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Advice from the ocean:

Be shore of yourself

Come out of your shell

Take time to coast

Avoid pier pressure

Sea life’s beauty

Don’t get tide down

Make waves!

-Ilan Shamir
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Summary

Coastal areas around the world are frequently attacked by various types of
storms, threatening human life and property. This study aims to understand
storm surge processes in large-scale coastal basins, particularly focusing on the
influences of geometry, topography and storm characteristics on the water levels
along the coast. To this end, an idealised process-based hydrodynamic model is
developed. For arbitrary closed or semi-enclosed basins, it solves the linearised
three-dimensional shallow water equations, including the Coriolis effect, forced
by time- and space-dependent wind and pressure fields. The model is linear
which allows us to analyse the problem in terms of the basin’s frequency response
(which reflects its resonance properties). The model is fast because it decouples
the vertical calculations, which are analytical, from the horizontal calculations,
which are carried out using the Finite Element Method (or, in simplified cases,
using semi-analytical techniques).

The spectral response of a closed rectangular basin of uniform depth, subject
to periodic wind forcing, is studied first (Chapter 2). It is found to depend on the
spatial characteristics of the wind field and the basin dimensions. In particular,
it is shown that different spatial wind patterns (uniform wind, wind with nonzero
divergence and wind with nonzero curl) produce different resonance peaks. The
response is further modified by bottom friction, lowering the resonance peaks,
and the Coriolis effect. The latter causes the peaks to shift, and new peaks to
emerge associated with cross-wind basin dynamics.

Then, the influence of topographic elements on the spectral response is stud-
ied (Chapter 3), in semi-enclosed basins. The results point out that adding
topographic elements (such as a topographic step, a linearly sloping bed or a
parabolic cross-basin profile) causes the resonance peaks to shift in the frequency
domain, through their effect on local wave speed.

The influence of storm characteristics on the set-up (or set-down) along the
coast in the New Orleans coastal basin is investigated in Chapter 4. First, it is
shown that the model, with a schematised domain and forced by the so-called
Holland-B model, is able to qualitatively reproduce the surge produced by Hur-
ricane Katrina (2005). A sensitivity study is carried out in which the storm
parameters are varied around the values that are representative for Hurricane
Katrina. The storm direction and point of landfall are found to be the most
important parameters determining the surge height. In particular, a storm ap-
proaching from south-east making landfall at the seaward end of the Mississippi
dike produces the highest surge levels.

Due to its flexibility regarding geometry, topography and forcing, the new
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idealised model can be applied to other locations than the New Orleans coastal
basin. The short calculation times make it a quick estimation tool for exten-
sive sensitivity studies. With these properties, the new model bridges the gap
between the more theoretical non-site-specific model studies and the computa-
tionally expensive detailed site-specific numerical simulation models.



Samenvatting

Stormen in kustgebieden vormen een gevaar voor mensenlevens en hun bezittin-
gen. Het doel van deze studie is om een beter begrip te krijgen van stormvloeden
in grootschalige bekkens, en dan met name wat betreft de specifieke invloeden
van geometrie, bodemligging en stormeigenschappen op de waterstanden langs
de kust. Hiertoe wordt een gedealiseerd proces-gebaseerd model ontwikkeld.
Voor een willekeurig gesloten of half-ingesloten bekken worden de 3D ondiep-
watervergelijkingen opgelost, inclusief het Coriolis-effect, geforceerd door wind-
en drukvelden die variren in ruimte en tijd. Omdat het model lineair is, kan het
probleem worden geanalyseerd in termen van de zogeheten spectrale respons.
Hierin zitten de resonantie-eigenschappen van het systeem opgesloten. Het
model is verder snel omdat de (analytische) verticale berekeningen ontkoppeld
zijn van de horizontale berekeningen, die met een eindige-elementen-methode
worden uitgevoerd (of, in enkele gevallen, met semi-analytische technieken).

Allereerst wordt de spectrale respons van een gesloten bekken met uniforme
diepte onderzocht (Hoofdstuk 2). Deze respons hangt af van de ruimtelijke
eigenschappen van het windveld alsmede de afmetingen van het bekken. In het
bijzonder wordt duidelijk hoe verschillende ruimtelijke patronen (uniform wind-
veld, wind met divergentie, wind met rotatie) tot verschillende resonantiepieken
leiden. De response wordt verder benvloed door bodemwrijving, die de pieken
dempt, en door het Coriolis effect, dat de pieken doet verschuiven (en nieuwe
pieken doet ontstaan die te maken hebben met dynamica in de richting loodrecht
op de wind).

Vervolgens wordt de invloed van topografische elementen onderzocht (Hoofd-
stuk 3), voor half-ingesloten bekkens. De modelresultaten laten zien hoe dergeli-
jke elementen (zoals een diepte-stap, een bodemhelling of een parabolisch dwar-
sprofiel) de resonantiepieken doen verschuiven, door hun effect of op de lokale
golfvoortplantingssnelheid.

De invloed van stormeigenschappen op de op- en afwaaiing langs de kust
van het New Orleans bekken wordt onderzocht in hoofdstuk 4. Eerst wordt
getoond dat het model, met een geschematiseerde domein en geforceerd door
het zogeheten Holland-B model, in staat is om kwalitatief de stormvloed van
Orkaan Katrina (2005) te reproduceren. Een gevoeligheidsstudie laat vervolgens
zien dat de richting van de stormkoers en het punt waar de orkaan aan land komt
de belangrijkste stormparameters zijn. In het bijzonder blijkt dat de hoogste
waterstanden worden gevonden voor een storm vanuit uit het zuidoosten die
aan land gaat aan de zeezijde van de Mississippi Dike.

Vanwege haar flexibiliteit kan het model ook op andere locaties worden
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toegepast. De korte rekentijden maken het model geschikt voor uitgebreide
gevoeligheidsstudies. Dit overbrugt de kloof tussen de theoretische, generieke
studies en rekenintensieve numerieke simulatiemodellen.



Chapter 1

Introduction

1.1 Storm surges and coastal safety

Each year, many storms attack coastal areas. These storms pose a major safety
threat to coastal environments which are often densely populated areas. Indeed,
high surge levels along the coast can cause coastal inundations which will dam-
age roads and bridges and destroy homes and businesses. The rising sea level
resulting from global warming further increase the vulnerability of the coastal
region to storm surges.

There is a large variability in storms and storm surges. However, it is unclear
how surge levels and surge level distribution along the coast can be determined
with these characteristics. Therefore, to protect life and properties from these
damages, an overall practical goal is to be able to predict storm surge levels at
any location. To achieve this goal, it is essential to improve our understanding
of the storm surge processes and the factors influencing storm surges.

This thesis focuses on the understanding of storm surge processes in large-
scale coastal basins, particularly on the influence of geometry, topography and
storm characteristics on basin response. As background information, §1.2 gives
definitions and a brief description of atmospheric forcings that are involved in
storms. Subsequently, §1.3 summarizes the state-of-the-art knowledge on the
response of coastal basins to these forcings. The research goal and approach
central to this thesis are presented in §1.4, which also contains an outline of the
thesis.

1.2 Atmospheric forcing

Atmospheric forcings such as wind and low pressure systems are the main drivers
of the water motion in storm conditions. This section introduces wind and low
pressure systems. As an example of the combined effect of these two forcings,
tropical storms are described.

1.2.1 Wind

Wind is the large-scale flow of air, caused by spatial gradients in atmospheric
pressure and influenced by the earth’s rotation. The highest wind speed ever
recorded was during the passage of Tropical Cyclone Olivia on 10 April 1996: an
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(a) spatially uniform (b) nonzero divergence (c) nonzero curl

Figure 1.1: Top view of the examples of three schematised spatial patterns of wind
field: (a) a spatially uniform pattern, (b) a wind pattern with linear variation in
the along-wind direction, (c) a wind pattern with linear variation in the cross-wind

direction.

automatic weather station on Barrow Island, Australia, recorded a maximum
wind gust of 113 m s−1 (Callaghan, 1997).

Usually, the spatial pattern of a wind field is highly variable. This ap-
plies to both the speed and direction of the wind. To facilitate the analysis,
three schematised spatial patterns of wind field are usually distinguished (e.g.,
Mohammed-Zaki, 1980; Csanady, 1982), see figure 1.1:

• a spatially uniform pattern where wind speed and wind direction are uni-
form,

• a wind pattern with variation in the along-wind direction, i.e. with a
nonzero divergence of the wind field,

• a wind pattern with variation in the cross-wind direction, i.e. with a
nonzero curl of the wind field.

A wind field with a complex spatial pattern can be viewed as the superposition
of the above three spatial patterns.

Wind fields usually also show a complicated temporal structure. In principle,
it is a continuous signal with many fluctuations in both speed and direction.
However, it can be simplified into three temporal patterns.

• A steady wind, in which the wind speed and direction are both constant
in time.

• A single wind event, which is characterised by absence of wind, followed
by a spin-up, a period with constant wind and a spin-down stage back
to no wind conditions. For example, Typhoon Haiyan in Southeast Asia
formed on November 3, 2013 and dissipated on November 11, 2013 (Lum
and Margesoon, 2014).

• A periodic wind, of which the wind speed and direction evolves periodi-
cally. A typical example of such a periodic wind is provided by the sea
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Figure 1.2: Examples of wind patterns showing wind velocity as a function of time
for: (a) steady wind, (b) a single wind event and (c) periodic wind.

and land breezes varying in a daily cycle. During the day, a sea breeze
blows from the sea towards land, while at night, a land breeze blows from
the land to the sea (Borne, 1998).

Figure 1.2 show examples of these three temporal patterns. It is important to
emphasize that any single wind event can be written as a superposition of sinu-
soidal periodic wind forcings at various frequencies (Craig, 1989). This property,
which connects the second and third temporal patterns described above, facili-
tates model studies based on linearised shallow water equations. The effect of
a single wind event is then contained in the so-called frequency response of a
basin to periodic wind forcings over a wide range of frequencies.

Due to the resistance of the water surface, wind blowing over the sea surface
forms a bottom boundary layer in the atmosphere. The horizontal force of
wind per surface area that acts on the sea surface is called the wind stress

τw = (τ
(x)
w , τ

(y)
w ), with components in two horizontal directions. The magnitude

of this stress is estimated through various wind-shear formulas (Smith et al,
1992), e.g.

τw = Cdρair|vw|vw. (1.1)

where Cd is the dimensionless drag coefficient with a value of the order of 10−3

(Garratt, 1977; Wu, 1980; Resio and Westerink, 2008). Moreover, ρair is the
air density, which has a value of approximately 1.225 kg m−3. The vector vw

denotes the two-dimensional horizontal wind velocity vector evaluated at 10 m
above the sea surface.

1.2.2 Low pressure system

The air pressure is not uniform over the earth surface. These differences are
caused by unequal heating together with the earth’s gravitational force. A low
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Figure 1.3: Satellite image of super Typhoon Durian which crossed the Philip-
pines on November 30, 2006 (National Aeronautics and Space Administration,
http://earthobservatory.nasa.gov/NaturalHazards/view.php?id=17695).

pressure system is an area where the atmospheric pressure is lower than that of
the surrounding area.

A low pressure system is often accompanied by strong winds. At mid-latitude
(between 30◦ and 60◦), it may develop into an extratropical storm. Alterna-
tively, a low pressure system over tropical or subtropical waters can develop
into a tropical storm. Extratropical and tropical storms differ in their way of
obtaining energy. An extratropical storm gains energy from the release of po-
tential energy when cold and warm air masses interact. On the other hand,
a tropical storm obtains energy from latent heat which is released when water
vapor condenses into liquid water (Abbott, 1996). The difference is important,
since tropical storms have the potential to quickly grow into hurricanes, whereas
extratropical storms do not. Tropical storms and hurricanes may cause huge
damages to life and properties. According to Hough (2008), hurricanes account
for 3 out of 10 of the worst natural disasters. Moreover, compared to an ex-
tratropical storm, the wind and pressure field structures of a tropical storm
are simpler and are specified using parametric models such as that by Holland
(1980). As part of this study focuses on tropical storms, a brief introduction on
tropical storms is given below.
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Figure 1.4: Top view sketch of a storm moving over a coastal basin, showing a: (a)
storm track, with φ denoting the storm direction, Cfm the forward speed of storm and
Rmax the distance to maximum wind speed, (b) pressure (blue curve) and wind speed
(black curve) as function of the dimensionless distance away from storm centre, the
black dashed line indicates the maximum radius Rmax and the blue arrow refers to the
central pressure pa,c.

1.2.3 Tropical storms

A tropical storm is defined as a warm-core, low-pressure system without any
front attached to it, which develops over the tropical or subtropical waters, and
has an organised circulation (Murck et al, 1997). Depending upon location, it is
called ‘typhoon’ (literally, ‘great wind’) in the northwest Pacific, ‘hurricane’ in
the northwest Atlantic (of Caribbean origin) and northeast Pacific, or ‘tropical
cyclone’ in tropical areas of the southwest Pacific and of the Indian Ocean
(James, 1998). Figure 1.3 shows an example of a tropical storm.

The low pressure system may first grow into a tropical depression, of which
the maximum sustained wind velocity is defined as 17 m s−1. With sufficient
energy input, it will further develop into a tropical storm, or even a hurricane.

At the centre of the storm, there is a calm region of roughly circular shape
where the pressure is minimum, known as the ‘eye’ of the storm. Atmospheric
pressure increases roughly exponentially when moving away from the storm’s
eye. This pressure gradient forces a wind blowing from the surrounding high
pressure area to the low pressure area at the centre. Due to the Coriolis force, it
circulates around the centre in a cyclonic fashion, i.e. counterclockwise (clock-
wise) in the Northern (Southern) Hemisphere. Importantly, the wind speed in
the centre is zero. The wind speed first increases away from the centre until it
reaches a maximum value at some radius Rmax, whereas further away from the
eye it gradually decreases again.

Despite the complexity of the atmospheric forcings in space and time, the
main storm features are captured by a relatively small set of parameters. For
example, in his so-called Holland-B model, Holland (1980) used six parameters
to describe the radial profile of pressure and wind in a storm:

Central pressure (pa,c) is an indicator of the storm intensity. The central
pressure can be as low as 900 mbar, as recorded when Hurricane Camille
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made landfall in New Orleans in 1969 (Corps of Engineers, 1970).

Distance to maximum wind speed (Rmax), measured from the storm’s cen-
tre, indicates the size of the storm. A small storm such as Hurricane
Dennis in the Gulf of Mexico (August 2005) had a radius of 11 km, while
Hurricane Wilma showed a radius of 73 km (Blake et al, 2006).

Forward speed of storm (Cfm) is the speed at which the storm centre moves.
For example, Hurricane Sandy moved at a speed of 12.5 m s−1 at the time
of landfall (Blake et al, 2013).

Storm location (x,y) and storm direction φ define the track of a storm,
indicating the initial location of the storm’s centre and the direction of
storm motion, respectively. Taking a constant φ value would define a
straight line, although in reality a storm usually changes direction as it
approaches land.

Holland-B parameter describes the peakedness of the pressure profile rela-
tive to the storm centre. A higher value results in a steeper slope of the
pressure profile.

Figure 1.4 shows an example of a storm track together with the pressure and
wind field of a storm calculated from the Holland-B model. The model is widely
used for its simplicity and flexibility in radial structure (Madsen and Jakobsen,
2004).

1.3 Hydrodynamic response

When the atmospheric forcings work on coastal waters, water is set into motion
which results in set-up or set-down at the coasts. In this section, the wind driven
set-up in elongated closed basins is first presented using a simple model (§1.3.1).
Then, complications on the wind-driven flow introduced by topography, Coriolis
effect and the spatial pattern of the wind field are discussed (§1.3.2). Next,
§1.3.3 discusses the effect of a low pressure system followed by a review of recent
studies on the combined effect of wind and low pressure systems on storm surges
(§1.3.4). Finally, §1.3.5 presents an overview of model approaches to model the
hydrodynamic response and §1.3.6 summarises the knowledge gaps.

1.3.1 Wind driven set-up in elongated closed basins

In this subsection, we introduce a simple one-dimensional model of wind-driven
flow in a closed basin. Our aim is to illustrate two aspects: (i) the equilib-
rium response to a steady wind, and (ii) the possibly resonant response to an
oscillatory wind. To this end, let us consider depth-averaged flow ū(x, t) in a
shallow elongated basin of length L and uniform depth h. Assuming the surface
elevation η(x, t) to be small compared to the water depth, the unknowns η and
ū satisfy the linearised shallow water equations:

∂ū

∂t
+

rū

h
= −g

∂η

∂x
+

τ
(x)
w

ρh
,

∂η

∂t
+ h

∂ū

∂x
= 0. (1.2)
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Figure 1.5: Wind driven set-up in an elongated closed basin

Here, r is a linear bottom friction coefficient resulting from Lorentz’ linearization

(Lorentz, 1922), g the gravitational acceleration, τ
(x)
w the wind stress, considered

spatially uniform, and ρ the water density. Closed boundary conditions require
ū(0, t) = ū(L, t) = 0. Initially, the basin is at rest: η(x, 0) = 0 and ū(x, 0) =

0. Assuming a steady wind stress in the positive x-direction (τ
(x)
w > 0), the

equilibrium response surface profile satisfies

∂η

∂x
=

τ
(x)
w

ρgh
, (1.3)

implying a linear surface profile with set-up η(L) = τ
(x)
w L/(2ρgh) at the down-

wind boundary, see Fig.1.5.

Alternatively, we may consider a time-periodic wind stress τ
(x)
w /ρ = T̂ sinωt

with amplitude T̂ and angular frequency ω. Neglecting bottom friction (r = 0),
the dynamic equilibrium response is then given by

η(x, t) =
T̂

ghk

[
sinkx−

(
1− cos kL

sin kL

)
cos kx

]
sinωt, (1.4)

with shallow water wave number k = ω/
√
gh. This result clearly shows that the

response depends on the forcing frequency. In particular, large amplification
occurs when kL ≈ ñπ for some odd ñ, i.e. when the basin length is close to an
odd multiple of half the shallow water wavelength 1

2λ = π/k. If it exactly equals
an odd multiple of 1

2λ, a singularity occurs in Eq.(1.4). The assumption of a
time-periodic dynamic equilibrium solution then breaks down and we should
turn to the transient problem (starting from rest).

As shown in Appendix 1.A, the transient solution is a superposition of oscil-
latory modes, one of which has an amplitude that increases linearly with time:

η(x, t) = Añωt cos

(
ñπx

L

)
cosωt︸ ︷︷ ︸

see Figure 1.6

+ other terms, (1.5)
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Figure 1.6: Example of pure resonance in an elongated basin subject to time-periodic
wind with a period T = 2π/ω. (a) Time evolution of the surface elevation at the right-
hand boundary (x = L) of the ñ-th mode, which shows an amplitude that increases
linearly with time (dashed lines). (b) Spatial patterns of wind stress (black arrows),
surface elevation and depth-averaged flow (white arrows), evaluated at the moments
indicated by circles in the top panel. This figure, in which ñ = 1, only depicts the
dynamics associated with the underbraced term in Eq.(1.5).

with coefficient Añ specified in Appendix 1.A.2 (along with the ‘other terms’).
Equation (1.5) provides an example of pure resonance. From a physical per-
spective, there is a continuous transfer of wind power onto the ñ-th mode of
the system (see Appendix 1.A.3). This is illustrated in Fig.1.6, which shows
the time evolution of the surface elevation at the right-hand boundary and the
spatial patterns of wind stress, surface elevation and depth-averaged flow of the
ñ-th mode with ñ = 1.

We conclude that the singularities in the dynamic equilibrium solution in
Eq.(1.4) indicate conditions of pure resonance. The presence of bottom friction
(r > 0) excludes the possibility of pure resonance, but still allows for large am-
plification peaks. This situation is termed practical resonance, which expresses
a balance between the power input due to the wind stress acting on the water
surface and the dissipation due to bottom friction.
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Figure 1.7: Wind driven flow and set-up in an elongated closed basin, side view and
a sketch of velocity profile, blue and red arrows indicate downwind and upwind flow,
respectively.

1.3.2 Influence of topography, Coriolis effect and spatial pattern of
wind field

In reality, vertical mixing causes the wind-driven velocity to vary with the ver-
tical coordinate. In the absence of the veering effect introduced by the earth’s
rotation, the surface flow goes downwind, resulting in a pressure gradient in
the presence of closed boundary. Furthermore, this pressure gradient drives a
return current in the bottom layer to compensate the downwind surface flow,
as shown in Figure 1.7.

This steady circulation is modified when there are variations in topography.
Csanady (1968b) investigated the equilibrium wind driven water motion of an
elongated coastal basin, in which the depth contours are parallel to the shores.
Where the water is shallower than the average depth of the basin, transport
is in the direction of the wind; it is in the opposite direction in the deeper
parts. Topography also affects the time-dependent response of the basin to
wind forcing. This is reflected in the effect of large-scale topographic elements
on the resonance properties of coastal basins. For example, shoals may protect
the coast (Hanley et al, 2014), while on the other hand, a longshore bar can
generate storm wave resonance under certain circumstances (Büsching, 2003).
Looking at the frequency response, Proudman (1929) provided analytical solu-
tions for the response in narrow closed basins with a single topographic step.
Alternatively, Ponte (2010) investigated the response of large-scale, elongated
closed basins with a parabolic cross-basin topography to along-basin wind forc-
ing. Other studies regarding the influence of topography on the response to
a moving wind forcing are mainly site-specific (e.g., Irish et al, 2008; Libicki
and Bedford, 1990). To understand the influence of large-scale topography on
the resonance properties of large-scale coastal basins subject to wind forcing, a
systematic investigation is necessary.

Depending on the relative importance of rotation and friction (e.g., Ekman,
1905; Csanady, 1982), earth rotation may modify the velocity field. This balance
is expressed in the Ekman number δE = h−1

√
2K/f with water depth h, vertical

eddy viscosity K and Coriolis parameter f which is given by f = 2Ω sinϑ (with
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Figure 1.8: Inverted barometer effect, showing an elevated surface over low pressure
areas. The black dashed line indicates the mean sea level.

Ω = 7.292 × 10−5 rad s−1 the angular frequency of the earth’s rotation and
ϑ the latitude). Focusing on the circulation in closed basins, in shallow/highly
turbulent basins (small δE) (Mathieu et al, 2002; Winant, 2004) cross-wind flows
are weak, whereas they are strong in deep/weakly turbulent basins (large δE).
For a deep ocean in the Northern Hemisphere, the Coriolis effect deflects the
surface currents to 45◦ the right of the wind stress vector. The flow field spirals
downward in a clockwise fashion. When integrated over depth, this deflected
flow field results in a surface Ekman transport which is directed 90◦ to the right
of the wind stress. So an along-shore wind in Northern Hemisphere creates a
pile-up of water when the coastline is to the right of it.

Regarding time-dependent dynamics of wind driven flow, Ponte (2010) iden-
tified a damped resonance of coastal basins subject to time-periodic wind stress
when the forcing frequency is close to Coriolis frequency. Finally, the spatial
variations in the wind field as observed in the Gulf of California (Ponte et al,
2012) will also affect the basin response to wind stress (e.g., Pugh, 1987; Birch-
field, 1967; Mohammed-Zaki, 1980).

1.3.3 Low pressure effect

The sea responds to a disturbance in atmospheric pressure by adjusting its
surface (Figure 1.8). This is known as the “inverted barometer effect”, a ter-
minology used by Doodson (1924). Assuming that the pressure field is static,
the sea surface in equilibrium shows a steady height η with respect to mean sea
level,

η =
pa,∞ − pa

ρg
, (1.6)

where pa is the atmospheric pressure, pa,∞ the ambient pressure, ρ the sea-water
density and g the gravitational acceleration. This relationship is derived from
the hydrostatic equation. In such an equilibrium, each millibar (mbar) drop
in ambient atmospheric pressure produces roughly 1 cm increase in sea surface
height.

Furthermore, a moving low pressure system can generate long waves (Eckart,
1951; Whitham, 1979). For example, Yankovsky (2009) demonstrated that a



1.3. Hydrodynamic response 27

storm approaching the coast may generate large-scale edge waves. In a flat-
bottomed ocean, the amplification of the forced wave becomes large as the
translation speed of the disturbance approaches the shallow water wave speed,
this is known as Proudman resonance (Proudman, 1953). Over a linearly slop-
ing bottom, Greenspan (1956) found similar amplification when the transla-
tion speed of a longshore travelling low pressure system is close to one of the
coastally trapped edge-wave modes. Vennell (2010) showed that when a storm
moving slowly across a coast with an alongshore topographic step, a subcriti-
cal resonance occurs, which generates a large reflected wave traveling along the
coast. These waves are modified when the effect of earth’s rotation is included
(Thiebaut and Vennell, 2011).

1.3.4 Storm surges

When a storm moves over a coast, both the wind driven set-up and the in-
verted barometer effect contribute to the surge height along the coast. Notice
that the set-up of the storm surge is different from the total water level am-
plitude observed along the coast, because the total water level amplitude is
the sum of contributions from surge, tides, waves, river discharge and possi-
ble prior oscillations. For extratropical storm surges, the contributions of wind
driven set-up and inverted barometer effect are in general equally important
(Arthur, 1964). For tropical storm surges, the wind driven set-up is dominant
since the wind speeds in tropical storms are much higher than in extratropical
storms(Tannehill, 1956).

The surge level that a given storm produces at a specific location is influ-
enced by several factors. Simpson (1974) introduced the Saffir-Simpson scale to
classify the severity of a storm based on the maximum sustained wind speed. He
distinguished five categories that give an indication of the expected surge levels.
Despite being convenient to apply, the Saffir-Simpson scale is somehow inaccu-
rate in forecasting storm surge levels. For example, Hurricane Katrina produced
a surge that is much higher than predicted by the Saffir-Simpson scale. Irish et al
(2008) suggested that the large storm size (distance to maximum wind speed)
may explain the extra high surge level. This is because a storm of a larger size
not only affects a larger area, but the strong winds also tend to affect this area
during a longer period of time. Another important factor is the forward speed
of the storm. Varying a storm’s forward motion may account for variations in
flooded volumes (Rego and Li, 2009). Furthermore, Weisberg and Zheng (2006)
identified the storm track as another important factor concerning the resulting
storm surge when a storm moves over a coastal basin. For example, in Tampa
Bay, Florida, a northerly approaching storm yields a higher surge than storms
from other directions.

