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Summary

River �oods are a major global hazard causing extensive damage and loss of lives.
To protect the hinterland from severe inundations, �ood defences are commonly
designed according to appropriate safety levels that are determined based on a
statistical return period. To estimate discharges associated with di�erent return
periods, �ood frequency analyses are used that �t a distribution to the data set of
annual maximum discharges.

The data sets of measured annual maximum discharges are generally in the order
of 100 years. Consequently, the predicted design discharges with a return period
of e.g. 100,000 years are based on extrapolation and therefore highly uncertain. To
decrease the uncertainty of �ood frequency relations, historical �ood information
can be added to the data set of measured discharges.

We aimed to study the e�ect of extending the data set of measured discharges on
the reduction of the 95% uncertainty interval of �ood frequency relations. The
data set was extended with reconstructed historic �ood events using hydraulic
modelling approaches. The Rhine delta was used as a case study, but the proposed
methodologies can also be applied to other river basins and coastal areas provided
that su�cient data is available.

A drawback of reconstructing historic �ood events with the use of hydraulic models
is the high computational cost. Because historical information is limited and
uncertain, many model runs have to be performed to include these uncertainties
in the analysis. Therefore, the hydraulic model must be e�cient in terms of model
accuracy and computational time. We �rst developed a fully two dimensional
(2D) hydraulic model, after which we simpli�ed this model to achieve a data
driven model, referred to as a response surface surrogate model. By simplifying
the model, computational times are reduced. However, it is important that the
simpli�ed models are still capable of reproducing the desired output.

11



The outline of this thesis is as follows.

In Chapter 2, we show which 2D grid is most e�cient in terms of model perfor-
mance. We compared structured rectangular, unstructured triangular and hybrid
(consisting of both structured and unstructured grid cells) grids with a high and
low resolution. The performance of both the non-calibrated and calibrated models
were compared based on simulated water levels. Furthermore, �ow velocities in a
meander bend were evaluated to assess the correctness of the physical processes.
We show that there are three important grid generated features that in�uence
model results, namely: (1) bathymetry accuracy and (2) numerical friction, both
as a result of grid resolution, and (3) numerical viscosity as a result of grid shape.
Numerical friction and numerical viscosity have the same e�ect on model results as
physical bed friction has, namely attenuating the discharge wave and in increasing
the simulated water levels.

In Chapter 3 we developed a 1D-2D coupled model, also referred to as a lower-
�delity physically based surrogate model, to study whether this model can replace
a fully 2D model to reduce computational time. In this simpli�ed model, the main
channel and �oodplains are schematized by 1D pro�les and the embanked areas
are discretized on a 2D grid. We used this model to perform a sensitivity analysis
to analyse which parameter has the highest impact on maximum discharges during
a �ood event. In 1926 the largest measured �ood event has occurred. This �ood
event was used as a case study. We conclude that the model output is most
sensitive to the roughness class with the largest share in surface area. Furthermore,
we show that the 1D-2D coupled model is capable of producing model results with
the same accuracy as a fully 2D model. Therefore, the 1D-2D coupled model was
used as a high-�delity model in the next Chapter.

In Chapter 4, we developed a surface response surrogate model with training
data created with the 1D-2D coupled model. This data driven surrogate model
has no physical interpretation, but reproduces the input-output relations of the
high-�delity model based on simple mathematical functions. As a result, many
model runs can be performed within a couple of seconds. We reconstructed the
maximum discharge at Lobith (German-Dutch border) during the 1809 �ood event
based on measured water levels of surrounding locations. Chapter 4 shows that
the con�dence intervals of the 1809 maximum discharge are reduced compared to
the results of existing methods that did not use hydraulic models to perform the
reconstruction.

Before historic �ood events can be added to the data set of annual maximum
discharges, they must be normalized for natural and anthropogenic changes in the
river system. To do so, the upstream discharges of the historic �ood events were
routed over the present geometry using the 1D-2D coupled modelling approach
(Chapter 3). In Chapter 5, we show the present system behaviour of the Rhine
delta as a result of various upstream discharges. Dike breaches are included in
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the model domain as random input parameter resulting in various overland �ow
patterns. We conclude that dike breaches and resulting overland �ow patterns may
signi�cantly change the discharge partitioning of and �ood risk along the Dutch
Rhine river branches.

Finally, in Chapter 6, we created a continuous data set of annual maximum dis-
charges of approximately 700 years. The data from the period 1772-2018, compris-
ing of discharge and water level measurements, was extended with 12 historic �ood
events. The 12 historic �ood events were normalized using the modelling approach
developed in Chapter 5. We used a bootstrap approach to sample discharges for
the missing years in the historical time period, resulting in a continuous series.
Next, a �ood frequency analysis was performed with the extended data set. The
results of this analysis were compared with the �ood frequency relation created
by solely using measured discharges. We show that uncertainty in �ood frequency
relations decreases if the length of the considered data set of annual maximum dis-
charges is extended. Therefore, we recommend to include as many historic �ood
events as possible in the considered data set such that the uncertainty intervals
of �ood frequency relations are reduced. This even applies if the magnitude of
the historic �ood event itself is highly uncertain. In this manner, future design
discharges can be predicted with less uncertainty.
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Samenvatting

Rivieroverstromingen zorgen elk jaar wereldwijd voor veel schade en hoge sterfte-
cijfers. Om het achterland van overstromingen te beschermen, worden water-
keringen ontworpen volgens een geschikte veiligheidsnormering gebaseerd op een
statistische herhalingstijd. Afvoeren behorende bij verschillende herhalingstijden
worden bepaald door middel van afvoerfrequentie-analyses. In zulke analyses
wordt een kansverdeling opgesteld aan de hand van een dataset van jaarlijkse
maximale afvoerwaarnemingen.

De datasets van gemeten jaarlijkse maximale afvoeren hebben vaak een lengte van
∼100 jaar. Een ontwerpafvoer met een herhalingstijd van bijvoorbeeld 100.000
jaar wordt dus bepaald door extrapolatie en is daarom erg onzeker. De on-
zekerheid in afvoerfrequentiekrommen kunnen verkleind worden door informatie
over historische overstromingen toe te voegen aan de dataset van gemeten afvoeren.

Het doel van dit onderzoek was om de e�ecten van het uitbreiden van de dataset
van gemeten afvoeren op de afname van de 95% betrouwbaarheidsinterval van
afvoerfrequentiekrommen te bepalen. De dataset is uitgebreid met gereconstru-
eerde historische overstromingen gebruikmakende van verschillende hydraulische
modelleringsaanpakken. De Rijndelta is gebruikt als casus, maar de gepresen-
teerde methodes kunnen ook toegepast worden op andere stroomgebieden en kust-
gebieden mits er voldoende data beschikbaar is.

Een nadeel van het reconstrueren van historische overstromingen met hydrau-
lische modellen is de lange rekentijd. Aangezien historische informatie beperkt
en onzeker is, moet een groot aantal modelsimulaties uitgevoerd worden om deze
onzekerheden mee te nemen in de analyse. Daarom moet het hydraulische model
e�ciënt zijn wat betreft nauwkeurigheid en rekentijd. Allereerst hebben we een
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volledig twee dimensionaal (2D) model opgezet, waarna deze versimpeld is naar
een data-gedreven surrogaat model. Door het versimpelen van het model wordt de
rekentijd teruggebracht. Het is echter wel van belang dat het versimpelde model
instaat is om de gewenste output te genereren. De structuur van dit proefschrift
is als volgt.

In hoofdstuk 2 laten we zien welk 2D grid het e�ciëntst is wat betreft model-
prestaties. We vergeleken gestructureerde rechthoekige, ongestructureerde drie-
hoekige en hybride (bestaande uit zowel gestructureerde als ongestructureerde
gridcellen) grids met een hoge en lage resolutie. Gesimuleerde waterstanden van
zowel gekalibreerde en niet-gekalibreerde modellen zijn met elkaar vergeleken.
Daarnaast zijn stroomsnelheden in een meander berekend om de juistheid van
de fysische processen te beoordelen. We laten zien dat drie belangrijke grid-
gegenereerde aspecten de modelresultaten beïnvloeden, namelijk: (1) nauwkeurig-
heid van de bathymetrie en (2) numerieke frictie, beide als gevolg van gridresolutie,
en (3) numerieke viscositeit als een gevolg van gridvorm. Numerieke frictie en
numerieke viscositeit hebben hetzelfde e�ect op de modelresultaten als fysische
bodemruwheid, namelijk vertraging van de afvoergolf en toename van de water-
standen.

In hoofdstuk 3 hebben we een 1D-2D gekoppeld model ontwikkeld om te kijken of
dit type model een volledig 2D model kan vervangen om rekentijden te verkorten.
In dit gesimpli�ceerde model zijn het zomer- en winterbed geschematiseerd door
1D pro�elen en is het achterland gediscretiseerd met behulp van een 2D grid.
We hebben dit model gebruikt om een gevoeligheidsanalyse uit te voeren om te
analyseren welke input parameter de hoogste impact heeft op de maximale afvoeren
tijdens een hoogwater. In 1926 heeft een grote overstroming opgetreden. Deze
overstroming is gebruikt als casus. We concluderen dat de modeluitkomsten het
meest gevoelig zijn voor de ruwheidsklasse met de grootste oppervlakte. Ook
laten we zien dat het 1D-2D gekoppelde model instaat is om modelresultaten met
eenzelfde nauwkeurigheid als een volledig 2D model te produceren.

In hoofdstuk 4 hebben we een data-gedreven surrogaat model opgezet met train-
ingsdata gecreëerd met de 1D-2D gekoppelde modelleringsaanpak. Dit type surro-
gaat model heeft geen fysische interpretatie, maar reproduceert enkel de input-
output relaties van het 1D-2D gekoppelde model gebaseerd op enkele simpele
wiskundige functies. Als gevolg kunnen veel modelsimulaties uitgevoerd worden
in slechts enkele secondes. We hebben de maximale afvoer bij Lobith (Duits-
Nederlandse grens) tijdens het 1809 hoogwater gereconstrueerd op basis van geme-
ten waterstanden van omliggende meetstations. Hoofdstuk 4 laat zien dat de
betrouwbaarheidsintervallen van de gereconstrueerde 1809 maximale afvoer kleiner
zijn in vergelijking met resultaten van bestaande methodes die geen gebruik maken
van hydraulische modellen om de reconstructie uit te voeren.
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Voordat de historische overstromingen toegevoegd kunnen worden aan de dataset
van gemeten jaarlijkse maximale afvoeren moeten deze genormaliseerd worden
voor menselijke en natuurlijke veranderingen in het rivierensysteem. Om dit te
doen, worden de bovenstroomse afvoeren van de historische hoogwaters losgelaten
over de huidige geometrie gebruikmakende van de 1D-2D gekoppelde modellerings-
benadering (hoofdstuk 3). In hoofdstuk 5 laten we het huidige systeemgedrag van
de Rijndelta zien ten gevolge van verschillende bovenstroomse afvoeren. Dijkdoor-
braken zijn in het model meegenomen als willekeurige input parameter resulterende
in verschillende overstromingspatronen. We concluderen dat dijkdoorbraken en
bijbehorende overstromingspatronen tot een signi�cante verandering van de af-
voerverdeling van en overstromingsrisico langs de Nederlandse Rijntakken kan lei-
den.

Allerlaatst hebben we in hoofdstuk 6 een continue dataset van jaarlijkse max-
imale afvoeren van ongeveer 700 jaar geconstrueerd. De data van de periode
1772-2018, bestaande uit afvoer- en waterstandsmetingen, zijn uitgebreid met 12
historische hoogwaters. De 12 historische hoogwaters zijn genormaliseerd gebruik-
makende van de modelleringstechnieken ontwikkeld in hoofdstuk 5. We hebben
gebruik gemaakt van een bootstrap-benadering om afvoeren over de missende
jaren in de historische tijdsperiode te samplen, resulterende in een continue reeks.
Daarna is een afvoerfrequentie-analyse uitgevoerd met de uitgebreide dataset. We
hebben de resultaten van deze analyse vergeleken met de afvoerfrequentiekromme
gecreëerd op basis van enkel gemeten afvoeren. We laten zien dat de onzekerheid
in afvoerfrequentiekrommen afneemt als de lengte van de gebruikte dataset van
jaarlijkse maximale afvoeren toeneemt. Wij bevelen daarom aan om zoveel mo-
gelijk historische overstromingen mee te nemen in de gebruikte dataset om zo de
onzekerheidsbanden van afvoerfrequentiekrommen zo klein mogelijk te houden.
Dit geldt zelfs als de maximale afvoer van een hoogwater erg onzeker is. Op deze
manier kunnen toekomstige ontwerpafvoeren met een kleinere onzekerheid geschat
worden.
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Introduction



1.1 Flood frequency analyses

Floods are considered as one of the main hazards causing extensive damage and
life-loss worldwide. Over recent years, �ooding occurred with immense social im-
pact (Benito et al, 2004). Recent �oods in Uganda's Eastern Region, the province
of Chaco in Argentina and the province of Alicante in Spain have led to enor-
mous damage in 2019. These �oods show the importance of accurate design of
�ood defences according to an appropriate safety level. Moreover, �oods become
a growing problem as societies become wealthier causing more material damage
(Brázdil et al, 2006). It is expected that annual �ood losses in Europe increase
�vefold by 2050 (EEA, 2016).

To protect the hinterland from severe inundations, �ood defences are commonly
designed according to an appropriate safety level that are most often determined
based on a statistical return period. Throughout Europe, �ood frequency analy-
ses (FFA) are used to estimate discharges associated with di�erent return periods
(Benito et al, 2004). Also in other countries such as the USA, Australia and sev-
eral South American countries, the use of frequency analyses is common practice
(Machado et al, 2015). These analyses are straightforward to apply. They consist
of a technique of �tting a probability distribution to a series of observations for
de�ning the probabilities of future occurrences of some events of interest (Khaliq
et al, 2006). For this study, we are mainly interested in annual maximum dis-
charges of a river (Fig. 1.1). In general, an FFA consists of three steps: (1) select-
ing a probability distribution, (2) choosing a parameter estimation method, and
(3) providing an estimate of uncertainty associated with the parameters of interest
(Khaliq et al, 2006). Probability distribution functions that are commonly used
in literature are Generalized Extreme Value distributions, normal distributions,
Gumbel distributions and Log-Pearson distributions. The choice of the probabil-
ity distribution that best �ts the sample data is often based on a goodness-of-�t
criterion (Khaliq et al, 2006). Next, the parameters of the distribution are es-
timated with the use of a parameter estimation method such as the method of
moments, the method of maximum likelihood or the method of L-moments. With
this �tted distribution, discharges corresponding to any return period can be de-
rived (Van den Boogaard et al, 2014). However, these discharges are commonly
uncertain since it is unrealistic to expect that the �tted probability distribution
is able to summarize all information about a future occurrence in a single number
(Khaliq et al, 2006). To capture this uncertainty, uncertainty intervals of the �tted
�ood frequency relation are generally also computed.

Two widely used methods exist to sample the data used to �t the probability
distribution function, namely: selecting the annual maximum discharges of the
observational record or selecting the peak values that exceed a certain thresh-
old. Normally, at-site FFAs are performed which only use observations of a single
measurement station. However, if this data set covers a too short time period
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to successfully �t the distribution function, a regional FFA can be applied. In a
regional analysis, observations of surrounding measurement stations are used to
improve the accuracy of the �tted distribution. The method involves pooling of
�ood data from di�erent stations in a hydrologically homogeneous region to obtain
regional �ood information (Hailegeorgis and Alfredsen, 2017).

Although FFAs are straightforward to apply, they do have some limitations and
drawbacks. Firstly, the assumptions of independence and stationarity are neces-
sary conditions to proceed with the analysis (Khaliq et al, 2006; Sankarasubra-
manian and Lall, 2003). Independence means that two observation points do not
belong to the same �ood event, which is excluded using the method of annual
maximum discharges considering hydrological years (e.g. in the Netherlands the
1th of October to the 30th of September). Stationary means that the underlying
processes are constant in time, and that hence the annual maximum �ood cor-
responds to an independent identically distributed process (Sankarasubramanian
and Lall, 2003). In other words, the parameters of the �tted distribution function
do not change over time. However, it is widely acknowledged that both climate
change and land use changes modify �ood frequency relations (Section 1.6.4).

Figure 1.1

Fitted GEV distribution of the data set of measured annual maximum discharges (Q) of the Rhine

river at Lobith. Data provided by the Dutch Ministry of Infrastructure and Water Management.
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Furthermore, the �tted distribution functions become more accurate if a long
series of observations is available. However, the length of these observational time
series is often insu�cient to accurately estimate the parameters of the distribution
resulting in large uncertainty intervals. In Europe, each country manages its own
measurement station network and discharge data is usually available for the last
40-50 years (Benito et al, 2004). Discharge measurements of the Rhine river have
been performed relatively long and the data set has a length of approximately 120
years at the German-Dutch border (Lobith). Water level measurements even go
back to 1772 at the nearby gauging stations Emmerich, Pannerden and Nijmegen.
However, using this relatively long data set to �t a distribution function and to
compute subsequent design discharges corresponding to a return period of e.g.
100,000 years still results in large uncertainties (Fig. 1.1). Furthermore, the short
data set of observations may be unrepresentative. This is particularly the case if
the data set comprises a period of relatively high or low discharges (Bayliss and
Reed, 2001).

1.2 Dealing with uncertainty in �ood frequency anal-

yses

An FFA is subject to two types of uncertainties: sampling uncertainty and model
uncertainty (Bobée et al, 1993), which are both highly a�ected by the amount
of data available. The model error represents the error caused by the �tted dis-
tribution function. This error is relatively more important in the extrapolation
region of the �ood frequency relation, whereas for small return periods the global
uncertainty is mainly due to sampling (Bobée et al, 1993). Decision makers see
uncertainty as the lack of exact knowledge, regardless of the cause of this de�ciency
(Refsgaard et al, 2007). This is why, decision makers are interested in the global
uncertainty, which is a combination of the two sources of uncertainty (sampling
and model). The global uncertainty is especially pronounced for the estimation of
design discharges corresponding to rare events (Fig. 1.1).

Traditionally, decision makers treat uncertainty implicitly through conservative
design equations or through rules of thumb (Hall and Solomatine, 2008; Warmink
et al, 2017). For example, to cope with the uncertainties related to design water
levels, crest levels of the �ood defences are computed and increased with a spe-
ci�c height to ensure that the �ood defences are high enough to cope with the
uncertainties. Even up till now, there is little evidence in literature on explicit
uncertainty quanti�cation for �ood model predictions (Berends et al, 2019). Lack
of explicit uncertainty quanti�cation leaves room for free interpretation of model
uncertainty by decision makers (Pinter, 2003).
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However, the last decade decision makers are increasingly demanding information
about the extent of the uncertainties in the evidence upon which they are basing
their decisions (Hall and Solomatine, 2008). Probabilistic modelling, i.e. mod-
elling approaches (such as a Monte Carlo analysis) that incorporate uncertainty
into the model calculations at all stages of the modelling, are increasing in popular-
ity (Uusitalo et al, 2015). With probabilistic modelling, it is possible to compute
the uncertainty intervals of a �ood. Generally, decision makers are interested in
the 95% uncertainty intervals to exclude uncertainties caused by scenarios with an
extremely low probability of occurrence. These intervals are of high importance
since �ood protection measures are based on an appropriate safety level and cor-
responding design discharges. These design discharges are computed with the use
of �ood frequency relations.

1.3 Historic �ood reconstructions

The global uncertainty of �ood frequency relations can be reduced by extending
the data set of measured discharges. Over the recent years, many studies have suc-
ceeded in the reconstruction of historic �ood events. In general, these reconstruc-
tions can be divided into two groups, namely: reconstruction based on paleo�ood
hydrology and reconstruction from historical sources (Benito et al, 2004).

1.3.1 Reconstructions based on paleo�ood hydrology

Sources of paleo�ood data are geological indicators such as �ood deposits, silt lines
or erosion lines found in �oodplains, terraces and along a river's channel (Benito
et al, 2004). Paleo�ood data most often represent minimum �ood indicators repre-
senting �ood stages that at least have been exceeded during the event. Techniques
to estimate peak discharges based on paleostage indicators have been successfully
employed worldwide. For example, Wolfe et al (2006) was able to construct �ood
history spanning the past 180 and 300 years for two oxbow lakes located near
the Peace River, Canada. Laminated sediment depositions in combination with
physical and geochemical analyses were used. It was found that �ood frequency
has been highly variable over the past 300 years. This indicates that changes in
hydrology are a natural feature of the studied ecosystem independent of human
in�uence or intervention (Wolfe et al, 2006).

In China, sediments of the Yangtze river were collected for grain size measurements
with the aim to reconstruct the �ood events over the past 150 years (Zhan et al,
2010). The sediments were taken from a sandbar where sediments were deposited
during high water levels. Major grain size parameters such as mean grain size and
probability cumulative curve clearly indicate the �ood event depositions. Several
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large �oods between 1850 to 1954 that agree well with historical documents were
identi�ed (Zhan et al, 2010).

O'Connell et al (2002) reconstructed so-called paleohydrologic bounds for both
the Santa Ynez river, California, and the Big Lost river, Idaho. Paleohydrologic
bound data represents high discharge stages that have not been exceeded since
the geomorphic surface stabilized. These bounds are not actual �oods, but limits
on �ood stages over a measured time interval. It was found that paleohydrologic
bounds narrow the uncertainty intervals of peak discharges when estimating �ood
events with low probability of occurrence.

Other countries where paleo�ood reconstructions successfully have been applied
are, among others, India, South Africa, Peru, Australia and many countries in
Europe (Benito et al, 2004).

Figure 1.2

Flood marks of the Rhine river near Rees, Germany. Photo by A. Bomers.
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1.3.2 Reconstructions based on historical sources

Historical sources are commonly used to derive �ood levels of speci�c �ood events.
These �ood levels can be translated into discharges such that they can be incor-
porated in an FFA. There is a large volume and variety of sources which may
provide information about a speci�c event (e.g. paintings, �ood marks (Fig. 1.2),
diaries, newspapers). According to studies performed so far, information that may
be obtained from historical archives is among others the precise dating of the past
�ood event, the damage incurred, some reference to peak �ood levels and certain
information about the prevailing weather conditions (Benito et al, 2004).

Flood reconstruction based on historical sources have been widely applied. Herget
and Meurs (2010) used documentary data to estimate peak discharges of historic
�ood levels near the city of Cologne, Germany. The reconstructions made use of
all available data, including estimations of channel incisions and anthropogenic
modi�cations of the river and its �oodplains. A simple approach was applied
to estimate peak discharges of several historic �ood events with the use of the
Manning's equation to take into account roughness and channel geometry. Herget
and Meurs (2010) found that the Rhine river �oods in 1993 and 1995 were exceeded
at least four times in the pre-instrumental period.

For several Mediterranean catchment areas �ood discharges were reconstructed
with the use of recent and historical rating curves to account for geomorphological
changes (Neppel et al, 2010). They recommend to carefully evaluate the various
sources of uncertainty in order to assess the impact of using historical data to
extend the data set of measured discharges. However, Neppel et al (2010) also
found that the single most important factor in�uencing the uncertainty of �ood
frequency estimation is the length of the record. This clearly shows the bene�ts
of extending the data set of measured discharges with historic events.

She�er et al (2003) constructed a long-term record of the extreme �ood events
of the Ardèche river, France, by extending the data set of measured discharges
with both historic and paleo �oods. Information about historical cross sections,
topographic maps and �eld surveys were used to determine the historical maximum
discharges with the use of a one dimensional hydraulic model. Only the main
channel and its �oodplains were included in the model domain and the model was
not calibrated. Instead, two Manning's coe�cient values were used. This led to a
range of the potential maximum discharge of the various historic �oods evaluated.
They found that the �oods in the Ardèche river are not randomly distributed in
time but are clustered as there were long gaps in �ood occurrences present in the
constructed long-term record. Furthermore, She�er et al (2003) found that the
nineteenth century �oods of the Ardèche river at the end of the Little Ice Age
from ∼1820 to 1890 were the largest at the millennial time scale.
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1.3.3 Hydraulic modelling tools for �ood reconstructions

The previous studies showed that historic �ood events can be reconstructed based
on paleo and historical information. However, up till now no highly detailed two
dimensional (2D) hydraulic models are used to perform the reconstructions, while
these models are typically suited to simulate extreme �ood events. Since 2D hy-
draulic models are capable of simulating in high detail �ow patterns and inundation
extent during a �ood event, they are generally used to get an understanding of
present river system behaviour (e.g. Alkema and Middelkoop (2005); Leandro et al
(2014); Moya Quiroga et al (2016)).

A major disadvantage of hydraulic computations on a 2D grid is the computational
time. Therefore, many studies try to reduce this time by setting up so-called sur-
rogate models which represent a simpli�ed version of a highly detailed 2D model.
In general, two types of surrogate models exist: (1) lower-�delity physically based
models and (2) response surface surrogate models. A lower-�delity physically
based surrogate model is a simpli�ed representation of the high detailed model
which is still based on the physical conditions of the system. It is set up with
the original input data of the high detailed model. Contrarily, a response surface
surrogate model represents a statistical or empirical data-driven model emulating
the original system. It has no physical interpretation and solely consists of rela-
tively simple mathematical functions. Both methods are already often applied to
predict �ood wave propagation on present-day geometries. Among others, Dibike
and Solomatine (2001) and Campolo et al (1999) used a response surface surrogate
model for river �ow forecasting problems.

1.4 Knowledge gap

Many studies were able to reconstruct maximum �ood stages at a speci�c loca-
tion. These stages, although generally quite uncertain, are commonly translated
into discharges such that they can be included into a �ood frequency analysis.
However, generally simple relations are used to perform this translation. None
of the studies conducted so far used hydraulic models of any kind to reconstruct
historic �ood events along a long river stretch with multiple bifurcations including
its �ood-prone hinterland, while these models have shown their applicability of
�ood modelling for present situations. The use of sophisticated hydraulic models
for historic �ood reconstructions can have several advantages compared to previ-
ous methods (Section 1.3). Firstly, the uncertainty intervals of the reconstructed
maximum discharges can be reduced since hydraulic models are capable of sim-
ulating the physical processes during a �ood event in high detail. Secondly, the
use of hydraulic models provide knowledge on the system behaviour of the river of
interest for the speci�c time period considered. System behaviour represents the
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characteristics (e.g. timing of over�ow and dike breaches, inundation patterns) of
�ood events of the considered river. As a result, not only the maximum discharge
during the events can be determined, but also the discharge stages along the entire
river stretch and the most dominant �ow patterns through the embanked areas
are predicted. The embanked areas represent the areas that are protected by �ood
defences and are hence not part of the river system. Finally, hydraulic models
provide insights in the inundated areas during high �ood stages. This is valuable
information for the design of �ood defences and evacuation plans.

A disadvantage of reconstructing historic �ood events with the use of (highly
detailed) hydraulic models is the computational cost. Using hydraulic models in
an e�cient way requires a reconstruction of the historical geometry as input data as
well as proper boundary conditions to determine the �ood wave propagation along
the model domain. However, historical information (e.g. historical topography,
occurred water levels, inundated areas) is limited and uncertain. This uncertainty
in�uences the maximum discharge of the historic �ood events at the location of
interest. For this reason, input uncertainty must be included in the analysis.
This can be done with the use of a probabilistic modelling approach in which
the uncertain input parameters are considered as random input in a Monte Carlo
framework. To perform such a Monte Carlo analysis, many model runs are required
to reach convergence in the model output. Therefore, the model (hydraulic or any
other kind of model) used for historic �ood reconstructions must be e�cient in
terms of model accuracy and computational time. Up till now, we do now know to
what extent the use of sophisticated hydraulic models to reconstruct historic �ood
events can result in a reduction of the 95% uncertainty intervals of �ood frequency
relations.

1.5 Research aim and questions

The aim of this research is:

to study the e�ect of extending the data set of measured discharges with recon-

structed historic �ood events, using hydraulic modelling tools, on the reduction of

the 95% uncertainty interval of �ood frequency relations.

Discharge records generally have a length up to approximately 100 years. Per-
forming an FFA with this short data set results in large uncertainties. This uncer-
tainty is speci�cally large for design discharges corresponding with low probability
of occurrence. The uncertainty interval of �ood frequency relations can be re-
duced by extending the data set with historic �ood events using e�cient hydraulic
modelling tools. However, before the reconstructed historic �ood events can be
added to the data set of annual maximum discharges, they must be normalized for
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Figure 1.3

Methodology for setting up hydraulic models for historic �ood reconstruction purposes. These recon-

structed events can then be normalized and hence be included in a �ood frequency analysis.

anthropogenic and natural changes in the river system (Section 1.6.4). Then, a
continuous data set must be created since only some extreme events are known in
the historical time period. With this long continuous data set an FFA can �nally
be performed. Based on the research aim, �ve research questions are formulated:

Q1 Which computational 2D grid structure is most e�cient in terms of model
accuracy and computational time for hydraulic modelling of large river systems?

Q2 Which lower-�delity physically based surrogate model can be used to recon-
struct a historic �ood event of which the upstream discharge wave is known?

Q3 To what extend can a response surface surrogate model be used to recon-
struct a historic �ood event of which the upstream discharge wave is unknown?

Q4 What are the most important elements in normalizing reconstructed historic
�ood events?

Q5 How can maximum discharges of historic �ood events be included into a �ood
frequency analysis to reduce the uncertainty interval of the �ood frequency rela-
tion?

These research questions are answered using the Rhine river delta as a case study.
Before we explain the methodology, details of the studied area are provided in the
next Section.
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1.6 Case: the Rhine river

The proposed methodology (Section 1.7) is applied to the Rhine river (Fig. 1.4).
The data set of measured annual maximum discharges at the German-Dutch bor-
der, Lobith, is extended. With this extended data set, we will evaluate if the
uncertainty of the �ood frequency relation can be reduced. The proposed method
can be applied to any river system of which historical information about �ood
events is available.

Figure 1.4

The course of the Rhine river (left �gure) and the study area (right �gure).

1.6.1 Characteristics of the Rhine river basin

The Rhine river originates in the Alps in Switzerland. It forms part of the bound-
ary between France and Germany and �ows through Germany towards the Dutch
city of Lobith. In the Netherlands, the river bifurcates into three river branches

Chapter 1 29



which eventually �ow into the North Sea directly or through the IJssel Lake and
the Wadden Sea. The Rhine river catchment covers in total an area of 185,000
km2 (Liefveld and Postma, 2007). In this area, approximately 58 million people
are living, of which 10.5 million inhabitants live in �ood-prone areas (ICPR, 2001).

The Rhine river has a total length of about 1,320 km (Liefveld and Postma, 2007).
With this length, the Rhine is not a large river relative to other major rivers
in the world, but it comprises a large drainage area and �ows through multiple
highly developed countries. The �ow regime of the Rhine river is dominated by
snowmelt and precipitation runo� (Disse and Engel, 2001). Average annual pre-
cipitation across the basin varies from 500 mm to more than 2,000 mm. Most of
the precipitation occurs in the Alps. This part of the catchment area comprises
only 20% of the total surface area of the basin, but contributes to about 50% of
the discharge of the Rhine river (Brázdil et al, 1999). Most of the precipitation in
the Alps occurs as snowfall. During the summer months, the precipitation occurs
as rainfall and snowmelt evolves leading to an increase in the runo�. Contrarily,
further downstream the �ow regime is dominated by precipitation runo� from the
uplands in the winter (Disse and Engel, 2001). This leads to a peak-shift in average
annual discharge from the summer to the winter from the High and Upper Rhine
(upstream part of the basin) towards the Middle and Lower Rhine (downstream
part) (Disse and Engel, 2001; Lammersen, 2004). The two sources melt water and
rain ensure that the Rhine is navigable all year round (Liefveld and Postma, 2007),
making the Rhine river one of the most important industrial transport routes in
Europe (Disse and Engel, 2001; Te Linde, 2011). The river connects the port of
Rotterdam with the inland European markets.

1.6.2 Study area and safety levels

This study focuses on the area downstream of Andernach, Germany, where the
�ood-prone area widens, to the Rhine river delta in the Netherlands (Fig. 1.4).
The high population densities and industrial activities along the river makes this
area vulnerable to �ood damage (Knepper, 2014). In the studied area, �oods
mainly evolve during winter months due to high precipitation events. In the annual
maximum discharge series of the Lower Rhine of the last 120 years, 85% of the
annual maxima took place in November until March (Apel et al, 2009). The shape
and maximum value of the discharge wave depends on the location and period of
the precipitation events. If earlier rainfall events have occurred, the soil may be
saturated. This leads to more direct runo� (Silva, 2002) and a peaked discharge
wave. Also the temperature may a�ect the discharge wave since high temperatures
lead to snowmelt and hence to more runo�. Contrarily, low temperatures may lead
to freezing of the soil which can also lead to more direct runo� (Silva, 2002). Along
the Lower Rhine, water level measurements started around 1800.
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In this study, the discharge record at Lobith is extended to verify the proposed
methodologies. The discharge at Lobith mainly depends on the in�ow of the trib-
utaries Sieg, Ruhr and Lippe rivers towards the Rhine river and the discharge
of the Rhine river itself (Silva, 2002). Water level measurements have been per-
formed since 1866 whereas daily discharge measurements are available since 1901
(Toonen et al, 2015). From 1901 until 1950, the discharges were based on velocity
measurements performed with �oating sticks on the water surface. Since these
measurements were only performed at the surface, extrapolation techniques were
used to compute the total discharge (Toonen et al, 2015). From 1950 until 2000,
current meters were used to construct velocity-depth pro�les which were translated
into discharges. Since 2000, Acoustic Doppler Current Pro�les have been used to
perform the discharge measurements (Toonen et al, 2015). The annual average
discharge at Lobith equals 2,200 m3/s (Te Linde, 2011). The highest measured
discharge at Lobith so far equals 12,600 m3/s in 1926. During this event, several
dike breaches occurred which resulted in severe inundations of the hinterland.

In the Netherlands, the exceedance probability approach has been changed to-
wards a �ood risk approach. In this new approach, not only the probability of
a �ood event due to various dike failure mechanisms is considered but also its
consequences. As a result, the maximum safety levels increased signi�cantly in
areas where the consequences of a potential �ood event are large. These areas in-
clude locations with high population density, large economic value and vulnerable
infrastructure (Van der Most et al, 2014). As a result, the new standards bet-
ter re�ect the expected consequences in case of �ooding caused by dike breaches.
While a maximum safety level of 1/1,250 years was de�ned along the Dutch Rhine
river branches based on the exceedance probability approach, the new approach
has a maximum safety level of 1/100,000 years (Van Alphen, 2016) based on the
individual risk of becoming a victim of �ooding, the societal disruption and the
economic e�ciency of investments in �ood protection (Van der Most et al, 2014).
This new safety standard is expressed in the probability of �ooding and has as
advantage that the impact of various dike failure mechanisms can be integrated in
the analysis.

