discharge at Borgharen, in our case. On the basis of this 
information, the water levels at downstream locations are estimated using a numerical 
computer model, given the estimated flood wave shape at Borgharen. 
 
The results of the strategic investigation of the present study are compared with the 
Design Water Levels 2001, and the necessity to change the DWL 2001 is discussed. 
 
The operational results of the easy-to-use forecasting-algorithm are compared with the 
eight highest floods in the period 1980-2000 and corrected if necessary. Then, some 
recent flood events are validated.  
 
The research questions are investigated for the Dutch Meuse River and the findings 
are generalized to similar rivers. 
 
 
Chapter 2 
The results of a new probability analysis of the peak discharges at Borgharen, based 
on other principles than used so far, may have consequences for the design of flood 
protection measures. Starting point of the analysis are the annual maximum 
discharges at Borgharen between 1911 and 2000. This data set was extended with 
estimated data from a number of  documented disastrous floods in history. 
 
The cumulative probability distribution of the annual maximum discharges at 
Borgharen shows irregularities, due to, among other things, the difference between the 
set-up and free-runoff river situation upstream of Borgharen. A discharge threshold is 
introduced to separate these two situations and to reduce irregularities in the total 
discharge distribution. Discrepant peak discharge distributions above and below the 
discharge threshold would be found if only the Weibull formula would be used for 
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each subset. To avoid this, the ‘Exceedance formulae’ are used to determine the 
relation between the probability of exceedance and the peak discharges at Borgharen, 
on the basis of a statistically acceptable and consistent probability distribution. 
 
Comparison with another method (Dalrymple) shows that the resulting probabilities 
of exceedance do not differ significantly from each other. The ‘Exceedance formulae’ 
are used in the remainder of the study. 
 
The best estimates of consistent plot positions of data, points in the ‘probability of 
exceedance−peak discharge’ relationship at Borgharen, is obtained if the discharge 
threshold is chosen at 2750 m3s-1. The best estimate of the peak discharges with 
probability of exceedance at 0.02, 0.004 and 0.0008 per annum (design standards) 
turns out to be 2808, 3089 and 3370 m3s-1, respectively. The 95% confidence limits of 
the regression line range from plus or minus 2.5%  to plus or minus 3 %. 
 
There is no reason to assume that changes in hydrological conditions, such as de- or 
reforestation, land use, land cover, or rainfall, have changed the very extreme 
discharge peaks. Such very extreme events only come about in situations where these 
conditions make little difference (saturated or frozen basin). For the moderate flood 
events however, a 5% increase of the discharge peak over the last forty years seems 
plausible.    
 
Concerning the sensitivity of the design discharge, we see that 5% or more incorrect 
estimation of the highest documented peak discharge is significant, as it alters the 
probability distribution such that it exceeds the 95% reliability band of the preferred 
relation between probability of exceedance and peak discharge. 
Not documented or forgotten peak discharges for floods just above the threshold at 
2750 m3s-1 hardly influence the probability of exceedance.  
Only if a peak discharge equal to the highest documented one would be missing, the 
design discharges would be influenced somewhat. 
  
If the probability of exceedance curve of the peak discharge at Borgharen resulting 
from the present study is compared with the one underlying the Design Water Levels 
2001, we see that the difference is significant for discharge peaks over 3000 m3s-1. 
Translated into water levels, it means that the corresponding water levels at Borgharen 
from the present study are significantly lower (i.e. 0.10 m or more difference) for 
p.o.e.’s equal or smaller than 0.0054 per annum.  
 
Starting from the requirement that in general for similar rivers the probability of 
failure of flood protection structures may not exceed a few percents in a human 
lifetime, one would generally need an uninterrupted annual peak discharge series of 
several hundreds of years for a proper flood probability analysis. Such series are not 
available. Therefore, we use a complex series of as much as possible uninterrupted 
systematically recorded annual peak discharges, extended with documented peaks of 
major historic floods. The existence of significant river perceptions, e.g. the change 
from set-up to free flow river situation or the beginning of the overflow of a levee, 
give cause for the introduction of a discharge threshold for those situations. 
  
Attention has to be paid to the homogeneity of the data series that is used, to changing 
hydrological conditions, and moreover to the sensitivity of the probability of 
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exceedance of the peak discharges because of incorrect estimates of historic flood 
peaks. 
 
 
Chapter 3 
In order to identify which flood wave characteristics at Borgharen are important to the 
water levels further downstream, the relative discharge hydrographs, for which the 
absolute peaks are over 1850 m3s-1 in the period 1930-2000, have been investigated. 
Starting point are the daily 08:00 a.m. discharge data at Borgharen.  
 
To that end, single and composite flood wave shapes are defined. If the time span 
between two peaks is eight days or more, we speak of two single flood waves, 
otherwise of one composite flood wave with a number of peaks. Furthermore, weir 
operations upstream of Borgharen may bring about serious discharge fluctuations. In 
order to compensate for those effects, corrections of the discharges have been made 
for some floods.  
 
Besides the given peak and base discharges, five flood wave characteristics at 
Borgharen, viz. the moments 0 through 4 of the relative discharge hydrographs, have 
been calculated. Because of large river works in earlier times in the Walloon region, 
each of the series of these parameter values for the floods above 1850 m3s-1  was split 
up into two sets, before and after 1980, the year in which the weir at Lixhe (B) near 
the Dutch border was put into operation. A trend analysis of the series showed that 
each of the two sets can be considered to belong to the same homogeneous series. 
  
Besides the peak and base discharges, it turned out from correlation analysis that the 
moments 0, 3 and 4 can be considered as mutually independent. Independency is 
required, since random samples of parameter combinations have to be taken to 
produce synthetic floods, given the peak discharge. These are needed because the 
number of measured local floods is insufficient to determine the p.o.e. of the local 
downstream water levels. 
 
As the skewness (third moment ) of the relative discharge hydrograph at Borgharen on 
the local water levels turns out to be negligible in our case, random samples of 
combinations of peak discharge, base discharge, flood wave volume (zero moment ) 
and wave crest curvature (fourth moment ), are taken to synthesize flood waves at 
Borgharen. Subsequently, the water levels downstream of Borgharen are computed 
with a 1-D Sobek model, as will be shown in Chapter 4. 
 
In general, for similar rivers it is obvious that parameters such as peak discharge, 
base discharge and flood wave volume influence the downstream water levels. The 
influence of the crest curvature, however, may be considerable, too.  
Concerning the crest curvature, it turns out that the storage width at the water level 
influences the attenuation of the flood wave while passing through the river, and thus 
the downstream water levels.  
For rivers stretches with a steep bottom slope (0.5 m/km or more) this influence is 
negligible.  
The ratio between the total water depth and that at bank-full discharge also plays a 
role in the flood wave attenuation. 
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The skewness of the relative discharge hydrograph may be an indicator for 
attenuation. The difference between the steep gradient before and the gentle slope 
after the crest -so the skewness of the relative discharge hydrograph- is a reason for 
attenuation, for in that case the supply of water can not be discharged in it’s totality 
and a part disappears into the storage, so the peak comes down. 
 
 
Chapter 4 
To compute downstream water levels from characteristic wave parameters of a flood 
at Borgharen, one thousand random samples have been taken from combinations of 
four independent characteristic parameter values. From those samples one thousand 
flood waves have been synthesized. 
  
If the five measured major floods at Borgharen that have occurred in the last twenty 
years of the previous century are compared with the flood waves, synthesized on the 
basis of the four characteristic parameters (peak discharge, base discharge, wave 
volume, and crest curvature), then 1-D Sobek computations show that at Venlo and 
Mook the water level difference between the synthetic and real flood peaks is 0.03 m 
to 0.05 m and that difference is not significant in view of the accuracy  (0.1 m) with 
which the Design Water Levels are published. So, it turns out that the method of 
synthesization of flood waves is satisfactory.    
 
The Pearson type III distribution function is, according to the Kolmogorov-Smirnov 
test, the best approximation of a stable frequency distribution of the computed water 
levels. On the basis of this distribution function the probability of exceedance of the 
water levels at Venlo and Mook is determined. The differences between the computed 
and the approximated values are negligible for the smaller p.o.e. and for the rest (the 
lower floods) less than 0.1 m. 
 
The influence of the characteristic flood wave parameters on the downstream water 
levels is larger for more extreme flood peaks at the measuring-station and also 
increases with the distance to this measuring-station.  
 
The Design Water Levels 2001 at Venlo and Mook exceed the expected water levels 
according to the present study. At Venlo these are 0.3 and 0.5 m higher for p.o.e. 
0.004 and 0.02, respectively. At Mook this is 0.6 and 0.8 m, respectively. This means 
that the DWL 2001 should have to be adapted. Anyway, the reliability band is not 
determined for DWL 2001. 
  
The measured five major floods at Borgharen from the period 1980-2000 do not cause 
significantly higher peak water levels at Venlo and Mook than the Design Water 
Levels 2001. The peculiar flood of January 1995 has at Venlo a p.o.e. of once in 60 
years according to DWL 2001, and once in 160 years according to the present study, 
whereas at Borgharen this is once in 40 years and once in 30 years, respectively.   
 
In general, for similar rivers a procedure can be formulated to develop synthetic flood 
waves from combinations of values of independent characteristic flood wave 
parameters, measured at a certain location. From that, water levels can be computed 
for any downstream location with the help of a hydrodynamic model. 
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The number of random samples of those combinations depends on the degree  to 
which a stable probability density distribution of computed water levels is obtained.  
The variance of the water levels obtained in that way can be considerable, related to a 
given discharge peak at the measuring-point, due to the various compositions of the 
synthetic flood waves.   
 
Chapter 5 
In operational flood management  there is an urgent need for timely information, 
preferably some days ahead, about the nature of an imminent flood. For that reason, 
an algorithm for a provisional prediction of the peak discharge and corresponding 
peak water level at Borgharen (km 16) is developed. 
 
Furthermore, it is the intention to make the broad public aware of the possibilities and 
limitations of water level predictions on the basis of observed rainfall, weather 
forecast and a computer model of the river flow. 
  
On the basis of the daily discharge data of eight flood events at Borgharen, in the 
period 1980-2000, the average 1-day Unit Hydrograph is determined. This indicates 
the daily average direct catchment runoff (m3s-1 mm-1) that passes through the river at 
Borgharen, the so-called effective rainfall. The effective rainfall (mm) is calculated 
from the ratio of flood wave volume (m3) and catchment area (m2). Average 1-day 
Unit Hydrograph and effective rainfall are the tools to predict relative peak discharges 
(Q’peak). 
 
When applying the algorithm, the regression function ‘operational rainfall – effective 
rainfall’ has been used to determine the adjusted effective rainfall. By adding the base 
discharge value, i.e. the beginning of the rising stage of the flood wave, to the so 
obtained Q’peak we get Qpeak and corresponding water level. 
 
When comparing the predictions with the measured data, there are differences in the 
water levels, due to uncertainties in the rainfall data and the use of an average 1-day 
UH, for instance. This is practical reality by which the reliability of the prediction is 
influenced. Therefore we also determined, besides the expected discharges and 
corresponding water levels, the 95% and 50% upper limits of the effective rainfall 
from the confidence bands of the aforementioned regression function.  
 
It turns out that a first-order prediction of the water level peaks at Borgharen on basis 
of rainfall is feasible, taking into account that, because of uncertainties, we assigned 
reasonable limits to the expected water levels, as aforementioned, for maximum 
possible water levels at highest (95% limit) and medium high floods (50% limit).  
  
In general, for similar rivers, the process of water level prediction from rainfall is 
analogous to  that for our case study. To improve future water level predictions, it is 
necessary to pay much attention to the reliability of the rainfall data, weather forecast  
and the confirmation of the relationship between operational rainfall and effective 
rainfall. 
 
Careful maintenance of the algorithm for the prediction of peak discharges and peak 
water levels is necessary, because autonomous developments or human interventions 
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in the river(1) may make the ‘discharge−stage’ curve unstable and (2) may alter the  
average Time Unit Hydrograph. 
Investigation into the influence of the variability of the TUH’s on the predictions is 
advisable. 
 
For first-order predictions of peak water levels at other locations than the measuring- 
station the f lood wave, which was estimated from the rainfall prediction, can be input 
into a water-motion model for the benefit of computations for local water levels along 
the river, starting from that measuring-station.  
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SAMENVATTING 
 
Hoofdstuk 1 
Het plan van aanpak van het onderzoek naar de ‘Hoogwaterstandvoorspelling voor 
gereguleerde regenrivieren’ wordt besproken. Het bestaat uit een strategisch en een 
operationeel gedeelte. Het doel, onderzoeksvragen, te volgen methode, verwachte 
resultaten en praktische betekenis van het onderzoek worden toegelicht. 
  
Het strategische deel behandelt het probleem van duurzame beschermende 
maatregelen en het operationele deel betreft een tijdige eerste waterstandvoorspelling, 
wanneer een hoogwater kan worden verwacht.  
 
Om de kans van optreden van hoogwaters te schatten, hetgeen vereist is om 
riviertechnische werken te ontwerpen, worden andere schattingsmethoden, 
gegevensreeksen en gegevensbewerkingen gebruikt dan tot nog toe. Daar er 
maatschappelijk strenge eisen worden gesteld aan het aanvaardbare risico van 
overstroming, heeft het onderzoek als doel om onzekerheden in de schatting van de 
kans van optreden van een hoogwater te reduceren. 
 
Operationele hoogwaterstandvoorspelling vereist een snelle reactie op dreigende 
hoogwatergebeurtenissen, zodat in dat geval locale beheerders en publieke diensten in 
staat zijn om tijdige noodmaatregelen te treffen. Daartoe wordt een rekenmethode 
ontwikkeld die een eerste voorlopige inschatting van de piekafvoer, in ons geval, te 
Borgharen oplevert. Op grond hiervan worden waterstanden benedenstrooms geschat 
door gebruik te maken van een numeriek computermodel, gegeven de geschatte 
hoogwater golfvorm te Borgharen. 
 
De resultaten van het strategische onderzoek worden vergeleken met de ‘Ontwerp 
Waterstanden 2001’ en de noodzaak om de ‘Ontwerp Waterstanden 2001’ te 
wijziging wordt besproken. 
 
De operationele resultaten van de gemakkelijk te hanteren rekenmethode voor 
voorspellingen worden vergeleken met de acht hoogste hoogwaters in de periode 
1980-2000 en zonodig gecorrigeerd. Vervolgens worden enkele recente hoogwaters 
gevalideerd. 
 
De onderzoeksvragen worden behandeld voor de Nederlandse Maas en de 
bevindingen worden veralgemeend voor vergelijkbare rivieren. 
 
 
Hoofdstuk 2  
De resultaten van een nieuwe waarschijnlijkheidsanalyse van de piek afvoeren te 
Borgharen, gebaseerd op andere principes dan tot dusver gebruikelijk, kunnen 
gevolgen hebben voor het ontwerp van hoogwaterbeschermende maatregelen. 
Uitgangspunt van de analyse zijn de jaarlijkse maximale afvoeren te Borgharen 
(1911-2000). Deze gegevensreeks werd uitgebreid met geschatte gegevens uit een 
aantal gedocumenteerde catastrofale hoogwaters van vroeger. 
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De cumulatieve kansverdeling van de jaarlijkse maximale afvoeren te Borgharen 
vertoont onregelmatigheden, o.a. vanwege het verschil tussen de gestuwde en 
ongestuwde riviersituatie bovenstrooms van Borgharen.   
Een afvoerdrempel is geïntroduceerd om beide situaties van elkaar te scheiden en om 
onregelmatigheden in de algehele afvoerverdeling te verminderen. Er zou verschil in 
aansluiting tussen de piekafvoer verdeling boven en beneden de afvoerdrempel 
worden gevonden als slechts de Weibull formule zou worden gebruikt voor iedere 
deelreeks boven en beneden de drempel. Om dit te vermijden zijn de ‘Exceedance 
formules’ gebruikt  ter bepaling van de relatie tussen de overschrijdingskans en de 
afvoerpieken te Borgharen, op basis van een statistisch acceptabele en 
samenhangende kansverdeling. 
 
Vergelijking met een andere methode (Dalrymple) toont aan dat de 
overschrijdingskansen niet significant van elkaar verschillen. In het vervolg van de 
studie zijn de Exceedance formules gebruikt.    
 
De beste schattingen van samenhangende plot posities van gegevens, leidend tot de  
‘overschrijdingskans – piekafvoer’ relatie te Borgharen, wordt verkregen indien de 
afvoerdrempel op 2750 m3s-1 wordt gekozen. De beste schatting van de piekafvoeren 
met overschrijdingskans 0.02, 0.004 en 0.0008 per jaar (ontwerpnormen) blijkt 
respectievelijk 2808, 3089 en 3370 m3s-1 te zijn. De 95% betrouwbaarheidsgrenzen 
van de regressielijn variëren  van plus of min 2.5%  tot plus of min 3%.  
 
Er is geen reden om te veronderstellen, dat wijzigingen in hydrologische 
omstandigheden, zoals ontbossing en bebossing, landgebruik, bodemverharding of 
regenvalhoeveelheden, veranderingen hebben teweeg gebracht in de zeer hoge 
piekafvoeren. Zulke zeer extreme gebeurtenissen komen slechts voor tijdens situaties 
waarin deze omstandigheden er weinig toe doen, vanwege een reeds met water 
verzadigde of bevroren bodem. Echter voor gematigde hoogwaters lijkt een 5% 
toename van de afvoerpiek in de loop van de laatste 40 jaren aannemelijk. 
  
Ten aanzien van de gevoeligheid van de ontwerpafvoer zien we dat 5% of meer 
verkeerd ingeschatte hoogst gedocumenteerde piekafvoer significant is, daar dit de 
kansverdeling zodanig verandert dat het de 95% betrouwbaarheidsband van de 
voorkeur hebbende relatie tussen  ‘overschrijdingskans en piekafvoer’ te buiten gaat.  
De invloed op de overschrijdingskans vanwege niet gedocumenteerde of vergeten 
piekafvoeren, juist boven de afvoerdrempel van 2750 m3s-1, is te verwaarlozen. 
Slechts als een piekafvoer gelijk aan de hoogst gedocumenteerde verloren zou zijn 
gegaan, dan veranderen de ontwerpafvoeren enigszins.   
 
Indien de overschrijdingskans kromme van de piekafvoer te Borgharen uit de huidige 
studie wordt vergeleken met die waaraan de ‘Ontwerp Waterstanden 2001’  ten 
grondslag liggen, dan zien we dat het verschil significant is voor afvoerpieken boven 
3000 m3s-1. Vertaald naar waterstanden betekent het, dat de corresponderende 
waterstanden te Borgharen volgend uit de huidige studie significant lager zijn (d.i. 0.1 
m of meer verschillen) voor overschrijdingskansen gelijk aan of minder dan 0.0054 
per jaar.    
 
Uitgaande van de eis dat in algemene zin voor vergelijkbare rivieren de faalkans van 
hoogwaterbeschermende constructies tijdens een mensenleven niet meer dan enkele 
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procenten mag zijn, dan zou er ruwweg een ononderbroken reeks van vele honderden 
jaren jaarlijkse afvoerpieken nodig zijn voor een correcte hoogwater kansanalyse en 
zulke reeksen zijn niet beschikbaar. Daarom gebruiken we een samengestelde reeks 
van zoveel mogelijk ononderbroken systematisch geregistreerde jaarlijkse 
piekafvoeren, aangevuld met gedocumenteerde afvoerpieken van indrukwekkende 
historische hoogwaters. De aanwezigheid van belangrijke rivier stroombeelden zoals 
de overgang van een gestuwde rivier naar een vrij afvoerende rivier of het begin van 
het overstromen van een waterkerende kade, is een reden om voor die situaties een 
afvoerdrempel te introduceren. 
 
Aandacht moet worden geschonken aan de homogeniteit van de te gebruiken 
gegevensreeks, aan veranderende hydrologische omstandigheden en bovendien aan de 
gevoeligheid van de overschrijdingskans van de afvoerpieken door een foute 
inschatting van historische hoogwatertoppen.   
 
   
Hoofdstuk 3 
Om vast te stellen welke eigenschappen van een hoogwatergolf te Borgharen 
belangrijk zijn voor de waterstanden benedenstrooms, zijn de relatieve 
afvoerhydrografen van Borgharen onderzocht, waarvoor de absolute toppen vanaf 
1850 m3s-1 zijn gebruikt uit de periode 1930-2000. Uitgangspunt zijn de dagelijkse 
08:00 uur afvoergegevens te Borgharen. 
 
Voor dat doel worden definities afgesproken ten aanzien van enkelvoudige en 
samengestelde golfvormen. Indien het tijdsinterval tussen twee afvoerpieken 8 dagen 
of meer bedraagt spreken we van twee enkelvoudige golven en anders van een 
samengestelde golf met meerdere toppen. Verder kan het stuwbeheer bovenstrooms 
van Borgharen ernstige afvoerfluctuaties voortbrengen. Om deze effecten te 
compenseren zijn correcties toegepast voor enkele hoogwaters. 
  
Behalve de gegeven piek- en basisafvoeren, zijn vijf golfkarakteristieken, te weten de 
momenten 0 t/m 4 van de relatieve afvoerhydrografen te Borgharen berekend. 
Vanwege vroegere op grote schaal uitgevoerde rivierwerken in Wallonië werd ieder 
van de reeksen met deze parameterwaarden van de hoogwaters boven 1850 m3s-1 
gesplitst in twee subreeksen van vóór en ná 1980, het jaar waarin de stuw van Lixhe 
(B) nabij de Nederlandse grens in bedrijf werd genomen. Uit trend analyse bleek, dat 
ieder van de twee subreeksen kan worden beschouwd tot dezelfde homogene reeks te 
behoren. 
 
Buiten de piek en basisafvoeren bleek uit correlatie analyse, dat de momenten 0, 3 en 
4 als onderling onafhankelijk kunnen worden beschouwd. Onderlinge 
onafhankelijkheid is noodzakelijk, omdat willekeurige steekproeven van 
parametercombinaties moeten worden genomen om synthetische golven samen te 
stellen, voor gegeven piekafvoeren. Deze synthetische golven zijn nodig omdat het 
aantal gemeten lokale hoogwaters onvoldoende is om daaruit overschrijdingskansen 
van lokale benedenstroomse waterstanden te bepalen.  
 
Omdat de scheefheid (derde moment) van de relatieve afvoerhydrograaf te Borgharen 
voor de lokale waterstanden in ons geval verwaarloosbaar blijkt te zijn, worden 
willekeurige steekproeven genomen van  combinaties van piekafvoer, basisafvoer, 



 12

golfvolume (nulde moment ) en topkromming (vierde moment ) om hoogwatergolven 
samen te stellen te Borgharen. Vervolgens worden de waterstanden benedenstrooms 
van Borgharen berekend met behulp van een 1-D waterbewegingmodel (Sobek), zoals 
zal worden getoond in hoofdstuk 4.   
 
In het algemeen is het voor vergelijkbare rivieren evident dat parameters, zoals piek 
en basisafvoer en golfvolume invloed hebben op de waterstanden benedenstrooms. De 
invloed van de topkromming kan echter ook aanzienlijk zijn.  
Wat betreft de topvervlakking blijkt het dat de bergende breedte, op de waterlijn 
gemeten, de inzakking van de hoogwatergolf beïnvloedt tijdens het doorlopen van de 
rivier en bij gevolg van invloed is op de waterstanden benedenstrooms.  
Voor delen van de rivier met een steile bodemgradiënt (0.5 m/km of meer) is deze 
invloed verwaarloosbaar. 
De verhouding tussen de totale water diepte en die voor de volle zomerbedafvoer 
speelt ook een rol in de topvervlakking. 
De rol van de scheefheid (derde moment) van de relatieve afvoerhydrograaf kan een 
aanwijzing zijn voor topvervlakking. Het verschil tussen de steile gradiënt vóór en de 
flauwe helling ná de top -dus de scheefheid van de relatieve afvoerhydrograaf- is een 
reden voor afvlakking, want in dat geval kan de toevoer van water niet geheel worden 
afgevoerd en vloeit een deel af naar de berging, dus de top zakt in.  
 
 
Hoofdstuk 4 
Om waterstanden benedenstrooms te berekenen uit karakteristieke golfparameters van 
een hoogwater te Borgharen zijn duizend willekeurige steekproeven genomen uit 
combinaties van vier onafhankelijke karakteristieke parameterwaarden. Uit die 
steekproeven zijn duizend synthetische hoogwatergolven samengesteld.  
 
Als de vijf gemeten hoogste hoogwaters te Borgharen van de laatste twintig jaar van 
de vorige eeuw worden vergeleken met de hoogwaters, samengesteld uit de vier 
karakteristieke parameters (piekafvoer, basisafvoer, golfvolume en topkromming), 
dan tonen 1-D Sobek berekeningen aan, dat het waterstandverschil tussen de 
samengestelde en de werkelijk opgetreden golven te Venlo en Mook 0.03 m tot 0.05 
m bedraagt en dat verschil is niet significant, gezien de nauwkeurigheid (0.1 m) 
waarmee de Ontwerp Waterhoogten worden gepubliceerd. Het blijkt dus dat de 
methode van samenstelling van hoogwatergolven redelijk is. 
 
De beste benadering van de stabiele frequentieverdeling van berekende waterstanden 
is, volgens de Kolmogoroff-Smirnov toets, de Pearson III verdelingsfunctie. Op basis 
van deze verdelingsfunctie is de overschrijdingskans van de waterstanden te Venlo en 
Mook bepaald. De verschillen tussen de berekende en benaderde waarden zijn 
verwaarloosbaar voor de kleinere overschrijdingskansen en voorts minder dan 0.1 m 
voor de lagere hoogwaters.  
 
De invloed van de karakteristieke hoogwatergolf parameters op de waterstanden 
benedenstrooms is groter naarmate de toppen bij het meetstation hoger worden en 
neemt eveneens toe met de afstand tot dit meetstation. 
  
De Ontwerp Waterstanden 2001 te Venlo en Mook overschrijden de verwachte 
standen volgens de huidige studie. Te Venlo zijn deze respectievelijk 0.3 en 0.5 m 
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hoger voor overschrijdingskansen van respectievelijk 0.004 en 0.02 per jaar. Te Mook 
is dit respectievelijk 0.6 en 0.8 m. Het betekent, dat de Ontwerp Waterstanden 2001 
zouden moeten worden aangepast. Overigens is voor de Ontwerp Waterstanden de 
betrouwbaarheidsband niet bekend. 
 
De gemeten vijf hoogste hoogwaters te Borgharen uit de periode 1980-2000 
veroorzaken te Venlo en Mook geen significant hogere waterstanden dan de Ontwerp 
Waterstanden 2001. Het bijzondere hoogwater van januari 1995 heeft volgens de 
Ontwerp Waterstanden 2001 te Venlo een overschrijdingskans van eens per 60 jaar en 
volgens de huidige studie van eens per 160 jaar, terwijl dit te Borgharen eens per 40 
jaar respectievelijk eens per 30 jaar is.  
 
In het algemeen kan voor vergelijkbare rivieren een procedure worden opgesteld om 
synthetische golven te ontwikkelen uit combinaties van waarden van onafhankelijke 
karakteristieke golfparameters, gemeten op een zekere locatie. Daaruit kunnen, met 
behulp van een hydrodynamisch model, waterstanden worden berekend voor iedere 
locatie benedenstrooms. Het aantal willekeurige steekproeven van die combinaties 
hangt af van de mate waarin een stabiele kans dichtheidsverdeling van berekende 
waterstanden wordt verkregen. 
De spreiding in de aldus verkregen waterstanden kan, ten opzichte van een gegeven 
afvoertop bij de meetlocatie, aanzienlijk zijn vanwege de verschillende 
samenstellingen van de synthetische golven. 
 
 
Hoofdstuk 5  
In het operationele hoogwaterbeheer is er dringend behoefte aan tijdige informatie, bij 
voorkeur enkele dagen tevoren, over het karakter van een naderend hoogwater. 
Daarom is er een rekenschema ontwikkeld voor een eerste voorlopige voorspelling 
van de topafvoer en corresponderende topstand te Borgharen (km 16). 
 
Voorts is het de bedoeling de burgers bewust te maken van de mogelijkheden en 
beperkingen van waterstandvoorspellingen op basis van gemeten regenval, 
weersverwachting en computergebruik voor rivierafvoeren. 
  
Op basis van de dagelijkse afvoergegevens van acht hoogwaters te Borgharen in de 
periode 1980-2000 is de gemiddelde 1-dag Eenheidshydrograaf voor Borgharen 
bepaald. Deze geeft de gemiddelde dagelijkse directe afvoer uit het afstrominggebied 
weer (m3s-1 mm-1), die bij Borgharen door de rivier wordt afgevoerd ten gevolge van 
de zogenoemde effectieve regenval. De effectieve regenval (mm) wordt berekend uit 
de verhouding van hoogwatergolf volume (m3) en oppervlakte van het 
afstrominggebied (m2). Gemiddelde 1-dag Eenheidshydrograaf en effectieve regenval 
zijn dé instrumenten om relatieve afvoerpieken (Q’piek) te voorspellen.  
   
Bij toepassing van het rekenschema is de regressiefunctie ‘operationele regenval−
effectieve regenval’ gebruikt om de bijgestelde effectieve regenval te bepalen. Door 
de basisafvoer, d.i. het begin van het stijgende stadium van de hoogwatergolf, toe te 
voegen aan de aldus verkregen Q’piek ontstaat de topafvoer (Qpiek) en 
corresponderende waterhoogte.  
 



 14

Bij vergelijking van deze voorspellingen met die van riviermetingen zijn er 
verschillen in de waterstanden vanwege onzekerheid in de regenvalgegevens en het 
gebruik van een gemiddelde 1-dag Eenheidshydrograaf, bijvoorbeeld. Dit is de 
praktische realiteit waardoor de betrouwbaarheid van de voorspelling wordt 
beïnvloed. Daarom bepaalden we, behalve de verwachte afvoeren en 
corresponderende waterstanden, ook de 95% en 50% bovengrenzen van de effectieve 
regenval uit de betrouwbaarheidsgebieden van genoemde regressiefunctie.  
 
Het blijkt, dat een eerste voorspelling van de topwaterstanden te Borgharen op basis 
van regenval haalbaar is, er rekening mee houdend dat, vanwege onzekerheden, we 
redelijke begrenzingen aan de verwachte waterstanden hebben toegekend, zoals 
bovenvermeld, voor maximaal mogelijke waterstanden bij hoge afvoeren (95% grens) 
en middelhoge afvoeren (50% grens). 
   
In het algemeen is voor soortgelijke rivieren de werkwijze voor waterstand 
voorspelling uit regenval analoog aan die voor onze casus. Om toekomstige 
waterstandvoorspellingen te verbeteren is het noodzakelijk om veel aandacht te 
schenken aan de betrouwbaarheid van de regenval cijfers, weersvoorspelling en het 
staven van de  relatie tussen operationele regenval en effectieve regenval. 
  
Zorgvuldig onderhoud van het rekenschema voor de voorspelling van topafvoeren en 
topwaterstanden is noodzakelijk, omdat autonome ontwikkelingen of menselijke 
ingrepen in de rivier (1) de relatie tussen afvoer en waterstand instabiel kunnen maken 
en (2) de gemiddelde Tijd Eenheidshydrograaf kunnen wijzigen. 
Onderzoek naar de invloed van de variabiliteit van de Tijd Eenheidshydrografen op de 
voorspellingen is aan te bevelen. 
 
Voor eerste voorspellingen van piekwaterstanden op andere locaties dan het 
meetstation kan vanaf dit station de  hoogwatergolf, die uit de regenvalvoorspelling 
werd ingeschat, worden ingevoerd in een waterbewegingmodel ten behoeve van 
computerberekeningen voor locale waterstanden langs de rivier.  
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CHAPTER 1 
 

INTRODUCTION 
 

 
1.1 Flood level prediction 
 
From time immemorial, investigations have been made into the probability of 
occurrence of river floods. Based on that knowledge, river-engineering works have 
been designed and flood protection measures have been taken. Yet, the data available 
are insufficient to draw firm conclusions on future effectiveness of these 
interventions. The more reliable the discharge data from the past, the smaller the risk 
of failure of the design conditions for flood protection measures. The estimation of the 
probability of exceedance of floods is open to improvement. To that end, other 
estimation-methods will be used, the data series will be extended and different 
methods of data processing will be used.  
Society puts stringent demands on the acceptable risk of flooding, but it is difficult to 
determine reliable design dike heights. Over-dimensioning needs to be avoided, 
because of third-party interests and costs. The present study is partly aimed at 
reducing uncertainties in the probability of occurrence estimates of extreme floods. 
 
As rivers, which are surrounded by steep rocks in the upper course, may respond 
within one day to heavy rainfall, flood risk management in the less protected 
hinterland of the lower course requires early forecasting tools. To be more responsive 
to flood events, it is essential for local managers, fire brigades and emergency services 
to be able to take timely protective measures. This requires an easy-to-use model, as 
developed in this study, to yield a satisfactory first estimate of the discharge and 
corresponding water level at a certain point along the river starting from rainfall 
forecasts. 
 
The present study therefore addresses the following issues:  
(1)strategic flood level prediction, in relation to the design of river dikes, levees and 
other water-control structures, and  
(2)operational flood level prediction, especially early forecasting, to enhance 
operational decision making. As the flood event proceeds, the availability of more 
elaborate data and the use of more sophisticated flood forecasting models may enable 
more accurate predictions.  
 
Because of the author’s extensive experience with the Meuse River, his involvement 
with Meuse River studies and knowledge about the availability and origin of data, the 
strategic part will be approached by a specific case, viz. the Limburg Meuse River, of 
which the hinterland is not protected by primary dikes. The hinterland is in use for 
horticulture, agriculture, industry, living and recreation.      
Because of the government’s interest to improve design water levels and their 
accuracy, it is investigated which flood wave properties at Borgharen (the most 
upstream gauging station in the Netherlands) determine the water levels further 
downstream and what that means to the local design water levels. The results of the 
investigation will be tested against observed flood levels at the river locations Venlo 
and Mook. Their probability of exceedance will be compared with the Design Water 
Levels 2001, which are based on other principles than those of the present study. The 
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method developed for the Meuse River will be generalised to other rivers of the same 
type. 
 
The operational part, viz. timely forecasting of extreme water levels, is developed for 
the same case. The methodology is shown to be applicable to similar rain-fed rivers, 
in general. 
 
The Meuse River rises in the northeast of France (Pouilly) not far from Dijon at a 
height of 450 m above sea level and flows through France (Verdun, Stenay, Chooz), 
Belgium (Namur, Liège) and the Netherlands (Borgharen, Venlo, Lith) to the North 
Sea (Haringvliet), Fig.1.  
The total length of the river is about 900 km, of which about 400 km in France, 200 
km in Belgium and 300 km in The Netherlands. The hydraulic gradients are, on 
average, 0.7 m/km, 0.35 m/km and 0.15 m/km, respectively.   
The basin area in France is 104 km2, in Belgium 1.1 104 km2  (i.e. 0.3 104 km2 for the 
Sambre basin and 0.8 104 km2 for the Ardennes basin) in Germany 0.3 104 km2 and in 
The Netherlands 0.6 104 km2.  
More than 50% of the Meuse River in the Netherlands has no primary dikes.  
Not far from the Dutch-Belgian border, the important measuring-station Borgharen 
(km 16) is situated.  
 
The discharge of the Meuse River mainly depends on the capricious rainfall in its  
3 104 km2 basin and for a small part on snowmelt. After a period of heavy rainfall, the 
discharge at Borgharen responds rapidly, mainly because of the steep and rocky 
character of the Belgian Ardennes basin. The travel time of a flood wave from Liège 
(tributary l’Ourthe) to Borgharen is about 7 hours and from the French border (Chooz) 
about 16 hours.  
In general the period of high precipitation is from December through March. The 
floods at Borgharen may vary then from around 1250 m3s-1 to more than 3000 m3s-1. 
Then the weir elements in the Dutch Meuse River are completely hoisted and there is 
a free runoff. Every year this situation may last one to three weeks at Borgharen, 
depending on the discharge. The Belgian weirs near the Dutch border, at Monsin and 
Lixhe (formerly Visé) are in operation up to much higher discharges than the Dutch 
weirs.  
                  
The upstream part of the Dutch Meuse River is a more or less natural river without 
weirs, with a rather steep hydraulic gradient (0.5 m/km and more) and a coarse gravel 
bed (the Gravel Meuse) that has partly been excavated in former years. During most 
of the year the water depth in this river reach is too small for commercial navigation. 
Therefore a parallel shipping way, the 50 km long Juliana Canal, has been built in the 
nineteen-twenties.  Downstream of the Juliana Canal, in the transition zone between 
the steeper foothills and the more or less flat lowlands, much gravel and sand has been 
excavated from the former floodplains. The resulting lakes in this 20 km river stretch 
Maasbracht – Roermond (Lakes Meuse) can store much water during floods. 
Still further downstream, the hydraulic gradient of the Meuse River is small (0.1 
m/km), and its bed predominantly consists of sand. This part, with a length of about 
120 km to the tidal Meuse at Lith, is called the Sand Meuse (Gerretsen 1996 and 
1997). 
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Fig.1 Meuse River basin 
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1.2 Research objectives and research questions   
 
1.2.1 Objectives 
The objectives of the project are:  
•    An improved estimation method for the probability of exceedance of annual flood         
      peak discharges at Borgharen. As a consequence, design discharges1corresponding 
      with the defined probabilities of exceedance (0.02, 0.004, 0.0008 per annum) may 
      change.     
• Improved accuracy (a narrower confidence interval) of the probability of 

exceedance estimates of flood peaks at Borgharen as a result of this determination. 
This is important for the safety margin of the dike and levee heights. 