In addition to storm characteristics, local features such as topography and
geometry are important factors in determining surge height. For example,
Bertin et al (2012) argued that the high surge caused by storm Xynthia in
Biscay Bay was due to shelf resonance. Tomkratoke et al (2015) pointed out
that the interaction process between the disturbance system and the propa-
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gating surge wave in the Gulf of Thailand may induce large positive surges.
Furthermore, Irish et al (2008) found that a milder shelf slope generally leads to
a higher surge. Storms making landfall on concave rather than convex coastlines
produce higher surge levels (Dowdeswell and Benham, 2003).

1.3.5 Overview of model approaches

To accurately calculate surge levels for practical purposes, numerical models are
commonly used. For example, the Sea, Lake and Overland Surges from Hur-
ricanes (SLOSH) model which solves two-dimensional depth-averaged shallow
water equations is used to investigate the storm surge risk for New York city (Lin
et al, 2010). The SLOSH model applies Finite difference methods to solve the
depth-averaged shallow water equations. According to Jelesnianski et al (1992),
the accuracy of surge heights predicted by the model is ±20% provided that the
hurricane is adequatedly described. Another frequently used model is the AD-
vanced CIRCulation (ADCIRC) Coastal Circulation and Storm Surge Model,
which applies the Finite Element Method to solve the depth-averaged shallow
water equations (Bunya et al, 2010; Dietrich et al, 2012). In hindcast studies,
the high-resolution ADCIRC model produces quite accurate results (Westerink
et al, 2008), showing the differences with observations of less than 0.5 m (Di-
etrich et al, 2012), but it is computationally expensive (Lin et al, 2014). In
real-time forecasting, the predicted winds and pressure fields are used. For ex-
ample, with the wind and pressure data forecasted by the Royal Netherlands
Meteorological Institute, the Dutch Storm Warning Service predict the surge
levels along the Dutch coast 6 hour in advance, using the Dutch continental
shelf model (Verlaan et al, 2005). This model combines simulations based on
the nonlinear depth-integrated shallow water equations with a so-called Kalman
filter that assimilates water level observations from tide gauges at the British
and Dutch coasts. In general, the predicted surge results highly depend on the
accuracy of weather forecasting models (Colle et al, 2008).

Alternatively, idealised process-based models are specifically designed to ob-
tain insight in the relevant physical processes. Geometry, forcing and physi-
cal process are schematised, retaining only the aspects that are essential for
the phenomenon under study. This leads to quick models, which allow for an
extensive sensitivity analysis. Following this approach, Winant (2004) devel-
oped a three-dimensional model for wind-driven circulation in elongated basins.
Other examples are the study by Birchfield (1967) on the equilibrium response
to steady wind in a shallow circular basin and the study by Mohammed-Zaki
(1980) on the transient response to a suddenly imposed wind stress in deep cir-
cular basins. Using a depth-averaged model, Gill (1982) showed that the surge
induced by a wind field moving along an open coast takes the form of forced
Kelvin waves. This simple model captures the extreme surge levels observed
around the North Sea in February 1953.
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1.3.6 Knowledge gaps

In summary, numerical model studies are site-specific and time-consuming. On
the other hand, idealized model studies strongly schematize both geometry (e.g.,
open coast) and forcing. For large-scale semi-enclosed basins, the influence of
geometry and topography on resonance properties and hence on storm surges is
not yet understood.

1.4 Research contents

1.4.1 Research goal

The goal of this thesis is:

to understand storm surge processes in large-scale coastal basins,
particularly the influence of geometry and topography and storm

characteristics on set-up at the coast.

Here, large-scale coastal basins are those in which the motions are significantly
influenced by the earth’s rotation. Moreover, geometry refers to the coastlines
which may form a rectangular basin or a more complex shape. Alternatively,
topography in this research refers to basin-scale features such as a topographic
step across the basin thus dividing the basin into an offshore part and a coastal
part. The storm characteristics refer to a spatially varying wind field and also to
storm characteristics (forward speed, central pressure, maximum radius, storm
direction and landfall point).

1.4.2 Research questions

The research goal gives rise to the following research questions.

Q1. How does the frequency response of a closed rotating basin depend on basin

dimensions, the spatial structure of the wind forcing and bottom friction?

Q2. What is the influence of basin-scale topography on the frequency response

of large-scale coastal basins subject to wind forcing?

Q3. What is the influence of storm characteristics on the surge response in the

New Orleans coastal basin?

1.4.3 Research Methodology

To answer the research questions formulated in §1.4.2, I will develop an ide-
alised process-based model. Because of the properties outlined in §1.3.5, this
approach suits the purpose of this study best. The model solves the linearised
three-dimensional shallow water equations on the f plane (thus including the
Coriolis effect, as required for large-scale basins). Turbulence is represented us-
ing a vertical eddy viscosity and a partial slip condition at the bed (both with
parameters that are spatially uniform and constant in time). Atmospheric forc-
ing is represented using wind stress and atmospheric pressure, which in general
may vary in time and space. The solution method has the following distinctive
features.
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• The linearity of the model allows us to analyse the system in terms of its
frequency response. Using Fourier techniques, the forcing is expressed as
a superposition of harmonic signals. By linearity, the solution is then the
superposition of the individual solutions obtained at each frequency.

• At each frequency, we can decouple the vertical calculations from the hor-
izontal calculations. This is a direct consequence of the spectral approach
and the linearity of the model. The vertical calculations are analytical.
Depending on the complexity of the geometry and topography, the hori-
zontal calculations are carried out using the Finite Element Method (FEM,
in the most general case) or using semi-analytical techniques (collocation
method, in simplified cases).

To answer research question Q1, we will consider closed rectangular basins
with uniform depth. To investigate the influence of the spatial wind pattern, we
impose (time-periodic) wind stress fields that are (i) spatially uniform, (ii) of
nonzero divergence, and (iii) of nonzero curl. Atmospheric pressure is neglected.
Because of the simplified geometry and topography, the frequency response is
obtained using a collocation method. We systematically vary the basin dimen-
sions. Finally, to analyse the influence of the Coriolis effect, we expand the
solution in powers of f/ω with Coriolis parameter f and forcing frequency ω.

To answer research question Q2, we will consider semi-enclosed basins. We
systematically add large-scale topographic elements that are representative for
real basins (such as a shallow part at the head of the basin). Particular attention
is paid to the open boundary condition, for which we formulate a non-reflective
condition that is valid in the presence of the Coriolis effect. Wind stress is time-
periodic and spatially uniform and is allowed to have an arbitrary orientation
with respect to the along-basin direction; atmospheric pressure is neglected. Be-
cause of the more complex topography, the frequency response is now obtained
using FEM.

To answer research question Q3, we consider a schematised representation
of the New Orleans coastal basin. The atmospheric forcing of the model is
the Holland-B model, as already introduced in §1.2.3, which implies time- and
space-varying wind and pressure fields. The solution is obtained using FEM. To
gain confidence in the model, it is first applied to simulate the surge caused by
Hurricane Katrina. At a set of coastal locations, the surge levels obtained with
our model are compared to observations and simulations with the ADCIRC-
model (Dietrich et al, 2012). This is done in terms of peak surges, timing and
the qualitative evolution. Next, a sensitivity analysis is carried out in which the
storm parameters are systematically varied around the values that represent
Hurricane Katrina.

1.4.4 Outline of the thesis

This thesis is organised as follows (also see Figure 1.9). After this introductory
chapter, Chapter 2 deals with the resonance properties of a closed rotating basin
subject to periodic wind forcing with different spatial patterns, thus addressing
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Figure 1.9: Outline of the thesis, characterising Chapters 2, 3 and 4 regarding geom-
etry, topography, forcing and solution method. Here, FEM stands for Finite Element
method.

research question Q1. Next, in Chapter 3, the influence of topographic elements
on the resonance properties of a semi-enclosed coastal basin is considered (Q2).
Subsequently, in Chapter 4, the influence of storm characteristics on surge level
in the New Orleans coastal basin is studied (Q3). Finally, Chapter 5 contains
the discussion, conclusions and recommendations.
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Appendix

1.A Details of the simple wind-driven flow model

This appendix contains the derivations of the equilibrium response to time-
periodic wind as well as the transient solution in the case of pure resonance, as
discussed in §1.3.1.

1.A.1 Dynamic equilibrium solution

First, the model equations in Eq.(1.2) and initial/boundary conditions can be
transformed to the following problem for η(x, t) only:

∂2η

∂t2
+

r

h

∂η

∂t
− gh

∂2η

∂x2
= 0,

∂η

∂x
(0, t) =

∂η

∂x
(L, t) =

τ
(x)
w

ρgh
, (1.7)

with initial conditions η(x, 0) = 0 and ∂η
∂t (x, 0) = 0.

A dynamic equilibrium solution follows from assuming

η(x, t) = �{N(x) exp(−iωt)} , (1.8)

with � denoting the real part, N(x) a complex surface elevation amplitude and
i2 = −1. In the absence of bottom friction (r = 0), solving for N(x) gives the
result presented in Eq.(1.4).

1.A.2 Transient solution for pure resonance

Now consider to the case of pure resonance (r = 0, kL = ñπ with k = ω/
√
gh

for some odd ñ), for which the above equilibrium assumption fails. In this case,
the focus is on the transient solution, which can be written as

η(x, t) =

(i)︷ ︸︸ ︷
Añωt cos

(
ñπx

L

)
cosωt+

(ii)︷ ︸︸ ︷
∞∑

n odd
n�=ñ

An cos
(nπx

L

)
sinωt

+
T̂L

gh

[
x

L
− 1

2

]
sinωt︸ ︷︷ ︸

(iii)

+
∞∑

n odd

Bn cos
(nπx

L

)
sinωnt︸ ︷︷ ︸

(iv)

. (1.9)

This expression consists of four terms: (i) an oscillatory harmonic profile with
an amplitude that increases linearly with time (i.e., the term highlighted in
the main text), (ii) a series of spatially harmonic profiles oscillating at con-
stant amplitude, (iii) an oscillatory spatially linear profile, and (iv) a superpo-
sition of eigenmodes, such that the initial conditions are satisfied (with ωn =√
gh(nπ/L)). The coefficients An and Bn, defined for odd n, read

An =

{ − 1
2dñ if n = ñ,
ñ2

n2−ñ2 dn if n �= ñ,
Bn =

{ 1
2dñ if n = ñ,

− ñ2

n2 dn if n �= ñ,
(1.10)
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in which dn is a Fourier coefficient given by

dn =
2

L

∫ L

0

T̂L

gh

[
x

L
− 1

2

]
cos

(nπx
L

)
dx =

−4T̂L

gh(nπ)2
. (1.11)

1.A.3 Energy argument

The total energy E of our (linearised) system is the sum of the kinetic and
potential energy, integrated over the basin:

E = B

∫ L

0

[
1

2
ρhū2 +

1

2
ρgη2

]
dx, (1.12)

where B is basin width. From the model equations and boundary conditions it
can be shown that the change of energy over time is given by

dE

dt
= B

∫ L

0

τ (x)w ū dx︸ ︷︷ ︸
(i) wind power

−B

∫ L

0

ρrū2 dx︸ ︷︷ ︸
(ii) dissipation

. (1.13)

It consists of two parts: (i) wind power which is positive (negative) when the
wind stress and flow velocity point in the same (opposite) direction, and (ii)
dissipation due to bottom friction, which is zero when r = 0.

Equation (1.13) refers to the instantaneous change of energy. To analyse
resonance properties, we must consider the net change of energy over a wind

cycle, defined as
〈
dE
dt

〉
= 1

T

∫ T

0
dE
dt dt with T = 2π/ω.

In pure resonance (r = 0, kL = ñπ), there is a net transfer of wind energy
to the system, i.e.

〈
dE
dt

〉
> 0. The energy is stored in the ñ-th mode, which has

a linearly increasing amplitude.
In the presence of friction such an ever increasing amplitude is not possi-

ble. Instead, the system tends to a dynamic equilibrium in which dissipation
balances the wind power input, i.e.

〈
dE
dt

〉
= 0. This balance may produce high

amplitudes at frequencies that slightly shifted with respect to the frequencies in
pure resonance. This is termed practical resonance.
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Chapter 2

Resonance properties of a closed

rotating rectangular basin subject to

space- and time-dependent wind forcing�

Abstract: We present an idealised process-based model to study the possibly reso-
nant response of closed basins subject to periodic wind forcing. Two solution methods
are adopted: a collocation technique (valid for arbitrary rotation) and an analytical
expansion (assuming weak rotation). The spectral response, as obtained from our
model, displays resonance peaks, which we explain by linking them to the spatial pat-
tern of the wind forcing, the along-wind and cross-wind basin dimensions as well as
the influence of rotation. Increasing bottom friction lowers the peaks. Finally, we
illustrate how the spectral response is reflected in the time-dependent set-up due to a
single wind event.

2.1 Introduction

Wind blowing over coastal basins often induces high water levels that may
threaten coastal safety (Pugh, 1987). An overall practical goal is to be able to
predict water levels for any type of wind event at any location. These water
levels are generally sensitive to basin geometry and the type of wind forcing
(Pugh, 1987). In extreme cases, a phenomenon known as resonance may occur.
Examples of unusual flooding events that have been linked to such resonant
conditions are typhoon Winnie at the Korean coast of the Yellow Sea (Moon
et al, 2003) and storm Xynthia in the Bay of Biscay (Bertin et al, 2012). How-
ever, it is difficult to identify the physics from these complex site-specific events.
Achieving the practical goal mentioned above requires a more generic insight in
the physical processes underlying this wind-driven resonance phenomenon.

For the equilibrium response to steady wind, it is the relative importance
of rotation and friction that determines the way in which the wind stress is
communicated through the water column (e.g., Ekman, 1905; Csanady, 1982).
This balance is expressed in the Ekman number δE = h−1

√
2K/f with water

depth h, vertical eddy viscosity K and Coriolis parameter f . Focusing on the

�This chapter has been published as Chen, W.L., Roos, P.C., Schuttelaars, H.M., and
Hulscher, S.J.M.H. (2015). Resonance properties of a closed rotating rectangular basin subject
to space- and time-dependent wind forcing., Ocean Dynamics, 165(3), doi:10.1007/s10236-
015-0813-2.



36 Chapter 2. Resonance properties of a closed rotating rectangular basin

circulation in closed basins, in shallow/highly turbulent basins (Mathieu et al,
2002; Winant, 2004) (small δE) cross-wind flows are weak, whereas they are
strong in deep/weakly turbulent basins (large δE). The general case requires a
three dimensional flow model.

Other studies focused on the time-dependency of the dynamics. Two ap-
proaches exist. The first is to study the transient evolution to equilibrium of a
quiescent basin to a suddenly imposed spatially uniform wind (Csanady, 1968a;
Birchfield, 1969; Mohammed-Zaki, 1980). The second is to study the response
to a single wind event, characterised by not only a spin-up but also a spin-down
stage. Such an event can be seen as the superposition of periodic wind forcings
at various frequencies ω (Craig, 1989). Assuming linear dynamics, also the re-
sponse will be the superposition of the responses at these individual frequencies.
Hence, the basin’s response to a single wind event lies in its spectral response.
For example, from his idealised model for elongated basins (B � L) subject to
periodic and spatially uniform wind, Ponte (2010) identified resonance peaks as-
sociated with along-basin standing waves. The oscillations associated with these
peaks (eigenmodes) were investigated more generally by Rao (1966). His nu-
merical study particularly demonstrated that the resonant frequencies strongly
depend on B and L.

Other studies account for spatial variations in the wind field, which have
been observed e.g. in the Gulf of California (Ponte et al, 2012) and are known
to affect the response (Pugh, 1987). This was also found in theoretical studies,
e.g. regarding the equilibrium response to steady wind in a shallow circular
basin (Birchfield, 1967) and the transient response to a suddenly imposed wind
stress in deep circular basins (Mohammed-Zaki, 1980).

From the above, we identify the following knowledge gap. There is no study
systematically investigating the resonance properties of basins of arbitrary ge-
ometry, subject to arbitrary wind fields. The goal of the present study is to
systematically investigate the resonance properties of wind-driven flow in closed
rotating basins. Specifically, our research questions are as follows. How do the
resonance properties depend on the following aspects: (1) basin dimensions, (2)
the spatial structure of the wind forcing, and (3) bottom friction?

As a first step to answering these question, we present a three-dimensional
idealised process-based model of wind-driven flow in closed rectangular rotating
basins of uniform depth. The vertical profile of the flow field is resolved fully
analytically, and expressed in the free surface elevation. In turn, the free surface
elevation pattern follows from solving an elliptic problem. To solve it, two
methods are used: (i) a so-called collocation method, valid for arbitrary values of
the dimensionless Coriolis parameter f/ω, (ii) an analytical approximation valid
for small values of f/ω to obtain physical insight in the influence of rotation.
Spatial variations in the wind are accounted for in a schematised way, i.e. by
allowing linear variation of wind stress amplitude and phase in the along-wind
(nonzero divergence) and cross-wind direction (nonzero curl).

This paper is organised as follows. In section 2.2, we present the model.
Next, section 2.3 contains the solution method, and in section 2.4 we present
the model results. Finally, sections 2.5 and 2.6 present the discussion and con-
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x=0 x=L
y=0

y=B

(a) top view

z

x ↓
z=η(x,y,t)

u(x,y,z,t)

x=0 x=L
z=−h

z=0

(b) side view (along−basin)

Figure 2.1: Definition sketch of the model geometry, showing a rectangular basin
of uniform depth: (a) top view, (b) side view in along-basin direction displaying the
vertical profile of one component of the three-dimensional flow field. The black dot
in the left-hand image indicates the location used to evaluate the solution in §2.4.
The dash-dotted lines denote the along-basin and cross-basin centerlines, used in the
symmetry arguments in §2.5.

clusions, respectively.

2.2 Model formulation

Consider a rectangular basin of length L, width B and uniform depth h on the
f plane (see Figure 2.1). Let x and y be the along-basin and cross-basin coor-
dinates, such that the basin boundaries are located at x = 0, L and y = 0, B.
The vertical coordinate z points upward, with z = η denoting the free surface
elevation with respect to the undisturbed water level z = 0 and the bed level at
z = −h. Let u = (u, v, w) represent the flow velocity vector, with components
u, v and w in the x, y and z-direction, respectively. Assuming that the vertical
displacement of the free surface is small compared to the water depth, conser-
vation of momentum and mass is expressed by the three-dimensional linearised
shallow water equations according to

∂u

∂t
− fv = −g

∂η

∂x
+

∂

∂z

[
K

∂u

∂z

]
, (2.1)

∂v

∂t
+ fu = −g

∂η

∂y
+

∂

∂z

[
K

∂v

∂z

]
, (2.2)

∂u

∂x
+

∂v

∂y
+

∂w

∂z
= 0. (2.3)

Here, f = 2Ω sinϑ is the Coriolis parameter (with Ω = 7.292× 10−5 rad s−1 the
angular frequency of the Earth’s rotation and ϑ the latitude), g = 9.81 m s−2 the
gravitational acceleration and K the vertical eddy viscosity, assumed constant.
Horizontal mixing of momentum is neglected.

Regarding boundary conditions, we impose a wind stress at the free surface
and a partial-slip condition at the bottom. Along with the kinematic boundary
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(a) spatially uniform part (b) divergent part (c) curl part

Figure 2.2: Top view of the three contributions to the spatial wind pattern in
Eq.(2.7): (a) spatially uniform part, (b) divergent part showing linear variation in
the along-wind direction, (c) curl part showing linear variation in the cross-wind di-
rection. These images are snapshots showing wind directions at a certain time: half a
period later these directions are reversed.

conditions, this reads in linearised form:

w =
∂η

∂t
, K

(
∂u

∂z
,
∂v

∂z

)
=

(τ
(x)
w , τ

(y)
w )

ρ
at z = 0, (2.4)

w = 0, K

(
∂u

∂z
,
∂v

∂z

)
= s(u, v) at z = −h. (2.5)

The linearisation procedure causes the free surface condition to be imposed at
z = 0 instead of at z = η. In Eq.(2.5), we have introduced the resistance
parameter s, its value usually obtained from the analysis of field data. Two
limiting cases are of interest. For large s, the bottom boundary condition effec-
tively means no-slip, as used by e.g. Ponte (2012). On the other hand, s = 0
corresponds to free-slip for which the flow becomes z-independent.

Furthermore, (τ
(x)
w , τ

(y)
w ) is the wind stress vector. The wind is assumed time-

periodic with angular frequency ω, aligned with the x-direction. In addition to a
spatially uniform contribution (Figure 2.2a), we allow the wind to vary linearly
in both the along-wind and the cross-wind direction. Along-wind variations lead
to a nonzero divergence of the wind field, cross-wind variations to a nonzero curl
(see Figs.2.2b,c). This means

(τ
(x)
w , τ

(y)
w )

ρ
= �

{
(T (x), T (y)) exp(−iωt)

}
, (2.6)

with

T (x) = T̂

(
1 + a

[
2x

L
− 1

]
+ b

[
2y

B
− 1

])
, T (y) = 0. (2.7)

The parameter T̂ denotes the magnitude of the forcing (wind stress divided
by density) at the basin’s centre. The complex coefficients a and b quantify
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the along-wind and cross-wind variation from this basin-averaged value. Im-
portantly, the assumption of wind in x-direction only is not restrictive. The
solution to a periodic wind in an arbitrary direction is the superposition of the
separate solutions for wind in x- and y-direction only. The latter solution can
be obtained by rotating the entire system 90 degrees in the clockwise direction
(effectively interchanging L and B, wind now parallel to x-axis) and finally
rotating the solution 90 degrees in the counterclockwise direction.

Finally, at the horizontal boundaries of the rectangular basin we require the
normal transports to vanish, i.e.

〈u〉 = 0 at x = 0, L and 〈v〉 = 0 at y = 0, B. (2.8)

where angle brackets denote vertical integration from bottom to surface, i.e.

〈·〉 = ∫ 0

−h ·dz (with the upper boundary z = 0 arising from the linearisation).

2.3 Solution method

2.3.1 Differential problem for surface elevation amplitude

First we write the solution in a time-periodic fashion according to

η = �{N(x, y) exp(−iωt)} , (2.9)

u = �{U(x, y, z) exp(−iωt)} , (2.10)

with complex amplitudes N and U . Similar expression hold for v and w, with
complex amplitudes V and W .

Next, we express the horizontal flow solution ũ and ṽ in terms of surface
slopes ∇η and wind stress. This is done using so-called rotating flow compo-
nents, for which we derive expressions; see Appendix 2.A.1. Substituting these
expressions into the continuity equation and integrating from bottom to surface
gives the following elliptic equation for N (see Appendix 2.A.2):

∂2N

∂x2
+

∂2N

∂y2
+ k2N = −

[
∂ 〈R1〉
∂x

+
∂ 〈R2〉
∂y

]
, (2.11)

in which k is a wave number satisfying

k2 =
−iω

〈C1〉 , (2.12)

with the coefficient 〈C1〉 as specified in Appendix 2.A.2. The forcing term on the
right-hand side of Eq.(2.11) includes contributions arising from the divergence
and curl of the wind stress field (see Appendix 2.A.1); it is zero for spatially uni-
form wind. Moreover, k is a wave number, and the coefficient 〈C1〉 in Eq.(2.12)
is as specified in Appendix 2.A.2.

The boundary conditions in Eq.(2.8) imply

∂N

∂x
+ γ

∂N

∂y
= −〈R1〉 at x = 0, L, (2.13)

−γ
∂N

∂x
+

∂N

∂y
= −〈R2〉 at y = 0, B, (2.14)
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with coefficient γ = 〈C2〉 / 〈C1〉 as well as forcing terms 〈R1〉 and 〈R2〉 associated
with the wind stress at the cross-basin and along-basin boundaries, respectively;
see Appendix 2.A.2. Finally, the vertical flow amplitude W at any depth z can
be expressed in terms of the free surface elevation N and the wind forcing. This
follows from integration of the continuity equation; see Appendix 2.A.3.

Finally, for ω = 0, the wave number in Eq.(2.11) reduces to k2 = 0, and as
an additional condition the total water volume in the basin must be prescribed.

2.3.2 Collocation method

The solution, for arbitary values of the dimensionless rotation parameter f/ω,
will be written as

N = Nunif + aNdiv + bN curl, (2.15)

with three contributions associated with the spatially uniform part of the wind,
the divergent part of the wind (a �= 0) and the curl part of the wind (b �= 0).

The first contribution Nunif takes advantage of the fact that a function
φunif(y) exists satisfying both the differential equation (2.11) and the along-
basin boundary conditions in Eq.(2.14), only regarding the forcing terms arising
from the spatially uniform wind. See Appendix 2.B.1 for an expression for φunif .
We thus write

Nunif = φunif(y) +

M∑
m=0

c⊕mN⊕
m(x, y) +

M∑
m=0

c�mN�
m(x, y), (2.16)

with N⊕
m(x, y) and N�

m(x, y) representing two families of so-called along-basin
eigenmodes, consisting of Kelvin and Poincaré modes propagating or exponen-
tially decaying in the positive or negative x-direction, respectively (see Ap-
pendix 2.B.3). In Eq.(2.16), M is the truncation number. The coefficients
c⊕m and c�m follow from applying a collocation technique. Herein, we require the
boundary condition (2.13) to be satisfied at two sets of M+1 collocation points,
one at x = 0 and the other at x = L (see Figure 2.3)�. Note that this boundary
condition includes a contribution due to φunif .

The second contribution Ndiv is found analogously, but now using a solution
φdiv(x) satisfying both the differential equation and the cross-basin boundary
conditions, regarding the forcing terms proportional to a (see Appendix 2.B.1).
We thus write

Ndiv = φdiv(x) +

M̃∑
m=0

a⊕mÑ⊕
m(x, y) +

M̃∑
m=0

a�mÑ�
m(x, y), (2.17)

Also this solution involves two families of cross-basin eigenmodes, but now prop-
agating or exponentially decaying in the positive or negative y-direction, respec-
tively. The 2(M̃ + 1) collocation points are now located at y = 0 and y = B.
Please note that the value of M̃ may differ from the value of M used above.