Using an FFA to determine design discharges corresponding with rare �ood events
up to a return period of 100,000 years results in large uncertainties because of the
relatively short data set of measured discharges. Therefore, we study if historical
information (e.g. �ood marks, sedimentary data, diaries) can be used to extend the
data set of measured discharges with historic events such that the �ood frequency
relation can be predicted with less uncertainty.
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1.6.3 Historic �ood events

In the Netherlands, �oods of the Rhine river have rarely been reported before the
12th century. The number of �ood reports gradually increased during the 13th

century and in the 14th century river �oods became a recurrent problem (Tol and
Langen, 2000). Extreme �ood events in the Rhine river basin of which numerous
historic �ood marks and sedimentary data is available are the �ood events in 1342,
1374 and 1651. Of the more recent �oods in 1809 and 1926, also daily measured
water levels are available. All these �ood events were caused by high precipitation
events.

The 1342 �ood event was an exceptional event since it occurred during the summer
months. An intense precipitation event in July in central Germany led to �oods
in the Rhine river basin. Many historical sources providing information about
the water levels and damage are available (Herget et al, 2015). However, some
of the sources contradict each other. This may be the result of the various �ood
events that occurred in 1342. Kiss (2009) distinguishes three �ood periods, namely
February, April and July. The �oods in February were caused by ice jams, the
�oods in April by snowmelt and the �oods in July by high rainfall intensities
(Herget et al, 2015). The most severe event in July lasted several days resulting
in extreme soil erosion and in enormous damage. Bridges, mills and buildings
in several catchment areas of Central Europe were damaged or even destroyed
(Herget et al, 2015). Especially the causalities in Cologne are well documented.
These �ood descriptions are su�ciently detailed to permit the estimation of water
levels and hence the maximum discharge during the event.

The 1374 �ood event represents the largest �ood of the last 1,000 years. The �ood
produced high water levels around January 6th, January 25th and around the 9th

to the 11th of February (Herget and Meurs, 2010), all caused by high rainfall in-
tensities. The �ood in February resulted in the highest water levels and represents
the largest �ood ever observed at Cologne. Because of the exceptional high water
levels during the �ood event, many historical sources provide information about
the severeness of the event. Some sources even state that it was possible to cross
the city wall of Cologne by boat, giving information about the occurred water
levels (Herget and Meurs, 2010).

The last large �ood occurred in 1926 and represents the largest measured �ood
at Lobith so far. In West Europe, a great depression with high rainfall started
in December 1925 (Dutch Ministry of Infrastructure and the Environment, 1926).
Additionally, a large amount of melted snow increased the discharge of the rivers
in the Rhine basin. Hence, the already large discharge of the Rhine river was
accompanied with increased discharges of the tributaries. This resulted in severe
inundations of the hinterland.
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1.6.4 Climate change and land use change e�ects

Reconstructions of the historic �ood events can be used to extend the observa-
tional data set. However, a basic question dealing with a long temporal �ood
series is whether the �ood-producing mechanisms in the past have a similar con-
sequence as those of the present. This problem of non-stationary comprises two
factors, namely: climate change and land use change (Murawski et al, 2018). Both
factors in�uence the frequency, timing and peak value of �ood events. As a re-
sult, the parameters of the �tted distribution function and the distribution itself
may change over time (Khaliq et al, 2006). Although we are aware of the fact
that climate variability in�uences �ood frequency relations, it is di�cult to con-
sider its e�ect in an FFA. This is because �ood frequency relations changed over
time as a result of many factors, e.g. climate change, land use change and river
training. Hence, including the e�ects of climate change in isolation is di�cult and
subject to many uncertainties and assumptions. So far, no consistent large-scale
climate change signal in observed �ood magnitudes has been identi�ed (Blöschl
et al, 2017). Therefore, the historic �ood events in this thesis are only normalized
for geometrical adaptations, assuming that the climate conditions did not change
over the considered time period. This assumption is discussed in more detail in
Section 7.2.

1.7 Methodology

To answer the questions presented in Section 1.5, hydraulic and surrogate models
are developed in which the main objective is to keep computational time low while
model accuracy remains su�ciently high. Firstly, we study which 2D grid is most
e�cient for hydraulic river modelling (Q1). However, since computational time of
a fully 2D model is quite large, even with an e�cient grid, this model is simpli�ed
in two manners. Both a lower-�delity physically based surrogate model (Q2)
as well as a response surface surrogate model (Q3) are developed. The lower-
�delity physically based surrogate model still relies on the physical processes of
the original system whereas the response surface surrogate model has no physical
interpretation.

The two types of surrogate models are used for historic �ood reconstruction pur-
poses. Furthermore, the lower-�delity model is used to normalize historic �ood
events for anthropogenic and natural changes in the river system (Q4) such that
the reconstructed historic �ood events can be added to the data set of measured
discharges. Finally, a bootstrap method is developed that creates a continuous
data set of annual maximum discharges of approximately 700 years (Q5). With
this data set, �ood frequency relations can be predicted. The methodology of the
research questions are further detailed below.
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Q1 Which computational 2D grid structure is most e�cient in terms of model
accuracy and computational time for hydraulic modelling of large river systems?

To answer research question Q1, the e�ect of di�erent grid types on model
accuracy and computational time is studied. Model accuracy is determined
by evaluating the simulated water levels and �ow velocities to study whether
the physical processes are su�ciently captured by the various grids. Struc-
tured curvilinear, unstructured triangular and hybrid grids with curvilinear
grid cells in the main channel and triangular grid cells in the �oodplains are
considered. Both a low resolution as well as a high resolution variant of these
three grid types are evaluated. The Waal river is used as a case study. This
river has large meander bends in the upstream part, while the downstream
part has a quite straight pattern. Therefore, the analysis provides results for
both a meandering and a straight river. Data of the 1995 �ood wave is used
for model calibration.

Q2 Which lower-�delity physically based surrogate model can be used to recon-
struct a historic �ood event of which the upstream discharge wave is known?

With the use of a 1D-2D coupled model, a sensitivity analysis is performed to
identify which uncertain input parameter mostly in�uences model output.
This provides information on which feature to focus during historic �ood
reconstruction to minimize output uncertainty. To answer research question
Q2, a fully 2D hydraulic model with the most e�cient grid according to
research question Q1 is simpli�ed to reduce computational time. A lower-
�delity physically based model is developed in which the main channels are
discretized by 1D pro�les. These pro�les are coupled to the embanked areas
that are discretized on a 2D grid. The 1926 �ood event of the Rhine river is
used as a case study.

Q3 To what extend can a response surface surrogate model be used to reconstruct
a historic �ood event of which the upstream discharge wave is unknown?

To answer research question Q3, a response surface surrogate model is de-
veloped. Now, the 1809 �ood event of the Rhine river is used as a case
study. Of this event, the maximum upstream discharge is unknown. An
in�nite number of combinations of maximum upstream discharges and main
channel roughness result in the same simulated water levels. Hence, model
calibration is not possible to perform. Many model runs have to be performed
to include the wide range of potential scenarios with varying maximum up-
stream discharge and main channel roughness. The use of a physically based
model is inappropriate for this speci�c case because computational time is
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still relatively large. Therefore, an Arti�cal Neural Network (ANN) is de-
veloped. This model is trained with the use of model output of a 1D-2D
coupled model as developed for research question Q2.

Q4 What are the most important elements in normalizing reconstructed historic
�ood events?

To answer research question Q4, a method is developed which enables the
historic �ood events to be normalized for antropoghenic and natural changes
in the river system. Research question Q2 and Q3 showed how historic �ood
events can be reconstructed with the use of surrogate models. However, the
reconstructed maximum discharges represent the discharges that occurred
during the historic �ood event. These discharges must be translated into
maximum discharges that would occur under present geometrical conditions
before they can be used to extend the data set of annual maximum dis-
charges. To do so, a 1D-2D coupled model as developed for research ques-
tion Q2 is used. The modelling approach is extended such that �ood wave
propagation can be simulated in which both over�ow and dike breaches are
possible to occur. The e�ects of various upstream discharge stages on over-
land �ow patterns and hence �ood risk in the Rhine river delta is studied
to identify the most important elements in normalizing the reconstructed
historic �ood events.

Q5 How can maximum discharges of historic �ood events be included into a �ood
frequency analysis to reduce the uncertainty interval of the �ood frequency rela-
tion?

To answer research question Q5, the data set of measured discharges is
extended with 12 large historic �ood events. The method developed for
research question Q4 is used to normalize these 12 historic �ood events
of the Rhine river. However, only using these events to extend the data
set does not result in a continuous series. Therefore, an e�cient bootstrap
method is developed that creates a continuous data set of annual maximum
discharges by re-sampling the measured data set over the missing years in
the historical time period. As a result, the data set of measured discharges
of approximately 100 years can be extended with 600 years. With this data
set, an FFA is performed. Results are compared with the results of an FFA
performed based on only measured annual maximum discharges.
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1.8 Outline

The thesis is structured as follows: In Chapter 2 research question Q1 is addressed
by evaluating the e�ects of various grid structures on hydraulic modelling perfor-
mance. In chapter 3 research question Q2 is answered by developing a 1D-2D
coupled model for historic �ood reconstruction. In Chapter 4 an ANN is devel-
oped which answers research question Q3. Chapter 5 addresses research question
Q4 by providing insights in the modern system behaviour of the Rhine river delta.
In Chapter 6 researchQ5 is addressed by developing an e�cient bootstrap method
to include historic �ood events in an FFA. Finally, in Chapter 7 the discussion is
provided and in Chapter 8 the conclusions and recommendations are given.
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Abstract

Grid shape (curvilinear/structured ver-
sus triangular/unstructured) and grid
size a�ect model output. In this study
structured, unstructured and hybrid
grids with a high and low resolution
were compared. As a case study, we
used the Waal River (with main channel
and �oodplains). We studied simulated
water levels using the six grids, consid-
ering equal main channel friction, which
enabled to study the isolated e�ects of
grid shape and size. The spread in simu-
lated water levels was found to be rather
large with a maximum deviation of 78
cm. Therefore, calibration was per-
formed such that simulated water levels
resembled measured water levels by ad-
justing the main channel friction. This

enabled us to draw conclusions on the
choice of optimal usage of the grids in
engineering studies. Bathymetry accu-
racy and numerical friction, both as a
result of grid resolution, and numerical
viscosity as a result of grid shape play a
vital role. The analysis shows that un-
structured grids are a�ected most by the
calibration which is re�ected in the wide
spreading of calibrated friction values.
From the six grids studied, the hybrid
grid with curvilinear grid cells in the
main channel and triangular grid cells
in the �oodplain is recommended for
hydraulic modelling since computation
time is low, while model output shows
su�cient accuracy.

Impression of 2D model output (D-Flow FM)

38 Chapter 2



C
h
a
p
te
r
2

C
h
a
p
te
r
2

2.1 Introduction

Currently, sophisticated two dimensional horizontal (2DH) models are used to get
a detailed and accurate representation of water levels, �ood patterns and potential
�ood prone areas which help to de�ne �ood protection measures. Until now, struc-
tured curvilinear grids are commonly used for hydraulic modelling to discretize the
model domain within the �nite di�erence and �nite volume framework (e.g. Lane
et al (2004); Ye and McCorquondal (1997)). In general, curvilinear grid cells give
accurate model output with added bene�t of allowing cell stretching along the
river main channel, while orthogonality (see Section 2.3 for an explanation of the
orthogonality concept) stays within reasonable bounds (Lai, 2010). However, this
grid type has several disadvantages. The use of curvilinear grid cells results in a
high resolution in sharp inner bends since grid lines are focused in these bends
(Fig. 2.1) (Kernkamp et al, 2011). Under the assumption that in a curvilinear
grid the �oodplains follow the same trajectory as the main channel course, it is not
possible to locally re�ne or coarsen the grid since the resolution of the �oodplain
depends on the resolution of the curvilinear grid cells in the main channel. An
unnecessary high resolution increases computation time of the model. In addition,
the curvilinear cells are restrictive in representing a natural river system with dif-
ferent geometric features such as main channels, bifurcations and �oodplains due
to the rectangular shape of the grid cells (Lai, 2010).

Other commonly used grid types are unstructured grids in which the entire model
domain is discretized by triangles (e.g. Cobby et al (2003); Heniche et al (2000);
Horritt and Bates (2002); Sleigh et al (1998)). These grids have been widely used
with the �nite element or �nite volume framework (Lai, 2010). Triangular grids
are easy to generate and they overcome the problems of curvilinear grids, since
triangular cells are more �exible in shape (Lai, 2010). However, stretching the
triangular grid cells in the �ow direction, results in less accurate model output

Figure 2.1

Grid lines of a curvilinear grid show higher density in inner bends resulting in high resolution in these

areas.
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(Baker, 1996). There are two reasons for the lower accuracy of the model out-
put. Firstly, stretching triangular grid cells in the �ow direction results in low
orthogonality (see Section 2.3), which can be kept under control by projecting
the grid cells on the edge normal vector. Secondly, if the triangular grid cells are
elongated, they tend to degenerate into lines and hence the area-edge length ratio
is very small resulting in e.g. small time steps.

The advantages and disadvantages of the fully structured and fully unstructured
grids leads to the question whether a combination of the two grid types might be
a good alternative. A grid in which di�erent grid shapes are used is referred to as
a hybrid grid. In this study the hybrid grids have a structured curvilinear grid in
the main channel, whereas the �oodplains are discretized by triangular grid cells.
A question is how such a hybrid grid a�ects numerical results. Caviedes-Voullième
et al (2012) studied the e�ect of grid structure on model results with the use of a
physically-based numerical model for runo� simulation in a mountain catchment.
In their study, they found that mesh selection is of great importance since the
model output was more sensitive to mesh properties (grid shape and grid size)
than to the friction spatial distribution (Caviedes-Voullième et al, 2012). Horritt
et al (2006) studied the e�ect of mesh resolution and input digital elevation model
(DEM) resolution on the predictions of a 2D �nite volume model of channel �ow.
The model was more sensitive to the size of the grid cells than to the resolution
of the input DEM (Horritt et al, 2006). Kernkamp et al (2011) explored whether
the application of a hybrid grid results in accurate model output and used the
Northwest European Continental Shelf as a case study. Curvilinear grid cells were
aligned with the main �ow direction coupled with triangles for computational ef-
�ciency. For their application, they found that such a hybrid grid is capable of
accurately representing complex boundaries in geometrically complicated areas.
The model performance in terms of computation time and accuracy of the hybrid
grid was comparable to the performance of a structured grid (Kernkamp et al,
2011). Hardy et al (1999) studied the importance of grid resolution for �oodplain
modelling using seven hybrid grids. In these grids, the main channel was dis-
cretized by curvilinear grid cells and the �oodplains by triangular grid cells. They
found that if resolution increases the inundation extent decreases, and that the
e�ects of the di�erent grid resolutions were at least as important as the surface
roughness which is commonly used as typical calibration parameter (Hardy et al,
1999). Although Hardy et al (1999) made use of a combination of structured and
unstructured grids for hydraulic modelling, they did not consider the performance
of such a grid compared to fully structured and fully unstructured grids.

Using hybrid grids may be a good alternative of both a fully structured as of a fully
unstructured grid (e.g. Bernard and Berger (1999); Hardy et al (1999); Kernkamp
et al (2011); Lai (2010)). However, an extensive comparison on performance be-
tween the di�erent grid types with the use of a case study has not been done so
far. Therefore, the objective of this paper is to uncover the e�ects of grid shapes
and sizes on model performance for hydraulic �ood modelling. Model performance
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is expressed in terms of computation time, accurate prediction of maximum water
levels and accurate simulation of depth-averaged �ow velocity pro�les in meander
bends. To assess the model performance, six di�erent grids are created covering
structured, unstructured and hybrid grids with a high and low resolution variant.
The grids are calibrated using the 1995 �ood event of the Waal river, which is
a bifurcation of the Rhine river, such that accurate maximum water levels are
predicted by the six di�erent models. The main channel of the Waal river and its
�oodplains are modelled.

The outline of the paper is as follow. In Section 2.2 the case study of the 1995 Waal
river �ood event and properties of the numerical model are described. Section 2.3
provides the di�erent grids considered in this study. Section 2.4 shows the results
focusing on the main di�erences in model performance. The paper ends with the
main conclusions.

2.2 Hydraulic modelling: Case study Waal

The 1995 �ood event of the Waal river is used as a case study (Fig. 2.2). The
Waal river is a bifurcation of the Rhine river. The upstream boundary is located
at the bifurcation point where the Rhine river bifurcates into the Pannerdensch
Canal and the Waal river in the Netherlands. The downstream boundary is at the
city of Tiel (Fig. 2.2). The Waal river is used in this study since it is a typical
lowland river, ample data is available and schematizations of the study area are
available from previous studies. The model domain consists of the main channel of
the Waal river and its �oodplains. The river has meander bends in the upstream
part of the study area and it has a relatively straight course further downstream.
For this reason, it is possible to consider the results for both a meandering stretch
(Trajectory 1, Fig. 2.2) as well as for a relatively straight stretch (Trajectory 2,
Fig 2.2).

The section of the Waal river used in this study has a trajectory length of ap-
proximately 46 kilometers, with an average main channel width of 260 meters. No
large di�erences in the main channel width are present. The �oodplain widths
vary between 20 meters close to Nijmegenhaven (Fig. 2.2) to 1,650 meters in the
upstream meander bends. The total model domain has an area of 66 km2 with a
linear length of approximately 40 kilometers. At CS1 and CS2 the discharge par-
titioning in the main channel and �oodplains are evaluated (Section 2.4). These
two locations are chosen such that a comparison can be made between a location
with wide �oodplains (CS1) and almost no �oodplains (CS2).
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Figure 2.2

Location of the Waal river in the Netherlands and the model domain, in which Trajectory 1 represents

a meandering stretch and Trajectory 2 a relatively straight stretch of the river. CS1 and CS2 are used

to determine the discharge partitioning in the main channel and �oodplains in Section 2.4.

2.2.1 Hydraulic model

Hydraulic modelling is performed with D-Flow Flexible Mesh (FM) in which the
2D Shallow Water equations are solved (Deltares, 2016b). The depth-averaged
continuity equation and the momentum equations in x- and y- direction are given
by:

∂z

∂t
+
∂[(h+ z)u]

∂x
+
∂[(h+ z)v]

∂y
= 0 (2.1)

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= −g ∂z

∂x
− gu

√
u2 + v2

Cz
2(h+ z)

(2.2)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
= −g ∂z

∂y
− gv

√
u2 + v2

Cz
2(h+ z)

(2.3)

where u and v represent the depth-averaged �ow components in x- and y-directions
respectively [m/s], z is the water surface elevation [m], h is the water depth [m],
g represents the constant gravitational acceleration [m/s2], and Cz is the Chézy
friction coe�cient [m1/2/s].
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2.2.2 Computation schemes of the numerical grids

In this study, for all grid types a �nite volume solver on a staggered scheme is
used to discretize the Shallow Water equations (Equations 2.1-2.3). On a stag-
gered scheme, the scalar variables (water level, bed level etc.) at a certain time
step are stored in the cell centers of the control volumes whereas the velocity
variables are located at the cell faces (Harlow and Welch (1965); Kleptsova et al
(2009)).In other words, the velocity variables are shifted half a grid cell in the x-
and y- direction. Consequently, half of the control volumes of the velocity vari-
ables along the boundaries fall outside the model domain and are therefore omitted
during the computation. This di�ers from a collocated scheme arrangement, in
which all variables are stored in the same positions. Jones (2002) remarks that
staggered schemes are commonly used for Shallow Water �ow problems. Accord-
ing to Stelling (1983), a staggered scheme is very e�ective for the discretization of
the Shallow Water equations, since the number of grid points is reduced with a
factor four compared to a collocated grid. In addition, a staggered scheme allows
for a simple treatment of the boundary conditions and it was found to be more
robust compared to a collocated grid. For more information about the application
of staggered schemes for Shallow Water �ow problems, and the reasons why it has
been used in many software packages (e.g. WAQUA, TRIWAQ, D-Flow FM), we
refer to Stelling (1983).

Commonly, rectangular row-columns structured staggered schemes are used to
solve the system. However, such a scheme is not applicable for the unstructured
and hybrid grids since a rectangular row-columns structure is not present. A
number of generalizations of the staggered schemes have been proposed for un-
structured grids to retain the mass conservation properties of the classic struc-
tured method (Perot, 2000). The unstructured staggered scheme as described by
Kleptsova et al (2009) is used in this study. The continuity equations are solved
implicitly while the advection term in the momentum equation is solved explic-
itly (Deltares, 2016a). The advection term makes use of a reconstruction at the
cell centre (Perot's method, see (Perot, 2000)), which is �rst-order accurate on
unstructured staggered grids. Implicit time integration is used as iterative solver,
and the resultant dynamic time step is based on the Courant criteria. In princi-
ple, the continuity equation has no time step restriction when using the implicit
solver. However, the computed dynamic time step for the advection term is used
for both the implicit as the explicit solvers to avoid a calculation scheme staggered
in time. This dynamic time step is grid dependent. The Courant number C can
be computed with:

C =
u∆t

∆x
(2.4)

where u represents the �ow velocity [m/s], t the time step [s] and x the length
interval in �ow direction [m]. A maximum Courant number of 0.95 is used. We
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use the method proposed by Kernkamp et al (2011) to solve the system.

2.2.3 Calibration procedure

The 1995 discharge wave is used as upstream boundary condition and a h(t)-
relation is used as downstream boundary condition (Fig. 2.3) based on measured
water levels available at https://waterinfo.rws.nl provided by the Dutch Ministry
of Infrastructure and Water Management. Caviedes-Voullième et al (2012) showed
that each grid has its own numerical friction caused by the resolution of the cells
and structure of the grid. In their study, they found that mesh coarsening has
a similar e�ect on the discharge wave as friction, i.e. a coarser mesh results in
a dampened discharge wave and this e�ect can even become larger than that
generated by physical friction (Caviedes-Voullième et al, 2012). Applying friction
coe�cients values selected from literature (e.g. the tables of Chow (1959)) may not
result in proper results since the numerical friction of the grids is not considered
in this way. Therefore, friction coe�cients must be calibrated with each grid to
compensate for numerical, grid generated friction (Caviedes-Voullième et al, 2012).
In this study, model results are analysed for two situations, namely: one in which
an equal main channel roughness is used for each grid (Section 2.4.1) and one in
which each grid has its own calibrated main channel friction (Section 2.4.3). For
the later situation, the grids are calibrated using hourly measured water levels at
Pannerdensche Kop (PK) and Nijmegenhaven (NH) (Fig. 2.3). To perform the
calibration, the open source software OpenDA is used (http://www.openda.org/).
With this software, it is possible to select the input parameters that have to be
adjusted, such that the desired output is established. The model domain is divided
into two trajectories (Fig. 2.2) in which the main channel friction expressed in
Nikuradse roughness coe�cient is calibrated such that each trajectory in�uences a
single measurement location (i.e. PK or NH). The Nikuradse roughness coe�cient
can be transformed into a Chézy coe�cient with the use of the White-Colebrook
formula:

Cz = 18× 10 log(
12R

Nk
) (2.5)

where Cz represents the Chézy coe�cient [m1/2/s], R the hydraulic radius [m]
which can be computed by dividing the cross-sectional area by the wetted perime-
ter, and Nk represents the Nikuradse roughness coe�cient [m]. This equation
shows that a constant Nikuradse roughness value results in di�erent Chézy co-
e�cients depending on the bathymetry (hydraulic radius) of the river and the
local water depth. With the use of the White-Colebrook equation and a constant
Nikuradse roughness value, the e�ect of channel bathymetry and water depth on
friction is included, whereas a constant Chézy coe�cient would neglect these de-
pendencies. For this reason, Nikuradse roughness values and the White-Colebrook
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Figure 2.3

Discharge wave of the Waal river (upstream boundary condition), time period used for calibration

of which hourly measured water levels are available, and water levels at Tiel (downstream boundary

condition) during the 1995 �ood event.

formula (Equation 2.5) are used to express the main channel friction in this study.

Calibration is performed on the three days with highest measured water levels
(Fig. 2.3), since the main purpose of the calibration procedure is to ensure that
the model is capable of predicting correct maximum water levels. The OpenDA
procedure provides a main channel friction of the two trajectories such that the
speci�ed water levels at PK and NH are simulated with a Root Mean Square Error
(RMSE) <0.001. Values of the calibrated friction parameters are given in Section
2.4.3.

2.3 Grid properties

In order to study the consequences of di�erent grid shapes (fully structured, fully
unstructured, hybrid) and di�erent sizes (�ne, coarse), we constructed six grids.
Two structured grids, two unstructured grids and two hybrid grids with di�erent
resolutions are considered. With this spectrum of grids, we su�ciently cover the
wide range of possible grid structures for hydraulic modelling.

Both structured and unstructured grids are commonly used in literature for hy-
draulic modelling. However, a major disadvantage of structured grids is that the
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Figure 2.4

Example of the orthogonality principle for a structured and an unstructured grid where the grid

boundaries represent the netlinks and the green dashed lines the �owlinks.

size of the grid cells of the main channel determines the resolution of the �ood-
plains, whereas with unstructured triangular grids it is not possible to stretch the
grid cells in �ow direction while grid stretching in �ow direction can reduce com-
putation time. Therefore, also two hybrid grids are constructed with curvilinear
grid cells in the main channel in combination with triangular grid cells in the
�oodplains to combine the advantages of a structured and an unstructured grid.

For computational e�ciency, we use orthogonal grids such that the pressure gra-
dients only depend on two pressure points, which reduces computation time and
results in higher model accuracy. The orthogonality principle imposes the follow-
ing criteria (Verwey et al, 2011). Firstly, the corners of two adjacent grid cells
are situated on a common circle (Fig. 2.4: red dashed circles). Secondly, the
line segment that connects the circumcenter of two adjacent cells (Flowlink, Fig.
2.4: dashed green line) intersect orthogonally with the interface between them
(Netlink) (Kernkamp et al, 2011). For triangles, the location of the circumcenter
is unique while for curvilinear grid cells there is some freedom in choosing the
location of the circumcenter. Orthogonality is de�ned as the sine of the angle
ϕ between a �owlink and a netlink (Fig. 2.4). Perfect orthogonality is reached
if this angle is equal to 90◦(resulting in an orthogonality equal to 1). We strive
to have an angle ϕ between 82◦and 98◦for all �owlink and netlink intersections,
during the construction of the six numerical grids. For more information about
the orthogonalisation principle and examples of (non-) orthogonal grids we refer
to Kernkamp et al (2011).
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Table 2.1

Grid properties in which MC stands for main channel, Fl for �oodplain, Curvi for curvilinear, Triang

for triangular, and min/avg/max for minimum, average and maximum respectively.

Name Grid shape Number of Number of min/avg/max min/avg/max)

grid cells elements/nodes cell size cell edge length

in MC

Stru_HR Curvi 12 75,848/77,755 257/874/2066 12/30/58

Stru_LR Curvi 6 18,499/19,434 1062/3484/7585 24/60/114

Unstr_HR Triang 10 50,739/26,193 265/1362/5241 19/55/145

Unstr_LR Triang 5 11,885/6,351 158/5667/18609 13/113/228

Hybr_HR Curvi in MC 16 16,114/11,829 186/4179/18609 9/89/228

Triang in Fl

Hybr_LR Curvi in MC 8 12,747/8,458 186/5284/18609 13/101/228

Triang in Fl

The following six grids are included in the analysis (Fig. 2.5 and Table 2.1):

1. Structured curvilinear high resolution (Stru_HR) grid: The model domain
is discretized by structured curvilinear cells aligned with the �ow direction.
The resolution in the main channel equals approximately 12 grid cells in
transverse �ow direction such that the bathymetry of the cross section is well
captured by the grid. The curvilinear grid cells allow cell stretching along
the river main channel such that the length of the grid cell in �ow direction
is larger than the width of the grid cell in transverse �ow direction. This cell
stretching is bene�cial for computation time. However, as a result of the high
resolution in the main channel, also the resolution of the �oodplains is high
especially in sharp inner bends where grid lines are focused. To avoid that
grid cell resolution in sharp inner bends go to zero, the resultant curvilinear
grid has less sharp bends than the river course (Fig. 2.6). For this reason,
the structured grid is capable of following the main channel course in straight
and slightly meandering river sections. However, it is not capable of following
the river course in highly meandering sections with wide �oodplains.

2. Structured curvilinear low resolution (Stru_LR) grid: The width and length
of the grid cells of the Stru_HR grid are decreased with a factor two. This
results in a resolution of six grid cells in the main channel in transverse
direction.

3. Unstructured triangular high resolution (Unstr_HR) grid: The model do-
main is discretized by triangles. The size of the triangles is adjusted such
that approximately 10 grid cells are present in the cross section of the main
channel. The resolution of the triangles in the �oodplains are identical to
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the triangles in the main channel. Commonly, unstructured grids are con-
structed by randomly �lling the model domain with triangular grid cells. In
this study, �rstly the main channel is discretized by triangles, where after
the �oodplains are discretized. The netlinks located at the boundary of the
unstructured grid in the main channel (representing the grid boundary) are
used to construct the unstructured grid in the �oodplains, such that each
triangular grid cell in the main channel is connected to a single triangular
grid cell in the �oodplains. This process is referred to as alignment with
�ow direction, resulting in a grid which is structurally well-oriented with the
main channel course throughout the model domain. Unstructured grids do
not have the problem of high resolution in sharp inner bends as is the case
for the Stru_HR and Stru_LR grids. However, the high resolution of the
triangular grid in the main channel still results in a high resolution in the
�oodplains.

4. Unstructured triangular low resolution (Unstr_LR) grid: The resolution of
the Unstr_HR grid is decreased with a factor two in both the main channel
as the �oodplains. The same method as for the Unstr_HR grid is used to
ensure alignment with �ow direction. A disadvantage of this grid is that the
relatively low resolution in the �oodplains results in a low resolution in the
main channel of approximately �ve cells in transverse �ow direction.

5. Hybrid high resolution (Hybr_HR) grid: This grid is a mixture of the
Stru_HR and Unstru_LR grids. The grid has 16 curvilinear grid cells in the
transverse direction of the main channel aligned with the �ow direction. The
�oodplains are discretized by triangles in which the size of the triangles is
adjusted to the length of the curvilinear grid cells such that each triangular
grid cell at the main channel-�oodplain boundary is connected with a single
curvilinear grid cell. The netlinks located at the boundary of the curvilinear
grid are used to construct the triangular grid of the �oodplains. This grid
combines the advantages of high resolution in transverse �ow direction in the
main channel of the Stru_HR grid and the low resolution in the �oodplains
of the Unstr_LR grid.

6. Hybrid low resolution (Hybr_LR) grid: This grid is almost identical to the
Hybr_HR grid. Only the width of the curvilinear grid cells is increased
with a factor two, resulting in eight grid cells in the transverse direction of
the main channel. The triangular grid in the �oodplains is identical to the
triangular grid of the Hybr_HR and Unstr_LR grids.
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Figure 2.5

The six grids considered in this study.
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2.4 Results

In this section, the model results of the six grids presented in Section 2.3 are
analysed. Firstly, model results with an equal main channel friction for the six
grids are given (Section 2.4.1) to show the di�erences in simulated water levels
solely caused by the use of di�erent grid types. Then, the model performance after
calibration and the e�ects of grid size and grid shape on calibrated main channel
friction values are presented (Section 2.4.2 and Section 2.4.3, respectively). In
Section 2.4.4 the depth-averaged velocities in a sharp meander bend are presented.

2.4.1 Equal main channel friction

The Stru_HR grid, having the highest resolution, was calibrated following the
procedure described in Section 2.2.3, resulting in simulated water levels close to
measurements (maximum deviation of 1 cm). The calibrated main channel friction
values in trajectories 1 and 2 (Fig. 2.2) are used to simulate the 1995 �ood event
with the remaining �ve grids. In this way, six simulations are performed in which
the settings are kept constant. Only the grid is di�erent.

Figure 2.6

Part of the Stru_LR grid in a meander bend. In this part of the river, the curvilinear grid cells of the

structured grid do not follow the course of the main river (red line), since this will result in grid cell

sizes close to zero in meander bends with large �oodplains.
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Figure 2.7

Representation of the bathymetry of the river (main channel and �oodplains) and corresponding

representations of a high resolution and a low resolution grid.

The six model runs resulted in a discharge exceeding the bank full-discharge of
the main channel throughout the model domain. Hence, the �oodplains discharged
water during the entire simulations. In the upstream part of the model domain,
where �oodplains are wide, the discharge in the main channel and in the �ood-
plains is more or less equal, while in the downstream part, where �oodplains are
much smaller, approximately 75% of the total discharge �ows in the main channel.
Although the general �ood patterns are more or less identical predicted by the six
grids, the simulated maximum water levels di�er signi�cantly (Table 2.2 and 2.3).
In general, there are three factors related to the grid properties that in�uence the
simulated water levels:

• Bathymetry accuracy caused by grid resolution: The resolutions of the grids
determine how well the bathymetry of the river cross section is captured
by the model based on an input DEM. A high resolution results in a good
representation of the bathymetry, while a low resolution results in a strongly
schematized bathymetry. A strongly schematized river cross section may
result in an underestimation or an overestimation of the cross-sectional area
of the river and hence its discharge capacity. This depends on the bathymetry
of the river cross section and the location of the grid edges (Fig. 2.7). As
a result of these overestimations and underestimations of the cross-sectional
area, water levels are underestimated or overestimated respectively.

• Numerical friction caused by grid resolution: Caviedes-Voullième et al (2012)
and Schubert et al (2008) found that, as a grid is coarsened, numerical
friction increases. Grid coarsening has the same e�ect on model results
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as increasing the bed friction. A coarser grid results in dampening of the
discharge wave and in a delay of the peak �ow. Furthermore, simulated
water levels increase. These consequences as a result of grid coarsening is
referred to as numerical friction.

• Numerical viscosity created by grid shape: Caviedes-Voullième et al (2012)
discuss that grids that follow the direction of the �ow (i.e. that have grid
edges perpendicular and parallel to the �ow direction) have lower numerical
viscosity compared to grids that do not follow the river course. Also nu-
merical viscosity has the same e�ect on model results as increasing the bed
friction. Numerical viscosity thus also results in attenuation of the discharge
wave and in an increase in the simulated water levels.

Figure 2.8

Flow directions of structured, unstructured and hybrid grids in a meander bend and straight river.

Comparing the water levels generated by the six grids (Table 2.2 and 2.3), we
�nd that the low resolution variants of each grid type predict higher water levels
compared to the high resolution variants, throughout the model domain. As a grid
is coarsened, numerical friction increases and hence water levels increase.
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Table 2.2

Predicted maximum water levels (Max WL) at PK and discharge partitioning (Q) at CS1 (Fig. 2.2)

with constant main channel friction among the six grids.