• Identification of the flood wave properties at Borgharen that determine the water 
levels further downstream. 

• A method to determine these downstream water levels, their probability of 
exceedance and accuracy. 

• Comparing of the DWL 2001 (Design Water Levels 2001) with those of the 
present study 

• Development of an easy-to-use early operational prediction model. 
• Generalisation of the findings for the Dutch Meuse River to similar rivers. 
 
1.2.2 Research questions 
The corresponding research questions are: 
• Do the results of the first part of the study give cause for changing the design 

discharges? In other words, does the probability of exceedance of the peak 
discharges at Borgharen change to the extent, that the corresponding water levels 
differ significantly? 

• Are the downstream water levels, e.g. at Venlo and Mook, resulting from the 
present study and based on local water levels statistics, significantly different from 
those according to the Design Water Levels 2001?  

•    To what extent can the discharge peaks and corresponding water levels at 
      Borgharen and the uncertainties therein be estimated with an easy-to-use early 
      warning algorithm? How do the results comply with recently measured flood 
      peaks? 
•    What can we learn from the Dutch Meuse River case for other rivers of a similar 
      type? 
 
                                                                          
1

 In 1977, the River Dikes Committee (Committee-Becht), assisted by e.g. Delft/Hydraulics (WL) and Centre for Investigation of 

Water-Control Structures (COW),  advised the Government about the design strength of the flood defence system for the inland 

upper river areas. This has led to legislation stating that these inland river dikes should be able to withstand a flood-peak with a 

probability of exceedance of 0.0008 per annum. (Ministry of Transport, Public Works and Water Management 1977). The 

corresponding water levels  along the river are the design water levels (DWL). 

It should be noticed that in areas without primary dikes, such as the Limburg part of the Dutch Meuse River, a more 

differentiated approach may be taken. The Provincial Executive of Limburg ruled (1995) that the heights of the levees in the 

Meuse valley should be brought at a height that they should be able to withstand a  water level with a probability of exceedance 

of 0.02 per annum, whereas after the completion of the “Maaswerken” this should be 0.004 per annum. From Mook and further 

downstream, where the hinterland is protected by primary dikes, the design water level has a probability of exceedance of 0.0008 

per annum.   
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1.3 Literature overview from other investigations 
 
The main problem in analysing Meuse floods is that the time series is not 
homogeneous. Non-homogeneity is clearly the result of the weir operation regime, but 
can also be the result of human interferences in the catchment, climatological trends 
and the dominant rainfall bringing mechanisms that generate the floods. The 
following papers deal with such non-homogeneous time series and some of them 
provide tools to deal with them, particularly the Mixed Distribution and the Multi-
Component Distribution. The papers are briefly discussed below. 
 
Adamowski (2000) considers the currently used parametric analysis of ‘annual 
maximum’ flood series. They reveal unimodal and multi modal probability density 
functions for floods in two Canadian Provinces Ontario and Quebec. Based on density 
function shapes and timing of floods both Provinces have been divided into nine 
homogeneous sub-regions, linked to similar flood-generating mechanisms. A similar 
analysis of ‘peak over threshold’ (or partial duration) data revealed results like those 
for the ‘annual maximums’ but there were deficiencies in currently used parametric 
approaches.  
Nonparametric frequency analysis has been introduced as an alternative method. This 
method also revealed unimodal and multimodal  ‘annual maximum’ and ‘peak over 
threshold’ flood probability density function shapes in both Provinces. A monthly 
partitioning of both flood series, as an indicator of mechanisms, showed that the 
stations with an unimodal density were subject to a single mechanism, while the 
multimodal densities were subject to two or more mechanisms. 
L- moment analysis of annual maximum series supported the homogeneous 
delineation obtained by nonparametric methods (L-moments are defined as linear 
combinations of probability weighted moments and the first four moments are 
expressed in the Paper published in Journal of Hydrology No.229 [2000], page 221). 
However, the peak over threshold series was generated by a mixture of mechanisms 
and could not be adequately described by any parametric distribution nor did its 
regional data pass L-moment homogeneity tests.  
 
Alila and Mtiraoui (2002)  mention that floods are often generated by heterogeneous 
distributions composed of a mixture of two or more populations, due to a number of 
factors such as seasonal variations, changes in weather patterns resulting from low-
frequency climate shifts or oscillations, changing channel routing or floodplain flow, 
and basin variability resulting from changes in antecedent soil moisture. Not 
recognizing these processes is the main reason that many frequency distributions do 
not provide an acceptable fit to flood data. 
The authors use long-term hydro-climatic records from the Gila River basin (Arizona, 
USA) to explore the extent and significance of mixed populations. They discuss (1) 
the causes of heterogeneity, (2) investigate the implications of using various popular 
predicting distributions, (3) demonstrate how alternative frequency models, that 
account for floods generated by a mixture of several populations, are more appropriate 
and (4) illustrate the different results between (2) and (3). 
Conventional flood-frequency analysis assumes that floods are drawn from a single 
population. None of the commonly used homogeneous distributions provide a 
satisfactory fit to the observed floods, particular at the upper tail of the empirical 
distribution, even not for the five-parameter Wakeby distribution, which is the most 
flexible of the homogeneous distributions concerned. 
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A heterogeneous distribution that accounts explicitly for the fact that floods are 
generated by more than one hydrological distinct mechanism produced a superior fit. 
Two challenging decisions need to be made (i) one must determine how many 
component distributions should be used. Hydro-climatic data often can be used  to 
decide on the number of flood populations. One remedy for this problem is to use a 
regional approach for fitting the heterogeneous distribution. Such a technique has 
been justified in the studies of Fiorentino et al. (1985) and Gabriele & Arnell (1991). 
(ii) One must select an appropriate parent distribution for each component and that is 
rather subjective. More research on the selection of distributions using the physical 
nature of hydrological processes is desperately needed. 
 
Bakker and Luxemburg (2005)  consider the problem of heterogeneous distributions 
of floods, as research in the area of frequency analysis has been rather limited on this 
item, although several investigators confess that the assumption of homogeneity of 
flood distributions may not be valid. Therefore, the estimates of probabilities of 
exceedance are often very unreliable. The heterogeneity of the series of annual 
maximum runoffs can be explained by the fact that different extreme floods are 
caused by different mechanisms (ice-melt, rains, cyclones, etc.). The study focuses on 
promising methods to deal with heterogeneity and concerns methods to involve the 
physical nature of floods on the basis of several small catchments in east Russia. 
If the mechanism can realistically explain the heterogeneity, then the ‘Mixed 
Distribution’ gives much better probability estimates for the extreme high floods than 
the conventional method on basis of homogeneity.     
A Mixed Distribution is a weighted sum of a couple of homogeneous probability 
distributions. The set of full annual maximums has to be split into subsets (the partial 
annual maximums) according to the flood-causing mechanisms. For these subsets the 
cumulative distribution functions have to be determined. Before summing the separate 
cumulative distribution functions they have to be multiplied by the probability of 
occurrence of the specific mechanism in the full annual maximums series. The sum of 
these probabilities of occurrence equals one. 
 
Keim and Faiers (1996)  explored heavy rainfall distributions by season and the 
associated differences in seasonal quantile estimates for selected recurrence intervals 
in Louisiana, as a result of the findings of other investigators. Known methods are 
implemented, but with additional synoptic analysis to acquire a better understanding 
of the dynamics behind differences in storm magnitudes between seasons. The results 
may be relevant to seasonal activities such as agricultural growing, short time 
construction projects, recreational activities, etc. 
Four first-order gauging sites in Louisiana were selected for analysis because of their 
hourly rainfall records 1948-1991 during the four seasons. It was concluded by the 
test of Kruskal-Wallis and Mann-Whitney that the distribution of heavy rainfall events 
differs significantly between particular seasons at the three sites near the Golf Coast. 
To get further insight into what may cause the storm events, the weather type 
mechanisms Frontal, Golf Tropical Disturbance and Airmass (convection) are 
confronted with the rainfall depths (minimum, mean, standard deviation). It turned out 
that seasonal frequency curves varied dramatically at the four mentioned sites. 
Quantile estimates are largest in spring, while winter estimates are smallest. The 
mechanisms that produced the events were found to change seasonally. The rainfall in 
winter and spring were primary generated by the Frontal type and summer and 
autumn rainfall by Golf Tropical Disturbance and Airmass. 
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The used method can serve as a guide for additional research.     
 
Klemes (2000) critiques the common frequency analysis techniques for hydrological 
extremes, in particular the claims that their increasingly refined mathematical 
structures have increased the accuracy and credibility of the extrapolated upper tails 
of fitted distribution models. He argues that the increased mathematization of 
hydrological frequency analysis over the past 50 years has not increased the validity 
of estimates of the frequencies of high extremes, thus has not improved our ability to 
assess the safety of structures whose design characteristics are based on them. The 
Paper compares the common-sense engineering origins of frequency analysis with its 
present ostensibly ‘rigorous theory’. Some myths advanced under the banner of the 
latter are analysed in greater detail. In the meantime, guesses most be made. In the 
interest of fair practice, simple extrapolation procedures, commensurate with the 
current lack of credible scientific basis for extrapolation of upper tails of distributions, 
should be adopted by professional consensus and, at the same time, serious work 
should continue on understanding the hydrological ‘dice’, being aware that it is the 
physical regime that determines the shape of the extrapolated upper tail of the fitted 
distribution model. 
 
Luxemburg, W.M.J. et al. (2002) analysis the statistical properties of flood runoff of 
North Asian rivers under conditions of climate change. In the field of flood frequency 
distributions the estimates of the probability of exceedance are often very unreliable 
since the heterogeneity of the annual maximum series is not recognised or neglected. 
This heterogeneity of the annual maximum series can be explained by the fact that the 
different extreme floods are caused by different mechanisms, such as precipitation, 
basin conditions, human activities, etc., and belong to different statistical populations.  
The study compared theoretically and in practice two existing methods to deal with 
heterogeneous annual maximum series: The Multi-Component Distribution and the 
Mixed Distribution. The comparison is done on the basis of a case study on 26 
catchments in Primorye and Amur basin in the Far East of Russia. With the help of 
the Kolmogorov-Smirnov test on the estimated probabilities and reduced variables, 
both methods are compared to each other and to conventional methods. 
In the case of heterogeneity, the annual maximum series have to be split according to 
their flood-causing mechanisms. After estimating the Cumulative Distribution 
Functions of the sub-series (components)  they have to be combined. Such a 
combination is called a Heterogeneous Distribution. The Cumulative Distribution 
Functions to fit the components within the Multi-Component Distribution are 
estimated from the full annual series of the extreme floods caused by the relevant 
mechanisms. The independently estimated Cumulative Distribution Functions have to 
be multiplied to obtain the Multi-Component Distribution. 
The Mixed Distribution is a weighted sum of a couple of homogeneous probability 
distributions. These Cumulative Distribution Functions are estimated from Partial 
Annual Maximum series. A  Partial Annual Maximum series contains all absolute 
annual extremes that are caused by one and the same flood-causing mechanism. So, 
the Cumulative Distribution Function estimates a conditional probability. This 
condition is that the extreme flood caused by the relevant mechanism exceeds all 
other floods in the same year. The weight of the Mixed Distribution estimates the 
probability that this condition is true. Recognition of the different character of the 
Partial Annual Maximum series is necessary in the research on suitable Cumulative 
Distribution Functions to fit the Partial Annual Maximum series. Besides it is needed 
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to show that the Mixed Distribution and the Multi-Component Distribution estimate 
the same relation. 
Final conclusion: The Multi-Component Distribution gave better results than the 
Mixed Distribution and both Heterogeneous Distributions gave better results than 
conventional homogeneous distributions. 
 
Mantje, et al. (2007) try to identify the different homogeneous subsets in a 
heterogeneous distribution (although the latter is often regarded as homogeneous in 
flood frequency analysis). Then, they try to identify the mechanics behind the 
heterogeneity. For the identification of the different subsets an analytical method 
based on the maximum likelihood criterion has been used and applied to runoff 
maximums from floods in Europe and Russia. This method determines the transition 
point between heterogeneity and homogeneity. What is the advantage of using this 
method compared with that of the homogeneity approach? Is it better to connect 
heterogeneity with seasonality or influence of cyclones?  
By splitting of the dataset into the lowest and highest discharge extremes the 
distinctive form of heterogeneity is seen in the distribution as a threshold behaviour. 
In conclusion: There was no hard reason to connect heterogeneity with one of the 
climatic or weather mechanisms or catchment conditions, although this differs from 
region to region. In the southern of Russia it was observed that heterogeneity is 
probably caused by the influence of weakened typhoons. 
 
The research of Min Tu (2006) was based upon a combination of statistical trend 
analysis and hydrological modelling of the Meuse River discharges 1911-2000 at 
Borgharen. She concluded that the winter discharge has significantly increased since 
1984 just like its frequency, while the influence of land use changes upstream of 
Borgharen could not justify this increase. It is remarkable that the European 
atmospheric circulation patterns illustrate a change since 1980 by bringing stronger 
westerly surface winds across the North Atlantic to Europe and can broadly be 
ascribed to climate variability that causes more precipitation. 
 
Rossi et al. (1984)  describe the theoretical considerations to obtain a parent flood 
distribution that closely represents the real flood experience, existing of 39 annual 
flood series of Italian river basins. The choice of a good parent flood distribution has 
been based mainly on its ability to reproduce the statistical characteristics of a great 
number of annual flood series. As the sample skew is a statistic that is particularly 
sensitive to the behaviour of the right-hand tail of the distribution the analysis of the 
skew of the observed annual flood series is useful. The property of skew is often 
connected with the presence of outliers. To overcome this deficiency, in the present 
Paper preference was given to two-component (basic and outliers) models based on 
the compound Poisson process. Within this class of models, the one apt to reproduce 
the upper tails of Italian annual flood series is that of the maximum of a Poissonian 
number of a mixture of two exponential random variables. The two-component 
extreme value distributions, ensuing from this approach, emerges as a generalization 
of the Gumbel distribution. The more general two-component extreme value 
distribution assumes individual floods to arise from a mixture of two exponential 
components. Its parameters can be estimated by the maximum likelihood method. It 
was shown that a regionalized two-component extreme value distribution, with 
parameters representative of a set of 39 Italian annual flood series, closely reproduce 
the observed distribution of skew and that of the largest order statistics. 
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Vogel and Wilson (1996) document that since the introduction of L-moments* 
(Hoskin 1990) many investigators have recommended them to assess the goodness-of-
fit of probability distributions to samples of stream flow and precipitation. Others 
(Chow and Watt 1994) claim that it requires quite a few measuring-stations to provide 
a definitive assessment of goodness of fit. 
This study construct L-moments (also see Adamowski 2000, aforementioned) for 
annual maximum floods at more than 1450 river basins in the United States. 
Goodness-of-fit comparisons turn out that (1) the general extreme value, (2) the three 
parameter lognormal and (3) the log Pearson type III distributions provide acceptable 
approximations to the distribution of annual maximum flood flows in the continental 
USA, whereas other three parameter alternatives are not acceptable. These results are 
consistent with previous L-moment studies in south western USA and Australia. L-
moments applied in other parts of the world have all recommended the use of the 
general extreme value distribution for modelling annual maximum flood flows. 
We will never know, with certainty, the true population from which observed stream 
flows arise, yet studies such as this can provide some guidance for a reasonable 
approximation. 
  
* An L-moment diagram compares sample estimates of the L-moment ratios, viz.  
   L-volume, L-skew, and L-kurtosis with their population counterparts for a 
   range of   assumed distributions. An advantage of L-moment diagrams over other 
   goodness-of-fit procedures is that one can compare the fit of several distributions to 
   many samples of data using a single graphical instrument.  
 
This ‘literature overview’ proves the context to a renewed approach of the problem to 
estimate the discharge peak at Borgharen, and corresponding water level, for a given 
probability of occurrence. The innovation consists of the application of a 
heterogeneous distribution to the given data base of annual peak discharges at 
Borgharen. 
 
       
1.4       Research methodology 
 
1.4.1     Determination of the probability of exceedance of the annual discharge peaks 

In order to find a method to improve the accuracy of the design discharge estimates, 
the annual peak-discharge records at Borgharen from the period 1911-2000 are used. 
They are extended with information from some documented extreme flood events in 
previous centuries. The latter have been documented at that time, because of the 
damage and misery they caused.  

In order to have a homogeneous data series, peak discharges from the early 20th 
century are translated into contemporary ones, taking account of the effects of large 
river works. The same goes for the documented peaks from previous centuries until 
1571.  
To establish the plotting positions in the ‘exceedance−discharge’ relationship, the 
formulae of the Weibull-Benson type combined with the introduced discharge 
threshold, as described by Hirsch and Stedinger (1987),  are used. For comparison, 
Dalrymple’s method (1960) is also used, and the probability of exceedance of the 
flood peaks is determined. A probability distribution function is fitted to the plotted 
data and its 95% confidence interval is determined.  
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1.4.2 Flood wave properties  

To the author’s knowledge, the influence of the shape of the flood wave at Borgharen 
on the water levels further downstream has never been explored explicitly, so far. In 
order to identify the flood wave properties that may determine the downstream water 
levels, the daily observations at 08:00 a.m. of the Borgharen discharge in the period 
1930 – 2000 are used. Peak discharge, base discharge, flood wave volume, centre of 
gravity, width, skewness and crest curvature are determined for the measured floods. 

 
In order to account for the influence of the large river works upstream of Borgharen 
on the shape of the discharge hydrographs, the shape parameters are split into two 
sets, namely those before and after 1980, the year in which the latest major 
intervention was accomplished. Both sets of parameter series are tested on the 
presence of trends with the Spearman-test, and the equivalence of averages with the 
F-test (McClave 1997). Whenever there are significant differences between the 
corresponding series of both sets, they are homogenized to the present-day situation. 
  
Different flood maxima at Borgharen may yield the same water level further 
downstream, if one or more other flood wave parameters are different. It is known 
that the rate of attenuation of a flood wave, propagating through a river, is associated 
with the crest curvature of the discharge hydrograph.   
 
  
1.4.3 Transformation of  flood wave properties at Borgharen to downstream water             

levels 
To transform a combination of characteristic wave parameter values of a flood at 
Borgharen to a downstream water level at Venlo and Mook, for instance, a Monte 
Carlo simulation procedure is adopted, which consists of the following steps: 
 

 
•   Assess the correlation of the chracteristic flood wave parameters and check their 
     mutual independence, a necessary condition for random sampling. 
•   Randomly sample sets of the independent parameter values. 
•   Synthesize a flood wave at Borgharen from each set. 
•   Compute with a numerical model the water level peak at e.g. Venlo and Mook that 
     is caused by this synthesized flood wave at Borgharen.  
•   Repeat the foregoing two steps for other sets of parameter value combinations and 
     continue this procedure until the probability density function (pdf) of the water 
      levels at Venlo and Mook has converged to a stable shape. 
•   The probability of exceedance of the local water levels at Venlo and Mook can be 
     determined from this converged pdf. 
 
1.4.4 An easy-to-use forecasting-model 

An easy-to-use early forecasting model for the peak discharge at Borgharen is needed 
to enable local authorities to take timely protective measures when a flood is 
expected. Rainfall forecasts in the river catchments are supposed to be provided a few 
days ahead by the Meteorological Services. Other useful data from abroad, such as the 
discharges from the Belgian and French tributaries of the Meuse River and the Meuse 
River itself, are not to be expected at short notice, due to hectic situations at the 
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Belgian and French Services de la Meuse, as experience has shown. As a 
consequence, the model will be mainly based on rainfall forecasts, so the accuracy of 
the peak discharge prediction strongly depends on the accuracy of these forecasts. 
In literature, various methods are used to relate precipitation to river runoff (Shaw 
2002). In this study the method of the average 1-day Unit Hydrograph, applied to the 
effective rainfall, is chosen. To assess its reliability, predictions based on operational 
rainfall depths are tested against measured river discharge peaks at Borgharen from 
the period 1980 – 2000 and validated for some more recent floods.  
 
1.4.5 Models  

The translation of the synthesized discharge flood waves at Borgharen into water 
levels further downstream will be made using a 1-D Sobek computer model, which 
has been structured, calibrated and verified for the Dutch Meuse River by 
Rijkswaterstaat, RIZA (2002). Backgrounds of that model are described. 
 
 
1.5 Expected results and practical relevance of the study    
 
1.5.1 Expected results 

The expected results of the study are: 
•   New design discharges and corresponding water levels at Borgharen. 
•   Identification of the properties of the flood wave hydrograph at Borgharen that 
     have a significant influence on the water levels further downstream.  
•   Guidelines how to determine the probability of exceedance of local water levels 
     from random samples of combinations of  characteristic flood wave parameter 
     values at Borgharen.  
•   Results of applying these guidelines to the locations Venlo and Mook, for instance, 
     and comparing these water levels to those of floods that have occurred, and to the 
     DWL 2001. Possibly, adaptation of the DWL 2001 
•   A simple peak discharge forecasting-algorithm for Borgharen from rainfall data in 
     the Meuse River catchment abroad. 
•   Translation to more generic results, applicable to similar rivers.  
 
1.5.2 Practical relevance  

The relevance of the study to strategic flood level prediction is, that the results will be 
applicable to: 
•   the design of levees, dikes and other flood protection measures along the river; 
•   the design of river restoration schemes; 
•   policy development within the scope of the prevailing legislation.  
 
The relevance of the study to operational flood risk management practice is: 
•   to have an easy-to-use model for an early assessment of the expected peak 
     discharge at Borgharen and corresponding water level;  
•   to enable the prediction of downstream water levels, using a numerical computer 
     model and estimating the relevant flood wave shape at Borgharen. 
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CHAPTER 2 
 

PROBABILITY ANALYSIS OF FLOODS IN THE DUTCH MEUSE RIVER AT 
BORGHAREN 

 
 
2.1 Frequency of occurrence of recorded and documented floods   
 
As mentioned in the footnote to Section 1.2, at that time the River Dikes Committee 
(1977) had to investigate the efforts needed to attain the desired safety against 
inundation. Aspects such as costs, nature, landscape, culture and history were 
important. A design frequency of occurrence of 0.0008 per annum was adopted and 
laid down in law for dikes as a primary flood defence. In areas without dikes, such as 
the Limburg part of the Dutch Meuse River, a more differentiated approach of the 
design level was considered, because of the use of a part of the floodplains for 
housing, industry and horticulture. 
 
The number of systematically recorded annual discharge peaks is modest (89), given 
the fact that we also have to predict the discharge peak that will occur once in 1250 
and 250 years on average. Besides, there are many irregularities in the discharge 
probability distribution (Fig.2.1.1 and Appendix 2.1.1). This is why the free flow 
situation is separated from the remainder of the peak discharges. 
In spite of the relatively small number of data, the aim of this part of the study is to 
improve the accuracy of estimated design discharges at Borgharen.  
So far, the discharge probability distribution has been determined while neglecting  
the river situation upstream of Borgharen. In the present study improvements are 
expected (1) by adding documented discharge data of peaks from the period 1571 – 
1910 (as far as approximately known) to the continuously recorded data series from 
the twentieth century (1911-2000), (2) by applying new methods to determine the 
probability of exceedance of the individual floods, and (3) by separating the free-
runoff situation upstream of Borgharen from the set-up situation, so as to achieve 
more consistency in the exceedance plot of the peak discharges. The homogeneity of 
the annual peak discharge data is considered below. 
Irregularities in the discharge probability distribution are not only caused by irregular 
hoisting of the weirs in Belgium, but also by not tuning with the Borgharen weir. The 
Borgharen weir is out of operation from about 1200 m3s-1, whilst the weirs in the 
Liège reaches are still operating incoherently, which causes scatter in the discharge 
probability distribution at Borgharen. From 1500 to 2000 m3s-1 at Borgharen, the 
weirs in the Liège areas are still in use and the water levels are lowered in the Belgian 
headwater reaches by about 0.6 m to create storage capacity in anticipation of the 
approaching top of the flood. Over 2500 m3s-1 it is difficult to maintain the backwater 
level there, and over about 2700 m3s-1 it is impossible to keep the weirs in operation. 
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Fig.2.1.1 Probability of exceedance of the annual peak discharges at Borgharen  
1911-2000, according to Weibull 
 
In the Liège region it is important to keep the weirs in operation as long as possible, in 
order (1) to generate water-power energy for the town of Liège and (2) to maintain the 
water level in the upstream reach of the Albert Canal, the shipping route to Antwerp. 
Even during the flood of December 1993 (peak discharge 3040 m3s-1 at Borgharen), 
the weir of Lixhe, near the Dutch border just downstream of Visé, has been out of 
operation only during part of the peak-day (WL⏐Delft Hydraulics, 1994, Report 4, 
Chapter 9, page 18). 
 

            Before 1800, the Meuse River did not belong to the European River Communication 
Network. In Belgium the river was navigable to a depth of 1.2 m. All historical 
information (WL⏐Delft Hydraulics, 1994, Report 4, Chapter 5) points to the fact that 
this has been maintained since the fifteenth century and that after a period of neglect 
at the beginning of the nineteenth century, the river depth was restored to 1.2 m again 
from 1840 onwards.  
Small-scale local works have been carried out to protect cities against flooding and, 
furthermore, moderate-size weirs have been constructed in the second part of the 
nineteenth century. It may be agreed that these small-scale works, which did not 
systematically improve the river in its entirety, did not influence the height and the 
shape of the flood waves at Borgharen. The much larger-scale modernisations of the 
Belgian Meuse River, which started end nineteenth beginning twentieth century, did 
have a significant influence: they caused floods to reach the Dutch border sooner and 
sometimes with higher maximum discharges. The large works were finished around 
1980. In order to have comparable discharge values, data from the past have been 
converted to the present situation, using a hydrodynamic simulation model applied to 
historical as well as  recent bottom data of the Walloon Meuse River, and discharges 
of recent floods (WL⏐Delft Hydraulics, 1994, Report 4, Chapter 7.1.5). Also the 
consequences of the change of  discharge measuring equipment through time, from 
float gauging to Ott-meter, to integrated and to acoustic technique, were taken into 
consideration. The increased extractions of water from the Meuse River for shipping, 
agriculture and domestic use, are not significant in this context.  
It turned out that some of the present annual peak discharges at Borgharen would have 
been a few percents less, from 2% for low floods to 5% for extraordinary high floods, 
if the former situation would still have existed.  
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The propagation of the discharge peak from the French border to Borgharen would 
have taken 3 hours (for 1500 m3s-1) to 10 hours (for 3000 m3s-1) longer than nowadays 
(WL⏐Delft Hydraulics, 1994, Table 7.1). The stage−discharge curves, resulting from 
the measurements at Borgharen in the period 1911-2000 are essential for the 
determination of the annual peak discharges. Unfortunately they have been adapted 
many times during that period. Consequently the peak discharges had to be corrected 
afterwards, which may have introduced extra errors. 
The annual peak-values are available in the ‘Yearbooks of Water levels, Discharges 
and Temperatures’ (RIZA), and in Reports on remarkable floods (Directorate 
Limburg & RIZA). In Appendix 2.1.7 the recorded annual peak discharges at 
Borgharen are mentioned. 
 
Fig.2.1.2 shows that there is no significant long-term trend in the peak discharges, 
although very dry and very wet periods, e.g. the seventies and the nineties, differ 
significantly.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.2.1.2 Annual peak discharge at Borgharen in the period 1911-2000. Free-flow 
over 1200 m3s-1 
 
In previous centuries, at many locations along the Belgian Meuse River, particularly 
in the Liège region, the water levels were noted during the largest floods, so that for 
those floods one can derive hydraulic gradients. The hydraulic gradients could be 
interpreted later and converted into discharges on the basis of advanced discharge 
measurements, carried out since about 1880 at Visé, downstream of Liège, near the 
Dutch border. Furthermore, historic peak discharges can be derived from the data 
published in ‘Investigation Flooding Meuse River’ (WL⏐Delft Hydraulics, 1994, 
Report 4, pp.2.25-2.28), obtained from an analysis of the Royal Dutch Meteorological 
Institute (KNMI).  
From 1571 until 1910 there have been four very extreme floods, not headed up by ice 
jams, namely in 1643, 1740, 1850 and 1880, with estimated peak discharges of 3075, 
3020, 2850 and 2950 m3s-1, respectively. These values include the 5% correction, 
because of the effect of large river works as mentioned before. Only the largest floods 
that caused much damage and misery have been documented (Lorenz, 1997). As the 
less extreme floods were roughly estimated within class intervals of 500 m3s-1 and 
uncertainties about ice jams played a role on top of that, these less extreme discharges 
are not taken into account in the present study.  
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The series of discharges used in this investigation consists of 93 annual maximum 
discharges i.e. 89 systematically recorded floods from the period 1911-2000 and four 
documented floods from the period 1571-1910 (see Appendix 2.1.8 for the definition 
‘flow year’). During the period 1571-2000, the hydrological situation did not change 
significantly, as explained in the next section. 
Here the focus is on the special case when, in addition to the systematically recorded 
discharges over an uninterrupted period, one also knows the time and the estimated 
peak discharges of some floods in the preceding period (here called the historical 
floods). Hirsch and Stedinger (1987) have analyzed various proposals to determine 
the plotting positions in a p.o.e.-plot of recorded floods combined with documented 
historical floods. This led to (1) the Weibull-Benson development of the Exceedance 
formulae for the plotting position estimator, and to (2) the Dalrymple method, for 
comparison. 
  
The E formulae for exceedance: 
In our case, the complete flood series (Appendix 2.1.9) consists of  g= 93 observed 
floods during an observation period of  n =429 years (1571-2000).  
For such cases Benson et al. (1950) proposed to introduce a discharge threshold of 
perception (Y0). The perception may consist of remarkable things as flooding houses, 
disastrous events, changing river dynamics (e.g. set-up situation into free flow), 
exceeding a particular stage, etc. If one only applies the Weibull formula for plotting-
positions to each subset above and below a certain discharge threshold separately, the 
possibility of a discontinuity in the probability of exceedance (p.o.e.) assigned to the 
subset above and below the threshold was recognized by Benson. In order to  arrive at 
consistent results, we have to obtain a series of peak discharges, properly 
representative of the total discharge distribution.  
Hirsch and Stedinger (1987) developed a model that serves as the basis of statistically 
reasonable and consistent p.o.e.-plot positions.  
Let s be the number of systematically recorded flood peaks in the period of 429 years 
(s=89), then s≤g<n. Among these floods there is a subset consisting of the floods Y(1) 
through Y(k), which are known to have ranks 1 through k in the observation period of 
n years. These k floods (in our case k=6) may be referred to as ‘extraordinary floods’ 
as they exceed a certain discharge threshold of perception, namely a change of the 
river dynamics: the set-up situation changes into the free-flow situation in the Liège 
Meuse River branch and therewith in the whole Meuse River.  
Some (or all) flood peaks may have occurred during the systematically recorded 
period. Let e be the number of ‘extraordinary floods’ from the systematic record 
(e≤k), then g=s+k-e. In this case e=2. Also see Appendix 2.1.9. 
Because of the aforementioned discontinuity, we do not only apply the usual Weibull 
formula for the probability of exceedance:  
 
pi  = i/n+1,               (…2.1.1) 
 
for which i the ranking number of the flood in descending order, but we use the 
alternative plotting position formula (Weibull-Benson) which recognizes that there is 
some probability of exceedance pe of the threshold Y0. The actual number of 
exceedances of Y0  in n years, k, is a binomial random variable with parameter pe .  
The true expectation of the probability of exceedance of Y0 , namely  pi , given  pe  and 
values of k and e is: 
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Ep o e {pi  | pe,  k , e}= (i / k+1) . pe ,with i = 1,…k       and  0< pi  < pe        …(2.1.2) 
 
for which: 
Y0   the discharge threshold (m3s-1), 
pi    the  true probability of exceedance of Y0, 
k     the actual number of floods in the subset above the discharge threshold, 
e     the number of systematically recorded floods of the subset above the discharge 
       threshold , 
pe   the  parameter of a binomial random variable 
i      the ranking number of the discharge peak in descending order  
 
The true expectation of the probability of not exceedance of Y0 , namely qi  , given pe  
and values of k and e is: 
 
Ep o n e {qi  | pe,  k , e}= pe  + (1- pe ) .( i- k / s-e+1),   with i = k +1,…g            …(2.1.3) 
 
and   pe < qi  < 1 
 
for which: 
qi   the true probability of not exceedance of Y0, 
s    the number of systematically recorded flood peaks, 
g    the number of systematically recorded flood peaks, plus documented peaks from 
      historical events 
n     the length of the composite series in years 
            
As  p e ≈ k / n , we finally get the estimator: 
 
pi = {i/(k+1)} . k/n     for the probability of exceedance of the discharge         …(2.1.4) 
                                    threshold, where  i = 1,…k 
 
qi = k/n + (n-k)/n . (i-k)/(s-e+1)  for the probability of not exceedance            …(2.1.5) 

      of the discharge threshold,  
      where i = k+1,…g                    

 
Applying the equations (2.1.4) and (2.1.5) leads to Figs.2.1.3 through 2.1.5, for the 
variable chosen discharge thresholds of 2750, 2550 and 2100 m3s-1  respectively. 
It is clear, that discontinuity in the connection between the probabilities above and 
below the threshold is negligible in Fig.2.1.3, whereas it is present in Fig.2.1.4 and 
clearly in Fig.2.1.5. The Appendices 2.1.2 through 2.1.4 show more details and also 
the position of the measured peaks. 
 
It is remarkable that the six largest floods above the preferred discharge threshold at 
2750 m3s-1, viz. the documented four historical floods in the period November 1571-
1910 and the two recorded floods in the period 1911-2000, have rather close peak 
values (2850-3175 m3s-1). Does that point to a physical maximum?     
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Fig.2.1.3 Probability of exceedance of the peak discharge at Borgharen (1571-2000)*, 
regression lines in accordance with the E formulae above ( ) and below (×) the 
threshold discharge at 2750 m3s-1 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.2.1.4 Probability of exceedance of the peak discharge at Borgharen (1571-2000), 
regression lines in accordance with the E formulae above ( ) and below (×) the 
threshold discharge at 2550 m3s-1  
 
 
* Flow year 1571 -or hydrological year 1571- starts from 1 November 1571. The 
important large flood occurred at 7 February 1571. It is assumed that from this flow 
year the extreme floods are documented well (RIZA Report 2002.013). 
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Fig.2.1.5 Probability of exceedance of the peak discharge at Borgharen (1571-2000), 
regression lines in accordance with the E formulae above ( ) and below (×) the 
threshold discharge at 2100 m3s-1  
 
Apparently, there is a preference for the threshold at 2750 m3s-1 when applying the E-
formulae. In Fig.2.1.3 the relationship between the probability of exceedance and the 
peak discharge is split into: 
 
(1)The part above the threshold at 2750 m3s-1, for which  
 
Qpeak = - 174.75 LN (x) + 2124                                                              …(2.1.6) 
 
where x is the probability of exceedance of Q peak , and x ≤ 0.02781 
 
 
(2)The part below the threshold at 2750 m3s-1, for which 
 
Qpeak = - 453.75 LN (x) + 1125, and x > 0.02781         …(2.1.7)                              
        
          
For the equations of the 2550 and 2100 m3s-1 threshold values and methods, also see 
Appendix 2.1.10. 
 
For the preferred threshold value, the 95% error band of the regression line of the 
peak discharges is given in Appendix 2.1.5. It is determined with the formula (van der 
Grinten & Lenoir, 1973): 
 
(Sres.)2=[1/m-2]Σ(Yi–a LN[Xi]–b)2                                                                    …(2.1.8) 
 
where, 
 
(Sres.)2      the residual variance of the discharge peaks Yi , related to the regression 
                 line Yi* = a LN [Xi] + b  
 
m             the number of observations of the subset 
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Yi            the peak discharges 
 
Xi            the probabilities of exceedance 
 
a              the regression coefficient 
 
b              the zero intercept of the regression line for which Xi = 1. 
 
The Dalrymple method:   
Remember that the series of discharges consists of 93 (i.e. 89 recorded and 4 
documented) observed annual peak discharges in a period of 429 years, of  which four 
peaks above the threshold of 2750 m3s-1 are only documented and two have been 
systematically recorded, so six above the threshold in 429 years.  
A transformed ranking number (itrans) is assigned to each of the floods (Appendix 
2.1.11) via the following procedure: 
Taking the discharge threshold at 2750 m3s-1, then  429 – 6 is 423 annual discharge 
peaks are below that threshold. Assuming that the non-registered discharge peaks 
below the threshold belong to the same distribution as the 87 recorded peaks below 
the threshold, the transformed ranking numbers (itrans) are given by: 
 
itrans = 6 + (423 / 87) (i – 6),            …(2.1.9) 
 
where i is the ranking number 7…93 of the observed annual peak discharges. 
 