�This approach of finding solutions involving multiple sets of collocation points, has been
adopted earlier in a tidal flow context (Roos and Schuttelaars, 2011; Roos et al, 2011).
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x=0 x=L

y
x

〈U〉=0
at colloc.
points

〈U〉=0
at colloc.

points

(a) Nunif and Ncurl using along−basin modes

 particular solution

y=0

y=B

y

x

〈V〉=0 at colloc. points

〈V〉=0 at colloc. points

*works also for Nunif

(b) Ndiv using cross−basin modes*

Figure 2.3: Sketch of the solution method outlined in §2.3.2. (a) To calculate Nunif

and Ncurl, a superposition of along-basin channel modes (white arrows) and a suitable
particular solution (double arrow) is forced to satisfy 〈U〉 = 0 at a set of collocation
points at x = 0, L (white circles). (b) Alternatively, to obtain Ndiv, a superposition
of cross-basin channel modes and a particular solution is forced to satisfy 〈V 〉 = 0 at
a set of collocation points at y = 0, B. By symmetry, the latter orientation also works
for Nunif , which is done in the convergence test (Appendix 2.B.2).

Finally, the third contribution reads

N curl = φcurl(y) +

M∑
m=0

b⊕mN⊕
m(x, y) +

M∑
m=0

b�mN�
m(x, y), (2.18)

again involving along-basin eigenmodes and collocation points identical to those
used in obtaining Nunif (and involving φcurl, as given in Appendix 2.B.1).

By symmetry, the contribution Nunif due to the spatially uniform wind can
just as well be obtained with an alternative form of Eq.(2.16), involving cross-
basin eigenmodes and collocation points at y = 0 and y = B. This requires
an alternative particular solution φ̃unif(x) instead of φunif(y). This symmetry
property provides us with an opportunity to perform a convergence test; see
Appendix 2.B.2. This possibility does not exist for the other two contributions
Ndiv and N curl.

2.3.3 Analytical solution for small f/ω and free slip

In the case of weak Coriolis effects, we may obtain additional insight from
expanding the solution in powers of ε = f/ω. For convenience we will do this
for the case of free slip (s = 0), which makes the flow pattern z-independent.
Let us write

N = N0 + εN1 + ε2N2 + . . . , (2.19)

U = U0 + εU1 + ε2U2 + . . . , (2.20)
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and the same for V , where U and V are the flow velocities.
At lowest order, i.e. at O(ε0), Coriolis effects is absent. For the uniform

and divergent wind field, we then obtain a purely along-basin oscillation. Al-
ternatively, due to its cross-basin dependency, the solution due to the curl-part
of the wind also displays cross-basin oscillations. Adopting a notation that is
convenient to present also the higher order solutions, the lowest order solution
reads

N0

N̂
= F−

k0
(x) + a

[
2

k0L
− F+

k0
(x)

]
+ b

∑
m odd

cmF−
α̃m

(x) cosβmy, (2.21)

U0

Û
= iG−

k0
(x) + ia

[
2x

L
−G+

k0
(x)

]
+ ib

∑
m odd

cm
α̃m

k0
G−

α̃m
(x) cos βmy, (2.22)

V0

Û
= ib

∑
m odd

cm
βm

k0
F−
α̃m

(x) sin βmy. (2.23)

Here we have introduced reference values of the elevation and velocity ampli-
tudes given by N̂ = T̂ /(ghk0) (with shallow water wave number k0 = ω/

√
gh)

and Û = T̂ /(ωh), respectively. Next, the curl-part has a cross-basin struc-
ture containing a cross-basin wave number βm = mπ/B and coefficients cm =
−8k0/[α̃m(mπ)2], only required for odd values of m. Moreover, we used the di-
mensionless functions F±

k0
(x) = sin k0x±ξ±k0L

cos k0x and G±
k0
(x) = 1−cos k0x±

ξ±k0L
sin k0x involving the coefficient ξ±k0L

= (1± cosk0L)/ sink0L. Similarly, we

introduce along-basin wave numbers α̃m satisfying α̃2
m + β2

m = k20 as well as
functions F±

α̃m
(x) and G±

α̃m
(x) involving a similar coefficient ξα̃mL.

The solutions at first order, i.e. at O(ε1) and O(ε2) express how Coriolis
effects modify the above oscillations. Mathematically, the Coriolis acceleration
of the lowest order flow enters as the only forcing term at first order (the di-
rect wind forcing being absent here). As a result, the solutions for a uniform
and divergent wind field now experience a forcing in the cross-basin direction.
Alternatively, the curl-part is further modified in along-basin and cross-basin
directions. Expressions for the first order solutions are given in Appendix 2.C.

2.4 Results

2.4.1 Collocation method

To present the results, we consider a reference basin with characteristics as
shown in Table 2.1. This corresponds to a basin with dimensions roughly rep-
resenting those of the Southern Bight of the North Sea. To investigate the role
of bottom friction, we consider a frictional case with the resistance parameter
equal to s = 10−4 m s−1 as well as a frictionless case with s = 0.
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Table 2.1: Overview of model parameters and their reference values.
description symbol value unit

basin length L 200 km
basin width B 100 km
basin depth h 10 m
latitude∗ ϑ 40 ◦N
Coriolis parameter∗ f 9.37 × 10−5 s−1

vertical eddy viscosity K 0.025 m2 s−1

resistance parameter† s 10−4 m s−1

resistance parameter‡ s 0 m s−1

along-basin truncation number§ M 32 -

cross-basin truncation number§ M̃ 64 -
∗default value (we assume f � ω in the expansion for weak rotation and free slip,

§2.3.3),
†including bottom friction,
‡zero resistance parameter to have a 2DH solution without friction (free slip, §2.3.3),
§chosen such that along-basin and cross-basin collocation spacings are identical.

We will first present three examples (Fig.2.4). The examples all deal with
the reference basin, but differ with respect to the applied forcing. We have
intentionally chosen our forcing frequencies such that they coincide with peaks
in the spectral response, to be shown in Fig.2.5. The first example is forced
by a spatially uniform wind field with an angular frequency given by ω1 =
1.52× 10−4 rad s−1 = 0.49ωref with reference frequency

ωref =
√
gh

2π

L
. (2.24)

The reference frequency is the frequency for which the frictionless shallow wa-
ter wavelength equals the basin length. The second example is forced by
a spatially uniform wind field, as well, but now of angular frequency ω2 =
2.95× 10−4 rad s−1 = 0.95ωref. The same frequency is applied in the third ex-
ample, but now using a divergent wind field. Since the solution is time-periodic,
the elevation field can be visualised as an amphidromic system, displaying am-
plitudes and co-phase lines. As shown in Fig.2.4a, the first examples display a
rotating Kelvin wave with one amphidromic point at the basin center, and rela-
tively high amplitudes near the coast. The other examples, shown in Figs.2.4bc,
display entirely different patterns and much lower amplitudes. These examples
already illustrate that the response depends on both type of forcing and forcing
frequency.

To further investigate the dependency of the solution on the forcing fre-
quency for the various types of wind forcing, we will focus on the location
midway one of the cross-basin boundaries; see the black dot in Fig.2.1a. The
elevation amplitude at this location, scaled against the reference elevation am-
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Figure 2.4: Amphidromic charts for three examples of basin responses: (a) uniform
wind with ω = ω1, (b) uniform wind with ω = ω2, (c) divergent wind with ω = ω2.
Colors indicate elevation amplitude; pink lines are the co-phase lines. Parameter values
as in Table 2.1 (including bottom friction).

plitude N̂ according to

A =
|N |
N̂

at (x, y) = (L, 1
2B) with N̂ =

T̂

ghk0
, (2.25)

will be used to evaluate the solution. Figure 2.5 shows the value of A as a
function of the dimensionless forcing frequency ω/ωref . This is done for each
of the three types of wind forcing, in each case distinguishing a case without
(black line) and with bottom friction (thick pink line). First of all, the three
examples presented before appear here as part of the spectral response, the
first one clearly having the highest value. More generally, the spectral response
shows a complex pattern of peaks at certain frequencies and lower responses
in between. Comparison between Figs.2.5abc shows that this pattern strongly
depends on the type of wind forcing, e.g. at ω ≈ 1

2L/λ showing a peak for the
spatially uniform wind, but not for the other types of forcing.

Increasing the resistance parameter (see Table 2.1) generally lowers the
peaks, in certain cases causing it more or less to disappear. As a second or-
der effect, actually not visible in Fig.2.5, the peaks shift to a slightly lower
frequency. Further simulations, not shown here, suggest that the spectral re-
sponse of the surface elevation hardly depends on the value of the vertical eddy
viscosity K. However, the vertical structure of the flow velocity does depend on
K.

The influence of basin width on the spectral response is shown in Fig.2.6, for
each of the three types of wind forcing. We kept the basin length to its default
value, and varied basin width from B = 25 km to 400 km, thus covering a width-
over-length range from 0.1 to 3.5. For the solutions with collocation points along
the cross-basin boundaries, the number of collocation points was adjusted to
keep a collocation spacing to a constant value of about 3 km. The colour plots
show that for elongated basins, i.e. for B/L � 1, the spectral response is nearly
B/L-independent for the frequency range plotted. In Fig.2.6a, we particularly
reproduce the peaks mentioned by Ponte (2010); and we now show that similar
behavior is found for the other spatial wind patterns. For non-elongated basins,
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Figure 2.5: Scaled elevation amplitude A at evaluation point (black dot in Fig.2.1a),
as a function of the dimensionless forcing frequency ω/ωref for three different types of
wind forcing: (a) spatially uniform part, (b) divergent part, (c) curl part. Parameter
values as in Table 2.1, with black and pink curves pertaining to the cases without and
with bottom friction, respectively. As indicated, the three pink dots refer to the cases
displayed in Fig.2.4. Please note that all peaks of the black curve should reach to
infinity, but due to the plotting resolution for ω this is not visible for all peaks.
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Figure 2.6: Scaled elevation amplitude A at evaluation point (black dot in Fig.2.1a),
as a function of dimensionless forcing frequency ω/ωref and dimensionless basin width
B/L, for three different types of wind forcing: (a) spatially uniform part, (b) divergent
part, (c) curl part. This figure has been obtained by varying ω and B, while fixing
the other parameters to the values listed in Table 2.1 (including bottom friction).

i.e. for B/L = O(1) and larger, a more complicated pattern is obtained showing
a strong width-dependence to be further interpreted in §2.5.2. The reference
case for which B/L = 1

2 is denoted by a dashed white line.

2.4.2 Analytical solution for small f/ω and free slip

In addition to the results from the collocation method, we now turn to the
analytical solution in powers of f/ω. The spectral response at various orders
of ε = f/ω is shown in Fig.2.7 (for spatially uniform and divergent wind) and
Fig.2.8 (for wind with nonzero curl), again as a function of the scaled frequency
L/λ. Analogous to Rao (1966), the resonance peaks have been labeled by brack-
eted numbers (m,n), with along-basin mode number m and cross-basin mode
number n. As such, they correspond to an eigenmode with a specific spatial
structure as presented by Rao (1966). For example, the mode associated with
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Figure 2.7: Scaled elevation amplitude A at evaluation point (black dot in Fig.2.1a),
as a function of the dimensionless forcing frequency L/λ according to the expansion
in powers of ε = f/ω: (a) lowest order, (b) first order. The curves pertain to the
solution due to the spatially uniform part (black) and the divergent part (red) of the
wind field. Bracketed numbers (m,n) indicate the eigenmode with along-basin mode
number m and cross-basin mode number n; see text. Parameter values as in Table 2.1
(free slip case and small f).

the (1, 0)-peak at L/λ = 1
2 in Fig.2.7a is actually the frictionless counterpart

of the first example (Fig.2.4a), in the limit of no rotation. Likewise, the mode
associated with the (2, 0)-peak at L/λ = 1 in Fig.2.7a is the counterpart of the
third example (Fig.2.4c). Peaks are labeled only if they are new at a certain
order in ε, not if they are already present at a lower order for the same type
of forcing. As noted by Rao (1966), all eigenmodes are either symmetric or
antisymmetric about the center point of the basin.

2.5 Discussion

2.5.1 Interpretation of the resonances

To interpret the complex patterns of peaks in the spectral response presented in
§2.4.1, we will examine the physics behind the peaks appearing in the analytical
solution for small f/ω and free slip presented in §2.4.2. To this end, we must
turn to the concept of resonance. Resonance implies that, when starting from
rest, the forcing continuously feeds energy into the system. This means that
the net power supplied by the wind forcing, i.e. integrated over the basin and
averaged over a forcing period, is positive. In our context with along-basin wind
only and neglecting dissipation, this resonance condition can be expressed as

Pinput =
ω

2π

∫ 2π/ω

0

[
ρ

∫ B

0

∫ L

0

u τw dx dy

]
dt > 0. (2.26)
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Figure 2.8: Same as Fig.2.7, but now for the solution due to the curl part of the
wind field (blue), which is available at (a) the lowest order and (b) the first order.

Whether a certain mode can be excited depends on symmetry properties as-
sociated with the spatial structure of the wind field in relation to the spatial
structure of the along-basin flow field.

Let us now focus on the lowest order solution for spatially uniform and
divergent wind (Fig.2.7a), i.e. without rotation. The peaks occurring at L/λ =
1
2 + p for p = 0, 1, 2, · · · , associated with the odd modes (2p + 1, 0) are the
odd seiches of a closed basin that can be excited by a spatially uniform wind
(Csanady, 1982; Ponte, 2010). In addition to this well known result, the peaks at
L/λ = p for p = 1, 2, · · · demonstrate that a divergent wind field may excite the
even modes (2p, 0). Symmetry arguments help to explain this from Eq.(2.26).
Odd modes can be excited by a spatially uniform wind field, because both
wind and along-basin flow are symmetric about the cross-basin centerline, thus
giving a nonzero result in Eq.(2.26). Analogously, even modes can be excited
by a divergent wind field, because both wind and along-basin flow are then
antisymmetric about the cross-basin centerline. This is illustrated in Fig.2.9a,b.

Next, let us discuss the lowest order solution due to the curl part of the
wind field, also without rotation. As shown by the peaks in Fig.2.8a, modes
characterised by odd along-basin and odd cross-basin mode numbers can be
resonant under this type of forcing. The following symmetry arguments show
why this is the case. Modes with an even along-basin mode number cannot be
resonant, because the along-basin flow on the left-hand side of the cross-basin
centerline is then always opposite to that on the right-hand side. However, the
wind forcing is symmetric about this cross-basin centerline. The power input by
the wind in these two parts of the basin will thus always cancel, which causes the
net power by the wind forcing to be zero. A similar argument holds for the modes
with an even cross-basin mode number, but now with respect to the along-basin
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Figure 2.9: Sketch of the symmetry argument showing the spatial structure of the
forcing (left-hand panel) and the spatial structure of the along-basin flow field of three
modes: (1, 0), (2, 0) and (1, 1). Grey shades indicate positive values, white means
negative. We consider three types of wind forcing: (a) spatially uniform part, (b)
divergent part and (c) curl part. Whether a certain mode is resonant under these
forcing conditions, is denoted in the figure.

centerline. These modes cannot be resonant, because the along-basin flow is
then symmetric about this line and the wind forcing is antisymmetric about this
line. Hence, the power input by the wind in these situations. Such symmetry
arguments do not apply to the modes characterised by odd along-basin and odd
cross-basin mode numbers. The above reasoning is illustrated in Fig.2.9c.

The first order solutions for the uniform and divergent wind case show new
resonances; see the peaks in Fig.2.7b. To understand these peaks, it is crucial
to realise that the first order problem is actually similar to the lowest order
problem, but instead of by the wind it is forced by the Coriolis acceleration of
the lowest-order along-basin flow. This forcing acts in the cross-basin direction,
it is uniform in this cross-basin direction and it has an along-basin structure that
depends on the type of wind forcing. For spatially uniform wind, the lowest order
along-basin flow in Eq.(2.22) and hence the first order forcing is symmetric about
the cross-basin centerline. Alternatively, for divergent wind, the first order
forcing is antisymmetric about the cross-basin centerline. Symmetry arguments
similar to those presented above for the lowest order solution due to the curl-
part now explain why the uniform wind (divergent wind) gives rise to resonance
at modes with an even (odd) along-basin mode number, and in each case an
odd cross-basin mode number.

Similar symmetry arguments explain the new peaks arising in the first order
response to the curl part of the wind (Fig.2.8b), but this is more complicated
due to the spatial structure of the forcing.
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2.5.2 Influence of basin dimensions

The modes identified in the previous subsection allow us to interpret the width-
dependence of the (peaks in the) spectral response presented in Fig.2.6. As noted
earlier, for elongated basins, i.e. for B < L � 1, the response is independent of
B/L in the frequency range under consideration. This is because the cross-basin
dynamics are weak. For non-elongated basins, i.e. for B/L = O(1) and larger,
we see that these purely along-basin modes (e.g., (1, 0) for the spatially uniform
wind) are modified by Coriolis effects into a more rotary wave propagating
around the basin, which has a longer travel distance and thus a lower resonant
frequency. In addition to this, resonant peaks appear pertaining to purely cross-
basin modes (e.g., (0, 1)) as well as mixed along-/cross-basin modes (e.g., (2, 1)).
As can be expected, the peak frequency modes decrease with increasing basin
width. In conclusion, we can say that for non-elongated basins, cross-wind
dynamics produces peaks at frequencies significantly lower than those obtained
by Ponte (2010).

2.5.3 Single wind event

We will now illustrate how the spectral response translates into time-dependent
elevation patterns for a single wind event (Fig. 2.10). To this end, it is important
to realise that any wind event can be represented as the superposition of periodic
signals. This means that Eq.(2.6) must be extended according to

(τ
(x)
w , τ

(y)
w )

ρ
= �

{
P∑

p=0

(T (x)
p , T (y)

p ) exp(−iωpt)

}
, (2.27)

with frequencies ωp = pωmin and corresponding wind amplitudes T
(x)
p and T

(y)
p .

As we must discretise the wind spectrum, there is a minimum frequency ωmin

and hence a recurrence period Trecur = 2π/ωmin over which the event repeats
itself. To realistically describe a ‘single’ wind event, this recurrence period must
be sufficiently large such as to avoid unwanted interference. In this example, we
have taken Trecur = 10 days. By linearity, the basin response to the forcing in
Eq.(2.27) will be the superposition of the responses to the individual periodic
forcings as calculated by our model.

Now let us consider two wind events I and II, that impose a spatially uniform
wind forcing of 3 N m−2 onto our reference basin in the along-basin direction
(parameter values in Table 2.1). According to standard empirical friction laws
(Wu, 1982), this corresponds to a wind speed of about 30 m s−1 (at 10 m
height). The two wind events differ in their duration: wind event I lasts 10.3
hours, wind event II lasts 6 hours. Regarding spin-up and spin-down of the
forcing, we apply a smooth transition taking 1.2 hours for both wind events (see
grey curves in Fig.2.10bd).

The elevation at the evaluation point, as a function of time, shows quite
different responses for the two wind events (see black curves in Fig.2.10bd).
The strongest sloshing is observed after wind event II, whereas wind event I
produces relatively little oscillations. This is as expected from comparing the
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Figure 2.10: Response of surface elevation at evaluation point for two wind events
that differ in duration: 10.3 hours for event I (top), 6 hours for event II (bottom).
The plots on the left show the spectral representation of the wind (grey) as well as the
amplification (pink), and the actual response (dashed). The plots on the right show
the temporal representation of both forcing (grey) and response (black). Note that the
grey curve represents the wind forcing as it is actually simulated using a superposition
of Fourier modes. Parameter values as in Table 2.1, spatially uniform wind.

wind spectrum with the spectral response of the basin (see Fig.2.10ac). It is the
product of these two quantities that gives the spectral response to the wind event
under consideration (blue curve). Indeed, the resonant frequency L/λ = 0.49 is
not contained in the wind spectrum of event I, whereas it is present in event II.

2.6 Conclusions

We have developed an idealised process-based model to systematically investi-
gate the resonance properties of closed rectangular rotating basins of uniform
depth, subject to space- and time-dependent wind forcing. We focus on the
spectral response of the surface elevation at an evaluation point midway one of
the cross-basin boundaries.

Regarding the resonance peaks, we conclude that the spatial structure of the
wind forcing matters. For example, without rotation, a spatially uniform wind
produces the classical resonance peaks at L/λ = 1

2 ,
3
2 , · · · , whereas divergent

wind also gives peaks at L/λ = 1, 2, · · · . Including rotation shifts these peaks.

Next, because the cross-wind basin dimension B is not small, cross-wind
dynamics produces peaks at frequencies significantly lower than obtained by
Ponte (2010). These cross-wind dynamics can be triggered by several mecha-
nisms. Firstly, a wind forcing with nonzero curl produces cross-wind variations
in elevation and thus cross-basin flow and oscillations that may be resonant. Sec-
ondly, the Coriolis acceleration of the along-wind flow also produces cross-basin
oscillations. As discussed above, this along-wind pattern depends on the spatial
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pattern of the wind forcing, so these rotation-induced peaks will be different for
spatially uniform wind and divergent wind.

In each of the above cases, the main effect of increasing friction is a lowering
of the peaks. Finally, we have illustrated how the spectral response analysed
above manifests itself in the response to a single wind event, and particularly
how excitation of resonant frequencies produces sloshing in the basin. Extending
this model approach with respect to geometry (realistic topography and coast-
lines) and atmospheric forcing is essential before making a detailed comparison
with observations.

Acknowledgement: This work is partly funded by the Chinese Scholarship Council
and partly by the research programme ‘Impact of climate change and human interven-
tion on hydrodynamics and environmental conditions in the Ems-Dollart estuary: an
integrated data-modelling approach’. The latter project is financed by the Bundesmin-
isterium fur Bildung und Forschung (BMBF) and by the Netherlands Organization
for Scientific Research (NWO), as part of the international Wadden Sea programme
(GEORISK project). We thank one anonymous reviewer for his/her comments.



2.A. Expressions for flow and problem for N 53

Appendix

2.A Expressions for flow and problem for N

2.A.1 Vertical profiles from horizontal momentum equations
Here we present the details of the vertical structure of the flow First we define rotating
flow components according to q± = u ± iv with complex amplitudes Q±, such that
U = (Q+ + Q−)/2 and V = (Q+ − Q−)/(2i). From Eqs.(2.1)-(2.2), the differential
equation for the complex amplitude Q± is given by

d2Q±

dz2
− λ±2Q± = gL±N, (2.28)

with complex operators L± = ∂/∂x ± i∂/∂y. From Eqs.(2.4)-(2.5), the boundary
conditions are given by

K
dQ±

dz
= T± at z = 0, and K

dQ±

dz
= sQ± at z = −h, (2.29)

with rotating wind forcing amplitudes T± = T (x) ± iT (y) (wind stress divided by
density). The two forcing terms in this nonhomogeneous differential problem imply
that the rotating flow solution contains two contributions, proportional to the surface
gradient and the wind stress, respectively:

Q±(z) = Q±
η (z)L

±N +Q±
w(z)T

±, (2.30)

The vertical structures read

Q±
η (z) =

g
[
cosh λ+z − α±

c

]
α±
c Kλ±2

, (2.31)

Q±
w(z) =

α±
c sinhλ±z + α±

s cosh λ±z

α±
c Kλ±

, (2.32)

with λ±2 = −i(ω∓f)/K and α±
c = cosh λ±h+s−1Kλ± sinhλ±h and α±

s = sinhλ±h+
s−1Kλ± cosh λ±h. The vertical integral is given by〈

Q±
〉
=
〈
Q±

η

〉
L±N +

〈
Q±

w

〉
T±, (2.33)

with

〈
Q±

η

〉
=
g
[
sinhλ±h− α±

c λ
±h
]

α±
c Kλ±3

, (2.34)

〈
Q±

w

〉
=
α±
c

[
1− cosh λ±h

]
+ α±

s sinhλ±h

α±
c Kλ±2

. (2.35)

The two cases ω = ±f require alternative expressions for either Q+ or Q−. If ω = +f
we must replace the Q+-expressions in Eqs.(2.31)-(2.33); if ω = −f we must replace
the Q+-expressions. They must be replaced with

Q±
η (z) =

gh2

K

[
1

2

( z
h

)2
−

1

2
−
K

sh

]
, Q±

w(z) =
h

K

[
1 +
( z
h

)
+
K

sh

]
, (2.36)

and 〈
Q±

η

〉
= −

gh3

K

[
1

3
+
K

sh

]
,

〈
Q±

w

〉
=
h2

K

[
1

2
+
K

sh

]
. (2.37)
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2.A.2 Elliptical problem for N

Depth-integration of the continuity equation (2.3), with the aid of boundary conditions
(2.4) gives, in terms of the complex amplitudes of surface elevation and the rotating
velocity components.

−iωN +
∂

∂x

(〈
Q+
〉
+
〈
Q−
〉

2

)
︸ ︷︷ ︸

〈U〉

+
∂

∂y

(〈
Q+
〉
−
〈
Q−
〉

2i

)
︸ ︷︷ ︸

〈V 〉

= 0, (2.38)

Substitution of Eq.(2.30) gives the elliptical equation for N presented in Eq.(2.11) of
the main text. The corresponding coefficients are given by

C1 =
1

2

[
Q+

η +Q−
η

]
, C2 =

1

2i

[
Q+

η −Q−
η

]
, (2.39)

The boundary conditions presented in Eqs.(2.13)-(2.14) of the main text follow from
depth-integration of the momentum equations (2.1)-(2.2). The coefficients in there are
given by γ = 〈C2〉 / 〈C1〉 and

R1 =
1

2 〈C1〉

[
Q+

wT
+ +Q−

wT
−] , R2 =

1

2i 〈C1〉

[
Q+

wT
+ −Q−

wT
−] . (2.40)

2.A.3 Vertical flow velocity

The vertical flow velocity amplitudes at any depth z are given by

W (z) = −�C1�

(
∂2N

∂x2
+
∂2N

∂y2

)
− 〈C1〉

(⌊
∂R1

∂x

⌋
+

⌊
∂R2

∂y

⌋)
, (2.41)

where floor brackets indicate integration from bottom to z, i.e. �·� =
∫ z

−h
·dz. This

expression can be simplified further by using the differential equation (2.11) for N to
eliminate the Laplacian of N .