Grid Max WL [m +NAP] Q main channel [m3/s] Q �oodplains [m3/s]

Stru_HR 15.84 3,851 3,733

Stru_LR 16.13 4,092 3,492

Unstr_HR 15.35 3,593 3,989

Unstr_LR 15.48 3,471 4,111

Hybr_HR 15.50 3,722 3,860

Hybr_LR 15.71 3,700 3,882

Moreover, we �nd that the structured grids predict higher water levels at PK and
the unstructured grids at NH. This is a result of the numerical viscosity created
by grid shape. The upstream part of the model domain has large meander bends.
As explained in Section 2.3 and Fig. 2.6, the curvilinear structured grids are
not capable of following these meanders and hence the �ow direction di�ers from
the course of the grids (Fig. 2.8). This results in an increase in the numerical
viscosity and consequently in an increase in the water levels compared to a grid
which is capable of following the river course. The unstructured grids and the
hybrids grids are better oriented with the �ow direction in the upstream part of
the model domain (Fig. 2.8), resulting in lower numerical viscosity compared to
the structured grids and thus to lower simulated water levels at PK. Contrarily,
in the downstream part of the model domain, the river has a relatively straight
course without great meander bends. For this reason, the curvilinear grid cells
of the structured and hybrid grids are capable of following the course of the river
(Fig. 2.8), resulting in low numerical viscosity. Although the unstructured grids
are structurally well-oriented with the �ow direction, triangular grid cells do not
have grid edges perpendicular and parallel to the �ow direction like the curvilinear
grid cells of the structured and hybrid grids (Fig. 2.8). Therefore, the unstructured
grids have higher numerical viscosity in the downstream part of the model domain,
resulting in higher water levels at NH compared to the other grid types.

Comparing the simulated maximum water levels and discharge partitioning in the
main channel and in the �oodplains of the six grids (Table 2.2 and 2.3), we �nd
that the grid that predicts highest water levels as a result of numerical viscosity
(structured grids in upstream part and unstructured grids in downstream part
of the Waal river), also predicts the highest discharge in the main channel. We
would expect a similar trend for numerical friction: an increase in numerical fric-
tion results in an increase in the simulated water levels and to an increase in
the discharge of the main channel. This trend between high and low resolution
grids is not present (i.e. the low resolution grid with high numerical friction does
not necessarily result in an increase in the discharge in the main channel). This

Chapter 2 53



Table 2.3

Predicted maximum water levels (Max WL) at NH and discharge partitioning (Q) at CS2 (Fig. 2.2)

with constant main channel friction among the six grids.

Grid Max WL [m +NAP] Q main channel [m3/s] Q �oodplains [m3/s]

Stru_HR 13.53 5,564 2,018

Stru_LR 13.65 5,427 2,156

Unstr_HR 13.67 5,501 2,079

Unstr_LR 13.87 5,853 1,727

Hybr_HR 13.62 5,515 2,065

Hybr_LR 13.65 5,476 2,104

trend is not present since also bathymetry accuracy in�uences the discharge ca-
pacity of the main channel. An underestimation of the cross-sectional area of the
main channel caused by a low resolution grid may result in an underestimation of
the main channels discharge capacity. Also the opposite may hold, in which an
overestimation of the cross-sectional area may result in an overestimation of the
discharge capacity.

In general, we �nd that the use of di�erent grid shapes and grid sizes has a larger
e�ect in river sections where �oodplains are wide compared to sections where
�oodplains are much smaller. Comparing the di�erences in predicted water levels
by the six grids in the upstream part (PK) and downstream part (NH), shows
that the range of maximum water levels is much larger at PK than at NH. The
maximum water levels at PK have a range of 0.65 m, while the range at NH is
just 0.34 m. This larger range in the upstream part of the Waal river is also found
for the discharge partitioning. At CS2, where �oodplains are small, the maximum
deviation in discharge in the main channel equals 426 m3/s, while the deviation
in the discharge in the main channel at CS1 equals approximately 620 m3/s.

2.4.2 Model performance after calibration

For this case, the six grids were calibrated on two separate trajectories, following
the procedure described in Section 2.2.3. The model results after calibration are
compared based on model accuracy and computation time. No signi�cant di�er-
ence in accuracy among the di�erent models was found, since the RMSE criteria
(RMSE < 0.001, see Section 2.2.3) was met for all models at both measurement
locations. We found that the six calibrated models are capable of simulating max-
imum water levels at both PK and NH, which were used during the calibration
procedure, with a maximum deviation of one centimeter compared to measure-
ments. Since the water depth at PK and NH during the 1995 �ood event was
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Table 2.4

Computation time (T), average time step (∆t) and calibrated Nikuradse main channel roughness

height (Nk). Traject. 1 indicates the upstream part of the model domain and Traject. 2 the

downstream part. The Stru_HR grid is used as reference (ref).

Grid T T/Tref ∆t [s] Nk [m] N/Nref Nk [m] N/Nref

[h:min:sec] Traject. 1 Traject. 1 Traject. 2 Traject. 2

Stru_HR 1:51:44 5.5 1.66 0.85

Stru_LR 0:09:47 0.09 14.6 0.63 0.38 0.65 0.76

Unstr_HR 1:29:22 0.80 3.7 5.44 3.28 0.53 0.62

Unstr_LR 0:29:22 0.26 1.9 4.92 2.96 0.29 0.34

Hybr_HR 0:14:03 0.13 6.9 3.67 2.21 0.70 0.82

Hybr_LR 0:13:02 0.12 5.7 2.85 1.72 0.60 0.71

larger than 10 m at both measurement stations, a deviation of 1 cm is assumed to
be acceptable.

Although the models predicted almost the same maximum water levels, the com-
putation times of the six models di�er in the order of hours to minutes (Table 2.4).
Especially the computation time of the Stru_HR grid is much higher compared
to the other grids because of the large number of grid cells (Table 2.1). Surpris-
ingly, the computation time of the Hybr_LR and Hybr_HR grids are lower than
that of the Unstr_LR grid, although the hybrid grids have more grid cells. This
can be explained by the curvilinear grid cells in the main channel of the hybrid
grids which are aligned with the �ow direction. Since the curvilinear grid cells are
aligned with the �ow direction, the cell edge parallel to the �ow is larger than the
cell edge perpendicular to the �ow. This alignment in �ow direction of the curvi-
linear grid cells in the main channel of the hybrid grids results in a larger ∆x in
�ow direction compared to the triangular grid cells of the unstructured grid. This
larger ∆x results in a larger time step ∆t (Equation 2.4). We can thus conclude
that as a result of the curvilinear grid cells in the main channel, the computation
of the hybrid grids is more stable (larger time steps for the same Courant numbers)
compared to the unstructured grids, resulting in an increase in the average time
step. We can therefore state that the di�erences in average time step as a result
of the maximum Courant number (0.95, Section 2.2.2), determines the di�erences
in computation time of the six models.

2.4.3 E�ects of grid size and structure on calibration

Section 2.4.1 showed that di�erent water levels are simulated by the six di�erent
grid types if the same main channel friction values are used. These di�erences in
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water levels are caused by the three factors (1) bathymetry accuracy, (2) numerical
friction and (3) numerical viscosity. During the calibration procedure, the main
channel friction values are calibrated such that the total friction of the model (rep-
resenting the physical friction and the numerical friction generated by grid size and
grid shape) is accurately captured, resulting in accurately simulated water levels
(Section 2.4.2). Since the structured grids have high numerical viscosity in mean-
dering parts of the river, the calibrated main channel friction is low in the upstream
part of the river. Contrarily, in the downstream part of the model domain, where
the river is quite straight, the unstructured grids have higher numerical viscosity
compared to the structured and hybrid grids. Therefore, the unstructured grids
have low calibrated main channel friction values in straight parts of a river course.
Moreover, we �nd that for each grid type lower main channel friction values are
calibrated for the low resolution variants compared to the high resolution grids
throughout the model domain. A decrease in resolution results in an increase
in the numerical friction and hence in a decrease of the computed main channel
friction.

Although the �ood propagation of the six models shows a similar pattern (i.e. tim-
ing of maximum discharge, Fig. 2.9), the predicted discharge in the main channel
and �oodplains di�er signi�cantly at CS1 (Table 2.5 and Fig. 2.9). We �nd that
the di�erences in discharge partitioning is larger if calibrated main channel fric-
tion values are used compared to the situation in which an equal main channel
friction was used (Section 2.4.1). Section 2.4.1 showed that the Unstr_LR grid
simulated maximum water levels at PK which were approximately 30 cm higher
than measurements. Therefore, a low main channel friction was computed during
the calibration, which increases the discharge capacity of the main channel. The
opposite accounts for the unstructured and hybrid grids which simulated water
levels lower than measurements. Therefore, the main channel friction was in-
creased during the calibration which decreases the capacity of the main channel.
Consequently, the discharge in the �oodplains increases.

We can thus state that the model calibration in�uences the discharge capacity of
the main channel and hence the discharge partitioning between the main channel
and �oodplains during �ood events. This speci�cally applies for river sections with
wide �oodplains. In the downstream part of the Waal river, where �oodplains are
small, the calibration procedure did not result in large changes in the main channel
friction of the six grids since no large di�erences in predicted water levels by the
six grids was observed if an equal main channel friction was used (Table 2.3).
Hence, there is also no large change in the discharge partitioning between the
main channel and the �oodplains.
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Table 2.5

Predicted discharge partitioning (Q) at CS1 and CS2 (Fig. 2.2) with calibrated main channel friction

for each grid.

Grid Q main channel Q �oodplains Q main channel Q �oodplains

[m3/s] CS1 [m3/s] CS1 [m3/s] CS2 [m3/s] CS2

Stru_HR 3,851 3,733 5,564 2,018

Stru_LR 4,475 3,108 5,455 2,127

Unstr_HR 3,050 4,533 5,544 2,037

Unstr_LR 3,014 4,569 5,890 1,691

Hybr_HR 3,263 4,319 5,554 2,026

Hybr_LR 3,456 4,127 5,519 2,061

From the analysis, we �nd that unstructured grids tend to be most sensitive to
the three factors in�uencing predicted water level and consequently calibrated
main channel friction, since the range of calibrated main channel friction along
the two trajectories of the Waal river is relatively wide (Nikuradse roughness
height of between 0.29-5.44 m (Table 2.4)) compared to the ranges of the other
grid types. The structured curvilinear grids tend to be less sensitive to the factors
(Nikuradse roughness height of between 0.63-1.66 m (Table 2.4)). The hybrid grids
combine the e�ects of the structured and unstructured grids. This explains why

Figure 2.9

Discharges in the main channel and �oodplains at location CS1 (Fig. 2.2).
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the calibrated friction values of the hybrid grid falls within the calibrated range
of the two other grid types (Nikuradse roughness height of between 0.60-4.92 m
(Table 2.4)).

In Section 2.4.2, we found that all grids were capable of predicting maximum
water levels of the 1995 �ood event with a maximum deviation of 1 cm compared
to measurements. However, the question arises whether the unstructured grids,
with large calibrated main channel friction in the meandering part of the river,
are also capable to predict water levels at other discharge stages accurately. It
is likely that the unstructured grids do not accurately predict water levels during
low �ow in meandering rivers as a result of the high calibrated friction in the main
channel. During low �ow, water only �ows in the main channel. Consequently, the
calibrated main channel friction has a larger in�uence on the simulated water levels
compared to high �ow situations, in which also the �oodplains discharge water.
Since water was �owing in the �oodplains during the entire simulations presented
in this study, the high calibrated main channel friction in the meandering part
of the river of the unstructured grids will most likely result in an overestimation
of the simulated water levels during low �ow. Therefore, calibration at di�erent
discharge stages is recommended, resulting in a main channel friction-discharge
relation which can be used to perform hydraulic computations accurately.

2.4.4 Velocity magnitudes

Although the six grids were capable of predicting maximum water levels with high
accuracy after calibration, it is unknown to what extent the physical processes
are well captured by the calibrated models. Simulated water levels are commonly
used to validate the model performance. However, the model should also correctly
simulate �ow velocities based on physical processes that are generated by the ge-
ometry. This is important if the hydraulic model is coupled to e.g. prediction
of morphodynamic changes of the river or vegetation development in the �ood-
plains. To study this, depth-averaged �ow velocities (at maximum water levels)
in the meander bend near measurement station NH and near CS2 (Fig. 2.2) are
qualitatively compared with experimental data provided in literature. Table 2.6
summarizes the results.

From literature it is known that high �ow velocities occur near the outer bend,
while �ow velocities are lower in the inner bend (Bridge (2003); Ikeda et al (1981)).
Sukhodolov (2012) measured depth-averaged �ow velocities in a meander bend and
found that the �ow pattern at the entrance of the bend is more or less symmet-
rical while close to the bend apex, the �ow gradually becomes asymmetric with
maximum velocities close to the outer bank (Sukhodolov, 2012). The measure-
ments show that at the bend apex the �ow remains attached to the outer bank
and downstream from the apex a narrow region of �ow stagnation develops along
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Table 2.6

Main properties of the six grids, in which Vmax represents the maximum depth-averaged velocity.

Grid Vmax [m/s] Physical processes captured?

Stru_HR 2.34 Yes

Stru_LR 2.34 No

Unstr_HR 2.68 Yes

Unstr_LR 2.48 No

Hybr_HR 3.05 No

Hybr_LR 2.63 Yes

the outer bank (Sukhodolov, 2012).

Fig. 2.10 shows that the general pattern of high depth-averaged �ow velocities (at
maximum water levels) in the main channel and relatively low �ow velocities in
the �oodplains is predicted by the di�erent grid types. However, in more detail,
several di�erences can be observed. Firstly, the high resolution grids result in
higher maximum �ow velocities compared to the low resolution grids, except for
the structured grids where maximum �ow velocities remain similar (Table 2.6).
The low resolution grids have a lower calibrated main channel friction compared
to the high resolution grids. Ignoring numerical friction and numerical viscosity
generated by the grids itself, we would expect higher maximum �ow velocities
to occur for the low resolution grids, because of its low calibrated main channel
friction values. Since this is not the case, we conclude that the lower maximum
�ow velocities of the low resolution grids are entirely a result of the numerical
friction caused by grid resolution.

Sukhodolov (2012) shows in his measurements a gradual decrease in �ow velocity
from outer towards inner bend. Most grids tend to predict maximum �ow veloci-
ties at the outer bend. Only the Stru_LR and Unstr_LR grids provide di�erent
results. Maximum �ow velocities of the Stru_LR grid occurs at the middle part
and inner bend of the meander which contradicts with the physical processes and
with measurements given in Sukhodolov (2012). The Unstr_LR grid results in an
even more unrealistic pattern of �ow velocities caused by the low resolution in the
main channel transverse direction (only 5 grid cells). This low resolution results
in an extremely discretized bathymetry and hence the model is not capable of cor-
rectly predicting �ow velocities. The Unstr_LR grid predicts high depth-averaged
�ow velocities (1.83-2.24 m/s) over the entire cross section of the main channel at
location CS2 (bend apex). This results in a higher width and depth-averaged �ow
velocity compared to the other grid types. As a result, the discharge in the main
channel at CS2 of the Unstr_LR is greater than those of the other grids (Table
2.5). Also the opposite occurs at several locations, where velocities in the main
channel are underestimated and velocities in the �oodplains are overestimated by
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the Unstr_LR grid (Fig. 2.11). Consequently, the Unstr_LR grid is not capable
of correctly modelling the discharge partitioning between the main channel and
the �oodplains.

Moreover, we �nd that the high resolution in the transverse direction of the main
channel of the Hybr_HR grid (16 grid cells, Table 2.1) results in �ow separation
in the meander bend (Fig. 2.10). A large part of the discharge wave �ows towards
the outer bend, while a part remains attached at the inner bend. This results in
high velocities at the outer bend (3.05 m/s) and the inner bend (2.50 m/s), while

Figure 2.10

Depth-averaged �ow velocities at the centers of the �ow elements at the time of maximum water

level plotted on a log-scale.
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Figure 2.11

Depth-averaged �ow velocities at the centers of the �ow elements in a part of the river where the

Unstr_LR grid highly underestimates the �ow velocities in the main channel and overestimates the

�ow velocities in the �oodplains compared to the Stru_HR grid which predicts the general �ow

velocity pattern accurately.

in the middle part of the main channel �ow velocities are much lower (0.68 m/s).
The unrealistic �ow pattern predicted by the Hybr_HR grid is most probably
a result of the high width-length ratio of the curvilinear grid cells in the main
channel. Generally, a maximum ratio of 1:5 is applied as a rule of thumb. The
Hybr_HR grid has at some locations a much higher ratio up to 1:9. The high
resolution in transverse direction of the main channel ensures that changes in
�ow characteristics in this transverse direction can be accurately captured by the
model. However, since some grid cells have a length which is nine times greater
than its width, the grid is most likely not capable of correctly modelling rapid �ow
changes in the direction of the �ow, speci�cally in the case of sharp meandering
bends.

From this analysis, we presume that two aspects are of high importance to correctly
predict �ow velocities in the main channel, and as a result the discharge partition-
ing between the main channel and the �oodplains. These two aspects are: (1)
the resolution in the main channel transverse direction, and (2) the width-length
ratio of the curvilinear grid cells in the main channel. The cells of the Stru_LR
grid and speci�cally for the Unstr_LR grid have sizes larger than the spatial scale
of the physical processes, whereas the width-length ratio of the Hybr_HR grid is
too large. Therefore, these three grids are not capable of correctly representing
the depth-averaged �ow velocity pro�les in a meander bend. More research is
recommended to verify these �ndings.
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2.5 Conclusions

In this paper, we studied the e�ect of grid shape and grid size on computation
time and on model accuracy and we compared structured, unstructured and hy-
brid grids with each high and low resolutions. We found that all grids are capable
of predicting accurate water levels with calibrated main channel friction values.
However, a large range of calibrated main channel friction and computation time
between the di�erent grid types was found. We conclude that three factors in�u-
ence simulated water levels and are thus important during the determination of the
calibrated main channel friction, namely (1) bathymetry accuracy, and (2) numer-
ical friction which are both caused by grid resolution, and (3) numerical viscosity
which is caused by the grid shape. Low resolution grids are not able to correctly
represent the cross-sectional area of the river as a result of low bathymetry accu-
racy. Consequently, the discharge capacity of the river is not correctly predicted.
Furthermore, low resolution grids result in high numerical friction and hence in
high simulated water levels. Moreover, it was found that grids that are well-aligned
with the �ow direction have low numerical viscosity. Numerical viscosity is pre-
dominant in meandering rivers, where the curvilinear grid cells of the structured
grids were not capable of following the course of the main channel and hence the
�ow direction. In addition, it was found that the unstructured grids are most
a�ected by the three factors since the range of calibrated main channel friction
was larger for these grids than those of the hybrid and structured grids.

Furthermore, we can conclude that the pattern of depth-averaged �ow velocities
in a meander bend depends on the shape and size of the grid cells. If resolution
in transverse direction of the main channel is too low, the physical processes are
not accurately captured by the model. In addition, a too high width-length ratio
of the curvilinear grid cells in the main channel results in unrealistic �ow patterns
in sharp bends.

Based on the model performance criteria (computation time, accurate prediction
of maximum water levels and accurate simulation of �ow velocities in meander
bends), we recommend to use a hybrid grid with curvilinear grid cells in the main
channel and triangles in the �oodplains for hydraulic 2DH modelling, since it com-
bines the advantages of both a structured and unstructured grid. With a hybrid
grid, it is possible to have a high resolution grid in the main channel, resulting in
good representation of the bathymetry. The resolution in the �oodplains can be
much lower as a result of the triangular grid cells, which is bene�cial for computa-
tion time. However, we found that a high width-length ratio of the curvilinear grid
cells in the main channel results in unrealistic �ow velocity patterns. We therefore
conclude that from the six grids studied, the Hybr_LR grid is most bene�cial in
terms of overall model performance.
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Abstract

Two dimensional hydraulic models are
useful to reconstruct maximum dis-
charges and uncertainties of historic
�ood events. Since many model runs
are needed to include the e�ects of un-
certain input parameters, a sophisti-
cated 2D model is not applicable due
to computational time. Therefore, this
papers studies whether a lower-�delity
model can be used instead. The pre-
sented methodological framework shows
that a 1D-2D coupled model is capa-
ble of simulating maximum discharges

with high accuracy in only a fraction of
the calculation time needed for the high-
�delity model. Therefore, the lower-
�delity model is used to perform the sen-
sitivity analysis. Multiple Linear Re-
gression analysis and the computation
of the Sobol' indices are used to appor-
tion the model output variance to the
most in�uential input parameters. We
used the 1926 �ood of the Rhine river as
a case study and found that the rough-
ness of grassland areas was by far the
most in�uential parameter.

The 1926 �ood event along the Waal river. Photo: https://beeldbank.rws.nl

66 Chapter 3



C
h
a
p
te
r
3

C
h
a
p
te
r
3

C
h
a
p
te
r
3

3.1 Introduction

Currently, the Dutch water policy is changing from a probability exceedance ap-
proach towards a risk based approach. In addition to the probabilities of �oods due
to multiple failure mechanisms, this new approach also considers the consequences
of a �ood. The risk based approach results in a signi�cant increase in the safety
levels in areas where the consequences are large (Dutch Ministry of Infrastruc-
ture and the Environment and Ministry of Economic A�airs, 2014). A maximum
return period of 1,250 years was de�ned for the river areas in the probability ex-
ceedance approach, while the risk based approach has maximum return periods
of 100,000 years. The prediction of design discharges corresponding to such rare
events is highly uncertain. These predictions are most often based on relatively
short data sets of measured weather conditions or discharges. Therefore, the data
set does not include the natural phenomena characterised by a very low frequency
(Barriendos et al, 2003).

The con�dence interval of large design discharges can be reduced by extending
the data set of measured discharges with historical and paleo data of extreme
�ood events (Neppel et al, 2010; She�er et al, 2003). Many studies have recon-
structed historic �oods to expand the data set of measured discharges (e.g Herget
et al (2015); Herget and Meurs (2010); Llasat et al (2005); Neppel et al (2010);
O'Connell et al (2002); She�er et al (2003); Toonen et al (2015); Zhou et al (2002)).
Herget et al (2015) and Herget and Meurs (2010) reconstructed historic discharges
in the city of Cologne, Germany, based on historical documents. They predicted
mean �ow velocities at the time of the historic �ood events with the use of a re-
constructed river channel and �oodplain bathymetry. The empirical Manning's
equation was used to estimate the historic discharges of a speci�c cross section
near the city of Cologne. Neppel et al (2010) used hydraulic modelling of a reach
of about two kilometres length to account for geomorphological changes. With
this model, present and historic rating curves were constructed and applied to
determine �ood discharge series (Neppel et al, 2010). O'Connell et al (2002) used
Bayesian statistics to create paleohydrologic bound data for �ood frequency anal-
ysis. Paleohydrologic bound data represent stages and discharges that have not
been exceeded since the geomorphic surface stabilized (O'Connell et al, 2002).
These bounds are not actual �oods, but are limits on �ood stage over a measured
time interval. O'Connell et al (2002) found that paleohydrologic bounds reduce the
uncertainties of the �ood distribution curve by placing large observed discharges in
their proper long-term contexts. Toonen et al (2015) reconstructed Lower Rhine
historical �ood magnitudes of the last 450 years with the use of grain-size measure-
ments of �ood deposits at two separate research locations. They made use of linear
regression plots between various grain-size descriptors and measured discharges to
determine the discharges of the historic events.
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Above mentioned studies tried to gain insight in the maximum discharge of a
historic �ood. However, none of these studies used hydraulic models to describe
maximum discharges and its uncertainties along a long stretch of a river including
possible bifurcations during the historic events. However, the use of hydraulic
models may decrease the con�dence intervals of the predicted maximum discharges
of the reconstructed �ood events. Furthermore, hydraulic models provide insight in
the �ow patterns and inundation extents of the historic events. For these reasons,
hydraulic models will be used for historic �ood reconstructions in this study.

Hydraulic models require a reconstruction of the historical geometry as input data.
In addition, they require proper boundary conditions to determine the �ood wave
propagation along the model domain. However, the data available to reconstruct
historic �ood events is limited. Measured discharges or water levels are generally
not available. Also, the geometry of the river, its �oodplains and the hinterland
may be uncertain. This uncertainty is re�ected in the uncertainty of the model
input parameters, a�ecting the maximum discharges during a �ood event. For
this reason, a sensitivity analysis on the maximum discharge will be necessary to
�nd the input parameter that mostly in�uences the model output. This analysis
will also gain insight in the con�dence interval of the reconstructed maximum
discharge. This insight provides us with useful information for other historical
geometry reconstructions, since parameter prioritization can be used during the
reconstruction.

Commonly, sophisticated two dimensional (2D) hydraulic models (in this context
also called a high-�delity model, see Section 3.2.1) are used for hydraulic modelling.
This is because they are capable of describing maximum discharges, �ood extent
and inundation patterns with high accuracy. However, they have the disadvantage
that a single run of a discharge wave usually takes at least several hours. Since
sensitivity analyses require many model runs, 2D models are not suitable for this
purpose. To reduce computational time, a surrogate model will be set up. A
lower-�delity model is developed since this type of surrogate model does not lose
many physical processes of the original system. Therefore, the objective of this
paper is to study whether a lower-�delity hydraulic model can be used for historic
�ood reconstructions.

Lower-�delity surrogate modelling has just recently started to gain popularity in
the water resources literature (Razavi et al, 2012b). The modelling approach has
been applied to groundwater models to reduce model complexity for optimization
and calibration purposes (e.g. Maschler and Savic (1999); McPhee and Yeh (2008);
Ulanicki et al (1996)). It has also been applied in combination with the Monte
Carlo framework for uncertainty analysis (e.g. Efendiev et al (2005); Keating et al
(2010)). However, almost no studies have applied a lower-�delity surrogate model
for hydraulic modelling purposes. These models may have great bene�ts in this
�eld since computational time can be reduced signi�cantly while model accuracy
remains su�cient. For an elaborated review on surrogate models in environmental
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modelling, see Razavi et al (2012b).

Razavi et al (2012b) argue that the response patterns of a lower-�delity model
and of a sophisticated 2D model can di�er, even if both models are based on the
same input data. Therefore, the results of a 2D model will be used for validation
purposes. If the model output of the lower-�delity model is close to those predicted
by the 2D model, the lower-�delity model is capable of accurately simulating the
system behaviour. Hence, the lower-�delity model can be used to perform the
sensitivity analysis. For future work, the lower-�delity model can be treated as
a high-�delity model. The proposed method (Fig. 3.1) will answer the following
three research questions:

• Under what circumstances can a lower-�delity model be used to simulate a
historic �ood event?

• How can we apply a lower-�delity model to compute the maximum discharge
and its uncertainty of a historic �ood event?

• Which uncertain input parameter contributes most to the uncertainty of the
maximum discharge?

We apply the proposed method to the 1926 �ood of the Rhine river. Su�cient
information is available to reconstruct the 1926 geometry. In addition, water levels
were measured during the event. Due to high rainfall intensities in the Lower Rhine
catchment area and increased amount of melting water as a result of relatively high
temperatures in Switzerland, the 1926 discharge resulted in the highest discharge
at Lobith since measurements have been performed.

The outline of the paper is as follows. Firstly, the high-�delity (2D) model is
described in Section 3.2.1, after which the surrogate model is set up (Section
3.2.2). Then, the 1926 case is provided and the methodology of the sensitivity
analysis is given in Section 3.2.3 and Section 3.3, respectively. Subsequently, the
calibration results of the high-�delity model (Section 3.4.1) and the validation
results of the surrogate model (Section 3.4.2) are provided. Finally, the results of
the sensitivity analysis are elaborated on Section 3.4.3. The paper ends with a
discussion and the main conclusions in Section 3.5 and 3.6, respectively.

3.2 Methodology of surrogate modelling

In this section, the model structure of a fully 2D model is explained. This model
represents the high-�delity model in this study and is used to validate the lower-
�delity model. Thereafter, the 2D model is simpli�ed to decrease computational
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Figure 3.1

Methodology for historic �ood reconstruction.

time signi�cantly. Many methods exist to simplify a high-�delity model to create
a lower-�delity model. Why a 1D-2D coupled model is used in this study, is
explained in Section 3.2.2.

3.2.1 High-�delity model

Most often, 2D �ood models are used to get insight in the consequences of high
discharge stages. With 2D models, it is possible to get a high detailed and accu-
rate representation of potential �oods along a river. Up till now, the 2D Shallow
Water equations are usually solved with the use of a curvilinear grid (Fig. 3.2).
The curvilinear grid cells are aligned with the �ow direction since �ow variations
in the channel length direction are often smaller than those in channel cross di-
rection (Kernkamp et al, 2011). This is convenient in terms of computational
time. However, a curvilinear grid has several disadvantages. Firstly, grid lines
are focused and sometimes even intersect in sharp inner bends (Fig. 3.2, where
the dashed lines indicate the focused grid lines). The focused grid lines result in
unnecessarily small grid cells if the model domain is extended in the inner bend.
These small grid cells signi�cantly increase computational time. Additionally, the
grid will lead to a staircase representation along closed boundaries since the grid is
not capable of following the smooth boundaries of the model domain (Kernkamp
et al, 2011). Finally, the grid is restrictive in representing a natural river system
with di�erent geometric features such as main channels, junction points and wide
�oodplains due to the curvilinear shape of the grid cells (Lai, 2010).

Due to the above mentioned shortcomings of a curvilinear grid, a hybrid grid
is used to solve the 2D Shallow Water equations in this study (Fig. 3.2). The
summer bed is discretized by curvilinear grid cells. These cells are aligned with
the �ow direction. The winter bed is discretized by triangular grid cells such that
each triangular grid cell is connected to a single curvilinear grid cell. As a result,
a smooth transition exists between the curvilinear and triangular grid cells (Fig.
3.2). This hybrid grid overcomes the shortcomings of a curvilinear grid. It also
reduces the computational time while model accuracy stays su�cient (Bomers
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Figure 3.2

An example of a curvilinear grid in which the dashed lines represent the focused grid lines (left �gure)

and a hybrid grid (right �gure) in a sharp meander bend.

et al, 2019d). Fig. 3.3 shows the hybrid grid and a typical example of model
output. The open source software D-Flow Flexible Mesh (FM) is used to set up
the 2D model (Deltares, 2016b). In each grid cell, parameters such as water level
and �ow velocity can be computed for every time step. A variable time step is
used based on the maximum Courant number. As a result, the model stays stable
during the simulation:

C =
u ∗∆t

∆x
(3.1)

where u represents the velocity magnitude [m/s], ∆t the time step [s] and ∆x the
grid size in x-direction [m]. A maximum Courant number of 0.95 is used and ∆t
is adapted accordingly.

D-Flow FM allows multiple roughness de�nitions to be implemented in a single
model run, e.g. a Manning's value, a Nikuradse value or a Van Rijn predictor.
In general, the land use classi�cations, and hence the roughness classes, are based
on an input database. A database provided by the Dutch Ministry of Infrastruc-
ture and Water Management is used. This database includes multiple roughness
de�nitions that coincide with the land use classi�cation of the studied area.

Calibration of a 2D grid is required since each 2D grid has its own numerical fric-
tion caused by the resolution of the grid cells (Caviedes-Voullième et al, 2012). A
coarser grid results in a somewhat dampened discharge wave. This e�ect can even
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Figure 3.3

Example of a hybrid grid of a 2D hydraulic model (left �gure) and computed water depths as a result

of an upstream discharge wave (right �gure). The red arrows indicate the �ow direction.

become larger than those generated by physical friction (Caviedes-Voullième et al,
2012). During calibration, this numerical grid generated friction will be compen-
sated such that reliable water levels are predicted. Hydraulic model calibration
is most commonly done by changing the roughness of the summer bed until sim-
ulated water levels are close to measured water levels (e.g Bomers et al (2019d)
and Caviedes-Voullième et al (2012)). In this study, the same approach was used.
The calibration procedure was performed with the use of the open source software
OpenDA (http://www.openda.org/). The basic idea of the procedures of OpenDA
is to �nd the set of model parameters which minimizes the cost function measur-
ing the distance between the measured water level and the model prediction (The
OpenDA Association, 2016). The Quadratic Cost Function is used in combina-
tion with the Sparse DUD (Does not Use Derivate) algorithm. For N calibration
parameters (in this study N = 10), the algorithm requires (N + 1) set of param-
eter estimates. The cost function, based on the model predictions and measured
data, is used to get a new estimate. If the cost function does not produce a bet-
ter estimate, the Sparse DUD algorithm will search in opposite direction and/or
decreases the searching-step until a better estimate is found (The OpenDA Asso-
ciation, 2016). In this study, the calibration procedure is stopped if the average
RMSE of each measurement station is smaller than 0.05 m. For more information
on the calibration procedure of OpenDA, see The OpenDA Association (2016).

3.2.2 Lower-�delity physically based surrogate model

A hybrid 2D grid reduces computational time compared to a curvilinear grid.
However, the computational time of simulating a discharge wave of approximately
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three weeks is still in the order of many hours. For sensitivity analysis purposes,
many model runs (120 in this study) have to be performed. Therefore, a model
with a computational time in the order of minutes is desirable. For this reason, a
surrogate model based on the high detailed 2D model is developed. This model is
explained in more detail in the next sections.

Types of surrogate modelling

Surrogate models approximate the response pattern of a high detailed and com-
putationally intensive simulation model (Razavi et al, 2012a). Many methods to
construct a surrogate model exist in literature. These methods can be divided
into two classes, namely (1) response surface surrogates which are statistical or
empirical data-driven models emulating the original system, and (2) lower-�delity
physically based surrogates which are simpli�ed models of the high detailed model
(Razavi et al, 2012b).

Regardless of the type of response surface surrogates, usually three steps are in-
volved (Simpson et al, 2001): (1) choosing a design of experiment for generating
the training data, (2) choosing a statistical or empirical data-driven model (e.g.
Arti�cial Neural Network, Support Vector Machine, Gaussian Progress Regression
model) to represent the data, and (3) �tting the surrogate model to the training
data. Response surface surrogates are commonly used for automatic model cali-
bration (Razavi et al, 2012b). To �t the response surface surrogate, training data
is required. Therefore, the high-�delity model still needs to be run multiple times.
Because of the relatively long simulation time of this model, the methods based
on response surface surrogates are not desirable. For this reason, the high-�delity
model is simpli�ed using method (2): creating a lower-�delity physically based
surrogate model. Lower-�delity surrogate models are set up based on the original
input data. Therefore, for lower-�delity modelling, only a single run with the high-
�delity model is required for validation purposes. Moreover, lower-�delity models
are more reliable in predicting the output of the high-�delity model in unexplored
regions of the input space since they predict model output based on the original
input data (Razavi et al, 2012b). Di�erent methods exist to simplify the original
model, e.g. larger grid size, less strict numerical convergence tolerances or, ignoring
or approximation physics of the original system (Razavi et al, 2012b). Those meth-
ods were not su�cient to reduce the computational time of the high-�delity model
signi�cantly. Therefore, it was decided to approximate several physical processes
of the original system by: (1) lowering the dimension of the model, (2) increasing
the computational time step, and (3) simplifying the Shallow Water equations of
the fully 2D model. The set-up of the lower-�delity model is explained in the next
section.
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Figure 3.4

Set-up of the 1D-2D coupled model (left �gure) in which the yellow lines indicate the 1D pro�les and

the grey areas the 2D embanked areas, and a close-up of the 2D grid which clearly shows the �exible

grid shapes along the boundaries of the model domain (right �gure).