Fig.2.1.6 shows the result for the probability of exceedance of the peak discharges 
(also see Appendix 2.1.6 for details). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.2.1.6 Probability of exceedance of the peak discharge at Borgharen (1571-2000), 
regression lines in accordance with the Dalrymple method above ( ) and below (×) 
the threshold discharge at  2750 m3s-1  
 
 
For the discharge thresholds at 2550 and 2100 m3s-1 it is shown in Figs.2.1.7 and 
2.1.8, respectively, that the plotting-positions are less consistent than for the threshold 
at 2750 m3s-1 (see Appendix 2.1.10 for the equations). 
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Fig.2.1.7 Probability of exceedance of the peak discharge at Borgharen (1571-2000), 
regression lines in accordance with the Dalrymple method above ( ) and below (×) 
the threshold discharge at 2550 m3s-1  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.2.1.8 Probability of exceedance of the peak discharge at Borgharen (1571-2000), 
regression lines in accordance with the Dalrymple method above ( ) and below (×) 
the threshold discharge at 2100 m3s-1  
 
The results of both methods (E formulae and the Dalrymple method) for the preferred 
threshold discharge at 2750 m3s-1  are summarized in Table 2.1.1.  
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       Exceedance method         Dalrymple  method 
probability of 
exceedance 

 
yr-1 

discharge 
 
 

m3s-1 

95%confidence 
band of the 

regression line 
m3s-1 

discharge 
 
 

m3s-1 

95%confidence 
band of the 

regression line 
m3s-1 

0.02 2808 ± 85 2827 ± 90 
0.004 3089 ” 3120 ,, 
0.0008 3370 ” 3412 ,, 

Table 2.1.1         p.o.e.1/50, 1/250 and 1/1250 per annum of the discharge at  
Borgharen, according to either method with threshold discharge at 2750 m3s-1 
 
 
The discharge values for the next best threshold (2550 m3s-1) are given in Table 2.1.2. 
 
       Exceedance         Dalrymple 
probability of 
exceedance 

yr-1 

discharge 
 

m3s-1 

discharge 
 

m3s-1 
0.02 2666 2695 

0.004 3093 3123 
0.0008 3520 3550 

Table 2.1.2          p.o.e. 1/50,  1/250 and 1/1250  
per annum of the discharges at Borgharen, according  
to either method with threshold discharge at 2550 m3s-1 
 
The discharge difference for the same p.o.e. between the two methods for threshold 
2750 m3s-1 is 0.7 to 1.2%, and for the threshold 2550 m3s-1  0.9 to 1.1%. The discharge 
difference for the same p.o.e. according to the same method, but with different 
threshold values, namely 2750 and 2550 m3s-1, is from 4.5 % (0.0008), via 0.1% 
(0.004), to 5.1% (0.02) for the two thresholds.  
 
 
2.2 Hydrological background 
In the sixteenth, seventeenth and eighteenth century, one flood in each century 
exceeded 2750 m3s-1 at Borgharen, whereas in each of the nineteenth and twentieth 
century two peaks exceeded this value. Deforestation in the Meuse basin cannot be 
the reason of this increase, as the forested area in the Ardennes has increased by 8% 
since 1835 (WL⏐Delft Hydraulics, 1994, Report 4, page 10.1). Changes in land use 
however, have cancelled out the increased sponge function of forest areas. During the 
last 40 years the construction of buildings and pavements has increased and  now 
covers approximately 5% of the basin area in Belgium (WL⏐Delft Hydraulics, 1994 , 
Report 4, page 9.10). It seems plausible that moderate floods between 1600 and 2000 
m3s-1 have 5% higher peak discharges at Borgharen since 1960. For very extreme 
floods the influence of paving on the peak discharge is negligible, since such floods 
happen in the case of long-lasting rainfall, due to which the basin is already 
completely saturated with water before the top of the flood has arrived. Although the 
amount of rainfall on the basin may have changed through the centuries, there are no 
reliable data to confirm this: the measuring instruments before the twentieth century 
were too inaccurate to be able to indicate a significant trend. Even in the twentieth 
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century the positions of the rain-gauges have been changed so many times, that the 
basin rainfall data are sometimes dubious because of non-homogeneity. Furthermore, 
the variation in the amounts of rainfall is so large -in a wet year there may be more 
than two times as much as in a dry year- that it is not possible to identify a significant 
trend. 
 
As far as the climate change is concerned, we can conclude that its influence is not 
significant. For the larger return periods of the floods the influence is even considered 
to be negligible (WL⏐Delft Hydraulics, 1994 , Report 4, page 9.11). Also the double 
mass curve for the period 1933-1992 (WL⏐Delft Hydraulics, 1994 , Report 4, page 
7.10 – 7.12) applied to the rainfall sum in the Ardennes is consistent with the 
discharge sum at Borgharen. 
For the future the possible climate change is still to uncertain to speculate on its 
influence on the small-scale Meuse River basin. 
 
 
2.3 Sensitivity of the probability of exceedance  at Borgharen to variable 

historical peak discharges  
 
It is advised to use the estimated extreme values of the historical peak discharges as 
an additional source of reliable discharge values (Investigation of the Royal Dutch 
Meteorological Institute, 1994). However, suppose the hypothetical case that in 
historical times, without systematic recordings, there have been one or more extreme 
floods which have not been documented, got lost or underestimated. Suppose for the 
highest documented flood of 3075 m3s-1, the real discharge had been 3275 m3s-1. In 
that case, the peak discharge for a probability of exceedance of 0.0008 per annum is 
135 m3s-1 higher than the estimated values on the basis of the Exceedance formula 
2.1.6 (see Fig.2.3.1 and Table 2.3.1). This corresponds with 0.1 m increase of water 
level. For a p.o.e. at 0.004 per annum the peak discharge is 55 m3s-1 higher in that 
case. In other words: the above mentioned p.o.e. 0.0008 and 0.004 of the discharge, 
changes into 0.0015 and 0.0051, respectively. 
If the highest historical peak discharge has been 500 m3s-1 higher (3575 m3s-1) than 
documented, the line (5) in Fig.2.3.1 (also see Table 2.3.1) results. This corresponds 
with 0.3 m increase of water level. Such an extreme event is not very likely to have 
escaped notice. In this case the p.o.e. of the discharge changes into 0.0029 and 0.0062 
instead of 0.0008 and 0.004, respectively. 
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Fig.2.3.1 Consequences for the relation between p.o.e. and discharge, if the highest 
historical  flood peak has been higher than estimated 
(1) estimated floods, according to the preferred p.o.e. for floods above the threshold at 
      2750 m3s-1  
(2) 200 m3s-1 added to the highest historical flood of 3075 m3s-1 
(3) 300 m3s-1 added to the highest historical flood  
(4) 400 m3s-1 added to the highest historical flood 
(5) 500 m3s-1 added to the highest historical flood 
 
Instead of  the preferred 3370 m3s-1 at p.o.e. 0.0008 per annum (Table 2.1.1), the 
discharges considered in the hypothetical cases, viz. 3505 m3s-1 (line 2) and higher 
(see Fig.2.3.1) are outside the 95% confidence  band of the preferred regression line 1 
of the peak discharge at Borgharen, viz. 3455 m3s-1, as is shown in Appendix 2.1.5. It 
is shown in this Appendix that the confidence band above the threshold discharge at 
2750 m3s-1 has a width of plus or minus 2.5 to 3% related to the regression line. 
Table 2.3.1 gives the raising of the discharge at p.o.e. 0.0008 and 0.004 in relation to 
the preferred regression line 1 of  Fig.2.3.1, as a consequence of adding the given 
discharges (column 2) to the highest documented historical flood peak. 
 

(1) (2) (3) (4) 
regression 

line 
number 

added…m3s-1 to 
the highest 

historical flood 

p.o.e. 0.0008 
diff with regression 

line 1 in m3s-1 

p.o.e. 0.004 
diff with regression 

line 1 in m3s-1 
1 0 0 0 
2 200 135 55 
3 300 255 90 
4 400 370 125 
5 500 490 165 

Table 2.3.1 Increase of discharge at p.o.e. 0.0008 and 0.004, if the highest  
historical flood peak would be higher (column 2) than estimated 
     
Suppose that one or more peak discharges near the threshold of 2750 m3s-1 , e.g. 2800 
m3s-1, have not been documented. For these extreme discharge peaks the sensitivity at 
the same p.o.e. of the discharge is negligible, as is shown in Fig.2.3.2. There is no 
difference from the preferred reference line. 
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Fig.2.3.2 Effect of adding one (ο, broken regression line) and two ( , thin regression 
line) peak discharges of 2800 m3s-1 to the series above 2750 m3s-1. Points  of the 
line representing the reference case (no discharges added)  
 
Suppose there has been another historical peak discharge of 3075 m3s-1  that got lost. 
Then the discharge corresponding with p.o.e. at 0.0008 per annum corresponds with 
p.o.e. at 0.0006 in that case, while the discharge corresponding with p.o.e. at 0.004 per 
annum corresponds with  p.o.e. at 0.0045.  
 
 
2.4 Comparison of the results of the DWL 2001 principle with  those of the  

present study 
 
The result of the method generally used to determine the probability of exceedance of 
the peak discharge at Borgharen (DWL 2001) is shown in Fig.2.4.1. This relation is 
based on the recorded peak discharge data from the period 1911-2000 and in 
accordance with the ‘werklijn’ for the relationship between discharges and their return 
periods for the Hydraulic Conditions 2001 (RIZA Report 2002.013). The same RIZA 
Report considers the historical floods from 1572. On basis of the investigation into the 
statistical distribution of the annual discharge peaks and their return periods, derived 
from the series of measurements in the period 1911-1997, and the historical analysis 
of flood events in former centuries, it turns out that the very extreme peak discharges 
of the series 1572-1997 lie within the 95% confidence band of the first series. In other 
words, the historical analysis supports the results of the statistical analysis of the 
series 1911-1997. So, the assumption that the series 1911-1997 is representative for 
the long series can not be rejected.  
At p.o.e. 0.004 and 0.0008 the 95% confidence band has a width of plus or minus 15 
to 20% related to the expected line, according to Report 4, page 8.6 of WL| Delft 
Hydraulics (1994), from which it turned out that the ‘werklijn’ for the period 1911-
1994 equals that for the period 1911-2000.  
Fig.2.4.1 also shows the relation between the probability of exceedance and the peak 
discharge resulting from the present study. More details are given in Appendix 2.4.1.  
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Fig.2.4.1 Comparison of the generally used probability of exceedance of the peak 
discharge at Borgharen with that resulting from the present study (o symbols from the 
generally used series 1911-2000, and ×,   symbols from the series 1571-2000) 
  
The discharge differences at measuring-station Borgharen village (km16), due to the 
‘DWL 2001’  and  the results of the present study are given in Table 2.4.1. 
 

probability of 
exceedance 

yr –1 

DWL 2001 
principle 
m3s-1  2 

present study 
 

m3s-1 

difference 
 

m3s-1 
0.1 2142 2170 -28 

0.05 2387 2484 -97 
0.02 2710 2808 -98 
0.01 2955 2929 +26 

0.004 3278 3089 +189 
0.0008 3800 3370 +430 

Table 2.4.1 Discharge differences at Borgharen as a result of the DWL 2001 principle 
and the present study 
 
For the water level differences this means: 

probability of 
exceedance 

yr –1 

DWL 2001 
principle 

m    2 

present study 
 

m   3 

difference 
 

m 
0.1 45.15 45.20 -0.05 

0.05 45.43 45.50 -0.07 
0.02 45.70 45.77 -0.07 
0.01 45.89 45.86 +0.03 

0.004 46.12 45.98 +0.14 
0.0008 46.43 46.17 +0.26 

Table 2.4.2 Water level differences at Borgharen as a result of the DWL 2001 
principle and the present study 
 

                                                                          
2

 also see Appendix 4.9.1 
3

 also see Appendix 4.4.3 
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One may simply apply the E-formulae for the series 1571-2000 and 1911-2000 for the 
p.o.e.-plot above the peak discharge of 1200 m3s-1 (the beginning of the free flow 
situation downstream of Borgharen). Fig.2.4.2 shows, that (1) for  p.o.e. 0.0008 the 
difference between the two series is 506 m3s-1 (0.28 m), that (2) for p.o.e. 0.004 it is 
371 m3s-1 (0.24 m), and that (3) the long-term series regression line (Δ) practically 
coincides with the generally used thin line.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.2.4.2 The long-term series 1571-2000 (Δ) compared with the short-term series 
1911-2000 (o), both series with discharge threshold at 1200 m3s-1; generally used thin 
line 
 
If, instead of the  1200 m3s-1 the discharge threshold at 2750 m3s-1 is introduced into 
both series and the E- equations are used, Fig.2.4.3 shows the resulting short-term and 
long-term regression lines, as well as the generally used thin line. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.2.4.3 Series 1571-2000 (Δ) compared with the short-term series 1911-2000 (o), 
 both series with discharge threshold at 2750 m3s-1; generally used thin line 
 
The water level differences between both series of Fig.2.4.3 correspond to 0.47 m 
(p.o.e. 0.0008) and 0.29 m (p.o.e. 0.004). However, the part of the short-term 
regression line above the threshold is based on two measuring-points only, and 
therefore its existence is uncertain, as also follows from the large extrapolation 
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interval to p.o.e. 0.0008, contrary to that of the long-term series (Δ) above the 
threshold. 
 
 
2.5 Generalization of the findings for the Dutch Meuse River to other rivers 
 
From the case study of the Dutch Meuse River we can derive for similar rivers how to 
deal with the problem of determination of p.o.e.-plots from available, possibly 
interrupted, annual peak discharge series.  
Suppose the available discharge series consists of a set of systematic recordings and 
some documented historic peaks, for which the time and approximate magnitude are 
known. Then the E-formulae 2.1.4 and 2.1.5 can be used, assuming that certain river 
perceptions are known, so that discharge thresholds can be introduced.  
 
Attention has to be paid to (1) the effects of misspecification of the length of the 
observed period, in the case of an interrupted series of historic peak discharge data (2) 
the sensitivity of the p.o.e. to variable (historic) peak discharges (3) the uncertainty in 
the discharge threshold(s) and (4) the homogeneity of the data series. 
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CHAPTER 3 
 

FLOOD WAVE CHARACTERISTICS AT BORGHAREN DETERMINING THE 
RIVER STAGES 

 
 
3.1 Introduction 
 
River flood waves with the same peak discharge may produce different water levels at 
the same location further downstream. This is due to the shape of the flood wave, 
which in a rain-fed river depends on various conditions, such as the rainfall history, 
the duration of the rain period in its basin, the rain intensity, etc. Wave volume, centre 
of gravity and its variance, skewness and crest curvature of the wave are parameters to 
describe flood waves. Different base discharges, prior to a rain period, may cause 
different maximum water levels along the river for the same precipitation volume, as 
the water storage capacity in the river differs depending on the base discharge. During 
its passage through the river the flood wave attenuates, and the stronger the 
peakedness the more attenuation. The relation between the upstream peak discharge 
and the downstream water level is not necessarily monotonous, may be even non-
unique. This property is illustrated in Fig. 3.1.1 for the peak discharge measurements 
in the Meuse River at Borgharen and the Sobek computations for the corresponding 
water levels at Venlo, about 100 km downstream of Borgharen. 
 
As there is a unique monotonous ‘stage−discharge’ relationship between the water 
level and the discharge at Borgharen (Appendix 4.4.3), the probability of exceedance 
of the discharge at Borgharen is the same as that of the corresponding water level, 
contrary to the relation in Fig.3.1.1. By lack of a reasonable number of local discharge 
measurements downstream of Borgharen, local probabilities of exceedance of 
discharges and corresponding water levels could not be determined directly. This 
why, so far, the p.o.e. of the water levels downstream of Borgharen has been taken 
equal to that of the discharges at Borgharen. This casts doubt on the present used 
Design Water Levels 2001 for river dikes and levees, which have been derived under 
this assumption. Therefore a new approximation is applied in the present study. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.3.1.1 Computed water levels at Venlo related to the measured peak discharges at 
Borgharen 
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To offer more reliable estimates of local flood levels with p.o.e. 0.02, 0.004 and 
0.0008 per annum, which are the bases of the design criteria for structures on the 
Dutch Meuse River, the aforementioned characteristics of the Borgharen discharge 
flood waves that determine the downstream water levels need to be identified. After 
identifying the significant flood wave parameters in this chapter, the synthesization of 
flood waves at Borgharen will be described in Chapter 4. 
 
  
3.2 Observed flood waves at Borgharen 
 
Daily 08:00 a.m. observations of the discharge at Borgharen between 1931 and 2000 
are available (Delden 1999). Values of flood wave characteristics have been derived 
from these data. To exclude the effects of  artificial interventions, such as weir 
operations,  while keeping a statistically sound number of data to study, floods are 
used with a peak discharge over 1850 m3s-1 at Borgharen. This set consists of 16 
floods, characterised by the discharge peaks and other characteristic parameters. They 
are relevant to this part of the study, and are classified in Appendix 3.2.1.  
The daily observations during a flood show that single-peaked waves at Borgharen 
generally have a steep slope in the rising stage, and the peak is reached after three to 
six days. The falling stage is about half as steep and consists of direct runoff until the 
deflection point, followed by a slow runoff until all water from the flood event has 
been depleted.  
As there are no physical criteria to discriminate between a single-peaked flood wave 
and a complex flood wave, the following assumptions are made : 
(1) If a wave has two peaks with an interval of eight days or more, it is assumed to 
consist of two single waves (Dixhoorn 1978, Gerretsen 1999, Made 1968).  
(2) If two peaks occur less than eight days apart, they are considered as one  single-
peaked wave, with the lower peak as a part of the wave.  
As stated before, upstream weir operations may be a source of discharge fluctuations. 
Calculations, made within the framework of Investigation Flooding Meuse River 
(WL⏐Delft Hydraulics, 1994, Report 4, page 9.19) for the Belgian river section, show 
that these weir operations may result in fluctuations at Borgharen between 30 m3s-1 
and 800 m3s-1 (worst-case approach). In the author’s view, discharge fluctuation rates 
up to 200 m3s-1 per hour are still realistic in practice. If there is evidence of such 
fluctuations within one flood wave period, they are corrected, while preserving the 
wave volume and the peak discharge. This is the case for two floods over 1850 m3s-1  
after 1931. 
 
 
3.3 Flood wave parameters at Borgharen 
 
A flood wave is defined on the time interval between the beginning of the rising stage 
at a certain base discharge level, and the end of  the falling stage when the same base 
discharge is (roughly) reached again. On this interval the discharge hydrograph  
Q’(t) = Q(t) – Qbase  at Borgharen is defined (Fig.3.3.1). The base discharge, Qbase, still 
decreases at the beginning of the flood and increases after the peak of the flood 
(retardation effect). The rate of change will be small and in the case of floods 
unimportant. Therefore the base flow is assumed to be constant from the beginning till 
the end of the flood wave. 
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Fig.3.3.1 Example of a flood wave hydrograph Q’(t) at Borgharen 
 
The phenomena that may cause the differences in the downstream water levels, as 
mentioned in section 3.1, will be identified, using the moments X0 through X4 of the 
discharge hydrograph in Fig.3.3.1. They are expressed by the Equations 3.3.1 through 
3.3.5 and computed for a flood wave at Borgharen in Table 3.3.1. 
 
X0 =  Σ Q’ dt                 wave volume                    …(3.3.1) 
 
X1 =  Σ Q’ t / ΣQ’                                      tmean, centre of gravity     …(3.3.2) 

X2 = [Σ {Q’ (t – tmean)2 }/ ΣQ’]½                         stdev. of tmean                  …(3.3.3)             

X3 = Σ [Q’ (t – tmean / X2)3 ] / ΣQ’                          skewness                  …(3.3.4)  

X4 = - (Q’peak –1day  + Q’peak +1day – 2 Q’peak) / {(dt)2  Q’peak}                        …(3.3.5)       

in which (dt)2 = (24 . 3600)2  (Made 1966)                 crest curvature 
 
X4 is a discrete approximation of the curvature of the top part of the discharge 
hydrograph Q’(t) from one day before till one day after the peak. This crest curvature 
can be approximated by the second derivative of Q’ with respect to t. If X4 is taken 
positive for the top part of the wave and defined relative to the peak discharge Q’peak it 
can be calculated from Equation 3.3.5. 
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t(day) Q’  Eq.3.3.1 Eq.3.3.2 Eq.3.3.3 Eq.3.3.4 Eq.3.3.5  
0 0 0x86400 0 0 0   
1 129 129x86400 129 2730 -1179   
2 258 258x86400 516 3344 -1130   
3 460 460x86400 1380 3110 -759   
4 755 755x86400 3020 1933 -290   
5 1000 1000x86400 5000 360 -20   
6 800 800x86400 4800 128 5   
7 612 612x86400 4284 1200 158   
8 450 450x86400 3600 2592 584   
9 315 315x86400 2835 3641 1163   

10 190 190x86400 1900 3678 1520   
11 80 80x86400 880 2333 1183   
12 0 0x86400 0 0 0   
Σ 5049 436 106 28344 25048 1233   

variance    4.96    

        
parameter Q’ X0 X1 X2 X3 X4  

value  436 106 5.6 2.2 0.2  60 10-12  
dimension L3T-1 L3 T T - T –2  

 relative dis-
charge 

volume tmean stdev.of 
tmean 

skewness crest 
curvature 

 

Table 3.3.1 Calculation of the flood wave parameter values for the flood at  
Borgharen, shown in Fig.3.3.1 
  
At the end of the nineteenth century large river works started, which continued with 
interruptions till 1980, when the old weir at Visé was removed after a modern new 
weir had been put into operation at Lixhe, downstream of Visé close to the Dutch 
border. 
To be aware of a possible trend breach in the series of parameter values (X0…X4, 
Q’max and Qbase) because of these river works, the floods on record are split into two 
sets, namely before and after 1980. Trends are tested by Spearman’s Rank Correlation 
Coefficient ( rs ) for the differences Σd2

 in the ranks of times and observations 
(Appendix 3.3.1) 
The test statistic: 
 
 rs = 1-6Σd2 / (n3 – n)                                        …(3.3.6) 
  
is compared with the critical value rs, 0.025, n (one-tailed) from the appropriate 
Spearman Table XIV (McClave 1997).  
 
The one-tailed rejection region is:  
 
rs  > rs, 0.025, n                              …(3.3.7) 
       
with n pairs of observations 
 
It turned out that there is no trend breach in the series Q’max, X0 through X4 and Qbase  
before and after 1980, as from the original parameter values (Appendix 3.2.1) it is 
found (Appendix 3.3.1) that for the series 1930-1980 and 1980-2000 the respective 
standard deviations (F-test) and their averages (t-test) do not differ significantly. So, 
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each of the flood wave parameter value series 1930-1980 (10 events) as well as 1980-
2000 (6 events) can be considered as belonging to the same homogeneous data set. 
 
  
3.4 Which flood wave  parameters at Borgharen are important for the  

downstream   water levels 
 
To synthesize flood waves Q’(t), given Q’max, by random sampling of combinations of 
flood wave parameter values (X 0…4), it is needed that these are mutually independent. 
For mutual comparison we made the original parameter values non-dimensional and 
standardized. 
The flood wave parameters with their dimensions are given in Table 3.3.1. 

The original values in Appendix 3.2.1 are made non-dimensional as follows: 
 
X0 (non dim.)     = X0 (orig.) / {mean Q’max (orig.) . mean X1 (orig.)}  

X1 (non dim.)     = X1 (orig.) / mean X1 (orig.) 

X2 (non dim.)     = X2 (orig.) / mean X2 (orig.)   

X3 (non dim.)     = X3 (orig.) 

X4 (non dim.)     = X4 (orig.) . {mean X1 (orig.)}2 

Q’max (non dim.) = Q’max (orig.) / mean Q’max (orig.) 

The degree of influence of Xi (i = 0…4) on each other also depends on their 
scattering. To make them standardized, we have to multiply the non-dimensional 
parameters by the factor 
 
Fi = σQ’ max / σX i                                     …(3.4.1) 
 
in which σQ’max  the standard deviation of  the non-dimensional Q’max.  
σXi is the standard deviation of the corresponding non-dimensional Xi values. 
 
The non-dimensional and standardized flood wave parameters are given in Appendix 
3.4.1. 
These data are used to estimate the mutual linear dependence of the parameters and 
the results are summarized in Table 3.4.1. Note that this goes for the non-linear 
relations, too, as is clear in the pictures of Appendix 3.4.2 (a,b,c). Table 3.4.1 shows 
that X0, X3 and X4 can be considered mutually independent, whilst X0 X2 and X1 X2 
turn out to be inter-dependent, as their R2 (the square of the coefficient of correlation) 
values are 0.69 and 0.77. For X0 X1 the independency is doubtful. 
So, for further investigation into the influence on the water levels downstream of 
Borgharen, the flood wave parameters volume (X0), skewness (X3) and crest curvature 
(X4) are used initially to synthesize Q’(t), given Q’max. 
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R2   4 X0 X1 X2 X3 X4 
X0 1 0.57 0.69 0.08 0.10 
X1  1 0.77 0.03 0.02 
X2   1 0.05 0.06 
X3    1 0.00 
X4     1 

Table 3.4.1 Mutual linear dependency of characteristic  
flood wave parameters from the 16 floods over 1850 m3s-1  
at Borgharen in the period 1930-2000 
                    
To estimate the influence of the skewness X3 of the flood wave at Borgharen on the 
downstream water levels, some floods have been analysed. 
(1)The floods derived from that of January 1993 with similar Q’max , Qbase and X0, and 
furthermore also a constant X4, but a variable X3 are compared in Fig.3.4.1.  
(2)The synthetic floods with the mentioned constants in Fig.3.4.2 and variable X3 are 
compared.  
It turned out that the influence on the downstream water levels of variations of X3 is 
small to negligible. In our case the realistic interval of the skewness goes from -0.2 to 
1, according to Appendix 3.3.1. Note that the extent of skewness depends on the 
difference from 0. The given variable X3 in Fig.3.4.1 varies from 0.1 to 1, roughly, 
nevertheless the downstream water levels differ very poorly.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.3.4.1 Adaptations of the flood derived from that of January 1993 at Borgharen to 
different skewness coefficients X3, namely 0.98, 0.68 and 0.09, and other parameters 
constant.  
 
Taking into account the base discharge, the water levels at Venlo and Mook are 0.01 
m and 0.04 m higher, respectively, if the floods with X3 =0.68 as well as 0.09 are 
compared with that for which X3=0.98  
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Fig.3.4.2 Synthetic floods at Borgharen with rightward and leftward skewness 
(coefficients 0.57 and –0.46, respectively), other parameters constant.  
 
Taking into account the base discharge, the water levels at Venlo as well as at Mook 
are 0.01 m lower for X3 = -0.46  
In Section 3.5 the influence of the other parameters, viz. X0 and X4, is examined. 
   
In order to assess to what extent the results for unsteady flow (Q) deviate from those 
for quasi-steady flow (Qs), the formula of Jones for the hysteresis effect (Jansen et al. 
1979) is applied: 
 
Q – Qs = [Qs / 2 Ib c] dh / dt            …(3.4.2) 
 
in which Ib is the bottom slope of the river and c is the flood wave celerity. 
Gerretsen (2002) considered the application to the Meuse River at Venlo: 
 
Ib = 0.1 10-3 and  c ≈ 1.5 times the mean flow velocity (m s-1)   

dh = daily water-level difference (m) and dt = 86400 (sec.) 

Qs is derived from the provisional ‘stage-discharge curve at Venlo’ (Appendix 3.4.3).  
 
For the flood of February 1984, with peak discharge 2550 m3s-1 at Borgharen, a more 
or less average volume and a strongly curved crest, the Sobek model shows that the 
deviation from quasi-steady flow at Venlo is 80 m3s-1, corresponding with a 0.12 m 
lower water level than the ‘stage-discharge curve’ indicates. 
 
For the flood of December 1993, with a peak discharge of 3039  m3s-1 at Borgharen, a 
more or less average volume and an average crest curvature, the  maximum deviation 
from the quasi-steady flow at Venlo is 9 m3s-1, corresponding with 0.01 m water level 
difference from the ‘stage-discharge curve’. 
 
For the synthetic flood waves, with Qpeak 3150 m3s-1 at Borgharen, with either a 
peaked or a flat crest curvature and with a constant average volume, the deviation 
from the steady flow at Venlo is 70 m3s-1, corresponding with 0.1 m water level 
difference at both sides of the ‘stage-discharge curve’. 
 
The hysteresis at Borgharen is negligible because of  the much larger bottom slope 
and flood wave celerity than at Venlo. 
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3.5 A  first-order estimate of the influence of significant flood wave properties 
on the downstream water levels  

 
A first-order approximation of the influence of the properties X0 and X4 of the 
Borgharen flood waves on the downstream water levels at Venlo and Mook, for 
instance, has been made by synthesizing flood waves with prescribed realistic values 
of these parameters. With the input of these flood waves Q(t) at Borgharen, the Sobek 
computational model5 calculates the water levels at Venlo and Mook. The Sobek 
model was based on the Dutch Meuse River schematisation 1995, including the levees 
constructed in that year according to the Dutch Deltaplan for Large Rivers. 
The synthetic floods have been derived from the highest floods Q(t) of the period 
1980-2000, namely those of 1984, 1993 and 1995, with peak discharges 2550, 3039 
and 2664 m3s-1, respectively (Fig.3.5.1), and with relative peak discharges Q’(t) 1571, 
2009 and 1073 m3s-1, respectively (Fig.3.5.2). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.3.5.1 Floods Q(t) at Borgharen in 1984, 1993 and 1995 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.3.5.2 Relative floods Q’(t) at Borgharen in 1984, 1993 and 1995 
 

                                                                          
5 More about the Sobek model in Section 4.4 
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In order to compare the water levels at Venlo and Mook, the Q’max values of the 1984 
and 1995 floods at Borgharen have been made equal to that of the reference flood 
1993. From the variables X0 and X4, one value has been made the  same as that of the 
1993 flood and, alternately, the other has the original value of the 1984 or 1995 flood. 
The resulting flood wave shapes (Q’) are shown in Figs.3.5.3 and 3.5.4 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.3.5.3 Flood wave shapes at Borgharen, also see Table 3.5.1 
1: the reference flood Q’ 1993  
2: X0 and Q’max of flood 1993 and X4 of flood 1984  (896, 2009, 90)   
3: X4 and Q’max of flood 1993 and X0 of flood 1984  (56, 2009, 615) 
 
By adding the Qbase value of 1030 m3s-1 (i.e. the base discharge of the 1993 flood) to 
the Q’ values of Fig.3.5.3 and 3.5.4, we get the comparable total daily Q values of the 
three above mentioned floods. The elaborations for the adapted Q’ flood waves are 
shown in the Appendices 3.5.1 and 3.5.2, whilst Appendices 3.5.3 and 3.5.4 give the 
elaborations for the adapted Q floods.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.3.5.4 Flood wave shapes at Borgharen, also see Table 3.5.1 
I: the reference flood Q’ 1993  
II: X0 and Q’max of flood 1993 and X4 of flood 1995  (896, 2009, 17)  
III:X4 and Q’max of flood 1993 and X0 of flood 1995  (56, 2009, 575) 
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The computed differences in the water levels at the same locations further 
downstream, caused by the different flood wave shapes at Borgharen and taking the 
base discharge into consideration, are shown in  Table 3.5.1. For the shape parameter 
qualifications, also see Appendix 4.3.1 and the footnotes to the Table. 
 
Qpeak: 
3039m3s-1 
Q’ max: 
2009 m3s-1 

wave 
number, 
also see 

App.3.5.1 
through 

3.5.4  

X0 
 
 
 
 

m3 * 106 

X4 
 
 
 
 

s-2 * 10-12 

Δ Venlo 
from 

reference 
 
 

m 

Δ Mook 
from 

reference 
 
 

m 
reference  1 8966 567 0.00 0.00 
1984 2 896 908 -0.05 -0.09 
Flood 3 6159 56 -0.04 -0.11 
      
reference I 896 56 0.00 0.00 
1995 II 896 1710 +0.22 +0.23 
Flood III 57511 56 0.00 -0.06 

Table 3.5.1 Influence on the water levels at Venlo and Mook due to different flood 
wave properties X0 and X4 of the adapted extreme floods of 1984 and 1995 to the 
extreme flood of 1993 (Qpeak 3039 m3s-1), which latter is used as reference.  
 
Concerning the crest curvature we conclude: 
If a peaked flood wave (90) at Borgharen is compared with one that has a medium 
crested curvature (Table 3.5.1) and both have the same volume, Qpeak and Qbase, the 
water level differences are twice as much at Mook (-0.09 m) as at Venlo. 
   
If a flat flood wave (17) at Borgharen is compared with one that has a medium crested 
curvature and both have the same volume, Qpeak and Qbase, the water level differences 
are the same at Venlo and Mook (+0.23 m). 
  
Concerning the volume we conclude: 
If a flood wave with a large volume (896) at Borgharen is compared with one that has 
a medium volume and both have the same crest curvature, Qpeak and Qbase, the water 
level differences are at Mook (0.11 m) three times as much as at Venlo. 
  
 
3.6 Generalization of the findings for the Dutch Meuse River to other rivers  
 
Local probabilities of exceedance of water levels are needed to design river-
engineering works to attain a desired safety against inundation. However usually the 
number of  gauged river locations is too small, or even limited to only one measuring-
station per river, to draw firm conclusions on the p.o.e. of water levels along the river. 

                                                                          
6 large         
7 medium       
8 peaked 
9 medium 
10flat 
11 medium 
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It is obvious that in a rain-fed river the shape of a flood wave depends on the rainfall 
history, the length of the rain period and the rain intensity. Furthermore, the flood 
wave undergoes various deformations during its passage through the river due to 
wave dynamics, irregular lateral inflow and water storage. So the unique relationship 
that exists between discharge and water level at a gauged river-point cannot be taken 
for granted if it comes to the relationship between the discharge at that river-point and 
the water level further downstream. 
Therefore the p.o.e. of the water level at a certain un-gauged river location needs 
further investigation to find the cause of non-monotonous, even non-unique relations 
between the upstream measured peak discharges and the downstream water levels (see 
example in Fig.3.1.1). 
From the discharge hydrograph Q’(t) at a gauged river location it is possible to 
estimate the water level at any downstream un-gauged location by considering the 
flood wave characteristics. Besides the initial discharge Qbase and the maximum 
discharge Qpeak it is important to know the shape of the discharge hydrograph Q’(t) 
(i.e. Qpeak – Qbase), characterized by the moments X0 through X4 (Table 3.3.112).  
 
The data base, consisting of the parameter values X0 through X4 and Q’max, Qbase, 
Qpeak, has to be tested on trend breaches and possibly corrected to the present-day 
situation.  
 
To obtain the p.o.e. of un-gauged water levels, we non-dimensionalised and 
standardized the aforementioned parameters to investigate their mutual dependence,  
(Section 3.4). The result can be that some parameters drop out because of their mutual 
dependency, as mutual independency is required for randomly sampling combinations 
of them, needed to synthesize floods at a gauged river-point. The synthesization of  
flood waves Q(t) will be treated in Chapter 4 and from that the computation of the 
water levels at any location can be performed with a hydrodynamic model.  
 
As a first-order approximation it is useful to compare a flood that has occurred at an 
upstream gauged river-point with synthetic floods having the same parameters except 
one. On the basis of the result of these comparisons one can estimate the influence of 
that parameter on the downstream water levels, and still decide to neglect one or more 
parameters for which the water levels at a downstream  river-point do not differ 
significantly. 
 