2.B Details of the collocation method

2.B.1 Expressions for φunif , φdiv and φcurl

Our solution method uses functions that homogenize the differential equation (2.11)
and either the along-basin or cross-basin boundary conditions in Eqs.(2.13)-(2.14). For
the three different parts of the wind field, these functions are given by

φunif(y) = −

[〈
Q+

w

〉
−
〈
Q−

w

〉]
T̂

2i 〈C1〉 k

[
sin ky − χ−

k cos ky
]
, (2.42)

φdiv(x) =

[〈
Q+

w

〉
+
〈
Q−

w

〉]
T̂

4 〈C1〉 k

[
sin kx+ ξ+k cos kx−

2

kL

]
, (2.43)

φcurl(y) =

[〈
Q+

w

〉
−
〈
Q−

w

〉]
T̂

4i 〈C1〉 k

[
sin ky + χ+

k cos ky −
2

kB

]
, (2.44)

with k as defined in Eq.(2.11) and χ±
k = (1±cos kB)/ sin kB and ξ±k = (1±cos kL)/ sin kL.
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Figure 2.11: Difference εconv between two possible solution techniques available for
the case with spatially uniform wind, as defined in Eq.(2.46). M is the truncation
number used for the solution with along-basin modes. Parameter values as in Table 2.1.

2.B.2 Convergence test for spatially uniform wind

As already pointed out in §2.3, the case of spatially uniform wind can be solved in
two ways. The first is by combining along-basin modes with collocation points at the
cross-basin boundaries (as in Fig.2.3a and in the main text); the second by combining
cross-basin modes and collocation points at the along-basin boundaries (Fig.2.3b). The
latter choice requires an alternative particular solution; Eq.(2.42) should be replaced
with

φ̃unif(x) = −

[〈
Q+

w

〉
+
〈
Q−

w

〉]
T̂

2 〈C1〉 k

[
sin kx− ξ−k cos kx

]
. (2.45)

The symmetry property mentioned above allows us to perform a convergence test by
intercomparing the two solutions for different truncation numbers. Using superscripts
to denote the two ways of solution, we calculate the difference

εconv =
1

Mcolloc

∑
m

|Nunif(xm, ym)(1) −Nunif(xm, ym)(2)|, (2.46)

averaging over the combined set ofMcolloc collocation points (xm, ym) along the bound-
aries (see circles in Fig.2.3ab). In doing so, we make sure that the collocation spacing
for both solutions is equal, i.e. B/M equals L/M̃ . The result of doing this for different
values of the truncation number M is shown in Fig.2.11. The figure displays second
order convergence (Boyd, 2000).

2.B.3 Channel modes: Kelvin and Poincaré waves

Here we present expressions for the surface elevation amplitudes of the along-basin
and cross-basin channel modes, used in §2.3.2.

First, along-basin channel modes are wave solutions in an infinitely long channel
aligned with the x-axis, and of width B. This means that these modes satisfy the ho-
mogenised elliptic equation (2.11) for N as well as the homogenised cross-basin bound-
ary conditions in Eq.(2.14), while having a harmonic along-basin structure exp(iκmx)
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with complex wave number κm. We thus identify infinitely many modes, characterised
by

κ2
0 =

k2

1 + γ2
, κ2

m = k2 −
(mπ
B

)2
, (m = 1, 2, · · · ). (2.47)

For eachm, these quadratic relationships yield two wave numbers. We thus distinguish
two families of modes. The modes having a wave number with a positive imaginary
part �{κm} > 0 propagate and/or decay exponentially in the positive x-direction
are termed positive modes and denoted with a superscript ⊕. The modes having a
wave number with a negative imaginary part �{κm} < 0 propagate and/or decay
exponentially in the negative x-direction are termed negative modes and denoted with
a superscript 
.

Within each of these two families of modes, we identify a Kelvin wave (corre-
sponding to m = 0) and infinitely many Poincaré waves (m = 1, 2, · · · ). The spatial
structure of the Kelvin mode is given by

N⊕
0 (x, y) = exp

(
−y

Rdef

)
exp(iκ⊕

0 x), Rdef =

√
1 + γ2

γ2k2
, (2.48)

where, due to vertical friction, the Rossby deformation radius Rdef is now a complex
quantity. The spatial structure of the Poincaré modes is given by:

N⊕
m(x, y) =

[
cos
(mπy

B

)
−
γikB

mπ
sin
(mπy

B

)]
exp(iκ⊕

mx), (m = 1, 2, · · · ). (2.49)

Expressions for the negative Kelvin and Poincaré modes follow similarly.
Analogously, the cross-basin channel modes are wave solutions in an infinitely long

channel aligned with the y-axis, and of width L. This means that these modes satisfy
the homogenised elliptic equation (2.11) for N as well as the homogenised along-basin
boundary conditions in Eq.(2.13), while having an exponential cross-basin structure
exp(iκ̃y) with wave number κ̃. The two families of cross-basin channel modes follow
from the along-basin modes by replacing B with L and considering a rotated coordinate
system.

2.B.4 Equilibrium response to steady wind forcing (ω = 0)

Here, we will solve the equilibrium response to a steady wind forcing (ω = 0). The
free surface elevation amplitude satisfies a Poission problem:

∂2N

∂x2
+
∂2N

∂y2
= −

[
∂ 〈R1〉

∂x
+
∂ 〈R2〉

∂y

]
, (2.50)

with boundary conditions as in Eqs.(2.13)-(2.14).
For the solution due to the spatially uniform part of the wind field, the solution is

a linear profile sloping in the along-basin direction only:

Nunif = −Λ

(
x−

L

2

)
, Λ =

〈
Q+

w +Q−
w

〉〈
Q+

η +Q−
η

〉 T̂ . (2.51)

The solution due to the divergent part of the wind field is solved by means of a
collocation technique largely similar to the one presented in §2.3.2. However, there
are three notable differences: (i) the particular solution φdiv has a different form, (ii)
the Kelvin modes must be replaced with a linearly sloping function ψdiv and a constant
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function, (iii) the Poincaré modes are as in Appendix 2.B.3 but now with k = 0, and
(iv) the boundary condition at one of the collocation points must be replaced by the
overall statement that water is conserved. We write

Ndiv =φdiv(x) + asl0 ψ
div(x, y) + aconst0 +

M̃∑
m=1

a⊕mÑ
⊕
m(x, y) +

M̃∑
m=1

a�mÑ
�
m(x, y), (2.52)

with φdiv(x) = − 1
2
Λ(x− 1

2
L)2, ψdiv(x, y) = γx− y and associated coefficients asl0 and

aconst0 . We always use an even number for M̃ , and we select the collocation point
midway one of the collocation boundaries for the conservation condition. A second
solution is then obtained by doing the same, but now selection the collocation point
midway the other boundary. Averaging the two finally leads to a solution that is
symmetric with respect to the collocation method.

For the solution due to curl part of the wind field, a similar approach is followed:

Ncurl =φcurl(y) + bsl0ψ
curl(x, y) + bconst0 +

M∑
m=1

b⊕mN
⊕
m(x, y) +

M∑
m=1

b�mN
�
m(x, y), (2.53)

with φcurl(x) = − 1
2
Λ(y− 1

2
B)2, ψcurl(x, y) = x+ γy and associated coefficients bsl0 and

bconst0 .

2.C Details of the expansion in f/ω

At first order, i.e. at O(ε) with ε = f/ω, the elevation amplitude and flow field are
given by

N1

N̂
= i
∑

n even

dn cos(αnx)F
−

β̃n
(y) + ia

∑
n odd

en cos(αnx)F
−

β̃n
(y)

− ib

{
2

k0B
+
∑

m odd

∑
n even

(
jmnF

+
α̃n

(x) cos βny + kmn cos(αnx)F
+

β̃n
(y)
)}

,

(2.54)

U1

Û
= −

∑
n even

dn
αn

k0
sin(αnx)F

−

β̃n
(y)− a

∑
n odd

en
αn

k0
sin(αnx)F

−

β̃n
(y)

+ b
∑

m odd

( ∑
n even

jmn
α̃n

k0
Iα̃nαm(x) cos βny + kmn

αn

k0
sin(αnx)F

+

β̃n
(y)

)
, (2.55)

V1

Û
= −

∑
n even

dn
β̃n
k0

cos(αnx)G
−

β̃n
(y)− a

∑
n odd

en
β̃n
k0

cos(αnx)G
−

β̃n
(y)

+ b

{ ∑
m odd

∑
n even

(
jmn

βn
k0
F+
α̃n

(x) sin βny − kmn
β̃n
k0

cos(αnx)H
+

β̃nβm
(y)

)}
,

(2.56)
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respectively. Here, we have introduced wave numbers αn = nπ/L and β̃n satisfying
α2
n + β̃2

n = k20. Next, the coefficients dn and en are given by

d0 =
2ξ−k0L

k0L
− 1, dn =

2k0Lξ
−
k0L

(β̃nL)2
, (2.57)

for n nonzero and even, as well as

en =
8 sin k0L

(αnL)2
+

4k0Lξ
+
k0L

(β̃nL)2
, (2.58)

for n odd. For m odd and n even, we have

jm0 = cm
βm
k0

2ξ−α̃mL

mπ
, jmn = cm

βm
α̃n

4ξ−α̃mLm

π(m2 − n2)
, (2.59)

km0 = cm
α̃m

k0

[
1−

2ξ−αnL

α̃mL

]
, kmn = cm

α̃m

β̃n

4ξ−α̃mLα̃mL

(αnL)2 − (α̃mL)2
. (2.60)

As new functions, we have used H+

β̃nβm
(y) = 1 − cos βmy − G+

β̃n
(y) and Iα̃nα̃m(x) =

G+
α̃n

(x)− 1− F−
α̃m

(x)/ξα̃mL.



Chapter 3

Response of large-scale coastal basins to

wind forcing: influence of topography�

Abstract: We present an idealised process-based model to study the influence of to-
pographic variations on the frequency response of large-scale coastal basins subject to
time-periodic wind forcing. Coastal basins are represented by a semi-enclosed rectan-
gular inner region forced by wind. It is connected to an outer region (represented as an
infinitely long channel) without wind forcing, which allows waves to freely propagate
outward. The model solves the three-dimensional linearised shallow water equations on
the f plane, forced by a spatially uniform wind field that has an arbitrary angle with
respect to the along-basin direction. The surface elevation amplitudes, and hence
the vertical profiles of the velocity, are obtained using the Finite Element Method
(FEM), extended to account for the connection to the outer region. The results are
then evaluated in terms of the elevation amplitude averaged over the basin’s landward
end, as a function of the wind forcing frequency. In general, the results point out that
adding topographic elements in the inner region (such as a topographic step, a linearly
sloping bed or a parabolic cross-basin profile), causes the resonance peaks to shift in
the frequency domain, through their effect on local wave speed. The Coriolis effect
causes the resonance peaks associated with cross-basin modes (which without rotation
only appear in the response to cross-basin wind) to emerge also in the response to
along-basin wind and vice versa.

3.1 Introduction

Wind driven set-up is the main contribution to extreme high water events,
which may threaten coastal safety. This is particularly so when the combined
characteristics of the wind forcing and the basin trigger resonance (Abraham,
1960). A typical example is typhoon Winnie at the Korean coast of the Yellow
Sea in 1997. The unusually strong and extensive coastal flooding was partly
caused by resonant coupling of the Yellow Sea and the predominant period of
the forcing (Moon et al, 2003).

Importantly, the resonance properties of coastal basins can be affected by
large-scale topographic elements. For example, shoals may protect the coast
(Hanley et al, 2014), while on the other hand, a longshore bar can generate storm
wave resonance under certain circumstances (Büsching, 2003). Moreover, wind

�This chapter is now under review. Chen, W.L., Roos, P.C., Schuttelaars, H.M., Kumar,
M., Zitman, T.J. and Hulscher, S.J.M.H. (2015, submitted). Response of large-scale coastal
basins to wind forcing: influence of topography.
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blowing in different directions in a semi-enclosed basin may lead to significantly
different responses (Breaker et al, 2010). For coastal safety, an overall practical
goal is to be able to predict the wind driven water levels at any location in
basins of arbitrary shape and size. This requires physical insight in the influence
of large-scale topography on resonance properties of large-scale coastal basins.
Below we will review the literature on this topic.

The influence of topography on surge response has been investigated in vari-
ous site-specific studies using numerical models. For example, Chen et al (2008)
suggested that the record-high storm surge of Hurricane Katrina (New Orleans,
Louisiana) was caused by the interaction of the surge with the extremely shallow,
ancient deltaic lobe of the Mississippi river. For this case, Irish et al (2008) found
that a milder shelf slope would have led to a higher surge. Alternatively, Weaver
and Slinn (2010) found that small-scale variations in nearshore bathymetry of
about 20% produce smaller variations in storm surge at the shoreline (less than
5%). They applied this to three study sites. Using a one-dimensional numer-
ical model, Libicki and Bedford (1990) showed how westward traveling storms
over Lake Erie (approaching shallower regions) produce higher surge levels than
eastward traveling storms (approaching deeper regions). While these studies
produce site-specific results, it is difficult to draw generic conclusions.

On the other hand, more generic studies focus on the frequency response of
the systems to wind forcing. This is because a wind event can be seen as the
superposition of periodic wind forcings at various frequencies ω (Craig, 1989).
Assuming linear dynamics, also the response, i.e. the flow and elevation pattern,
will be the superposition of the responses at these individual frequencies. Hence,
the basin’s response to a wind event is contained in its so-called frequency
response. Proudman (1929) provided analytical solutions for the response in
narrow closed basins with a single topographic step. Alternatively, Ponte (2010)
investigated the response of large-scale, elongated closed basins with a parabolic
cross-basin topography to along-basin wind forcing. Recently, Chen et al (2015)
extended this approach to closed basins with comparable length and width, but
restricted to uniform depth. Other studies focused on the eigenmodes of, e.g.,
closed basins with uniform depth (Rao, 1966) or small-scale semi-enclosed basins
with topography (Wilson, 1972; Sobey, 2006; Rabinovich, 2009).

The goal of the present study is to investigate the influence of large-scale
topography on the wind-driven frequency response of large-scale coastal basins,
measured in terms of the set-up at the coast, and paying particular attention
to the role of the Coriolis effect and wind angle.

To achieve this goal, we have developed an idealised three dimensional
process-based model of a semi-enclosed rectangular rotating coastal basin sub-
ject to periodic wind forcing. The vertical profile of the flow field is resolved
fully analytically, and expressed in terms of the free surface elevation. In turn,
the spatial pattern of free surface elevation amplitudes follows from solving an
elliptic problem using the Finite Element Method (FEM), extended to account
for the connection of the coastal basin to the outer sea.

With this model, the frequency response of a coastal basin subject to spa-
tially uniform periodic wind is investigated, both without and with rotation. We
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will consider a spatially uniform wind field with directions ranging from along-
basin to cross-basin. The influence of topography on the frequency response
is then investigated by systematically adding topographic details, expressing
along-basin and cross-basin variations.

This paper is organised as follows. In section 3.2, we present the model.
Next, section 3.3 contains the solution method. The model results, showing the
frequency responses for the various topographic elements introduced above, as
well as the discussion are presented in section 3.4. Finally, section 3.5 contains
the conclusions.

3.2 Model formulation

3.2.1 Geometry

Our model geometry consists of two parts: an inner region and an outer region
(see Figure 3.1).

• The inner region, of length L and uniform width B, represents a rectan-
gular semi-enclosed coastal basin. This is where the wind forcing takes
place, and where topographic elements will be added.

• The outer region, also of uniform width B, represents an outer sea. It
stretches to infinity and experiences no wind forcing. By including the
outer region, we allow wave energy to travel away from the inner region
without reflecting at the interface with the outer region.

A ramp-up zone of length Lramp, part of the inner region, serves as a transition
zone where the wind gradually increases from no wind in the outer region to
a spatially uniform wind in the core of the inner region. This transition is
described by a so-called ramp-up function μ(x), to be detailed further below in
§3.2.2. Without ramp-up zone, a discontinuity would occur in the wind field,
which would produce unrealistic model results.

The along-basin and cross-basin coordinates are denoted by x and y, respec-
tively, such that the closed boundaries are located at x = L and y = 0, B and
the interface between outer and inner region at x = 0. The vertical coordinate
z points upward, with z = ηj(x, y, t) denoting the free surface elevation with
respect to the undisturbed water level z = 0. The subscript j = 0 represents the
outer region, the inner region is labeled with j = 1. The bottom topography is
assumed to be spatially uniform in the outer region, and is denoted by z = −h0.
Over the inner region, the topography is allowed to vary, i.e. z = −h1(x, y). We
will consider the following typical inner basin topographies (Figure 3.1):

• uniform depth, which serves as a reference case (type ‘1’ in Fig.3.1). Note
that Chen et al (2015) also considered a uniform depth, but in a closed
rather than a semi-enclosed basin.

• along-basin variations, such as a topographic step at x = xstep. Such a
step divides the inner region into two subcompartments: an offshore part
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with the same uniform depth h0 as the outer region, and a coastal part
with depth hc. We will consider situations with a shallower coastal part
(hc < h0, typical for many basins such as the Gulf of California and the
Adriatic Sea) as well as with a deeper coastal part (hc > h0, as e.g. in the
Norwegian trench). The topographic step can be both abrupt (type ‘2’)
and smoothened (type ‘3’). In the latter case, the depth varies gradually
from h0 to hc in a region of length Lslope centered around x = xstep

(precise shape to be detailed in §3.4.4). Finally, we will also consider a
linear profile from h0 at x = Lramp to hc at x = L (type ‘4’).

• cross-basin variations, such as a parabolic cross-basin profile with a smooth
transition over a length Lslope to the spatially uniform depth h0 in the
outer region and ramp-up zone (type ‘5’). Most natural basins are deepest
along their centerlines (as for the Gulf of California; see Ponte et al, 2012).
This profile will be detailed in §3.4.6 and Fig.3.8.

3.2.2 Hydrodynamics

Let uj = (uj , vj , wj) represent the flow velocity vector, with components uj, vj
and wj in the x, y and z−direction, respectively (j = 0, 1). Assuming that the
vertical displacement of the free surface is small compared to the water depth,
conservation of momentum and mass is expressed by the three-dimensional lin-
earised shallow water equations on the f plane according to

∂uj

∂t
− fvj = −g

∂ηj
∂x

+K
∂2uj

∂z2
, (3.1)

∂vj
∂t

+ fuj = −g
∂ηj
∂y

+K
∂2vj
∂z2

, (3.2)

∂uj

∂x
+

∂vj
∂y

+
∂wj

∂z
= 0. (3.3)

Here, f = 2Ω sinϑ is the Coriolis parameter (with Ω = 7.292× 10−5 rad s−1 the
angular frequency of the Earth’s rotation and ϑ the latitude), g = 9.81 m s−2 the
gravitational acceleration. Turbulence is represented using a spatially uniform
vertical eddy viscosity K, combined with a partial slip condition at the bed.
Horizontal mixing of momentum is neglected. The above linearisation further
assumes that the effect of the advective terms around topographic elements can
be neglected.

The kinematic and dynamic boundary conditions at the surface and bottom
read, in linearised form:

wj =
∂ηj
∂t

, K

(
∂uj

∂z
,
∂vj
∂z

)
=

(τ
(x)
w , τ

(y)
w )

ρ
at z = 0, (3.4)

wj = 0, K

(
∂uj

∂z
,
∂vj
∂z

)
= s(uj , vj) at z = −hj . (3.5)



3.2. Model formulation 63

(a) top view
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Figure 3.1: Definition sketch of the model geometry of a rectangular rotating basin,
subject to periodic wind forcing, which makes an angle θ with the along-basin direction.
(a) Top view, showing the outer region, ramp-up region and inner region. (b) Side view
in along-basin direction displaying the free surface elevation as well as vertical profile
of the along-basin component of the three-dimensional flow field. The topography
illustrated here is that of an abrupt step (type 2, here with hc < h0), located at
x = xstep. Dashed lines indicate three alternative topographies: uniform depth (type
1), smoothened step (type 3) and linear profile (type 4). For type 5, see Figure 3.8.
(c) Ramp-up function μ(x) used to describe the transition from no wind in the outer
region to spatially uniform wind conditions in the core of the inner region.
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The linearisation procedure implies that the free surface condition in Eq.(3.4)

is imposed at z = 0 instead of at z = η. Furthermore, (τ
(x)
w , τ

(y)
w ) is the wind

stress vector and ρ the density of water. Assuming a frequency ω and a wind
angle θ with respect to the along-basin direction, we write

(τ
(x)
w , τ

(y)
w )

ρ
= μ(x)T̂ (cos θ, sin θ) cosωt. (3.6)

Here, the constant T̂ is the amplitude of the wind stress divided by the water
density. The ramp-up function μ(x) introduced earlier, as sketched in Fig.3.1,
is specified in Appendix 3.A.

In Eq.(3.5), we have introduced a constant resistance parameter s, its value
usually obtained from the analysis of field data. Two limiting cases are of
interest. For large s, the bottom boundary condition effectively means no-slip,
as used by e.g. Ponte et al (2012). On the other hand, s = 0 corresponds to
free-slip for which the flow becomes independent of z.

At the closed horizontal boundaries, we require zero normal transports, i.e.

〈u2〉 = 0 at x = L and 〈vj〉 = 0 at y = 0, B, (3.7)

where j = 0, 1 and angle brackets denote vertical integration from bottom to

surface, i.e. 〈·〉 =
∫ 0

−hj
·dz (with the upper boundary z = 0 arising from the

linearisation).
At the interfaces between the adjacent regions, we require matching of sur-

face elevation and normal transport:

η0 = η1, 〈u0〉 = 〈u1〉 , at x = 0, (3.8)

where we note that the water depth is continuous across both interfaces (and
equal to h0). Finally, regarding the outer region, we allow no wave energy
coming in from infinity (Sommerfeld type of condition). This means that the
solution in the outer region will be written as a superposition of outward prop-
agating waves (in the negative x-direction). Because we include the Coriolis
effect, these waves include Kelvin and Poincaré waves.

3.3 Solution method

3.3.1 Preliminary considerations: wind angle

The linearity of our model implies that the solution for arbitrary wind angle θ
can be written as a linear combination of the solutions ηalong for along-basin
wind (θ = 0◦) and ηcross for cross-basin wind (θ = 90◦):

η(x, y, t) = ηalong(x, y, t) cos θ + ηcross(x, y, t) sin θ. (3.9)

This similarly applies to the solution of the flow components u, v and w. In
our description of the solution method, we will therefore distinguish between
along-basin and cross-basin wind only.
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3.3.2 Differential problem for surface elevation amplitude

First we write the solution in the outer and inner regions as time-periodic func-
tions according to

ηj(x, y, t) = �{Nj(x, y) exp(−iωt)} , (3.10)

uj(x, y, z, t) = �{Uj(x, y, z) exp(−iωt)} , (3.11)

with � denoting the real part and with complex amplitudesNj and Uj (j = 0, 1).
Similar expressions hold for vj and wj , with complex amplitudes Vj and Wj .

Next, we express the horizontal flow solution Uj and Vj in terms of sur-
face slopes ∇Nj and wind stress. Details of this derivation can be found in
Appendix 3.B. Substituting these expressions into the continuity equation and
integrating from bottom to surface gives the following elliptic equation for N :

∇h · [〈Dj〉∇hNj ]− iωNj = −∇h · 〈rj〉 , (3.12)

with horizontal nabla operator ∇h = (∂/∂x, ∂/∂y)T as well as 2× 2-matrix Dj

and 2× 1-vector rj , given by

Dj =

[
C+

j C−
j

−C−
j C+

j

]
, rj =

[
R+

j

R−
j

]
. (3.13)

The coefficients C+
j and C−

j as well as the forcing terms R+
j and R−

j depend on
topography and thus on x and y; they are specified in Appendix 3.B.2.

The no normal transport conditions at the closed boundaries, as given by
Eq. 3.7, imply

〈
C+

1

〉 ∂N1

∂x
+
〈
C−

1

〉 ∂N1

∂y
= − 〈

R+
1

〉
at x = L, (3.14)

− 〈
C−

j

〉 ∂Nj

∂x
+
〈
C+

j

〉 ∂Nj

∂y
= − 〈

R−
j

〉
at y = 0, B. (3.15)

Finally, the vertical flow amplitude Wj at any vertical position z can be ex-
pressed in terms of the free surface elevation Nj and wind forcing. This follows
from vertical integration of the continuity equation (Appendix 2.A.3).

The matching conditions at x = 0, as expressed in Eq.(3.8), now becomes

N0 = N1 (3.16)〈
C+

0

〉 ∂N0

∂x
+
〈
C−

0

〉 ∂N0

∂y
=

〈
C+

1

〉 ∂N1

∂x
+
〈
C−

1

〉 ∂N1

∂y
. (3.17)

Due to the continuity of the wind forcing across the interface, theR+
j -contributions

to the matching condition in Eq.(3.17) cancel.

3.3.3 Finite Element Method

The problem in Eqs.(3.12)-(3.15) for the elevation amplitude Nj is solved by
applying the Finite Element Method (FEM, for the inner region), connected to
a superposition of outward propagating waves (in the outer region).
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To this end, the inner region is discretised into a set of P triangular elements.
The solution is then written as

N1(x, y) =
P∑

p=0

N1,pφp(x, y), (3.18)

with coefficients N1,p and basis functions φp(x, y). To obtain the coefficients
N1,p, Eq.(3.12) is cast in weak form, and then integrated over the domain using
test functions. Details can be found in Gockenbach (2006), and we also refer to
Kumar et al (submitted), who developed a similar model to study tidal dynamics
in estuaries.