Set-up lower-�delity model

The surrogate model developed represents a 1D-2D coupled model to combine the
advantages of both a fully 2D and a fully 1D model. 1D pro�les give an accurate
representation of �ood wave propagation in case of in-channel �ows (Taye� et al,
2007). Additionally, the computational cost is relatively low compared to a fully
2D model. However, the use of 1D pro�les may be insu�cient for more complex
�ow patterns because of the simpli�ed assumptions in the computational schemes.
In the embanked areas rapid changes in �ow velocity and direction may occur. For
this reason, 1D pro�les are solely used for the �ow between the winter dikes, i.e. the
summer bed and winter bed. The 1D pro�les are coupled with 2D embanked areas
that are possible to inundate. The embanked areas refer to the areas protected
by dikes and are therefore not part of the river system. The embanked areas are
discretized with a rectangular 2D grid. Flexible grid shapes are used along the
boundaries of the model domain such that the 2D grid cells follow these boundaries.
The �exible grid cells along the boundaries can have a maximum of eight boundary
edges. Fig. 3.4 shows an example in which the 1D pro�les of the rivers and the
2D embanked areas are given by yellow lines and grey areas, respectively. A close-
up of the 2D grid and its �exible grid shapes along the grid boundaries is also
provided.

HEC-RAS (v. 5.0.3), developed by the Hydrologic Engineering Centre (HEC) of
the US Army Corps of Engineers, is used for the 1D-2D �ood modelling. HEC-
RAS is well known for its 1D �ood modelling applications. Horritt and Bates
(2002) even showed that HEC-RAS produces �ood extents more accurately than
the 2D models of LISFLOOD-FP and TELEMAC-2D in cases of a con�ned and
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relatively narrow river. In 2016, HEC-RAS 5.0 was o�cially released. With this
version, it is possible to perform 1D-2D coupled computations.

Several studies have shown the applicability of 1D-2D �ood modelling. Most soft-
ware programs (e.g. Mike-11, HEC-RAS) that allow 1D-2D coupling are based on
mass-conservation. The conservation of momentum is often neglected. Bladé et al
(2012) argue that neglecting the momentum in the coupling of a 1D pro�le and
the 2D grid cells a�ects �ow patterns in the �oodplains in most cases. The more
connected the river and the �oodplains are, e.g. in case of overland �ows, the more
important momentum becomes since an increase in �ow velocity results in an in-
crease in momentum (Bladé et al, 2012). Conservation of momentum can only be
neglected if the 1D pro�les are coupled with 2D grid cells by a weir/embankment
since the hypothesis of the Shallow Water equations are not ful�lled for this spe-
ci�c case (Bladé et al, 2012). With HEC-RAS, the weir-equation can be used to
compute the �ow over the embankment using the results of the 1D and 2D solu-
tion algorithms on a time step by time step basis. This allows for direct feedback
at each time step between the 1D pro�les and 2D grid cells (Brunner, 2014a).
Neglecting conservation of momentum is justi�ed for this modelling purpose since
the 1D pro�les are coupled with the 2D grid cells by an embankment. Hence, the
1D-2D coupling can be treated as a weir-type connection.

Di�erences between the high-�delity and lower-�delity model

A 1D-2D coupled model requires the same input data as a fully 2D model. There-
fore, we use the same input data of the high-�delity model to set up the 1D-2D
coupled model. The Digital Elevation model (DEM) of the 2D model is used to
establish the 1D pro�les and 2D grid cells of the 1D-2D coupled model. Also, the
boundary conditions consisting of measured discharges and water levels, as well
as the land use classi�cation for both models are identical. Therefore, we can
conclude that the di�erences in the representations of the input parameters of the
high-�delity and the lower-�delity model are solely caused by the level of detail
of the two models itself and the di�erent settings of D-Flow FM and HEC-RAS.
These di�erences are explained in more detail below and are summarized in Table

Firstly, the 2D Shallow Water equations of the high-�delity model are simpli�ed to
the Di�usive Wave equations. The Di�usive Wave equations are applicable if �ow
separation and turbulence eddies can be neglected. This is the case if the inertial
terms are much smaller than the gravity, friction and pressure terms. Test runs
showed that neglecting the inertial terms of the momentum equations did not result
in a change in model results. On the other hand, the use of the Di�usive Wave
equations resulted in a signi�cant reduction of the computational time. Therefore,
the Di�usive Wave equations are used to compute the �ow characteristics at each
1D pro�le and 2D grid cell. The applicability of the Di�usive Wave equations for
�ood modelling purposes has also been shown by e.g. Moya Quiroga et al (2016),
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Table 3.1

Overview of the di�erences between the high-�delity model and lower-�delity model...............

High-�delity model Lower-�delity model

Software D-Flow FM HEC-RAS

Dimension Fully 2D 1D cross sections in summer bed and winter

bed, 2D in the embanked areas

Nature Shallow Water equations Di�usive Wave equations

Time step Variable time step based on Fixed time step

maximum Courant number

Roughness Di�erent roughness de�nitions Manning's roughness coe�cient

Calibration Calibrated summer bed roughness Uncalibrated

Moussa and Bocquillon (2009) and Leandro et al (2014).

Secondly, the computational time step of the lower-�delity model is increased com-
pared to the fully 2D model to speed-up computational time. In a 2D model, the
river is usually the time step limiting factor since the depths and velocities in the
main channel are larger than in the embanked areas (Bladé et al, 2012) (see equa-
tion 3.1). The high-�delity model had an average time step of 3.9 seconds, based
on the maximum Courant number. A �xed time step of �ve minutes can be used
for the lower-�delity model. This time step is based on a convergence argument:
reducing the time step further did not result in a reasonable improvement of the
model accuracy.

The land use classi�cation of the high-�delity model is used as input for the lower-
�delity model. D-Flow FM allows multiple roughness de�nitions to be imple-
mented in a single model. However, HEC-RAS only allows a Manning's roughness
coe�cient for the various land use classes. Therefore, the roughness classes as used
in the high-�delity model were transformed towards Manning's roughness values
based on Table 5-6 of Chow (1959).

We recall that it is necessary to calibrate the summer bed roughness of the high-
�delity model, since each 2D grid has its own numerical friction. On the other
hand, it is decided to not calibrate the lower-�delity model. As a result, the
summer bed roughness can be included in the sensitivity analysis as a random
parameter. This is justi�ed since no inundations along the Lower Rhine occurred
during the 1926 �ood event. Therefore, correct prediction of the water levels be-
comes irrelevant. The lower-�delity model is set up to accurately predict maximum
discharges at Lobith during �ood events instead. During the simulation, the en-
tire discharge wave �ows in downstream direction independent of simulated water
levels, since inundations are not possible to occur. Consequently, it is expected
that simulated maximum discharges of the uncalibrated surrogate model are close
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to those predicted by the calibrated high-�delity model. However, validation is
recommended to study whether the lower-�delity model is capable of simulating
the system behaviour su�ciently.

Validation lower-�delity model

Razavi et al (2012b) argue that, even though the lower-�delity model may be based
on the same input parameters as the high-�delity model, the response pattern can
di�er somewhat. This was also shown by Thokala and Martins (2007). They
neglected the �uid viscosity in the Navier-Stokes equations to set up a lower-
�delity model. This resulted in less accurate results compared to the high-�delity
model. The discrepancies between the response patterns of the lower-�delity and
high-�delity models mostly in�uence the local and global minimum and maximum
of the system (Razavi et al, 2012b). Since this study tries to predict maximum
discharges during a historic �ood event, it is of high importance that the global
maximum of the system is correctly modelled by the lower-�delity model. If this is
not the case, the discrepancies between the lower-�delity and high-�delity model
can be addressed with a correction function (Razavi et al, 2012b). These kind
of functions correct the response of the lower-�delity model and align it with
the response pattern of the high-�delity model. It is thus of high importance to
validate the lower-�delity model to study whether a correction function is required
to tune the model results.

If the response pattern of the lower-�delity model is close to that of the high-�delity
model, the lower-�delity model can be treated as the high-�delity representation
of the underlying system. Consequently, the lower-�delity model can replace the
sophisticated 2D model (Razavi et al, 2012b). The sensitivity analysis can then be
safely performed with the lower-�delity model since the input parameters of the
lower-�delity model are based on the input parameters of the high-�delity model.

3.2.3 The 1926 case

The 1926 �ood event of the Rhine river is used to examine the methodology of
developing a lower-�delity model for historic �ood reconstruction. The study area
stretches from the areas downstream of Andernach in Germany to the three Rhine
river branches in the Netherlands (Fig. 3.5). In this paper, the German part of the
river is referred to as the Lower Rhine. The river enters the Netherlands at Lobith,
where it bifurcates into the Waal river and Pannerdensch Canal. Subsequently,
the Pannerdensch Canal bifurcates into the Nederrijn and IJssel rivers. Only the
summer bed, its �oodplains and two embanked areas that are connected by an
inlet (Ooijpolder and Rijnstrangen area, (Fig. 3.5)) are captured in the model
domain. The term inlet is used for a dike section with a relatively low crest level.
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Figure 3.5

Boundaries of the study area and location of in�ow (left �gure) and location of arti�cial measures

taken to change the 1995 geometry into the 1926 situation (right �gure).

Due to this low crest level, a part of the discharge wave will enter the lower-lying
area behind the inlet as soon as a certain water level is exceeded. As a result,
the maximum discharge further downstream decreases. The dikes represent the
boundaries of the model domain and are assumed not to over�ow.

Geographical situation

To reconstruct a historical geometry, the changes in the river system between the
current geometry and the historical period of interest must be de�ned. An existing
data set representing the 1995 geometry is made available by the Dutch Ministry of
Infrastructure and Water Management. This data set is used as starting point and
is adapted such that it represents the historical geometry. The following measures
were taken to create the 1926 situation (Fig. 3.5):

• Increase summer bed level due to erosion. Measurements of the sum-
mer bed levels were available for the entire model domain. The changes in
summer bed level between the 1995 measurements and the oldest measure-
ments available at each location were used to estimate the 1926 summer bed
level by linear extrapolation.
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• Decrease winter bed level due to sedimentation. No measured sedi-
mentation rates along the study area were available. Therefore, the follow-
ing sedimentation rates were used to predict the 1926 winter bed level: 1
mm/year along the IJssel river, Pannerdensch Canal and Lower Rhine, 3
mm/year along the Waal river and 0.5 mm/year along the Nederrijn river
(Silva et al, 2001). A linear decrease of the sedimentation rate in channel
cross direction was assumed. As a result, the sedimentation near the summer
bed equals the predicted sedimentation rates according to Silva et al (2001).
The sedimentation near the outside border of the �oodplain equals zero.

• Dike relocation. On the left side of the Lower Rhine, close to the city of
Emmerich, Germany, the �oodplains of the river were much larger in 1926
than they are nowadays. The 1926 dike locations and hence the 1926 winter
bed were based on old maps dating back to 1895 (Fig. 3.5, Dike relocation),
provided by the German Deichverband Xanten-KleveDer Oberdeichinspektor
Dusseldorf (1895).

The current summer dikes along the Pannerdensch Canal close to the Panner-
densche Kop were the 1926 winter dikes. Therefore, the present �oodplains
were not part of the 1926 river system. The area outside the 1995 summer
dikes were removed from the geometry (Fig. 3.5, Pannerdensche Kop).

• Restoration of inlets. In 1926, two retention areas were possible to inun-
date at high discharge stages as a result of inlets. The Spijke inlet caused in-
undation of the Rijnstrangen area when the water level exceeded 15m +NAP,
equal to the crest level of the inlet (Fig. 3.5, Rijnstrangen area).

In the Ooijpolder, three inlets were active. The total length of the inlets was
150 m. The Ooijpolder started to inundate at a water level of 12.5 m +NAP,
equalling the height of the three inlets. The location of the inlets was based
on historical 1926 maps (Fig. 3.5, Ooijpolder).

• Restoration of meander cut o�s. In 1955 and 1969 two meanders near
Doesburg and Rheden were cut o� (Fig. 3.5, Meander cut o�s). Due to these
meander cut o�s the total length of the IJssel river decreased with almost
nine kilometres. The location of the meander bends are based on historical
1926 maps.

Boundary conditions

The 1926 �ood event is simulated for a period of approximately three weeks,
starting on the 22nd of December 1925 till the 8th of January 1926. From the 26th

of December onwards, the weather conditions changed drastically. High rainfall
intensities occurred in almost the entire catchment area of the Rhine river (Dutch
Ministry of Infrastructure and the Environment, 1926). This resulted in a rapid
rise of the discharge wave, starting on the 27th of December.
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Figure 3.6

Discharge waves of the Rhine river at Andernach (left �gure) and the three tributaries Sieg, Ruhr

and Lippe (right �gure). Note: only daily discharge measurements are available resulting in the sharp

peaks of the di�erent discharge waves.

Fig. 3.6 shows the discharge wave at Andernach, representing the upstream bound-
ary condition (Data source: German Federal Waterways and Shipping Administra-
tion (WSV), communicated by the German Federal Institute of Hydrology (BfG)).
The downstream boundary conditions consist of h(t)-relations based on daily mea-
sured water levels available at http://waterinfo.rws.nl and provided by the Dutch
Ministry of Infrastructure and Water Management. Three streams enter the Lower
Rhine, namely the Lippe, Ruhr and Sieg rivers. These streams were included in
the model domain by source points (discharge in�ow, Fig. 3.5 and Fig. 3.6). The
presented boundary conditions and source points are used in both the high-�delity
as well as the lower-�delity model to set up the models.

3.3 Methodology of Sensitivity Analysis

In this study uncertainty and sensitivity analyses are performed. An uncertainty
analysis is executed to compute the maximum discharge at Lobith with its stan-
dard deviation as a result of the uncertain input parameters. Next, a sensitivity
analysis is performed to study which parameter mostly in�uence the uncertainty
of the model output. The main objective of the sensitivity analysis is the so called
factor prioritization. With this prioritization, it becomes clear on which parameter
to focus during historical geometry reconstruction for �ood modelling purposes in
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order to reduce the potential uncertainty in the model output.

During the analyses, we only focus on the parameters that in�uence the maximum
discharge at Lobith. A test run was performed in which all roughness parame-
ters along the Dutch river branches were increased with 20%. In this run, the
roughness values are close to the upper bound of the truncated normal distribu-
tions. The run showed that the increase in roughness resulted in only a minor
decrease of the maximum discharge at Lobith of approximately 0.2%, from 12,402
to 12,373 m3/s. This minor decrease suggests that the Dutch river branches are
su�ciently downstream such that the e�ects of di�erent summer bed roughness
on the maximum discharge are negligible. Therefore, the study only focuses on
the uncertainties of the input parameters in the most upstream part of the model
domain: the city of Andernach until the location where the Rhine river bifurcates
into the Waal river and Pannerdensch Canal. The Dutch Rhine river branches are
seen as �xed boundary conditions of the model since they do not in�uence model
response. Therefore, they can be excluded from the global sensitivity analysis.

3.3.1 Input parameters

The lower-�delity model is used to establish the uncertainty and sensitivity of the
1926 discharge at Lobith. Only the input parameters that are based on an esti-
mation, i.e. those that are uncertain, are included in the analysis. In addition,
parameters that require the development of a new surrogate model when changed
(e.g. a planometric change) are excluded from the analysis for pragmatic reasons.
The following parameters are considered during the sensitivity analysis: (1) rough-
ness parameters of the various types of land use classes and (2) the bed levels of
the summer bed and winter bed. In general, two kinds of uncertainties exist. The
�rst uncertainty is as a result of the randomness of variations in nature (inherent
uncertainty). The second uncertainty is caused by limited knowledge (epistemic
uncertainty) (Warmink et al, 2013). The uncertainty of the di�erent roughness
classes is mainly caused by inherent uncertainty since it depends amongst others
on the season (e.g. grass grows faster during summer periods resulting in a larger
roughness) as well as on maintenance (e.g. the frequency of mowing grass �elds).
The uncertainty of the summer bed and winter bed levels are caused by epistemic
uncertainty. No measured 1926 bed levels are present. Therefore, the bed levels
are based on extrapolation techniques and estimated sedimentation rates.

For all roughness parameters, we link the value with the largest probability of
occurrence as well as its minimum and maximum bounds to the tables of Chow
(1959). Truncated normal distributions are used in this study since a normal
distribution better �ts the data if some information about the input parameters is
available (tails of the distribution and the expected value). Contrarily, a uniform
distribution assumes that there is no knowledge about the value with the largest
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Table 3.2

Minimum, Maximum and Standard deviation of the di�erent input parameters. The �rst top �ve

rows represent the Manning's roughness coe�cients.........................

Input parameter Minimum value Maximum value Standard deviation

Summer bed 0.025 s/m1/3 0.033 s/m1/3 0.002 s/m1/3

Lakes 0.024 s/m1/3 0.034 s/m1/3 0.003 s/m1/3

Grasslands 0.037 s/m1/3 0.075 s/m1/3 0.009 s/m1/3

Forest 0.098 s/m1/3 0.178 s/m1/3 0.020 s/m1/3

Urban areas 0.029 s/m1/3 0.039 s/m1/3 0.003 s/m1/3

St. Winter bed level -0.070 m 0.070 m 0.035 m

St. Summer bed level (1) -0.150 m 0.150 m 0.075 m

St. Summer bed level (2) -0.520 m 0.520 m 0.260 m

St. Summer bed level (3) -0.090 m 0.090 m 0.045 m

probability of occurrence. Only a range of input values is known. Therefore, we
can conclude that for older historic events, the distributions of the uncertain input
parameters will shift towards uniform distributions since less and less information
is available.

The roughness parameters are divided into �ve land use classes: summer bed,
lakes, grasslands, forest and urban areas. A smooth channel with no vegetation
is assumed for the entire summer bed, having a minimum Manning's roughness of
0.025 s/m1/3, a normal value of 0.028 s/m1/3 which is used as the expected value,
and a maximum value of 0.033 s/m1/3 (Chow, 1959). These numbers are used to
set up the truncated normal distribution. The same method was used to de�ne
the truncated normal distributions of the other roughness classes (Table 3.2).

A comparable method is used to set up the truncated normal distributions of
the summer bed levels and winter bed levels. The 1926 summer bed levels were
computed based on extrapolation of measured bed level changes (see Section 3.2.3).
The uncertainty ranges of the summer bed levels were based on these extrapolation
values. The minimum change in bed level corresponds to no change compared to
the oldest measured bed value. Consequently, the 1926 bed level equals the oldest
measured bed level. The maximum change in bed level equals the extrapolation of
the trend between 1995 and the latest measured bed level multiplied with a factor
two. A factor of two is chosen to include a large uncertainty range. The summer
bed is divided into three classes:

1. From the most upstream location Andernach (river km 614) until Walsum
(river km 789). Here, almost no erosion has occurred between 1995 and 1926.
Additionally, the bed level has been compensated for bed level decrease due
to mining activities at several locations.
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2. From Walsum until the German-Dutch border (river km 857). Here, there is
relatively much uncertainty in the amount of erosion since the oldest mea-
sured bed level dates back to only 1960.

3. From the German-Dutch border till the �rst bifurcation point of the Rhine
river (river km 867). Here, there is little uncertainty in the 1926 bed level
since the oldest measurements date back to 1934.

The winter bed level consists of just one class since no deviations in uncertainty
along the Lower Rhine exist. The estimated sedimentation rate of 1 mm/year
is used to de�ne the ranges of the winter bed level in the Lower Rhine (Silva
et al, 2001). The minimum value equals no change in bed level compared to the
1995 situation. The maximum range equals the sedimentation rate of 1 mm/year
multiplied with a factor of two. Again a factor of two is chosen to include a large
uncertainty range since the 1 mm/year sedimentation rate is relatively speculative.
Since the summer bed and winter bed levels vary along the study area, their
truncated normal distributions and corresponding minimum and maximum values
are given as change from its 1926 reference value (Table 3.2). These values will be
referred to as Standardized (St.) bed levels from now on. A value equal to zero
correspond with the reconstructed 1926 geometry.

3.3.2 Design of Experiment

Before a sensitivity analysis can be performed, a Design of Experiment (DoE)
has to be de�ned. DoEs employ di�erent space �lling strategies to capture the
behaviour of the underlying system over limited ranges of the input parameters
(Razavi et al, 2012b). A DoE results in a sample in which the boundary values
of the input parameters are based on physical conditions. This sample can be
used in a Monte Carlo analysis. Most commonly used DoE methods in literature
appear to be full factorial design, fractional factorial design, central composite
design and latin hypercube sampling (LHS) (Razavi et al, 2012b). In general, a
full factorial design, a fractional factorial design and a central composite design
require a relatively large number of simulations to generate all combinations to
represent the corners of the input space (Razavi et al, 2012b; Saltelli et al, 2008).
Contrarily, LHS can easily scale to di�erent numbers of input parameters without
the need for extra simulation runs (Razavi et al, 2012b). Thus, a strati�ed LHS
sample has as advantage that less model runs are requried since a strati�ed sample
achieves a better coverage of the sample space of the input parameters (Saltelli
et al, 2000). For this reason, a LHS design is used in this study.

The nine input parameters are divided into eight levels. Each level has an equal
probability of occurrence of 12.5%, based on the determined truncated normal
distributions in Section 3.3.1. For each run, each level is randomly selected, con-
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Table 3.3

Minimum and Maximum discharge at Lobith (Qmin,Lobith/Qmax,Lobith) as a result of the two most

extreme model runs and the 120 runs within the Monte Carlo (MC) analysis.

Extreme case MC runs Di�erence

Qmin,Lobith [m3/s] 12,285 12,293 17

Qmax,Lobith [m3/s] 12,548 12,531 8

straining that if a level is already selected it cannot be selected again. This results
in a set of eight simulations in which all eight levels of the nine input parameters
are present.

No clear guidelines exist concerning the minimal number of runs required in a
Monte Carlo analysis. This number depends on the number and range of the
input parameters and on the shape of the response surface. Theses features are
largely unknown in advance (Pappenberger et al, 2005). In this study convergence
of the uncertainty of the discharge at Lobith, expressed as standard deviation, is
used as stopping-criteria, following the method of Pappenberger et al (2005). If
an additional run results in a change of the standard deviation smaller than 0.05
m3/s, it is assumed that the sample su�ciently represents the input space of the
di�erent input parameters. This criteria resulted in 120 model runs, corresponding
with 15 latin hypercube sets.

To check whether the input space is su�ciently captured by the sample, two
additional model runs were performed with the most extreme situations. These
scenarios represent the limits of the probability distribution functions of the input
parameters. Table 3.3 and Fig. 3.7 show the range of maximum discharges at
Lobith modelled in the 120 Monte Carlo runs and the range found with the two
most extreme cases. Note that all runs are performed with the lower-�delity
surrogate model. The minimum and maximum values of the sample are close to
the predicted values of the two most extreme runs. Therefore, we can conclude
that the input space is su�ciently captured by the sampling data set.

3.3.3 Strati�ed Monte Carlo analysis

The results of the Monte Carlo analysis are used to determine the uncertainty in
model predictions. Additionally, the results are used to apportion this uncertainty
to the contribution of the individual input parameters. Two sensitivity analysis
methods are used, namely Multiple Linear Regression analysis and Sobol' indices
explained in Sections 3.3.3 and 3.3.3 respectively.
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Figure 3.7

Input space of the LHS representing the maximum discharges at Lobith modelled during each model

run. The grey lines indicate the results of the two most extreme model runs.

Figure 3.8

Bootstrap method for resampling in which CI stands for con�dence intervals.
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Multiple Linear Regression Analysis

If the number of simulations is much larger than the number of input parameters,
a LHS can be very e�ective in revealing the in�uence of each parameter using
a regression analysis (Saltelli et al, 2008). If the model does not contain any
interactions between the input parameters (i.e. the model is additive), the linear
regression function can be given as (Scheidt et al, 2018):

y = β0 +

N∑
i=1

βixi (3.2)

where y represents the model output (in this study the maximum discharge at
Lobith) and xi the di�erent input parameters. The coe�cients β0 and βi are
determined by the least-square computation, based on the squared di�erences
between the model output produced by the regression model and the actual model
output produced by the surrogate model (Saltelli et al, 2008).

The coe�cient βi is used to determine the importance of each parameter xi with
respect to the model output. If the input parameters are independent, the abso-
lute standardized regression coe�cient β̂i can be used as a measure of sensitivity
(Scheidt et al, 2018):

β̂i = |βi
σi
σy
| (3.3)

where β̂i represents the standardized regression coe�cient, and σi and σy rep-
resent the standard deviations for the input parameter xi and the model output
respectively.

However, the applicability of a linear regression analysis depends on the degree of
linearity of the model (Saltelli et al, 2008). A measure for linearity is expressed
by (Saltelli et al, 2008):

R2 =

N∑
i=1

(β̂i)
2 (3.4)

where R2 represents the model coe�cient of determination. This value is equal to
the fraction of the variance of the original data that is explained by the regression
model. A value of R2 equal to one indicates that the model is linear (Saltelli et al,
2008) and that the multiple linear regression model is capable of expressing all
variance of the original data.
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Sobol' indices

If the model is not linear, Sobol' indices can be used to determine the sensitivity of
the input parameters. Sobol' indices are widely used as global sensitivity analysis
method in literature. We are speci�cally interested in the �rst-order indices, i.e. the
e�ect without interactions of input parameters, since the sensitivity analysis is used
for factor prioritization purposes (Saltelli et al, 2008). Li and Mahadevan (2016)
present an e�ective method to estimate the �rst-order Sobol' indices analytically.
This method can be applied to any kind of data set and is not restricted to a
speci�c sampling strategy. Furthermore, the method can be applied to models with
correlated input parameters. Li and Mahadevan (2016) found that the method is
highly e�cient and that it is especially useful in ranking and identifying important
parameters. The formula used is as follow (Li and Mahadevan, 2016):

Si = 1− Exi(V x-i(y|xi))
V y

(3.5)

where Si represents the Sobol' �rst-order index, V x-i(y|xxi) indicates the condi-
tional variance of y caused by all input parameters other than x i, Exi represents
the expected value as a result of �xing input parameter x i, and V y represents the
variance of y.

The Monte Carlo sample has a relatively small size. Therefore, the 95% con�dence
intervals of the Sobol' indices are computed based on a resampling strategy. The
MATLAB Statistics Toolbox is used to perform the computation. The method to
compute the 95% con�dence intervals is based on the work of Dubreuil et al (2014)
in which a bootstrap resampling strategy is used. Computation of con�dence in-
tervals by bootstrap resampling is widely used in global sensitivity analysis and
has been used in combination with surrogate models by Gayton et al (2003) and
Janon et al (2011). Bootstrap resampling aims at determining con�dence intervals
of a parameter of interest using only one design of experiment (Efron and Tibshi-
rani, 1993). The method consists of the creation of new designs of experiment by
drawing with replacement in the original design.

The method used is presented in Fig. 3.8. The LHS sample consisting of 120 model
runs is resampled, after which the con�dence intervals of the �rst-order Sobol'
indices are computed. If these con�dence intervals have not reached a speci�c
convergence criterion yet, more bootstrap resamples are drawn. The computation
is repeated until the convergence criterion is met. The criterion as suggested by
Dubreuil et al (2014) is used. They suggested to stop the procedure at the iteration
for which all con�dence interval sizes have reached a range which is less than x
percent of the maximum bootstrap mean of the sensitivity indices. The choice of
parameter x depends on the goal of the sensitivity analysis. If the goal is only
determining the most dominant input parameter, a relatively large value of x in
the order of 30% can be used. However, if the model has many variables of equal
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sensitivity indices, it is better to look at the convergence graph at each bootstrap
iteration and decide manually when to stop the procedure (Dubreuil et al, 2014).
The �rst convergence criteria (30%) is used which will be evaluated by checking
the convergence graphs of the Sobol' indices as suggested by Dubreuil et al (2014).

3.4 Results

3.4.1 Calibration high-�delity model

The river branches Lower Rhine, Waal river and Pannerdensch Canal were cali-
brated with the use of measured water levels. The discharge partitioning along
the Dutch river branches was based on the report of the Dutch Ministry of In-
frastructure and the Environment (1952). During the calibration procedure, this
discharge partitioning had to be met. The IJssel and Nederrijn rivers were ex-
cluded from the calibration procedure since many inundations along the IJssel
river have occurred during the 1926 �ood event. These inundations in�uence the
water levels at both river branches. Even a very low summer bed roughness near
the locations of the inundations did not result in the correct water levels. For this
study purpose, it is accepted that the water levels along the IJssel and Nederrijn
rivers were not calibrated correctly. These branches are located more than 15 km
downstream of Lobith such that backwater e�ects has vanished at Lobith. The
IJssel and Nederrijn rivers have thus no e�ect on the maximum discharge at this
location.

In the data set, only daily measured water levels are available. Hence, the maxi-
mum measured water level may be lower than the occurred maximum water level.
Therefore, we calibrated on the three days with the highest water levels for each
measurement station present along the river branches. If the model is capable of
predicting the correct shape and correct water levels at three moments in time
near the peak discharge, it is likely that also the correct maximum water level is
predicted by the model.

The 1926 discharge wave was simulated. Maximum water levels at 10 measurement
stations were validated after model calibration. It was found that simulated max-
imum water levels only deviated 2 cm on average compared to the measurements.
Therefore, it can be concluded that the high-�delity model is capable of simulat-
ing maximum water levels with high accuracy after calibration of the summer bed
roughness.
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Table 3.4

Maximum discharges along the Lower Rhine and discharge partitioning along the Dutch Rhine river

branches predicted by the high-�delity and lower-�delity model, where Qmax represents the maximum

discharge at the speci�c location.

High-�delity Lower-�delity Di�erence [%]

model model

Qmax Bonn [m3/s] 11,509 11,580 0.6

Qmax Cologne [m3/s] 11,632 11,715 0.7

Qmax Dusseldorf [m3/s] 11,365 11,598 2.1

Qmax Rees [m3/s] 12,351 12,572 1.8

Qmax Emmerich [m3/s] 12,297 12,453 1.3

Qmax Lobith [m3/s] 12,282 12,402 1.0

Waal river [%] 70.3 71.9 1.5

Pannerdensch Canal [%] 29.7 28.0 1.7

Nederrijn river [%] 58.7 56.2 2.4

IJssel river [%] 41.4 43.8 2.4

3.4.2 Validation and uncertainty of the lower-�delity model

The model output was compared with the model output of the high-�delity model
to study whether it is justi�ed to use the lower-�delity model to perform the sen-
sitivity analysis. We found that the high-�delity model simulates a maximum
discharge at Lobith of 12,282 m3/s with the 1926 measured discharge wave at
Andernach as upstream boundary condition. The lower-�delity model, with all
random input parameters set to their expected value, predicts a maximum dis-
charge of 12,402 m3/s. This deviates less than 1.0% compared to the high-�delity
model. Although, correct prediction of the maximum discharge at Lobith has the
focus in this study, it is also desirable that the lower-�delity predicts correct dis-
charge stages at other locations. Table 3.4 shows that the lower-�delity model
predicts maximum discharges along the Lower Rhine with high accuracy, having a
maximum deviation of 2.1% compared to the high-�delity model. In addition, the
lower-�delity model is capable of accurately predicting the discharge partitioning
along the Dutch Rhine river branches (Table 3.4). These values indicate that the
surrogate model is capable of representing the system behaviour of the high-�delity
model. Therefore, no correction-function is needed to tune the model results of
the lower-�delity model. We can thus conclude that the lower-�delity model can
be treated as a high-�delity model from now on. Hence, the sensitivity analysis
can be performed with the 1D-2D coupled model.

The results of the uncertainty analysis show that the average maximum discharge
at Lobith as a result of the Monte Carlo sample equals 12,424 m3/s. This value
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Table 3.5

Results of the Multiple Linear Regression analysis in which the most in�uential parameter has a

ranking equal to 1 and the least in�uential parameter a ranking equal to 9.

Input parameter βi σi [m
3/s] β̂i Ranking Surface

area [%]

Roughness class Summer bed -3.65 x 103 1.97 x 10-3 0.15 2 13.3

Lakes -1.81 x 103 2.68 x 10-3 0.10 5 13.2

Grasslands -4.81 x 103 8.71 x 10-3 0.86 1 55.6

Forest -2.83 x 102 1.95 x 10-2 0.11 4 6.4

Urban areas -2.29 x 102 2.73 x 10-3 0.01 7 11.4

Bed level Winter bed -70.3 3.18 x 10-2 0.05 6

Summer bed (1) 1.2 7.00 x 10-2 0.00 9

Summer bed (2) 27.5 0.25 0.13 3

Summer bed (3) 8.3 0.04 0.01 8

has a standard deviation of 49 m3/s caused by the uncertainty in the input pa-
rameters. This relatively low standard deviation shows that uncertainties in the
input parameters only have a limited e�ect on the maximum discharge at Lobith
during the 1926 �ood event.

3.4.3 Sensitivity analysis

Multiple linear regression analysis

A multiple linear regression analysis was performed in which it was assumed that
the model response as a result of the varying input parameters was linear. This
is not the case since the model coe�cient of determination R2 (equation 5.3)
equals 0.81. This value means that the regression model is capable of explaining
81% of the variance of the surrogate output. The remaining 19% is ignored by
the regression model. However, Table 3.5 clearly shows that the roughness of
grasslands highly in�uences the maximum discharge at Lobith because of its high
sensitivity measure β̂i (equation 3.3). The high standardized regression coe�cient
of the roughness of grasslands can be explained by the fact that grassland is the
most dominant land cover in the model domain with a surface area of 55.6% (Table
3.5). In addition, the uncertainty within the class itself is relatively large (Table
3.2) since grasslands most often have a higher roughness during summer periods
due to growing season compared to the winter periods. Only the roughness of
forest has a larger uncertainty range. However, the surface area covered by forest
is much less (6.4%).

90 Chapter 3



C
h
a
p
te
r
3

C
h
a
p
te
r
3

C
h
a
p
te
r
3

Table 3.6

Computed Sobol' indices with the method of Li and Mahadevan (2016) in which the most in�uential

parameter has a ranking equal to 1 and the least in�uential parameter a ranking equal to 9.

Input parameter Si Ranking Surface

area [%]

Roughness class Summer bed 0.10 2 13.3

Lakes 0.01 7 13.2

Grasslands 0.77 1 55.6

Forest 0.05 5 6.4

Urban areas -0.03 9 11.4

Bed level Winter bed 0.09 3

Summer bed (1) 0.01 8

Summer bed (2) 0.06 4

Summer bed (3) 0.03 6

Sobol' indices

In the previous section it was shown that with the Multiple Linear Regression anal-
ysis only 81% of the variance of the surrogate model output could be explained.
In order to check the results of the Multiple Linear Regression analysis, the Sobol'
indices are computed. These indices are independent of model linearity. The re-
sults show that the roughness of grasslands is dominant with respect to in�uencing
the uncertainty of the maximum discharge at Lobith (Table 3.6). This is in line
with the results of the Multiple Linear Regression analysis.

If
N∑
i=1

Si = 1, the variance of the model output is solely caused by the variance

of the input parameters itself. In that case, there are no interactions between
the di�erent input parameters resulting in an increase in the variance of the model
output. In other words, the model is additive. The results show that the �rst-order
Sobol' indices are approximately 1 indicating that the model does not include any
interactions of the input parameters.