Even though it may be important to examine the influence of all parameters X0 
through X4, investigating that of the crest curvature (X4) is of prime importance. It 
refers to the types of rivers for which the phenomenon of attenuation of flood waves 
plays an important role.  
For the crest attenuation Forchheimer’s formula (Made, 1968) reads as follows:  
 
dQpeak / dx  = {[Bb

2 Qpeak] / [2Sb (dQpeak / dy)3]} [∂2 Qpeak / ∂ t2]        …(3.6.1) 
 
in which:  
 
dQpeak / dx     the rate of change of the peak runoff along the river 
                                                                          
12 the crest curvature (X4) deviates from the fourth moment (curtosis) as it is a discrete approximation 
of the curvature of the top part of the hydrograph Q’(t) from one day before till one day after the peak 
(also see Eq. 3.3.5) 
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Bb                  storage width at the water surface 
Sb                 bottom slope 
dQpeak / dy     the slope of the tangent to the ‘stage – discharge’ relationship                  
  
 If ∂2 Qpeak / ∂ t2 = R Qpeak ,  i.e. the crest curvature equals R times Qpeak, 
 
with R is a constant, then the crest attenuation is:  
 
dQpeak / dx  = [Bb

2 Qpeak
2] R / [2Sb (dQpeak / dy)3]         …(3.6.2) 

 
According to Manning for a rectangular discharge profile, we get: 
 
Qpeak = Bs K Sb

1/2 y5/3             …(3.6.3) 
 
where: 
Bs                  stream carrying width 
K                   Manning coefficient 
y                    the water depth 
 
Because of Eq.3.6.2 and 3.6.3 we find: 
 
dQpeak / dx  = -27/250 [Bb

2 R Qpeak
4/5] / [Sb (Bs K Sb

1/2)9/5]         …(3.6.4) 
 
For the Unit profile of Fig.3.6.1, Bb = Bs , the water depth is h, and the  
Unit runoff Qu is the bank-full discharge for which: 
 
flood plain level 

       

       

       

   Qu     y = h  

       

       

       
   

                                                          Bb = Bs 
 
      Fig.3.6.1  Unit rectangular discharge profile 
 
 
 
Qu = Bs K Sb

1/2 h5/3                                      …(3.6.5) 
 
From Eqs.3.6.4 and 3.6.5 we find: 
 
(dQpeak / dx)u  = -27/250 [Bs

2 R Qu
4/5] / [Sb (Bs K Sb

1/2)9/5]         …(3.6.6) 
 
Definitions: 
 
dq = [dQpeak / dx] / [(dQpeak / dx)u] ,  and q = Qpeak / Qu   
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In an arbitrary rectangular profile the ratio between Eq. 3.6.4 and 3.6.6 then becomes:    
  
dq = (Bb

2 / Bs
2)  (Qpeak

4/5 / Qu
4/5) and   

 
according to Fig. 3.6.2 and aforementioned definition we get: 
 
dq = (1+p)2 q4/5              …(3.6.7) 
 
 
 
 
 
 
    y 
           h 
 
 
 
  ½ p Bs          Bb =  Bs            ½ p Bs 
 
            Fig.3.6.2  Rectangular discharge profile and the width p Bs  without flow 
                  Bb = (1 + p) Bs 
 
 
A similar derivation can be made for the profile with longitudinal flow over the flood 
plains, and partly storage capacity without flow (Fig.3.6.3). 
Then Qpeak = Qu + Q(stream carrying floodplains) and so:  
 
 
    Bb = (1 + n + m) Bs 
   
       (1 + n) Bs  
 
 
 
      y 
       ½ m Bs        ½ n Bs                                        ½ n Bs         ½ m Bs 
                                                                                                                 h 
 
 
                                                                   Bs 

                          
            Fig.3.6.3  Profile with longitudinal flow over the flood plains; n Bs is 
 the width of the floodplains with longitudinal flow, whereas m Bs is 
 the width without flow  
 
 
Qpeak =  Bs K Sb

1/2 y5/3 + n Bs K Sb
1/2 (y – h)5/3          …(3.6.8) 
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Qpeak =  h5/3 Bs K Sb
1/2 (y/h)5/3 + h5/3 n Bs K Sb

1/2 (y/h –1)5/3 
 
With respect to equation 3.6.5 we get: 
  
Qpeak =  Qu {(y/h)5/3 + n(y/h –1)5/3} or: 
 
q = (y/h)5/3 + n (y/h – 1)5/3                        …(3.6.9) 
 
The crest attenuation follows from substitution of Eq.3.6.8 into Eq.3.6.2. 
 
dQpeak / dx  = -27/250 [Bb

2 R h4/3 / Sb (Bs K Sb
1/2)] * [{(y/h)5/3 + n (y/h – 1)5/3}2 /  

 
{(y/h)2/3 + n (y/h – 1)2/3}3]          …(3.6.10) 
 
From Eq.3.6.5 follows that: 
 
h 4/3 = (Qu / Bs K Sb

1/2)4/5           …(3.6.11) 
 
Substitution into Eq.3.6.10 leads to:  
 
(dQpeak / dx)  = -27/250 [Bb

2 R Qu
4/5 / Sb (Bs K Sb

1/2)9/5] * sf                  …(3.6.12)  
                
in which the factor sf is the ratio of the last two terms in Eq. 3.6.10, viz.: 
 
{(y/h)5/3 + n (y/h – 1)5/3}2 / {(y/h)2/3 + n (y/h – 1)2/3}3 
 
Furthermore, dividing Eq.3.6.12 by Eq.3.6.6 we get:  
 
dQpeak / dx  = [(dQpeak / dx)u (Bb / Bs)2] * sf        …(3.6.13)  
 
Given Eq.3.6.13 and the definition of dq (mentioned above), and Fig. 3.6.3, we find:  
 
dq = (Bb / Bs)2 sf  or: 
 
dq = (1 + n + m)2 sf           …(3.6.14) 
 
In summary, given: 
 
Bs     stream carrying width of the unit profile (Fig.3.6.1), 
Qu     bank-full discharge, 
h       unit water depth (Fig.3.6.1), 
y       water depth (Fig.3.6.2), 
Sb     bottom slope, 
K      Manning coefficient, 
R      a constant, 
n Bs  width of the stream carrying floodplain (Fig.3.6.3), 
m Bs width without flow, only water storage (Fig.3.6.3), 
 
the computation procedure becomes: 
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(i)  Determine Qu from Eq.3.6.5 
(ii) Determine (dQpeak / dx)u from Eq.3.6.6 
(iii)Determine sf from the ratio of the last two terms in Eq. 3.6.10 
(iv)Determine dq from Eq.3.6.14  
(v) Determine (dQpeak / dx) fromEq.3.6.13  
Depending on the river length Δx, for which we want to know the attenuation, we 
obtain dQpeak.   
 
We learn from this, that: 
(1) For rivers with a steep bottom slope, the attenuation will be small, or even 
      negligible (Eq.3.6.12). 
(2) Changes in the ratio y / h may influence the attenuation factor sf (Eq.3.6.12). 
(3) The storage width Bb = Bs(1 + n + m) at the water surface has much influence on 
      the attenuation rate (Eq.3.6.14). 
 
 
3.7 Discussion and conclusions 
 
Qbase at Borgharen affects the downstream water levels, such as mentioned in the 
introduction of this chapter. Furthermore the influence of Qpeak is taken for granted. In 
the relationship Qpeak -  Qbase, the variability around the mean of Qbase can not be 
explained by the regression function between Qbase and Qpeak. Therefore,  Qbase  and 
Qpeak  can be considered independent. 
 
The moments X0, X3 and X4 of the discharge hydrograph Q’(t) are considered 
mutually independent for the same reason (Table 3.4.1). Therefore, random 
combinations of those parameter values for synthesizing flood waves Q’(t), given 
Qpeak and Qbase, is conceivable. The analysis of the influence of these parameters leads 
to the following conclusions. 
 
• Concerning the skewness (X3): 
In the case of the Meuse River, different skewness values (X3) of the flood wave at 
Borgharen -other parameters constant- did hardly yield any difference in the water 
levels at Venlo and Mook. For that reason X3 is ignored in our case. 
 
•Concerning the crest curvature: 
For a peaked flood at Borgharen the water level difference with a medium crested 
flood, and for the rest the same parameter values, is twice as much at Mook (0.09 m) 
as at Venlo, however they are moderate.  
 
The effects on the downstream water level of a flat flood wave at Borgharen 
compared with a medium crested flood wave, and for the rest the same parameter 
values, is the same at Venlo and Mook. The influence is considerable (0.23 m).  
 
•Concerning the volume: 
If a flood wave with a medium volume at Borgharen is compared with one with a 
large volume, and for the rest the same parameter values, the water level difference at 
Mook (0.11 m) is moderate and about three times as much as at Venlo. 
  
For the previous three cases it concerns flood waves with peaks of about 3000 m3s-1. 
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•Concerning the summer floods: 
The preceding conclusions are not valid for summer flood waves, in which the 
influence of vegetation resistance on the water levels is considerable. For instance, the 
summer flood of 1980 caused a water level at Borgharen about 1 m above that of a 
comparable winter flood , whereas further downstream the water levels were much 
lower than for that winter flood. 
 
Generalization to similar rivers: 
In general, we have to investigate the mutual independency of the non-dimensional 
and standardized parameter values that characterise the flood wave and may 
determine the downstream water levels. These parameter values are derived from 
measured discharge hydrographs Q’(t). Independency is required, as random samples 
of combinations of them have to be taken to synthesize floods, as the number of 
measured flood hydrographs is inadequate usually to determine the desired p.o.e. of 
local water levels. Some parameters may drop out because of mutual dependency. 
For a number of flood wave parameters (e.g. Qpeak, Qbase, volume) it is obvious that 
they play a role in the radiation of downstream water levels, but the influence of the 
crest curvature (X4) requires thorough analysis. Also other parameters, such as the 
first, second and third moment of the discharge hydrograph Q’(t) may play a role. 
Concerning X4, we can conclude from the analysis in Section 3.6 that (1) for river 
sections with a steep bottom slope, flood wave attenuation is negligible and (2) the 
ratio between the total water depth and that of the bank-full discharge bed (y / h) 
influences the attenuation rate, and (3) the storage width at the water surface 
influences the flood wave attenuation considerably. 
In the case of a steeper rising than falling stage of the flood wave hydrograph there 
may be a reason for flood wave attenuation, as the supply of water can not be 
discharged in its entirety directly after the peak and flows out into the storage. The 
skewness (X3) of the flood wave indicates this phenomenon, but in our case the crest 
curvature dominates by far the skewness. 
 
Flood wave attenuation on the Rhine branches: 
The land use in the large floodplains of the Dutch Meuse River, without primary 
dikes, differs from that of the relatively small floodplains of the Dutch Rhine River, 
with primary dikes. Comparatively, wooded areas and nature, agriculture, industry 
and home-building are three to five times as much for the Meuse River as for the 
Rhine River. Moreover, there is, comparatively, three to four times more grassland, so 
relatively less roughness at the floodplains of the Rhine River. This means that the 
large non-flowing pure storage width mBs (Section 3.6) of the Meuse River 
floodplains plays an important role for the flood wave attenuation, whereas the factor 
mBs  hardly plays a role for the Rhine River. All this considered, it means that the 
flood wave attenuation will count for little for the Rhine River. 
An exceptional case are the more nature-friendly floodplains of the Yssel River, a 
branch of the Rhine River, with relatively large stream carrying and storage widths, 
because of former river-bend cut-offs. Just there, a flood wave attenuation appears.     
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CHAPTER 4 
 
DOWNSTREAM WATER LEVELS VERSUS CHARACTERISTIC FLOOD WAVE 

PROPERTIES AT BORGHAREN 
 
 
4.1 Introduction 
 
The fact that also other flood wave properties than the peak discharge at Borgharen 
influence the downstream river stages significantly requires their inclusion in the 
translation algorithm to local water levels. Deformation of the flood wave during its 
course through the river, mainly due to bottom slope, water depth and storage in the 
flood plains, complicates this translation and makes it vary from location to location. 
In this study water levels are considered at Venlo (km 107.5) and at the beginning of 
the embanked part (primary dikes) of the Dutch Meuse River at Mook (km 165.8). 
These local water levels are determined by a procedure consisting of the following 
steps: 
 
(1) Take the records of the 50 measured floods over 1350 m3s-1 at Borgharen in the 
period 1930-2000 and determine the mutual relations between the characteristic flood 
wave parameters, namely Qpeak,  Qbase,  volume X0 and crest curvature  X4 (Section 
4.2). 
 
(2) Randomly sample combinations of these parameters. Here we have taken 1000 
samples of those combinations from the distributions of the parameters. 
  
(3) Synthesize for each sample a flood wave at Borgharen with the given parameter 
values (Section 4.3).  
 
(4) Use the 1-D flow model Sobek to compute the local water levels for each of these 
1000 flood waves. The backgrounds of Sobek are described in Section 4.4. 
 
(5) Statistical analysis of the resulting water levels at Venlo and Mook yields relative 
frequency distributions (Section 4.5). 
 
(6) Adapt the probability of exceedance functions to the relative cumulative frequency 
distribution of the computed local water levels. Check the goodness of fit of these 
functions. Especially the agreed design probabilities of exceedance for the Dutch 
Meuse River of 0.02, 0.004 and 0.0008 per annum are important (Section 4.6). 
 
(7) Determine the difference between the computed water levels and the preferred 
probability of exceedance function (Section 4.7).  
 
(8) Check the reliability of the computed water levels in relation to the measured peak 
discharge at Borgharen (Section 4.8) 
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(9) Finally compare the computed water levels at Venlo and Mook and their related 
probability of exceedance function, with those of the DWL 2001 13 (Section 4.9). 
 
 
4.2 Mutual correlation between the relevant flood wave variables 
 
In Section 3.3 parameters of the flood waves at Borgharen are defined and their values 
are determined. Analogously to Table 3.4.1 for the floods over 1850 m3s-1, in Table 
4.2.1 the mutual relations of the significant parameters are shown for the floods over 
1350 m3s-1. Their values are mentioned in Appendix 4.2.1. The square of the 
coefficient of correlation R2, gives the proportion of the total variability around ymean 
that is explained by the linear relationship between y and x, e.g. 19% of the variability 
around the mean of X0 is explained by the linear relationship between X0 and Qbase.  
    

R2 X0 X4 Qpeak Qbase 
X0 1 0.04 0.17 0.19 
X4  1 0.01 0.00 

Qpeak   1 0.20 
Qbase    1 

Table 4.2.1 Results of mutual linear dependency of characteristic  
flood  wave parameters from the 50 floods over 1350 m3s-1 at  
Borgharen in the period 1930-2000 
 
Table 4.2.1 shows the degree of mutual linear dependency of the characteristic flood 
wave parameters. They can be considered to be independent.  
 
                                      
4.3 Synthesization of a flood wave with given relevant parameters 
 
The flood wave at Borgharen can be synthesized on the basis of (1) peak discharge  
(Qpeak), (2) base discharge at the beginning of the flood wave (Qbase), (3) volume  
of the flood wave (X0 ) and  (4) crest curvature of the flood wave (X4). In Appendix 
4.3.1 more insight is given into the variability of the parameters (2), (3) and (4). 
 
On the basis of the last two decades of the twentieth century the time lapse between 
the beginning of the flood wave to the peak is three to six days and four days on 
average at Borgharen (Appendix 4.3.2).  
The crest curvature X4 can be categorized as flat for X4 <50 ; medium for 50≤ X4 ≤76 
and peaked for X4 >76. These categories follow from Fig.4.3.1, where 50 and 76 are 
the partitions between one third and two thirds of the area under the Normal 
probability distribution.  
 
For the above estimated class-limits for X4, viz. flat, medium and peaked crest 
curvatures, the values Q’-1 / Q’+1 are  1.05, 0.9, and 0.65 respectively (Fig.4.3.2). 
From Appendix 4.3.3 it turns out that the trend in X4 has not changed significantly 
since 1930.  
 
 

                                                                          
13

 also see Appendix 4.9.1 
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Fig.4.3.1 Open symbols of the class-mid of 
the measured crest curvatures from the 
period 1930-2000 and Normal distribution 
flat(<50), medium(50-76), peaked(>76), 

Fig.4.3.2 Mean ratio values Q’-1 / Q’+1 
around Q’peak discharge, for flat 
(ratio1.05), medium(ratio0.90) 
and peaked (ratio 0.65) crest curvature  

dashed line: medium upper limit on  
floods > 1850 m3s-1 
 
The measured flood data in the period 1980-2000 (Appendix 4.3.2) show, that second-
degree polynomials give a reasonable approximation of the discharge-time relation 
Q’(t), for the rising as well as the falling stage of the flood waves. According to the 
results of the average duration to the peak (Appendix 4.3.2), we define that the peak at 
Borgharen occurs 4 days after the beginning of the rising stage. For the rising stage it 
is the polynomial through the beginning of the rising at a certain base discharge level 
(0;0), through (3;Q’-1 ) and through (4;Q’peak). For the falling stage it is the 
polynomial through (4;Q’peak), through(5;Q’+1) and through (n;0), where n is the 
number of the last day of the flood period. This n can be estimated from Fig.4.3.3. 
 
As an example of the synthesization of a flood wave, the measured flood wave at the 
end of December 1999, is chosen. 
 
 
 
Measured data analysis (see Appendix 4.2.1) :   
 
• Qpeak = 2042    L3 T-1 
 
• Qbase = 751   L3 T-1 
 
• X0      = 459 ×106 L3 
 
• X4      = 77 ×10-12 T –2 
 
• flood period 10d T 
 
• peak on day 4 T    
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Calculations: 
 
° Q’peak = Qpeak – Qbase  = 1291 m3s-1 
    
° ΣQ’measured (0…n) =  X0 / 86400 = 5318 m3s-1   
  
°  From Fig.4.3.3 the flood period is estimated at 10 days 

   
° Given that  X4 = 77 × 10-12, we take for the ratio Q’–1 / Q’+1 the value 0.9 (Fig.4.3.2). 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 
 Fig.4.3.3   Relation between the wave volume  
 and the flood period; R2 =0.76 
 
Using equation 3.3.5: 
 
77 × 10-12 = - (Q’–1 + Q’+1 – 2 Q’peak) / (864002 × Q’peak) , and given 
 
Q’peak =1291 m3s-1 and  Q’–1 =0.9 Q’+1 

 
 we find: 

 
 Q’+1 = 968 m3s-1 and Q’–1 = 871 m3s-1

 

 
For the rising stage of the synthesized flood wave through (0;0), (3;871), (4;1291):   
 
Q’ =  32.4 t2 + 193.1 t     (t=0…4) 
 
For the falling  stage through (4;1291), (5;968), (10;0): 
    
Q’ =  21.57 t2 – 517.1 t + 3014   (t=4…10)  
 
This synthesized flood wave is compared with the measured flood wave at Borgharen 
in Table 4.3.1 and in Fig.4.3.8. Table 4.3.2 shows that the resulting difference in the 
computed maximum water levels at Venlo and Mook is 0.03 m in either case. In 
practice this is well within the accuracy band of water level observations, formerly at 
best 0.1 m for visual observations, at present 0.05 m for electronic devices. Moreover, 
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the DWL 2001 have been rounded off to 0.1 m (also see Design Hydraulic 
Conditions, 2001). The accuracy of the Sobek computations of the water levels is also 
estimated at 0.1 m at main observation points (RIZA 2002). 
 
  
day measured Q’ synthesized Q’ measured Q synthesized Q 
0 0 0 751 751 
1 152 225 903 976 
2 689 516 1440 1267 
3 1291 871 2042 1622 
4 1155 1291 1906 2042 
5 813 968 1554 1719 
6 530 688 1281 1439 
7 315 451 1066 1202 
8 173 257 924 1008 
9 109 107 860 858 
10 91 0 842 751 
     

Table 4.3.1  Measured and synthesized Q’ and Q (m3s-1) at Borgharen;                                                        
Flood at the end of December 1999, also see Fig.4.3.8  
 
Figs.4.3.4 through 4.3.8 and Table 4.3.2 compare synthesized and measured peaks for 
each flood above 2000 m3s-1 in the period 1980-2000 (see Appendix 4.2.1 for the 
characteristic flood wave parameter values). The corresponding water levels at Venlo 
and Mook, as computed with the Sobek model, are mentioned in the figure captions.   
We conclude from these figures and Table 4.3.2 that the synthesized maximum water 
levels do not differ significantly from the measured ones. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 64

 
 
 
 
 
              

            
 
 
    
 
 
 
Fig.4.3.6Measured and synthesized flood      Fig.4.3.7Measured and synthesized flood 
wave at Borgharen in December 1993           wave at Borgharen in January  1995   
measured:    HV=18.52;  HM=11.81                measured:    HV=18.42;  HM=11.80                        
synthesized: HV=18.54;  HM=11.85                synthesized: HV=18.39;  HM=11.75    
 
  
  
  
  

  

 

 

 

 

 

 
 
Fig.4.3.8Measured and synthesized flood       
wave at Borgharen in December 1999 
measured:     HV=17.11;  HM=10.44  
synthesized: HV=17.08;  HM=10.41 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.4.3.4Measured and synthesized flood       

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.4.3.5Measured and synthesized flood 

wave at Borgharen in February 1984  wave at Borgharen in January 1993 
measured:    HV=17.97;  HM=11.26              measured:    HV=17.22; HM=10.54 
synthesized: HV=17.90;  HM=11.16  synthesized: HV=17.21; HM=10.53 
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H from 

measured 
flood wave 
Borgharen 

 H from 
synthesized
flood wave  
Borgharen 

 differ. 
max. 
water 
level 

differ. 
max. 
water 
level 

year of the 
flood 
event 

meas. 
peak 

Borgh. 

H Venlo  
 

NAP+…m 
 

(1) 

H Mook  
 
NAP+…m 

 
(2) 

H Venlo 
 

NAP+…m 
 

(3) 
 

H Mook 
 

NAP+…m  
 

(4) 

(1-3) 
 

m 

(2-4) 
 

m 

         
 

m3s-1 

17.97 11.26 17.90 11.16 0.07 0.10 Feb.’84 2550 
17.22 10.54 17.21 10.53 0.01 0.01 Jan. ‘93 2265 
18.52 11.81 18.54 11.85 -0.02 -0.04 Dec.‘93 3039 
18.42 11.80 18.39 11.75 0.03 0.05 Jan. ‘95 2664 
17.11 10.44 17.08 10.41 0.03 0.03 Dec.‘99 2042 

Table 4.3.2  Summarized results of the water levels at Venlo and Mook, computed 
from the measured and synthesized flood waves at Borgharen  
 
 
4.4 Background of the Sobek water motion model 
 
A thousand samples of random combinations of Qpeak , Qbase , X0 and X4 determine a 
thousand synthetic flood waves at Borgharen. 
Sobek, a one-dimensional model system for 1-D flow problems, allows for a quick 
computation of the water levels further downstream. The model was developed by 
Delft Hydraulics and RIZA and has been applied to the Dutch Meuse River, in our 
case based upon the daily 08 o’clock discharges at Borgharen. Structure, calibration 
and verification are described in RIZA Report (2002). 
 
In the case of the structure of the Sobek model, special importance is given to 
reproduce schematisations on basis of the river data sets (by Baseline), 2-D 
computation results (by Waqua) and applications for the translation of 2-D flow 
systems into a 1-D model (by Gis). 
 
The goal of the hydraulic calibration of the Sobek Meuse model is to attain a fair 
specification of the water motion in the river in terms of water levels, discharges and 
discharge divisions between summer bed, bank sides and winter bed, within the 
limitations of a 1-D model. 
The 2-D Waqua results, available in May 2000 for the Dutch Meuse River for a 
permanency of 3800 m3s-1, are the basis of the hydraulic calibration of Sobek, 
assumed that these results are well.  
The translation of the 2-D hydraulic properties in Waqua into a 1-D reproduction in 
Sobek was studied by RIZA. For this the important steps are: (1) the spatial 
integration of the flow pattern -because of the symplification Chezy’s formula is often 
used- and (2) identity conditions, such as similar water levels and discharge divisions 
in the cross sections of the river for the two models. 
 
At the upstream boundary (i.e. water level measuring-station Eysden, km 2.560) the 
discharge series has been calculated on basis of the measured historic discharges at 
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Borgharen, taking into account the travel time between the two, and the lateral 
discharges. In the calibration the difference between the discharge at Borgharen 
according to the ‘stage – discharge relationship’ and according to the model was 
minimized by adjusting the summer bed roughness between Eysden and Borgharen.   
 
The water levels from the automatic measuring-station Keizersveer (km 247.1) also 
see Appendix 4.4.1, are used as downstream boundary condition. However, Lith 
village (km 202.370) is the final measuring-station for which the Sobek calibration 
has been performed, as it concerns the free flow discharges and not the reproduction 
of tidal movement. The river stretch between Keizersveer and Lith is calibrated such 
that at Lith the water level is presented well.   
 
For the estimation of the lateral inflow under various hydrological conditions, mainly 
caused by the tributaries of the Meuse River, the regression functions between the 
mean weekly river discharges at Borgharen and Lith are used. 
 
The spatial geometry of the river is reproduced by representative cross-sections, at a 
distance of about 500 m from each other. They are characterised by the bottom level, 
the total width and the wetted perimeter. The summer bed, the bank sides and the 
winter bed have their own formulation of the hydraulic roughness. Obstacles, such as 
structures, are represented by extra resistance, with the head loss adapted to that in the 
2-D Waqua model. The winter bed and bank roughness are determined by the 
ecological diversity and also by the model roughness caused by the simplification to a 
1-D model. They are projected onto the Nikuradse roughness lengths, kN. The summer 
bed roughness is expressed by the Chézy factor14, chosen such that it corresponds 
with the results of the 2-D Waqua-model. In the 1-D Sobek model, the head loss per 
unit river length in the summer bed has to be equal to that in the winter bed. For this, 
the lines of equal water levels from the Waqua-model are used. An arbitrary example 
of the river stretch (Appendix 4.4.2) downstream of the sluices at Belfeld (km101 – 
km106), with summer bed, winter bed, lakes within and outside the wetted area, 
contours of the stream carrying and only storage area, and lines of equal water levels 
across both areas, gives a rough outline of the flow pattern according to  
2-D Waqua.  
 
As is shown in Appendix 4.4.1, the Sobek model consists of branches B, and nodes O 
connecting the branches. In each branch there is a number of grid points. Furthermore 
nodes are situated at the model boundaries, at the bifurcation points, at the links with 
detention areas and at measuring-stations.   
The Sobek model is widely used in flood prediction and river basin management. For 
the Dutch Meuse River it is used for the Integral Reconnaissance Meuse River (IVM), 
for the ‘Maaswerken’  project, for morphological studies, for water quality studies and 
for the design of river interventions. This usually requires model support at short 
notice, which so far, rules out using 2-D models such as the existing Waqua model. 
 
The accuracy of the results of the Sobek computations depends, to a significant extent, 
on the reliability and accuracy of the available data.  

                                                                          
14

  C= 18log (12h/kN)  Nikuradse-Colebrook 
    C= v / (h ibo)½  Chézy 
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The 1-D Sobek model for the Dutch Meuse River arising from the aforementioned 
specification has been calibrated on the basis of the flat-crested flood of January 1995 
(version 2000.1) and verified by the medium-crested floods of December 1993 
(version 2000.2) and December 1999 (version 2000.3). It turned out that the 
downstream peak water-levels, especially for the more extreme floods, are reproduced 
with an accuracy of 0.1 m at the automatic measuring-stations (MSW) along the river 
for the flood of 1995 and 0.15 m for the flood of 1993. For the flood of 1999, with the 
most recent data, the occurrence is consistent with the others. Unforeseen emergency 
measures, in the case of an extreme flood that tends to overflow the levees, make an 
estimation of this effect precarious. Stream carrying areas behind the levees are not 
considered, so far. 
 
 
4.5 Relative frequency distribution of the water levels 
 
Water levels at Venlo:  
The water levels at Venlo, derived from the synthesized floods at Borgharen and the 
Sobek computations, are divided into classes of 0.1 m each. The water level data and 
corresponding flood wave number can be found in Appendix 4.5.1. They are divided 
into three parts, namely those from the  flood wave numbers 1 through 335, from 1 
through 671 (the extension to nrs. 1…335), and from 1 through one thousand (the 
extension to nrs. 1…671). In Figs.4.5.1 through 4.5.3 the histograms are shown. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Fig.4.5.1  Relative frequency histogram for flood levels at Venlo derived from 335 
synthetic flood waves at Borgharen (nrs.1…335) 
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Fig.4.5.2  Relative frequency histogram for flood levels at Venlo derived from 671 
synthetic flood waves at Borgharen (nrs.1…671) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.4.5.3  Relative frequency histogram for flood levels at Venlo derived from one 
thousand synthetic flood waves at Borgharen (nrs.1…1000) 
 
From these figures it is clear, that the difference between the distribution of the series 
of 671 and one thousand random samples is very small and that the series of 335 
random samples differs somewhat more from the other two. Fig.4.5.4 shows the 
differences by the three flowing lines through the class-mid of the relative frequency. 
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Fig.4.5.4  Relative frequency of computed water levels at Venlo from three flood 
wave series of different length at Borgharen (also see Figures 4.5.1 through 4.5.3) 
 
Water levels at Mook: 
Analogous to the investigation into the water levels at Venlo, the water level 
histograms at Mook are determined. The basic data also can be found in Appendix 
4.5.1. Figs.4.5.5 through.4.5.7 show the results.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.4.5.5 Relative frequency histogram for flood levels at Mook derived from 335 
synthetic flood waves at Borgharen (nrs.1…335) 
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Fig.4.5.6  Relative frequency histogram for flood levels at Mook derived from 671 
synthetic flood waves at Borgharen (nrs.1…671) 
 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
Fig.4.5.7  Relative frequency histogram for flood levels at Mook derived from one 
thousand synthetic flood waves at Borgharen (nrs.1…1000) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.4.5.8  Relative frequency of computed water levels at Mook from three flood 
wave series of different length at Borgharen (also see Figures 4.5.5 through 4.5.7)  

0.00
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09
0.10
0.11
0.12

8,5-8,6

8,7-8,
8

8,9
-9

9,1-9,2

9,3-9,4

9,5-
9,6

9,7-9,8
9,9

-10

10,1-10,2

10
,3-10,4

10,5-10,6

10,7-10,8

10
,9-11

11,1-11,2

11,3-11,4

11,5-11,6

11,7-11,8

11,9-12

w ater-level class (NAP + m) at Mook

re
la

tiv
e 

fre
qu

en
cy

 

  

0.00

0.02

0.04

0.06

0.08

0.10

0.12

8.5 8.7 8.9 9.1 9.3 9.5 9.7 9.9 10.1 10.3 10.5 10.7 10.9 11.1 11.3 11.5 11.7 11.9 12.1

w ater level class-mid (NAP + m) at Mook

re
la

tiv
e 

fre
qu

en
cy

335

671

  

0.00
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09
0.10
0.11
0.12

8,5
-8,

6

8,7
-8,

8
8,9

-9

9,1
-9,

2

9,3
-9,

4

9,5
-9,

6

9,7
-9,

8
9,9

-10

10
,1-

10
,2

10
,3-

10
,4

10
,5-

10
,6

10
,7-

10
,8

10
,9-

11

11
,1-

11
,2

11
,3-

11
,4

11
,5-

11
,6

11
,7-

11
,8

11
,9-

12

w ater-level class (NAP + m) at Mook

re
la

tiv
e 

fre
qu

en
cy



 71

We conclude that, by random sampling of one thousand combinations of significant 
flood wave characteristics at Borgharen resulting in just as much computed water 
levels at Venlo and Mook, we are able to determine enough stable pdf ’s for these two 
locations to adapt appropriate analytical curves to these of Figures 4.5.4 and 4.5.8. 
 
 
4.6 Adaptation of probability distribution functions to the relative frequency 

distributions  
                   
Adapted probability distribution functions for the water level measuring-station at 
Venlo (km.107.470) 
A number of often used distribution functions in hydrology are fitted to the one 
thousand water levels at Venlo as derived from the synthetic flood waves at 
Borgharen. These functions (F) are tested for their similarity to the cumulative 
frequency distribution (P) of the computed water levels by the Kolmogorov-Smirnov 
test (Yevjevich, 1972, page 224, Table 10.3). In the case of similarity, the probability 
of exceedance function of the water levels can be extrapolated  to values beyond the 
reach of the computed water levels. The formulae of the functions (F) are given in 
Appendix 4.6.1.  
To determine the adapted function, the parameter values as mentioned in Table 4.6.1 
are needed.  
 

distribution mean 
(m) 

stdev. 
(m) 

α (shape) β  (scale) 
(m) 

Γ (α) γ (lower limit) 

(m) 
Normal 16.17 0.65     
Lognormal 2.78 0.04     
Pearson III  1.22 0.65 3.531 (-) 0.346 3.4395 14.95 
Gumbel 16.17 0.65 1.97 (m-1) 15.88   

Table 4.6.1  Parameter values for adaptation of a distribution function to the computed 
water levels at Venlo  
 
The histograms of the computed water levels are shown in Figs.4.6.1 through 4.6.4, 
together with the adapted probability distribution functions. The cumulative 
probability distribution functions are compared with the 95% confidence band of the 
cumulative frequency distribution of the computed water levels, to test the goodness 
of fit. The critical value Δ0 of the K-S test statistic Δ depends on α (i.e. the chosen 
probability of exceedance  Δ0 ) and on the number N of computed water levels from 
the synthetic floods and can be found in the K-S Table (Yevjevich,1972, Table 10.3). 
This Table is shown in Appendix 4.6.2. In our case α equals 0.05, two-tailed, and √N 
equals 31.62 for one thousand computations. Δ0 equals 1.36 / 31.62 = 0.043, and both 
confidence limits around the cumulative frequency distribution (P) of the computed 
water levels are drawn at a distance of 0.043 above and below (Fig.4.6.1b). The 
maximum of |F-P|, i.e. the maximum difference between the cumulative probability 
distribution function (F) and the computed cumulative frequency distribution (P) or Δ 
(the test statistic), equals to 0.12 for the water level NAP + 16.05, so Δ > Δ0 and so the 
null hypothesis is rejected. This is confirmed by the fact that the function (F) exceeds 
the 95% confidence band of the cumulative frequency distribution (P) of the 
computed water level class-mid (x x x)  of Fig.4.6.1b.  
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The K-S test is an objective test without conditions as sorting of data in class intervals 
and a minimal number of observations in the class intervals, such as for the χ2 test.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.4.6.1a  Fit of the Normal Distribution function to the relative frequency histogram 
of the water levels at Venlo computed from one thousand synthetic floods at 
Borgharen  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.4.6.1b  Kolmogorov-Smirnov test (Δ0 =0.043) for agreement between the 95% 
confidence band of the cumulative frequency distribution of the computed water 
levels at Venlo and the Normal cumulative distribution function  
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Fig.4.6.2a  Fit of the Lognormal Distribution function to the relative frequency 
histogram of the water levels at Venlo computed from one thousand synthetic floods 
at Borgharen 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.4.6.2b  Kolmogorov-Smirnov test (Δ0 =0.043) for agreement between the 95% 
confidence band of the cumulative frequency distribution of the computed water 
levels at Venlo and the Lognormal cumulative distribution function  
 
 
 

 

 

 

 

 

 

 

 
 
 
 
Fig.4.6.3a  Fit of the Pearson typeIII Distribution function to the relative frequency 
histogram of the water levels at Venlo computed from one thousand synthetic floods 
at Borgharen 
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Fig.4.6.3b  Kolmogorov-Smirnov test (Δ0 =0.043) for agreement between the 95% 
confidence band of the cumulative frequency distribution of the computed water 
levels at Venlo and the Pearson type III cumulative distribution function  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.4.6.4a  Fit of the Gumbel Distribution function to the relative frequency histogram 
of the water levels at Venlo computed from one thousand synthetic floods at 
Borgharen 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.4.6.4b  Kolmogorov-Smirnov test (Δ0 =0.043) for agreement between the 95% 
confidence band of the cumulative frequency distribution of the computed water 
levels at Venlo and the Gumbel cumulative distribution function 
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The Kolmogorov-Smirnov test indicates that the Pearson type III cumulative 
distribution function is the best adaptation to the cumulative frequency distribution of 
the computed water levels. The Gumbel distribution gets the benefit of the doubt. This 
is confirmed by Figs. 4.6.3b and 4.6.4b where the functions lie inside the 95% 
confidence band of the computed water levels. In Table 4.6.2 the implication is shown 
for the probability of exceedance of the water levels at Venlo (km 107.470) for the 
situation at the end of the twentieth century. 
 

 
 
 
 
 
 
 
 
 
 
 
 

Table 4.6.2  Probability of exceedance of the water levels at Venlo 
 
For the preferred Pearson type III and also for the Gumbel function, the results for the 
water levels at Venlo, as mentioned in Table 4.6.2, are shown in Fig.4.6.5.  
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 
Fig.4.6.5  Probability of exceedance of the water levels at Venlo, according to the 
Pearson type III function (p), and the Gumbel function (g) 
 
Adapted probability distribution functions for the water level measuring-station at Mook 
(km.165.800)  
The functions are derived in the same way as those for Venlo. 
Table 4.6.3 gives the parameters, needed to determine a function adapted to the 
computed water levels at Mook. 
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distribution mean 
(m) 

stdev. 
(m) 

α (shape) β  (scale) 
(m) 

Γ (α) γ  (lower limit) 
(m) 

Normal 9.54 0.58     
Lognormal 2.25 0.06     
Pearson III  0.99 0.58 2.854 (-) 0.346 1.7554 8.55 
Gumbel 9.54 0.58 2.20   (m-1) 9.27   

Table 4.6.3  Parameter values for adaptation of a probability distribution function to 
the computed water levels at Mook (also see Appendix 4.6.1) 
 
The histograms of the computed water levels are shown in Figs.4.6.6 through 4.6.9, 
together with the adapted probability distribution functions. The cumulative 
probability distribution functions are compared with the 95% confidence band of the 
cumulative frequency distribution of the computed water levels, to test the goodness 
of fit, according to the Kolmogorov-Smirnov test. 
The conditions for acceptance of the null hypothesis are the same as for the 
measuring-point Venlo (Δ0 equals 0.043).  In Fig.4.6.6b, for instance, the test statistic 
Δ equals 0.12, for which the water level is NAP + 9.45 m. The null hypothesis is 
rejected for the Normal distribution as Δ > Δ0. This is in accordance with the fact that 
a part of the Normal function lies outside the 95% confidence band of the computed 
cumulative frequency distribution.  
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 
Fig.4.6.6a  Fit of the Normal Distribution function to the relative frequency histogram 
of the water levels at Mook computed from one thousand synthetic floods at 
Borgharen 
 
 
 
 
 
 
 
 
 
 
 
 

0
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09

0.1

8,5
-8,

6

8,7
-8,

8
8,9

-9

9,1
-9,2

9,3
-9,4

9,5
-9,6

9,7
-9,

8
9,9

-10

10
,1-

10
,2

10
,3-

10
,4

10
,5-

10
,6

10
,7-

10
,8

10
,9-

11

11
,1-

11
,2

11
,3-

11
,4

11
,5-

11
,6

11
,7-

11
,8

11
,9-

12

w ater-level class (NAP + m) at Mook

re
la

tiv
e 

fre
qu

en
cy

 



 77

 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.4.6.6b  Kolmogorov-Smirnov test (Δ0 =0.043) for agreement between the 95% 
confidence band of the cumulative frequency distribution of the computed water 
levels at Mook and the Normal cumulative distribution function  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.4.6.7a  Fit of the Lognormal Distribution function to the relative frequency 
histogram of the water levels at Mook computed from one thousand synthetic floods 
at Borgharen 
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Fig.4.6.7b  Kolmogorov-Smirnov test (Δ0 =0.043) for agreement between the 95% 
confidence band of the cumulative frequency distribution of the computed water 
levels at Mook and the Lognormal cumulative distribution function  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.4.6.8a Fit of the Pearson typeIII Distribution function to the relative frequency 
histogram of the water levels at Mook computed from one thousand synthetic floods 
at Borgharen 
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Fig.4.6.8b  Kolmogorov-Smirnov test (Δ0 =0.043) for agreement between the 95% 
confidence band of the cumulative frequency distribution of the calculated water 
levels at Mook and the Pearson type III cumulative distribution function  
 

 

 

 

 

 

 

 

 

 

 
 
 
 
Fig.4.6.9a Fit of the Gumbel Distribution function to the relative frequency histogram 
of the water levels at Mook computed from one thousand synthetic floods at 
Borgharen 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.4.6.9b  Kolmogorov-Smirnov test (Δ0 =0.043) for agreement between the 95% 
confidence band of the cumulative frequency distribution of the computed water 
levels at Mook and the Gumbel cumulative distribution function  
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Figs. 4.6.6 through 4.6.9 show that the Pearson type III cumulative distribution 
function and the Gumbel cumulative distribution function do not exceed the 95% 
confidence band of the computed water levels. So, for the location Mook the same 
conclusions can be drawn as for the location Venlo. Table 4.6.4 gives the probability 
of exceedance of the water level at Mook (km.165.800) for the situation at the end of 
the twentieth century.   
 