The outer region deserves particular attention. Instead of applying a FEM-
grid, the solution in the outer region is written as a truncated superposition of
outward propagating waves. We thus write

N0(x, y) =

M∑
m=0

c�0,mN�
m(y) exp(ik�mx), (3.19)

with coefficients c�0,m. As indicated by the � subscript, this expression involves
modes propagating in the negative x-direction only. Their cross-basin structures
N�

m(y), corresponding to a Kelvin mode (m = 0) and Poincaré modes (m =
1, 2, · · · ), and the associated wave numbers k�m are specified in Appendix 3.E.
Because the individual modes satisfy the closed boundary conditions at y = 0, B
in the outer region, so does the superposition in Eq.(3.19).

To satisfy the matching conditions at the interface at x = 0, we must connect
the solutions (3.18) and (3.19) in the inner and outer region. This is done using
a so-called collocation technique. We introduce a set of M + 1 equidistant
collocation points (x, y) = (0, ym) with ym = mB/M for m = 0, 1, · · · ,M .
Eqs.(3.16)-(3.17) are then applied at each of these collocation points, where
the left-hand side follows from Eq.(3.19) and the right-hand side follows from
interpolation of the FEM-solution onto the collocation points.

This means that the FEM-model is extended to account for waves radiating
away from the inner region. Indeed, the linear matrix system contains conditions
for the P coefficients N1,p in Eq.(3.18) as well as conditions for the M + 1
coefficients c�0,m in Eq.(3.19). Effectively, the solution in the outer region and
the matching conditions at x = 0 pose a non-reflecting boundary condition for
the inner region, even in the presence of the Coriolis effect.

Finally, in special cases, the solution can be obtained by quick (semi-)analytical
methods, which can furthermore be used to test the FEM-model. We distinguish
two cases:

• For f = 0 and cross-basin wind (θ = 90◦), the solution for uniform depth
and the abrupt step topography can be found using a collocation technique
also in the inner region. For the uniform depth case, the solutions in the
ramp-up zone and the rest of the inner region are written as superpositions
of a suitably chosen particular solution and two truncated families ofM+1
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Table 3.1: Overview of model parameters and their reference values.
Description Symbol Value Unit

Basin width B 100, (200, 400) km
Total basin length L 400 km
Length of coastal part Lc 100 km
Water depth (outer region) h0 100 m
Water depth (coastal part) hc 15∗ m

Latitude ϑ 0†, 50‡ ◦N
Vertical eddy viscosity K 0.025 m2 s−1

Resistance parameter s 10−4 m s−1

∗varied from 10 − 1000 m for the topographic step (topography type 2) and from

10 − 100 m for the linear profile (type 4); †non-rotating basin; ‡strongly rotating

basin.

wave modes (one Kelvin mode and M Poincaré modes) propagating in the
positive and negative x-direction, respectively. The particular solution is
chosen to homogenise the boundary conditions at y = 0, B (which are
nonohomegenous due to the wind forcing). To satisfy the closed boundary
condition at x = L as well as the matching conditions between ramp-up
zone and the rest of the inner region, we introduce two sets of M + 1
collocation points at x = L and x = Lramp, respectively. See Appendix 3.C
(and also Chen et al, 2015).

• A two-dimensional vertical (2DV) analytical solution can be found in the
case without rotation (f = 0), with along-basin wind (θ = 0◦), for the uni-
form depth or abrupt step topographies. This is detailed in Appendix 3.D.

3.4 Results and discussion

3.4.1 Introduction

We consider a large-scale reference basin, with characteristics as shown in Ta-
ble 3.1. To quantify the influence of wind and topography on the water levels
in the basin, we define the amplification factor A as the dimensionless elevation
amplitude averaged over the right boundary at x = L, i.e.

A =
|N |
Nref

, (3.20)

with average amplitude |N | and reference amplitude Nref given by

|N | = 1

B

∫ B

0

|N1(L, y)|dy, Nref =
T̂

ghckc
. (3.21)

Here, hc and kc are the depth and wave number, respectively, that apply in the
coastal part of the inner region (see Table 3.1 and Eq.(3.45) in Appendix 3.D).
For the uniform depth case, we take hc = h0 and kc = k0. Physically, the
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reference amplitude Nref follows from balancing the pressure gradient of a shal-
low water wave gkcNref with the acceleration associated with the wind stress
(T̂ /hc).

In presenting the model results, the frequency response is plotted as a func-
tion of a dimensionless forcing frequency ω/ωref , where the reference frequency
is the frequency for which the shallow water wavelength of a basin with uniform
depth equals the length of the basin:

ωref =
√
gh0

2π

L
. (3.22)

This remainder of this section is organised as follows. First, in §3.4.2 we show
the influence of wind direction on the frequency response for the uniform depth.
Then, in §3.4.3 and §3.4.4 we investigate the influence of step height for the
abrupt step case as well as the influence of the slope length in the smoothened
step case. Then, §3.4.5 and §3.4.6 contain the results for the linear along-basin
slope and the parabolic cross-basin profile.

3.4.2 Uniform depth; influence of wind direction

The influence of wind direction on frequency response is shown in Figure 3.2.
The colour plots show the amplification factor A for non-rotating basins of
uniform depth (topography type 1), as a function of the dimensionless frequency
and wind angle. Note that wind angle is important as the open boundary
introduces an essential difference between along-basin dynamics and cross-basin
dynamics (contrasting the closed basin study by Chen et al, 2015). The response
to along-basin wind has been obtained with the analytical 2DV solution; the
response to cross-basin wind with the collocation solution (as outlined at the
end of §3.3.3). Then, Eq.(3.9) has been applied to obtain the response to wind
with an arbitrary angle.

The response to along-basin wind is independent of basin width. More specif-
ically, the amplification factor A is zero at ω/ωref ≈ 0, 1, · · · and local maxima
in between. This amplification pattern can be explained by systematically dis-
cussing the contributions to the solution in a one-dimensional case (ignoring
the ramp-up region by taking the limit Lramp ↓ 0 and hence ϕramp ↓ 0 in Ap-
pendix 3.D).

• The wind-driven flow at the closed boundary needs to be compensated by
adding a contribution ∝ cos(k[x − L]) to the flow field, which together
produce zero velocity at x = L (and also zero elevation).

• If kL = 0, 2π, · · · , i.e., if ω/ωref = p, this superposition also has zero
velocity and elevation at the open boundary (x = 0), by which — in this
case — no outgoing wave occurs.

• If kL �= 0, 2π, · · · , this superposition has nonzero velocity and elevation at
the open boundary (x = 0), which are 90 degrees out of phase and hence
cannot be matched with an outgoing propagating wave at that interface.
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Figure 3.2: Influence of wind angle on frequency response for non-rotating basin
of uniform depth, for three width-to-length ratios: (a) B/L = 1/4, (b) B/L = 1/2,
(c) B/L = 1. The colour plots show the amplification factor A as a function of the
dimensionless frequency ω/ωref and wind angle θ. The top and bottom panels show
the frequency responses upon which the colour plots are based according to Eq.(3.9):
Across for cross-basin wind (θ = 90◦, red) and Aalong for along-basin wind (θ = 0◦,
blue). As indicated by the different vertical scales, the peaks of the response to cross-
basin wind are much higher than those for along-basin wind. Parameter values as in
Table 2.1.
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• Hence, a second contribution ∝ sin(k[x − L]) must be added to the flow
field in order to construct a solution at x = 0 that can be matched by an
outgoing propagating wave. Note that this leaves the velocity at x = L
unaffected.

• This second contribution to the velocity adds a nonzero contribution to
the elevation at x = L, which is maximum for kL = 0, 2π, · · · , i.e., if
ω/ωref = p + 1

2 , thus explaining the amplification pattern in the bottom
panels of Fig.3.2.

The slight deviation in the bottom panel of Fig.3.2 from the exact integer values
of ω/ωref as explained above is due to the ramp-up of the wind forcing from
x = 0 to x = Lramp. If the basin were closed at x = 0 (instead of connected
to an outer region where waves radiate away), the local maxima would be true
resonance peaks with much higher values (Chen et al, 2015).

Since both boundaries in the lateral direction at y = 0, B are closed, the
response to cross-basin wind is much stronger than that to along-basin wind.
Furthermore, the pattern strongly depends on basin width. To illustrate this,
we choose three different width-to-length ratios, ranging from elongated (B/L =
1/4) to square (B/L = 1); see Figs.3.2a-c. The cross-basin response is further
influenced by the connection to the outer region, leading to small wiggles to
the right of the peaks. This is different from a purely closed basin case (Chen
et al, 2015). Finally, the gradual ramp-up of the wind field is crucial in the
case of cross-basin wind. An abrupt transition at x = 0 from no wind (x < 0)
to full wind (x > 0) would produce unrealistically strong amplification around
(x, y) = (0, 0) and (0, B).

The colour plots in the middle panels of Fig.3.2 show how the amplification
factor A, according to Eq.(3.9), depends on the wind angle θ. The response
to cross-basin wind, due to its higher peaks, appears to dominate this pattern
already for relatively small wind angles.

Figure 3.3 shows the influence of the Coriolis effect on the frequency response
to cross-basin wind (top panels) and along-basin wind (bottom panels). Each
plot contains a curve without rotation (f = 0 for ϑ = 0◦) and with rotation
(f �= 0, as obtained for ϑ = 50◦N). Because of the Coriolis-induced interaction
between along-basin and cross-basin dynamics, the cross-basin peaks emerge
also in the along-basin frequency responses. Further, peaks arise exactly in
between the already existing peaks, e.g. at ω/ωref = 2 in Fig.3.3b, which cor-
responds to a cross-basin eigenmode. This mode, suppressed by symmetry for
f = 0, now emerges as the symmetry is broken by the Coriolis effect. Finally,
both responses display a peak close to the inertial frequency (f = ω), which is
invisible in the upper plots as the magnitude of the peaks is relatively small.

3.4.3 Abrupt topographic step

We will now investigate the influence of an abrupt topographic step, i.e. type
2 of the topographies introduced in §3.2.1 and Fig.3.1. Figure 3.4a shows the
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Figure 3.3: Influence of the Coriolis effect on frequency response to cross-basin wind
(top panels) and along-basin wind (bottom panels), for three width-to-length ratios:
(a) B/L = 1/4, (b) B/L = 1/2, (c) B/L = 1. The thick background curves represent
the responses of the non-rotating basin (ϑ = 0◦), the sharp lines represent the rotating
basin (ϑ = 50◦N). The vertical dashed line indicates the inertial frequency ω = f .
Parameter values as in Table 2.1.

frequency response for a non-rotating reference basin subject to along-basin
wind. We present the following examples:

I Uniform depth (pink curve), with a depth of h0 = 100 m, which is in fact
identical to the blue curve in the bottom panels of Fig.3.2.

II Topographic step (black), i.e. the abrupt step case with a shallow coastal
part of depth hc = 15 m. Compared to the curve for uniform depth
changes, we now see that the maxima become distorted and they further-
more shift to lower frequencies.

II’ Same as example II, but now including the Coriolis effect (taking a latitude
ϑ = 50◦N). This case will be discussed further below.

The influence of step height is then investigated by varying the coastal depth
hc from 10 m to 1000 m, while keeping h0 = 100 m. This leads to a depth ratio
hc/h0 ranging from 0.1 to 10. The resulting frequency response for this range
of hc/h0-values is shown in Fig 3.4b, where the red and blue colours indicate
high and low amplification, respectively. The hc/h0-values of examples I and II
are indicated by the pink and black dashed horizontal lines, respectively.

The thick white lines follow local maxima of the amplification factor |A|, for
increasing values of hc/h0. In the bottom part of the figure, i.e. for hc/h0 � 1,
the peaks align with the thin solid white curves, for which the length Lc of the
coastal part is an odd multiple of the quarter wave length on the coastal step.
These lines are characterised by

Lc =
1

4
(2p+ 1)λc, λc =

2π

kc
, (3.23)
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Figure 3.4: Frequency response for a non-rotating basin with uniform depth and
abrupt step. (a) Amplification factor A as a function of dimensionless frequency ω/ωref

for two examples: (I) uniform depth (pink curve), (II) topographic step (black). The
dashed blue curve corresponds to Example II’ (same as example II but now including
Coriolis effect). (b) Dependency of A on depth ratio hc/h0. Thick white lines follow the
local maxima; four cases denoted by circle, square and triangles are further illustrated
in Fig.3.5. This figure has been obtained by varying ω and the depth of coastal part
hc. Parameter values as in Table 2.1, with ϑ = 0◦.
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Figure 3.5: Spatial structure of the absolute value of the dimensionless elevation
amplitude |N(x)|/Nref for the four cases denoted by a circle, a square, an upward
pointing triangle and a downward triangle in Fig.3.4. The vertical dashed line indicates
the position of the topographic step. For further explanation, see text. The ramp-up
region has a length of Lramp = 10 km.
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for p = 0, 1, · · · . Let us consider the case p = 1, which corresponds to the
three-quarter wavelength resonance of the (shallow) coastal part. For increasing
hc-values, the leftmost thick white line at first follows this thin white line, but
then shifts to a lower frequency. This is accompanied by an elevation node
moving out of the coastal part, because the wavelength in the coastal part
becomes larger as hc increases. This indicates the gradual transition towards a
spatially uniform elevation pattern in the coastal part (‘pumping mode’). This
gradual transition is illustrated by the four plots in Fig.3.5, showing the spatial
structures of the elevation amplitudes for each of the four cases in Fig.3.4. For
the other thick white curves, obtained for p = 0 and p = 2, 3, · · · in Eq.(3.23),
this gradual process is similar but involves a different number of elevation nodes
that subsequently move out of the coastal part. Note that, due to friction, the
elevation nodes referred to here have a small nonzero amplitude rather than a
zero value.

To illustrate the influence of the Coriolis effect on these results, Fig.3.4 also
contains the frequency response for example II’, which is the same as example
II but now in a rotating basin (latitude set to ϑ = 50◦N). The Coriolis effect
introduces new peaks, associated with cross-basin resonances in the (shallow)
coastal part, with different along-basin and cross-basin structures. It should
be noted that, to calculate this result in our FEM-model, the abrupt step had
to be smoothened. We chose a slope length of Lslope = 5 km. The effect of
smoothening topographic steps will be investigated in more detail in the next
subsection.

3.4.4 Influence of slope length (smoothened step)

The topographic steps studied in §3.4.3 have a discontinuity in depth. In reality,
however, such transitions are more gradual. To investigate this, we now consider
a more smooth transition from h0 to hc over a length Lslope and study this with
the FEM-model, restricting to a non-rotating basin (f = 0). The topography
around the smoothened step, as depicted in Fig.3.1 (type 3), is written as

h1(x) = h0 + (hc − h0)F (x− x1), (3.24)

with dimensionless transition function F (ξ) chosen to be of sinusoidal shape:

F (ξ) =
1

2
+

1

2
sin

(
πξ

Lslope

)
, −Lslope

2
≤ ξ ≤ Lslope

2
. (3.25)

Figure 3.6a shows the influence of varying the slope length Lslope on the fre-
quency response, as obtained with our FEM-model. We again consider the
reference depths h0 = 100 m and hc = 15 m as given in Table 2.1 and Lslope-
values ranging from 5 to 40 km. Importantly, the average depth of the inner
region is the same for all Lslope-values. The result shows that, for increasing
values of Lslope, the frequency of the peaks shift to slightly higher values. This
shift can be explained as follows. The more smooth the step (while maintaining
the average depth), the larger the basin-average of

√
gh, which is a proxy for
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Figure 3.6: Influence of slope length on frequency response. (a) Amplification factor
A as a function of dimensionless frequency ω/ωref and slope length Lslope, as obtained
with our FEM-model. (b) Frequency response for an abrupt topographic step (Lslope =
0), as obtained with the 2DV-solution method, as indicated by the black dashed curve
in Fig.3.4. Parameter values: hc = 15 m, h0 = 100 m.

the wave speed in the basin. Such an increase in effective wave speed reduces
the travel time of waves around the basin, which implies that resonance occurs
at higher frequencies.

Finally, in the limit of very small slope lengths, the frequency response as
obtained with our FEM-model converges to the results of the abrupt topographic
step studied in §3.4.3 (see Fig.3.6b). On the other hand, for very large slope
lengths, the step becomes so gradual that it resembles a linear profile, to be
studied next.

3.4.5 Linear profile

The influence of a bed with a linear along-basin slope in the inner region (type 4)
on the frequency response of a coastal basin, restricting to along-basin wind, is
investigated by fixing the depth in the outer and ramp-up region to its reference
value h0 = 100 m. The depth hc, that is attained at the coast (x = L), is then
varied from 100 m to 10 m. Maintaining uniformity in the cross-basin direction,
the bed slope S in the inner region is thus given by

S =
h0 − hc

L− Lramp
. (3.26)

Figure 3.7 shows the frequency responses, both with and without Coriolis ef-
fect, obtained with the FEM-model. The responses for zero slope (S = 0) are
identical to the curves in the bottom plot of Fig.3.3a. With the Coriolis effect,
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Figure 3.7: Influence of the bed slope in the inner region on the frequency response
to along-basin wind. Amplification as a function of dimensionless frequency ω/ωref

and bed slope S = (h0 − hc)/(L−Lramp) in two cases: (a) without the Coriolis effect,
(b) with the Coriolis effect.

the frequency response includes peaks associated with cross-basin resonances,
the frequency of which becomes smaller as S increases. Furthermore, as the
slope is increased, more peaks appear that are also associated with cross-basin
resonances, but differ in their along-basin structures. Away from these reso-
nance peaks and regardless of the Coriolis effect, increasing the bed slope leads
to higher amplification, the maxima of which are shifted to slightly lower fre-
quencies.

3.4.6 Parabolic cross-basin profile

Finally, we investigate the influence of a parabolic cross-basin depth profile
(type 5) on the frequency response, restricting to along-basin wind. The shape,
depicted in Fig.3.8, is given by

h(x, y) = h0 +Δh F (x− x2)

[
1− 12

(
y

B
− 1

2

)2
]
, (3.27)

with parameter Δh, dimensionless transition function F (ξ) as already intro-
duced in Eq.(3.25), to be centered around x = x2 with x2 = Lramp + 1

2Lslope.
The profile is chosen such that the width-averaged depth is equal to h0. The
depth at the centerline is given by h0 +Δh, the depth at the banks y = 0, B is
given by h0 − 2Δh. Importantly, the dimensionless transition function F (ξ) en-
sures a smooth transition from the spatially uniform depth h0 in the outer region
and ramp-up region to our parabolic cross-basin profile in the inner region.

Using the reference value h0 = 100 m, we vary Δh from 0 to 40 m, giving a
ratio Δh/h0 between 0 and 0.4. Figure 3.9 shows the frequency responses, both
with and without Coriolis effect, obtained with the FEM-model. The responses
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Figure 3.8: Definition sketch of parabolic profile. (a) along-basin side view showing
gradual transition from uniform depth h0 in outer and ramp-up region to parabolic
cross-basin profile in inner region. The dashed lines at z = −h0 − Δh and z =
−h0 +2Δh indicate the water depth at the centerline and the banks, respectively. (b)
Cross-basin side view in the inner region, showing the parabolic profile according to
Eq.(3.27).
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Figure 3.9: Same as Fig.3.7, but now the influence of parabolic cross-basin profile on
the frequency response as a function of Δh/h0.

for Δh = 0, corresponding to a uniform depth, are in fact identical to the curves
in the bottom plot of Fig.3.3a.

Without Coriolis effect, for increasing values of |Δh|, the local maxima of the
amplification shift to lower frequencies. This can be explained by the effective
wave speed that is based on the cross-basin average of

√
gh, as mentioned in

§3.4.4. Indeed, the result of increasing |Δh| is qualitatively similar to that of
reducing the slope length Lslope for the smoothened step case. The results with
the Coriolis effect show a similar ‘background’ amplification pattern as obtained
for ϑ = 0◦. In addition to that, the Coriolis effect introduces peaks associated
with cross-basin resonances with peak frequencies that shift to higher values for
increasing Δh.

3.5 Conclusions

We have developed an idealised process-based model to analyse the influence of
specific topographic elements on the frequency response of semi-enclosed coastal
basins subject to time-periodic wind forcing. Coastal basins are represented by a
large-scale semi-enclosed rectangular inner region where the wind forcing takes
place and where a variety of topographic elements have been included. It is
connected to an outer region, without wind forcing and stretching to infinity,
which allows waves to freely propagate outward. The model solves the three-
dimensional linearised shallow water equations on the f plane, forced by a wind
field that ramps up to a spatially uniform pattern in the core of the inner region.
The wind field has an arbitrary angle with respect to the along-basin direction.
The model solves a two-dimensional problem for the surface elevation amplitudes
by applying the Finite Element Method (FEM), extended to account for the
outward propagating waves in the outer region. In particular cases, alternative
(semi-)analytical solution techniques are used.
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By restricting to linear dynamics, we have neglected nonlinear effects. This
facilitates our understanding in two ways: (i) the response to any wind event
is contained in the frequency response, (ii) the frequency response for arbitrary
wind angle is in fact a linear combination of the frequency responses to along-
basin and cross-basin wind. The responses to along-basin and cross-basin wind
are essentially different because of the differences in the along-basin and cross-
basin dynamics caused by the open boundary.

To analyse our model, we focused on the elevation amplitude averaged over
the basin’s landward end, as a function of the dimensionless frequency ω/ωref

with reference frequency ωref =
√
gh02π/L for which the shallow water wave-

length (of the basin with uniform depth) equals the length of the basin. For
cases not including the Coriolis effect, we conclude the following.

1. In the reference case of a uniform depth, the response to along-basin wind
is a pattern showing zero amplification at ω/ωref ≈ 0, 1, 2, · · · and max-
imum amplification in between. Due to the waves allowed to propagate
away into the outer sea, these maxima are found to be much weaker than
the peaks in the frequency response to cross-basin wind.

2. For a topographic step with a shallow coastal part, we observe the res-
onance frequencies associated with (odd multiples of) the quarter wave-
length, which are known to increase when increasing the coastal depth.
Conversely, when sufficiently deep, the coastal part displays a spatially
uniform elevation pattern (‘pumping mode’, see top panel of Figure 3.5).

3. Smoothening the steps shows that increasing the slope length shifts the
maximum to slightly higher frequencies.

4. The response to a linear along-basin bed profile in the inner region (along-
basin wind only) shows higher response for increasing slopes (while fixing
the depth in the outer region), because of the reduced depth in the coastal
part.

5. The response to a parabolic cross-basin profile (along-basin wind only)
shows that varying the central depth, while keeping the average depth the
same, only weakly modifies the frequency response.

The Coriolis effect causes the (strong) resonance peaks associated with cross-
basin modes (which without rotation only appear in the response to cross-basin
wind) to emerge also in the response to along-basin wind. It also introduces
peaks at the inertial frequency.

This study is a first step towards understanding the responses of natural
basins to wind forcing. In particular, our modelling approach also applies to
basins with a topography that is more complicated than the schematised rep-
resentation used in this study. Furthermore, extending the model with respect
to atmospheric forcing (e.g. representing the moving low-pressure system of a
hurricane) and geometry (coastlines) is a subject of ongoing research.
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Appendix

3.A Ramp-up function

The ramp-up function μ(x) of the wind describes the transition from zero wind in
the outer region to a spatially uniform wind field, in a region of length Lramp (see
Fig.3.1c). It is given by

μ(x) =

⎧⎨
⎩

0 if x < 0,
sin kx

sin kLramp
if 0 ≤ x ≤ Lramp,

1 if x > Lramp.

(3.28)

Here, k is the wave number as given in Eq.(3.45) in Appendix 3.D. The motivation
for this particular shape of the ramp-up function, which through k depends on the
problem parameters, lies in the solution method. In fact, only this choice allows us to
obtain analytical solutions (Appendix 3.D) and collocation solutions (Appendix 3.C)
for the cases indicated in §3.3.3. To have a monotonically increasing ramp-up function,
i.e. without any oscillations, we choose Lramp such that kLramp < π/2.

3.B Details of the derivation

3.B.1 Vertical profiles from horizontal momentum equations

Here we present the details of the vertical structure of the flow. First we define rotating
flow components according to q± = u ± iv with complex amplitudes Q±, such that
U = (Q++Q−)/2 and V = (Q+−Q−)/(2i). The rotating flow solution contains three
contributions, proportional to the surface gradient the wind stress and the pressure
gradient, respectively:

Q±(z) = Q±
η (z)L

±N +Q±
w(z)T

±, (3.29)

with complex operators L± = ∂/∂x ± i∂/∂y and rotating wind forcing amplitudes
T± = T (x) ± iT (y) (wind stress divided by density). The vertical structures read

Q±
η (z) =

g
[
cosh λ+z − α±

c

]
α±
c Kλ±2

, (3.30)

Q±
w(z) =

α±
c sinhλ±z + α±

s cosh λ±z

α±
c Kλ±

. (3.31)

with λ±2 = −i(ω∓f)/K and α±
c = coshλ±h+s−1Kλ± sinhλ±h and α±

s = sinhλ±h+
s−1Kλ± cosh λ±h. The vertical integral is given by〈

Q±
〉
=
〈
Q±

η

〉
L±N +

〈
Q±

w

〉
T±, (3.32)

with

〈
Q±

η

〉
=
g
[
sinhλ±h− α±

c λ
±h
]

α±
c Kλ±3

, (3.33)

〈
Q±

w

〉
=
α±
c

[
1− cosh λ±h

]
+ α±

s sinhλ±h

α±
c Kλ±2

. (3.34)
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The two cases ω = ±f require alternative expressions for either Q+ or Q−. If ω = +f
we must replace the Q+-expressions in Eqs.(3.30)-(3.32); if ω = −f we must replace
the Q−-expressions. They must be replaced with

Q±
η (z) =

gh2

K

[
1

2

( z
h

)2
−

1

2
−
K

sh

]
, (3.35)

Q±
w(z) =

[
1 +
( z
h

)
+
K

sh

]
, (3.36)

and 〈
Q±

η

〉
= −

gh3

K

[
1

3
+
K

sh

]
,
〈
Q±

w

〉
=
h2

K

[
1

2
+
K

sh

]
. (3.37)

3.B.2 Elliptical problem for N

Depth-integration of the continuity equation (3.3), with the aid of boundary conditions
(3.4) gives, in terms of the complex amplitudes of surface elevation and the rotating
velocity components.