In principle
N∑
i=1

Si cannot be larger than 1. In addition, the �rst-order Sobol' index

computed for each uncertain input parameter cannot be lower than 0 (Saltelli et al,

2008). In this study, the computed
N∑
i=1

Si is slight larger than 1 and the Sobol' index

for the roughness of urban areas is smaller than 0. This is caused by the relatively
small sample size of only 120 runs. To overcome this problem, we resampled the
120 runs as explained in Section 3.3.3. With this resampled data set, the 95%
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Figure 3.9

First-order Sobol' indices and its 95% con�dence intervals based on the bootstrap resamples.

con�dence intervals of the �rst-order Sobol' indices are computed (Fig. 3.9). Fig.
3.10 shows that the �rst-order Sobol' indices have converged after approximately
700 bootstrap resamples. This results in a data set of 700 x 120 model runs. The
outcomes then show that the roughness of grasslands remains the most dominant
input parameter. The lower bound of its con�dence interval is under any condition
larger than the sensitivity index of the other input parameters. Therefore, we can
conclude that for this speci�c case, most attention must be paid to the roughness
class with the largest surface area and which has a relatively large uncertainty
range. Correct prediction of this parameter will result in a signi�cant reduction of
the output variance. It must be noted that the uncertainty of the model output
was small in this study. In general, the output variance depends on the probability
distribution functions of the uncertain input parameters. It can be expected that
the output variance will increase for older historic events. Hence, a signi�cant
reduction in model output variance can be reached if the most in�uential input
parameter is correctly predicted. This in�uential input parameter can be found
by applying the method for factor prioritization as presented in this study.

92 Chapter 3



C
h
a
p
te
r
3

C
h
a
p
te
r
3

C
h
a
p
te
r
3

3.5 Discussion

In this study, a methodology was developed to reconstruct historic �ood events
with the use of a lower-�delity model. The maximum discharge is predicted as
well as its uncertainty as a result of the uncertain input parameters. General
problems that arose were mostly related to the choice of the surrogate model type
and the characteristics of the �ood event. Therefore, another historic event may
ask for a di�erent approach since the assumptions made for the 1926 event may not
apply. To put things into perspective, an overview and discussion are presented
of the problems that may arise during historic �ood reconstruction and resulting
sensitivity analysis.

1. To predict a historic discharge, an associated geometry should be recon-
structed. The geometry during the 1926 event was well known since maps
of this time period are available. However, for events further in the past
the geometry might be more uncertain. These spatial uncertainties must
be included in the analyses. A major drawback is that for each (uncertain)
geometric situation a separate model must be set up. Consequently, for each

Figure 3.10

Convergence of the �rst-order Sobol' indices based on the bootstrap resamples.
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model, the sensitivity analysis must be performed separately. This signif-
icantly increases the total number of simulations. Furthermore, for older
events the uncertainties in the input parameters may become larger. Hence,
the shape of their probability distributions may change. We assumed that
the uncertain input parameters of the 1926 �ood event could be described
by truncated normal distributions. These distributions will shift towards
uniform distributions for older events if less information is available.

2. A lower-�delity based surrogate model was developed to reduce computa-
tional time. Many other methods exist to set up a surrogate model, each
with their own bene�ts and drawbacks. A di�erent study approach may lead
to the need of another type of surrogate model. In general, a 1D-2D coupled
model is capable of simulating any kind of �ood event. The 1D pro�les enable
correct prediction of discharge stages below bankfull conditions (Horritt and
Bates, 2002). These 1D pro�les can be coupled by 2D grid cells to include the
possibility of simulating overland �ows if the discharge exceeds the bankfull
discharge, referring to the situation in which the discharge is larger than the
main channel and �oodplain capacity. Therefore, this type of lower-�delity
model can be used to accurately simulate �ood wave propagation for both
discharges below as well as above bankfull conditions.

3. The 1D-2D coupled model was not calibrated on maximum water levels. The
objective of the surrogate model was accurate prediction of maximum dis-
charges at Lobith. However, calibration on maximum water levels is required
if dike breaches and/or overtopping have evolved during the �ood event. For
such a case, correct prediction of maximum water levels becomes impor-
tant since this value indicates whether overtopping occurs. This in�uences
the maximum discharge further downstream. Therefore, it is recommended
to use the summer bed roughness of the lower-�delity model as calibration
parameter to correctly predict water levels in case of discharges exceeding
bankfull conditions.

4. To perform the sensitivity analysis, a decision had to be made about the
range of the truncated normal distributions of the input parameters. The
ranges of the roughness parameters were based on the tables of Chow (1959).
A smooth channel with no vegetation was assumed to determine the rough-
ness of the summer bed. This results in a relatively low expected Manning's
roughness value of 0.028, with a total range of between 0.023 to 0.033. It is
expected that the dimensions of sand dunes during �ood events are highly
uncertain. This uncertainty may in�uence summer bed roughness signi�-
cantly. The measured Manning's roughness of the summer bed during the
1998 event with a maximum discharge of 9,464 m3/s at Lobith ranges of
between 0.030 to 0.035 (Julien et al, 2002). These values are higher than
the values that we used. Paarlberg et al (2010) found a clear dependency
between increase in the discharge and increase in the dune heights. However,
it is still unclear to what extent dune heights increase during �ood events.
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Some literature even suggest that the dunes are washed out under extreme
conditions (e.g. Best (2005) and Naqshband et al (2014)), resulting in much
lower values of the roughness parameter. It is not the roughness value itself
that in�uences the uncertainty of the maximum discharge, but rather the
uncertainty range of the summer bed roughness. Therefore, the relatively
broad roughness range for the summer bed used in this study is considered
appropriate for the 1926 �ood event.

5. In this study, only geometrical uncertainties in the input parameters are
included in the sensitivity analyses. These parameters are the bed levels of
the summer bed and winter bed and the roughness of the various land use
classes. However, much more uncertainties exist which can be related to the
model structure, model parameters and boundary conditions. These inherent
uncertainties can be considered in the sensitivity analysis by including them
as random input parameters in the LHS. This will result in more insight
in the most dominant type of uncertainty, i.e. uncertainty as a result of
the input parameters, model parameters or model set-up. This study is
recommended for future work since here, we only focused on the uncertainties
of the geometrical input parameters to illustrate our method.

3.6 Conclusions

The objective of this paper was to study whether a lower-�delity hydraulic model
can be used for historic �ood reconstruction. In this paper, a general framework is
presented that shows which problems have to be tackled in order to enable historic
�ood reconstruction with the use of a surrogate model.

A 1D-2D coupled model was developed as lower-�delity model that is capable of
simulating �ood wave propagation with high accuracy. It was found that model
results predicted by the lower-�delity model were close to those predicted by the
high-�delity model. The lower-�delity model is thus capable of accurately pre-
dicting system behaviour. In addition, the proposed 1D-2D coupled model can
be applied to any type of historic �ood event. This is because it is capable of
accurately simulating �ood wave propagation for both discharges below as above
bankfull conditions. However, if the simulated discharges exceed the bankfull dis-
charge, model calibration is recommended since correct prediction of water levels
becomes highly relevant for these cases.

A sensitivity analysis is required to determine the parameters that mostly in�uence
the uncertainty in the model output. The lower-�delity model could be used to
perform this analysis. This signi�cantly decreased computational time compared
to the use of a fully 2D model. For future work, we propose that a 1D-2D coupled
model can be treated as a high-�delity model in general. Therefore, setting up a
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sophisticated 2D model for validation will not be needed.

The proposed methodology was tested with the use of the 1926 �ood event of
the Rhine river. The lower-�delity model predicts a maximum discharge at Lo-
bith of 12,402 m3/s for this historic event, deviating only 1.0% compared to the
high-�delity model (12,282 m3/s). The uncertainty of this maximum discharge
at Lobith equals 49 m3/s. The uncertainty in model output is relatively small
because a large amount of data of the 1926 �ood event was available. Reconstruc-
tion of an older �ood event will probably result in larger uncertainties of the input
parameters since less information is available. As a result, the truncated normal
distributions used to describe the uncertainty of the various input parameters will
shift towards uniform distributions. This will have a negative e�ect on the model
output uncertainty.

The sensitivity analysis showed that the model output was most sensitive to the
roughness class with the largest share in surface area (in this case the roughness of
the grassland areas). Moreover, the location of the roughness class was important
since areas close to the river have a relatively large impact on model results. These
two aspects in combination with the uncertainty range of the input parameter itself
determined the in�uence on model response.
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Abstract

The uncertainty in �ood frequency re-
lations can be decreased by adding re-
constructed historic �ood events to the
data set of measured annual maximum
discharges. This study shows that an
Arti�cial Neural Network trained with
a 1D-2D coupled hydraulic model is ca-
pable of reconstructing river �oods with
multiple dike breaches and inundations
of the hinterland with high accuracy.
The bene�t of an Arti�cial Neural Net-
work is that it reduces computational
times. With this Network, the maxi-
mum discharge of the 1809 �ood event

of the Rhine river and its 95% con�-
dence interval was reconstructed. The
study shows that the trained Arti�cial
Neural Network is capable of reproduc-
ing the behaviour of the hydraulic model
correctly. The maximum discharge dur-
ing the �ood event was predicted with
high accuracy even though the underly-
ing input data is, due to the fact that
the event occurred more than 200 years
ago, uncertain. The con�dence interval
of the prediction was reduced with 43%
compared to earlier predictions that did
not use hydraulic models.

Painting of the 1809 �ood event at Culemborg by J.G. Visser
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4.1 Introduction

River �oods a�ect more people worldwide than any other natural hazard as they
cause large economic damage and human casualties (Blöschl et al, 2017). To pro-
tect the hinterland from being inundated, �ood defences are commonly designed
such that they can withstand a �ood event with a speci�c probability of occur-
rence. Most often, �ood frequency analyses are used to establish such a discharge
frequency relation. This relation is computed using measured discharges. The
data set of measured discharges is generally limited because of the short time pe-
riod that measurements have been performed. For example, in the Netherlands
discharges have been measured since 1901 while the largest �ood safety level along
the river branches has a return period of 100,000 years (Van Alphen, 2016). As a
result of the limited data set of measured discharges and because extreme events
from pre-instrumental records are not included, the discharge frequency relation
has a large uncertainty interval. This speci�cally accounts for discharges corre-
sponding to rare events where extrapolation is required. The uncertainty interval
of the relation can be reduced by extending the data set of measured discharges
with historic �ood events (Bomers et al, 2019c).

Many studies have attempted to reconstruct historic �ood events based on various
sources (e.g. �ood marks, �ood deposits, written records) to extend the data set of
measured discharges. For instance, Herget and Meurs (2010) reconstructed maxi-
mum discharges of historic events near the city of Cologne. Historical information
about occurred water levels was translated into discharges with the use of the
empirical Manning's equation. Toonen et al (2015) used grain-size measurements
of �ood deposits to reconstruct historic �ood magnitudes of the last 450 years of
the Lower Rhine. Recently, many papers study how information of historic �ood
events can be included in a �ood frequency analysis (e.g. Frances et al (1994); Mac-
Donald et al (2014); O'Connell et al (2002); Reis and Stedinger (2005); Sartor et al
(2010); Toonen et al (2015)). These studies showed that extending the data set
with historic events signi�cantly reduces uncertainty intervals of �ood frequency
relations. However, in most studies the uncertainty of the reconstructed historical
discharges themselves were quite large. Reducing the uncertainty of these recon-
structions has the potential to further decrease the uncertainty interval of �ood
frequency relations such that design discharges with large return periods can be
predicted more accurately. We are speci�cally interested in reducing the uncer-
tainty in the upper bound of the 95% con�dence interval since this bound highly
in�uences the design discharges corresponding to rare events as a result of extrap-
olation of data set of measured discharges. A way to decrease this uncertainty is
to use hydraulic models.

Hydraulic models with a discharge wave as upstream boundary condition are com-
monly calibrated on measured water levels with the main channel friction as cali-
bration parameter (Bomers et al, 2019d; Caviedes-Voullième et al, 2012; Domhof
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et al, 2018). Generally, for many historic �ood events, one or multiple maximum
water levels at several locations are known. However, corresponding discharges
are often unknown. Therefore, it is not possible to calibrate the hydraulic model.
This can be explained as follows: there is an in�nite number of possible combina-
tions of main channel friction and discharges that will result in correct prediction
of water levels. A larger discharge can be compensated by a lower main channel
friction and vice versa, resulting in the same simulated water levels. Therefore, to
determine the potential maximum discharge of a historic �ood event with the use
of a hydraulic model, many model runs (in the order of 1,000 to reach convergence
in model output) must be performed to capture all possible main channel friction-
discharge combinations. The use of a physical hydraulic model is unfeasible for
this application. Therefore, the objective of this paper is to study whether a re-
sponse surface surrogate (i.e. a data-driven model without any physical processes
of the original system) can be used to predict maximum discharges of historic
�ood events of which only water levels are known at a few locations. Response
surface surrogate models are considered since computational time for this cate-
gory of models is most often in the order of seconds because the model consists of
relatively simple mathematical functions without any physical interpretations.

In this study, the 1809 �ood event of the Rhine river is used as a case study. This
�ood event resulted in multiple dike breaches and consequently to inundations of
the hinterland. Simple linear regression models are not capable of reproducing
the non-linear behaviour caused by dike breaches (Toonen, 2015). Therefore, we
set up an Arti�cial Neural Network (ANN) as response surface surrogate model.
ANNs are probably the most successful type of surrogate model with a �exible
mathematical structure that is capable of identifying complex non-linear behaviour
between input and output (Dibike and Solomatine, 2001). Many hydrological
studies have shown the applicability of ANNs for �ood forecasting purposes (e.g.
Campolo et al (2003); Elsa� (2014); Lekkas et al (2004); Laio et al (2003); Kerh and
Lee (2006)). These studies have set up an ANN to predict discharges and/or water
levels at a speci�c site based on information of upstream gauge stations. It was
found that the developed ANNs are well capable of describing �ood propagation,
making them a suitable forecasting tool.

Recently, ANNs are set up more frequently for �ood routing modelling. Kia et al
(2012) created �ood maps of the Johor River basin, Malaysia. A hydrological
model was used as a high-�delity model having, among others, rainfall as input
data. Peters et al (2006) and Shrestha et al (2005) set up an ANN to predict
�ood wave propagation in a river basin. A 1D hydraulic model was used to create
the training data including �ood events larger than measured so far. They found
that the use of an ANN reduces computational times signi�cantly compared to the
hydraulic models, making them applicable for real-time control.

Most of the presented studies used measurements or hydrological modelling to
create the training data, whereas the studies that made use of hydraulic mod-
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elling only focused on in-channel �ood conditions. However, the large historic
�ood events typically resulted in dike breaches and inundations of the hinterland.
Therefore, we are interested to what extent an ANN is capable of reproducing
the physical behaviour of a �ood event with multiple dike breaches. During the
1809 �ood event, several ice jams were present in the studied area. These ice jams
may in�uence the physical behaviour of the discharge propagation. However, we
assume that the e�ects of these ice jams on maximum discharges were negligible,
which is discussed in detail in Section 4.6.2.

The outline of the paper is as follows. Firstly, the 1809 �ood event and the steps
taken to reconstruct the 1809 geometry are presented in Section 4.2. Then, the
high-�delity model is given (Section 4.3) as well as the set-up of the ANN (Section
4.4). The ANN is validated and used to reconstruct the maximum 1809 discharge
in Section 6.5. The paper ends with a discussion and main conclusions in Section
6.6 and Section 6.7 respectively.

4.2 1809 �ood event of the Rhine river delta

4.2.1 Characteristics of the 1809 �ood event

The 1809 �ood event resulted in high water levels and inundations of the embanked
areas in the Rhine delta. In total, 100,000 people were a�ected by the �ood
and around 275 people died (Driessen, 1994). From half December 1808 till the
10th of January 1809, the temperatures were far below zero in Germany and the
Netherlands (Lintsen, 1993). Due to the extremely low temperatures, the Dutch
Rhine river branches were frozen. Around the 10th of January, the temperature
started to rise and as a result, ice sheets started to move chaotically. This caused
the formation of a large ice jam downstream of Arnhem (Fig. 4.2). Hence, the
Nederrijn river was blocked and a larger discharge started to �ow towards the IJssel
river, resulting in multiple dike breaches. The second �ood event followed around
the 25th of January. This resulted in even more dike breaches and inundations. We
only focus on the �rst �ood event which occurred around the 10th of January since
this event corresponds with the highest water levels measured during this �ood.
Hence, this moment most probably also corresponds with the largest maximum
discharge at Lobith (Toonen, 2015) which we mainly aim to predict. This discharge
can then be used to extend the data set of annual maximum discharges.

The study area stretches from Emmerich to the Dutch cities of Zutphen, Rhenen
and Druten (Fig. 4.2). In this area, six dike breaches occurred in the period
from the 12th till the 15th of January, resulting in inundations of the hinterland
(Fig. 4.2). During the event, daily water level measurements were performed at
four locations in the studied area, namely at Pannerden, Nijmegen, Arnhem and
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Doesburg (Fig. 4.1). Only the water level measurements closest to Lobith, which
are Pannerden and Nijmegen, are used to determine the maximum discharge at
Lobith. This is because the water levels at Arnhem and most probably also at
Doesburg were a�ected by ice sheets in the Nederrijn river. Consequently, the
hydraulic model is not able to correctly simulate the water levels at these two
locations.

4.2.2 Reconstruction of the 1809 geometry

The 1809 topography, river position and bathymetry, dimensions of river embank-
ments, and land use are reconstructed from di�erent sources. To reconstruct the
topography, a collection of elevation measurements obtained between 1950 and
1965 is used (Atlasproducties, 1987). Because this period predates major anthro-
pogenic changes such as land levelling for agricultural practices, this data can be
used to approximate the early 19th century topography (Alkema and Middelkoop,
2005). The point data is converted into a digital elevation model (DEM) by simple
point to raster conversion in ArcGIS (ESRI, 2016), with a relatively large output
cell size of 500x500 m. This rather large cell size was chosen in order to avoid ar-
tifacts from interpolation and to smooth out possible inaccuracies in the historical
measurement data.

For the reconstruction of the river position and bathymetry, the �rst edition of the
Algemene Rivierkaart (literally translated as General River map, and also known

Figure 4.1

Daily measured water levels during the 1809 �ood event. The locations are presented in Fig. 4.2.
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as "Goudriaankaarten" after the maker) map series is used, which completely
covers the large rivers in the Netherlands at a scale of 1:10,000. The maps of
the Rhine river branches Waal, Nederrijn and IJssel were produced in the periods
1830-1832, 1833-1839 and 1840-1844 respectively (Van den Brink, 2002), which
is before the onset of major river normalization in the mid-19th century. The
historical river planform geometry is obtained by �rst georeferencing the individual
map sheets and subsequently tracing the river banks in ArcGIS (Van der Meulen
et al, 2018). In the period when the maps were created, water depth pro�les were
measured across the river at intervals of one kilometer. This data accompanied
the maps in separate registers (Boode, 1979) and were considered lost (Wierda
and Zweerus, 1994), until recently (Van der Meulen et al, 2018). We copied the
historical data, consisting of measured depths and distances between depths and
assigned geographical locations to the measurement points by linking the data to
their respective cross sections, which are indicated on the maps. The cross sections
are interpolated using the cubic Hermite interpolation method, resulting in a DEM
of the main channel of the various river branches. Since the cross sections had an
interval of one kilometer, the accuracy near the bifurcation points of the Rhine
river branches was not su�cient to correctly simulate the discharge partitioning
along the Dutch Rhine river branches. Therefore, the DEM at the locations of the
bifurcation points is replaced by the 1926 DEM which was available from previous
work (Bomers et al, 2019a).

To reconstruct the river embankments in 1809, the �rst edition of the Algemene

Rivierkaart are used, complemented by the �rst edition of the Dutch Water-

staatskaart (literally translated as Water Management map). The Algemene Riv-
ierkaart is used to reconstruct the locations of the river dikes as vector lines in
ArcGIS. The �rst edition of the Waterstaatskaart was created in the late 19th cen-
tury and covers the entire Netherlands at a scale of 1:50,000 (Heere and Storms,
2002; Blauw, 2005). The map sheets that cover our study area were produced
between 1871 and 1879. These maps locally provide information on dike heights,
which were implemented in ArcGIS, after which we linearly interpolated between
the heights along the dike lines.

In order to supply the model with historically-accurate friction values, reconstruc-
tions of land use based on early (circa 1900) topographical maps of the Netherlands
(Knol et al, 2004) are used. Largest changes to land use in the study area occurred
in early historic times, when the entire area was taken into agricultural use, and in
the 20th century, when cities and road networks expanded at unprecedented scale.
Therefore, the land use situation around 1900 can be applied to the situation in
1809. The land use classes provided in the maps were translated into Manning's
roughness coe�cients with the tables of Chow (1959). This translation is provided
in Table 4.1.
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Table 4.1

Translation of land use classes into Manning's roughness coe�cients..................................................

Land use in 1900 (Knol et al., 2004) Manning's roughness coe�cients [s/m1/3]

Grasslands 0.030

Agriculture 0.030

Moorland 0.030

deciduous forest 0.150

coniferous forest 0.150

Urban areas 0.036

Open water 0.024

Reed swamps 0.070

Drift sand 0.029

4.3 High-�delity model

4.3.1 Set-up of the 1D-2D coupled model

A one dimension-two dimensional (1D-2D) coupled model is used as a high-�delity
model, because such a simpli�ed model has as advantage that computational time
is decreased signi�cantly compared to a fully 2D model, while not many physical
processes of the original system are lost (Bomers et al, 2019a). The 1D-2D coupled
model is run to create the training data to set up the ANN. The geometry is
schematized by 1D nodes as much as possible to keep computational time minimal.
Only at locations where a 2D component (Rijnstrangen area, Fig. 4.2) is required
to correctly model the physical processes of the �ood event, a 2D grid is used.
This has as advantage that computational time can be relatively low compared to
a fully 2D model, while model accuracy remains su�cient. HEC-RAS (v. 5.0.3),
developed by the Hydrologic Engineering Centre (HEC) of the US Army Corps of
Engineers, is used for the 1D-2D �ood modelling.

The main channel and its �oodplains are captured by 1D pro�les since 1D pro�les
are capable of accurately predicting �ood wave propagation in case of in-channel
�ows and under normal �ow conditions (Taye� et al, 2007). These 1D pro�les
are coupled with 1D storage areas (Fig. 4.2), representing the embanked areas
(i.e. the areas that are not part of the river system and are protected by dikes
against inundations). If the simulated water levels in the 1D pro�les exceed the
dike crest levels, water starts to �ow into the storage areas corresponding with
inundations of the hinterland. Bomers et al (2019b) showed that for the discharge
range considered in this study, no signi�cant overland �ows are present. The
water that leaves the river system is not capable of �owing back into the river
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at a downstream location. Hence, only a reduction of the maximum discharge in
downstream direction as a result of over�ow and/or dike breaches is found. This
justi�es the use of the 1D storage areas and neglecting the overland �ow patterns.

Only the Rijnstrangen area (Fig. 4.2) is discretized with a 2D grid since it is
important that the �ow through the Rijnstrangen area is correctly simulated.
This is because it in�uences the discharge at the Pannerdensch Canal and hence
the simulated water levels at Pannerden. These water levels are used to determine
the maximum discharge at Lobith during the �ood event. The Rijnstrangen area
is connected with the Lower Rhine by an inlet. An inlet refers to a dike section
with a lower crest level compared to its surrounding dike sections. As a result of
the lower crest level, water starts to �ow into the Rijnstrangen area as soon as the
water level exceeds the crest level of the inlet. For this speci�c case, the crest level
of the inlet is equal to 10.78 m +NAP (Ploeger, 1992).

A discharge wave at Emmerich is used as upstream boundary condition. Normal
depths are used as downstream boundary conditions at the Waal, Nederrijn and
IJssel rivers (Fig. 4.2). Normal depths can be computed with the use of the
Manning's equation which can be written as (Brunner, 2016):

V =
R2/3

n

√
Sf (4.1)

in which V represents the cross sectional averaged �ow velocity [m/s], R the
hydraulic radius [m] depending on the water depth, n the Manning's roughness
coe�cient [s/m1/3], and Sf the slope of the energy grade line [-]. Generally, the
energy slope can be approximated by the slope of the main channel (Brunner,
2016). Because the �ow velocity is computed at each time step during the simula-
tion, the Manning's equation with an energy slope equal to the bed slope as input
data produces a water level considered to be the normal depth in both the main
channel and �oodplains of the various river branches.

The reconstructed land use classi�cations (Table 4.1) are implemented in the model
as Manning's roughness values with the use of the tables of Chow (1959). Only
the main channel friction, which is commonly used as calibration parameter, is
considered as a random input parameter to be used in a Monte Carlo framework
(Section 4.3.2).

During the 1809 �ood event, six dike breaches occurred in the studied area (Fig.
4.2, Dutch Ministry of Infrastructure and the Environment (1926)). These breaches
are implemented in the model. Of each dike breach, the day of breaching is known
(Dutch Ministry of Infrastructure and the Environment, 1926). In addition, his-
torical maps of the dike breaches along the Waal river and Pannerdensch Canal
are available. These clearly show the width of the dike breaches. The dike breach
widths of the breaches along the Lower Rhine and Ouderijnstrangen area are as-
sumed to be equal to 75 meter each, corresponding with the average dike breach
width of the historical events reported in Apel et al (2008) and Verheij and Van
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der Knaap (2003). It is assumed that all dike breaches evolve to the level of the
surrounding natural terrain within three hours (Dawson and Wilby, 2001). The
settings of the dike breaches are provided in Table 4.2.

Because of the highly-detailed available information about the 1809 geometry, un-
certainties in the bathymetry reconstruction are neglected in the analysis. Maps
providing the exact location of the river course resulted in no plan metric un-

Figure 4.2

Model set-up of the high-�delity 1D-2D coupled model used to create the training data. The �ow

direction is given by the red arrows in the left �gure. The water �ows from the Lower Rhine into

the Waal river and Pannerdensch Canal. Subsequently, the Pannerdensch Canal bifurcates into the

Nederrijn river and IJssel river.
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Table 4.2

Dike breach settings. The locations of the dike breaches are provided in Fig. 4.2 in which the most

upstream dike breaches along the Lower Rhine and Waal river correspond with number 1 and the

downstream dike breaches with number 2.

Location Date Breach width [m] Breach formation time [h]

Lower Rhine 1 12 Jan 75 3

Lower Rhine 2 12 Jan 75 3

Ouderijnstrangen area 13 Jan 75 3

Pannerdensch Canal 13 Jan 417 3

Waal river 1 15 Jan 188 3

Waal river 2 15 Jan 88 3

certainties. Only bed levels of the main channel and �oodplains were uncertain
caused by the interpolation of the measured cross sections (Section 4.2.2). How-
ever, Bomers et al (2019a) found that uncertainties in the �oodplain bed levels
and main channel bed levels only have a small e�ect on the maximum discharges
throughout the model domain. This justi�es to neglect these uncertainties.

4.3.2 Design of Experiment

To set up a surrogate model, a Design of Experiment (DoE) must be de�ned
that determines the procedure of generating the training data with a high-�delity
model. DoEs employ di�erent space �lling strategies such that the behaviour of the
underlying system over limited ranges of the input parameters is captured (Razavi
et al, 2012b). In this study, six input parameters of the high-�delity model are
considered to be random since these were uncertain during the 1809 �ood event.
The uncertain input parameters are: the upstream discharge wave and the main
channel friction of each Rhine river branch (�ve in total, Fig. 4.4).

Emmerich, Germany, which is located upstream of Lobith is used as upstream
boundary (Fig. 4.3). The range of the maximum discharge wave at Emmerich is
based on the work of Toonen (2015), who has reconstructed the 1809 maximum
discharge based on average water level measurements of surrounding sites. Toonen
(2015) determined the correlation between water level measurements at Lobith and
surrounding sites based on measured time series. This regression curve was then
used to predict the water level at Lobith based on the measured water levels at
Emmerich, Pannerden and Nijmegen. Subsequently, the predicted water level at
Lobith was translated into a maximum discharge during the 1809 �ood event using
a Q-h relation. The con�dence interval of the maximum discharge was based on the
variation in predicted water levels at Lobith. Toonen (2015) found a maximum
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Figure 4.3

Input and output data of the three steps to reconstruct the 1809 maximum discharge at Lobith: (1)

Creating training data with the high-�delity model, (2) setting up the ANN, (3) using the ANN to

reconstruct the 1809 maximum discharge at Lobith.

Figure 4.4

Each river branch has its own main channel friction section such that discharge partitioning can vary

in the simulations.
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discharge range at Lobith of between ∼10,400-13,450 m3/s. We use a range of
10,000-14,000 m3/s to ensure that the range at Emmerich is wide enough and
captures the potential 1809 maximum value at Lobith. This can be evaluated
during the �rst runs with the 1D-2D coupled model by assessing whether the
measured maximum water levels are in the range of the simulated values. Besides,
not only the peak value of the discharge wave is unknown, but also its shape.
Therefore, three di�erent shapes are considered in the analysis. However, since the
maximum discharge at Lobith is mostly in�uenced by the peak value at Emmerich,
and not by the shape of the discharge wave, the discharge wave shape is not
considered as an input parameter to set up the ANN (Fig. 4.3).

Since the exact discharge partitioning over the various Rhine river branches is
unknown during the 1809 �ood event, each river branch has its own main channel
friction in the model (Fig. 4.4). In this manner, the discharge partitioning can
vary in the hydraulic simulations to create the training data since a river branch
with a low friction value will receive more discharge than a river with a high friction
value.

Although many research has been done on the main channel friction due to river
dune dynamics during �ood events (e.g. Warmink (2014); Naqshband et al (2014);
Paarlberg et al (2010)), the value of this parameter as function of varying dis-
charges is still largely unknown. Therefore, this parameter is commonly used
to calibrate hydraulic models. During calibration, the main channel friction is
adapted such that simulated water levels are close to measurements (Domhof et al,
2018). As a result, the calibrated main channel friction values capture the follow-
ing features: the physical friction of the main channel caused by e.g. dune growth
(Paarlberg and Schielen, 2012), channel irregularity and vegetation (Herget and
Meurs, 2010); a model-generated friction caused by e.g. simpli�cations in the model
set-up (Warmink et al, 2013) and discretization of the model domain (Bomers et al,
2019d); and an arti�cial friction to compensate for errors in the remaining input
parameter (Warmink et al, 2013). The main channel friction is thus treated as a
garbage bin to capture both the physical phenomena and model errors (Domhof
et al, 2018). As a result, the calibrated friction value do not describe the physical
friction as encountered in the �eld anymore (Bomers et al, 2019d). Therefore, it is
impossible to �nd a friction range that covers the total range of possible values for
a calibrated model. Including an in�nitely wide range in the analysis, results in an
in�nitely wide range of the upstream maximum discharge. This is because a low
discharge with a high main channel friction results in a similar simulated water
level as a high discharge with a low main channel friction. Therefore, a 1D-2D
coupled model calibrated with the 1995 �ood event, available from previous work
(Bomers et al, 2019b), is used to determine the friction range used. The range
is set equal to the minimum and maximum Manning's friction values found after
calibration. This range equals 0.010-0.145 s/m1/3 and is used randomly for each
river branch to generate the training data.
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Only above mentioned six input parameters (upstream discharge wave and main
channel friction of the various Rhine river branches) are considered to be random
since only these parameters were highly uncertain. Latin Hypercube sampling
(LHS) is used as sampling method to create the set of model runs used to generate
the training data. This sampling strategy has as advantage that it can easily
consider a large number of input parameters without the need for extra simulations
(Razavi et al, 2012b). The six random input parameters are divided into eight
levels in which each level has an equal probability of occurrence of 12.5%, following
the method of Bomers et al (2019a). For each run, the values in each level can
randomly be sampled, constraining that if a level is already sampled it cannot
be sampled again (Saltelli et al, 2008). In total, 160 simulations with the high-
�delity model are performed such that the continuous distributions of the input
parameters are su�ciently captured (Section 4.5.2). The maximum discharge at
Lobith and the maximum simulated water levels at Pannerden and Nijmegen are
considered to be the output data. These water levels, the maximum discharge at
Lobith and the main channel friction of each river branch are used to train the
ANN (Fig. 4.3).

4.4 Surrogate model

Many di�erent response surface surrogate models exist (e.g. Arti�cial Neural Net-
work, Support Vector Regression Machine, Regression models). In this study, an
Arti�cial Neural Network (ANN) is set up. ANNs are the most commonly used
response surface surrogate models in environmental and water resources optimiza-
tion problems (Razavi et al, 2012a). This is because they provide an appealing
solution to the problem in complex systems since they can, theoretically, handle
incomplete and noisy data (Dawson and Wilby, 2001). In addition, many studies
have shown the applicability of ANNs for river �ow and �ood forecasting for in-
channel �ow conditions (e.g. Campolo et al (1999); Dibike and Solomatine (2001);
Matta et al (2018); Kia et al (2012); Peters et al (2006); Shrestha et al (2005)).

An ANN can be seen as a black-box model that is capable of identifying complex
non-linear relationships between input and output data sets (Dibike and Soloma-
tine, 2001). ANNs can be described as a network of interconnected neurons/nodes.
Each neuron has several inputs, coming from other neurons or from outside the
network (i.e. the input parameters), and a number of outputs, which in turn rep-
resents input data of another neuron or results in the �nal output of the ANN
(Dawson and Wilby, 2001) (Fig. 4.5). Each neuron is connected to other neurons
by direct communication links. The output of a neuron is based on the weighted
sum of all its inputs according to an activation function (e.g. linear function,
threshold function, Gaussian function, sigmoid function). The type of activation
function used depends on the type of network and training algorithm employed
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(Dawson and Wilby, 2001).

The ANN is developed with the use of the MATLAB Neural Network Toolbox
(Beale and Demuth, 2004), since this toolbox can �t multi-dimensional problems
well, given consistent input data and enough neurons in the hidden layers. We set
up a feed-forward network in which the connections between neurons �ow in one
direction: from an input layer through one or more hidden layers, to an output
layer (Dawson and Wilby, 2001; Kia et al, 2012). The neurons in the hidden layer
compute an output based on the weighted sum of all its inputs according to an
activation function. The sigmoid activation function is often used in literature since
it is relatively easy to compute and capable of introducing nonlinear behaviour to
the network (Dawson and Wilby, 2001; Hagan and Menhaj, 1994; Peters et al,
2006).

To set up an ANN, the number of hidden layers and neurons in each hidden layer
of the ANN must be speci�ed by the modeller. One hidden layer is used since
this type of ANN is suitable for our purpose (Hornik et al, 1989; Leshno et al,
1993; Peters et al, 2006). The choice of the number of neurons is case speci�c
since it depends on the complexity of the original system (Xiang et al, 2005) as
well as on the training data availability (Razavi et al, 2012a). For example, if
there are too few neurons in the hidden layers, the network may not be possible to
describe the underlying function of the original system because it has not enough
parameters to map all points in the training data. On the other hand, if there
are too many neurons present in the hidden layer, the network may over-�t the
training data (Dawson and Wilby, 2001). Commonly, a trial and error procedure is
used to determine the appropriate number of neurons in the hidden layer (Dawson
and Wilby, 2001; Campolo et al, 1999; Coulibaly et al, 2000). In this study, the
following procedure is applied. We started with an ANN with 20 neurons, which we
simpli�ed to an ANN with 10 neurons without loss of information. Subsequently,
we decreased the number of neurons by steps of one. We found that an ANN
with one hidden layer and two neurons (Fig. 4.5) was su�cient to accurately
predict model output based on the training data for this speci�c �ood event. The
validation results are presented in Section 6.5.