 
 
 
 
 
 
 
 
 
 
 
 

Table 4.6.4  Probability of exceedance of the water levels at Mook 
 
For the preferred Pearson type III and also for the Gumbel function, the results for the 
water levels at Mook, as mentioned in Table 4.6.4, are shown in Fig.4.6.10. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.4.6.10  Probability of exceedance of the water levels at Mook, according to the 
Pearson type III function (p), and the Gumbel function (g) 
 
 
4.7 Water level  differences  between  the computations and the adapted 

probability distribution functions 
 
Figs.4.7.1 and 4.7.2 compare the computed values of the water levels at Venlo and 
Mook with the preferred adapted Pearson and Gumbel functions.  
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Fig.4.7.1 Comparison of the p.o.e. of  the computed water levels at Venlo with that of 
the adapted functions 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.4.7.2 Comparison of the p.o.e. of  the computed water levels at Mook with that of 
the  adapted functions   
 
It is shown that for smaller p.o.e. the water level differences are negligible and for the 
rest they are less than 0.1 m. So, the Pearson type III and Gumbel functions for 
exceeding probabilities are satisfactory approximations to the computed water levels, 
in view of practice as mentioned in the text above Table 4.3.1. 
 
 
4.8 The  reliability  of  the  local water  levels  related  to the peak  discharges 

at Borgharen 
 
Venlo 
This section examines the spreading of downstream water levels at Venlo and Mook, 
computed from synthetic floods with varying wave shapes at Borgharen (Appendix 
4.2.1), brought together in series with the same peak discharge at Borgharen. 
Appendix 4.8.1 gives these series of computed water levels at Venlo, ordered 
according to the peak discharges of the floods that have occurred at Borgharen in the 
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period 1980-2000. The means and standard deviations of the series are given in Table 
4.8.1.  
 
Qpeak   Borgh. 

 
m3s-1 

mean  
 

NAP+…
m 

stdev. 
 

m 
 

number of 
synthetic 

floods 

2060 17.10 0.05 8 
2165 17.21 0.09 8 
2265 17.33 0.12 10 
2550 17.64 0.13 13 
2664 17.77 0.16 18 
3039 18.19 0.22 15 

Table 4.8.1  Means and standard deviations of the  
water levels at Venlo for various series of  
synthetic floods, ordered according to the measured  
peak discharge at Borgharen  
 
Fig. 4.8.1 shows the water levels at Venlo, and the 98% and 80% confidence bands of 
the regression line, extrapolated to the ruling discharge (3370 m3s-1) at Borgharen, 
derived from the means and standard deviations of Table 4.8.1, assuming a normal 
distribution of the water level variations. 
 
 
 
 
 
 
 
 
 
 
 

 

 

 
 
Fig.4.8.1  Water level series at Venlo related to peak discharges at Borgharen and 
98% and 80% confidence bands of the water levels; the regression line (thick) refers 
to the mean of each series  
 
Mook  
Appendix 4.8.2 gives series of computed water levels at Mook, ordered according to 
the peak discharges of the floods that have occurred at Borgharen in the period 1980-
2000. The means and standard deviations of the series are given in Table 4.8.2.  
Analogous to the Venlo case, the results at Mook are shown in Fig.4.8.2. 
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Qpeak   Borgh. 

 
m3s-1 

mean  
 

NAP+…m 

stdev 
 

m 
 

number of 
synthetic 

floods 

2060 10.34 0.07 8 
2165 10.47 0.12 8 
2265 10.59 0.15 10 
2550 10.94 0.20 13 
2664 11.08 0.27 18 
3039 11.53 0.41 15 

Table 4.8.2  Means and standard deviations of the  
water levels at Mook for various series of  
synthetic floods, ordered according to the peak  
discharge at Borgharen  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.4.8.2  Water level series at Mook related to peak discharges at Borgharen and 
98% and 80% confidence bands of the water levels; the regression line (thick) refers 
to the mean of each series  
 
Five water levels that were computed at Venlo and Mook for the floods above 2000 
m3s-1 at Borgharen in the period 1980-2000, are plotted in Figs.4.8.3 and 4.8.4, 
respectively, together with the confidence bands from Figs.4.8.1 and 4.8.2. Clearly, 
the flood of 1995 is very exceptional for Venlo and rather exceptional for Mook. This 
exceptional event is caused by the measured extreme flood wave parameter values at 
Borgharen, namely the very extreme base discharge of 1591 m3s-1 (then the winter 
bed was already amply inundated) and the very flat crest curvature of 17 10-12  s-2 
(also see Appendix 4.3.1 and Table 4.8.3). The probability that a flood with this peak 
discharge results in a still higher water level at Venlo is much less than 1%. As was 
mentioned in Section 4.4, the calibration of the Sobek-Maas model is based on this 
flood of January 1995 and verified against the floods of December 1993 and 
December 1999, when the floodplains were not inundated at the beginning of the 
flood and the crest curvature was medium. In spite of that, the results of the 
verification were considered to be satisfactory (RIZA, 2002, page 92) 
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Fig.4.8.3  Real flood waves in the period 1980-2000 at Borgharen and corresponding 
computed water levels at Venlo (solid symbols); underlying pattern taken from 
Fig.4.8.1 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.4.8.4  Real flood waves in the period 1980-2000 at Borgharen and corresponding 
computed water levels at Mook (solid symbols); underlying pattern taken from 
Fig.4.8.2 
  
Table 4.8.3 shows the parameter values of the five aforementioned flood waves 
(1980-2000) underlying Figs.4.8.3 and 4.8.4 (solid symbols) 

date of the 
flood 

Qpeak 
m3s-1 

Qbase 
m3s-1 

X0 
106  m3 

X4 
10-12 s-2 

HVenlo 
NAP + m 

HMook 
NAP + m 

Dec.1999 2042 751 459 77 17.11 10.44 
Jan.1993 2265 293 931 83 17.22 10.54 
Febr.1984 2550 979 615 90 17.97 11.26 
Jan.1995 2664 1591 575 17 18.42 11.80 
Dec.1993 3039 1030 896 56 18.52 11.81 

Table 4.8.3  Measured flood wave parameter values 1980-2000 at Borgharen and 
results of Sobek water level computations, from measured flood waves at Borgharen,  
for Venlo and Mook 
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The flood wave parameter values corresponding with the maximum and minimum 
computed water levels at Venlo and Mook of each Qpeak series at Borgharen are 
shown in Table 4.8.4. For a given Qpeak  series the differences between the maximum 
and minimum water levels at Venlo and Mook are due to the characteristic parameters 
Qbase, X0 and X4. 
 

Table 4.8.4  Maximum and minimum values of the computed water levels at Venlo 
and  Mook, caused by the synthetic flood waves with given parameter values at 
Borgharen, shown in Appendix 4.8.1 and 4.8.2,  and related to the peak discharges 
 
  

Q peak series 
Borgharen 

 
m3s-1 

synthetic 
flood wave 

number 

Qbase 
 
 

m3s-1 

X0 
 
  

106  m3 

X4 
 
 

10-12   s –2   

HVenlo 
 
 

NAP + m 

HMook 
 
 

NAP + m 
2060       

Maximum 
computed 

912 899 727 6 17.21 10.55 

Minimum 
computed 

401 1030 512 55 17.04 10.31 

differences     0.17 0.24 
       

2165       
Maximum 
computed 

285 751 810 19 17.32 10.62 

Minimum 
computed 

745 895 561 82 17.08 10.33 

differences     0.24 0.29 
       

2265       
Maximum 
computed 

793 766 1011 19 17.48 10.79 

Minimum 
computed 

831 540 810 81 17.10 10.32 

differences     0.38 0.47 
       

2550       
Maximum 
computed 

46 494 1407 21 17.82 11.18 

Minimum 
computed 

594 604 724 92 17.43 10.59 

differences     0.39 0.59 
       

2664       
Maximum 
computed 

52 1030 1051 19 18.02 11.48 

Minimum 
computed 

514 583 676 97 17.54 10.68 

differences     0.48 0.80 
       

3039       
Maximum 
computed 

139 1199 1185 20 18.45 12.05 

Minimum 
computed 

666 405 728 114 17.79 10.85 

differences     0.66 1.20 
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From Table 4.8.4 and Appendix 4.3.1 it turns out that: 
(1)For Qpeak ≥ 2165 m3s-1 the maximum values of the water levels at Venlo and Mook 
are from floods at Borgharen that have flat crest curvatures, large volumes and 
medium to large base discharges.  
(2)The corresponding minimum values of the water levels at Venlo and Mook are 
from floods at Borgharen that have peaked crests, medium volumes and mainly 
medium base discharges. 
 
From Tables 4.8.1 and 4.8.2 we conclude, that for a constant peak discharge at 
Borgharen, the spreading in the local water levels increases in downstream direction.  
Moreover, the larger the discharge peak the larger the spreading. 
 
 
4.9 Water levels at Venlo and Mook:  the  results of the present study 

compared  with  the Design Water Levels 2001 
 
Fig.4.9.1 shows the best fitting probability functions according to the present study, 
taken from Fig.4.6.5, together with the Design15 Water Levels 2001 (open symbols) at 
Venlo. The DWL 2001 for river parts embanked by primary dikes have been 
published by the Dutch Government in ‘Design Hydraulic Conditions 2001’. The 
DWL 2001 for various p.o.e.’s are listed in Appendix 4.9.1. In close consultation with 
RIZA, they are determined via additional 2-D Waqua computations, made by 
Rijkswaterstaat Directorate Limburg. This is the so-called continuation of Waqua 
computations for the Dutch Meuse River upstream of Mook (also see Section 2.4). 
Fig.4.9.1 shows that, for p.o.e. 0.004 per annum, the expected water level, according 
to the present study, is 0.3 m lower than the DWL 2001 (for data: compare Table 
4.6.2 with Appendix 4.9.1). For shorter return periods the water level differences are 
larger, the maximum is 0.5 m for p.o.e. 0.02 and 0.05 per annum. The difference is 
due to the fact (1) that the DWL 2001 at Venlo have (by definition) the p.o.e.’s from 
those at Borgharen, whereas the present study presents the local p.o.e.’s at Venlo, and 
moreover (2) the ruling synthetic flood waves of the two methods are different, such 
as turns out from Figs. 6.3.1 and 6.3.2. 
 
 
 
 
 
 
 
 
 
 
 
 
                                                                          
15

 The design water level, according to the publication ‘Design Hydraulic Conditions 2001’ is defined 
in river areas which are embanked by dikes, in this case only relevant to the Meuse River part 
downstream of Mook at the right bank and to the river part downstream of Boxmeer at the left bank , in 
the strict sense.  However, for the Dutch Meuse River  upstream of  these locations, other probabilities 
of exceedance are used for the design water levels (also see footnote 1 in Section 1.2). 
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Fig.4.9.1  2-D Waqua computations for the DWL 2001 at Venlo (open circles), 
compared with the preferred probability distribution functions (p) and (g) of the 
expected water levels according to the present study 
  
Fig.4.9.2 shows that the floods that have occurred at Borgharen in the period 1980-
2000 have led to water levels  below the DWL 2001 (thick line) at Venlo, except an 
insignificant deviation in 1995 with Qpeak = 2664 m3s-1, because of an extreme flat 
crest curvature just as an extreme high base discharge. It turns out that for discharge 
peaks at Borgharen up to 3100 m3s-1 the DWL 2001 at Venlo (thick curve through 
open symbols) fall outside the 98% confidence band of the mean water levels in 
accordance with the present study.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.4.9.2  2-D Waqua computations for the DWL 2001 at Venlo (open circles), 
compared with the values (solid symbols) computed by Sobek for the floods that have 
occurred in the period 1980-2000; the regression curve of the DWL 2001 is shown 
(thick curve); underlying pattern taken from Fig.4.8.1 
 
In Fig.4.9.3 the DWL 2001 at Mook is compared with the preferred probability 
functions of the present study, taken from Fig.4.6.10. For p.o.e. 0.0008 the DWL 2001 
is 0.4 m higher than our present results (for data: compare Table 4.6.4 with Appendix 
4.9.1). For p.o.e. 0.004 it is 0.6 m and for larger p.o.e. the difference even rises to 0.8 
m. The reason is the same as that at Venlo. 
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Fig.4.9.3  2-D Waqua computations for the DWL 2001 at Mook (open circles), 
compared with the preferred probability distribution functions (p) and (g) of the 
expected water levels according to the present study 
 
Fig.4.9.4 shows that the floods that have occurred at Borgharen in the period 1980-
2000 have given rise to  water levels at Mook lower than or equal to the DWL 2001. 
It turns out that for discharge peaks at Borgharen up to 2700 m3s-1 the DWL 2001 at 
Mook (thick curve through open symbols) fall outside the 98% confidence band of the 
mean water levels in accordance with the present study.  
 
 
 
 
 
 
  
 
 
 
 
  
 
 
Fig.4.9.4  2-D Waqua computations for the DWL 2001 at Mook (open circles), 
compared with the values (solid symbols) computed for the floods that have occurred 
in the period 1980-2000; the regression curve of the DWL 2001 is shown (thick 
curve);  underlying pattern taken from Fig.4.8.2 
 
 
4.10     Generalization of the findings for the Dutch Meuse River to other rivers 
 
The synthesization of flood waves at a measuring-station, given the data base of 
characteristic flood wave values at that station, leads via hydrodynamic model 
computations to water levels at un-gauged locations further downstream. Statistical 
data processing yields p.o.e.’s at those locations. 
 (1)The synthesization of a flood wave is performed as follows: 
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(i)Determine the average time lapse between the beginning of the flood waves and the 
peaks of the discharge hydrographs Q’(t) at the measuring-station. We define that the 
peaks of all synthetic floods occur at the average time lapse after the beginning of the 
rising stage. Not exactly coinciding peaks with corresponding measured ones did not 
differ in peak-value, in our case.  
 
(ii)The relationship between flood period (duration) and flood wave volume is needed 
to estimate the last day of the flood period (e.g. see Fig.4.3.3). 
 
(iii)It turns out from the measurements that for the rising stage as well as for the 
falling stage of the discharge hydrograph Q’(t) we can use polynomial functions 
power 2, in our case. 
  
(iv) From the relative frequency distribution of X4 we classify the flat, medium and 
peaked crest curvature (e.g. see Fig.4.3.1) and for these specifications we estimate the 
average ratio Q’-1 / Q’+1 around the crest of the flood (e.g. see Fig.4.3.2). The values 
of Q’-1 and Q’+1 are found by Eq.3.3.5, given X4 and Q’peak. 
  
(v)The rising stage of the synthesized hydrograph Q’(t) goes through the points (0;0), 
(3;Q’-1) and (4;Q’peak) as our definition for the peak reads t = 4, and the falling stage 
through (4;Q’peak), (5;Q’+1) and (n;0), where n is the last day of the flood period. 
 
(vi)If more characteristic flood wave properties are important (e.g. X3), they can be 
used for synthesizing a still more accurate hydrograph Q’(t). 
  
(vii)The synthesized flood wave Q(t) can be derived from Q’(t) by adding the given 
base discharge. 
 
(viii)An elaborate example is given in Section 4.3 
 
(2)Use a flow model starting at the measuring-station to compute the downstream 
water levels for each of these synthesized flood waves. It is recommended to compare 
a number of computed water levels of the synthesized flood waves with those of the 
measured ones, to assess whether the differences in peak water levels are acceptable 
(e.g. see Figs.4.3.4 through 4.3.8).  
 
(3)The statistical data processing of downstream water levels should yield a stable 
relative frequency distribution if enough random samples are taken. A goodness of fit 
test can be used to determine the adapted preferred probability distribution function. 
 
(4)Determine the variability of the computed water levels at a downstream location, 
for each value of the discharge peak at the measuring-station.  
 
 
4.11     Discussion and conclusions 
 
After determining the relevant characteristic parameters (peak discharge, base 
discharge, wave volume and wave crest curvature) and their values derived from the 
flood waves that have occurred at Borgharen in the period 1930-2000, it is shown that 
these parameters can be considered as mutually independent. The highest degree of 
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linear dependency, in this case between Qpeak and Qbase, indicates that only 20% of the 
variability around the mean of Qpeak can be explained by the linear regression between 
that parameter and the other (Qbase). For the used method of synthesizing flood waves 
by randomly sampling combinations of parameter values, mutual independency of the 
parameters is required.  
 
One thousand floods have been synthesized according to the procedure of Sections 4.1 
and 4.3. For the five measured large flood peaks at Borgharen (Qpeak > 2000 m3s-1) of 
the last twenty years of the twentieth century, the results of the synthesization, in 
combination with water level computations with the 1-D Sobek flow model, have 
been compared with those of the actual floods. It turns out that the synthesized flood 
hydrographs at Borgharen yield fairly good estimates of the water levels at Venlo and 
Mook. Fixing the peaks at the average time lapse between start and top (in our case 4 
days) creates discrepancies in the peak moment, but turns out to be irrelevant to the 
water levels downstream. 
 
From the one thousand computed water levels at Venlo as well as at Mook it turned 
out that the frequency distributions of the water levels can safety be assumed stable. 
Subsequently, water levels statistics can be applied to determine the p.o.e.’s.       
 
The Kolmogorov-Smirnov test for goodness of fit shows that the Pearson type III and 
the Gumbel probability distribution functions give the best approximation to the 
computed water levels at Venlo and Mook.  
 
The influence of the aforementioned flood wave characteristics at Borgharen on the 
downstream water levels varies for each location and is larger at Mook than at Venlo. 
For more extreme floods at Borgharen this influence is larger than for less extreme 
ones.  
 
If the floods with Qpeak > 2000 m3s-1 at Borgharen that have occurred in the period 
1980-2000 are compared with the results of all the synthetic ones, it turns out that 
especially the flood of January 1995 has caused much higher water levels at Venlo 
and  Mook than expected on the basis of the peak discharge at Borgharen. This is 
attributed to the extremely high Qbase going together with a very flat crest curvature of 
that flood.  
 
For reasons of different basic assumptions (ruling flood waves, local water levels 
statistics) the DWL 2001 at Venlo and Mook exceed the expected water levels 
following from the present study. The differences are substantial, up to 0.5 (0.3-0.5 m 
Venlo) and 0.8 m (0.6-0.8 m Mook), respectively, and the most for the lower floods.  
 
The DWL 2001 at Venlo and Mook do not only exceed the expected water levels of 
the present study, but  also those of the water levels of the floods that have occurred in 
the period 1980-2000, except the striking flood (2664 m3s-1) of January 1995 and that 
is remarkable, although the difference is not significant. 
  
Generalization to similar rivers: 
We have learned that combinations of random sampled values of independent flood 
wave characteristics are a tool to synthesize floods. With a 1-D flow model, we can 
translate these into computed water levels downstream of the measuring-station. 
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The number of samples that have to be taken depends on the extent to which a stable 
probability density distribution of the computed water levels is obtained. A good 
adapted probability distribution function properly fitted to the computed water levels, 
checked for its goodness of fit by e.g. the Kolmogorov-Smirnov test, yields the 
relation between the water levels and their p.o.e.’s. 
The range of variation of the computed peak water levels at the downstream locations, 
for a given peak discharge at the measuring-station, may be considerable because of 
the various possible compositions of the synthesized floods.  
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CHAPTER 5 

 
FLOOD PREDICTION 

 
 
5.1 Introduction 
 
In operational flood management there is an urgent need for a facility  that, in the case 
of an approaching flood, quickly yields a first estimate of the peak discharge at 
Borgharen. The corresponding water level is found by the current stage−discharge 
curve at Borgharen. The water levels along the Dutch Meuse River can be determined 
by estimating the discharge hydrograph at Borgharen and putting that into a flow 
model. A first-order check on the results is provided by the current ‘stage−relation 
curves’ (Rijkswaterstaat, 1998), which relate the water levels at Borgharen to those of 
the downstream water level measuring-stations. With the proceedings of the 
‘Maaswerken’ this relationship will change. 
As the Dutch Meuse River responds very quickly to the rainfall in the sub-catchments 
abroad, especially to the rainfall in the steep Ardennes basin, it is of essential 
importance to be able to take timely protective measures, especially in the most 
endangered part, namely the upper course of the Dutch Meuse River. 
Because of this quick response to rainfall in the neighbouring countries, it is necessary 
to estimate the peak discharge at Borgharen on beforehand, largely on the basis of the 
expected rainfall in Northeast France and the Belgian Ardennes. 
An algorithm will be developed, relating the measured river discharges at Borgharen 
to effective rainfall data in the upstream basin from the period 1980-2000. The 
reliability of the algorithm will be assessed. 
In a later stage of a flood event more accurate estimates can be produced with an 
advanced forecasting model (Berger 1992), once more the cooperating Hydrological 
Services in North-East France and Walloon can give more insight into the actual 
development of the rainfall and the discharges of the upstream tributaries. This later 
stage is outside the scope of this study.            
 
 
5.2 Development of an algorithm for provisional discharge-peak predictions 

at Borgharen  
 
Because of the extensive Meuse River basin upstream of Borgharen (2.1 104 km2), 
with its variety of soil properties, topographies and rainfall intensities, the direct 
relationship between effective rainfall and runoff is complicated and non-unique. The 
sub-catchments react differently, particularly in periods of flood. To estimate the 
average daily rainfall in the operational situation, the basin has been divided into the 
French part (48%), the Belgian Ardennes part (38%) and the Sambre part (14%) of the 
catchment area. As the floods are considered to occur in winter, evaporation is 
neglected. Also groundwater flow is neglected in the light of the flood events. The 
proportion of rainfall related to direct runoff will be determined on the basis of the 
river discharge measurements at Borgharen. In the literature various methods are used 
to relate rainfall to runoff (Shaw, 1994). In this investigation the ‘1-day Unit 
Hydrograph’ method will be considered. 
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5.3 The  1-day Unit Hydrograph method 
 
For the period 1980-2000 the daily operational rainfall data available during flood 
events are known (Appendix 5.3.1).  
From the daily measured river discharges (Q(t)  at 08:00 a.m. and the base discharge  
(Qbase) at Borgharen, the relative discharge hydrograph Q’(t)  is known (Fig.5.3.1a and 
Table 5.3.1). For this first flood in the period 1980-2000, the surface runoff (the direct 
runoff into the river) starts from the base discharge level of 980 m3s-1, i.e. the zero 
level in Fig.5.3.1a. The effective rainfall follows from the volume of the relative 
discharge hydrograph Q’(t). In this case (Table 5.3.1): 7120 × 864 102 = 615 106 m3 
effective rainfall during the flood period of 11 days. For the basin upstream of 
Borgharen of 21 109 m2, this is 29.29 mm. Consequently the 1-day Unit Hydrograph 
for each day is Q’(t) / 29.29, as shown in Fig.5.3.1b and Table 5.3.1.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.5.3.1a Measured Q’Borgharen (Febr.1984)  Fig.5.3.1b  1-day Unit Hydrograph at 
                                                                        Borgharen 
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day 
t (0…11) 

Q’measured 
(river 

survey) 
 

m3s-1 

1-day UH 
 
 
 

m3s-1 mm-1

0 0 0 
1 258 8.81 
2 327 11.16 
3 225 7.68 
4 654 22.33 
5 1571 53.64 
6 1436 49.03 
7 1144 39.06 
8 754 25.74 
9 480 16.39 
10 214 7.31 
11 57 1.95 

Sum 7120 243 
Table 5.3.1 Daily measured Q’ at  
Borgharen and derived 1-day Unit  
Hydrograph (Febr.1984) 
 
For the eight highest flood events in the period considered, the eight 1-day Unit 
Hydrographs have been determined (Fig.5.3.2), to yield an average 1-day UH. This 
will be used as a tool to calculate the relative river discharge (Q’calc) at Borgharen in 
connection with the effective rainfall.  
The average 1-day UH has been determined (1) by the arithmetic means of the 
individual peaks Q’ and times (t) to the peaks. Further (2) by the points  
Ut = ΣQ’t / 8 where t = 0…15 and (3) a smoothed line through the points of (1) and 
(2) so that the result is adapted to the volume of the individual shapes, which has to be 
243 x 86400 = 21 106 m3 per mm effective rainfall in the catchment upstream of 
Borgharen. This average 1-day Unit Hydrograph is indicated by U. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.5.3.2  Average 1-day Unit Hydrograph (thick line) from eight 1-day Unit 
Hydrographs of the highest flood events in the period 1980-2000 at Borgharen, of 
which the dashed line is the February 1984 storm  from Table 5.3.1.  
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Each effective daily rainfall Ri produces a component part of the surface runoff Q’calc 
at a later time jT, viz. Ri × Uj-i.     
 
Q’calc therefore follows from summation of  all the components for all the effective 
daily rainfall: 
 
Q’j = Σ Ri Uj-i                  …(5.3.1)
                                                                   

j = 1, 2, 3, …n  and  i = 0,1,2,…m-1 
          

in which U is the ordinate value of the average 1-day UH  
 
The calculations for the surface runoff are: 
 
Q’1 = R0U1  
 
Q’2 = R1U1 + R0U2 
 
Q’3 = R2U1 + R1U2 + R0U3 
 
Q’m = Rm-1U1 + Rm-2U2 + …R0 Um  
 
Q’m+n-1 = Rm-1 Un 
 
By using the average 1-day Unit Hydrograph (Fig.5.3.3a) we can calculate from day 
to day the relative discharge and peak (Q’cal. peak) from the effective rainfall. The peak 
(Q) can be compared with the measured one at Borgharen.  
As an illustration, the result of the first flood event (Febr.1984) at Borgharen is shown 
in Fig.5.3.3b. Appendix 5.3.2 gives the calculation.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
             
Fig.5.3.3a Average 1-day Unit Hydrograph    Fig.5.3.3b  Calculated Q’ (Febr. 1984),  
                                                                         based on equation 5.3.1, average 1-day 
        Unit Hydrograph (U) and effective rain- 
        fall (R) 
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The results of the calculations are shown in Table 5.3.2 
 
 

date rain 
days  

operational
rainfall 

 
 
 

mm 

effective 
rainfall 

 
 
 

mm 

Q’peak 
calculated
Eq.5.3.1 

 
 

m3 s-1 

Q’peak 
from 
river 

survey 
 

m3 s-1 

Qbase 
 
 
 
 

m3 s-1 
Feb. 1984 3 41.6 29.3 1212 1571 979 
Nov.1984 4 57.2 31.8 1365 1426 199 
April 1986 3 34.5 17.3 814 1060 604 
Jan. 1987 4 38.3 22.5 915 992 563 
Jan.   1991 3 50 17.8 796 867 976 
Jan.   1993 2 63 44.3 2061 1972 293 
Dec.  1993 3 61 42.7 1893 2009 1030 
Jan.   1995 3 66.1 27.4 1111 1073 1591 

Table 5.3.2  Q’peak  calculated from the average 1-day UH (Fig.5.3.3a) and  
the effective rainfall, compared with Q’peak at Borgharen from river survey 
 
Taking into account that Qpeak = Q’peak + Qbase, the predicted Qpeak for the above 
mentioned set of floods is calculated in Table 5.3.3. The peak discharges at Borgharen 
by river survey and those from the calculations, correspond with the water level 
differences (via Appendix 4.4.3) such as summarized in Table 5.3.3. 
 

date Qpeak  
measured 

(river survey at 
Borgharen) 

         
        m3s-1 

Qpeak  
calculated 
Eq.5.3.1  
+ Qbase 

 
m3s-1 

water level 
diff. at 

Borgharen 
 

       
        m 

Feb.  1984 2550 2191 -0.34 
Nov.1984 1625 1564 -0.12 
April 1986 1664 1418 -0.51 
Jan. 1987 1555 1478 -0.16 
Jan.   1991 1842 1772 -0.14 
Jan.   1993 2267 2354 +0.08 
Dec.  1993 3039 2923 -0.08 
Jan.   1995 2664 2702 +0.03 

Table5.3.3 Measured and calculated Qpeak at Borgharen  
and their difference expressed in water level terms 
 
 
 
5.4 The forecasting-algorithm for future use      
 
The effective rainfall has been found via its relation with the operational rainfall. For 
the mentioned eight floods in the period 1980-2000 this relation is shown in Fig.5.4.1, 
also see Table 5.3.2 for the individual events. 
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Fig.5.4.1 Relation between the operational rainfall on the catchment upstream of 
Borgharen and the effective rainfall from surveyed flood wave volume (open 
symbols); expectation (thick line) and upper limit of the 95% and 50% of its 
confidence band  
  
47% of the variability (spread) around the mean effective rainfall is explained by the 
linear regression between effective rainfall and operational rainfall, a poor result but 
significantly. To distinguish the effective rainfall of each of the eight individual floods 
from that of the regression curve, we call the latter the adjusted effective rainfall. This 
quantity is found by the equation: 
 
RE = 0.58 RO – 0.66                                  …(5.4.1) 
             
for which RE is the adjusted effective rainfall (mm) and RO the operational rainfall 
(mm).  
  
From the average 1-day Unit Hydrograph and the adjusted effective rainfall derived 
from Eq.5.4.1 we find the expected Qpeak. An example is shown in Appendix 5.5.1. 
The corresponding water levels and their deviation from the measured data are given 
in Table 5.4.1. Step 1 in Section 5.5 goes into this table in more detail. 
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Table5.4.1 Prediction of Qpeak and corresponding water levels calculated from 
adjusted effective rainfall (Eq.5.4.1) and average 1-day Unit Hydrograph; water level 
differences from measurements 
 
Analogously to Table 5.4.1, in Table 5.4.2 is shown the predicted Qpeak and 
corresponding water level, if  we use the upper limit of the 95% confidence band of 
the adjusted effective rainfall (Fig.5.4.1):  
 
RE* = 0.58RO + 15.10                        …(5.4.2) 
 
where RE*  the effective rainfall (mm) and RO the operational rainfall (mm) 
          
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

date Qpeak , 
measured 

river 
survey at 

Borgharen
 

m3s-1 

measured 
water level 

at 
Borgharen 

 
 

NAP + m 

operat. 
rainfall

 
 
 
 

mm 

adjusted 
effective 
rainfall 

 
 
 

mm 

Qpeak 
calc. 

predict. 
at  

Borgh. 
 

m3s-1 

predict. 
water 
level 

at 
Borgh. 

 
NAP + m 

water 
level 
diff. 
at 

Borgh. 
 

m 
Feb.  
1984 

2550 45.56 41.6 23.5 1956 44.97 -0.59 

Nov. 
1984 

1625 44.27 57.2 32.5 1591 44.20 -0.07 

April 
1986 

1664 44.34 34.5 19.4 1512 44.04 -0.30 

Jan.  
1987 

1555 44.13 38.3 21.6 1424 43.85 -0.28 

Jan.   
1991 

1842 44.69 50.0 28.3 2208 45.24 +0.55 

Jan.   
1993 

2267 45.30 63.0 35.9 1978 45.00 -0.30 

Dec.  
1993 

3039 45.94 61.0 34.7 2599 45.60 -0.34 

Jan.   
1995 

2664 45.65 66.1 37.7 3119 46.00 +0.35 
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date Qpeak , 
measured 

river 
survey at 

Borgharen
 
 

m3s-1 
 

     (1) 

measured 
water 

level at 
Borgharen 

 
 
 

NAP + m 
 

(2) 

operat. 
rainfall 

 
 
 
 
 

mm 
 

(3) 
 

effective 
rainfall 
upper 
limit 

95%conf.
band 

 
mm 

  
(4) 

Q95% 
upper 
limit 

 
 
 
 

m3s-1 
 

 (5) 

water 
level 
95%  
upper 
limit 

 
 

NAP+m 
 

(6) 

water 
level 

difference
 
 
 
 

m 
 

(7) 

Feb.  
1984 

2550 45.56 41.6 39.2 2608 45.61 0.05 

Nov. 
1984 

1625 44.27 57.2 48.3 2268 45.30 1.03 

April 
1986 

1664 44.34 34.5 35.1 2247 45.28 0.94 

Jan.  
1987 

1555 44.13 38.3 37.3 2050 45.08 0.95 

Jan.   
1991 

1842 44.69 50.0 44.1 2896 45.84 1.15 

Jan.   
1993 

2267 45.30 63.0 51.6 2715 45.69 0.39 

Dec.  
1993 

3039 45.94 61.0 50.5 3313 46.14 0.20 

Jan.    
1995 

2664 45.65 66.1 53.4 3755 46.42 0.77 

Table 5.4.2  Prediction of Qpeak and corresponding water levels calculated from the 
95% upper limit of the adjusted effective rainfall (Eq.5.4.2) and average 1-day Unit 
Hydrograph; water level differences from measurements 
 
The water levels corresponding with the upper limit of the 95% confidence band of 
the adjusted effective rainfall (column 6) are compared with the measured ones 
(column 2) and the differences are given in column 7. Step 2 in Section 5.5 goes into 
Table 5.4.2 in more detail. 
 
Table 5.4.3 shows the predicted Qpeak and corresponding water level, if  we use the 
upper limit of the 50% confidence band of the adjusted effective rainfall (Fig.5.4.1):  
 
RE** = 0.58RO + 4.70                        …(5.4.3) 
 
where RE**  the effective rainfall (mm) and RO the operational rainfall (mm) 
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date Qpeak , 

measured 
river 

survey at 
Borgharen

 
 

m3s-1 
 

     (1) 

measured 
water 

level at 
Borgharen 

 
 
 

NAP + m 
 

(2) 

operat. 
rainfall 

 
 
 
 
 

mm 
 

(3) 
 

effective 
rainfall 
upper 
limit 

50%conf.
band 

 
mm 

  
(4) 

Q50% 
upper 
limit 

 
 
 
 

m3s-1 
 

 (5) 

water 
level 
50%  
upper 
limit 

 
 

NAP+m 
 

(6) 

water 
level 

difference
 
 
 
 

m 
 

(7) 

Feb.  
1984 

2550 45.56 41.6 28.8 2176 45.21 -0.35 

Nov. 
1984 

1625 44.27 57.2 37.9 1822 44.65 0.38 

April 
1986 

1664 44.34 34.5 24.7 1760 44.53 0.19 

Jan.  
1987 

1555 44.13 38.3 26.9 1635 44.29 0.16 

Jan.   
1991 

1842 44.69 50.0 33.7 2443 45.46 0.77 

Jan.   
1993 

2267 45.30 63.0 41.2 2227 45.26 -0.04 

Dec.  
1993 

3039 45.94 61.0 40.1 2843 45.80 -0.14 

Jan.    
1995 

2664 45.65 66.1 43.0 3334 46.15 0.50 

Table 5.4.3  Prediction of Qpeak and corresponding water levels calculated from the 
50% upper limit of the adjusted effective rainfall (Eq.5.4.3) and average 1-day Unit 
Hydrograph; water level differences from measurements 
 
The water levels corresponding with the upper limit of the 50% confidence band of 
the adjusted effective rainfall (column 6) are compared with the measured ones 
(column 2) and the differences are given in column 7. Step 3 in Section 5.5 goes into 
Table 5.4.3 in more detail. 
 
 
5.5 Application of the forecasting−algorithm 

 
To predict the expected peak discharge at Borgharen, we have to take into account 
that many relevant facts become available rather late. Therefore this algorithm has to 
be considered as a first aid. The following data are required: 
  
(1) The operational rainfall and rainfall forecast.  
As the aim is to predict the peak-stage at Borgharen with a lead time of two days at 
least, the weather forecast at least two days ahead is needed.  
 
(2) The base discharge Qbase.   
Estimates from the daily measured discharges at Borgharen in a quasi stationary 
runoff situation, shortly before and close to the flood period. 
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(3) The expectation of the wind-force and wind direction.  
The wind direction is important, as Meuse River floods at Borgharen tend to arise 
from south westerly to southerly winds only, moving the depression more or less in 
longitudinal direction over the river basin. In the case of a strong wind, the water level 
will be over-predicted, as in reality the depression will blow over the river basin 
without having the chance to release all of its water.   
 