−iωN +
∂

∂x

(〈
Q+
〉
+
〈
Q−
〉

2

)
︸ ︷︷ ︸

〈U〉

+
∂

∂y

(〈
Q+
〉
−
〈
Q−
〉

2i

)
︸ ︷︷ ︸

〈V 〉

= 0, (3.38)

Substitution of Eq.(3.29) gives the elliptical equation for N presented in Eq.(3.12) of
the main text. The corresponding coefficients are given by

C+ =
1

2

[
Q+

η +Q−
η

]
, C− =

1

2i

[
Q+

η −Q−
η

]
, (3.39)

The boundary conditions presented in Eqs.(3.14)-(3.15) of the main text follow from
depth-integration of the momentum equations (3.1)-(3.2). The coefficients in there are
given by

R+ =
1

2

[
Q+

wT
+ +Q−

wT
−
]
, R− =

1

2i

[
Q+

wT
+ −Q−

wT
−
]
. (3.40)

3.B.3 Vertical flow velocity

The vertical flow velocity amplitudes at any depth z are given by

W (z) = −
⌊
C⊕
⌋(∂2N

∂x2
+
∂2N

∂y2

)
−
〈
C⊕
〉(⌊∂R⊕

∂x

⌋
+

⌊
∂R�

∂y

⌋)
, (3.41)

where floor brackets indicate integration from bottom to z, i.e. �·� =
∫ z

−h
·dz. This

expression can be simplified further by using the differential equation (3.12) for N to
eliminate the Laplacian of N .

3.C Collocation method

This appendix describes the collocation method that we apply for the uniform depth
case, for cross-basin wind and f = 0. The modifications necessary in the abrupt step
case are mentioned at the end of the analysis. For uniform depth, we distinguish the
solution in the ramp-up zone (N1) from that in the core of the inner region (N2). The
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problem posed in Eqs.(3.12)-(3.17), as derived in Appendix 3.B, then reduces to a
nonhomogeneous Helmholtz problem:

∂2N0

∂x2
+
∂2N0

∂y2
+ k2N0 = 0, (3.42)

∂2N1

∂x2
+
∂2N1

∂y2
+ k2N1 = −

[
∂
〈
R+

1

〉
∂x

+
∂
〈
R−

1

〉
∂y

]
, (3.43)

∂2N2

∂x2
+
∂2N2

∂y2
+ k2N2 = 0. (3.44)

Only in the ramp-up zone there is a divergence of the wind forcing, explaining the
nonzero right-hand side of Eq.(3.43). Furthermore, k is a wave number satisfying

k2 =
−iω

〈C+s〉
, (3.45)

with the depth-integrated coefficient
〈
C+
〉
=
〈
C+

0

〉
=
〈
C+

1

〉
=
〈
C+

2

〉
(uniform depth)

as specified in Eq.(3.39). The boundary and matching conditions remain as in Eqs.(3.14)-
(3.17).

Analogous to our extended FEM-model in §3.3.3, the solution in the outer region
is written as a superposition of outgoing wave modes, i.e.

N0(x, y) =
M∑

m=0

c�0,mN
�
m(y) exp(ik�mx), (3.46)

with coefficients c�0,m. The cross-basin structures N�
m(y) and wave numbers k�m are

specified in appendix 3.E. The solutions in the ramp-up region and the inner region
are written as a superposition of two families of wave modes plus a particular solution:

Nj(x, y) = Nj,part(x, y) +

M∑
m=0

c⊕j,mN
⊕
m(y) exp(ik⊕mx)

+
M∑

m=0

c�1,mN
�
m(y) exp(ik�mx), (3.47)

The particular solutions Nj,part(x, y) for j = 1, 2 are introduced to homogenise the
cross-basin boundary conditions. For the ramp-up zone and the core of the inner
region, they are given by

N1,part(x, y) = −

(
y −

B

2

) 〈
Q+

w

〉
+
〈
Q−

w

〉
2 〈C+〉

sin kx

sin kLramp
, (3.48)

N2,part(x, y) = −
1

k

(
sin ky −

1− cos kB

sin kB
cos ky

) 〈
Q+

w

〉
〈C+〉

. (3.49)

The solution in Eqs.(3.46)-(3.47) is thus contained in the five families of in total
5(M+1) coefficients c�0,m, c⊕1,m, c⊕1,m, c⊕2,m and c⊕2,m (form = 0, 1, · · · ,M). Their values
follow from applying a collocation technique. To this end, we require the matching of
surface elevation and normal transport to be satisfied at two sets of M +1 collocation
points at x = 0 and x = Lramp, and the closed boundary condition at another set of
collocation points x = L.
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The analysis for the abrupt step case requires dividing the inner region into three

parts: the ramp-up zone denoted with subscript j = 1, an offshore part of depth
h0 (j = 2) and a coastal part of depth hc (j = 3). The above analysis can then
be repeated, distinguishing a different wave number in the coastal part and imposing
similar matching conditions also at x = xstep. For brevity, the analysis is not presented
here.

3.D 2DV-solution

This appendix contains the analytical 2DV-solution without rotation (f=0), with
along-basin wind (θ=0), for the uniform depth. The modifications necessary in the
abrupt step case are mentioned at the end of the analysis. This solution is termed
‘2DV’ because there is neither flow in the cross-basin direction, nor dependency on the
cross-basin coordinate y. Hence, the flow amplitudes depend on x and z only, and the
elevation amplitude N(x) depends on the along-basin coordinate only. The problem
posed in Eqs.(3.42)-(3.44), as presented in Appendix 3.C for the uniform depth case,
now reduces to a one-dimensional Helmholtz problem. We thus write

∂2N0

∂x2
+ k2N0 = 0, (3.50)

∂2N1

∂x2
+ k2N1 = −

∂
〈
R⊕

1

〉
∂x

, (3.51)

∂2N2

∂x2
+ k2N2 = 0. (3.52)

Only in the ramp-up region there is a divergence of the wind forcing, explaining the
nonzero right-hand side of Eq.(3.51). The wave number k is still as given by Eq.(3.45)
in Appendix 3.C, and the boundary and matching conditions in Eqs.(3.14)-(3.17)
become 〈

C⊕
2

〉 dN2

dx
= −
〈
R⊕

2

〉
, (3.53)

at x = L and

Nj = Nj+1,
dNj

dx
=

dNj+1

dx
, (3.54)

to be satisfied at x = 0 for j = 0 and at x = Lramp for j = 1. The solution is given by

N0 = a exp(−ikx) (3.55)

N1 = a exp(−ikx)− c
kx sin kx

sinϕramp
(3.56)

N2 = b cos(k[x− L]) − 2c sin(k[x− L]), (3.57)

with coefficients a, b and c given by

a =

〈
Q+

w

〉
T̂

2k
〈
C⊕

1

〉 [ϕramp(tanΔϕ− cotϕramp)− 1

(tanΔϕ− i) exp(iϕramp)
+ 2i exp(−iϕ)

]
, (3.58)

b =

〈
Q+

w

〉
T̂

2k
〈
C⊕

1

〉 [−i exp(−iΔϕ)(1 + ϕramp cotϕramp − iϕramp) + 2i] , (3.59)

c =

〈
Q+

w

〉
T̂

2k
〈
C⊕

1

〉 , (3.60)
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with ϕ = kL, ϕramp = kLramp, and Δϕ = k(L− Lramp).
The analysis for the abrupt step case requires dividing the inner region into three

parts: the ramp-up zone denoted with subscript j = 1, an offshore part of depth
h0 (j = 2) and a coastal part of depth hc (j = 3). The above analysis can then
be repeated, distinguishing a different wave number in the coastal part and imposing
similar matching conditions also at x = xstep. For brevity, the analysis is not presented
here.

3.E Wave modes

Our solution technique makes use of families of so-called Kelvin and Poincaré modes,
which are eigenmodes in an infinite channel of uniform depth and width. We distin-
guish two families: those propagating (or exponentially decaying) in the positive x-
direction (termed ‘positive’ modes, indicated with superscript ⊕) and those propagat-
ing (or exponentially decaying) in the negative x-direction (termed ‘negative’ modes,
indicated with superscript 
).

More precisely, the solution in the outer region, as given by Eq.(3.19), is written as
a truncated superposition of ‘negative’ Kelvin and Poincaré modes. Furthermore, the
collocation technique described in Appendix 3.C uses eigenmodes also in the ramp-up
and inner region. This involves both positive and negative modes, but only in the
f = 0-limit.

For arbitrary f , the Kelvin mode, propagating in the positive x-direction, is given
by

N0(y)
⊕ = exp

(
−y

Rdef

)
exp(ik⊕0 x), Rdef =

√√√√〈(C+
j )2
〉
+
〈
(C−

j )2
〉〈

(C+
j )2
〉
k2

. (3.61)

with wave number

k⊕0 =

√√√√ 〈
(C−

j )2
〉
k2〈

(C+
j )2
〉
+
〈
(C−

j )2
〉 . (3.62)

The Kelvin mode propagating in the negative x-direction is obtained by a symmetry
argument, which also implies k�0 = −k⊕0 . In the f = 0 limit, for which

〈
C−

j

〉
= 0,

the Kelvin mode effectively becomes a shallow water wave with a uniform cross-basin
structure.

The Poincaré modes, propagating or exponentially decaying in the positive x-
direction, are given by

N⊕
m(x, y) =

[
cos
(mπy

B

)
−

ik
〈
C⊕

j

〉
B

mπ
〈
C�

j

〉 sin
(mπy

B

)]
exp(ik⊕mx), (3.63)

for m = 1, 2, · · · and with the wave number k⊕m satisfying

k⊕2
m = k2 −

(mπ
B

)2
. (3.64)

The Poincaré modes propagating in the negative x-direction are obtained by a symme-
try argument, which also implies k�m = −k⊕m. In the limit f = 0 the Poincaré modes
obtain an elevation structure proportional to cos(mπy/B).

For brevity, the along-basin flow components of the above modes are not presented
here.



86 Chapter 3. Influence of topography



Chapter 4

The influence of storm characteristics

on storm surges in the New Orleans

coastal basins

Abstract: The New Orleans coastal basin is frequently attacked by hurricanes. How-

ever, from the variation in storms and storm surges, it is unclear how storm charac-

teristics determine the surge levels and surge level distribution along the coast. In

order to investigate the sensitivity of storm surges to storm characteristics, we have

developed an idealised process-based model. This model solves the linearised three-

dimensional shallow water equations, including the Coriolis effect. It is forced by

pressure and wind fields according to the Holland B model. The surge model is fast

because it decouples the vertical calculations, which are analytical, from the horizon-

tal calculations, which are carried out using the Finite Element Method. As model

output, we consider the temporal pattern of the water levels (including the magni-

tude and timing of the peak values) at various locations along the coast. To gain

confidence in the model, it is first applied to simulate the Katrina surge in the New

Orleans coastal basin (2005). The model domain covers the northeastern part of the

Gulf of Mexico, with a schematised representation of the coastlines and bathymetry.

Model results qualitatively reproduce the observed surge levels and those simulated

with the so-called ADCIRC model. Next, using the same model domain, we perform

a sensitivity study in which we systematically vary the storm parameters around the

values that represent Hurricane Katrina. The storm direction and the point of landfall

are found to be the most important parameters. In particular, a storm approaching

from south-east making landfall at the seaward end of the Mississippi dike produces

the highest surge levels. This effect is further enhanced for storms with a larger storm

size and a slower forward speed. Surge levels are found to also depend on the central

pressure, but to a lesser extent than on the other parameters.

4.1 Introduction

Storm surges pose a major threat to low-lying coastal areas. This was illustrated
in 2005, when Hurricane Katrina made landfall in New Orleans. The induced

�This chapter is now under review. Chen, W.L., Straatsma, Roos, P.C., Schuttelaars,
H.M., Van Ledden, M. and Hulscher, S.J.M.H. (2015, submitted). The influence of storm
characteristics on storm surges in the New Orleans coastal basin.
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surge was up to 9 m, which is the highest storm surge ever recorded in the
USA (Bossak, 2005). Half of the city flooded, causing 1836 casualties and a
total damage of 120 billion US$. Interestingly, a smaller hurricane (Isaac in
2012, with a peak surge of 4 m) at some locations caused higher water levels
than Katrina (Fanelli and Wolcott, 2012). It is unclear why certain storms
induce higher storm surges than others and why peak surges occur at different
locations. Answering these questions requires understanding of the storm surge
processes and the factors influencing storm surges. Below we will review the
literature on this topic, paying particular attention to the storm characteristics.

The surge level that a given storm produces at a specific location is influ-
enced by several factors. Based on the maximum sustained wind speed, the
Saffir-Simpson scale (Simpson, 1974) classifies the severity of a hurricane into
five categories and gives an indication of the expected surge levels (see Ta-
ble 4.1). Although the Saffir-Simpson scale has historically proven to be an
adequate categorization for hurricane damages, there are still exceptions. For
example, Hurricane Katrina was classified as a category 3 storm (Blake et al,
2006), because the maximum sustained wind speed was 55.8 m s−1 when it made
landfall for the third time� (see Table 4.1). However, it produced a 9 m surge,
which is much higher than predicted by the Saffir-Simpson scale. On the other
hand, Hurricane Charley in 2004, a category 4 storm at landfall caused surge
levels corresponding to category 2 only (Pasche et al, 2005). Another compli-
cation is that, because the storm characteristics vary over time as the storm
develops, also the Saffir-Simpson category may change over time.

Turning back to Hurricane Katrina, Irish et al (2008) suggested that the
large storm size (measured as the distance between storm centre and location of
maximum wind speed) may explain the extra high surge level. This is because
a storm of a larger size not only affects a larger area, but the strong winds
also tend to affect this area during a longer period of time. Another important
factor is the forward speed of the storm. Varying a storm’s forward motion
may account for variations in flooded volumes (Rego and Li, 2009). Moreover,
resonance may occur for certain values of the hurricane’s forward speed (Bertin
et al, 2012). Weisberg and Zheng (2006) identified the storm track as another
important factor concerning the resulting storm surge when a hurricane moves
over a coastal basin. For example, in Tampa Bay, Florida, a northerly approach-
ing storm yields a higher surge than storms from other directions. Depending
on the coastline, some storm tracks may trigger a forerunner, i.e. an early in-
crease of water level in advance of landfalling storms (Redfield and Miller, 1957;
Bunpapong et al, 1985). For example, the unpredicted water level increase that
appeared along a substantial section of the western Louisiana and northern
Texas coasts 12-24 hours in advance of the landfall of Hurricane Ike (in 2008)
was identified by Kennedy et al (2011) as a forerunner surge.

The majority of storm surge studies involve numerical modelling. Examples
are the Sea, Lake and Overland Surges from Hurricanes model (SLOSH, see

�Katrina made first landfall between Hallandale Beach and Aventura on August 25. It
made second landfall near Buras-Triumph, Louisiana in early morning of August 29. A few
hours later, it made third landfall near the Louisiana-Mississippi border.
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Table 4.1: Saffir-Simpson hurricane scale (Simpson, 1974). In grey, the characteristics
of Hurricane Katrina (at third landfall) are indicated.

Saffir-Simpson Max wind speed Central pressure∗ Surge level∗

category [m s−1] [mbar] [m]

1 33.0-42.5 980 1.2-1.5
2 42.9-49.2 965-979 1.8-2.4
3 49.6-58.1 945-964 2.7-3.7
4 58.6-69.3 920-944 4.0-5.5
5 >69.3 < 920 >5.5

∗ Central pressure and surge level are estimates based on Saffir-Simpson scale by

Simpson (1974).

Lin et al, 2010), the ADvanced CIRCulation (ADCIRC, Bunya et al, 2010)
coastal circulation and storm surge model and the Japan Meteorological Agency
(JMA, Lapidez et al, 2015) storm surge model. These models can provide high
resolution predictions but require significant calculating time. For example,
using the ADCIRC model, Dietrich et al (2012) simulated the Hurricane Katrina
surge on a high performance computing platform. The computed peak water
levels are quite accurate, differences with the observations are usually smaller
than 0.5 m. However, using 1000 computational cores, the computation still
takes 26.7 hours. This property makes it difficult to conduct extensive sensitivity
analysis in which the storm characteristics are systematically varied.

The goal of the present study is to investigate the influence of storm char-
acteristics on storm surges in coastal basins such as the New Orleans coastal
basin, measured in terms of the set-up at various locations along the coast.

To achieve this goal, we have developed an idealised three-dimensional process-
based hydrodynamic model. The model solves the linearised three-dimensional
shallow water equations, and includes the Coriolis effect. The atmospheric forc-
ing of the hurricane is represented by the so-called Holland-B model (Holland,
1980). The surge model is fast because it decouples the vertical calculations,
which are analytical, from the horizontal calculations, which are carried out
using the Finite Element Method.

The model is first applied to simulate the Hurricane Katrina surge of the
New Orleans coastal basin in 2005. The modelled area covers the northeastern
part of the Gulf of Mexico. Both geometry and topography are schematised.
Next, to investigate the influence of storm characteristics, we then perform a
sensitivity analysis using a set of synthetic storms. These storms resemble Hur-
ricane Katrina, but we systematically vary the characteristics of the Holland-B
model: central pressure, storm size, forward speed, storm direction and landfall
point.

This chapter is organised as follows. In §4.2, we present the model. Next,
§4.3 contains the solution method. The application of the model to Hurricane
Katrina surge in the New Orleans coastal basin is presented and discussed in
§4.4. The sensitivity study is presented and discussed in §4.5. Finally, §4.6
contains discussions and conclusions.
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4.2 Model formulation

4.2.1 Geometry

We consider a coastal basin of arbitrary shape and bathymetry on the f plane,
with x and y denoting the horizontal coordinates. The vertical coordinate z
points upwards, with z = η(x, y, t) denoting the free surface elevation with
respect to the undisturbed water level z = 0. The bottom topography z =
−h(x, y) varies over the basin. Let u = (u, v, w) represent the flow velocity
vector, with components u, v and w in the x, y and z−direction, respectively.
The domain contains both closed and open boundaries.

4.2.2 Hydrodynamics

Assuming that the vertical displacement of the free surface is small compared
to the water depth, conservation of momentum and mass is expressed by the
three-dimensional linearised shallow water equations on the f plane:

∂u

∂t
− fv = −g

∂η

∂x
− ρ−1 ∂pa

∂x
+K

∂2u

∂z2
, (4.1)

∂v

∂t
+ fu = −g

∂η

∂y
− ρ−1 ∂pa

∂y
+K

∂2v

∂z2
, (4.2)

∂u

∂x
+

∂v

∂y
+

∂w

∂z
= 0. (4.3)

Here, f = 2Ω sinϑ is the Coriolis parameter (with Ω = 7.292× 10−5 rad s−1 the
angular frequency of the Earth’s rotation and ϑ the latitude), g = 9.81 m s−2

the gravitational acceleration, ρ = 1.0 × 103 kg m−3 the density of water and
pa(x, y, t) the atmospheric pressure. Turbulence is represented using vertical
eddy viscosity K (spatially uniform and constant in time), combined with a
partial slip condition at the bed. Horizontal mixing of momentum is neglected.

The kinematic and dynamic boundary conditions at the surface and bottom
read, in linearised form:

w =
∂η

∂t
, K

(
∂u

∂z
,
∂v

∂z

)
=

(τ
(x)
w , τ

(y)
w )

ρ
at z = 0, (4.4)

w = 0, K

(
∂u

∂z
,
∂v

∂z

)
= s(u, v) at z = −h, (4.5)

where s is the resistance parameter (also spatially uniform and constant in time).
The linearisation procedure implies that the free surface condition in Eq.(4.4)

is imposed at z = 0 instead of at z = η. Furthermore, τw = (τ
(x)
w , τ

(y)
w ) is the

wind stress vector, with components in x- and y direction. The wind stress and
the atmospheric pressure pa will be specified in §4.2.3.

At the closed horizontal boundaries, we require zero normal transports, i.e.[∫ 0

−h

(u, v)dz

]
· n = 0. (4.6)
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Figure 4.1: Example of atmospheric forcing due to Holland-B model, showing 2D-
plots of (a) pressure, (b) wind field as well as (c) radial profiles of pressure and
wind (along the white dashed line in a and b). Model parameters: pa,c = 928 mbar,
pa,∞ = 1030 mbar, Rmax = 52 km (black circle in a and b), B = 1 and Cfm = 7.8 m s−1

(moving north, so φ = 0◦).

where n = (nx, ny) is the local outward pointing normal vector. At the open
boundaries, the sea surface elevation is calculated from the inverted barometer
effect (Doodson, 1924), i.e.

η =
pa,∞ − pa

ρg
, (4.7)

where pa,∞ is ambient pressure.

4.2.3 Atmospheric forcing

The atmospheric forcing of a storm is described by the so-called Holland-B
model (Holland, 1980), a model widely used for its simplicity and flexibility in
radial structure (Madsen and Jakobsen, 2004). The surface pressure pa at a
distance r from the storm centre is modelled as:

pa(r) = pa,c + (pa,∞ − pa,c) exp (−(Rmax/r)
B), (4.8)

where pa,c is the atmospheric pressure at the hurricane centre, pa,∞ the am-
bient pressure, and B the so-called Holland-B parameter that describes the
peakedness of the pressure profile. An example of the pressure field is given in
Figure 4.1a. The wind field is then calculated as a so-called gradient wind, i.e.
from a balance between the Coriolis force and the pressure gradient (Fig.4.1b).
Blaton’s adjustment of the radius of curvature (Pita et al, 2012) is included to
capture the asymmetry of the wind field introduced by the forward movement
of the hurricane. The magnitude of surface wind velocity vw(r) (at 10 m above
water surface) at a distance r from the centre is given by
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vw(r) =
2

3

⎛
⎝−W +

√
W 2 +

(pa,∞ − pa,c)B

ρair

(
Rmax

r

)B

exp

(
−(

Rmax

r
)B

)⎞⎠ ,

(4.9)
with

W =
Cfm sin ξ + rf

2
, (4.10)

where ρair = 1.225 kg m−3 is the air density. In Eq.(4.9), the factor 2/3 ac-
counts for the deceleration by the water surface. Furthermore, the direction
of the wind velocity is 17◦ deflected from the isobar towards the lower pres-
sure (counterclockwise) (Klaver et al, 2006). At a distance Rmax away from the
centre, wind reaches its maximum speed, see Figure 4.1b and 4.1c. The hur-
ricane moves forward with speed Cfm; ξ in Eq.(4.9) is then the angle between
the direction of storm translation (φ, measured clockwise with respect to the
north direction) and the vector from the storm centre to the point of calculation.
Storm parameters are fixed in the sensitivity analysis but allowed to evolve over
time when simulating Hurricane Katrina’s surge. Hurricane Katrina followed a
curved track, resulting in time-varying parameters.

The wind stress is estimated through the wind-shear formula of Smith et al
(1992),

τw = Cdρair|vw|vw. (4.11)

where Cd = 2.5 × 10−3 is the wind drag coefficient, as suggested by Resio and
Westerink (2008) for the region of the strongest surge generation in hurricanes.

4.3 Solution method

Our solution method, as sketched in Fig. 4.2, makes use of the frequency domain.
To this end, the time-dependent wind stress and pressure field are written as a
superposition of time-periodic signals at different frequencies through a discrete
Fourier transformation. We then obtain the solution at each frequency. The
actual surge level is then the superposition of the surge level at all frequencies.

4.3.1 Fourier expansion of the problem

We apply a discrete Fourier transformation to the wind stress and atmospheric
pressure. This means that the continuous signal is decomposed in a number of
signals (modes indicated with index m) with different frequencies (ωm), i.e.(

τ
(x)
w

ρ
,
τ
(y)
w

ρ
, pa

)
= �

[
M∑

m=−M

(
T (x)
m (x, y), T (y)

m (x, y), Pa,m(x, y)
)
exp(−iωmt)

]
(4.12)
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Figure 4.2: Sketch of the solution method. The forcing, specified in the time domain,
is transformed to the frequency domain in which the response is obtained using the
FEM-model. The superposition of the solutions at all frequencies then provides the
solution in the time domain.

where � denotes the real part and M is the truncation number. Furthermore,

T
(x)
m , T

(y)
m and Pa,m are the complex amplitudes† of the wind stress and the

pressure at frequency ωm, with ωm = mωmin. Here ωmin = 2π/Trecur is the
lowest frequency which results from a choice of recurrence time Trecur. As a
consequence of the discrete Fourier expansion, the storm event will recur after
a period of Trecur, as shown in Figure 4.3. To avoid interference of subsequent
events, this recurrence period should be long enough. At the same time, M
should be chosen sufficiently large, because 2π/ωmax = Trecur/M determines
the temporal resolution of the transformed forcing signals.

Next, we write the solution in the same fashion as Eq. (4.12), i.e. for the
surface elevation

η(x, y, t) = �
[

M∑
m=−M

Nm(x, y) exp(−iωmt)

]
, (4.13)

with complex elevation amplitudes Nm(x, y). Similar expressions hold for u, v
and w, with complex amplitudes Um(x, y), Vm(x, y) and Wm(x, y).

†Because the forcing is real-valued, it follows that T
(x)
−m = T̄

(x)
m in Eq.(4.12), with an

overbar denoting complex conjugation (the same applies to the other amplitudes).
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Figure 4.3: Example of a wind event (wind velocity as a function time, thin black
line), which - as a result of our Fourier expansion - transforms to a periodic signal
(thick grey line). This periodic signal recurs over a period Trecur = 2π/ωmin, here
chosen equal to 7 days.

4.3.2 Differential problem for surface elevation amplitude at each
frequency

To derive a differential problem for the surface elevation, we first turn to the
vertical profile of the horizontal flow. At each frequency ωm, the (complex)
amplitudes of the horizontal flow components Um and Vm are written as the
superposition of three terms:

• one term proportional to the amplitude of the wind stress Tm,

• a second term proportional to the amplitude of the atmospheric pressure
gradient ∇Pa,m,

• a third term proportional to the gradient of the surface elevation amplitude
∇Nm.