We recall that the ANN is trained with the training data generated with the 1D-
2D coupled model. A general problem with training ANNs is over-�tting (Kia
et al, 2012; Shrestha et al, 2005) which leads to the issue that the ANN �ts the
noise existing in the training data rather than the underlying function (Razavi
et al, 2012a). In environmental and water resources modelling literature, two well-
known approaches exist to avoid ANN over-�tting: early stopping and Bayesian
regularization (Dawson and Wilby, 2001; Razavi et al, 2012a). Both approaches
are e�ciently implemented in the MATLAB neural network toolbox (Beale and De-
muth, 2004). The two approaches were tested and it was found that the Bayesian
regularization resulted a slightly more accurate ANN set-up (i.e. a slightly higher
Nash-Sutcli�e coe�cient) compared to the early stopping approach. The regu-
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larization approach stops training according to the adaptive weight minimization
(MacKay, 1992). The remaining samples, i.e. the samples not used to train the
ANN, are used as test data. This data set represents an independent measure of
network performance after training.

To train the ANN, the main channel friction of the various river branches (�ve in
total) and the measured maximum water levels at Pannerden and Nijmegen are
used as input data, resulting in seven input nodes (Fig. 4.3 and Fig. 4.5). The
output that must be correctly predicted by the ANN represents the maximum
discharge at Lobith, corresponding to one output layer (Fig. 4.3 and Fig. 4.5).
Since training the ANN multiple times will result in di�erent ANN structures as a
result of di�erent starting conditions, 10 training trials are performed. Maximum
discharges at Lobith predicted by the ANN are compared with the results of the
high-�delity model. We found that all ANNs were able to reproduce the behaviour
of the high-�delity model with high accuracy. The Root Mean Square error had
a range of between 70-98 m3/s. This shows that the ANN structure as developed
in this study is able to accurately reproduce �ood wave propagation. The ANN

Figure 4.5

Set-up of the Arti�cial Neural Network with seven input parameters, one hidden layer having two

neurons and a single output parameter.
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with the lowest Root Mean Square error is used to reconstruct the 1809 maximum
discharge, following the method of Kerh and Lee (2006) and Razavi et al (2012a).

4.5 Results

4.5.1 Reconstruction results

The 1809 reconstruction shows important di�erences compared to the present-day
situation (Fig. 4.6). Firstly, the topography has been restored to a situation
preceding large-scale anthropogenic modi�cations to the terrain during the sec-
ond half of the 20th century. The reconstructed situation has no higher grounds
caused by the highways and only has few pits resulting from clay and sand mining,
whereas these features de�ne the topography in the present situation (Fig. 4.6).
Secondly, the river position and bathymetry have been restored to their semi-
natural state before river normalization, which in the Netherlands commenced
around 1850. The historic river shows wider bends than the present river and
has multiple within-channel bars (Fig. 4.6). Thirdly, the embankments along the
rivers have been restored to their 19th century dimensions. These are rather sim-
ilar compared to the present-day embankments, but locally less wide and up to a
meter lower. The positions of the embankments have hardly changed over the past
200 years (Fig. 4.6). Finally, the friction of the land cover has been restored to a
pre-20th century situation. Many locations in the reconstructed study area have
friction values similar to present-day. This is because these have been in use as
grasslands since medieval times. Locally, friction values are signi�cantly lower in
the reconstruction, because these have been taken in use for residential purposes
in the past century.

4.5.2 Validation of the Arti�cial Neural Network

We recall that the ANN was trained with varying main channel friction (represent-
ing the calibrated values of the hydraulic model) along the various river branches
and maximum simulated water levels at Pannerden and Nijmegen as input data
(Fig. 4.3). The maximum discharge at Lobith was used as output. The results
during the training and testing procedures are provided in Fig. 4.7. The accu-
racy of the model is evaluated by computing the Nash-Sutcli�e model e�ciency
coe�cient (NSE) (Nash and Sutcli�e, 1970):

NSE = 1−
∑N

n=1(Qn
m −Qn

o )2∑N
n=1(Qn

o −Qo)2
(4.2)
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Figure 4.6

Elevation map of the 1809 and present-day situation along the Waal river near the highway A50.

Note that there are large sand pits present in 2015 which were absent in 1809.

where Qm is the modelled discharge by the ANN [m3/s], Qo the target discharge
modelled by the hydraulic model [m3/s] and Qo the average of the target discharge
[m3/s]. A value of NSE equal to 1 corresponds with a perfect �t between the
output of the ANN and the output of the hydraulic model, whereas a value of 0
indicates that the ANN output is as accurate as the mean discharge predicted by
the hydraulic model. The results show that the ANN is well capable of predicting
maximum discharges as a function of varying main channel friction and maximum
water levels because of the high NSE values for both the training and test data
sets (Fig. 4.7). Based on this �nding, we have enough con�dence in the accuracy
of the ANN. Hence, the ANN can be used to reconstruct the maximum discharge
at Lobith during the 1809 �ood event.

4.5.3 Reconstruction of the 1809 maximum discharge

The objective of the ANN was to determine the maximum discharge at Lobith
during the 1809 �ood event. Two maximum measured water levels at surround-
ing sites (Pannerden and Nijmegen) are available (Fig. 4.1). The corresponding
discharge is uncertain as a result of uncertain main channel friction of the various
river branches. The input main channel friction values represent the calibrated
frictions and are variable since these are highly uncertain due to hydraulic model
calibration (Section 4.3.2). Therefore, a Monte Carlo analysis is performed with
the ANN in which the two water levels are set to their maximum measured values
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and in which the �ve main channel friction values can vary within the continuous
ranges of between 0.010-0.145 s/m1/3 (Fig. 4.3). This range is equal to the range
used to generate the training data. Hence, the ANN is not used outside its train-
ing values and therefore the ANN provides reliable results. In total, 10,000 runs
are performed in less than a second. This number of runs was su�cient to obtain
a proper approximation of the probability distribution function of the maximum
discharge at Lobith. This function is presented in Fig 4.8. The 95% con�dence
bound of the 1809 maximum discharge is equal to ∼10,920-12,050 m3/s, with an
expected discharge of 11,270 m3/s.

Figure 4.7

Regression plots of the maximum discharges predicted by the ANN and the 1D-2D coupled model

(target) for the training, validation and testing data sets and for the sets combined.

Chapter 4 115



Toonen (2015) found an expected 1809 maximum discharge of approximately
11,820 m3/s, with a 95% con�dence interval of between ∼10,400-13,450 m3/s.
We can thus state that the proposed methodology reduces the 95% con�dence in-
terval with 63% compared to the method of Toonen (2015). Speci�cally the upper
95% bound is reduced which is highly bene�cial to reduce uncertainty in �ood
frequency relations.

4.6 Discussion

The proposed methodology can be applied to any kind of historic �ood event
caused by high rainfall intensities if su�cient information about the bathymetry
and the event itself is available. Important input data is the course of the main
channel, the locations of the dike breaches and some records of maximum water
levels. In this section, the following is discussed: the training data, the e�ects of ice
jams on model results, the uncertainty in measured water levels, the applicability of

Figure 4.8

Probability distribution function of the 1809 maximum discharge as a result of the MCA performed

with the Arti�cial Neural Network.
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an ANN and the e�orts of the proposed methodology in terms of time investment.

4.6.1 Training data

The maximum upstream discharge functioned as an input parameter of the 1D-
2D coupled model to create the training data (Fig. 4.3). We found that the 95%
con�dence interval of the 1809 �ood event with a range of between 10,920-12,050
m3/s falls within the range considered to create the training data. Therefore, we
conclude that the chosen upstream discharge range, i.e. 10,000 m3/s-14,000 m3/s,
was su�ciently large.

Furthermore, the main channel friction of each river branch was used as an in-
dependent input parameter to set up the ANN. Even though the Nederrijn and
IJssel rivers are located more than 15 km downstream of Lobith, we found that
using their main channel friction values as input parameter of the ANN resulted
in a more accurate ANN set-up than if these two parameters were not considered
in the set-up. This indicates that the main channel friction values of these two
downstream river branches still have an e�ect on the maximum discharge at Lobith
caused by backwater curves. Therefore, we conclude that none of the input pa-
rameters are redundant and that all input parameters contribute to the accuracy
of the ANN.

The range of the main channel friction was based on a calibrated model available
from previous work (Bomers et al, 2019a). This range in�uences the con�dence
interval of the predicted 1809 discharge since a larger range will result in a larger
con�dence interval. To study the sensitivity of the 95% con�dence interval to the
input range of the main channel friction values, we have performed some additional
runs with the hydraulic model in which a maximum main channel friction of 0.29
is used corresponding with a value which is a factor two larger than the considered
maximum main channel friction (0.145 s/m1/3) to create the training data. We
found that increasing the main channel friction from 0.145 to 0.29 s/m1/3 results
in an increase of the maximum water level by 45 cm at Pannerden having a �xed
upstream discharge. Therefore, we state that the simulated water levels are highly
dependent on the main channel friction. Hence, the reconstructed 1809 �ood events
depends on the considered range. However, we also found that increasing the main
channel friction to a value of 0.29 s/m1/3 results in simulated water levels that are
higher than measured, even for a maximum upstream discharge of only 10,000
m3/s. On the other hand, for a main channel friction of 0.145 s/m1/3, simulated
water levels are below measurements for an upstream discharge of 10,000 m3/s and
higher than measurements for an upstream discharge of 14,000 m3/s. Since the
training data produces maximum water levels at Nijmegen and Pannerden that are
in the range of measurements, we conclude that the main channel friction range
is selected properly. However, if no earlier study is available providing insights in
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the range of potential maximum upstream discharges the problem of selecting an
appropriate main channel friction range becomes more severe.

4.6.2 The e�ects of ice jams on model results

This study shows that an ANN can be used to predict maximum discharges of
historic �ood events if measured water levels are available. However, it must be
noted that the developed ANN is only as good as its high-�delity hydraulic model.
Hydraulic models are typically used to simulate �ood wave propagation under nor-
mal �ow conditions. Flood events caused by e.g. ice jams are di�cult to simulate
because of the complex physical processes. Furthermore, for historic �ood events
the exact locations, sizes and behaviour of the ice jams are generally unknown.
Therefore, we recommend to only use the proposed methodology for �ood events
caused by high rainfall intensities or snow melt. During the 1809 �ood event, an
ice jam was present along the Nederrijn river. As a consequence, the Nederrijn
river was more or less blocked and more water started to �ow towards the IJssel
river. As a result, the high-�delity model did not predict water levels at Arnhem
(located along the Nederrijn river) and Doesburg (located along the IJssel river)
in the correct range. Although we have no strong indication from literature, it
might be that also the water levels at Pannerden and Nijmegen were a�ected to
a certain extent by ice jams. If this is the case, the water levels could have been
lower under normal �ow conditions. Subsequently, the reconstructed maximum
discharge at Lobith achieved in this study might have been overestimated. There-
fore, we highlight that the 1809 �ood event had a discharge at maximum equal
to the reconstructed maximum discharge. For �ood safety assessments, this is the
most important information since it is of high importance that the uncertainty in
the upper bound of the 95% con�dence interval is reduced.

Not only downstream of Lobith ice jams were present, but also upstream near
Emmerich, Germany (Terfehr, 2008). However, according to literature, this ice
jam fell apart quite fast. Flow pulses generated by ice jam melting is not considered
in this study because we do not have evidence that such �ow pulses were present
during the �ood event. Consequently, it might be that the discharge wave shape
used as boundary condition is not correct since this has a typical shape of a normal
�ood event generated by a precipitation event. However, the work of Bomers et al
(2019b) shows that the discharge wave shape only has a little e�ect on downstream
maximum discharges. Hence, the reconstructed discharge at Lobith represents a
reliable maximum number.
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4.6.3 Uncertainty in the measured water levels

In Section 4.5.3, it was assumed that the measured water levels were not subject to
any uncertainties. However, this is generally not the case during �ood events. To
study the in�uence of potential uncertainty in measured water levels, a variation
of 50 cm is included in the analysis (i.e. the actual water levels at Nijmegen and
Pannerden can be 25 cm lower or higher than measured). It is assumed that the
uncertainty follows a normal distribution.

Including the uncertainty of measured water levels in the analysis results in a
predicted maximum discharge of 11.345 m3/s and a 95% con�dence interval of
between ∼10.500-12.190 m3/s. The uncertainty in measurements results thus in
an increase in the con�dence interval by 560 m3/s. Even though the interval
increases, it is still much lower compared to the �ndings of Toonen et al (2015)
who also did not include the e�ect of uncertain measurements in the analysis. This
shows the robustness of the presented methodology and the applicability of the
use of hydraulic models for accurate historic �ood predictions.

4.6.4 Applicability of an Arti�cial Neural Network

In section 4.5.2, we found that the ANN with one hidden-layer and two neurons
is capable of reproducing the physical behaviour of the hydraulic model with high
accuracy. The simplicity of the ANN may indicate that the set up of an ANN is
redundant and that a simpler method might have worked as well. To test this, three
other types of surrogate models are set up, namely: a linear regression model, a
Gaussian process regression model and a Quadratic Support Vector Machine. For
more information about the set up and applicability of these types of models,
we refer to Chau et al (2005), Han et al (2007), Liong and Sivapragasam (2002),
Raghavendra and Deka (2014), Rezaeianzadeh et al (2014), Yu et al (2006) and
Wasimi and Kitanidis (1983).

All types of surrogate models are capable of reproducing the output of the hy-
draulic model with high accuracy (Table 4.3). However, the ANN performs best.
Contrarily, the linear regression model is less capable of predicting the target be-
haviour since the physical processes during the 1809 �ood do not have a fully linear
nature. This is mainly caused by the �ow through the Ouderijnstrangen area and
the various dike breaches along the Rhine river branches. Furthermore, the ANN
is capable of predicting the maximum discharge at Lobith with the smallest 95%
con�dence interval (Table 4.3). This interval is at least 700 m3/s smaller compared
to the computed intervals of the other surrogate models. Speci�cally, the upper
bound is lower which is highly bene�cial for �ood frequency analyses.
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Table 4.3

Results of the Arti�cial Neural Network (ANN), a linear regression model (LRM), a Gaussian process

regression model (GRM) and a Quadratic Support Vector Machine (SVM). NSE represents the Nash-

Sutcli�e model e�ciency coe�cient and RMSE the Root Mean Squared error, Qav is the maximum

average discharge predicted, 2.5% and 97.% represent the lower and upper bounds of the 95%

con�dence interval respectively.

Surrogate NSE [-] RMSE [m3/s] Qav 2.5% 97.5% 95% interval

ANN 0.996 70 11.485 10.920 12.050 1.130

LRM 0.981 165 11.525 10.470 12.580 2.110

GRM 0.996 112 11.535 10.590 12.480 1.890

SVM 0.991 123 11.605 10.690 12.520 1.830

4.6.5 Geometry reconstruction and hydraulic modelling e�orts

The use of a 2D hydraulic model to create the training data is quite time con-
suming. Therefore, a 1D-2D coupled model was used in which a single simulation
was typically in the order of 30 minutes. However, collecting the data required to
perform the geometry reconstruction, and performing the reconstruction itself is
quite time consuming especially for older events for which the available informa-
tion becomes even scarcer. She�er et al (2003) found for the Ardèche river, France,
that �ood events are generally clustered in time. We advise to reconstruct such
clustered �ood events (e.g. the Rhine river �oods in 1496 and 1497) since then the
bathymetry reconstruction only has to be performed once while it can be used to
reconstruct multiple historic �oods. Furthermore, we advise to use the proposed
method solely for �ood events capturing highly complex physical processes caused
by e.g. dike breaches. For these situations, the use of simpler methods such as
regression functions is less suitable.

4.7 Conclusions

An Arti�cial Neural Network (ANN) was set up to reconstruct the maximum
discharge of the 1809 �ood event. Training data was created with a 1D-2D coupled
model that is capable of correctly simulating the complex physical processes during
a �ood event. It was found that an ANN with one hidden layer and two neurons is
capable of reproducing the input-output relations of the 1D-2D coupled model with
high accuracy. The ANN was capable of predicting a �ood event with multiple dike
breaches resulting in inundations of the hinterland with high accuracy. Therefore,
this surrogate model was used to perform a Monte Carlo analysis with varying
input data to �nd the 1809 maximum discharge and its 95% con�dence interval.
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The predicted 1809 �ood event had an expected maximum discharge of 11,270
m3/s with a 95% con�dence interval of between ∼10,920-12,050 m3/s. This study
showed that the range of this con�dence interval has signi�cantly been reduced by
applying the proposed method compared to methods that did not use hydraulic
models to reconstruct historic �oods. Therefore, it can be concluded that the
use of hydraulic models, and a trained ANN based on such a hydraulic model,
can reduce the uncertainty of historic �ood reconstructions since these models are
capable of accurately simulating the complex physical processes of �ood events.
If these reconstructions are used to extend the data set of measured discharges,
also the �ood frequency analyses can be performed with less uncertainty (Bomers
et al, 2019c).
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Abstract

Currently, the e�ect of dike breaches on
downstream discharge partitioning and
�ood risk is not addressed in �ood safety
assessments. In a bifurcating river sys-
tem, a dike breach may cause overland
�ows which can change downstream
�ood risk and discharge partitioning.
This study examines how dike breaches
and over�ow a�ect overland �ow pat-

terns and discharges of the rivers of the
Rhine delta. For extreme discharges,
an increase in �ood risk along the river
branch with the smallest discharge ca-
pacity was found, while �ood risk along
the other river branches was reduced.
Therefore, dike breaches and resulting
overland �ow patterns must be included
in �ood safety assessments.

The Rhine river near the city of Düsseldorf, Germany. Photo by: A. Bomers
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5.1 Introduction

Throughout Europe, �ood frequency analyses are widely used to estimate dis-
charges associated with various return periods (Benito et al, 2004). The common
procedure of a �ood frequency analysis is to select the annual extreme discharges
of the observational data, or peak values that exceed a certain threshold (Heg-
nauer et al, 2014). These extreme values are then used to identify the parameters
of a probability distribution that provides statistical data about the selected ex-
treme values. From this �tted distribution, discharges corresponding to any return
period can be derived (Hegnauer et al, 2014).

However, a major drawback of the �ood frequency analysis is that the e�ects of
inundations as a result of upstream over�ow and dike breaches on the downstream
discharge wave cannot be incorporated in the analysis unless such events have
occurred during the measurement period. In the case of a single branch river
system, a dike breach results in a decrease in the maximum discharge further
downstream and hence in a reduction in the hydraulic load downstream (De Bruijn
et al, 2014; Schweckendiek et al, 2008; Vorogushyn et al, 2010) if the water does
not �ow back into the river at a downstream location. For all river systems, dike
breaches can result in serious �ooding. However, a dike breach in a river system
with multiple bifurcations can result in a change of the discharge partitioning
of these bifurcations since water may �ow through the embanked areas towards
another river or river branch. This may speci�cally result in a change in �ood risk
if the discharge capacity of the other river is much lower than the capacity of the
river in which the dike breach occurred. This situation is applicable in every region
where two or more rivers are situated close to each other and where the natural
terrain allows that a part of the discharge that leaves a speci�c river system �ows
towards another river branch. Such inundation patterns are possible in almost any
deltaic areas (e.g. Lower Mississippi river and Atchafalaya river (Coleman et al,
1998), the Mekong delta (Triet et al, 2017) and the Rhine delta (Bomers et al,
2018; Klerk et al, 2014)).

Excluding overland �ows from �ood frequency analysis results in an inaccurate pre-
diction of design discharges since overland �ows may alter downstream discharge
partitioning. In recent years, awarenesses of the e�ects of dike breaches, resultant
inundations and hence potential changes in downstream �ood risk has increased.
Apel et al (2009) studied the e�ects of dike breaches on downstream �ood peak re-
ductions for the Lower Rhine in Germany. They developed a dynamic-probabilistic
model that combines simpli�ed �ood process modules in a Monte Carlo simula-
tion framework. In their study area, no bifurcation points were present. Apel et al
(2009) showed that for extreme �oods, signi�cant retention e�ects are expected
as a result of dike breaches. These retention e�ects lead to a reduction in the
maximum discharge downstream of the dike breach and hence result in a changed
�ood frequency curve. A similar approach was used by Vorogushyn et al (2010)
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who ran a Monte Carlo simulation in which the uncertainty of parameters that
in�uence the breaching process was accounted for by treating them as random
variables. They used the Elbe river in Germany as their case study and created
hazards maps showing the most vulnerable regions in terms of inundation. Al-
though Apel et al (2009) and Vorogushyn et al (2010) included the capping e�ect
of dike breaches, they assumed that once a part of the discharge wave left the river
system, it was not capable of �owing back into the river at a downstream location.
Furthermore, they did not include the backwater e�ects caused by downstream
dike breaches. However, overland �ow patterns may alter the discharge partition-
ing of downstream river branches and �ood risk, whereas backwater e�ects may
increase the maximum discharge upstream of the dike breach location. Therefore,
the objective of this paper is to study the e�ect of overland �ow patterns on down-
stream discharge partitioning and �ood risk capturing the full dynamics of a river
delta (therefore including all possible �ow patterns due to multiple dike breaches
and backwater e�ects). The method proposed by Apel et al (2009) is used as a
starting point and extended such that overland �ow patterns and backwater ef-
fects are included in the model approach. The upstream part of the Rhine delta
is used as a case study to apply the proposed methodology. A large number of
potential �ood scenarios are simulated in a Monte Carlo framework. The model
results are compared with the method proposed by Apel et al (2009) to determine
whether overland �ows and backwater e�ects can change inundation patterns and
peak discharges in a river delta.

Firstly, the Rhine river delta and its �ow regime are described in Section 5.2.
Section 5.3 presents the hydraulic model used. The methodology of the Monte
Carlo analysis is explained in Section 5.4 and the results are presented in Section
5.5. The results of the sensitivity analysis are provided in Section 5.6. The paper
ends with a discussion and the main conclusions in Section 5.7.

5.2 Study area

The Rhine delta is used as a case study. The Rhine river originates in the Alps
in Switzerland and �ows through Germany where the �ood-prone area widens
until it becomes a river delta in the Netherlands (Hooijer et al, 2004). The study
area stretches from Andernach, Germany, to the Dutch Rhine river branches (Fig.
5.1). Only the discharge-dominated upper part of the Dutch Rhine river branches
is included in the domain. The downstream part that is in�uenced by the tide of
the North Sea is not included to decrease model complexity.

The German part of the river is referred to as the Lower Rhine. Along the Lower
Rhine three major tributaries are present: the Sieg, Ruhr and Lippe rivers. Their
discharges contribute to the peak discharge of the Lower Rhine. In the upstream
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region, between the upstream boundary condition and the con�uence with the
river Sieg, no embanked areas are present in the model domain. In this region,
inundations of the embanked areas are not possible to occur since the river is sur-
rounded by higher ground on both sides. The Lower Rhine enters the Netherlands
at Lobith, where it bifurcates into the Waal river and the Pannerdensch Canal.
Subsequently, the Pannerdensch Canal bifurcates into two branches: the Nederrijn
river and the IJssel river.

Floods along the Lower Rhine in Germany mainly evolve during the winter months
due to heavy precipitation events in combination with frozen or saturated soil.
In the annual maximum discharge series for the previous 120 years, 85% of the
annual maxima took place between November and March (Apel et al, 2009). All
river branches are almost completely protected by dikes in order to protect the
hinterland from �ooding. The safety levels along the Lower Rhine vary between
a return period of 100 to 500 years for the large winter dikes (ICPR, 2001). In

Figure 5.1

Representation of the model domain in which Lobith represents the German-Dutch border and BC

represents the boundary conditions.
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Figure 5.2

Current failure probabilities of the Dutch dike sections. Source: Ministry of Infras-

tructure and Water Management (retrieved from https://professional.basisinformatie-

overstromingen.nl/liwo/#/viewer/41, in Dutch).

2050, the main levees along the Dutch Rhine river branches need to have a safety
standard expressed in probability of �ooding up to 10-5. These probabilities are
based on a risk-based analysis. In this analysis, not only the probability of a �ood
is considered but also the predicted consequences (Van Alphen, 2016). In our
study, we focus on the actual failure probabilities since many dike sections do not
cope with the future safety standard yet (Fig. 5.2). The di�erences in the current
dike failure probabilities (Fig. 5.2) may lead to a situation of a dike breach at
a relatively weak spot. Resulting overland �ows may change the �ood risk and
discharge partitioning along the downstream river branches.

Currently, the Dutch water policy assumes a �xed discharge partitioning along
the various Rhine river branches at extreme discharges. It is assumed that of the
total discharge at Lobith approximately 65% �ows to the Waal river, 19% to the
Nederrijn river and 16% to the IJssel river (Spruyt and Asselman, 2017). In the
new risk-based approach, the �ood event with a return period of 100,000 years has
a maximum discharge below 18,000 m3/s at Lobith (Hegnauer et al, 2014). The
analysis of Hegnauer et al (2014) shows that this discharge cannot become larger
as a consequence of over�ow and dike breaches along the Lower Rhine. Using the
prede�ned discharge partitioning means that theoretically a maximum discharge
of approximately 11,775 m3/s can �ow towards the Waal river, around 3,376 m3/s
towards the Nederrijn river and only around 2,850 m3/s towards the IJssel river
at maximum (Spruyt and Asselman, 2017).
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To study if overland �ow patterns may change this discharge partitioning and
corresponding �ood risk in the Rhine delta, a hydraulic model is required. This
model is described in the next section.

5.3 Model environment

A one dimensional-two dimensional (1D-2D) coupled hydraulic model is developed
in order to simulate the discharge propagation from Andernach, Germany, to the
Dutch deltaic area (Fig. 5.1). HEC-RAS (v. 5.0.3), developed by the Hydrologic
Engineering Centre (HEC) of the US Army Corps of Engineers is used to perform
the simulations. Andernach is used as upstream boundary location since it has
a measurement station and is situated in the narrow valley of the Middle Rhine.
In our modelling approach, the main channel and �oodplains are discretized by
1D pro�les representing the cross sections of the river. These 1D pro�les are cou-
pled with the embanked areas (located outside the protection of the dike system)
which are discretized on a 2D grid since 1D pro�les are not capable of capturing
the complex hydrodynamic conditions inside these areas (Fig. 5.3). The 2D grid is
aligned with line segments with higher grounds such as elevated highways to su�-
ciently capture the characteristics of the DEM. In most part of the model domain
rectangular grid cells are used, where only �exible grid shapes (e.g. triangular,
rectangular, pentagonal cells) are located along the boundaries and line segments
such that the 2D grid is capable of following the boundaries of the model domain
and higher grounds (Fig. 5.3).

The 1D pro�les and 2D grid cells are coupled by a structure corresponding with the
dimensions of the dike that protects the hinterland from �ooding. If the computed
water level of a 1D pro�le exceeds the dike crest, water starts to �ow into the 2D
grid cells corresponding with inundations of the embanked areas.

HEC-RAS is capable of solving the Full Momentum equations as well as the Dif-
fusive Wave equations in which the inertial terms of the momentum equations are
neglected. Test runs with both sets of equations were performed. Both runs pro-
vided almost the same results, as was also found by Moya Quiroga et al (2016).
The maximum discharge at Lobith deviated only 0.3%, and also no signi�cant
deviation in �ood extent was found. However, the computation time of the run
solving the di�usive wave equations was signi�cantly faster. Therefore, the di�u-
sive wave equations are used to compute the �ow characteristics (e.g. water level,
�ow velocity) at each 1D-pro�le and 2D grid cell.

As upstream boundary condition a discharge wave is used. Besides the upstream
discharge wave, also the hydrographs of the three main tributaries in�uence the
maximum discharge along the Lower Rhine. Therefore, the hydrographs of the
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tributaries are included in the model approach as lateral in�ows (Fig. 5.1). Normal
depths are used as downstream boundary conditions. Normal depths are computed
with the use of the Manning's equation which can be written as (Brunner, 2016):

V =
R2/3

n

√
Sf

in which V represents the cross sectional averaged �ow velocity [m/s], R the
hydraulic radius [m] depending on the water depth, n the Manning's roughness
coe�cient [s/m1/3], and Sf the slope of the energy grade line [-]. Since the �ow
velocity is known, the Manning's equation with a user entered energy slope pro-
duces a water depth considered to be the normal depth as the hydraulic radius is
the only unknown in the Manning's equation. In general, the energy slope can be
approximated by the slope of the main channel (Brunner, 2016). This approxi-
mation is used to determine the downstream boundary conditions along the three
Dutch river branches and downstream ends of the 2D grids (Fig. 5.3).

For dike breach modelling, the built-in time growth template in HEC-RAS is used
in which an S-function is assumed such that the dike breach width increases slowly
at �rst and then accelerates as time advances, and �nally slows down again when
the breach is almost fully developed (Gee, 2010). Prediction of dike breach growth
is highly uncertain and many models exist. However, Brunner (2014b) showed
that overland �ows are not sensitive to the dike breach model used. He found that
the use of di�erent breach models resulted in a di�erent out�ow hydrograph, but
once the hydrographs are routed downstream through the embanked areas, the
hydrographs will tend to converge to each other and become very similar. There
are two main reasons for this convergence. Firstly, the total volume of water in
each of the di�erent hydrographs predicted by the di�erent breach models was
more or less the same. Secondly, as the hydrographs move through the embanked
areas, a sharp hydrograph attenuates faster than a �at hydrograph as a result of
bed roughness (Brunner, 2014b). The above �nding justi�es the use of the simple
built-in time growth template in HEC-RAS since we are not interested in correct
prediction of the out�ow hydrographs at breach locations, but in the large-scale
overland �ow patterns. Although the breach model used does not signi�cantly
change model results, the input parameters (dike breach threshold, formation time
and �nal breach width) of these models are uncertain and may a�ect the overland
�ow patterns. Therefore, these input parameters are considered as random input
variables in the Monte Carlo analysis (Section 5.4).

An existing data set of the 2025 geometry is provided by the Dutch Ministry of
Infrastructure and Water Management and the Landesamt für Natur, Umwelt und
Verbraucherschutz (LANUV) of Northrhine-Westfalia for use in this project. This
data set contains a DEM, roughness information and the location and height of the
dikes of the present situation in the Netherlands and Germany. The data covers the
entire study area except for the embanked area enclosed by the Waal river, Pan-
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Figure 5.3

Model set-up where BC represents the boundary condition (upper �gure) and an impression of a part

of the 2D grid which is aligned with line segments with high grounds (lower �gure).
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nerdensch Canal and Nederrijn river (Fig. 5.1). This latter area is reconstructed
with the use of open-source data AHN (Algemeen Hoogtekaart Nederland) avail-
able at http://www.ahn.nl/ which represents the Dutch DEM in high resolution
(5x5 m) raster format. OpenStreetMap (https://www.openstreetmap.org) is used
to schematize the roughness classes of this area. Only the �ve most dominant
roughness classes are considered resulting in an almost entirely covered land clas-
si�cation map. The �ve roughness classes considered are: urban areas, grasslands,
alluvial forest, orchard and open surface water. In essence, the 2025 geometry
corresponds with the 2015 situation. Because of the ongoing dike reinforcements
along the Lower Rhine, only the German dike locations and heights are based on
the future 2025 situation. Therefore, data representing the 2015 situation can be
applied in the modelling framework.

The model is calibrated such that measured water levels are accurately predicted.
Hydraulic model calibration is most commonly done by changing the roughness of
the main channel until simulated water levels are close to measured water levels
(Bomers et al, 2019d). In this study, the same approach was used with the cri-
terion that the calibration must lead to a maximum di�erence between measured
and simulated water levels of 10 cm. The model is calibrated with the 1995 �ood
wave data. This �ood event had a maximum discharge at Andernach of 10,100
m3/s. This discharge in combination with the discharge waves of the tributaries
along the Lower Rhine resulted in a maximum discharge of around 12,060 m3/s
at Lobith, corresponding with a return period of approximately 60 years (Tijssen,
2009). After calibration, maximum water levels are predicted with an average
di�erence of 1 cm compared to measurements (Table 5.1). The Dutch water lev-
els are available at http://waterinfo.rws.nl and provided by the Dutch Ministry
of Infrastructure and Water Management, whereas the German water levels are
available at the German Federal Waterways and Shipping Administration (WSV)
and communicated by the German Federal Institute of Hydrology (BfG).

The 1993 discharge wave with a maximum discharge of 10,500 m3/s at Andernach
is routed for validation. This discharge wave resulted in a maximum discharge
of around 11,100 m3/s at Lobith as a result of the lower in�ow of the tributaries
along the Lower Rhine compared to the 1995 �ood event. The 1993 �ood event
at Lobith has a return period of approximately 30 years (Tijssen, 2009). It was
found that simulated maximum water levels deviate less than 7 cm averaged over
the 14 measurement stations compared to measured maximum water levels during
the 1993 �ood event (Table 5.1). Furthermore, the maximum discharges along the
Rhine river branches are predicted with high accuracy. The maximum deviation
was found along the Waal river, where the simulated maximum discharge di�ers
only 3.7% from measurements (Table 5.2). These results give con�dence in the
accuracy of the model. Both the 1993 and 1995 discharge waves did not lead to
any dike breaches in the study area and hence no overland �ows were present.
Therefore, it is not possible to validate the model for such situations. However,
many studies showed the applicability of a 1D-2D coupled model (e.g. Bomers
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et al (2019a); Domeneghetti et al (2013)) and of the Di�usive Wave equations for
�ood modelling purposes (e.g. Moya Quiroga et al (2016); Moussa and Bocquillon
(2009); Leandro et al (2014)). Therefore, it is assumed that this model is also
capable of simulating large overland �ows as a result of over�ow and dike breaches
with su�cient accuracy.

Table 5.1

Calibration water level (WL) results with the 1995 �ood wave and validation WL results with the

1993 �ood wave in which Di�. represents the di�erences between measured and simulated WL.

Location Measured WL Simulated Di�. Measured Simulated Di�.

WL 1995 WL 1995 WL 1993 WL 1933

[m +NAP] [m +NAP] [m] [m +NAP] [m +NAP] [m]

Andernach 61.77 61.76 -0.01 61.98 61.87 -0.11

Bonn 52.76 52.77 0.01 52.79 52.81 0.02

Cologne 45.67 45.69 0.02 45.60 45.69 0.09

Ruhrort 27.79 27.78 -0.01 27.51 27.56 0.05

Wesel 22.42 22.43 0.01 22.14 22.24 0.10

Rees 19.33 19.33 0.00 19.03 19.13 0.10

Emmerich 17.84 17.84 0.00 17.52 17.64 0.12

Lobith 16.66 16.67 0.01 16.39 16.49 0.10

Pannerdensche Kop 15.84 15.85 0.01 15.58 15.68 0.10

Nijmegenhaven 13.53 13.54 0.01 13.35 13.38 0.03

IJsselkop 13.98 13.99 0.01 13.77 13.85 0.08

Driel Boven 11.97 11.94 -0.03 11.73 11.74 0.01

Driel Beneden 11.88 11.88 0.00 11.66 11.67 0.01

Doesburgbrug 10.59 10.59 0.00 10.43 10.41 -0.02

Average 0.01 0.07

Table 5.2

Calibration and validation results of the discharge (Q) partitioning along the Dutch Rhine river

branches with the 1995 and 1993 �ood waves, respectively. Di�. represents the di�erences (%)

between measurements and model predictions.