(4) The snow depths.  
In the case of snowmelt, the snow depth is translated into rainfall depths by 
experience: 10%  of the snow depth for newly fallen snow and 15% for compact snow 
is considered to be the equivalent rainfall depth. Then the local air temperature is 
important, as well as the variability of the snow depth over the hilly basin.  
 
As an illustration, the flood of February 1984 is considered. For this flood we know 
from survey that the measured peak discharge at Borgharen equals 2550 m3s-1 and the 
corresponding water level is NAP + 45.56 m (Table 5.4.1). The daily operational 
rainfall of the Meuse River basin upstream of Borgharen is shown in Table 5.5.1. The 
adjusted effective rainfall calculated from Eq. 5.4.1 amounts 23.5 mm. The daily 
operational  rainfall is reduced by a constant to get this adjusted effective rainfall.  
 

day operational 
rainfall  

 
(mm) 

adjusted 
effective 
rainfall 
(mm) 

0 0 0 
1 13.8 7.76 
2 15.4 9.36 
3 12.4 6.36 
4 0 0 

Sum 41.6 23.5 
Table 5.5.1  Calculated adjusted  
effective rainfall for the flood  
event of  February 1984 
 
Step 1 
We predict the peak discharge at Borgharen by means of the average 1-day Unit 
Hydrograph (Fig.5.3.3a) and the adjusted effective rainfall 23.5 mm (Eq.5.4.1). Also 
see Eq.5.3.1.  
According to Appendix 5.5.1, the predicted (expected) peak discharge at Borgharen is 
976 m3s-1 (relative peak discharge Q’) plus 980 m3s-1 (base discharge), so 1956 m3s-1 
and the corresponding water level, according to the current stage-discharge curve, is 
NAP + 44.97 m (see Table 5.4.1 for judging). The measured water level is 0.59 m 
higher. 
 
Step 2 
If we take, by definition, the upper limit of the 95% confidence band in Fig.5.4.1 as 
‘maximum’ for the predicted water level, then the maximum water level for 41.6 mm 
operational rainfall (i.e. 39.2 mm effective rainfall according to Eq.5.4.2), is estimated 
at NAP + 45.61 m, analogously to step 1. The measured water level is 0.05 m lower. 
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Also see Table 5.4.2 column 3, 4, 6, 2 and 7, for judging. Initially, one will prefer this 
definition, for safety. 
 
Step 3 
We use Eq.5.4.3 to translate the operational rainfall into effective rainfall for the 
upper limit of the 50% confidence band in Fig.5.4.1 and find 28.8 mm. It turns out 
that the measured water level is 0.35 m higher, analogously to step 1. Also see Table 
5.4.3 column 3, 4, 6, 2 and 7, for judging. 
 
 For verifying this ‘forecasting-algorithm for future use’, the prediction will be made 
for the flood peaks of the latest serious flood events of 2002 and 2003, so beyond the 
period of study. 
From both floods the operational rainfall, Qpeak and Qbase are known. There has been 
neither snow nor particularly strong south westerly wind-force.  
In this case, each six hours the operational rainfall depths are provided by KNMI, via 
RIZA, (1) from seven measuring stations in the French sub-basin, (2) from five 
stations in the Ardennes sub-basin and (3) from three stations in the Sambre sub-
basin. 
For each day the rainfall sum of the six hourly observations at each measuring station 
is determined as a proxy of the daily rainfall per sub-basin (France, Ardennes, 
Sambre). The total rainfall upstream of Borgharen is determined, using the assigned 
weights (section 5.2) for the sub-basins.  
 
Flood event of February 200216 : 

Date operational rainfall 
(mm) 

09-02-2002 4.5 
10-02-2002 9.1 
11-02-2002 2.3 
12-02-2002 7.9 
13-02-2002 19.8 
14-02-2002 7.8 
15-02-2002 0.0 

Sum 51.4 
Table 5.5.2 Measured operational rainfall (mm)   
for calculations of the water levels, according to  
Eqs. 5.4.1 and 5.4.2, for the flood event of   
February 2002 
 
Given: 
The measured base discharge is 850 m3s-1 and the measured Qpeak equals 2441 m3s-1, 
corresponding with NAP + 45.46 m. 
It is a complex flood, existing of four peaks of 2020, 2441, 1792 and 2113 within one 
month. 
Later, from Section 5.7 it will be clear that using Eq.5.4.3, to find the peak discharge 
that results from the 50% upper limit of the confidence band of the expected effective 
rainfall, is not advisable for floods over 2000 m3s-1. 

                                                                          
16

 Groenenberg,M. (2002) Flood report 2002. Rijkswaterstaat, Directorate Limburg, ANWR, 
Maastricht, NL. 
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Solution: 
For the rainfall sum, or operational rainfall, of 51.4 mm (Table 5.5.2) during the flood 
period 09/02-14/02, the expected peak discharge for 29.1 mm adjusted effective 
rainfall (Eq.5.4.1) and using the average UH, equals 2031 m3s-1 corresponding with 
NAP + 45.06 m (Appendix 5.5.2). The maximum predicted peak discharge, according 
to Eq.5.4.2 (44.9 mm effective rainfall) and using the average UH, equals 2548  m3s-1 
corresponding with NAP + 45.55 m (Appendix 5.5.2).   
 
Resuming: 
The expected water level NAP + 45.06 m is 0.40 m lower than the measured NAP + 
45.46 m, and the 95% upper limit NAP + 45.55 m is 0.09 m higher.  
 
Flood event of January 200317 : 

date operational rainfall 
(mm) 

28-12 2002 3.1 
29-12-2002 15.9 
30-12-2002 12.1 
31-12-2002 4.0 
01-01-2003 14.4 
02-01-2003 28.1 
03-01-2003 7.1 
04-01-2003 7.9 

Sum 57.5 
Table 5.5.3 Measured operational rainfall (mm)   
for calculations of the water levels, according to  
Eqs. 5.4.1 and 5.4.2, for the flood event of   
January 2003  
 
Given: 
The measured base discharge is 880 m3s-1, because of the river situation before 01-01-
2003, and Qpeak equals 2661 m3s-1, corresponding with NAP + 45.65 m. 
 
Solution: 
For the rainfall sum of 57.5 mm (Table 5.5.3) during the flood period 01/01/-04/01, 
the expected peak discharge according to Eq.5.4.1 (effective rainfall 32.7 mm) and 
using the average UH, equals 2337 m3s-1 corresponding with NAP + 45.36 m water 
level (Appendix 5.5.3). The maximum predicted peak discharge according to Eq.5.4.2 
(effective rainfall 48.5 mm) and using the average UH, equals 2886 m3s-1 
corresponding with NAP + 45.83 m water level (Appendix 5.5.3). 
 
Resuming: 
The expected water level NAP + 45.36 m is 0.29 m lower than the measured NAP + 
45.65 m, and the upper limit NAP + 45.83 m is 0.18 m higher.  
 
 
 

                                                                          
17

 Rijkswaterstaat (2003). Daily discharges at Borgharen village, method v.10 . Directorate Limburg, 
ANWR, Maastricht, NL.  
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Conclusion: 
Verifying the predicted water levels by the two available floods, it turns out that the 
measured water levels lie between the expected and maximum predicted values and as 
such they are satisfactory, however the margins between expected and maximum are 
0.47 to 0.49 m for both floods. The measured values are rather close to their 
maximum – derived from the 95% upper limit of the confidence band of the expected 
effective rainfall–, viz. 0.09 and 0.18 m lower, so the use of the 95% level is preferred 
for the prediction of water levels at Borgharen in the case of floods over 2000 m3s-1.  
 
Operational versus validated rainfall data 
The Meteorological Services operate with different meteorological observation 
networks, namely for synoptic and for climatic purposes.  
The synoptic measuring-network, subject of this study, is especially used for a short 
clear view of the weather situation over large areas.  
The climatic measuring-network is in service to build up reliable long-term data 
series. Several checks are applied to the observations and missing values are filled up 
by neighbouring stations.  
The validated data have been derived from this climatic measuring-network by the 
Meteorological Services of France (North-East), Belgium (Walloon) and the 
Netherlands, after deciding in consultation. These data are not available in the short 
term, so they are not suitable for predictions.  
It is shown that the totals of the validated data differ substantially from those of the 
used operational rainfall (Fig.5.5.1). If they would have been used for the prediction 
of peak water levels, these would not have been better than those derived from the 
operational rainfall. 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
Fig.5.5.1  Total operational and validated rainfall of the Meuse River basin upstream 
of Borgharen during each of the floods in the period 1980-2000 
 
 
5.6 Generalization to other rivers 
 
To develop a simple model for peak water level predictions, preferably some days 
ahead, at a certain point along the river, we need operational rainfall data in the river 
catchment upstream of that point. Determining the effective rainfall from operational 
rainfall depths requires appropriate records of former flood events. 
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The effective rainfall (mm) follows from the volume (m3) of the measured Q’-
hydrograph (e.g. Fig.5.3.1a) divided by the catchment area (m2) upstream of the 
measuring-point. 
For a number of measured former floods the Time Unit Hydrographs (e.g. Fig.5.3.1b) 
can be determined and from these the average TUH (e.g. Fig.5.3.2).  
The effective rainfall during the flood period depends on the operational rainfall, but 
their relation may be rather scattered. For optimal use of the forecasting algorithm it is 
necessary to adjust the effective rainfall on the basis of a stable regression function 
between these parameters.  
The prediction of Q’ can be calculated from the average TUH and the adjusted 
effective rainfall at each T, using Eq.5.3.1. The predicted Qpeak is found from 
 
Qpeak = Q’peak + Qbase  
 
for which Qbase  is the discharge just before the beginning of the water level rise. 
 
Then, from the current ‘discharge – water level’ relationship at the measuring point, 
the predicted water level is known and has to be checked with the measured value 
from river survey, as (predicted) rainfall, effective rainfall, catchment management 
and the use of an average TUH make the results uncertain. Also, attention has to be 
paid to the extent to which the rainfall runoffs of the various sub-catchments may be 
added, depending on the movement of the rain depression. A downstream tributary 
may flow out earlier than an upstream tributary. Also the accuracy of the catchment 
area is a point of attention. 
All these conditions may necessitate the introduction of a margin to the initial 
predictions. In our case study the upper limits of the 95% and 50% confidence band of 
the expected effective rainfall were applied (Fig.5.4.1). 
 
Careful maintenance of a forecasting-model is necessary but difficult, as on the one 
hand it is necessary to choose an observation period for which the ‘discharge−stage’ 
curve at the measuring point is fairly stable and long enough to have sufficient flood 
and rainfall data, and on the other, one has a reasonable chance that the ‘discharge−
stage’ curve at that point has changed meanwhile, by autonomous development or 
artificial interventions in the river. 
 
To improve the predictions for rivers rapidly responding to rainfall, it is advisable to 
pay much attention to the reliability of the weather forecast with respect to the actual 
rainfall depths. 
  
A timely first-order prediction algorithm of the water level peaks at a measuring- 
point along the river, some days ahead,  can be developed if reliable river survey data 
and rainfall depths from  former flood periods are available for testing and 
verification. 
In the event of non-gauged rivers, a crude estimation with wide margins of error is 
given by Shaw (2002): 
 
Qpeak (m3s-1) = 0.278 C i A                                                 …(5.6.1) 
 
where    
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C  runoff coefficients which vary from 0.05 for flat sandy areas to 0.95 for 
             impervious surfaces    
 i   intensity of rainfall in mm h-1 
A   catchment area in km2 
 
 
5.7 Discussion and conclusions 
 
Outsiders sometimes suggest that, since  we live in the computer era, we should be 
able to deliver better flood-peak water level predictions. However, rainfall predictions 
have a certain confidence band and so do even the best models we have. Hence one 
may not expect exact river discharge or water level predictions. Nevertheless, a timely 
first-order prediction of the water level peaks at Borgharen, some days ahead, turns 
out to be feasible with the aid of the average 1-day Unit Hydrograph and the adjusted 
effective rainfall, derived from the floods of the period 1980-2000 (Appendix 5.7.1). 
However, it appears that: 
(1) the expected water levels can deviate from the measured ones to 0.6 m (flood 
      numbers 1 and 5 of Appendix 5.7.1), 
(2) most of the measured water levels are lower than the results obtained by using the 
     50% upper limit of the confidence band of the expected effective rainfall,  
(3) the most safe estimate is obtained by using the 95% upper limit,  
(4) in the latter case much predictions are overestimated strongly, generally the lower 
     discharge peaks, that means for Qpeak < 2000 m3s-1, corresponding to water levels 
     at Borgharen lower than NAP + 45 m. In those cases the 50% upper limit yields a 
     better approximation to the measured water levels. 
 
The measured water levels of the higher floods of February 2002 and January 2003, 
used for verification, are 0.09 m and 0.18 m below the results obtained by using the 
upper limit of the 95% confidence band of the expected effective rainfall, 
respectively, but 0.40 m and 0.29 m above the expected water level, respectively.   
 
In this study the operational rainfall data from Flood Reports (Rijkswaterstaat, RIZA 
and Directorate Limburg) are based on rainfall in the three parts of the Meuse river 
basin upstream of Borgharen, namely in the northeast French part, in the Ardennes 
part and in the Sambre part.18 The daily rainfall is averaged over the total catchment 
upstream of Borgharen by assigning weights, proportional to the size of the relevant 
sub-catchments. Daily renewal of the prediction on the basis of the renewed predicted 
rainfall throughout the flood period is highly recommendable. 
 
In view of all sorts of uncertainties in rainfall depths and weather forecasts, one may 
wonder whether a sophisticated model is able to yield better predictions with a lead 
time of some days, at all. 
 
Generalization to similar rivers: 
In general terms, the procedure to predict water levels from rainfall is like that of our 
case study.  

                                                                          
18

 The operational rainfall depths are from the rain gauges of the measuring-stations at Nancy, 
St.Dizier, Reims, Charleroi, Florennes, Luxembourg, St.Hubert, Spa, and occasionally also data gained 
from isohyets.  
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Because of autonomous development or artificial interventions, the forecasting model 
needs regular updating. It is advisable to pay much attention to the stability of the 
relationship between the operational rainfall during a flood period and the effective 
rainfall. It is also advisable to investigate the influence of the variability of the TUH 
on the predictions as well as the reliability of the rainfall forecast. 
If the prediction of the peak discharge (Qpeak) at a river measuring-station has been 
performed, it is possible to predict the water levels for other local un-gauged river-
points (1) by estimating the flood wave shape at the runoff measuring-station and (2) 
by using that flood wave in a flow model that translates flood waves into downstream 
river water levels. 
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CHAPTER 6 
 

DISCUSSION WITH REGARD TO THE RESEARCH QUESTIONS 
 
 
6.1 Summary of the research questions 
 
The following main questions were addressed in this dissertation: 
 
•   Do the results of the first part of the study give cause for changing the design 
     discharges? In other words, does the probability of exceedance of the peak 
     discharges at Borgharen change in such a way, that the corresponding water levels 
     differ significantly?   
•   Are the water levels downstream of Borgharen, e.g. at Venlo and Mook, resulting 
      from the present study significantly different from those according to the Design 
     Water Levels 2001?  
•   To what extent can the discharge peaks and corresponding water levels at 
     Borgharen and the uncertainties therein be estimated with an easy-to-use early 
     warning algorithm? How do the results comply with recent measured flood peaks? 
•   What can we learn from the Dutch Meuse River case for other rivers of a similar 
      type? 
 
 
6.2 Change of the design discharges at Borgharen 
 
If the level of significance for the discharge and corresponding water level difference 
between the DWL 2001 and the present study is reasonable taken on 0.1 m, then for 
the probability of exceedance less than 0.006 per annum the water level differences 
turn out to be significant. They vary from 0.14 to 0.26 m for p.o.e. 0.004 to 0.0008, 
respectively. This can be explained from the following 4 points: 
 
(i) In the present study a much higher discharge threshold has been considered 
because of the river dynamics in the river reach upstream of Borgharen. The DWL 
2001 principle starts from a lower discharge threshold. Consequently, the DWL 2001 
exhibits a strong influence of minor floods on the major ones in the ‘probability of 
exceedance – discharge’ relation, resulting into a wide 95% confidence interval and a 
considerable uncertainty in the discharge prediction, varying from 15% to 20% in 
relation to the average. 
 
(ii) In the present study, four extreme floods from former centuries are added to the 
subset above the high discharge threshold. They fit in well with more recent peak 
discharges.  
 
(iii) For equal p.o.e., the difference between the discharges and corresponding water 
levels of either method is caused by the introduction of a separation-point between 
set-up and free-flow river situations abroad. This yields a significantly narrower 
confidence interval and a greater accuracy than in the DWL 2001 
  
(iv) Discharge observations of several hundred years are needed to accurately estimate 
river design levels for which the risk of flooding does not exceed a few percents in a 
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human lifetime. Therefore, the present observations consisting of a limited series of 
systematically recorded annual peak discharges from recent data are extended with 
some documented serious floods from former centuries on which the  
‘E formulae for exceedance’ have been applied.  
#### 
 
6.3 Significant local water level differences between the results of the present 

study and the DWL 2001 
 
6.3.1 Approach underlying the DWL 2001  
In 2001, the design discharge (p.o.e. 0.0008 per annum) of the Dutch Meuse River at 
Borgharen has been determined at 3800 m3s-1. The ruling synthetic flood wave shapes 
for the different p.o.e.’s at Borgharen (Fig.6.3.1) are obtained by an investigation of 
Vrisou van Eck & Klopstra (1998). The authors used two approaches to determine the 
design flood properties. 
Starting points of their first approach (‘regression method’) are the duration of the rise 
of the flood wave, the total duration and the flood wave volume measured from a 
number of different discharge levels of 22 selected flood hydrographs in the period 
1911-1997. The relationship between the discharge levels and durations and flood 
wave volume has been determined by linear regression.    
In their second approach (‘enlargement method’) the measured floods are enlarged 
from the actual discharge to the design discharge19. Subsequently, the treatment is the 
same as for the ‘regression method’. The results of either method were similar up to a 
discharge of 2000 m3s-1. In the higher discharge range the methods could not be 
compared, as the ‘regression method’ could not be applied by lack of sufficient data 
from such extreme floods.    
In conclusion, the ‘enlargement method’ was chosen, as this poses no problem to 
estimate flood waves above the discharge level of 2000 m3s-1. 
 
In Fig.6.3.1 these DWL 2001 discharge flood waves with p.o.e. 0.0008, 0.004, 0.02 
and 0.1 are shown. They are the basic assumption of the computations for the 
‘Maaswerken’. We remark that the crest curvature of the discharge flood wave is the 
same for all return periods. The wave volumes are between 700 and 1100 106 m3, the 
crest curvatures are 43 10-12 s-2 and the base discharges are between 850 and 1700 
m3s-1.  
The design water levels further downstream have been determined for these flood 
waves with the 2-D Waqua flow model (Appendix 4.9.1). 
 
 
 
 
 
 

                                                                          
19

 for the enlargement, the ratio between the design discharge and the measured peak discharge of the 
flood wave was used as multiplication factor. 
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Fig.6.3.1 Synthesized flood waves at Borgharen underlying the DWL 2001  
 
6.3.2 Approach to the present study 
In the present study, one thousand flood waves at Borgharen were synthesized on the 
basis of combinations of a number of characteristic flood wave parameters, which are 
to a large extent mutually independent. These parameter ranges were derived from 
measured discharge hydrographs. For the design discharge flood waves with p.o.e. 
0.0008, 0.004 and 0.02 per annum, according to the present study 3370, 3089 and 
2808 m3s-1 at Borgharen, respectively, we used the mean flood wave characteristics of 
the series synthetic floods with measured peaks 3039 and 2664 m3s-1 (Appendix 4.8.1) 
adapted by a multiplication factor depending on the ratio between the design 
discharge and the measured peak discharge (Fig.6.3.2). With the flow model Sobek 
(Section 4.4) the water levels further downstream were computed for the relevant 
flood waves of Fig.6.3.2 (results in Table 6.3.1).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 6.3.2 Synthesized flood waves at Borgharen according to the present study 
 
6.3.3 Consideration 
(i) In the DWL 2001, the difference between measured and design discharges is such 
(e.g. measured discharge 3000 m3s-1, design discharge 3800 m3s-1) that amplification 
of the mean highest flood hydrograph measured is a too uncertain procedure to 
determine the design discharge. In the present study the amplification is less uncertain 
(measured discharge 3000 m3s-1, design discharge 3370 m3s-1). 
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(ii) As a consequence of the amplification procedure all crest curvatures of the design 
flood waves are equal, viz. 43 10-12 s-2. This means a rather flat crest curvature. In the 
present study, the crest curvatures vary from 40 to 70 10-12 s-2, i.e. from rather flat via 
medium to almost peaked. 
 
(iii) For the major floods (peaks > 1850 m3s-1) in the period 1980-2000, the measured 
rise of the flood waves from the base discharge to the peak takes four days, on 
average (Appendix 4.3.2). According to the DWL 2001 flood wave hydrograph it is 
six days, derived from floods in the period 1911-1997. 
  
(iv) If we compare the ranges of values of wave volume (m3 106), crest curvature  
(10-12 s-2) and base discharge (m3s-1) according to the present study and the DWL 
2001, we obtain the following summary: 

 
This shows that, apart from the peak discharges, the differences between the present 
study and the DWL 2001 concern mainly the crest curvature and the base discharge, 
and that the values of the present study agree better with the measured values than 
those for the DWL 2001. As a consequence, the results of the two approaches to the 
downstream water levels must be different.  
Different water motion models have been used, indeed, viz. 2-D Waqua for DWL 
2001 and 1-D Sobek for the present study, but the latter has been checked against 
Waqua (Section 4.4).   
 
(v) The present study yields significantly different water levels at Venlo and Mook 
(Table 6.3.1) for the flood series of Figs. 6.3.1 and 6.3.2.  
 
  Venlo   Mook  
p.o.e. 

 
 
 

yr –1 

DWL 2001 
flood  
wave 

 
NAP+ m 

present 
study 
flood 
wave 

NAP+ m 

difference
 
 
 

m 

DWL 2001
flood  
wave 

 
NAP+ m 

present 
study 

     flood 
wave 

NAP+ m 

difference 
 
 
 

m 
0.02 18.37 18.22 0.15 11.86 11.49 0.37 

0.004 18.91 18.45 0.46 12.36 11.71 0.65 
0.0008 - - - 12.83 11.98 0.85 

Table 6.3.1 Results of the downstream water levels caused by different approaches, 
viz. the flood waves at Borgharen according to DWL2001 and those according to 
the present study 
 
 

  measured 
medium 

Appendix 4.3.1 

present study 
Fig.6.3.2 

DWL 2001 
Fig.6.3.1 
 

     
volume  600 – 850 760 – 1025 700 – 1100 
crest curvature    50 – 80 40 – 70 43 
base discharge       600 – 900 675 – 930 850 – 1700 
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6.4 The reliability of water level predictions with an easy-to-use warning 
algorithm  

 
Starting from discharge hydrographs at Borgharen and operational rainfall depths on 
the river basin from  previous floods, we determined (1) the effective rainfall of each 
single flood and furthermore (2) the average 1-day Unit Hydrograph of all floods 
considered at Borgharen. These two components, as well as the base discharge, enable 
peak discharge and corresponding water level prediction, but it turned out that they 
often disagreed with the measured peaks. Therefore, we investigated the relationship 
between operational and effective rainfall and observed a rather scattered but 
significant coherence. Their confidence bands allow only first-order estimates of 
water levels. 
For the future, we take this relationship (Fig.5.4.1) as basis and, given the operational 
rainfall, we translate the effective rainfall into expected discharges and corresponding 
water levels with the help of the 1-day UH and base discharge. From the upper limits 
of the 50% and 95% confidence band of the mentioned relationship we also calculate 
the water level predictions.  
Although the expected  water levels agree with the surveyed values, on average, it 
turned out that in individual cases they may differ to 0.6 m from the measured ones. 
The margin from the expected water levels to their maximum possibility -by 
definition 95% upper limit of the confidence band of the relationship in Fig.5.4.1- is 
large for lower measured floods (<2000 m3s-1) and small for higher measured floods, 
hence for the first category the 50% upper limit is introduced as a fair maximum 
measure (Appendix 5.7.1).     
 
Recently serious flood peaks beyond the period of study have occurred (1) in 
February 2002 with a peak water level at Borgharen of NAP + 45.46 m and 
corresponding discharge of 2441 m3s-1, and (2) in January 2003 with a peak water 
level of NAP + 45.65 m and corresponding discharge of 2661 m3s-1. They provide for 
an independent test opportunity.  
For the first flood, the expected water level was 0.40 m lower than the actually 
measured value of NAP + 45.46 m and the measured value was 0.09 m lower than 
that predicted by means of the 95% upper limit of the effective rainfall. 
For the second flood, the expected water level was 0.29 m lower than the actually 
measured value of NAP + 45.65 m and the measured value was 0.18 m lower than 
that predicted by means of the 95% upper limit of the effective rainfall. This 
verification is in fair accordance with the conclusions of the investigated series of the 
period 1980-2000. 
 
 
6.5 Learning from the Dutch Meuse River case for other rivers of this type 
 
6.5.1 The probability analysis of floods at a measuring-station 
Generally speaking, too few annual peak discharges are available to reliably predict 
the properties of very rare floods .  
To improve the reliability of the prediction (1) we used some extreme floods from 
former centuries and used the E-formulae, derived by Hirsch and Stedinger (1987)  
and (2) we distinguished between different  types of river behaviour, in this case the 
transition from set-up to free flow. These two additions to the recorded series of 
annual peak discharges may introduce uncertainty, via the historic water level 
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estimates and corresponding discharges, and via the transition point in the river 
behaviour. The accuracy of the former discharge peaks has been investigated by the 
Royal Dutch Meteorological Institute (1994) and by Lorenz (1997). By trial and error, 
the inaccuracy in the choice of the discharge threshold between the set-up and free 
flow regime was minimized.  
Adding some historic very high flood peaks to the recorded series of annual peak 
discharges and introducing the discharge threshold have enabled us to produce 
reasonable estimates of the probability of occurrence of discharge peaks with long 
return periods. 
 
6.5.2 Downstream water levels versus characteristic flood wave properties 
By random sampling the characteristic flood wave parameter values which determine 
the downstream water levels, a set of combinations is taken to synthesize a number of 
flood waves. The water level at any downstream location is computed with a flow 
model. The number of combinations is chosen such that a stable probability 
distribution of the computed set of local water levels is obtained. 
In view of the reliability of protective measures it is important to determine the 
margin into the computed local water levels, for given discharges at an upstream 
measuring-station, in this way.  
The values of the adapted fourth moment (Eq.3.3.5) of the relative discharge 
hydrograph are divided into three categories, each with an average value, viz. flat, 
medium and peaked crest curvature. This division may be too crude and a further 
investigation into the relation between crest curvature and Q’-1 / Q’+1 would be useful.         
 
6.5.3 Flood prediction 
To develop a simple first-order model for the prediction of peak discharge levels we 
need (1) operational rainfall depths in the river catchments during preceding flood 
events and (2) the corresponding discharge measurements. From these we derive the 
effective rainfall and the average Time Unit Hydrograph. From the latter we know the 
discharge caused by one mm rainfall on the catchment per unit time.  
We found a scattered but significantly linear relationship between operational rainfall 
during flood events and corresponding effective rainfall. After comparing, we 
concluded that the expectations often deviate from the measured water levels, whence 
the upper limits of the 95% and 50% confidence band of the effective rainfall could be 
used best to indicate the maximum possibly water level of the large floods and the 
smaller floods, respectively. First aid prediction of water levels requires rainfall 
forecast, which may have consequences for the reliability of the prediction.  
In un-gauged rivers and without rain-gauging stations a crude prediction can be made, 
using Eq.5.6.1  
In rivers in which drastic (artificial) interventions are under discussion, it may take 
many decades after the completion of the works before a reasonably stable relation 
between discharge and water level is realized again. This depends on the 
morphological response and the time needed to reach a new equilibrium state, hence 
on the sediment-transporting capacity of the river and the available bed load. As long 
as this state has not been reached, only rainfall data are available to produce 
predictions about the peak discharge of an imminent flood. To estimate the needed 
base discharge may be a problem, but possibly this could be derived from a river- 
point out of the influence of the river interventions. Predicting the peak water levels, 
however, will be a problem for influenced locations.  
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CHAPTER 7 
 

CONCLUSIONS 
 
 
• When comparing the results of the present study with the DWL 2001, there is a 
significant difference in the probabilities of exceedance of discharges and 
corresponding water levels at the measuring-point Borgharen. 
The difference is due to the fact that in the present study a discharge threshold to 
distinguish between the set-up and free flow river situation upstream of the 
measuring-station at Borgharen was introduced, and historical extreme floods were 
added.    
 
• Also the water level statistics downstream of Borgharen differ significantly. 
These differences are (1) the result of the differences in the assumed ruling flood 
wave shapes for the same p.o.e. at Borgharen and (2) the use of local water levels 
statistics (present study) instead of assuming so far the local water levels to have the 
same p.o.e. as those at Borgharen (DWL 2001). 
 
• If we distinguish between large and smaller floods, a first-order prediction of 
maximum possible peak water levels at Borgharen some days ahead is possible by 
means of an easy-to-use algorithm. A reliable weather forecast is a necessary 
condition.  
We verified the developed forecasting-algorithm against two recently large floods 
(about 2550 m3s-1) and found differences from the measured peak water levels well 
within a narrow range of 0.2 m below the predicted maximum. Both floods are in fair 
accordance with the results of the investigated series of floods in the period 1980-
2000. 
 
• Generalizing which we have learned from the Dutch Meuse River case for other 
similar rivers, we conclude that: 
 
(i) The confidence band of the estimated frequency of occurrence of floods can be 
narrowed by (1) adding some extreme historic floods to the recorded series of annual 
peak discharges, and (2) by considering one or more points of distinction between 
different types of river behaviour (from set-up to free flow, flooding of a levee, etc.). 
  
(ii) Flood wave shape characteristics that may be important to flood stages along the 
river are in principle all moments 0 through 4 of the time-discharge hydrograph. 
These moments need to mutually independent. These characteristics enable 
synthesizing flood waves that can be translated with a flow model into local water 
level distributions along the river. Statistical analysis leads to frequency distributions 
of these water levels. 
 
(iii) Flood wave attenuation, this depends on the value of the fourth moment of the 
‘time – discharge hydrograph’, is generally negligible in rivers with a steep bottom 
slope (0.5 m km-1 or more). The ratio between the depth at bank-full discharge and the 
total water depth during a flood has a moderate influence, whereas the total storage 
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width has a strong influence on flood wave attenuation in rivers with small hydraulic 
gradients.  
 
(iv) A provisional flood peak prediction some days ahead requires the effective 
rainfall and the time unit hydrograph (TUH). For that an algorithm could be 
developed derived from (1) operational rainfall depths and (2) corresponding 
measured flood wave discharges from a preceding period of sufficient length and river 
stability.  
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CHAPTER 8 
 

RECOMMENDATIONS 
 
 
As the phenomenon of flood wave attenuation is, besides the crest curvature, also 
related to the difference in steepness between the rising and falling stage of the 
discharge hydrograph of the flood wave, it is conceivable that for certain rivers this 
phenomenon, expressed by the skewness (third moment) of the discharge hydrograph, 
plays a role in the determination of the local water levels. Further investigation is 
advisable. For the Dutch Meuse River this phenomenon turned out to be of minor 
importance. 
 
In rivers with a large storage width and a small hydraulic gradient, flood wave 
attenuation is a function of the crest curvature. A more detailed gradation than the 
categories flat, medium and peaked floods may describe the effects on the local water 
levels more accurately. Investigation into this gradation will give an definite answer.  
 
It is recommended to show that the provisional water level predictions with an easy-
to-use algorithm may be improved by (1) considering the soundness of the relation 
between weather forecast and realistic rainfall in the river catchments and (2) 
reinforcing the stability of the relationship between operational rainfall and effective 
rainfall. For instance, it is possible that the stability increases by omitting one or more 
rain-gauging stations in France. Furthermore, one should investigate whether the 
‘average’ Time Unit Hydrograph, derived from a number of occurred floods, is the 
best representation to use for the algorithm.  
 
In the present study attention has been given to the water level distribution of two 
arbitrary locations, to get an impression of the differences between the water levels 
according to the DWL 2001 and those according to the present study. It is advised to 
work out the probabilities of exceedance of the water levels for more locations along 
the river to obtain water level lines of equal p.o.e. In the author’s view, such an 
approach is more realistic than linking the local water levels to the p.o.e. of the 
discharges at an upstream measuring-station (Borgharen). This especially concerns 
rivers in which flood waves undergo large shape alterations while propagating 
through the river. 
 