The vertical profiles of these terms are derived using so-called rotating flow
components, see Appendix 4.A. This makes the first two contributions above
known. However, the gradient of the surface elevation ∇Nm is still unknown. It
follows from solving an elliptical problem for Nm. This problem is obtained by
substituting the above expressions into the continuity equation and integrating
from bottom to surface (denoted by 〈·〉):

∇h · [〈Dm〉∇hNm]− iωmNm = −∇h · 〈rm〉 . (4.14)

Here we have introduced the horizontal nabla operator ∇h = (∂/∂x, ∂/∂y)T as
well as 2× 2-matrix Dm and 2× 1-vector rm, given by

Dm =

[
C+

m C−
m

−C−
m C+

m

]
, rm =

[
R+

m

R−
m

]
. (4.15)

The coefficients C+
m and C−

m as well as the forcing terms R+
m and R−

m depend
on topography and thus on x and y; they are specified in Appendix 4.A.

The no-normal transport conditions in Eq.(4.6) at the closed boundaries
imply

(〈Dm〉∇hNm + 〈rm〉) · n = 0. (4.16)
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Furthermore, according to Eq.(4.7), the amplitudes Nm along the open bound-
ary are given by

Nm =
Pa,0 − pa,∞

ρg
, for m = 0, (4.17)

Nm =
Pa,m

ρg
, for m �= 0. (4.18)

Finally, the vertical flow amplitude Wm at any vertical position z can be ex-
pressed in terms of gradient of the free surface elevation Nm and its gradient,
as well as forcings Tm and ∇Pa,m. This follows from vertical integration of the
continuity equation (4.3), using the boundary conditions in Eq.(4.4)-(4.5), see
Appendix 4.A.3.

4.3.3 Finite Element Method

The problem in Eqs.(4.14)-(4.17) for the elevation amplitude Nm is solved by
applying the Finite Element Method (FEM). To this end, the coastal basin is
discretised into a set of P triangular elements. The solution is then written as

Nm(x, y) =

P∑
p=1

Nm,pφp(x, y), (4.19)

with coefficients Nm,p and basis functions φp(x, y). To obtain the coefficients
Nm,p, Eq.(4.14) is first cast in weak form, which involves multiplication with a
test function and integration over the domain. Details of this procedure can be
found in Gockenbach (2006), see also Kumar et al (submitted), who developed
a similar model to study tidal dynamics in estuaries.

4.4 Modelling the Hurricane Katrina surge

In this section, we apply our model to simulate the surge levels in the New Or-
leans coastal basin induced by Hurricane Katrina in 2005. The goal of this case
study is to gain confidence in the model by reproducing the qualitative behav-
ior of the surge as well as the magnitude of the surge levels, before performing
the sensitivity analysis with synthetic storms. We schematize the geometry and
bathymetry of the New Orleans coastal basin, which is presented in §4.4.1. The
wind and pressure fields of Hurricane Katrina are modelled using the Holland-B
model; a brief description on the choices of storm parameters is given in §4.4.2.
The hydrodynamic parameters and numerical settings are presented in §4.4.3.
Finally, in §4.4.4, the model results are presented and compared against observa-
tions (National Oceanic and Atmospheric Administration, 2015) and simulations
using the ADCIRC model (Dietrich et al, 2012).

4.4.1 Geometry and bathymetry

We consider a domain that covers the northeastern corner of the Gulf of Mexico
(Figure 4.4), since Blain et al (1994) argued that large-scale processes are im-
portant. As a further schematization, the coastlines of the New Orleans coastal
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Figure 4.4: Schematised model domain of the north east corner of the Gulf of Mexico,
where pink lines indicate the New Orleans coastal area, black dashed lines the open
boundaries and black lines the other domain boundaries. The schematic representa-
tion of a storm and storm track are plotted in green.
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Figure 4.5: Model domain, showing mesh and bathymetry ranging from hshallow = 3
m to hshelf = 20 m and hdeep = 1000 m. Depth colours are plotted in a log scale, color
of boundaries as in Fig. 4.4.

basin are represented by straight lines, including the Mississippi dike. The basin
is located at an average latitude of 29◦N , which implies f = 7.07×10−5 rad s−1.

The New Orleans coastal basin is situated at a continental shelf, for which we
adopt a simplified bathymetry. The water depth at a given location is defined
as a function of distance to the coast. As shown in Figure 4.5, it increases
from hshallow = 3 m near the coast to hshelf = 20 m on the shelf, and further
to hdeep = 1000 m in the offshore part of the Gulf of Mexico. This leads to a
bathymetry with depth contours roughly parallel to the coastline.

4.4.2 Derivation of storm parameters

Hurricane Katrina followed a curved track (denoted by red arrow in Figure 4.6)
with varying characteristics over time. To extract the parameters of Hurricane
Katrina, we use the 6-hourly data HURDAT2 (Hurricane Database2, National
Climatic Data Center, 2014) of the central pressure and location of the hurricane
centre provided by NOAA. This information is used to obtain the forward speed
(Cfm) and storm track (φ). In addition, we use a 3-hourly maximum radiusRmax

and Holland-B parameter B from measured wind speeds and pressure profiles
of the hurricane, as derived by Vickery and Wadhera (2008). Figure 4.7 shows
the storm parameters as a function of time. Between the raw data points, the
parameters have been linearly interpolated.
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Figure 4.6: Model domain showing the observation points P1−P10 listed in Table 4.3
as numbered black dots. The curved red arrow indicates the track of Hurricane Kat-
rina. Also shown are the seven different storm tracks (green) and the corresponding
synthetic storms Hj listed in Table 4.4, used in the sensitivity analysis. The tracks
are characterised by approaching direction (SW, S or SE) and landfall point Pj . The
points A-F are used in the forerunner analysis (§4.5.7).

Table 4.2: Overview of default model parameters and numerical choices.
Description Symbol Value Unit

Latitude ϑ 29 ◦N
Coriolis parameter f 7.07 × 10−5 rad s−1

Coastal water depth hshallow 3 m
Deep water depth hdeep 1000 m
Vertical eddy viscosity K 0.01 m2 s−1

Resistance parameter s 0.015 m s−1

Fourier truncation number M 64 –
Recurrence period Trecur 7 day
Number of nodes P 35748 –
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Figure 4.7: The evolution of storm parameters of Hurricane Katrina (2005) from
28-8-2005 0.00h (t = 0 hours) until 30-8-2005 18.00h. The black dots indicate the raw
data from HURDAT2 (Hurricane Database2, National Climatic Data Center, 2014)
and Vickery and Wadhera (2008).

Table 4.3: Maximum surge levels observed (National Oceanic and Atmospheric Ad-
ministration, 2015) or simulated using the ADCIRC model (Dietrich et al, 2012) for
Hurricane Katrina.
Location† Station name observations simulated

NOAA‡[m] ADCIRC [m]

P1 SW Pass, LA (8760922) 2.4 3.3
P2 – – 5.2
P3 – – 4.5
P4 – – 4.7
P5 – – 6.2
P6 Waveland, MS (8747766) 2.7∗ 7.8
P7 Ocean springs, MS (8743281) 4.0∗ –
P8 Horn Island, MS (8742221) 1.9∗ 4.1
P9 Dauphin Isl. AL (8735180) 1.9 2.5
P10 Pensacola, FL (8729840) 2.0 –

†The locations Pj are shown in Figure 4.6.
‡Relative to NAVD88 (2004.65).
∗maximum value before sensor ceased transmission (true maximum not recorded).
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4.4.3 Hydrodynamic parameters and numerical setting

An overview of default model parameters and numerical choices is provided in
Table 4.2. In this study, we take a vertical eddy viscosity of K = 0.01 m2 s−1

and a resistance parameter of s = 0.015 m s−1. These values are obtained by
tuning the model to the measured data.

The model domain is discretised into a set of 35748 unstructured triangles,
with a grid size of 8 km in the offshore part and 4 km in the coastal area
(see Fig. 4.5). The grid sizes have been determined through a convergence
test presented in Appendix 4.B, reflecting a trade-off between accuracy and
computation time. Regarding the time resolution, we employ 65 modes (M =
64) accompanied with a recurrence period of Trecur = 7 days. As demonstrated
in Appendix 4.C, this choice gives an accurate representation of the forcings of
Hurricane Katrina, while keeping the calculation time acceptable for the purpose
of the sensitivity study.

4.4.4 Model results

The water levels simulated by our model are evaluated at 10 locations (see Ta-
ble 4.3 and Figure 4.6) and presented in Figure 4.8. This figure also displays the
observations and the ADCIRC-results. Note that observations are incomplete,
as some sensors ceased transmission during the event. The ADCIRC results are
generally within 0.5 m difference from the observations, except at P1.

Qualitatively, the model results are good, capturing the temporal and spatial
surge pattern as well as reproducing the timing of the peak values. An exception
is location P1 (the tip of the Mississippi dike), where observed surges are positive
but our model results display negative surges around the moment of landfall.
This discrepancy can be due to overflow of the Mississippi dike, which is not
incorporated in our model.

Quantitatively, the magnitude of the peak levels is relatively well reproduced.
Differences with the ADCIRC-simulations are less than 1 m, except at P5. Our
model underestimates the peak values in the area close to the Mississippi dike
(P2, P3, P4, P5), whereas it overestimates the peak values further to the east
(P8, P9, P10).

We also investigated the sensitivity of the model results to the friction param-
eters (vertical eddy viscosity K and slip parameter s) and bathymetry. Results
show that lower values of K and s lead to slightly higher water level, but the
difference is small. Regarding bathymetry, three values are taken for the water
depth at the coast, hshallow = 3 m, 5 m and 7 m, whereas the depth values in
the shelf and offshore part are kept the same: hshelf = 20 m and hdeep = 1000
m. The comparison shows that the surge event with hshallow = 3 m provides the
best fit with the observation and ADCIRC results. Simulated water levels with
hshallow = 5 m and hshallow = 7 m have higher peak surges and stronger oscilla-
tion after the storm landfalling near the coast, because there is less dissipation.

In view of the schematizations, we conclude that our model qualitatively
captures the Katrina surge in the New Orleans coastal basin and also produces
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Figure 4.8: Comparison between new model results (black line) and observations
(red) and ADCIRC simulations (blue) at locations P1 to P10. Detailed information of
the stations is stated in Table 4.3 and shown in Figure 4.6. The time starts at 28-8-
2005 0.00 h, and the black dashed line denotes the third landfall time of Hurricane
Katrina.

similar quantitative results. Hence, the model can be used to study the sensi-
tivity of surge levels to storm parameters.

4.5 Sensitivity of surge levels to storm characteristics

To investigate the sensitivity of surge levels to storm characteristics, we design
a set of synthetic storms with different parameters. In §4.5.1, scenarios with
varying storm direction (φ), point of landfall, storm size (Rmax), forward speed
(Cfm) and central pressure (pa,c) are presented. The sensitivity of surges to
storm parameters is presented and discussed in the subsequent sections, §4.5.2-
§4.5.5. Finally, in §4.5.7 and §4.5.8, we study the possible forerunner surge and
the Fourier spectrum of the elevation amplitude, respectively.

4.5.1 Synthetic storms

We consider 12 hurricane scenarios (see Table 4.4). These hurricanes mak-
ing landfall near New Orleans are mainly from the southern, southwestern
and southeastern directions. We first introduce a reference storm scenario
H1, approaching the New Orleans coastal basin from a southeastern direction
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Table 4.4: Properties of 13 synthetic storms
Scenario§ Dir.† Landfall Rmax Cfm pa,c B Category‡

Point [km] [m s−1] [mbar] [–]

H1 (SE, P2)ref SE P2 50 6 900 1.5 3
H2 (SW, P2) SW P2 50 6 900 1.5 3
H3 (S, P2) S P2 50 6 900 1.5 3
H4 (SE, P7) SE P7 50 6 900 1.5 3
H5 (SE, P5) SE P5 50 6 900 1.5 3
H6 (SE, P ∗

2 ) SE P ∗
2 50 6 900 1.5 3

H7 (smaller) SE P2 30 6 900 1.5 3
H8 (larger) SE P2 70 6 900 1.5 3
H9 (slower) SE P2 50 3 900 1.5 3
H10 (faster) SE P2 50 10 900 1.5 3
H11 (weaker) SE P2 50 6 930 1.5 2
H12 (stronger) SE P2 50 6 870 1.5 4

§Bracketed description shows the difference with the reference storm H1.
†Storm direction: SW means φ = 7.5◦, S means φ = 322.5◦ and SE means φ = 277.5◦.
‡According to the Saffir-Simpson scale (Table 4.1).
∗The landfall location P ∗

2 is 45 km south of location P2.

(φ = 277.5◦) and making landfall at location P2 with Rmax = 50 km, pa,c = 900
mbar and Cfm = 6 m s−1. The values of these parameters are representative for
Hurricane Katrina. Although the straight track of H1 does not precisely follow
the curved track of Hurricane Katrina (red curve in Fig. 4.6), it captures most
features of the track, including the landfall point. Storms H4, H5 and H6 also
approach from a southeastern direction but differ regarding landfall location.
Alternatively, storms H3 approaches from a southern direction (φ = 322.5◦) and
storm H2 from southwestern direction (φ = 7.5◦). The six tracks introduced
here are presented in Figure 4.6 (green arrows). Storms H7 and H8 follow the
same track as H1, but with radii to maximum wind of Rmax = 30 km and 70
km, respectively. The storm centres of scenarios H9 and H10 are identical to
the reference scenario H1, but they move slower (Cfm = 3 m s−1) and faster
(Cfm = 10 m s−1), respectively. Finally, the central pressures of storms H11

and H12 are pa,c = 930 mbar and pa,c = 870 mbar, respectively. Peak surges
observed at the selected locations (Pj , for j = 1, 2, · · · , 10) for each of the 12
storm scenarios are summarised in Table 4.5.

4.5.2 Sensitivity to storm direction

We now consider storms from the three directions mentioned in §4.5.1 and shown
in Fig 4.6. Storm H1 approaches from the southeastern direction (φ = 277.5◦).
When it moves into the basin, the winds at the mouth of the basin are blowing
into the basin. It makes second landfall between P3 and P4, with maximum
winds blowing onshore at P5. Storm H2 approaches the New Orleans coastal
basin from the southwestern direction (φ = 7.5◦). When the storm makes first
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Figure 4.9: Surges at 10 locations are plotted as a function of time, induced by
storms from southeastern direction (H1, black line), southwestern direction (H2, blue
line) and southern direction (H3, red line). The locations are indicated by black circles
with white numbers. Details in Tables 4.3 and 4.4 and Figure 4.6.

Table 4.5: Overview of peak surges† (in m), as simulated at the selected locations
(Pj , for j = 1, 2, · · · , 10) for the 13 storm scenarios listed in Table 4.4.

Scenario P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

H1 (SE, P2)ref 6.0 9.1 7.5 8.6 10.1 8.5 6.4 5.8 4.4 3.1
H2 (SW, P2) 0.6 2.9 6.8 5.7 4.4 3.6 5.3 5.8 6.3 4.8
H3 (S, P2) 3.2 7.2 7.6 6.0 5.1 7.7 6.9 6.4 4.7 3.0
H4 (SE, P7) 2.8 3.5 2.0 1.0 0.7 2.1 4.8 5.5 6.7 5.6
H5 (SE, P5) 4.5 6.6 4.0 2.5 5.8 8.4 7.8 7.3 5.5 3.8
H6 (SE, P ∗

2 ) 5.6 8.4 9.7 9.6 9.4 6.9 5.0 4.5 3.3 2.4
H7 (smaller) 5.3 7.8 6.3 7.5 8.1 6.5 4.6 4.2 3.0 2.1
H8 (larger) 6.7 10.1 8.5 9.2 11.0 9.9 7.8 7.2 5.6 4.1
H9 (slower) 7.7 12.2 11.1 10.8 11.9 9.0 6.6 6.0 4.4 2.9
H10 (faster) 4.7 6.5 4.9 6.1 8.0 8.2 6.6 6.1 4.7 3.5
H11 (weaker) 4.6 6.9 5.7 6.6 7.7 6.5 4.9 4.4 3.3 2.3
H12 (stronger) 7.5 11.4 9.4 10.7 12.5 10.6 8.0 7.3 5.5 3.9

†The yellow, orange and red cell colours indicate peak surge ranges of 0 − 4 m, 4− 8

m and > 8 m, respectively. Values in boldface refer to the maximum peak surge per

scenario.
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landfall at location P2 maximum winds are blowing offshore and onshore at
location P1 and P3, respectively. Next, as the storm moves into the basin, the
wind directions at P3 turn to offshore. The storm makes second landfall at P7,
with winds blowing offshore at P6 and onshore at P7 and P8. Finally, storm H3

approaches the basin from the southern direction (φ = 322.5◦). It also makes
first landfall at location P2, then moves into the basin and makes second landfall
at P5.

Figure 4.9 shows the resulting surge levels as a function of time at locations
Pj for j = 1, 2, 3, · · · , 10, where the black line describes the surge event for
storm H1, the blue line for storm H2 and red line for storm H3. Regarding the
peak surge, storms from a southeastern direction are the most severe. Storm H1

produces a peak of 10.1 m at P5 (see Table 4.5), with maximum winds blowing
onshore when making its second landfall. Storm H1 moves over New Orleans
coastal basin in a direction that produces the highest surge. It drives water
from the Gulf of Mexico into the basin and traps the water until it makes second
landfall. All stations exhibit a positive surge for this scenario. Alternatively,
storm H2 merely redistributes the water in the basin. This can be seen from
the surge levels at P1. No water set up occurs at this location and there is
a negative surge due to the strong offshore winds when storm H2 moves over
the Mississippi dike. A peak surge of 6.3 m is found at location P9. For the
New Orleans coastal basin, a storm from the southern direction is also severe.
Storm H3 first drives water to the left bottom corner of the basin (P3) and
produces a surge level of 7.6 m. The pile-up disappears afterwards, since the
winds at location P3 start blowing offshore as the storm moves on. Another
peak surge of 7.7 m (Table 4.5) is observed at location P6, where the maximum
winds blow onshore. The sensitivity of the surge levels to the direction of storm
strongly depends on location. For example, at P3, a storm from a southern
direction produces the highest surge (storm H3), whereas at P9, a storm from
the southwestern direction produces the highest surge (storm H2). We conclude
that the most severe storms for the New Orleans coastal basin come from the
southeastern direction.

4.5.3 Sensitivity to landfall point

In this section we investigate the influence of varying the point of landfall.
Focusing on storms from a southeastern direction, we consider storms H1, H4,
H5 and H6. The tracks of these storms are parallel to each other, with landfall
points P2, P7, P5 and P ∗

2 , respectively (see Table 4.4 and Fig. 4.6).

Similar to Fig.4.9, Fig.4.10 shows the surge levels at 10 locations forced by
storms H4 (chocolate line), H5 (dark cyan line), H1 (black line) and H6 (grey
thick line). As the chocolate line shows, H4 induces a negative surge in the
basin except at locations P1 and P10. This is because before landfall the winds
first blow offshore at locations P7, P8 and P9, leading to a set-down of water
level at these locations. When making landfall, the winds blow onshore at P7,
P8, P9 and P10, but still offshore at P6. As the storm moves on, locations P5,
P4 and P3 also experience offshore winds.
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Figure 4.10: Same as Fig 4.9, but now for storm scenarios with different points
of landfall: H1 (landfall at P2), H4 (P7), H5 (P5) and H6 (P ∗

2 ). See Table 4.4 and
Fig. 4.6.
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Figure 4.11: Same as Fig.4.9, but now for storm scenarios with different radii to
maximum wind Rmax: 50 km (H1, reference case), 30 km (smaller) and 70 km (larger).
Also see detailed information of the storms can be found in Table 4.4.

The peak surge of H5 is observed at location P6, showing a water level of
8.4 m (see Table 4.5). This is to be expected, since the maximum winds blow to
the coast at location P6 when making landfall. Apart from P6, we notice that
there is another peak at P2 with a height of 6.6 m. The winds at this location
blow onshore throughout the passing of the storm.

Storms H1 and H6 produce the highest surge. In particular, H1 induces a
peak of 9.8 m at P5 (see Table 4.5). Surprisingly, H6 also produces a peak of 9.7
m at P3. Although the centre of storm H6 does not move over the New Orleans
coastal basin, the winds keep blowing to the left corner (P3, P4 and P5). Such
effect is also observed in reality. In August 2012, Hurricane Isaac made landfall
in southeastern Louisiana, following a similar track as H6. Despite being only a
category 1 hurricane, Isaac produced a surge of 3.4 m at Shell Beach, Louisiana
(Fanelli and Wolcott, 2012), which is close to P3.

4.5.4 Sensitivity to storm size

So far we considered a radius to maximum wind (Rmax) of 50 km. We now
investigate what happens when varying the radius to maximum wind. To this
end, we introduce scenarios H7 and H8, which are identical to H1 with the
exception of the radius to maximum wind being 30 km for H7 and 70 km for
H8. This affects the area of water on which the winds act. The comparison of
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Figure 4.12: Same as Fig.4.9, but now for storm scenarios with different forward
speed: Cfm = 6 m s−1 (H1, reference case), 3 m s−1 (H9, slower) and 10 m s−1 (H10,
faster). Detailed information of the storm scenarios can be found in Table 4.4.

surges induced byH1 (black)H7 (green) andH8 (brown) is shown in Figure 4.11.
A storm of larger size influences a larger area. The effects are twofold.

Firstly, more locations are influenced by a larger storm. For example, at location
P10, storm H7 causes a minor effect, whereas stormH8 causes a significant surge
of 4.1 m. Secondly, a larger storm leads to higher surge, particularly for the
locations in the New Orleans coastal basin. Because the winds of storms coming
from a southeastern direction blow into the basin when making landfall at P1,
a larger storm size thus drives more water into the basin. At location P5, storm
H8 produces a surge of 11.0 m. On average, increasing Rmax from 30 km to 70
km leads to a 2.5 m increase of surge in the basin. The maximum effect appears
at P6, showing an increase of surge of 3.4 m. Our results are consistent with
those by Irish et al (2008). They found for a given intensity, surges vary by as
much as 30% over a reasonable range of storm sizes.

4.5.5 Sensitivity to forward speed

Forward speed (Cfm) determines the time that the winds act on the water sur-
face. So far, we used a speed of 6 m s−1. Now consider storm H9 with Cfm = 3
m s−1 and storm H10 with Cfm = 10 m s−1. The other parameters of these two
storms are the same for storm H1. Because of the different approach speeds,
the landfall times are different, as marked in Fig 4.12 for the selected locations.



108 Chapter 4. Influence of storm characteristics

870 880 890 900 910 920 930
6

8

10

12

14

pa,c (mbar)

η 
(m

)

(b) Example at P5

1 2 3 4 5 6 7 8 9 10
0

0.05

0.1

−Δ
η/

Δ 
p a,

c (m
 m

ba
r−

1 )

location Pj

(a) Ratio of surge change over pressure difference

Figure 4.13: Dependency of simulated peak surge on central pressure pa,c: (a) ratio
of surge change over pressure difference, (b) example at P5.

The results indicate that a storm with a slower forward speed produces
higher surges. This is particularly true for the inner basin of the New Orleans
coastal area, i.e. for locations P2, P3, P4, P5 and P6. Storm H9 produces the
highest surge (dark green line). At location P2 the dark green line shows a peak
surge of 12.2 m. Another surge peak is observed at P5, showing a surge level of
11.6 m. From §4.5.2 and §4.5.3, we know that a storm from the southeastern
direction, which makes landfall at P1, will drive water into the basin and trap
the imported water. This effect is further intensified when the storm moves at
a slower speed. However, this does not hold for locations away from the inner
basin. For example, at locations P9 and P10, storm H10 produces the highest
surges. A storm with a higher forward speed will introduce higher wind speeds.
Therefore, without the trapping effect of a semi-enclosed basin, such storms
produce higher surges.

Another influence of forward speed is the duration time of a surge event.
This can be seen from the last time of high water levels of the dark green line,
the surge event last longer for storms with lower forward speeds.

4.5.6 Sensitivity to central pressure

To examine the influence of central pressure, we now linearly increase the cen-
tral pressure from pa,c = 870 mbar (H12) to pa,c = 930 mbar (H11), with an
interval of 10 mbar. other parameters of storms H11 and H12 are the same
for H1. Figure 4.13 shows the dependency of the simulated peak surge at 10
locations Pj on central pressure. As expected, a storm of lower central pressure
produces higher surges. The peak surge shows a linear dependence on central
pressure (see right panel in Fig 4.13). However, this dependency varies over
the locations. With the same decrease of central pressure, the increase of peak
surges at locations P2, P4 and P5 are more than at other locations.
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Figure 4.14: The water levels at locations from south point of Florida (PA) to New
Orleans (PF ) are plotted as a function of time, for storm H1 (black line), storm H2

(blue) and storm H3 (red), with circles indicating the maximum surge. The black
dashed vertical line denotes the landfall time of storm H1, H2 and H3. The locations
PA to PF are shown in Fig 4.6.
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4.5.7 Forerunner

Kennedy et al (2011) diagnose the forerunner surge of Hurricane Ike as being
generated by Ekman set-up on the wide and shallow continental shelves along
the western Louisiana and the northern Texas coasts. Such an Ekman set-up
driven forerunner is most significant on the broad shallow continental shelf such
as the northeastern shelf of the Gulf of Mexico. To investigate the influence of
storm direction on the forerunner surge in our model results, we evaluate the
water levels at locations from the south point of Florida (PA) to New Orleans
(PF ), for storms H1 (black line), H2 (blue) and H3 (red); see Figure 4.14.