River branch Measured Q Simulated Q Di�. Measured Q Simulated Q Di�.

1995 [m3/s] 1995 [m3/s] [%] 1993 [m3/s] 1933 [m3/s] [%]

Bovenrijn 11,878 12,018 1.2 11,093 11,420 2.9

Waal 7,587 7,719 1.7 7,112 7,372 3.7

Pannerdensch Canal 4,291 4,300 0.2 3,982 4,051 1.7

Nederrijn 2,513 2,531 0.7 2,336 2,421 3.6

IJssel 1,780 1,765 -0.9 1,643 1,624 -1.2
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5.4 Monte Carlo analysis

To determine the in�uence of dike breaches on downstream discharges and �ood
risk, we use a Monte Carlo analysis. It is assumed that dike breaches can only
occur along the river branches downstream of the con�uence with the Lippe river
since dike breaches further upstream will not in�uence the discharge partitioning
of the Dutch river branches. Upstream of this location, only the capping e�ect
of high discharges is included as a result of over�ow. Hence, is assumed that the
dikes have an in�nite strength (i.e. will never breach).

In total, 33 dike breach locations are implemented in the model (Fig. 5.4). These
locations are based on a run in which all dikes were removed from the geometry.
A reasonable large discharge wave (i.e. larger than bankfull) selected from the
historical measured series was released to identify the locations where water may
leave the river system resulting in overland �ow. In addition, the locations where
the overland �ow may re-enter the river system were identi�ed. In this way, the
dike breach locations that will result in great overland �ows, and hence may change
the downstream discharge partitioning, were identi�ed.

Figure 5.4

Dike breach locations in which the red bullets indicate the locations where water most probably will

leave the river system and �ow into the embanked areas and where the green bullets represent the

areas where water will re-enter the river system again.
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In the analysis, only the parameters that in�uence dike breach out�ow are included
as uncertain input parameters. Following the method of Apel et al (2009) and
Vorogushyn et al (2010) these parameters are:

• Upstream �ood wave in terms of hydrograph shape and peak value

• Flood waves of the main tributaries dependent on the upstream �ood wave

• Dike breach threshold in terms of critical water level (based on fragility
curves) indicating when the dike starts to breach

• Dike breach formation time

• Final breach width

For each Monte Carlo simulation an upstream discharge wave and corresponding
discharge waves of the three main tributaries are sampled. The hydraulic model
computes the water levels along the river branches as a result of the upstream
boundary condition and lateral in�ows. At every time step, the model evaluates
at each potential dike breach location whether the water level exceeds the dike
breach threshold in terms of critical water level. If the critical water level is
exceeded, the dike starts to breach based on the sampled dike breach formation
time and �nal breach width. It is assumed that a dike breaches to the level of the
natural terrain in case of failure (Dawson et al, 2005). An overview of the Monte
Carlo analysis is given in Fig. 5.5. The next sections describe the �ve uncertain
input parameters in more detail.

5.4.1 Upstream hydrograph and hydrographs main tributaries

For �ood modelling, an upstream hydrograph is required as boundary condition.
Sampling this hydrograph includes two steps, namely: sampling both a peak value
and a discharge wave shape. A peak value of between 12,000 and 23,500 m3/s is
used such that a wide variety of potential �ood scenarios is included in the analysis.
This range is chosen since we are solely interested in the scenarios resulting in dike
breaches and/or over�ow causing overland �ow patterns that have the potential to
change downstream �ood risk and the discharge partitioning of the Dutch Rhine
river branches. Discharges smaller than 12,000 m3/s do not result in signi�cant
�ooding upstream of Lobith as has been seen during the historical �ood in 1995.
Hence, a simulation with those discharges in which over�ow and dike breaches are
neglected provides similar results as a model run in which both over�ow and dike
breaches are possible to occur (Hegnauer et al, 2014). Therefore, only discharges
larger than 12,000 m3/s are considered in the Monte Carlo analysis.

The upper bound of the discharge range has a value of 23,500 m3/s. This rather
high value is a result generated with GRADE (Generator of Rainfall and Discharge
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Figure 5.5

Overview of the Monte Carlo sampling strategy.

Extremes), a new method to derive the design discharge for the Rhine and Meuse
rivers in the Netherlands (Hegnauer et al, 2014). Under climate change conditions,
this discharge corresponds with an expected return period of 30,000 years in 2085
(Hegnauer, 2017) taking into account a rather wet climate change scenario in
which an increase in temperature of 3.5 ◦C and a high in�uence of changing air
�ow patterns is assumed (KNMI, 2015). A return period of 30,000 years seems
very high. However, for Dutch �ood safety assessments, where a return period of
30,000 years is still within the safety standards considered in 2050, it is reasonable
to use this large discharge at Andernach. Currently, the discharge corresponding
to this return period at Andernach is equal to 17,110 m3/s (Hegnauer, 2017).

Also the shape of the �ood wave is based on GRADE. The GRADE data set
consists of 50,000 years of discharge data based on re-sampled measured weather
conditions (e.g. precipitation, temperature) and expected climate change condi-
tions. Of this data set, peak discharges with a value larger than 12,000 m3/s at
Andernach were identi�ed. A 30 days time window was used in which the peak
value occurs around day 20 such that the continuous data set of 50,000 years is
divided into a set of potential upstream hydrographs (Fig. 5.6). Corresponding
discharge waves of the Sieg, Ruhr and Lippe rivers were selected as well. Fi-

136 Chapter 5



C
h
a
p
te
r
5

C
h
a
p
te
r
5

C
h
a
p
te
r
5

C
h
a
p
te
r
5

C
h
a
p
te
r
5

Figure 5.6

Examples of normalized potential discharge wave shapes.

nally, the hydrographs are normalized such that the peak value is equal to 1.0 for
rescaling purposes (Fig. 5.6). This method results in a data set of 276 potential
upstream hydrograph shapes and corresponding hydrograph shapes of the main
tributaries. For each Monte Carlo run, the selected upstream hydrograph is scaled
such that the maximum discharge corresponds with the peak value sampled. In
addition, corresponding discharge wave shapes of the tributaries are selected and
scaled to the peak values sampled. Historic �ood events have shown that there is
a strong correlation between the maximum discharges of the main tributaries and
of the maximum discharge along the Lower Rhine (Apel et al, 2009). Following
the proposed method, the dependency of the hydrographs of the tributaries and
Lower Rhine in terms of discharge wave shape and peak value is included in the
analysis.

We chose to use the discharge wave shapes of the GRADE data set instead of
measured discharge waves (as was done by Apel et al (2004) and Vorogushyn et al
(2011)), since the GRADE data set includes a much larger variety of potential
discharge wave shapes compared to the measured data set (e.g. a single sharp
peak, a single broad peak or two peaks). Moreover, the GRADE data set has a
larger spread of maximum values that are larger than 12,000 m3/s that may occur
under current climate conditions (Fig. 5.6). The measured data set goes back to
1901, and only the three largest �ood events (1926, 1993 and 1995) had maximum
discharges near 12,000 m3/s (Hegnauer et al, 2014).

Chapter 5 137



5.4.2 Dike breach threshold

Whether dike failure occurs can be computed using the equation Z = R − L
in which Z < 0 represents failure, R the strength of the dike structure and L

the hydraulic load. In this study, dike failure is assumed to be similar to a dike
breach. The load is expressed as the water level during a �ood event. For the
Dutch dikes, the following four most dominant failure mechanisms are included in
the analysis: wave overtopping, over�ow, piping and macro-stability (Diermanse
et al, 2015; De Bruijn et al, 2014). The normal distributions of the critical water
levels of these four failure mechanisms are based on 1D fragility curves. Failure
mechanisms wave overtopping and over�ow are combined in a single fragility curve
and referred to as wave overtopping from now on. The fragility curves used are
based on the 2015 dike dimensions (van Vuren et al, 2017) and are provided by the
Dutch Ministry of Infrastructure and Water Management. A 1D fragility curve
expresses the reliability of a �ood defence as a function of a de�ned dominant
stress variable (Hall et al, 2003). The curves are 1D since they are a function of
one variable, which in this case is the water level during the �ood event. The use
of fragility curves enables estimation of what failure mechanism will be dominant
for a certain water level if multiple failure mechanisms are considered (Van der
Meer et al, 2008). An example is given in Fig. 5.7a, in which the probability of
failure is given as a function of the exceedance of a certain water level. This curve
can be transformed into a normal distribution in which the probability of failure is
given as a function of a speci�c water level (Fig. 5.7b). Using this principle, a dike
may also breach during low �ow although the probability of failure is relatively
low. To exclude �ood scenarios with an extremely low probability of occurrence
from the analysis, we only focus on water levels within the 95% con�dence interval
(Fig. 5.7b).

The use of 1D fragility curves has the consequence that a dike breach always
develops in the rising stage of the discharge wave. As a result, the dike breach has
a relatively large in�uence on the resulting overland �ow and maximum discharge
further downstream. To overcome this problem, a time-dependent component
can be included in the analysis such that a dike breach is triggered by a certain
water level and a duration that this water level is exceeded (Curran et al, 2018).
However, no 2D fragility curves (describing the probability as a function of water
level and duration of exceedance) were available and hence it must be noted that
the scenarios presented in this paper represent the most extreme situations.

For the German dikes, no 1D fragility curves for any of the failure mechanisms
were available. Therefore, it is assumed that the Dutch 1D fragility curves of the
part between the German-Dutch border and the �rst bifurcation point (where the
Rhine river bifurcates into the Waal river and Pannerdensch Canal) for failure
mechanism wave overtopping/over�ow are representative for the dikes along the
Lower Rhine downstream of the con�uence with the Lippe river. Note that dike
failure can already occur before the water level reached the dike crest caused by
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Figure 5.7

Example of a fragility curve (left �gure) and its normal distribution (right �gure) in which the orange

line indicates the 95% con�dence interval.

over�ow. In reality, dikes can fail as a result of many failure mechanisms. However,
it is assumed that only the failure probabilities caused by wave overtopping are
signi�cant and that hence the e�ects of other failure mechanisms can be neglected
along the Lower Rhine. This assumption is in line with the work of Apel et al
(2009) and Prinsen et al (2015). Apel et al (2009) mention that the dikes along
the Lower Rhine are well maintained and that the authorities responsible for dike
safety state that the only mechanism in�uencing dike breaching along the Lower
Rhine is overtopping. Furthermore, the proposed method is in line with the study
of Lammersen and Hegnauer (2019) which also only includes the consequences of
dike breaches caused by wave overtopping on downstream discharges.

Note that each potential dike breach location can fail caused by high water levels at
the outer side (river system) and inner side (embanked areas) of the dike. However,
no data about the strength of the dikes in case of hydraulic load on the inner side
of the dike slope is available. It is assumed that the dikes in the study area are
symmetric in shape and hence the fragility curves of the outer side of the dikes
can be applied for the inner side as well. For each Monte Carlo simulation, critical
water levels are sampled for each dike breach location. This results in three critical
water levels for the Dutch dike breach locations as a result of failure mechanisms
piping, wave overtopping and macro-stability, and in one critical water level for
the German dike breach locations caused by wave overtopping. For the Dutch
dike breach location, the lowest sampled critical water level is used as dike breach
threshold in the simulation (Fig. 5.5).
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5.4.3 Dike breach formation time and �nal breach width

The dike breach formation time represents the time until a breach has developed
until its �nal width. Since there is not enough information available to quantify the
relation between breach width, formation time and dike strength, the formation
time and breach width are assumed as random variables. The distribution of the
dike breach formation time is based on historical data. Data of Verheij and Van
der Knaap (2003) are used resulting in a data set of 28 dike breaches with an
average formation time of 13 h and a standard deviation of 17 h. We assume a
normal distribution since this distribution best represents the distribution of the
data set. The normal distribution is bounded by a minimum formation time of
6 min and a maximum formation time of 50 h, corresponding with the minimum
and maximum values present in the data set.

Data of Apel et al (2008) and data of Verheij and Van der Knaap (2003) are
combined to determine the distribution of the �nal dike breach width, resulting
in a data set of 46 dike breaches. The average dike breach width equals 75 m
with a standard deviation of 55.5 m. Again a normal distribution is assumed. The
normal distribution is bounded by a minimum width of 3 m and a maximum width
of 200 m, representing the minimum and maximum values present in the data set.
A maximum width of 200 m is also in line with the work of De Bruijn et al (2014).

There are many parameters that may in�uence dike breach development (e.g. dike
stability, failure mechanism, pace of rising and falling water level). For example,
a rapid decline in water level will result faster in a stable dike breach width than
a slowly decreasing water level (Verheij and Van der Knaap, 2003). This explains
the large range present in the data set. Since no information is available about the
relation between all parameters that in�uence dike breach development, the full
ranges (although relatively large) in formation time and �nal breach width present
in the data sets are used in the analysis.

5.4.4 Sampling Strategy

Most often a fully random Monte Carlo analysis is performed in which the uncer-
tain input parameters are randomly sampled based on their distributions. This
has as disadvantage that many runs are required to su�ciently capture the distri-
butions of the input parameters. This is because it is likely that gaps or clusters
are present in the sample when not enough samples are taken (Saltelli et al, 2008).
Many sophisticated sampling techniques can be found in literature that attempt
to reduce the amount of runs required while the input space of the parameters is
still su�ciently captured. Most commonly used sampling methods appear to be
full factorial design, fractional factorial design, central composite design and Latin
Hypercube sampling (LHS) (Razavi et al, 2012b). The �rst three methods still
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require a relatively large number of simulations to generate all combinations to
represent the corners of the input space if many uncertain input parameters are
included in the analysis (Razavi et al, 2012b; Saltelli et al, 2008). Contrarily, the
LHS approach does not need extra simulation runs if more input parameters are
included in the analysis (Razavi et al, 2012b). Since the dike breach module (Fig.
5.5) includes many uncertain input parameters (water level threshold, �nal dike
breach width and formation time for the 33 potential dike breach locations), LHS
is used in which the distributions of the input parameters are divided into eight
slices each having a probability of occurrence of 12.5%. More information on how
to set up an LHS can be found in Saltelli et al (2008). For the input hydrograph
shapes (Fig. 5.5), a random sampling technique is used, because the data set does
not have a probability distribution as the previous mentioned input parameters.
The data set consists of 276 di�erent discharge wave shapes, each having equal
probability of occurrence.

5.5 Results: Overland �ow patterns and discharge

partitioning

During the Monte Carlo analysis, 227 runs were performed for a maximum up-
stream discharge ranging from 12,000 to 23,500 m3/s. Using the method proposed
by Apel et al (2009) to study the e�ect of dike breaches on downstream discharges,
we expect to �nd a signi�cant reduction in the maximum discharge in downstream
direction since overland �ows and backwater e�ects were not included in their anal-
ysis.

Our results only focus on the areas downstream of the con�uence with the Lippe
river since solely �ow patterns caused by dike breaches and over�ow in this part
of the model domain can change �ood risk and discharge partitioning of the Rhine
delta. We found that the maximum discharge at Andernach can be divided into
three discharge ranges, each range having its own �ood characteristics. These
ranges are explained in more detail in the following sections.

5.5.1 Qmax Andernach < 16,000 m3/s

It was found that up to a discharge wave with an upstream peak value of approx-
imately 16,000 m3/s, corresponding with a return period of approximately 7,700
years under current climate conditions (Hegnauer, 2017), overland �ows have al-
most no in�uence on the downstream discharge partitioning. Over�ow and/or
dike breaches did occur resulting in inundation of the embanked area. However,
because of the relatively low upstream maximum discharge, no signi�cant �ow
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Figure 5.8

Average maximum discharge per class at Lobith and along the Dutch Rhine river branches as a

function of the maximum upstream discharge at Andernach. The blue star represents the maximum

discharge at Lobith present in the MCA and has a value of 17,870 m3/s.

patterns were found for most of the scenarios present in the Monte Carlo analysis.
In general, the water that left the river system did not re-enter the river system
again at a downstream location. Hence, only a reduction in the maximum down-
stream discharge was found (Fig. 5.8). For this situation, the results correspond
to the results of Apel et al (2009).

The most dominant �ow patterns for an upstream maximum discharge smaller
than 16,000 m3/s are presented in Fig. 5.9. These �ow patterns are caused by
dike breaches. Speci�cally the Pannerdensch Canal is vulnerable to dike breaches
resulting in overland �ow patterns 1 and 2. Flow pattern 2 �rst �ows parallel to
the IJssel river. Thereafter, its discharge starts to �ow in two direction, where
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2a continues to �ow parallel to the river and 2b starts to �ow into the Old IJssel
Valley. Furthermore, two dike breaches along the Waal and Nederrijn rivers result
in inundations of the embanked areas and hence in a reduction in the maximum
discharge further downstream (�ow patterns 3 and 4 in Fig. 5.9).

Figure 5.9

The most dominant �ow patterns if the maximum discharge at Andernach is smaller than 16,000

m3/s. These �ow patterns only result in a decrease of the maximum discharge further downstream.

We recall that for most scenarios with an upstream maximum discharge smaller
than 16,000 m3/s, the discharge that has left the river system as a result of dike
breaches along the Dutch Rhine river branches did not �ow back into the river
system again at a more downstream location. However, still some severe �ow
patterns are possible to occur even though their probabilities are low. The Monte
Carlo analysis showed that dike breaches along the Lower Rhine caused by wave
overtopping are possible to occur if the discharge at Andernach is larger than
14,500 m3/s, corresponding with a return period of approximately 1,100 years
under current climate conditions (Hegnauer, 2017). For such a relatively low
maximum upstream discharge, the water levels are still below the dike crest level
along the Lower Rhine. The dike thus breaches as a result of wave overtopping.
Although the probability of dike breaches is low for this upstream discharge, the
e�ects are signi�cant. A large amount of water starts to �ow through the Old
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IJssel Valley (Flow pattern 5 in Fig. 5.10). Even for a discharge of approximately
14,500 m3/s at Andernach, the discharge through the Old IJssel Valley can be as
large as 3,400 m3/s. This water mainly stays within the embanked areas of the
Old IJssel Valley. According to Mens et al (2014), the worst-case discharge that
can enter the IJssel river in the coming 50-100 years as a result of climate change
is estimated at 3,250 m3/s. Hence, the inundations along the IJssel river caused
by the overland �ow through the Old IJssel Valley are much more severe than we
would expect if this area can only be inundated as a result of dike breaches and
over�ow along the IJssel river itself. Therefore, it is highly important that such
overland �ow patterns are considered in �ood safety assessments.

5.5.2 16,000 m3/s < Qmax Andernach < 18,700 m3/s

For upstream discharge waves having a peak value larger than 16,000 m3/s, dike
breaches along the Lower Rhine start to occur more often as a result of higher water
levels. The overland �ow through the Old IJssel Valley with a discharge larger
than 500 m3/s occurred in 44% of the cases for this speci�c upstream discharge
range. The water that �ows through the Old IJssel Valley starts to divide into two
�ow patterns when the water almost reaches the IJssel river. A part of the water
�ows into the IJssel river at the most upstream red box (Fig. 5.10) if the water
level in the embanked areas exceeds the dike crest level. The remaining part starts
to �ow parallel to the IJssel river in downstream direction following �ow pattern
2a. A part of this water may re-enter the IJssel river at the downstream red box
(Fig. 5.10).

The water �owing through the Old IJssel Valley reaches the IJssel river later than
the peak value of the discharge wave that �ows through the IJssel river itself. This
is because of the higher surface roughness in the embanked areas compared to the
roughness of the main channel. Nevertheless, the discharge of the overland �ow
can be signi�cantly larger than the discharge that enters the IJssel river through
the river system. Hence, this overland �ow pattern is capable of increasing the
maximum discharge of the IJssel river during a �ood event.

5.5.3 Qmax Andernach > 18,700 m3/s

For upstream discharge waves having a peak value larger than approximately
18,700 m3/s, the discharge along the downstream end of the IJssel river (near
the downstream boundary) starts to increase signi�cantly as a result of the over-
land �ow through the Old IJssel Valley. This is caused by both the large over�ow
and the increase in dike breach probability along the Lower Rhine. Although the
discharge capacity of the Old IJssel river itself is relatively small, the discharge
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Figure 5.10

The most dominant overland �ow patterns if the discharge at Andernach is larger than 16,000 m3/s.

Flow pattern 5 can change the discharge partitioning along the Dutch Rhine river branches and �ood

risk, and can already occur if the maximum discharge at Andernach exceeds 14,500 m3/s. The two

red boxes indicate the locations along the IJssel river where overland �ows may re-enter the river. The

location where �ow patterns 2b and 5 coincide depends mostly on the maximum upstream discharge.

The larger the maximum discharge at Andernach, the larger the �ow through the Old IJssel Valley.

Hence, the location where the two �ows coincide is relatively close to the IJssel river. Contrarily, if

the maximum discharge at Andernach is relatively low, the two �ow patterns will coincide somewhere

in the Old IJssel Valley further away from the IJssel river.

through the entire valley can be much larger than this capacity. Consequently, the
increased �ood risk in the Old IJssel Valley caused by �ow pattern 5 (Fig. 5.10)
increases only further. For a maximum discharge larger than 18,700 m3/s, the
most downstream potential dike breach location along the IJssel river (Fig. 5.4)
breached for 47% of the scenarios present in the Monte Carlo analysis. This breach
was mostly caused by the high water levels in the embanked areas, resulting in an
increase in the discharge at the IJssel river.

Although many overland �ow patterns exist, only the �ow through the Old IJssel
Valley results in a change in downstream discharge partitioning and �ood risk.
Since the other river branches are not a�ected by overland �ow patterns, the
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maximum potential discharge of these rivers converges towards a maximum value
(Fig. 5.8). Only the maximum discharge at the downstream end of the IJssel river
shows a strong positive correlation with the maximum discharge at Andernach.
The �ood defences along the IJssel river are not designed to withstand the large
increase in maximum discharges at the downstream end of the IJssel river. Under
normal conditions, we would expect that the discharge along the IJssel river is only
as large as 50% of the discharge of the Nederrijn river. This discharge partitioning
still holds for the upstream part of the IJssel river. Contrarily, for the downstream
part of the IJssel river, a much larger discharge is found. Although a large �ood
event causing severe inundations is required to increase the discharge of the IJssel
river as a result of overland �ow patterns, this increased discharge may lead to even
more inundations further downstream (located downstream of the model domain).

The dike breaches along the Lower Rhine result in a considerably reduction in the
�ood probability along the Waal river, the Pannerdensch Canal and the Nederrijn
river. In the new risk-based approach (Section 5.2), the safety standards along
these river branches will be much higher compared to the safety standards along
the IJssel river. This is because a dike breach in the western part of the Netherlands
has a much larger impact because of its higher population density, more vulnerable
infrastructure and higher economic value compared to the eastern part of the
Netherlands. It is expected that the consequences of a �ood in the western part
only increase further in the near future because people tend to move towards these
areas because of their large economic value and job perspectives (Klijn et al, 2012).
Therefore, the reduction in �ood risk along the Waal river, Pannerdensch Canal
and Nederrijn river as a result of upstream dike breaches may balance the increased
�ood risk along the downstream end of the IJssel river.

5.5.4 Summary all discharges

From the potential �ood scenarios modelled, we �nd that the method proposed by
Apel et al (2009) can be applied to �ood events that have a maximum upstream
discharge lower than 16,000 m3/s. For larger upstream �ood events, signi�cant
overland �ow patterns start to occur. This results in a change in �ood risk and in
an increase in the maximum discharge along the downstream end of the IJssel river.
To correctly predict �ood risk and the maximum discharge during extreme �ood
events for this river section, overland �ows must be included in the analysis. This
is because the method proposed by Apel et al (2009) will underestimate the �ood
risk in the Old IJssel Valley and the maximum discharge along the downstream end
of the IJssel river. For the other Rhine river branches, �ood risk and the maximum
discharge were not a�ected by overland �ow patterns. However, backwater e�ects
of dike breaches may still increase upstream discharges. Therefore, we conclude
that it is of great importance to include overland �ow patterns and backwater
e�ects during �ood modelling.
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5.6 Sensitivity Analysis

5.6.1 Quantitative results

Section 5.5 shows that dike breaches a�ect downstream �ood risk and the max-
imum discharge along certain river sections. Several uncertain input parameters
were included in the analysis, raising the question of which parameter mostly in-
�uences the change in downstream discharge partitioning. Therefore, this section
presents a brief sensitivity analysis to determine which potential �ood scenario re-
sults in a major increase in the maximum discharge at the downstream end of the
IJssel river and hence mostly changes the discharge partitioning along the Dutch
Rhine river branches. The uncertain parameters in the Monte Carlo analysis that
in�uence the discharge along the downstream end of the IJssel river and that are
included in the sensitivity analysis are:

• Maximum upstream discharge

• Shape of the upstream hydrograph: a single peak or two peaks

• Number of dike breaches along the Lower Rhine (north side) which is a
function of the sampled dike breach thresholds

• Average �nal width of the dike breaches along the Lower Rhine

• Average formation time of the dike breaches along the Lower Rhine

The purpose of the sensitivity analysis is screening of the most important input
parameters, i.e. factor prioritization. If the number of simulations is much higher
than the number of input parameters, Multiple Linear Regression analysis can be
highly e�ective in revealing the in�uence of each parameter (Saltelli et al, 2008).
If the model does not contain any interactions between the input parameters (i.e.
the model is additive), the linear regression function can be expressed as (Scheidt
et al, 2018):

y = β0 +

N∑
i=1

βixi (5.1)

where y represents the model output (in this study, the maximum discharge at
the downstream end of the IJssel river) and xi the various input parameters. The
coe�cients β0 and βi are determined by the least-square computation, based on the
squared di�erences between the model output produced by the regression model
and the actual model output produced by the hydraulic model (Saltelli et al, 2008).
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Table 5.3

Results of the Multiple Linear Regression analysis where βi is determined by the least-square compu-

tation based on the squared di�erences between the model output produced by the regression model

and the actual output produced by the hydraulic model, for each input parameter xi. σi represents

the standard deviation and β̂i the standardized regression coe�cient for each input parameter xi.

Input parameter βi σi β̂i

Maximum discharge 0.25 3290 [m3/s] 5.63 x 10-1

Shape hydrograph 2.88 0.39 [-] 1.07 x 10-6

Nr. of dike breaches 29.24 0.59 [-] 2.53 x 10-4

Average breach width 4.61 52.1 [m] 5.00 x 10-2

Average formation time -3.46 13.4 [h] 1.86 x 10-3

In the case of independent input parameters, the absolute standardized regression
coe�cient β̂i can be used as a measure of sensitivity (Scheidt et al, 2018):

β̂i = |βi
σi
σy
| (5.2)

where β̂i represents the standardized regression coe�cient, and σi, and σy repre-
sent the standard deviations for input parameter xi and the model output respec-
tively. In general, we state that the larger the computed value of β̂i the larger the
in�uence of the corresponding input parameter on the model output.

Table 5.3 shows the results of the Multiple Linear Regression analysis. This clearly
indicates that the maximum upstream discharge greatly in�uences the maximum
discharge at the downstream end of the IJssel river and thus the discharge parti-
tioning because of its relatively large β̂i value. The average breach width has the
second highest β̂i value. However, its value is more than one order of magnitude
smaller than the value of the upstream maximum discharge. This indicates that
only the latter signi�cantly in�uences the change in �ood risk in the Old IJssel
Valley and the maximum discharge at the downstream end of the IJssel river.
The in�uence of the remaining parameters is also relatively low compared to the
maximum upstream discharge.

The number of dike breaches along the Lower Rhine, which is a function of the
fragility curves used, has only a low in�uence on the overland �ow patterns as
a result of the great amount of over�ow that occurs, speci�cally for the large
upstream maximum discharges. Hence, the assumptions made about the German
fragility curves only have a little e�ect on the large-scale �ow patterns and hence
�ood risk.
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5.6.2 Qualitative results

A drawback of the Multiple Linear Regression analysis is that it depends on the
degree of linearity of the model (Saltelli et al, 2008). A measure for linearity is
expressed by R2 (Saltelli et al, 2008):

R2 =

N∑
i=1

(β̂i)
2 (5.3)

where R2 is also referred to as the model coe�cient of determination and is equal to
the fraction of the variance of the original data that is explained by the regression
model. A value of R2 equal to one means that the model is linear (Saltelli et al,
2008) and that the multiple linear regression model is capable of expressing all
variance of the original data. The regression model applied in this study has
a model coe�cient of determination equal to 0.67, indicating that only 67% of
the variance of the original hydraulic model is explained by the regression model.
However, the scatter plots and box plots in Figs. 5.11 and 5.12 con�rm the results
predicted by the Multiple Linear Regression Analysis. The scatter plots clearly
show that there is a positive correlation between the maximum upstream discharge
and the discharge at the downstream end of the IJssel river. As explained in
Section 5.5, over�ow and dike breaches along the Lower Rhine result in overland
�ow increasing the discharge of the IJssel river (Fig. 5.10). The discharge of this
overland �ow increases if the maximum upstream discharge increases. The random
point cloud for the �nal breach width and formation time (Fig. 5.11) indicates
that these parameters do not in�uence downstream maximum discharges, which is
in line with the Multiple Linear Regression analysis. Note that the points at which
x=0 in both scatter plots (�nal average breach width and average formation time)
represent the scenarios in which no dike breaches occur along the Lower Rhine.

Fig. 5.12 shows that the maximum discharge at the downstream end of the IJssel
river increases with the number of dike breaches along the Lower Rhine, which is
a function of the sampled dike breach thresholds. However, the box plot shows a
wide spread represented by the blue boxes (50% con�dence interval) indicating that
the positive correlation is only weak. This agrees with the results of the Multiple
Linear Regression analysis in which the computed β̂i value was low compared to
that of the maximum upstream discharge. Moreover, Fig. 5.12 shows that there is
no correlation between the shape of the upstream hydrograph and the maximum
discharge at the downstream end of the IJssel river.

From the sensitivity analysis, we conclude that the breach characteristics in terms
of breach development do not have a signi�cant in�uence on predicted overland
�ows and hence downstream discharges, as was also found by Brunner (2014b).
Therefore, it can be stated that a sophisticated breach model is indeed not re-
quired for �ood modelling purposes. Simpli�ed assumptions as applied in this
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Figure 5.11

Scatter plots which represent the correlation between the maximum upstream discharge, �nal breach

width and formation time and the maximum discharge at the downstream end of the IJssel river.

Figure 5.12

Relation between the number of dike breaches along the Lower Rhine and resulting maximum discharge

at the downstream end of the IJssel river (left �gure) and the relation between discharge wave shape

(a single peak or two peaks) and resulting maximum discharge at the downstream end of the IJssel

river (right �gure).
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study can be used instead. More important for accurate prediction of potential
�ood scenarios, are the upstream boundary conditions in terms of the maximum
discharge.

5.7 Discussion and Conclusions

We extended the method proposed by Apel et al (2009) to study the e�ects of dike
breaches and over�ow on maximum discharges and �ood risk in a bifurcating river
system. A 1D-2D coupled model was developed that was able to predict water
levels during �ood events with high accuracy. The Rhine delta was used as a case
study, but the proposed method can be applied to any river system if a high-
resolution DEM is available. Applying this method will generate, amongst others,
knowledge on the e�ect of dike breaches on the potential maximum discharges
along various river branches.

The analysis has shown that dike breaches can change the maximum discharges
of downstream rivers. However, this e�ect is not only bene�cial in terms of a
reduction in the maximum discharge further downstream, as was found by Apel
et al (2009). Large overland �ows may change downstream discharge partitioning
and �ood risk. Furthermore, backwater e�ects may increase the maximum dis-
charge upstream of a dike breach. For this speci�c case study, it was found that
over�ow and dike breaches along the Lower Rhine result in great inundations in
the Old IJssel Valley. Although this overland �ow pattern only occurs in very
extreme cases, its e�ect on �ood risk is relevant to consider. If the discharge of
the overland �ow through the Old IJssel Valley is extremely large, a part may
enter the IJssel river. This consequently increases the maximum discharge at the
downstream end of the IJssel river. In the most extreme scenario present in the
Monte Carlo analysis, the maximum discharge at the downstream end of the IJssel
river increased with 316%. This increase is so severe, not only because of the large
amount of water that is �owing through the Old IJssel Valley, but also because
the discharge at the upstream part of the IJssel river, near the bifurcation point
with the Nederrijn river, is relatively small. This is because only a small amount
of water is �owing in the main channels as a result of the dike breaches along the
Pannerdensch Canal and Lower Rhine. All other Rhine river branches were not
a�ected by overland �ow patterns. Hence, only a reduction in maximum discharge
as a result of upstream dike breaches was found. Therefore, �ood risk decreases
along the Waal river, Pannerdensch Canal and Nederrijn river.

Overall, we conclude that dike breaches, resulting overland �ow patterns and back-
water e�ects must be included in the analysis of safety assessments since it may
change downstream �ood risk. This study shows that dike breaches may have a
bene�cial e�ect on some downstream river branches in terms of discharge reduc-
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tion, while it may also cause severe problems along other river branches, especially
if the discharge capacity of the speci�c river is relatively low compared to the dis-
charge capacity of the other river branches. This is because an upstream dike
breach and/or over�ow can cause inundations that are much more severe than
would be the case if only over�ow and/or dike breaches occurs along the river
with a relatively low discharge capacity.

Finally, the sensitivity analysis showed that a change in downstream discharge
partitioning and �ood risk is mostly in�uenced by the upstream maximum dis-
charge, whereas breach characteristics (formation time and �nal breach width) do
not have a signi�cant impact on the predicted overland �ow patterns.
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Abstract

Flood frequency curves are usually
highly uncertain since they are based on
short data sets of measured discharges
or weather conditions. To decrease the
con�dence intervals, an e�cient boot-
strap method is developed in this study.
The Rhine river delta is considered as
a case study. We use a hydraulic model
to normalize historic �ood events for an-
thropogenic and natural changes in the

river system. As a result, the data set of
measured discharges could be extended
by approximately 600 years. The study
shows that historic �ood events decrease
the con�dence interval of the �ood fre-
quency curve signi�cantly, speci�cally in
the range of large �oods. This even ap-
plies if the maximum discharges of these
historic �ood events are highly uncer-
tain themselves.

The IJssel river near the City of Deventer. Photo by: A. Bomers
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6.1 Introduction

Floods are one of the main natural hazards to cause large economic damage and
human casualties worldwide as a result of serious inundations with disastrous ef-
fects. Design discharges associated with a speci�c return period are used to con-
struct �ood defences to protect the hinterland from severe �oods. These design
discharges are commonly determined with the use of a �ood frequency analysis
(FFA). The basic principle of an FFA starts with selecting the annual maximum
discharges of the measured data set, or peak values that exceed a certain threshold
(Schendel and Thongwichian, 2017). These maximum or peak values are used to
identify the parameters of a probability distribution. From this �tted distribution,
discharges corresponding to any return period can be derived.