For the Rhine River the statistical characteristics of flood waves may be a valuable 
input into models which describe the influence of soaking of dikes.  
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APPENDICES 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
     
 
 
 
 
 
Probability of exceedance of the annual peak discharges at Borgharen  
1911-2000, according to Weibull 
                                                                                                                 Appendix 2.1.1 

 
 
 

 

   

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

2400

2600

2800

3000

3200

3400

0.010.101.00

probability of  exceedance

di
sc

ha
rg

e 
(m

3 s
-1

)



 118

 
 
 
 

 
 
 
 
 
 

 
 
 
   
 
 
 

            
 
  

    
 
  

    
 
 
 
 
 
 
 
 

  
 
 
 

 
 
 
 
 
 
 
 
Probability of exceedance of the peak discharge at Borgharen, regression lines in 
accordance with the E formulae (1571-2000) above and below the threshold 
discharge at 2750 m3s-1 ; open symbols of the measured annual peaks 1911-2000 
                                                                                                                 Appendix 2.1.2 
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Probability of exceedance of the peak discharge at Borgharen, regression lines in    
accordance with  the E formulae (1571-2000) above and below the threshold   
discharge at  2550 m3s-1; open symbols of the measured  annual peaks 1911-2000 
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Probability of exceedance of the peak discharge at Borgharen, regression lines in  
accordance  with the E formula (1571-2000) above  and below the threshold  
discharge at 2100 m3s-1 ; open symbols of the measured annual peaks 1911-2000 
                                                                                                                     Appendix 2.1.4 
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Probability of exceedance of the peak discharge at Borgharen, regression lines in  
accordance with the E formulae (1571-2000) above and below the threshold 
discharge at 2750 m3s-1; 95% confidence band of the regression lines 
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Probability of exceedance of the peak discharge at Borgharen, regression lines in  
accordance with the Dalrymple method (1571-2000) above and below the 
threshold discharge of 2750 m3s-1; open symbols of the measured annual peaks 
1911-2000; 95% confidence band  of the regression lines        
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               Flow   measured           flow measured  
              year   daily top            year daily top  

1911 1377 1961 1705  
1912 1295 1962 1077  
1913 1741 1963 1670  
1914 1405 1964 1373  
1915 1990 1965 1892  
1916 1725 1966 1964  
1917 1847 1967 1586  
1918 1295 1968 777  
1919 2279 * adjusted 1969 2165  
1920 673 1970 950  
1921 843 1971 477  
1922 1383 1972 1071  
1923 1135 1973 1071  
1924 2040 1974 1259  
1925 3175 * adjusted 1975 635  
1926 1604 1976 1231  
1927 1355 1977 1102  
1928 1361 1978 1367  
1929 1107 1979 2200  
1930 1725 1980 1349  
1931 1289 1981 1418  
1932 1383 1982 1165  
1933 557 1983 2550  
1934 1065 1984 1635  
1935 1190 1985 1760  
1936 1457 1986 1575  
1937 1590 1987 1919  
1938 1546 1988 1275  
1939 2125 1989 1449  
1940 1425 1990 1843  
1941 1151 1991 1660  
1942 1330 1992 2280  
1943 950 1993 3039  
1944 2011 1994 2664  
1945 1765 1995 754  
1946 1560 1996 1093  
1947 1605 1997 1051  
1948 622 1998 1863  
1949 1324 1999 2118  
1950 1572  
1951 1700  
1952 1900  
1953 673  
1954 1380  
1955 1830  
1956 1452   
1957 1975  
1958 1254  
1959 804 Annual peak discharges at Borgharen (m3s-1) 
1960 2125        Appendix 2.1.7
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                flow measured          flow    measured          flow    measured  
   year daily top year daily top year daily top  
1643 *3075 1941 1151 1975 635  
1740 *3020 1942 1330 1976 1231  
1850 *2850 1943 950 1977 1102  
1880 *2950 1944 2011 1978 1367  
1911 1377 1945 1765 1979 2200  
1912 1295 1946 1560 1980 1349  
1913 1741 1947 1605 1981 1418  
1914 1405 1948 622 1982 1165  
1915 1990 1949 1324 1983 2550  
1916 1725 1950 1572 1984 1635  
1917 1847 1951 1700 1985 1760  
1918 1295 1952 1900 1986 1575  
1919 *2279 1953 673 1987 1919  
1920 673 1954 1380 1988 1275  
1921 843 1955 1830 1989 1449  
1922 1383 1956 1452 1990 1843  
1923 1135 1957 1975 1991 1660  
1924 2040 1958 1254 1992 2280  
1925 *3175            1959 804 1993 3039  
1926 1604 1960 2125 1994 2664  
1927 1355 1961 1705 1995 754  
1928 1361 1962 1077 1996 1093  
1929 1107 1963 1670 1997 1051  
1930 1725 1964 1373 1998 1863  
1931 1289 1965 1892 1999 2118  
1932 1383 1966 1964  
1933 557 1967 1586  
1934 1065 1968 777  
1935 1190 1969 2165  
1936 1457 1970 950  
1937 1590 1971 477  
1938 1546 1972 1071  
1939 2125 1973 1071  
1940 1425 1974 1259  

   
   

   
   
   
   
   
   

              * adjusted to present day situation, because of river-works 
               flow year from 1 November to 1 November (def. Rijkswaterstaat)    
               e.g. flow year 1925 starts from 1 November 1925 

              Annual peak discharges at Borgharen (m3s-1) 
                                     Period 1571-2000 
                                                                                               Appendix 2.1.8 
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measured ranknr.i E-formula measured ranknr. E-formula measured ranknr.i E-formula
3175 1 0.002 1705 33 0.3165 1295 63 0.6527

       his.doc. 3075 2 0.004 1700 34 0.3277 1295 64 0.6639
                    3039 3 0.006 1670 35 0.3389 1289 65 0.6751

       his.doc. 3020 4 0.008 1660 36 0.3501 1275 66 0.6863
       his.doc. 2950 5 0.01 1635 37 0.3613 1259 67 0.6975
        his.doc. 2850 6 0.012 1605 38 0.3725 1254 68 0.7087

2664 7 0.0252 1604 39 0.3837 1231 69 0.7199
2550 8 0.0364 1590 40 0.3949 1190 70 0.7311
2280 9 0.0476 1586 41 0.4062 1165 71 0.7423
2279 10 0.0588 1575 42 0.4174 1151 72 0.7535
2200 11 0.07 1572 43 0.4286 1135 73 0.7647
2165 12 0.0812 1560 44 0.4398 1107 74 0.7759
2125 13 0.0924 1546 45 0.451 1102 75 0.7871
2125 14 0.1036 1457 46 0.4622 1093 76 0.7983
2118 15 0.1148 1452 47 0.4734 1077 77 0.8095
2040 16 0.126 1449 48 0.4846 1071 78 0.8207
2011 17 0.1372 1425 49 0.4958 1071 79 0.8319
1990 18 0.1484 1418 50 0.507 1065 80 0.8431
1975 19 0.1596 1405 51 0.5182 1051 81 0.8543
1964 20 0.1709 1383 52 0.5294 950 82 0.8655
1919 21 0.1821 1383 53 0.5406 950 83 0.8767
1900 22 0.1933 1380 54 0.5518 843 84 0.888
1892 23 0.2045 1377 55 0.563 804 85 0.8992
1863 24 0.2157 1373 56 0.5742 777 86 0.9104
1847 25 0.2269 1367 57 0.5854 754 87 0.9216
1843 26 0.2381 1361 58 0.5966 673 88 0.9328
1830 27 0.2493 1355 59 0.6078 673 89 0.944
1765 28 0.2605 1349 60 0.619 635 90 0.9552
1760 29 0.2717 1330 61 0.6302 622 91 0.9664
1741 30 0.2829 1324 62 0.6414 557 92 0.9776
1725 31 0.2941 477 93 0.9888
1725 32 0.3053   

     
     
   n=429 length of the observed period in years 
   s=89 systematically recorded flood peaks 
   g=93 systematically recorded flood peaks,  
   plus documented peaks from previous  
   centuries, together called  
    "the observed floods"  
   k=6 number of floods in the subset above 

the  
   discharge threshold  
   e=2 systematically recorded floods of the subset 
     

   Registered peak discharges at Borgharen 
(m3s-1), 

 

   related to the p.o.e. according to the E-
formulae 

 

     

    Appendix 2.1.9  
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Exceedance method threshold 

2750 m3s-1 
threshold 
2550 m3s-1 

threshold 
2100 m3s-1 

above the threshold y = -174.8 LN(x) +2124 
 
x ≤ 0.02781 
 
(3370) 

y = -265.3 LN(x) +1628 
 
x ≤ 0.0166 
 
(3520) 

y = -481 LN(x) +522 
 
x ≤ 0.0328 
 
(3952) 

below the threshold y = -453.8 LN(x) +1125 
 
 x > 0.02781 
 

y = -374.3 LN(x) +1198 
 
x > 0.0301 
 

y = -332.6 LN(x) +1189 
 
x > 0.0472 

Dalrymple method threshold 
2750 m3s-1 

threshold 
2550 m3s-1 

threshold 
2100 m3s-1 

above the threshold y = -181.8 LN(x) +2116 
 
x ≤ 0.03049 
 
(3412) 

y = -265.3 LN(x) +1658 
 
x ≤ 0.0186 
 
(3550) 

y = -481 LN(x) +552 
 
x ≤ 0.0349 
 
(3982) 

below the threshold y = -469.7 LN(x) +1110 
 
 x > 0.03049 
 

y = -373.7 LN(x) +1201 
 
x > 0.0301 
 

y = -331.7 LN(x) +1193 
 
x > 0.0472 

p.o.e (x) and peak discharge (y) ;between brackets in italics: p.o.e. 0.0008; App.2.1.10 
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             3175 1 1 0.0023 1383 53 235 0.5454
his.doc.3075 2 2 0.0047 1380 54 239 0.5567

                        3039 3 3 0.007 1377 55 244 0.568
             his.doc.3020 4 4 0.0093 1373 56 249 0.5793
             his.doc.2950 5 5 0.0116 1367 57 254 0.5906
             his.doc.2850 6 6 0.014 1361 58 259 0.6019

2664 7 11 0.0253 1355 59 264 0.6132
2550 8 16 0.0366 1349 60 269 0.6245
2280 9 21 0.0479 1330 61 273 0.6358
2279 10 25 0.0592 1324 62 278 0.6472
2200 11 30 0.0705 1295 63 283 0.6585
2165 12 35 0.0818 1295 64 288 0.6698
2125 13 40 0.0931 1289 65 293 0.6811
2125 14 45 0.1044 1275 66 298 0.6924
2118 15 50 0.1157 1259 67 303 0.7037
2040 16 55 0.127 1254 68 307 0.715
2011 17 59 0.1383 1231 69 312 0.7263
1990 18 64 0.1496 1190 70 317 0.7376
1975 19 69 0.1609 1165 71 322 0.7489
1964 20 74 0.1723 1151 72 327 0.7602
1919 21 79 0.1836 1135 73 332 0.7715
1900 22 84 0.1949 1107 74 337 0.7828
1892 23 89 0.2062 1102 75 341 0.7941
1863 24 94 0.2175 1093 76 346 0.8055
1847 25 98 0.2288 1077 77 351 0.8168
1843 26 103 0.2401 1071 78 356 0.8281
1830 27 108 0.2514 1071 79 361 0.8394
1765 28 113 0.2627 1065 80 366 0.8507
1760 29 118 0.274 1051 81 371 0.862
1741 30 123 0.2853 950 82 376 0.8733
1725 31 128 0.2966 950 83 380 0.8846
1725 32 132 0.3079 843 84 385 0.8959
1705 33 137 0.3192 804 85 390 0.9072
1700 34 142 0.3306 777 86 395 0.9185
1670 35 147 0.3419 754 87 400 0.9298
1660 36 152 0.3532 673 88 405 0.9411
1635 37 157 0.3645 673 89 410 0.9524
1605 38 162 0.3758 635 90 414 0.9638
1604 39 166 0.3871 622 91 419 0.9751
1590 40 171 0.3984 557 92 424 0.9864
1586 41 176 0.4097 477 93 429 0.9977
1575 42 181 0.421  
1572 43 186 0.4323  
1560 44 191 0.4436  
1546 45 196 0.4549  
1457 46 200 0.4662  
1452 47 205 0.4775  
1449 48 210 0.4889  
1425 49 215 0.5002  
1418 50 220 0.5115  
1405 51 225 0.5228  
1383 52 230 0.5341  

Peak discharges at Borgharen (m3s-1) and transformed ranking numbers (i), according to the 
Dalrymple method                                                                                         Appendix 2.1.11  
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Comparison of the presently used DWL 2001 principle, derived from the 
measured flood series 1911-2000 at Borgharen, with those of the present 
study on the basis of the Borgharen series 1571-2000, the preferred  
E-formulae and threshold at 2750 m3s-1                                   Appendix 2.4.1 
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Original values 
 
 
 
date 

 
 
 

Q' max 

 
 
 

X0 

 

X1 X2 X3 X4 

 
 
 

Q base 

 
 
 

Q peak 
29-11-1939 1463 793 5.2 3.1 0.8 63 597 2060 
26-11-1944 1348 933 7.5 3.4 0.2 34 492 1850 
13-02-1945 716 187 2.9 1.1 0.2 123 1229 1945 
22-12-1952 881 468 4.7 2.5 0.4 77 974 1855 
27-02-1958 1270 697 6.7 3 0.3 55 680 1950 
01-02-1961 1875 1254 8.4 3.9 0.4 103 250 2125 
11-12-1965 1061 656 6.8 3.2 -0.1 82 786 1847 
21-12-1965 997 627 7 3.4 0.2 79 895 1892 
13-12-1966 1368 1078 7 3.9 0.5 6 482 1858 
23-02-1970 1582 828 6.1 3.4 0.7 90 583 2165 
08-02-1984 1571 615 5.9 2.1 -0.2 90 979 2550 
17-03-1988 1297 704 4.8 2.6 0.6 41 613 1910 
13-01-1993 1972 931 5.8 3.4 1 83 293 2265 
22-12-1993 2009 896 4.7 2.3 0.5 56 1030 3039 
30-01-1995 1073 575 4.7 2 0.1 17 1591 2664 
27-12-1999 1291 459 4.3 1.9 0.8 77 751 2042 
sum: 21774 11701 92.3 45.2 6.4 1076 12225 34017 
mean: 1361 731 5.8 2.8 0.4 67 764 2126 

     
    non-dimensional 

values:  
  

 Q' max X0 X1 X2 X3 X4 Q base Q peak 
29-11-1939 1.0749 0.1005 0.8966 0.5345 0.8 2119 0.781414 0.968955 
26-11-1944 0.9904 0.1182 1.2931 0.5862 0.2 1144 0.643979 0.870178 
13-02-1945 0.5261 0.0237 0.5 0.1897 0.2 4138 1.608639 0.914863 
22-12-1952 0.6473 0.0593 0.8103 0.431 0.4 2590 1.274869 0.872530 
27-02-1958 0.9331 0.0883 1.1552 0.5172 0.3 1850 0.890052 0.917215 
01-02-1961 1.3777 0.1589 1.4483 0.6724 0.4 3465 0.327225 0.999529 
11-12-1965 0.7796 0.0831 1.1724 0.5517 -0.1 2758 1.028796 0.868767 
21-12-1965 0.7325 0.0794 1.2069 0.5862 0.2 2658 1.171466 0.889934 
13-12-1966 1.0051 0.1366 1.2069 0.6724 0.5 202 0.63089 0.873941 
23-02-1970 1.1624 0.1049 1.0517 0.5862 0.7 3028 0.763089 1.018344 
08-02-1984 1.1543 0.0779 1.0172 0.3621 -0.2 3028 1.281414 1.199435 
17-03-1988 0.953 0.0892 0.8276 0.4483 0.6 1379 0.802356 0.898400 
13-01-1993 1.4489 0.1179 1 0.5862 1 2792 0.383508 1.065381 
22-12-1993 1.4761 0.1135 0.8103 0.3966 0.5 1884 1.348168 1.429445 
30-01-1995 0.7884 0.0728 0.8103 0.3448 0.1 572 2.082461 1.253057 
27-12-1999 0.9486 0.0581 0.7414 0.3276 0.8 2590 0.982984 0.960489 
sum: 15.9985 1.4823 15.9483 7.7931 6.4 36197 16.00131 16.00047 
mean: 0.9999 0.0926 0.9968 0.4871 0.4 2262 1.000082 1.000029 
 stdev: 0.2769 0.0329 0.2442 0.1361 0.3327 1049 0.4546 0.1629 

     
     

Original and non-dimensional values of flood 
wave parameters                      Appendix  3.2.1 
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Spearman’s Rank Correlation Coefficients (r s):   
Q' X 0 X 1 X 2 X 3 X 4 Qbase Period 
0.22 0.22 0.3 0.55 0.07 0.13 -0.22 1930 - 1980
-0.43 -0.49 -0.89 -0.6 0.31 -0.43 0.31 1980 - 2000

   
crit.value:   
r s 0.025;10: 0.65 From Table XIV, McClave 1997  

r s  0.025; 6: 0.89  

Rejection region: r s > r s  0.025; n  

n  pairs of observations  
   

Equivalence of averages of the sets before and after 1980  
date Q' duration X 0 X 1 X 2 X 3 X 4 
29-11-1939 1463 14 793 5.2 3.1 0.8 63 
26-11-1944 1348 14 933 7.5 3.4 0.2 34 
13-2-1945 716 5 187 2.9 1.1 0.2 123 
22-12-1952 881 10 468 4.7 2.5 0.4 77 
27-2-1958 1270 14 697 6.7 3 0.3 55 
01-2-1961 1875 16 1254 8.4 3.9 0.4 103 
11-12-1965 1061 13 656 6.8 3.2 -0.1 82 
21-12-1965 997 14 627 7 3.4 0.2 79 
13-12-1966 1368 15 1078 7 3.9 0.5 6 
23-2-1970 1582 15 828 6.1 3.4 0.7 90 
mean 1256 13 752 6.2 3.1 0.4 71 
stdev 348 3.23 303 1.6 0.8 0.3 32 

   
08-2-1984 1571 11 615 5.9 2.1 -0.2 90 
17-3-1988 1297 11 704 4.8 2.6 0.6 41 
13-1-1993 1972 15 931 5.8 3.4 1 83 
22-12-1993 2009 10 896 4.7 2.3 0.5 56 
30-1-1995 1073 10 575 4.7 2 0.1 17 
27-12-1999 1291 10 459 4.3 1.9 0.8 77 
mean 1536 11 697 5 2.4 0.5 61 
stdev 386 2 186 0.7 0.5 0.5 28 
medium  1200-1500  600-850    50-80 
values of 16    
observations   

   
Calculation:   
F  1.23 2.77 2.65 5.83 2.19 3.39 1.3 
S' 362 3 267 1.32 0.72 0.34 31 
T 0.4 0.33 0.11 -0.75 0.51 0.17 0.18 
crit.value: 
F = 6.68 

 F= (stdev I / stdev II)2, in which I the series 1930-1980 and in 
which II the series 1980-2000 

t 0.025; 14 
= 2.15    

 

  s’=[9/14(std I)2 + 5/14(std II)2]0.5 
 
 

 

Study of trend breach in the series of flood wave properties (Q peak > 1850 m3s-1) at  
Borgharen; 
Statistical equivalence of the standard deviations and the averages of the sets before and 
after1980                                                                                                                    Appendix 3.3.1 
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 Q' max X0 X1 X2 X3 X4 Qbase    Qpeak 

 1.0749 0.8468 1.0167 1.0872 0.6658 0.5595 0.4758    1.648 
 0.9904 0.9959 1.4664 1.1924 0.1665 0.302 0.3921    1.480 
 0.5261 0.1997 0.567 0.3858 0.1665 1.0924 0.9795    1.556 
 0.6473 0.4996 0.9189 0.8768 0.3329 0.6838 0.7763    1.484 
 0.9331 0.744 1.31 1.0521 0.2497 0.4885 0.542    1.560 
 1.3777 1.3388 1.6423 1.3678 0.3329 0.9147 0.1993    1.700 
 0.7796 0.7002 1.3295 1.1223 -0.0832 0.7282 0.6264    1.478 
 0.7325 0.669 1.3686 1.1924 0.1665 0.7016 0.7133    1.514 
 1.0051 1.1509 1.3686 1.3678 0.4162 0.0533 0.3842    1.486 
  1.1624 0.8838 1.1927 1.1924 0.5826 0.7993 0.4647    1.732 
  1.1543 0.6563 1.1536 0.7365 -0.1665 0.7993 0.7803    2.040 
  0.9530 0.7515 0.9385 0.9118 0.4994 0.3641 0.4886    1.528 
  1.4489 0.9934 1.134 1.1924 0.8323 0.7371 0.2335    1.812 
  1.4761 0.9563 0.9189 0.8066 0.4162 0.4973 0.8209    2.431 
  0.7884 0.6134 0.9189 0.7014 0.0832 0.151 1.268    2.131 
  0.9486 0.4895 0.8407 0.6663 0.6658 0.6838 0.5985    1.634 

 0.9999 0.7806 1.1303 0.9908 0.3329 0.5972 0.6090    1.701   mean 
 0.2769 0.2771 0.2769 0.2769 0.2769 0.2769 0.2768    0.2769 stdev. 
     

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Non-dimensional and standardized flood wave parameter values 
                                                                                    Appendix 3.4.1               
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Relations between flood wave properties                                  Appendix 3.4.2a 
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Relations between flood wave properties                                              Appendix 3.4.2b 
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Relations between flood wave properties                                   Appendix 3.4.2c  
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Q Venlo H Venlo 
 

 

1538            1610  
1770 16.65  
1805 16.72  
2285 17.55  
2404 17.72  
2719 18.17  
2926 18.46  
3085 18.68  
   
   

 
 
 
 
 
 
 
  
  
 
 
 
 

 

 
  

   
    
    
   

   
    
   
  
  

   
Quasi-steady discharge curve at Venlo  
(km. 107.470), January 1996 
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t Q' 
0 0 0 0  
1 345 424 147  
2 1505 537 187  
3 2009 369 128  
4 1680 837 1505  
5 1375 2011 2011  
6 1189 1838 1680  
7 888 1450 653  
8 633 1250 430  
9 487 960 274  

10 258 610 122  
11 0 80 -20  

 10369 10366 7117  
X0 8.96E+08 8.96E+08 6.15E+08  

X4 5.55E-11 8.97E-11 5.58E-11  

Qbase 1030 1030 1030  
                1 2 3  
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   

Fig.3.5.3  Flood wave shapes at Borgharen   
   

1 reference relative flood of 1993  
2 original X4 of 1984 and adapted X0 and Q'max to that of 1993 (90, 896, 2009, 
respectively) 
3 original X0 of 1984 and adapted X4 and Q'max to that of 1993 (615, 56, 2009, 
respectively) 
X0 in 106 m3  

X4 in 10-12 s-2  

Q'max in m3s-1  
 
Influence on the flood wave shape of each of the variables X0 and X4,    
because of alternately adaptation of the variables X0 and X4 of 1984 to 
those of 1993                                                                                                 Appendix 3.5.1      
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0 0 0 0
1 345 383 121  
2 1505 1077 341  
3 2009 1270 402  
4 1680 1879 1505  
5 1375 2009 2009  
6 1189 1878 1680  
7 888 1081 342  
8 633 539 171  
9 487 341 108  

10 258 -84 -26  
11 0  
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Fig.3.5.4 Flood wave shapes at Borgharen   
 
I  reference relative flood of 1993

 

II original X4 of 1995 and adapted X0 and Q'max to that of 1993 (17,896,2009, 
respectively) 
III original X0 of 1995 and adapted X4 and Q'max to that of 1993 (575,56, 2009, 
respectively) 
X0 in 106 m3  

X4 in 10-12 s-2  

Q'max in m3s-1  
   

Influence on the flood wave shape of each of the variables X0 and X4, 
because of alternately adaptation of the variables X0 and X4 of 1995 to 
those of 1993 
                                                                                                          Appendix 3.5.2 
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t Q Q Q  
0 1030 1030 1030  
1 1375 1454 1177  
2 2535 1567 1217  
3 3039 1399 1158  
4 2710 1867 2535  
5 2405 3041 3041  
6 2219 2868 2710  
7 1918 2480 1683  
8 1663 2280 1460  
9 1517 1990 1304  

10 1288 1640 1152  
11 1030 1110 1010  

   
X0 8.96E+08 8.96E+08 6.15E+8  

X4 5.55E-11 8.97E-11 5.58E-11  
   
 1* 2* 3*  
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   

Flood wave shapes at Borgharen. Discharges of Fig.3.5.3 increased by the base 
discharge  
of the 1993 flood   

   
1* reference flood of 1993  
2* original X4 of 1984 and adapted X0 and Qmax to that of 1993  

3* original X0 of 1984 and adapted X4  and Qmax to that of 1993  
   
   
   
   

Comparable flood waves in 1984, 1993 and 1995 with variable X0 and X4 for  
the 1984 flood  
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0

500

1000

1500

2000

2500

3000

3500

0 1 2 3 4 5 6 7 8 9 10 11 12
day

Q
 (m

3
s-1

)

1*

2*

3*



 139

t Q Q Q 
0 1030 1030 1030  
1 1375 1413 1151  
2 2535 2107 1371  
3 3039 2300 1432  
4 2710 2909 2535  
5 2405 3039 3039  
6 2219 2908 2710  
7 1918 2111 1372  
8 1663 1569 1201  
9 1517 1371 1138  

10 1288 946 1004  
11 1030  

 I* II* III*  
X0 8.96E+08 8.96E+08 5.75E+08  

X4 5.55E-11 1.74E-11 5.55E-11  
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   

Flood wave shapes at Borgharen. Discharges of Fig.3.5.4 increased by the base 
discharge of   
the 1993 flood   
 
I* reference flood of 1993 
II* original X4 of 1995 and adapted X0 and Qmax to that of 1993  

III* original X0 of 1995 and adapted X4 and Qmax to that of 1993  
   
   
   
   
   

Comparable flood waves of 1984, 1993 and 1995 with variable X0 and X4 
of the 1995 flood 

    Appendix 3.5.4 
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Date Q peak Q base X 0 Q’ –1 Q’ +1 X4 Q' max duration
05-1-1931 1425 318 731 911 1042 32 1107 16
15-1-1938 1525 583 514 670 877 48 942 13
25-1-1939 1481 899 149 312 429 97 582 6
29-11-1939 2060 597 793 1085 1157 63 1463 14
06-11-1940 1360 96 526 909 1051 60 1264 9
26-11-1944 1840 492 933 1025 1329 34 1348 14
13-2-1945 1945 1229 187 210 563 123 716 5
08-2-1946 1640 579 899 1041 1041 5 1061 15
09-4-1947 1495 389 473 1071 971 21 1106 10
04-1-1948 1495 746 297 390 728 68 749 10
16-1-1948 1540 699 355 667 642 59 841 10
21-1-1951 1485 766 227 279 664 92 719 8
04-1-1952 1413 442 376 728 818 55 971 9
13-1-1952 1630 543 557 1082 735 44 1087 15
13-2-1952 1440 553 273 822 620 50 887 7
22-12-1952 1855 974 468 412 846 77 881 10
19-1-1955 1360 494 607 772 834 19 866 14
05-3-1956 1830 366 516 1079 972 80 1464 10
16-2-1957 1422 633 358 737 727 19 789 8
27-2-1957 1360 947 86 347 203 90 413 4
27-2-1958 1950 680 697 965 1050 55 1270 14
06-12-1960 1600 540 404 850 845 54 1060 9
01-2-1961 2125 250 1254 838 1470 103 1875 16
14-2-1962 1645 464 613 307 981 122 1181 13
22-11-1963 1530 462 472 1008 831 37 1068 12
11-12-1965 1847 786 656 546 923 82 1061 13
21-12-1965 1892 895 627 488 916 79 997 14
04-1-1966 1690 926 273 716 574 42 764 8
13-12-1966 1850 482 1078 1330 1340 6 1368 15
25-12-1967 1586 309 722 881 1091 61 1277 13
16-1-1968 1370 558 491 344 792 81 812 11
23-2-1970 2165 583 828 797 1310 90 1582 15
12-12-1979 1456 100 1151 967 1223 52 1356 16
06-2-1980 1413 559 539 808 804 15 854 13
08-2-1984 2550 979 615 664 1427 90 1571 11
24-11-1984 1625 201 668 644 1249 90 1424 15
01-4-1986 1664 604 363 261 914 119 1060 11
03-1-1987 1555 563 472 760 732 66 992 13
17-3-1988 1910 613 704 1230 964 41 1297 11
16-2-1990 1440 256 622 551 978 95 1184 15
05-1-1991 1843 976 516 659 853 34 867 13
23-12-1991 1645 345 394 816 892 92 1300 10
13-1-1993 2265 293 931 1067 1652 83 1972 15
22-12-1993 3039 1030 896 1515 1670 56 2009 10
08-1-1994 1588 1199 99 366 213 69 389 5
30-1-1995 2664 1591 575 1027 981 17 1073 10
02-11-1998 1798 658 461 573 810 105 1140 14
04-3-1999 1492 685 341 739 585 48 807 10
14-12-1999 1447 433 606 783 953 39 1014 11
27-12-1999 2042 751 459 696 1148 77 1291 10
Parameter values of the floods at Borgharen                                          Appendix  4.2.1
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Open symbols: class-mid measured from all floods, and (- - -) derived from major floods 

   
   
   
   
   
   
   
   
   
   
   
   
   
   
   

 
Open symbols: class-mid measured from all floods, and (- - -) derived from major floods 

 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 

Open symbols: class-mid measured from all floods, and (- - -) derived from major floods 

Normal frequency distributions of the significant flood wave parameter values in the  
period 1930-2000. Floods over 1350 m3s-1 with medium interval (⎯) and Floods over  
1850 m3s-1 with medium interval (- - -)                                                              Appendix 4.3.1          
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wave  duration to equations to 
Date Q peak Q' peak period the top the measured Q' top  R2 

08-2-1984 2550 1571 11 5 Q' = 84.55t2 - 167.3t + 149 0.89 
24-11-1984 1625 1424 15 3 Q'  = 154t2 + 12.8t 1 
01-4-1986 1664 1060 11 5 Q'  = 56.84t2 - 114.91t + 71 0.84 
03-1-1987 1555 992 13 5 Q'  = 28.14t2 + 57.77t + 14 0.99 
17-3-1988 1910 1297 11 5 Q' = -70.8t2 + 585.3t + 78 0.96 
16-2-1990 1440 1184 15 5 Q'  = 61.07t2 - 97.87t + 69 0.95 
05-1-1991 1843 867 13 3 Q'  = -1.25t2 + 306.65t – 21 0.98 

23-12-1991 1645 1300 10 3 Q'  = 89.25t2 + 190.55t – 37 0.97 
13-1-1993 2265 1972 15 3 Q'  = 176.25t2 + 149.15t – 31 0.99 

22-12-1993 3039 2009 10 3 Q'  = 39.75t2 + 599.45t – 74 0.96 
08-1-1994 1588 389 5 3 Q'  = -25.75t2 + 215.55t – 13 0.97 
30-1-1995 2664 1073 10 5 Q'  = -59.21t2 + 515.04t – 41 0.97 

02-11-1998 1798 1140 14 6 Q'  = 28.60t2 - 16.43t + 88 0.91 
04-3-1999 1492 807 10 3 Q'  = -71.5t2 + 493.7t – 15 0.99 

14-12-1999 1447 1014 11 2 Q'  = -272t2 + 1051t  1 
27-12-1999 2042 1291 10 3 Q'  = 112.5t2 + 103.5t – 16 1 

  average 12 average 4   
    

equations after   
the measured Q' top  R2 

Q'  = 3t2 - 321.2t+3174  0.99 
Q'  = 9.92t2 - 291.13t + 2211  0.99 
Q'  = 17.77t2 - 461.7t + 2975  0.99 
Q'  = 6.996t2 - 234.2t + 1931  0.98 
Q'  = 42.19t2 - 844.4t + 4472  0.98 
Q'  = 7.88t2 - 248.37t + 2169  0.95 
Q'  = 2.95t2 - 120.23t + 1199  0.78 
Q'  = 27.62t2 - 534.37t + 2605  0.98 
Q'  = 14.88t2 - 416.8t + 3054  0.97 
Q'  = 6.697t2 - 337.66t + 2937.4  1 
Q'  = 30t2 – 404.6t + 1340  0.99 
Q'  = -13.89t2 - 19.18t + 1558  0.98 
Q'  = 18.90t2 - 517.14t + 3551  0.98 
Q'  = 9.53t2 - 226.38t + 1372  0.98 
Q'  = -1.82t2 - 46.26t + 998  0.72 
Q'  = 20.83t2 - 460.24t + 2560  0.99 

    
    
    
    
    
    
    
    
    
    

All flood events (t; Q' ) 1980-2000 at Borgharen described with second degree 
polynomials 
   Appendix 4.3.2 
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The period 1980-2000 starts at flood number 35 
 

 

Progressive mean of each 10 consecutive flood wave crest curvatures (X4) 
at  Borgharen in the period 1931-2000 

Appendix 4.3.3 

0

20

40

60

80

100

120

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50
number of  the f lood (in order of  time)

X 4
  (

10
-1

2
  s

-2
 )



 144

Appendix 4.4.1
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H.Barneveld & A. Bastings (1998). Stage-discharge curve Borgharen village (km 16) 
Directorate Limburg,  
valid from 20-12-1995 

  

    
   
   
   
   
   
   
   
   
   
   
   

  
   
   

  
 
 
  
  Stage-discharge curve 2001 at Borgharen                                         Appendix 4.4.3                      
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   wave number H Venlo H Mook    wave number H Venlo H Mook  wave  number H Venlo H Mook
1 15.72 9.15 51 15.46 8.92 101 15.39 8.87
2 16.73 9.98 52 18.02 11.48 102 16.83 10.11
3 15.18 8.69 53 15.98 9.4 103 16.31 9.69
4 16.97 10.24 54 16.44 9.79 104 15.38 8.87
5 15.39 8.85 55 17.2 10.47 105 16.41 9.72
6 15.82 9.23 56 16.14 9.52 106 15.69 9.14
7 15.34 8.82 57 15.99 9.38 107 15.54 8.99
8 16.52 9.81 58 16.25 9.62 108 16.26 9.58
9 15.76 9.15 59 16.75 10.02 109 16.81 10.03

10 16.38 9.69 60 15.7 9.09 110 16.41 9.71
11 15.64 9.06 61 15.79 9.23 111 16.26 9.62
12 17.66 10.9 62 16.53 9.81 112 16.14 9.51
13 15.97 9.39 63 16.13 9.51 113 15.56 8.98
14 15.49 8.95 64 17.91 11.27 114 15.83 9.24
15 16.19 9.57 65 16.28 9.64 115 16.31 9.68
16 16 9.39 66 15.37 8.85 116 15.78 9.18
17 15.75 9.18 67 16.46 9.77 117 15.71 9.14
18 15.71 9.14 68 16.73 10.01 118 15.91 9.33
19 16.52 9.78 69 15.65 9.1 119 15.78 9.19
20 15.66 9.1 70 15.53 8.97 120 15.66 9.06
21 15.94 9.34 71 18.01 11.46 121 15.94 9.34
22 15.78 9.2 72 15.68 9.1 122 16.18 9.55
23 15.7 9.12 73 16.31 9.64 123 16.65 9.94
24 16.08 9.42 74 15.25 8.73 124 15.66 9.09
25 16.87 10.12 75 15.76 9.18 125 16.81 10.03
26 15.59 9.04 76 17.13 10.36 126 17.25 10.45
27 16.07 9.48 77 15.71 9.13 127 16.23 9.6
28 16.82 10.05 78 16.96 10.22 128 15.83 9.28
29 17.56 10.78 79 15.39 8.87 129 15.51 8.96
30 15.77 9.18 80 15.66 9.09 130 16.25 9.62
31 17.15 10.41 81 15.77 9.2 131 16.37 9.67
32 15.1 8.62 82 15.77 9.2 132 15.37 8.83
33 15.48 8.95 83 16.21 9.57 133 16.59 9.88
34 15.78 9.2 84 17.09 10.37 134 15.45 8.9
35 15.11 8.63 85 16.02 9.4 135 15.53 8.95
36 15.19 8.68 86 16.13 9.47 136 16.51 9.82
37 16.34 9.64 87 15.73 9.17 137 15.94 9.33
38 15.44 8.91 88 16.04 9.41 138 15.9 9.28
39 15.41 8.87 89 15.97 9.39 139 18.45 12.05
40 15.91 9.34 90 15.49 8.93 140 16.79 10.07
41 16.18 9.57 91 15.67 9.1 141 16.19 9.53
42 15.98 9.37 92 16.49 9.79 142 16.25 9.62
43 16.65 9.94 93 15.66 9.08 143 16.68 9.96
44 15.84 9.27 94 16.7 9.97 144 17.74 10.97
45 16.87 10.12 95 15.9 9.32 145 16.59 9.9
46 17.82 11.18 96 16.76 10.04 146 15.83 9.27
47 15.75 9.16 97 15.91 9.3 147 15.75 9.19
48 17.03 10.25 98 16.72 9.93 148 17.6 10.78
49 15.69 9.13 99 17.03 10.28 149 16.65 9.92
50 16.31 9.66 100 15.97 9.39 150 16.12 9.5