Only the surge induced by H1 clearly display a set-up before landfall (de-
noted by the vertical black dashed line). The water level at location PA reaches
to a peak of 0.9 m 13 hours prior to landfall, as indicated by the black circle
in Fig 4.14. The surge peak travels westward along the coast, i.e. from location
PA to PF . With a coastal bank on its right-hand side, the along-shore wind of
stormH1 generates an along-shelf current over a wide shelf, leading to an Ekman
set-up due to the balance between the Coriolis force acting on the along-shelf
current and the cross shelf gradient. This finding is consistent with Kennedy
et al (2011) analysis of Hurricane Ike which moved over the Gulf of Mexico and
attacked Galveston, Texas from the southeastern direction. For storms H2 and
H3, their tracks are too far away from the coast and their approaching direction
are not in favor of generating Ekman set-up.

4.5.8 Fourier spectrum of the elevation amplitude

As shown in §4.5.2, storms from the southeastern direction produce the highest
surge. This is also seen from observed by the Fourier spectrum of the elevation
amplitude. Figure 4.15 shows the absolute value of the elevation amplitude for
the Fourier modes at locations P3, P5 and P6 is shown for storm H1 (Fig 4.15
a), H2 (Fig 4.15 b) and H3 (Fig 4.15 c). In general, the amplitude is lower
for higher frequencies. The amplitudes of higher modes are negligible compared
with the highest amplitude peak. This also supports our choice of Fourier modes
M and recurrence period Trecur.

For storm H1, we notice that there is a local amplitude peak at mode 8.
The corresponding frequency ω8 = 7.8 × 10−5 s−1. This frequency is close
to the quarter wave length frequency of New Orleans coastal basin ωquarter =

7.7 × 10−5 s−1, where ωquarter = 2π
√
gh

4L with basin length L ≈ 110 km is the
frequency for which the frictionless shallow water wavelength equals 4 times
of the basin length. This finding is consistent with the resonant mechanism
studied in chapter 3, where we observe the resonance frequencies associated
with (odd multiples of) the quarter wavelength for a topographic step with a
shallow coastal part. As can be seen from Figure 4.5, the topography of New
Orleans indeed displays a quick drop at the mouth of the basin, thus forming a
shallow coastal part.

Instead of lowest frequency, the amplitude surge peak for storm H2 appears
at mode 5. This is because the travelling time through the domain of storm H2

is smaller than H1. Therefore, the dominant forcing frequency of H2 is higher
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Figure 4.15: The elevation amplitude of Fourier modes at location P3, P5 and P6 for
three storm scenarios: (a) H1, (b) H2 and (c) H3.
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than H1.

4.6 Discussion and conclusion

In this study, we presented a new method to study storm surges. An ide-
alised process-based model has been developed to simulate surge levels in coastal
basins. Focusing on the New Orleans coastal basin, the geometry and bathymetry
are schematised. The storm forcings, wind and pressure field, are represented
using the Holland-B model. Through Fourier expansion these forcings are con-
verted into periodic signals at different frequencies. Using the Finite Element
Method, the solutions at each frequency are obtained. Note that the verti-
cal profile of the flow field are fully analytical. The surge levels are then the
superposition of solutions at different frequencies.

To analyze the model results, water levels at 10 locations have been evalu-
ated. The model is first applied to simulate the Hurricane Katrina surge in the
New Orleans coastal basin. Our model qualitatively captures the Katrina surge
in the New Orleans coastal basin and also produces reasonable quantitative
results.

Next, the influence of storm parameters has been investigated by compar-
ing the surge levels in the New Orleans coastal basin for storms with different
parameters. Model results show that for the New Orleans coastal basin, storms
from southern and southeastern directions produce the highest surge. Storms
from these directions drive water into the basin and trap the imported water un-
til making landfall. In particular, a southeastern storm causes an overall set-up
in the basin. Alternatively, storms from southwestern direction only cause local
high water and redistribute the water inside the basin. From our analysis, the
track of the most severe storm for the New Orleans coastal area is a southeast-
ern storm making landfall at the head of the Mississippi dike. This combination
produces the highest surge of 9.8 m. Due to the spatial variation of surge levels,
the sensitivity of the surge level at a given location strongly depends on location.
Only storms from the southeastern direction cause a forerunner surge along the
coast from south Florida to New Orleans.

The surges in the basin are also sensitive to the radius to maximum wind
and forward speed. The former parameter influences the area of water on which
winds act whereas the latter parameter determines the time over which the winds
act. A larger storm with slower forward speed following the most dangerous
track produces highest surge in the basin. The central pressure also influences
the surges, but to a lesser extent than the other parameters.

Hurricane Katrina approached the New Orleans coastal area from the south-
eastern direction, and made landfall at location P2. The combination of this
track and geometry leads to high surge along the north bank of the New Orleans
coastal basin (location P5, P6, P7 and P8). On the other hand, of the left corner
of the New Orleans coastal basin (location P3), a storm from southeastern direc-
tion running below and parallel to the Mississippi dike such as Hurricane Issac
produces the highest surge, since all winds blow into the basin when Hurricane
Issac approaches and maximum wind blows to the corner when it passes.
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Appendix

4.A Details of the derivation

4.A.1 Vertical profiles from horizontal momentum equations

Here we present the details of the vertical structure of the flow at frequency ωm.
First we define rotating flow components according to q±m = um ± ivm with complex
amplitudes Q±

m, such that Um = (Q+
m + Q−

m)/2 and Vm = (Q+
m − Q−

m)/(2i). The
rotating flow solution contains three contributions, proportional to the surface gradient
the wind stress and the pressure gradient, respectively:

Q±
m(z) = Q±

m,η(z)L
±Nm +Q±

m,pL
±Pa,m +Q±

m,w(z)T
±
m , (4.20)

with complex operators L± = ∂/∂x ± i∂/∂y and rotating wind forcing amplitudes

T±
m = T

(x)
m ± iT

(y)
m (wind stress divided by density). The vertical structures read

Q±
m,η(z) =

g
[
cosh λ+

mz − α±
c,m

]
α±
c,mKλ

±2
m

, (4.21)

Q±
m,p(z) =

[
cosh λ+

mz − α±
c,m

]
ρα±

c,mKλ
±2
m

, (4.22)

Q±
m,w(z) =

α±
c,m sinhλ±z + α±

s,m cosh λ±
mz

α±
c,mKλ

±
m

. (4.23)

with λ±2
m = −i(ωm ∓ f)/K and α±

c,m = coshλ±
mh + s−1Kλ±

m sinhλ±
mh and α±

s,m =
sinhλ±

mh+ s−1Kλ±
m cosh λ±

mh. The vertical integral is given by〈
Q±

m

〉
=
〈
Q±

m,η

〉
L±Nm +

〈
Q±

m,p

〉
L±Pa,m +

〈
Q±

w,m

〉
T±
m , (4.24)

with

〈
Q±

m,η

〉
=
g
[
sinhλ±

mh− α±
c,mλ

±
mh
]

α±
c,mKλ

±3
m

, (4.25)

〈
Q±

m,p

〉
=

[
sinhλ±

mh− α±
c,mλ

±
mh
]

ρα±
c,mKλ

±3
m

, (4.26)

〈
Q±

m,w

〉
=
α±
c,m

[
1− cosh λ±

mh
]
+ α±

s,m sinhλ±
mh

α±
c,mKλ

±2
m

. (4.27)

The two cases ωm = ±f require alternative expressions for either Q+
m or Q−

m. If
ωm = +f we must replace the Q+

m-expressions in Eqs.(4.21)-(4.24); if ωm = −f we
must replace the Q−

m-expressions. They must be replaced with

Q±
m,η(z) =

gh2

K

[
1

2

( z
h

)2
−

1

2
−
K

sh

]
, (4.28)

Q±
m,p(z) =

h2

ρK

[
1

2

( z
h

)2
−

1

2
−
K

sh

]
(4.29)

Q±
m,w(z) =

[
1 +
( z
h

)
+
K

sh

]
, (4.30)
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and

〈
Q±

m,η

〉
= −

gh3

K

[
1

3
+
K

sh

]
, (4.31)

〈
Q±

m,p

〉
= −

h3

ρK

[
1

3
+
K

sh

]
, (4.32)

〈
Q±

m,w

〉
=
h2

K

[
1

2
+
K

sh

]
. (4.33)

In the above expressions, the no-slip condition corresponds to taking s−1 = 0. Alter-
natively, the free-slip limit is obtained when taking the limit s ↓ 0.

4.A.2 Elliptical problem for N

At frequency ωm, depth-integration of the continuity equation (4.3), with the aid of
boundary conditions Eq. (4.4) gives, in terms of the complex amplitudes of surface
elevation and the rotating velocity components.

−iωmNm +
∂

∂x

(〈
Q+

m

〉
+
〈
Q−

m

〉
2

)
︸ ︷︷ ︸

〈Um〉

+
∂

∂y

(〈
Q+

m

〉
−
〈
Q−

m

〉
2i

)
︸ ︷︷ ︸

〈Vm〉

= 0, (4.34)

Substitution of Eq.(4.24) gives the elliptical equation for Nm which is identical to
Eq.(4.14) in the main text:

∇h · [〈Dm〉∇hNm]− iωmNm = −∇h · 〈rm〉 , (4.35)

with

Dm =

[
C+

m C−
m

−C−
m C+

m

]
, rm =

[
R+

m

R−
m

]
. (4.36)

The C+
m and C−

m coefficients are given by

C+
m =

1

2

[
Q+

m,η +Q−
m,η

]
, C−

m =
1

2i

[
Q+

m,η −Q−
m,η

]
, (4.37)

The boundary conditions presented in Eqs.(4.16) of the main text follow from depth-
integration of the momentum equations (4.1)-(4.2). The coefficients R+

m and R−
m are

given by

R+
m =

1

2

[
Q+

m,wT
+
m +Q−

m,wT
−
m

]
+

1

2

[
Q+

m,pL
+Pa,m +Q−

m,pL
−Pa,m

]
, (4.38)

R−
m =

1

2i

[
Q+

m,wT
+
m −Q−

m,wT
−
m

]
+

1

2i

[
Q+

m,pL
+Pa,m −Q−

m,pL
−Pa,m

]
, (4.39)

4.A.3 Vertical flow velocity
The vertical flow velocity amplitudes at any depth z are given by

Wm(z) = −
⌊
C+

m

⌋(∂2Nm

∂x2
+
∂2Nm

∂y2

)
−
〈
C+

m

〉(⌊∂R+
m

∂x

⌋
+

⌊
∂R+

m

∂y

⌋)
, (4.40)

where floor brackets indicate integration from bottom to z, i.e. �·� =
∫ z

−h
·dz. This

expression can be simplified further by using the differential equation (4.14) for Nm

to eliminate the Laplacian of Nm.
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Figure 4.16: L2-norm of the solution for different values of the grid size within the
local basin of New Orleans.

4.B Convergence test for Hurricane Katrina surge

The storm surge model uses the Finite Element Method which divides the whole
domain into discretised triangular mesh and calculate solution at these meshes. In
principle, the numerical solution should converge to an exact solution when the size
of the triangular mesh goes to zero (which means the number of nodes in the domain
goes to infinity). A model with a fine grid gives a more accurate result. However, a
calculation with a fine grid takes more time than with a coarse grid. Therefore, an
appropriate grid size for the purpose of the sensitivity study should give an accurate
result while taking acceptable time. To find a proper grid size for this study, we did
a convergence test for the local coastal basin of New Orleans. Several simulation runs
are made with different grid sizes. We calculate the L2-norm, ||Eh̄||2

||Eh̄||2 =

(∫ ∫
Ω

|Nh̄ −N∗
h̄ |

2

)1/2

, (4.41)

where Nh̄ is the numerical solution for grid size h̄, and N∗
h̄ the numerical solution for

finest grid (N∗
h̄ = 1 km). Results are presented in Figure 4.16. The Figure displays

an order one convergence. For the New Orleans coastal area and boundaries, a grid
of size of 4 km (h̄ = 4km) is used. For the wider part of the domain a bigger grid size
is used (h̄ = 8km). This results in 35748 grid points (see Figure 4.5) and 9 hours of
calculation on a regular pc for the Hurricane Katrina surge simulation.

4.C Fourier representation of atmospheric forcing

The Fourier transformation applied in the model decomposes atmospheric forcings
into periodic signals at different frequencies. Analogous to the number of elements,
increasing the number of modes (M) gives a more accurate representation. However,
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Figure 4.17: Real and Fourier representative atmospheric forcings of Hurricane Kat-
rina at P1, showing (a) wind stress, (b) pressure gradient, with 32, 64 and 128 modes.
The recurrence period Trecur is 7 days.

calculation with large M consumes much more time. The number of modes is also
related to the recurrence period of the storm, the longer the period the more modes
are needed for the same accuracy.

Figure 4.17 shows the Fourier representative of the atmospheric forcings for dif-
ferent M modes. As is illustrated, a combination of Trecur = 7 days and M = 64
gives a good representation of Hurricane Katrina forcings, and the calculation time is
acceptable for the purpose of a sensitivity study.
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Chapter 5

Discussion, conclusions and

recommendations

In this thesis the influence of geometry, topography and storm characteristics on storm
surges in coastal basins is described. In this final chapter, we first discuss the main
characteristics of the new model as well as the added value of the present study (§5.1).
We then present the main conclusions, answering the research questions (§5.2), and
addressing the general aim of this thesis (§5.3). Finally, §5.4 contains recommendations
for further research.

5.1 Discussion

The model developed in this study has several important characteristics. Firstly, the
model solves the linearised shallow water equations. This allows us to isolate the con-
tributions of various mechanisms and to calculate the surge response as superposition
of responses at different frequencies. The exclusion of nonlinear effects means that
the advection and the tide-surge interaction are neglected, which may explain our
underestimation of the simulated surge levels for the Katrina surge.

Regarding the open boundary condition, in chapter 3, we imposed a non-reflective
boundary condition. With this boundary condition, the wave generated inside the
basin can freely propagate away, thus causing no reflection at the boundary. The outer
region is represented as an infinitely long channel with uniform depth. In chapter 4, we
imposed a Dirichlet boundary condition, where the water levels at the open boundary
are calculated by the inverted barometer effect.

In this study, we have applied this model to the New Orleans coastal basin, but this
is not a restriction. Due to the FEM-approach we use, the model can deal with complex
large-scale geometries and complex large-scale topographies. Regarding meteorological
forcings, the Holland-B model used in this study can simulate tropical storms. To
simulate extratropical storms, it should be replaced by a more suitable model such as
the Norwegian cyclone model (Schultz and Vaughan, 2011).

Compared with the existing numerical models that give discretised solutions both
in time and space, the model developed in this study is more efficient regarding cal-
culation time. This is because of the model’s linearity, enabling a spectral approach.
Furthermore, the vertical calculations (analytical) is decoupled from the horizontal cal-
culations (FEM). A completely analytical vertical profile of the flow field is important
in capturing Ekman dynamics which contributes to the Ekman driven set-up forerun-
ner. Due to the focus on surge level, not much attention has been paid to the velocity
field, but the methodology applied in this thesis allows us to express the velocity in
terms of surface elevation and forcings. This feature will facilitate future studies on the
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transport of sediments, nutrients and pollutants. Furthermore, this model calculates
response as a superposition of solutions at different frequencies, allowing us to link the
response of a coastal basin to forcings with its resonant properties.

Compared with the simple analytical models that are restricted to basins with
simple geometry and topography, this model is flexible regarding geometries and to-
pographics. Further, it includes more physics, combining three-dimensional flow, in-
cluding Coriolis effect, bottom friction and transient response. Hence, our idealised
process-based model bridges the gap between the theoretical model studies (not site-
specific) and the computationally expensive detailed site-specific numerical simulation
models.

5.2 Answers to the research questions

Q1. How does the frequency response of a closed rotating basin depend on basin di-

mensions, the spatial structure of the wind forcing and bottom friction?

The results of Chapter 2 show that the frequency response of a closed rotating
basin of uniform depth, focusing on the surface elevation at an evaluation point
midway one of the cross-basin boundaries, is sensitive to the spatial structure
of the wind forcing. Without rotation, a spatially uniform wind produces the
classical resonance peaks at L/λ = 1

2
, 3
2
, · · · , where L is the basin length and

λ the shallow water wave length. Alternatively, divergent wind gives peaks at
L/λ = 1, 2, · · · . Including the Coriolis effect causes these peaks to shift.

If the cross-wind basin dimension B is not small compared to the basin length
L, cross-wind dynamics produces peaks at frequencies significantly lower than
obtained by Ponte (2010). These cross-wind dynamics can be triggered by sev-
eral mechanisms. Firstly, a wind forcing with nonzero curl produces cross-wind
variations in elevation and thus cross-basin flow and oscillations that may be res-
onant. Secondly, the Coriolis acceleration of the along-wind flow also produces
cross-basin oscillations. As discussed above, this along-wind pattern depends on
the spatial pattern of the wind forcing, so these rotation-induced peaks will be
different for spatially uniform wind, divergent wind and curl wind.

In each of the above cases, the main effect of increasing friction is a lowering of
the peaks.

Q2. What is the influence of basin-scale topography on the frequency response of large-

scale coastal basins subject to wind forcing?

In Chapter 3 it was shown that topographic elements cause the resonance peaks
to shift in the frequency domain through their effect on local wave speed. The re-
sults are obtained using an idealised process-based model and evaluated in terms
of the elevation amplitude averaged over the basin’s landward end. Coastal
basins are represented by a semi-enclosed rectangular inner region, forced by
wind. It is connected to an outer region (represented as an infinitely long chan-
nel) without wind forcing, which allows waves to freely propagate outward. The
wind field is spatially uniform in the core of the inner region and has an arbitrary
angle with respect to the along-basin direction.

Without the Coriolis effect, the response of a basin with uniform depth to along-
basin wind shows maxima at L/λ = 1

2
, 3
2
, · · · . Because waves are allowed to

propagate away into the outer sea, these maxima are much weaker than the
peaks in the frequency response to cross-basin wind. For a basin with a cross-
basin topographic step and a coastal part with a shallow water depth, the res-
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onance frequencies occur at Lc/λc = 1
4
, 3
4
, · · · , where Lc is the length of coastal

part and λc being the shallow water wave length on the coastal part. These
frequencies increase when increasing the depth of the coastal part. Conversely,
when the depth of the coastal part is sufficiently deep, the coastal part displays
a spatially uniform elevation pattern (‘pumping mode’). Smoothening the to-
pographic steps with sinusoidally shaped slopes shows that increasing the slope
length shifts the maximum to slightly higher frequencies. The response to a
linear along-basin bed profile in the inner region (along-basin wind only) shows
higher response for increasing slopes (while fixing the depth in the outer region),
because of the reduced depth in the coastal part. Varying the central depth of a
parabolic cross-basin profile (along-basin wind only), while keeping the averaged
depth the same, only weakly modifies the frequency response.

The Coriolis effect causes (strong) resonance peaks associated with cross-basin
modes (which without rotation only appear in response to cross-basin wind) to
emerge also in response to along-basin wind. It also introduces peaks at the
inertial frequency.

Q3. What is the influence of storm characteristics on surge response in the New Or-

leans coastal basin?

In Chapter 4 we studied the response of the New Orleans coastal basin to storms
with different characteristics. The model is first used in a hindcast study of the
surges in the New Orleans coastal basin induced by Hurricane Katrina. Our
model qualitatively captures the Katrina surge in the New Orleans coastal basin
and also produces reasonable quantitative results. This gives confidence in the
model, allowing for a sensitivity study of storm surges to storm characteris-
tics. To investigate the influence of storm characteristics, the surges induced
by storms of varying characteristics, i.e. storm size, central pressure, direction,
landfall point and forward speed, are calculated. The results are evaluated in
terms of water levels at various locations along the New Orleans coast.

Results show that the direction and landfall point of the storm are the most
important parameters. For the New Orleans coastal basin, storms from south-
ern and southeastern directions produce the highest surge. Storms from these
directions drive water into the basin and trap the imported water until it makes
landfall. In particular, a southeastern storm causes an overall set-up in the
basin. The track of the most severe storm for the New Orleans coastal basin is
a southeastern storm making landfall at the seaward end of the Mississippi dike.
This combination produces the highest surge level. Due to the spatial variation
of surge levels, the sensitivity of the surge level at a given location strongly
depends on location. Only storms from the southeastern direction cause a fore-
runner surge.

The surges in the basin are also sensitive to the radius to maximum wind and
the forward speed. The former parameter influences the horizontal area of water
forced by windstress, whereas the latter parameter determines the time span
during which wind forcing takes place. A larger storm with slower forward
speed produces even higher surge levels. The central pressure also influences
the surges, but to a lesser extent than the other parameters.
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5.3 Overall conclusions

The goal of the research is to understand storm surge processes in large-scale coastal
basins, particularly the influence of geometry, topography and storm characteristics
on set-up at the coast.

In this thesis, we have developed an idealised process-based model to study the
storm surge process in large-scale coastal basins. These processes are linked to basin’s
resonance properties, which are found to depend on the spatial pattern of the wind
forcing, the along-wind basin dimensions, as well as the influence of rotation. Moreover,
both geometry and topography strongly influence the storm surges, as they alter the
resonance properties of coastal basin.

The model has been applied to simulate the surge of Hurricane Katrina, demon-
strating that the model is able to qualitatively simulate surge levels. A sensitivity
study of surges in the New Orleans coastal basin to storm characteristics showed that
the direction and landfall point of the storm are the most important storm parameters
in determining the surge levels. They are shown to affect maximum surge, timing of
the surge, spatial distribution of the surge levels along the coast as well as the duration
time of high water events.

From a broader perspective, the results obtained in this thesis help the protection
of coastal areas and the design of coastal zone management strategies. In particular,
the idealised process-based model can serve as a quick estimation tool for the water
levels and possible inundations induced by storms. Due to its flexibility regarding
geometry and topography, the model can be easily applied to other locations. Due
to the short calculation time, it is suitable for extensive sensitivity studies. These
properties position the new idealised process-based model in between the theoretical
model studies (not site-specific) and the computationally expensive detailed numerical
simulation models.

5.4 Recommendations

Even though this thesis contributes to the fundamental knowledge of the storm surge
processes in large scale coastal basins, various questions remain. To direct future re-
search and to further improve the model, we formulate the following recommendations.

• In this thesis, we have neglected nonlinear effects. This facilitates our under-
standing of storm surge processes, allowing us to unravel different mechanisms.
On the other hand, it limits the applicability of this model. Nonlinear effects
such as tide-surge interaction can be significant, especially in coastal basins
with complex topography. The influence of nonlinear effects on the frequency
response of coastal basins, and storm surge at the coast is not clear.

• One obvious step is to systematically study the influence of complex coastlines,
both on the frequency response and the storm surge. A basin of complex coast-
lines may elongate the travelling distance of waves, and also introduce dynamics
in multiple directions. Moreover, depending on the shape, the wave can be
trapped and possibly generate local resonance. This is also important for storm
surges. With more complex coastlines, we can better understand high water
events in reality.

• Another step would be to study the combined effect of storm characteristics.
In this thesis, the influence of storm characteristics is studied for each storm
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characteristic separately. However, an extra-high water event is usually trig-
gered by the combined effect of several factors. For instance, the sensitivity of
storm surge to central pressure and storm size is higher with a specific angle of
landfall. Future work should consider more scenarios that investigate the effects
of different combinations of storm parameters.

• The storm surge model can be applied to investigate the influence of human in-

tervention on storm surges in coastal basins, and thus contributes to the design
of large-scale sand extractions and land reclamations. By altering the configu-
ration of the sea floor and basin shape, sand extraction and land reclamation
may modify the local hydrodynamics. How these changes affect set-up due to
wind and storm is unknown.

• A possible step is to study the morphodynamic effect of a storm. Storms not
only induce high surge levels along the coast, but also give rise to sediment
transport which may reshape the coastline and seabed. These morphodynamic
effects of a storm are not clear. The output of our storm surge model contains
surface elevation as well as flow velocity. By coupling the flow velocity and
sediment transport, the model can be extended to take into account the mor-
phodynamic evolution, allowing the study of the immediate morphodynamic
effects of a storm.

• Future research using this model should improve the open boundary condition.
As discussed in chapter 4, the model results of storm surge in New Orleans
coastal basin showed a periodic signal, which is due to the reflecting effect of
Dirichlet boundary condition. One approach to improve it is to apply the non-
reflecting boundary condition introduced in chapter 3, which allows the wave
generated inside the basin to freely propagate away.



124 Chapter 5. Discussion, conclusions and recommendations



Bibliography

Abbott PL (1996) Natural Disasters, 8th edn. Wm. C. Brown Publishing Co., New
York

Abraham G (1960) Hurricane storm surge considered as a resonance phenomenon.
Coast Eng Proceedings 1(7):31, DOI 10.9753/icce.v7.31

Arthur PN (1964) The relation of wind and pressure to extratropical storm surges at
Atlantic city. J Appl Meteor pp 155–163, DOI 10.1175/1520-0450(1964)003〈0155:
TROWAP〉2.0.CO;2

Bertin X, Bruneau N, Breilh JF, Fortunato AB, Karpytchev M (2012) Importance of
wave age and resonance in storm surges: The case Xynthia, Bay of Biscay. Ocean
Model 42(0):16–30, DOI 10.1016/j.ocemod.2011.11.001

Birchfield GE (1967) Horizontal transport in a rotating basin of parabolic depth profile.
J Geophys Res 72(24):6155–6163, DOI 10.1029/JZ072i024p06155

Birchfield GE (1969) Response of a circular model Great Lake to a suddenly imposed
wind stress. J Geophys Res 74(23):5547–5554, DOI 10.1029/JC074i023p05547

Blain CA, Westerink JJ, Luettich RA (1994) The influence of domain size on
the response characteristics of a hurricane storm surge model. J Geophys Res
99(C9):18,467–18,479, DOI 10.1029/94JC01348

Blake ES, Cobb HD, Roberts DP (2006) Tropical cyclone report Hurricane Wilma
15-25 October 2005. Report, National Hurricane Center

Blake ES, Kimberlain TB, Berg RJ, Cangialosi JP, II JLB (2013) Tropical cyclone
report Hurricane Sandy 22-29 February 2013. Report, National Hurricane Center

Borne K (1998) Observational study of sea and land breeze on the Swedish West coast
with focus on an Archipelago, vol 34. Earth Science Centre, Göteborg University
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