File with maximum water levels at Venlo and  Mook, as a result of one thousand samples of combinations of four   significant 
flood wave parameter values at Borgharen and Sobek water level computations for the synthesized flood waves at Borgharen 
out of the samples                                                                                                                                      Appendix 4.5.1 (7 pages)
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wave number H Venlo  H Mook wave number H Venlo  H Mook wave number H Venlo  H Mook 
151 15.69 9.12 204 16.06 9.43 257 15.54 8.99 
152 16.28 9.6 205 15.76 9.19 258 15.96 9.36 
153 15.58 9.02 206 16.09 9.5 259 16.08 9.46 
154 16.97 10.18 207 15.41 8.89 260 17.12 10.42 
155 15.82 9.26 208 17.01 10.24 261 15.75 9.17 
156 15.68 9.11 209 16.01 9.39 262 15.57 9.03 
157 16.74 10.01 210 15.51 8.97 263 16.81 10.01 
158 16.2 9.55 211 15.6 9.04 264 16.64 9.91 
159 16.39 9.68 212 16.09 9.5 265 16.65 9.94 
160 15.64 9.08 213 16.69 9.95 266 15.38 8.83 
161 15.16 8.65 214 16.28 9.61 267 15.74 9.16 
162 15.15 8.65 215 16.11 9.51 268 16.08 9.46 
163 15.89 9.29 216 15.43 8.9 269 15.39 8.85 
164 16.66 9.94 217 15.11 8.63 270 16.67 9.93 
165 15.98 9.4 218 15.62 9.07 271 15.99 9.39 
166 16.69 9.95 219 15.49 8.95 272 15.88 9.28 
167 16.14 9.51 220 16.42 9.76 273 15.46 8.92 
168 16.44 9.76 221 16.03 9.41 274 16.21 9.6 
169 15.65 9.07 222 16.81 10.07 275 16.58 9.83 
170 16.04 9.37 223 15.76 9.18 276 15.55 9 
171 17.07 10.35 224 15.75 9.25 277 16.46 9.77 
172 15.24 8.73 225 15.66 9.08 278 15.59 9.06 
173 15.51 8.96 226 15.71 9.15 279 15.64 9.11 
174 15.82 9.22 227 15.94 9.27 280 16.23 9.62 
175 15.63 9.07 228 15.8 9.25 281 15.77 9.2 
176 15.93 9.33 229 16.03 9.36 282 15.72 9.15 
177 15.22 8.68 230 15.9 9.32 283 16.92 10.2 
178 15.91 9.31 231 15.87 9.27 284 15.7 9.15 
179 15.3 8.79 232 17.27 10.56 285 17.32 10.62 
180 16.26 9.63 233 15.6 9.04 286 16.83 10.12 
181 15.74 9.15 234 16.74 9.97 287 16.93 10.11 
182 16.54 9.81 235 16.87 10.12 288 17.6 10.76 
183 16.28 9.58 236 16.86 10.04 289 16.86 10.05 
184 15.53 8.99 237 15.97 9.41 290 15.96 9.38 
185 15.55 8.99 238 15.98 9.4 291 15.92 9.32 
186 15.61 9.04 239 15.71 9.13 292 15.86 9.3 
187 18 11.43 240 16.77 10.02 293 15.82 9.24 
188 16.14 9.53 241 17.02 10.25 294 16.42 9.73 
189 15.88 9.33 242 15.87 9.31 295 16.09 9.48 
190 15.74 9.18 243 16 9.33 296 16.07 9.46 
191 16.31 9.68 244 15.97 9.35 297 15.23 8.73 
192 17.19 10.43 245 15.36 8.82 298 15.98 9.37 
193 15.37 8.84 246 15.81 9.23 299 15.74 9.2 
194 15.51 8.96 247 15.68 9.11 300 15.91 9.31 
195 15.55 9 248 17.07 10.33 301 15.88 9.29 
196 15.86 9.29 249 17.02 10.27 302 16.32 9.69 
197 15.17 8.68 250 16.88 10.14 303 16.04 9.44 
198 16.75 10.02 251 16.66 9.96 304 17.18 10.44 
199 16.21 9.58 252 16.28 9.65 305 16.46 9.76 
200 15.61 9.02 253 16.82 10.05 306 16.15 9.55 
201 16.11 9.49 254 16.59 9.86 307 17.19 10.46 
202 15.57 9.03 255 16.79 9.97 308 16.56 9.87 
203 16.29 9.62 256 15.57 9.04 309 16.91 10.11 
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 wave number H Venlo  H Mook wave number H Venlo  H Mook wave number H Venlo  H Mook 
310 16.71 9.97 363 16 9.39 416 15.7 9.09 
311 15.5 8.94 364 16.44 9.76 417 15.69 9.12 
312 15.2 8.7 365 16.32 9.69 418 15.74 9.16 
313 15.68 9.12 366 16.88 10.08 419 17 10.24 
314 16.14 9.47 367 16.34 9.66 420 15.33 8.82 
315 17.25 10.51 368 17.36 10.6 421 15.83 9.27 
316 16.66 9.89 369 15.54 8.99 422 16.27 9.64 
317 16.16 9.54 370 16.09 9.46 423 17.87 11.19 
318 16.44 9.68 371 16.61 9.89 424 15.48 8.93 
319 16.98 10.18 372 15.62 9.07 425 16.02 9.43 
320 16.19 9.56 373 15.84 9.23 426 16.4 9.77 
321 17.9 11.04 374 15.88 9.22 427 15.77 9.2 
322 17.17 10.41 375 15.84 9.26 428 16.43 9.75 
323 15.86 9.26 376 16.06 9.46 429 15.27 8.75 
324 15.73 9.14 377 17.14 10.43 430 15.87 9.27 
325 16.86 10.13 378 15.24 8.71 431 16.73 9.97 
326 15.47 8.93 379 15.49 8.93 432 16.64 9.91 
327 16.12 9.5 380 15.84 9.23 433 15.69 9.1 
328 15.8 9.21 381 15.45 8.91 434 15.99 9.38 
329 15.72 9.15 382 16.54 9.83 435 15.69 9.13 
330 15.79 9.17 383 15.46 8.93 436 15.74 9.12 
331 15.8 9.22 384 17.13 10.36 437 17.83 10.92 
332 16.68 9.96 385 16.51 9.86 438 16.11 9.45 
333 16.58 9.87 386 18.28 11.7 439 15.98 9.37 
334 15.72 9.15 387 15.98 9.39 440 16.01 9.4 
335 15.28 8.77 388 15.89 9.28 441 16.25 9.58 
336 16.56 9.85 389 16.77 10.05 442 16.45 9.69 
337 16.81 10.04 390 15.69 9.13 443 15.56 9 
338 16.8 10.07 391 16.84 10.04 444 16.53 9.82 
339 17.31 10.55 392 16.19 9.54 445 16.2 9.58 
340 15.73 9.16 393 15.98 9.39 446 15.79 9.19 
341 17.5 10.7 394 16.86 10.12 447 16.13 9.51 
342 15.54 9 395 15.68 9.07 448 15.53 8.96 
343 16.71 9.92 396 16.44 9.74 449 15.46 8.93 
344 15.4 8.87 397 15.99 9.38 450 16.52 9.86 
345 16.11 9.49 398 15.77 9.19 451 16.92 10.21 
346 16.96 10.25 399 18.31 11.8 452 15.9 9.33 
347 15.15 8.63 400 16.5 9.8 453 15.41 8.89 
348 16.2 9.57 401 17.04 10.31 454 16.02 9.4 
349 17.7 11 402 17.41 10.68 455 16.68 9.95 
350 15.45 8.91 403 15.55 8.98 456 15.46 8.92 
351 17 10.23 404 16 9.42 457 16.27 9.59 
352 16.45 9.75 405 17.59 10.77 458 15.49 8.97 
353 15.41 8.89 406 15.66 9.09 459 17.86 11.2 
354 16.02 9.43 407 16.86 10.1 460 15.61 9.04 
355 16.78 10.03 408 16.06 9.46 461 16.56 9.86 
356 16.94 10.17 409 16.5 9.8 462 16.02 9.4 
357 15.17 8.66 410 15.31 8.79 463 15.99 9.42 
358 15.84 9.25 411 15.86 9.29 464 15.68 9.07 
359 16.54 9.84 412 15.56 8.99 465 16.59 9.84 
360 15.61 9.08 413 15.49 8.95 466 15.21 8.68 
361 15.37 8.85 414 17.34 10.6 467 15.53 8.97 
362 16.03 9.42 415 15.73 9.25 468 16.97 10.23 
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wave number H Venlo  H Mook wave number H Venlo  H Mook wave number H Venlo  H Mook 
469 15.98 9.39 522 16.05 9.47 575 15.84 9.23 
470 16.74 9.97 523 15.25 8.76 576 16.4 9.7 
471 16.12 9.53 524 16.26 9.62 577 17.55 10.7 
472 16.77 10.05 525 16.2 9.57 578 17.28 10.56 
473 15.6 8.98 526 17.26 10.5 579 15.95 9.38 
474 16.47 9.71 527 17.14 10.37 580 16.21 9.57 
475 16.41 9.72 528 18.31 11.77 581 15.89 9.32 
476 15.92 9.31 529 17.14 10.36 582 16 9.43 
477 16.74 10.01 530 16.4 9.72 583 15.59 9.06 
478 15.72 9.16 531 17.69 10.97 584 16.38 9.65 
479 15.86 9.26 532 15.7 9.11 585 15.28 8.74 
480 15.57 9.02 533 16.27 9.57 586 17 10.18 
481 16 9.38 534 15.59 9.04 587 15.96 9.36 
482 17.02 10.23 535 16.5 9.78 588 15.72 9.12 
483 15.11 8.62 536 15.65 9.05 589 16.46 9.77 
484 15.41 8.89 537 16.37 9.66 590 15.57 9.01 
485 16.78 10.01 538 16.6 9.88 591 15.78 9.21 
486 15.43 8.9 539 16.15 9.55 592 16 9.4 
487 15.92 9.33 540 15.25 8.75 593 16.32 9.68 
488 15.95 9.38 541 16.94 10.25 594 17.43 10.59 
489 16.04 9.46 542 16.19 9.57 595 16.78 9.98 
490 15.2 8.69 543 16.18 9.52 596 17.8 10.86 
491 17.32 10.44 544 15.94 9.32 597 15.94 9.34 
492 17.07 10.28 545 15.83 9.17 598 15.63 9.05 
493 15.65 9.09 546 15.22 8.7 599 15.22 8.71 
494 16.14 9.48 547 15.47 8.94 600 15.72 9.17 
495 15.55 8.95 548 16.83 10.06 601 15.34 8.83 
496 15.68 9.1 549 15.95 9.37 602 15.24 8.74 
497 17.04 10.24 550 15.68 9.14 603 16.18 9.55 
498 16.26 9.59 551 16.76 10.02 604 17.03 10.24 
499 15.69 9.12 552 18.23 11.6 605 16.28 9.65 
500 16.09 9.47 553 15.42 8.89 606 15.31 8.79 
501 16.75 10.03 554 16.14 9.51 607 15.63 9.06 
502 17.11 10.29 555 15.65 9.08 608 15.99 9.42 
503 15.63 9.07 556 16.68 9.96 609 16.04 9.45 
504 15.57 9.03 557 16.71 9.96 610 15.73 9.16 
505 16.18 9.57 558 15.92 9.3 611 17.06 10.3 
506 15.94 9.35 559 15.93 9.33 612 15.48 8.95 
507 15.65 9.08 560 16.1 9.44 613 15.71 9.1 
508 16.57 9.85 561 16.28 9.65 614 16.14 9.51 
509 15.07 8.6 562 16.99 10.28 615 15.88 9.27 
510 16.26 9.63 563 16.11 9.51 616 15.76 9.16 
511 15.83 9.25 564 15.99 9.39 617 16.93 10.1 
512 15.31 8.81 565 15.67 9.09 618 17.14 10.39 
513 16.02 9.43 566 17.22 10.31 619 15.8 9.22 
514 17.54 10.68 567 16.41 9.78 620 15.7 9.13 
515 15.79 9.18 568 15.93 9.35 621 16.68 9.96 
516 15.86 9.24 569 18.31 11.78 622 15.64 9.09 
517 15.36 8.82 570 15.83 9.22 623 16.3 9.66 
518 16.04 9.45 571 17.18 10.44 624 16.43 9.78 
519 16.32 9.63 572 16.49 9.79 625 16.49 9.79 
520 15.18 8.69 573 16 9.39 626 16.19 9.53 
521 17.03 10.26 574 16.26 9.63 627 15.2 8.68 
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 wave number H Venlo  H Mook wave number H Venlo  H Mook wave number H Venlo H Mook 
628 15.93 9.31 681 16.05 9.47 734 15.89 9.28 
629 15.23 8.71 682 16.62 9.89 735 15.92 9.28 
630 16.46 9.77 683 15.4 8.88 736 16.05 9.45 
631 16.92 10.16 684 16.87 10.05 737 16.41 9.74 
632 16.53 9.81 685 15.82 9.26 738 16.13 9.51 
633 15.91 9.35 686 16.14 9.45 739 16.41 9.76 
634 16.3 9.67 687 17.84 11.16 740 15.94 9.34 
635 15.97 9.37 688 15.23 8.74 741 16.9 10.11 
636 15.81 9.23 689 15.74 9.19 742 16.17 9.55 
637 15.75 9.16 690 15.48 8.95 743 16.46 9.75 
638 16.45 9.76 691 15.47 8.95 744 15.96 9.36 
639 15.96 9.35 692 15.35 8.82 745 17.08 10.33 
640 16.08 9.46 693 15.88 9.28 746 15.94 9.35 
641 15.43 8.9 694 17.4 10.66 747 16.34 9.65 
642 16.6 9.85 695 16.55 9.83 748 16.11 9.49 
643 16.01 9.39 696 15.16 8.65 749 15.84 9.26 
644 16.35 9.66 697 16.33 9.63 750 16.37 9.72 
645 16.57 9.84 698 15.3 8.79 751 17.46 10.62 
646 15.43 8.9 699 16.24 9.61 752 15.56 9.02 
647 17.81 11.18 700 16.1 9.5 753 15.78 9.22 
648 16.7 9.98 701 16.57 9.85 754 15.34 8.82 
649 16.84 10.15 702 15.71 9.11 755 15.92 9.31 
650 16.66 9.92 703 16.55 9.85 756 16.07 9.46 
651 16.95 10.14 704 16.81 10.01 757 17.15 10.42 
652 16 9.41 705 15.88 9.32 758 15.63 9.08 
653 15.94 9.33 706 17.04 10.3 759 16.35 9.72 
654 16.98 10.15 707 16.35 9.65 760 16.17 9.54 
655 17.62 10.83 708 15.73 9.15 761 16.11 9.44 
656 16.27 9.6 709 15.79 9.2 762 15.8 9.23 
657 18.3 11.83 710 15.58 9.02 763 18.29 11.74 
658 15.99 9.4 711 15.38 8.86 764 15.49 8.96 
659 16.12 9.53 712 16.49 9.79 765 15.49 8.95 
660 15.6 8.98 713 15.9 9.3 766 15.59 9.04 
661 15.43 8.9 714 15.9 9.34 767 16.02 9.4 
662 16.59 9.87 715 16.02 9.45 768 16.14 9.49 
663 15.69 9.12 716 15.76 9.19 769 16.87 10.01 
664 16.32 9.63 717 15.58 9.01 770 15.56 8.99 
665 16.99 10.29 718 15.7 9.12 771 15.95 9.33 
666 17.79 10.85 719 15.87 9.27 772 15.35 8.83 
667 16.01 9.44 720 16.89 10.16 773 16.43 9.75 
668 17.1 10.34 721 15.24 8.72 774 15.76 9.18 
669 15.48 8.94 722 16.42 9.71 775 16.58 9.85 
670 16.12 9.46 723 15.86 9.27 776 16.1 9.49 
671 16.76 10.04 724 15.58 9.05 777 15.41 8.89 
672 17.09 10.36 725 15.82 9.27 778 16.63 9.93 
673 16.03 9.45 726 15.66 9.09 779 15.87 9.28 
674 15.53 9 727 16.6 9.87 780 16.59 9.89 
675 15.56 9.02 728 16.89 10.16 781 15.79 9.17 
676 15.44 8.91 729 16.08 9.48 782 15.73 9.14 
677 15.85 9.24 730 17.73 11.01 783 16.1 9.48 
678 15.75 9.17 731 15.97 9.37 784 16.79 10.03 
679 15.66 9.09 732 15.83 9.15 785 15.94 9.34 
680 16.77 10.04 733 17.15 10.22 786 16.09 9.47 
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wave number H Venlo H Mook wave number H Venlo H Mook wave number H Venlo H Mook 
787 15.36 8.84 840 16.12 9.51 893 15.89 9.3 
788 17.72 11 841 15.61 9.01 894 16.25 9.55 
789 15.89 9.27 842 15.47 8.92 895 16.35 9.72 
790 15.23 8.71 843 15.92 9.31 896 16.56 9.86 
791 15.7 9.1 844 15.95 9.38 897 17.81 11.1 
792 15.65 9.08 845 15.28 8.77 898 16.24 9.62 
793 17.48 10.79 846 16.56 9.85 899 16.09 9.46 
794 16.61 9.89 847 16.82 10.03 900 16.87 10.01 
795 15.38 8.85 848 15.57 9 901 16.37 9.68 
796 14.97 8.54 849 16.65 9.91 902 15.41 8.89 
797 15.66 9.09 850 16.42 9.74 903 15.89 9.27 
798 17.03 10.29 851 16.05 9.43 904 15.81 9.21 
799 16.18 9.55 852 16.91 10.19 905 16.3 9.59 
800 15.83 9.2 853 15.46 8.92 906 15.51 8.91 
801 15.79 9.19 854 15.64 9.07 907 16.66 9.92 
802 16.61 9.89 855 16.65 9.93 908 16.8 10.04 
803 17.11 10.34 856 15.41 8.88 909 16.56 9.82 
804 15.96 9.37 857 16.59 9.89 910 15.94 9.37 
805 15.79 9.2 858 15.62 9.01 911 16.53 9.82 
806 15.56 9.01 859 15.4 8.88 912 17.21 10.55 
807 17.12 10.38 860 15.77 9.21 913 15.72 9.14 
808 16.23 9.58 861 15.73 9.16 914 16.18 9.51 
809 15.69 9.13 862 16.06 9.43 915 15.27 8.77 
810 16.47 9.77 863 16.03 9.45 916 16.26 9.63 
811 15.74 9.17 864 15.62 9.09 917 15.9 9.3 
812 15.09 8.61 865 15.33 8.81 918 16.45 9.76 
813 15.37 8.81 866 16.07 9.45 919 15.36 8.84 
814 15.91 9.34 867 15.17 8.68 920 18.31 11.77 
815 16.5 9.78 868 15.82 9.26 921 16.02 9.4 
816 16.21 9.6 869 18.32 11.83 922 15.52 8.96 
817 17.1 10.39 870 15.95 9.37 923 16.06 9.47 
818 16.34 9.66 871 15.51 8.92 924 15.94 9.36 
819 16.31 9.7 872 15.9 9.3 925 16.52 9.8 
820 15.65 9.07 873 16.72 10 926 16.32 9.64 
821 17.05 10.3 874 15.57 9.01 927 15.56 9 
822 15.98 9.36 875 15.52 8.99 928 16.39 9.7 
823 16.45 9.73 876 16.16 9.54 929 15.98 9.38 
824 16.34 9.65 877 16.1 9.48 930 16.73 10.01 
825 15.03 8.57 878 16.59 9.88 931 15.23 8.72 
826 15.64 9.08 879 16.04 9.43 932 16.21 9.6 
827 16.08 9.47 880 15.79 9.19 933 16.7 9.98 
828 17.4 10.67 881 15.99 9.39 934 15.96 9.29 
829 15.81 9.24 882 15.69 9.13 935 17.11 10.38 
830 15.12 8.64 883 16.9 10.14 936 16.02 9.42 
831 17.1 10.32 884 15.81 9.21 937 16.65 9.93 
832 15.71 9.11 885 16.81 10.04 938 16.37 9.69 
833 17.78 11.08 886 16.18 9.57 939 15.22 8.72 
834 16.06 9.45 887 15.78 9.23 940 15.46 8.92 
835 15.85 9.29 888 15.7 9.13 941 16.93 10.14 
836 16.59 9.86 889 15.27 8.77 942 16.11 9.49 
837 16.51 9.81 890 16.78 10.06 943 15.81 9.23 
838 16.27 9.63 891 15.62 9.07 944 15.45 8.93 
839 15.63 9.05 892 16.56 9.85 945 16.81 10.09 
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wave number H Venlo H Mook wave number H Venlo H Mook    
946 16.23 9.56 991 15.64 9.08    
947 15.56 9 992 17.84 11.12    
948 16.4 9.76 993 16.27 9.64    
949 15.75 9.16 994 15.51 8.97    
950 15.49 8.93 995 17.97 11.38    
951 16.79 10.05 996 15.97 9.35    
952 16.23 9.62 997 16.95 10.13    
953 15.85 9.27 998 15.51 8.97    
954 15.32 8.82 999 15.77 9.19    
955 15.41 8.89       
956 17.19 10.27       
957 16 9.42       
958 16.87 10.07       
959 16.56 9.84       
960 16.13 9.52       
961 16.61 9.85       
962 16.64 9.9       
963 15.83 9.21       
964 18.17 11.54       
965 16.85 10.15       
966 16.08 9.46       
967 15.87 9.28       
968 15.43 8.89       
969 16.27 9.6       
970 15.97 9.36       
971 16.09 9.47       
972 15.65 9.09       
973 15.58 9.03       
974 15.21 8.71       
975 15.36 8.83       
976 15.72 9.16       
977 15.87 9.29       
978 15.76 9.17       
979 16.24 9.57       
980 17.89 11.23       
981 15.57 9       
982 17.19 10.45       
983 15.24 8.74       
984 15.8 9.21       
985 15.86 9.25       
986 16.44 9.82       
987 15.98 9.36       
988 15.43 8.89       
989 17.78 11.11       
990 15.71 9.1       
                                                             Appendix 4.5.1 (page 7, last one) 
 
 
 
 
 
 
 
 



 154

   
   
   
   
   
   
   
   
   
   
   
   

   

   
   

   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   

 
  

   
   

  
 
 
  

   
  
  
  

   
 
 

   
   
    
    
   
   
   

1. Normal distribution 
 
f(x)= [1 / σ√2π] exp [-(x-μ)2 / 2σ 2]    

μ, the mean of the discharges x 
σ, the standard deviation of the 
discharges 

           
F(x)= [1 / σ√2π]. ∫ exp [-(x-μ)2 / 2σ 2] dx   
 
 
 
2.Lognormal distribution  
 
f(x)= [1 / xσln√2π]exp [- ½{(lnx-μln) /σln)}2]  μln , the mean of the ln x 
            values 

σln  , the standard deviation 
of the ln x values 

 
F(x)= [1 / σln√2π] ∫ (1/x) exp [- ½{(lnx-μln) /σln)}2] dx, whilst 
 
μln = ½  ln[μ4 / (μ2 + σ2)] 
 
σ2

ln = ln [(μ2 + σ2) / μ2] 
 
 
 
3. Gumbel distribution 

α= π / σ√6 

f(x)=α exp {[-α(x-β)] - exp [-α(x-β)]}   β= x mean - γ /α 
 
        γ= 0,57721 (Euler’s const.) 
F(x)= exp {-exp [-α(x-β)]} 
 
 
 
4. Pearson III distribution 
 
f(x)= [1 / βα Γ(α)] (x-γ) α-1 exp [-(x-γ) / β]   E(x)=μ=αβ 
        Var(x)= αβ2 
         x=discharge 
         γ=lower limit of the 
          discharge 
 
 
Hydrological probability density, and cumulative probability functions 
 
 

Appendix 4.6.1
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N                            
α 

  

 0.20 0.10 0.05 0.01 
     
5 0.45 0.51 0.56 0.67 
10 0.32 0.37 0.41 0.49 
15 0.27 0.30 0.34 0.40 
20 0.23 0.26 0.29 0.36 
25 0.21 0.24 0.27 0.32 
30 0.19 0.22 0.24 0.29 
35 0.18 0.20 0.23 0.27 
40 0.17 0.19 0.21 0.25 
45 0.16 0.18 0.20 0.24 
50 0.15 0.17 0.19 0.23 
N > 50 1.07 / √ N 1.22 / √ N 1.36 / √ N 1.63 / √ N 
Derived from Yevjevich’s Table 10.3 of the Water Resources Publication 1972 
 
 
 
Δ  (test statistic) is the maximum of  ⎢F – P ⎢,  
 
if  F  is the cumulative distribution function and P is the cumulative frequency  
distribution of the computed water levels 
 
α   the two-tailed chosen threshold value (probability of exceedance of Δ0) 
  
N   number of computed water levels from the synthetic floods 
 
Reject the null hypothesis H0 (goodness of fit), for the chosen threshold value α, if   
Δ  ≥  Δ0  
 
 
 
 
 
 
 
 
Critical value Δ0 of the Kolmogorov-Smirnov test statistic Δ, for various values  
of N and values α, often used in hydrology 
 
 
 
                                                                                                                  Appendix 4.6.2 
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wave nr. Qbase Qpeak X0 X4 duration H Venlo  
935 899 2060 551 37 10 17.11  
817 685 2060 962 21 16 17.1  
672 492 2060 702 17 8 17.09  
401 1030 2060 512 55 14 17.04  
84 464 2060 1037 17 13 17.09  
248 974 2060 496 48 12 17.07  
171 1229 2060 343 68 12 17.07  
912 899 2060 727 6 11 17.21  
232 947 2165 676 37 15 17.27  
315 685 2165 770 32 11 17.25  
578 250 2165 1205 15 12 17.28  
285 751 2165 810 19 11 17.32  
76 685 2165 559 52 8 17.13  
527 604 2165 739 48 13 17.14  
529 583 2165 694 48 10 17.14  
745 895 2165 561 82 13 17.08  
384 613 2265 776 80 14 17.13  
831 540 2265 810 81 15 17.1  
339 979 2265 455 63 8 17.31  
526 540 2265 905 50 13 17.26  
368 751 2265 684 43 10 17.36  
414 979 2265 644 56 15 17.34  
402 786 2265 758 34 11 17.41  
694 766 2265 844 37 16 17.4  
828 699 2265 770 32 10 17.4  
793 766 2265 1011 19 14 17.48  
594 604 2550 724 92 12 17.43  
751 751 2550 606 97 11 17.46  
29 766 2550 668 83 10 17.56  
341 583 2550 888 83 15 17.5  
655 579 2550 817 61 10 17.62  
12 633 2550 936 56 13 17.66  
531 895 2550 725 60 11 17.69  
514 583 2664 676 97 10 17.54  
148 604 2664 797 90 13 17.6  
288 613 2664 607 90 8 17.6  
405 583 2664 797 90 12 17.59  
577 462 2664 810 90 11 17.55  
144 543 2664 865 63 10 17.74  
596 424 3039 693 114 9 17.8  
666 405 3039 728 114 10 17.79  
437 533 3039 672 112 9 17.83  
349 766 2550 948 52 14 17.7  
730 583 2550 1021 42 14 17.73  
788 604 2550 975 44 14 17.72  
46 494 2550 1407 21 15 17.82  
647 1030 2550 676 37 9 17.81  
989 751 2550 1001 37 15 17.78  
833 1199 2664 513 90 10 17.78  
423 583 2664 960 41 10 17.87  
                                                                                Appendix 4.8.1a 
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Continuation 

 

wave nr. Qbase Qpeak X0 X4 duration H Venlo  
687 947 2664 677 59 9 17.84  
897 976 2664 703 68 12 17.81  
992 559 2664 995 48 13 17.84  
64 926 2664 870 44 14 17.91  
459 1229 2664 572 69 11 17.86  
980 464 2664 1259 34 14 17.89  
995 563 2664 1382 21 14 17.97  
52 1030 2664 1051 19 13 18.02  
71 926 2664 1117 19 13 18.01  
187 1229 2664 812 32 13 18  
321 532 3039 736 103 9 17.90  
139 1199 3039 1185 20 13 18.45  
386 699 3039 1124 50 11 18.28  
399 979 3039 1024 44 13 18.31  
528 766 3039 980 42 9 18.31  
569 751 3039 1199 41 15 18.31  
657 1591 3039 639 80 13 18.3  
763 947 3039 916 54 10 18.29  
869 658 3039 1452 30 17 18.32  
920 974 3039 966 48 12 18.31  
964 947 3039 930 83 14 18.17  
552 604 3039 1050 56 10 18.23  

     
     
     
     
     
     

     
     
     
     
     
     
     
     
     
     
     
     
     
     
     

     
     
Synthetic flood wave series at Borgharen and computed 
water levels at Venlo by using the Sobek model 
                                                                                    Appendix 4.8.1b 
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wave nr. Qbase Qpeak X0 X4 duration H Mook  
935 899 2060 551 37 10 10.38  
817 685 2060 962 21 16 10.39  
672 492 2060 702 17 8 10.36  
401 1030 2060 512 55 14 10.31  
84 464 2060 1037 17 13 10.37  
248 974 2060 496 48 12 10.33  
171 1229 2060 343 68 12 10.35  
912 899 2060 727 6 11 10.55  
232 947 2165 676 37 15 10.56  
315 685 2165 770 32 11 10.51  
578 250 2165 1205 15 12 10.56  
285 751 2165 810 19 11 10.62  
76 685 2165 559 52 8 10.36  
527 604 2165 739 48 13 10.37  
529 583 2165 694 48 10 10.36  
745 895 2165 561 82 13 10.33  
384 613 2265 776 80 14 10.36  
831 540 2265 810 81 15 10.32  
339 979 2265 455 63 8 10.55  
526 540 2265 905 50 13 10.5  
368 751 2265 684 43 10 10.6  
414 979 2265 644 56 15 10.6  
402 786 2265 758 34 11 10.68  
694 766 2265 844 37 16 10.66  
828 699 2265 770 32 10 10.67  
793 766 2265 1011 19 14 10.79  
594 604 2550 724 92 12 10.59  
751 751 2550 606 97 11 10.62  
29 766 2550 668 83 10 10.78  
341 583 2550 888 83 15 10.7  
655 579 2550 817 61 10 10.83  
12 633 2550 936 56 13 10.9  
531 895 2550 725 60 11 10.97  
514 583 2664 676 97 10 10.68  
148 604 2664 797 90 13 10.78  
288 613 2664 607 90 8 10.76  
405 583 2664 797 90 12 10.77  
577 462 2664 810 90 11 10.7  
144 543 2664 865 63 10 10.97  
596 424 3039 693 114 9 10.86  
666 405 3039 728 114 10 10.85  
437 533 3039 672 112 9 10.92  
349 766 2550 948 52 14 11  
730 583 2550 1021 42 14 11.01  
788 604 2550 975 44 14 11  
46 494 2550 1407 21 15 11.18  
647 1030 2550 676 37 9 11.18  
989 751 2550 1001 37 15 11.11  
833 1199 2664 513 90 10 11.08  
423 583 2664 960 41 10 11.19  
                                                                                Appendix  4.8.2a 
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   Continuation   
wave nr. Qbase Qpeak X0 X4 duration H Mook  
687 947 2664 677 59 9 11.16  
897 976 2664 703 68 12 11.1  
992 559 2664 995 48 13 11.12  
64 926 2664 870 44 14 11.27  
459 1229 2664 572 69 11 11.2  
980 464 2664 1259 34 14 11.23  
995 563 2664 1382 21 14 11.38  
52 1030 2664 1051 19 13 11.48  
71 926 2664 1117 19 13 11.46  
187 1229 2664 812 32 13 11.43  
321 532 3039 736 103 9 11.04  
139 1199 3039 1185 20 13 12.05  
386 699 3039 1124 50 11 11.7  
399 979 3039 1024 44 13 11.8  
528 766 3039 980 42 9 11.77  
569 751 3039 1199 41 15 11.78  
657 1591 3039 639 80 13 11.83  
763 947 3039 916 54 10 11.74  
869 658 3039 1452 30 17 11.83  
920 974 3039 966 48 12 11.77  
964 947 3039 930 83 14 11.54  
552 604 3039 1050 56 10 11.6  

     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     

Synthetic flood wave series at Borgharen  and computed   
water levels at Mook by using the Sobek model   

                                        Appendix 4.8.2b 
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Probability of 
exceedance 

 
           yr-1 

water level 
at Mook 

 
NAP + m 

water level 
at Venlo 

 
NAP + m 

water level 
at 

Borgharen 
 

NAP + m 

discharge  
at Borgharen 

 
m3s-1 

0.1 11.18 17.52 45.15 2142 
0.05 11.52 17.94 45.43 2387 
0.02 11.86 18.37 45.70 2710 
0.01 12.01 18.58 45.89 2955 

0.004 12.36 18.91 46.12 3278 
0.0008 12.83 19.34 46.43 3800 

Design Water Levels 2001 
 
 
 
 
 
 
 
 
 
Design Water Levels 2001 at Mook, Venlo and Borgharen from Waqua  
computations, according to schematisation MHW 1998 – 3g and software  
version 2002 – 01. The water levels are based on ruling synthetic flood  
waves at Borgharen*, with given p.o.e of the peak discharge values.  
The computations have been achieved by Rijkswaterstaat Direction  
Limburg in close consultation with RIZA Arnhem   
 
* also see Fig. 6.3.1 
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date operational validated  date operational validated  
5-2-‘84 0 7.91  21-11-‘84 0 13.01  
6-2-‘84 13.81 32.97  22-11-‘84 7.2 32.29  
7-2-‘84 15.38 9.77  23-11-‘84 16.9 13.18  
8-2-‘84 12.38 12.19  24-11-‘84 21.6 5.7  
Sum 41.57 62.84  25-11-‘84 11.5 2.18  
   Sum 57.2 66.36  
      
date operational validated  date operational validated  
29-3-‘86 4.5 9.99  29-12-‘86 0 6.37  
30-3-‘86 9.7 23.62  30-12-‘86 7.8 5.57  
31-3-‘86 20.3 9.74  31-12-‘86 4.3 9.4  
Sum 34.5 43.35  1-1-‘87 14.3 23.32  
   2-1-‘87 11.9 3.48  
   Sum 38.3 48.14  
      
date operational validated  date operational validated  
31-12-‘90 0 0  9-1-‘93 0 6.12  
1-1-‘91 10 12.96  10-1-‘93 21 18.39  
2-1-‘91 20 17.41  11-1-‘93 42 41.28  
3-1-‘91 20 18.21  Sum 63 65.79  
Sum 50 48.58     

 
date operational validated  date operational validated  
19-12-‘93 18 25.12  26-1-‘95 29 14.46  
20-12-‘93 31.5 36.6  27-1-‘95 18.3 18.7  
21-12-‘93 11.5 9.88  28-1-‘95 18.8 10.19  
Sum 61.5 71.6  Sum 66.1 43.35  
      
      
      
 
 
 
 
 
 
 
 
Rainfall depths (mm) from eight rain gauges in the Meuse River basin*, 
upstream of the discharge measuring-station at Borgharen 
   

     
* 
France:  

 
Nancy, St.Dizier, Reims 

  

Ardennes:  Luxembourg, St.Hubert, Spa   
Sambre:  Charleroi, Florenne   

     
                                                                                                              Appendix 5.3.1 
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day operational 

rainfall 
effective 
rainfall 

average  
1-day UH 

9.7 UH 11.3 UH 8.3 UH calculated 
Sum 

0 0 0        R0 0     
1 13.8 9.7     R1 6.53      U1 0   0 
2 15.4 11.3   R2 17.5      U2 63 0  63 
3 12.4 8.3     R3 32.12    U3 170 74 0 244 
4 2.2  48.52    U4 312 198 54 564 
5 0  40.95    U5 471 363 145 979 
6 43.8 29.3  Sum 32.12    U6 397 548 267 1212 
7   24.36    U7 312 463 403 1177 
8   17.66    U8 236 363 340 939 
9   12        U9 171 275 267 713 

10   7.4      U10 116 200 202 518 
11  Loss 3.85    U11 72 136 147 354 
12  4.1 0 37 84 100 221 
13  m=4 n=11 0 44 61 105 
14     0 32 32 
15      0 0 

       7120 
   

     Also see Table 5.3.1, where Sum 7120 m3s-1 equals 615.106 m3 and that equals to  
     29.3 mm (according to the beginning of Section 5.3)                                                   
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Q'peak calculated from the effective rainfall and the average 1-day Unit 
Hydrograph; Flood of February 1984, using Eq.5.3.1 
  
 
 
 

Appendix 5.3.2
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February 1984 
 
adjusted effected rainfall 23.5 mm, according to the regression line of Fig.5.4.1 or 
Equation 5.4.1 

   
day rainfall eff.rainfall average 

1-day UH
7.76 UH 9.36 UH 6.36 UH Sum  

         
0 0 0           R0 0      

1 13.8 7.76      R1 6.53     U1 0   0  

2 15.4 9.36      R2 17.5     U2 51   51  

3 12.4 6.36      R3 32.12   U3 136 61  197  

4   48.52   U4 249 164 42 455  

5 41.6 23.5 40.95   U5 377 301 111 788  

6 Sum Sum 32.12   U6 318 454 204 976  

7   24.36   U7 249 383 309 941  

8  m=4 17.66   U8 189 301 260 750  

9   12       U9 137 228 204 569  

10   7.4      U10 93 165 155 413  

11   3.85    U11 57 112 112 282  

12   0 30 69 76 175  
13    0 36 47 83  
14   n=11  0 24 24  
15      0 0  

   
   
Qbase = 980 m3s-1 
Qpeak = 1956 m3s-1 
 

 
 
 
 

 
 
 
 

 

   
 
 
 
 
 
 
 
Adjusted effective rainfall  of 23.5 mm (also see Eq.5.4.1)    
Calculation of Q'peak (976 m3s-1) with the help of the average 1-day Unit 
Hydrograph (also see Fig.5.3.3a) and the adjusted effective rainfall, Eq.5.3.1  
has been used      

   
                                                                                                            Appendix 5.5.1 
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Feb.2002 
day rainfall eff.rainfall average    
   1-day UH 0.5UH 5.1UH 3.9UH 15.8UH 3.8UH Sum 
0 4.5 0.5 0       
1 9.1 5.1 6.53 3     3 
2 2.3 0 17.5 9 33    42 
3 7.9 3.9 32.12 16 89    105 
4 19.8 15.8 48.52 24 164 25   214 
5 7.8 3.8 40.95 20 247 68 103  439 
6 0 29.1 32.12 16 209 125 277 25 651 
7 51.4  24.36 12 164 189 507 67 939 
8   17.66 9 124 160 767 122 1181 
9   12 6 90 125 647 184 1053 
10   7.4 4 61 95 507 156 823 
11   3.85 2 38 69 385 122 615 
12   0 0 20 47 279 93  
13    0 29 190 67  
14   n=11 15 117 46  

  peak  2031 expected (NAP + 45.06 m)   Qbase 850 m3s-1 
 
 
  Feb.2002 
  day rainfall eff.rainfall average   
   1-day UH 3.4UH 8 UH 1.2UH 6.8UH 18.7UH 6.7UH     Sum 
  0 4.5 3.42 0       
  1 9.1 8.02 6.53 22        22 
  2 2.3 1.22 17.5 60 52       112 
  3 7.9 6.82 32.12 110 140 8      258 
  4 19.8 18.72 48.52 166 258 21 45     489 
  5 7.8 6.72 40.95 140 389 39 119 122    810 
  6 0 44.92 32.12 110 328 59 219 328 44   1088 
  7 51.4  24.36 83 258 50 331 601 118   1441 
  8   17.66 60 195 39 279 908 216   1698 
  9   12 41 142 30 219 767 326   1524 
  10   7.4 25 96 22 166 601 275   1186 
  11   3.85 456 216 
  12   0 331 164 
  13    225 119 
  peak 2548 maximum 95% (NAP + 45.55 m)   Qbase  850 m3s-1 
 
 
 
 
 
   
 
Verification 
                                                                                                                 Appendix 5.5.2 
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January 2003 
day rainfall eff.rainfall average      
   1-day UH 8.2UH 21.9UH 0.9UH 1.7UH Sum 
0 14.4 8.2 0      
1 28.1 21.9 6.53 54    54 
2 7.1 0.9 17.5 144 143   287 
3 7.9 1.7 32.12 263 383 6  653 
4 57.5 32.7 48.52 398 703 16 11 1128 
5   40.95 336 1063 29 30 1457 
6   32.12 263 897 44 55 1258 
7   24.36 200 703 37 82 1023 
8   17.66 145 533 29 70 777 
9   12 98 387 22 55 562 
10   7.4 61 263 16 41 381 
11   3.85 32 162 11 30 234 
12   0      
peak 2337 expected (NAP + 45.36 m)   Qbase  880 m3s-1 
        
         
January 2003         
day rainfall eff.rainfall average 12.2UH 25.9UH 4.85UH 5.65UH Sum 
   1-day UH      
0 14.4 12.15 0      
1 28.1 25.85 6.53 79    79 
2 7.1 4.85 17.5 213 169   381 
3 7.9 5.65 32.12 390 452 32  874 
4 57.5 48.5 48.52 590 830 85 37 1542 
5   40.95 498 1254 156 99 2006 
6   32.12 390 1059 235 181 1866 
7   24.36 296 830 199 274 1599 
8   17.66 215 630 156 231 1231 
9   12 146 457 118 181 902 
10   7.4 90   138  
11   3.85      
12   0      
13   n=11      
peak 2886 maximum 95% (NAP + 45.83 m)   Qbase  880 m3s-1 
 
 
 
 
 
 
Verification 
                                                                                                                            Appendix 5.5.3 
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number 

 
         

       m3s-1 

1 Feb.1984 2550  
2 Nov.1984 1625  
3 Apr.1986 1664  
4 Jan.1987 1555  
5 Jan.1991 1843  
6 Jan.1993 2265  
7 Dec.1993 3039  
8 Jan.1995 2664  

    
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Prediction of expected water levels of floods 1 through 8;  50% and 95% upper 
limits of the confidence band of their effective rainfall, translated into water levels;
(o) measured water levels  
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