Return periods of design discharges are commonly of the order of 500 years or
even more, while discharge measurements have been performed only for the last
50-100 years. For the Dutch Rhine river delta (used as a case study in this pa-
per), water levels and related discharges have been registered since 1901 while
design discharges have a return period up to 100,000 years (Van der Most et al,
2014). Extrapolation of these measured discharges to such return periods results
in large con�dence intervals of the predicted design discharges. Uncertainty in the
design discharges used for �ood risk assessment can have major implications for
national �ood protection programs since it determines whether and where dike re-
inforcements are required. A too wide uncertainty range may lead to unnecessary
investments.

To obtain an estimation of a �ood with a return period of 10,000 years with little
uncertainty, a discharge data set of at least 100,000 years is required (Kleme²,
1986). Of course, such data sets do not exist. For this reason, many studies try to
extend the data set of measured discharges with historic and/or paleo �ood events.
The most common methods in literature to include historical data into an FFA
are based on the traditional methods of frequentist statistics (Frances et al, 1994;
MacDonald et al, 2014; Sartor et al, 2010) and Bayesian statistics (O'Connell et al,
2002; Parkes and Demeritt, 2016; Reis and Stedinger, 2005).

While frequentist statistics are generally applied by decision makers, Bayesian
statistics have signi�cantly increased in popularity in the last decade. Reis and
Stedinger (2005) have successfully applied a Bayesian Markov chain Monte Carlo
(MCMC) analysis to determine �ood frequency relations and their uncertainties
using both systematic data and historic �ood events. A Bayesian analysis deter-
mines the full posterior distribution of the parameters of a probability distribution
function (e.g. Generalized extreme value (GEV) distribution). This has the ad-
vantage that the entire range of parameter uncertainty can be included in the
analysis. Contrarily, classical methods based on frequentist statistics usually only
provide a point estimate of the parameters where their uncertainties are commonly
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described by using the assumption of symmetric normal distributed uncertainty
intervals (Reis and Stedinger, 2005). The study of Reis and Stedinger (2005)
shows that con�dence intervals of design discharges were reduced signi�cantly by
extending the systematic data set with historic events using the proposed Bayesian
framework. This �nding is important for the design of future �ood-reduction mea-
sures since these can then be designed with less uncertainty.

However, Bayesian statistics also have several drawbacks. Although no assumption
about the parameter uncertainty of the distribution function has to be made,
the results depend on the parameter priors which have to be chosen a priori.
The in�uence of the priors on the posterior distributions of the parameters and
hence on the uncertainty of �ood frequency relations can even be larger than the
in�uence of discharge measurement errors (Neppel et al, 2010). The prior can
be estimated by �tting the original data with the use of the maximum likelihood
method. However, we do not have any measurements in, or near, the tail of the
frequency distribution functions. In this way, the bene�ts of the Bayesian method
compared to a traditional �ood frequency analysis are at least questionable.

In this study, we propose a systematic approach to include historic �ood informa-
tion in �ood safety assessments. The general methodology of a �ood frequency
analysis remains, only the data set of measured discharges is extended with the
use of a bootstrap approach. As a result, this method is close to current practice
of water managers. We extend the data set of measured discharges at Lobith, the
German-Dutch border, with historic events to decrease uncertainty intervals of
design discharges corresponding to rare events. A bootstrap method is proposed
to create a continuous data set after which we perform a traditional FFA to stay in
line with the current methods used for Dutch water policy. Hence, the results are
understandable for decision makers since solely the e�ect of using data sets with
di�erent lengths on �ood frequency relations and corresponding uncertainty inter-
vals is presented. The objective of this study is thus to develop a straightforward
method to consider historic �ood events in an FFA, while the basic principles of
an FFA remain unchanged.

The measured discharges at Lobith (1901-2018) are extended with the continuous
reconstructed data set of Toonen (2015) covering the period 1772-1900. These
data sets are extended with the most extreme, older historic �ood events near
Cologne reconstructed by Meurs (2006), which are routed towards Lobith. For
this routing, a one dimensional-two dimensional (1D-2D) coupled hydraulic model
is used to determine the maximum discharges during these historic events based
on the current geometry. In such a way, the historic �oods are corrected for an-
thropogenic interventions and natural changes of the river system, referred to as
normalization in this study. Normalizing the historic events is of high importance
since �ood patterns most likely change over the years as a result of dike reinforce-
ments, land use change or decrease in �oodplain area (dike shifts). The normalized
events almost always lead to a higher discharge than the historic event. This is
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because more water is capable of �owing through the river system as a result of the
heightened dikes along the Lower Rhine. Today, �oods occur for higher discharge
stages compared to the historical time period. In any case, the normalized events
give insight into the consequences of an event with the same characteristics of a
historic �ood event translated to present times. To create a continuous data set, a
bootstrap resampling technique is used. The results of the bootstrap method are
evaluated against an FFA based on solely measured annual maximum discharges
(1901-2018 and 1772-2018). Speci�cally, the change in the design discharge and its
95% con�dence interval of events with a return period of 100,000 years is consid-
ered because this design discharge corresponds with the highest safety level used
in Dutch �ood protection programs (Van Alphen, 2016).

In Section 6.2 the di�erent data sets used to construct the continuous discharge
data set are explained, as well as the 1D-2D coupled hydraulic model. Next, the
bootstrap method and FFA are explained (Section 6.3 and Section 6.4 respec-
tively). After that, the results of the FFA are given (Section 6.5). The paper ends
with a discussion (Section 6.6) and the main conclusions (Section 6.7).

6.2 Annual maximum discharges

6.2.1 Discharge measurements covering the period 1901 - 2018

Daily discharge observations at Lobith have been performed since 1901 and are
available at https://waterinfo.rws.nl. From this data set, the annual maximum
discharges are selected, in which the hydrologic time period, starting at the 1st of
October and ending at the 30th of September, is used. Since changes to the system
have been made in the last century, Tijssen (2009) has normalized the measured
data set from 1901 to 2008 for the year 2004. In the 20th century, canalization
projects were carried out along the Upper Rhine (Germany) and were �nalized in
1977 (Van Hal, 2003). After that, retention measures were taken in the trajectory
Andernach-Lobith. First, the 1901 to 1977 data set has been normalized with the
use of a regression function describing the in�uence of the canalization projects on
the maximum discharges. Then, again a regression function was used to normalize
the 1901-2008 data set for the retention measures (Van Hal, 2003). This results in
a normalized 1901-2008 data set for the year 2004. For the period 2009-2018, the
measured discharges without normalization are used.

During the discharge recording period, di�erent methods have been used to per-
form the measurements. These di�erent methods result in di�erent uncertainties
(Table 6.1) and must be included in the FFA to correctly predict the 95% con�-
dence interval of the FF curve. From 1901 until 1950, discharges at Lobith were
based on velocity measurements performed with �oating sticks on the water sur-
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face. Since the velocity was only measured at the surface, extrapolation techniques
were used to compute the total discharge. This resulted in an uncertainty of ap-
proximately 10% (Toonen, 2015). From 1950 until 2000, current meters were used
to construct velocity-depth pro�les. These pro�les were used to compute the total
discharge, having an uncertainty of approximately 5% (Toonen, 2015). Since 2000,
acoustic Doppler current pro�les have been used, for which an uncertainty of 5%
is also assumed.

Table 6.1

Uncertainties and properties of the various data sets used. The 1342-1772 data set represents the

historical discharges (�rst row in the table), whereas the data sets in the period 1772-2018 are referred

to as the systematic data sets (rows 2-7).

Time period Data source Property Cause uncertainty Location

1342-1772 Meurs (2006) 12 single Reconstruction uncertainty Cologne

events caused by main channel

bathymetry, bed friction,

and maximum occurring

water levels

1772-1865 Toonen (2015) Continuous Reconstruction uncertainty Emmerich,

data set based on measured water Pannerden

levels of surrounding sites and

(∼ 12%) Nijmegen

1866-1900 Toonen (2015) Continuous Uncertainty caused by Lobith

data set translation of measured water

levels into discharges

(∼ 12%)

1901-1950 Tijssen (2009) Continuous Uncertainty caused by Lobith

data set extrapolation techniques

to translate measured

velocities at the water

surface into discharges

(10%)

1951-2000 Tijssen (2009) Continuous Uncertainty caused by Lobith

data set translation of velocity-depth

pro�les into discharges

(5%)

2001-2008 Tijssen (2009) Continuous Measurement errors (5%) Lobith

data set

2009-2018 Measured water levels Continuous Measurement errors (5%) Lobith

available at data set

https://waterinfo.rws.nl
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Figure 6.1

Maximum annual discharges (Q) and their 95% con�dence interval during the systematic time period

(1772-2018).

6.2.2 Water level measurements covering the period 1772 -

1900

Toonen (2015) studied the e�ects of non-stationarity in �ooding regimes over time
on the outcome of an FFA. He extended the data set of measured discharges of
the Rhine river at Lobith with the use of water level measurements. At Lobith,
daily water level measurements are available since 1866. For the period 1772-1865
water levels were measured at the nearby gauging locations Emmerich, Germany
(located 10 km in upstream direction), and Pannerden (located 10 km in down-
stream direction) and Nijmegen (located 22 km in downstream direction) in the
Netherlands. Toonen (2015) used the water levels of these locations to compute
the water levels at Lobith and their associated uncertainty interval with the use
of a linear regression between the di�erent measurement locations. Subsequently,
he translated these water levels, together with the measured water levels for the
period 1866-1900, into discharges using stage-discharge relations at Lobith. These
relations were derived based on discharge predictions adopted from Cologne be-
fore 1900 and measured discharges at Lobith after 1900, as well as water level
estimates from the measurement locations Emmerich, Pannerden, Nijmegen and
Lobith. Since the discharge at Cologne strongly correlates with the discharge at
Lobith, the measured discharges in the period 1817-1900 could be used to predict
discharges at Lobith. The 95% con�dence interval in reconstructed water levels
propagates in the application of stage-discharge relations, resulting in an uncer-
tainty range of approximately 12% for the reconstructed discharges (Fig. 6.1)
(Toonen, 2015).
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The reconstructed discharges in the period 1772-1900 represent the computed max-
imum discharges at the time of occurrence and these discharges have not been
normalized for changes in the river system. They thus represent the actual an-
nual maximum discharges that occurred. Toonen (2015) argues that, based on the
work of Bronstert et al (2007) and Vorogushyn and Merz (2013), the e�ect of recent
changes in the river system on discharges of extreme �oods of the Lower Rhine
is small. Hence, it is justi�ed to use the presented data set of Toonen (2015) in
this study as normalized data. Fig. 6.1 shows the annual maximum discharges for
the period 1772-2018 and their 95% con�dence intervals. This data represents the
systematic data set and consists of the measured discharges covering the period
1901-2018 and the reconstructed data set of Toonen (2015) covering the period
1772-1900.

6.2.3 Reconstructed �ood events covering the period 1300 -

1772

Meurs (2006) has reconstructed maximum discharges during historic �ood events
near the city of Cologne, Germany. The oldest event dates back to 1342. Only �ood
events caused by high rainfall intensities and snowmelt were reconstructed because
of the di�erent hydraulic conditions of �ood events caused by ice jams. The used
method is described in detail by Herget and Meurs (2010), in which the 1374
�ood event was used as a case study. Historic documents providing information
about the maximum water levels during the �ood event were combined with the
reconstruction of the river cross section at that same time. Herget and Meurs
(2010) calculated mean �ow velocities near the city of Cologne at the time of the
historic �ood events with the use of Manning's equation:

Qp = ApRp
2/3S1/2n-1 (6.1)

where Qp represents the peak discharge (m3/s), Ap the cross-sectional area (m2)
during the highest �ood level, Rp the hydraulic radius during the highest �ood
level (m), S the slope of the main channel and n its Manning's roughness coe�cient
(s/m1/3). However, the highest �ood level as well as the Manning's roughness co-
e�cient are uncertain. The range of maximum water levels was based on historical
sources, whereas the range of Manning's roughness coe�cients was based on the
tables of Chow (1959). Including these uncertainties in the analysis, Herget and
Meurs (2010) were able to calculate maximum discharges of the speci�c historic
�ood events and associated uncertainty ranges (Fig. 6.4).

In total, 13 historic �ood events that occurred before 1772 were reconstructed.
Two of the �ood events occurred in 1651. Only the largest �ood of these two
is considered as a data point. This results in 12 historic �oods that are used
to extend the systematic data set. The reconstructed maximum discharges at
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Cologne (Meurs, 2006) are used to predict maximum discharges at Lobith with
the use of a hydraulic model to normalize the data set. Although Cologne is
located roughly 160 km upstream of Lobith, there is a strong correlation between
the discharges at these two locations. This is because they are located in the same
�uvial trunk valley and only have minor tributaries (Sieg, Ruhr and Lippe rivers)
joining in between (Toonen, 2015). This makes the reconstructed discharges at
Cologne applicable to predict corresponding discharges at Lobith. The model used
to perform the hydraulic calculations is described in Section 6.2.3. The maximum
discharges at Lobith of the 12 historic �ood events are given in Section 6.4.

Model environment

In this study, the 1D-2D coupled modelling approach as described by Bomers et al
(2019b) is used to normalize the data set of Meurs (2006). This normalization is
performed by routing the reconstructed historical discharges at Cologne over mod-
ern topography to estimate the maximum discharges at Lobith in present times.
The study area stretches from Andernach to the Dutch cities of Zutphen, Rhenen
and Druten (Fig. 6.2). In the hydraulic model, the main channels and �oodplains
are discretized by 1D pro�les. The hinterland is discretized by 2D grid cells. The
1D pro�les and 2D grid cells are connected by a structure corresponding with the
dimensions of the dike that protects the hinterland from �ooding. If the computed
water level of a 1D pro�le exceeds the dike crest, water starts to �ow into the 2D
grid cells corresponding with inundations of the hinterland. A discharge wave is
used as the upstream boundary condition. Normal depths, computed with the
use of Manning's equation, were used as downstream boundary conditions. HEC-
RAS (v. 5.0.3) (Brunner, 2016), developed by the Hydrologic Engineering Center
(HEC) of the US Army Corps of Engineers, is used to perform the computations.
For more information about the model set-up, see Bomers et al (2019b).

We use the hydraulic model to route the historical discharges at Cologne, as re-
constructed by Meurs (2006), to Lobith. However, the reconstructed historical
discharges were uncertain. Therefore, the discharges at Lobith are also uncertain.
To include this uncertainty in the analysis, a Monte Carlo analysis (MCA) is per-
formed in which, among others, the upstream discharges reconstructed by Meurs
(2006) are included as random parameters. These discharges have large con�dence
intervals (Fig. 6.4). The severe 1374 �ood, representing the largest �ood of the
last 1,000 years with a discharge of 23,000 m3/s, even has a con�dence interval of
more than 10,000 m3/s. To include the uncertainty as computed by Meurs (2006)
in the analysis, the maximum upstream discharge is varied in the MCA based on
its probability distribution. However, the shape of this probability distribution is
unknown. Herget and Meurs (2010) only provided the maximum, minimum and
mean values of the reconstructed discharges. We assumed normally distributed
discharges since it is likely that the mean value has a higher probability of oc-
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Figure 6.2

Model domain of the 1D-2D coupled model.

currence than the boundaries of the reconstructed discharge range. However, we
found that the assumption of the uncertainty distribution has a negligible e�ect
on the 95% uncertainty interval of the FF curve at Lobith. Assuming uniformly
distributed uncertainties only led to a very small increase in this 95% uncertainty
interval.

Not only the maximum discharges at Cologne, but also the discharge wave shape
of the �ood event are uncertain. The shape of the upstream �ood event may
in�uence the maximum discharge at Lobith. Therefore, the upstream discharge
wave shape is varied in the MCA. We use a data set of approximately 250 potential
discharge wave shapes that can occur under current climate conditions (Hegnauer
et al, 2014). In such a way, a broad range of potential discharge wave shapes,
e.g. a broad peak, a small peak, or two peaks, are included in the analysis. For
each run in the MCA, a discharge wave shape is randomly sampled and scaled to
the maximum value of the �ood event considered (Fig. 6.3). This discharge wave
represents the upstream boundary condition of the model run.

The sampled upstream discharges, based on the reconstructed historic discharges
at Cologne, may lead to dike breaches in present times. Since we are interested
in the consequences of the historic �ood events in present times, we want to in-
clude these dike breaches in the analysis. However, it is highly uncertain how
dike breaches develop. Therefore, the following potential dike breach settings are
included in the MCA (Fig. 6.3):
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1. Dike breach threshold

2. Final dike breach width

3. Dike breach formation time

The dike breach thresholds (i.e. the critical water level at which a dike starts to
breach) are based on 1D fragility curves provided by the Dutch Ministry of In-
frastructure and Water Management. A 1D fragility curve expresses the reliability
of a �ood defence as a function of the critical water level (Hall et al, 2003). The
critical water levels thus in�uence the timing of dike breaching. For the Dutch
dikes, it is assumed that the dikes can fail due to failure mechanisms of wave
overtopping and over�ow, piping, and macro-stability, whereas the German dikes
only fail because of wave overtopping and over�ow (Bomers et al, 2019b). The
distributions of the �nal breach width and the breach formation time are based
on literature and on historical data (Apel et al, 2008; Verheij and Van der Knaap,
2003). Since it is unfeasible to implement each dike kilometer as a potential dike
breach location in the model, only the dike breach locations that result in sig-
ni�cant overland �ow are implemented. This results in 33 potential dike breach
locations, whereas it is possible for over�ow (without dike breaching) to occur at
every location throughout the model domain (Bomers et al, 2019b).

Thus, for each Monte Carlo run an upstream maximum discharge and a discharge
wave shape are sampled. Next, for each of the 33 potential dike breach locations
the critical water level, dike breach duration and �nal breach widths are sampled.
With this data, the Monte Carlo run representing a speci�c �ood scenario can
be run (Fig. 6.3). This process is repeated until convergence of the maximum
discharge at Lobith and its con�dence interval are found. For a more in-depth
explanation of the Monte Carlo analysis and random input parameters, we refer
to Bomers et al (2019b).

The result of the MCA is the normalized maximum discharge at Lobith and its
95% con�dence interval for each of the 12 historic �ood events. Since the maxi-
mum discharges at Cologne are uncertain, the normalized maximum discharges at
Lobith are also uncertain (Fig. 6.4). Fig 6.4 shows that the extreme 1374 �ood
with a maximum discharge of between 18,800 m3/s and 29,000 m3/s at Cologne,
signi�cantly decreases in the downstream direction as a result of over�ow and dike
breaches. Consequently, the maximum discharge at Lobith turns out to be between
13,825 and 17,753 m3/s. This large reduction in the maximum discharge is caused
by the major over�ow and dike breaches that occur in present times. Since the
1374 �ood event was much larger than the current discharge capacity of the Lower
Rhine, the maximum discharge at Lobith decreases. The reconstruction of the
1374 �ood over modern topography is presented in detail in Bomers et al (2019e).
On the other hand, the other 11 �ood events were below this discharge capacity
and hence only a slight reduction in discharges was found for some of the events
as a result of dike breaches, whereas over�ow did not occur. Some other events
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Figure 6.3

Random input parameters considered in the Monte Carlo analysis.

slightly increased as a result of the in�ow of the tributaries Sieg, Ruhr and Lippe
rivers along the Lower Rhine. This explains why the 1374 �ood event is much
lower at Lobith compared to the discharge at Andernach, while the discharges of
the other 11 �ood events are more or less the same at these two locations (Fig.
6.4). The reduction in maximum discharge of the 1374 �ood event in the down-
stream direction shows the necessity to apply hydraulic modelling since the use
of a linear regression analysis based on measured discharges between Cologne and
Lobith will result in an unrealistically larger maximum discharge at Lobith.

The reconstructed discharges at Lobith are used to extend the systematic data set
presented in Fig. 6.1. In the next section, these discharges are used in an FFA
with the use of a bootstrap method.

6.3 The bootstrap method

The systematic data set covering the period 1772-2018 is extended with 12 recon-
structed historic �ood events that occurred in the period 1300-1772. To create
a continuous data set, a bootstrap method based on sampling with replacement
is used. The continuous systematic data set (1772-2018) is resampled over the
missing years from the start of the historical period to the start of the systematic
record. Two assumptions must be made such that the bootstrap method can be
applied:
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Figure 6.4

Maximum discharges and their 95% con�dence intervals of the reconstructed historic �oods at Cologne

(Herget and Meurs, 2010) and simulated maximum discharges and their 95% con�dence intervals at

Lobith for the 12 historic �ood events.

1. The start of the continuous discharge series since the true length of the
historical period is not known.

2. The perception threshold over which �oods were recorded in the histori-
cal times before water level and discharge measurements were conducted is
known.

Assuming that the historical period starts with the �rst known �ood (in this
study 1342) will signi�cantly underestimate the true length of this period. This
underestimation in�uences the shape of the FF curve (Hirsch and Stedinger, 1987;
Schendel and Thongwichian, 2017). Therefore, Schendel and Thongwichian (2017)
proposed the following equation to determine the length of the historical period:

M = L+
L+N − 1

k
(6.2)

where M represents the length of the historical period (years), L the number of
years from the �rst historic �ood to the start of the systematic record (431 years),
N the length of the systematic record (247 years), and k the number of �oods
exceeding the perception threshold in both the historical period and the systematic
record (28 in total). Using equation 6.2 results in a length of the historical period
of 455 years (1317-1771).

The perception threshold is considered to be equal to the discharge of the smallest
�ood present in the historic period, representing the 1535 �ood with an expected
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discharge of 8,826 m3/s (Fig. 6.4). We follow the method of Parkes and Demeritt
(2016) assuming that the perception threshold was fairly constant over the his-
torical period. However, the maximum discharge of the 1535 �ood is uncertain
and hence the perception threshold is also uncertain. Therefore, the perception
threshold is treated as a random uniformly distributed parameter in the bootstrap
method, the boundaries of which are based on the 95% con�dence interval of the
1535 �ood event.

The bootstrap method consists in creating a continuous discharge series from 1317
to 2018. The method includes the following steps (Fig. 6.5).

1. Combine the 1772-1900 data set with the 1901-2018 data set to create a
systematic data set.

2. Select the �ood event with the lowest maximum discharge present in the
historic time period. Randomly sample a value in between the 95% con�-
dence interval of this lowest �ood event. This value is used as the perception
threshold.

3. Compute the start of the historical time period (equation 6.2).

4. Of the systematic data set, select all discharges that have an expected value
lower than the sampled perception threshold.

5. Use the data set created in Step 4 to create a continuous discharge series in
the historical time period. Randomly draw an annual maximum discharge of
this systematic data set for each year within the historical period for which
no data is available following a bootstrap approach.

6. Since both the reconstructed as well as the measured discharges are uncer-
tain due to measurement errors, these uncertainties must be included in the
analysis. Therefore, for each discharge present in the systematic data set
and in the historical data set, its value is randomly sampled based on its
95% con�dence interval.

7. Combine the data sets of Steps 5 and 6 to create a continuous data set from
1317 to 2018.

The presented steps in the bootstrap method are repeated 5,000 times in order to
create 5,000 continuous discharge data sets resulting in convergence in the FFA.
The FFA procedure itself is explained in the next section.
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Figure 6.5

Bootstrap method to create a continuous discharge series in which M represents the length of the

historical period and p the number of �oods exceeding the perception threshold in the historical

period.

6.4 Flood frequency analysis

An FFA is performed to determine the FF relation of the di�erent data sets (e.g.
systematic record, historical record). A probability distribution function is used
to �t the annual maximum discharges to their probability of occurrence. Many
types of distribution functions and goodness-of-�t tests exist, all with their own
properties and drawbacks. However, the available goodness-of-�t tests for selecting
an appropriate distribution function are often inconclusive. This is mainly because
each test is more appropriate for a speci�c part of the distribution, while we are
interested in the overall �t since the safety standards expressed in probability of
�ooding along the Dutch dikes vary from 10-2 to 10-5. Furthermore, we highlight
that we focus on the in�uence of extending the data set of measured discharges
on the reduction in uncertainty of the FF relations rather than on the suitability
of the di�erent distributions and �tting methods.

We restrict our analysis to the use of a generalized extreme value (GEV) distri-
bution since this distribution is commonly used in literature to perform an FFA
(Parkes and Demeritt, 2016; Haberlandt and Radtke, 2014; Gaume et al, 2010).
Additionally, several studies have shown the applicability of this distribution to
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the �ooding regime of the Rhine river (Toonen, 2015; Chbab et al, 2006; Te Linde
et al, 2010). The GEV distribution has an upper bound and is thus capable of
�attening o� at extreme values by having a �exible tail. We use a bounded distri-
bution since the maximum discharge that is capable of entering the Netherlands
is limited to a physical maximum value. The crest levels of the dikes along the
Lower Rhine, Germany, are not in�nitely high. The height of the dikes in�uences
the discharge capacity of the Lower Rhine and hence the discharge that can �ow
towards Lobith. Using an upper-bounded distribution yields that the FF relation
converges towards a maximum value for extremely large return periods. This value
represents the maximum discharge that is capable of occurring at Lobith.

The GEV distribution is described with the following equation:

F (x) = exp{−[ξ
x− µ
σ

]
1
ξ } (6.3)

where µ represents the location parameter indicating where the origin of the dis-
tribution is positioned, σ the scaling parameter describing the spread of the data,
and ξ represents the shape parameter controlling the skewness and kurtosis of the
distribution, both in�uencing the upper tail and hence the upper bound of the
system. The maximum likelihood method is used to determine the values of the
three parameters of the GEV distribution (Stendinger and Cohn, 1987; Reis and
Stedinger, 2005).

The FFA is performed for each of the 5,000 continuous discharge data sets created
with the bootstrap method (Section 6.3), resulting in 5,000 �tted GEV curves.
The average of these relations is taken to get the �nal FF curve and its 95%
con�dence interval. The results are given in the next section.

6.5 Results

6.5.1 Flood frequency relations

In this section the FFA results (Fig. 6.6 and Table 6.2) of the following data sets
are presented.

• The 1901 data set with measured discharges covering the period 1901-2018.

• The 1772 data set is as above and extended with the data set of Toonen
(2015), representing the systematic data set and covering the period 1772-
2018.
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• The 1317 data set is as above and extended with 12 reconstructed historic
discharges and the bootstrap resampling method to create a continuous dis-
charge series covering the period 1317-2018.

If the data set of measured discharges is extended, we �nd a large reduction in

Figure 6.6

Fitted GEV curves and their 95% con�dence intervals of the 1901, 1772 and 1317 data sets.
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Table 6.2

Discharges [m3/s] and their 95% con�dence interval corresponding to several return periods for the

1901, 1772 and 1317 data sets.

Data Q10 Q100 Q1,000 2.5% Q1,250 97.5% 2.5% Q100,000 97.5%

1901 9,264 12,036 14,050 10,594 14,215 20,685 11,301 16,649 29,270

1772 9,106 11,442 13,008 11,053 13,130 16,027 11,858 14,813 19,576

1317 8,899 11,585 13,655 12,514 13,830 15,391 14,424 16,562 19,303

the con�dence interval of the FF curve (Fig. 6.6 and Table 6.2). Only extending
the data set with the data of Toonen (2015) reduced this con�dence interval by
5,200 m3/s for the �oods with a return period of 1,250 years (Table 6.2). Adding
the reconstructed historic �ood events in combination with a bootstrap method to
create a continuous data set results in an even larger reduction in the con�dence
interval of 7,400 m3/s compared to the results of the 1901 data set. For the
discharges with a return period of 100,000 years, we �nd an even larger reduction
in the con�dence intervals (Table 6.2).

Furthermore, we �nd that using only the 1901 data set results in larger design
discharges compared to the two extended data sets. This is in line with the work
of Toonen (2015). Surprisingly however, we �nd that the 1772 data set predicts
the lowest discharges for return periods > 100 years (Table 6.2), while we would
expect that the 1317 data set predicts the lowest values according to the �ndings
of Toonen (2015). The relatively low positioning of the FF curve constructed with
the 1772 data, compared to our other 1317 and 1901 data sets, might be explained
by the fact that the data of Toonen (2015) covering the period 1772-1900 have
not been normalized. This period has a relatively high �ood intensity (Fig. 6.1).
However, only two �ood events exceeded 10,000 m3/s. A lot of dike reinforcements
along the Lower Rhine were executed during the last century. Therefore, it is likely
that before the 20th century, �ood events with a maximum discharge exceeding
10,000 m3/s resulted in dike breaches and over�ow upstream of Lobith. As a result,
the maximum discharge of such an event decreased signi�cantly. Although Toonen
(2015) mentions that the e�ect of recent changes in the river system on discharges
of extreme �oods of the Lower Rhine is small, we argue that it does in�uence
the �ood events with maximum discharges slightly lower than the current main
channel and �oodplain capacity. Currently, it is possible for larger �oods to �ow
in the downstream direction without the occurrence of inundations compared to
the 19th century. Therefore, it is most likely that the 1772-1900 data set of Toonen
(2015) underestimates the �ooding regime of that speci�c time period in�uencing
the shape of the FF curve.
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6.5.2 Hypothetical future extreme �ood event

After the 1993 and 1995 �ood events of the Rhine river, the FF relation used in
Dutch water policy was recalculated taking into account the discharges of these
events. All return periods were adjusted. The design discharges with a return
period of 1,250 years, which was the most important return period at that time,
was increased by 1,000 m3/s (Parmet et al, 2001). Such an increase in the design
discharge requires more investments in dike infrastructure and �oodplain measures
to re-establish the safety levels. Parkes and Demeritt (2016) found similar results
for the river Eden, UK. They showed that the inclusion of the 2015 �ood event
had a signi�cant e�ect on the upper tail of the FF curve, even though their data
set was extended from 1967 to 1800 by adding 21 reconstructed historic events to
the data set of measured data. Schendel and Thongwichian (2017) argue that if
the �ood frequency relation changes after a recent �ood, and if this change can
be ambiguously attributed to this event, the data set of measured discharges must
be expanded since otherwise the FF results will be biased upward. Based on their
considerations, it is interesting to see how adding a single extreme �ood event
in�uences the results of our method.

Both the 1317 and 1901 data sets are extended from 2018 to 2019 with a hy-
pothesized �ood in 2019. We assume that in 2019 a �ood event has occurred that
equals the largest measured discharge so far. This corresponds with the 1926 �ood
event (Fig. 6.1), having a maximum discharge of 12,600 m3/s. No uncertainty of
this event is included in the analysis. Fig. 6.7 shows that the FF curve based
on the 1901 data set changes signi�cantly as a result of this hypothesized 2019
�ood. We calculate an increase in the discharge corresponding to a return period
of 100,000 years of 1,280 m3/s. Contrarily, the 2019 �ood has almost no e�ect
on the extended 1317 data set. The discharge corresponding to a return period
of 100,000 years only increased slightly by 180 m3/s. Therefore, we conclude that
the extended data set is more robust to changes in FF relations as a result of
future �ood events. Hence, we expect that the changes in FF relations after the
occurrence of the 1993 and 1995 �ood events would be less severe if the analysis
was performed with an extended data set as presented in this study. Consequently,
decision makers might have made a di�erent decision since fewer investments were
required to cope with the new �ood safety standards. Therefore, we recommend
using historical information about the occurrence of �ood events in future �ood
safety assessments.

6.6 Discussion

We developed an e�cient bootstrap method to include historic �ood events in
an FFA. We used a 1D-2D coupled hydraulic model to normalize the data set of
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Figure 6.7

Fitted GEV curves and their 95% con�dence intervals of the 1901 and 1317 data sets if they are

extended with a future �ood event.

Meurs (2006) for modern topography. An advantage of the proposed method is
that any kind of historical information (e.g. �ood marks, sediment depositions)
can be used to extend the data set of annual maximum discharges as long as the
information can be translated into discharges. Another great advantage of the
proposed method is the computational time to create the continuous data sets
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and to �t the GEV distributions. The entire process is completed within several
minutes. Furthermore, it is easy to update the analysis if more historical infor-
mation about �ood events becomes available. However, the method is based on
various assumptions and has some drawbacks. These assumptions and drawbacks
are discussed below.

6.6.1 The added value of normalized historic �ood events

The results have shown that extending the systematic data set with normalized
historic �ood events can signi�cantly reduce the con�dence intervals of the FF
curves. This is in line with the work of O'Connell et al (2002), who claim that the
length of the instrumental record is the single most important factor in�uencing
uncertainties in �ood frequency relations. However, reconstructing historic �oods
is time-consuming, especially if these �oods are normalized with a hydraulic model.
Therefore, the question arises of whether it is required to reconstruct historic �oods
to extend the data set of measured discharges. Another, less time-consuming,
option might be to solely resample the measured discharges in order to extend the
length of the data set. Such a method was applied by Chbab et al (2006) who
resampled 50 years of weather data to create a data set of 50,000 years of annual
maximum discharges.

To test the applicability of solely using measured discharges, we use the bootstrap
method presented in Section 6.3. A data set of approximately 700 years (equal
to the length of the 1317 data set) is created based on solely measured discharges
in the period 1901-2018. The perception threshold is assumed to be equal to the
lowest measured discharge such that the entire data set of measured discharges
is used during the bootstrap resampling. Again, 5,000 discharge data sets are
created to reach convergence in the FFA. This data is referred to as the QBootstrap

data set.

We �nd that the use of the QBootstrap data set, based on solely resampling the
measured discharges of the 1901 data set, results in lower uncertainties of the FF
curve compared to the 1901 data set (Fig. 6.8). This is because the length of
the measured data set is increased through the resampling method. Although
the con�dence interval decreases after resampling, the con�dence interval of the
QBootstrap data set is still larger compared to the 1317 data set, including the
normalized historic �ood events (Fig. 6.8). This is because the variance of the
QBootstrap data set, which is equal to 4.19 x 106 m3/s, is still larger than the
variance of the 1317 data set. For the QBootstrap data set, the entire measured
data set (1901-2018) is used for resampling, while for the 1317 data set only the
discharges below a certain threshold in the systematic time period (1772-2018) are
used for resampling. The perception threshold was chosen to be equal to the lowest
�ood event in the historical time period having a discharge of between 6,928 and
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Figure 6.8

Fitted GEV curves of the 1901, 1317 and QBootstrap data sets.

10,724 m3/s. Hence, the missing years in the historical time period are �lled with
relatively low discharges. Hence, the variance of the 1317 data set is relatively low
(3.35 x 106 m3/s). As a result of the lower variance, the uncertainty intervals are
also smaller compared to the QBootstrap data set.
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Furthermore, the FF curve of the QBootstrap data set is only based on a relatively
short data set of measured discharges and hence only based on the climate con-
ditions of this period. Extending the data set with historic �ood events gives a
better representation of the long-term climatic variability in �ood events since
these events have only been normalized for changes in the river system and thus
still capture the climate signal. We conclude that reconstructing historic events,
even if their uncertainty is large, is worth the e�ort since it reduces the uncertainty
intervals of design discharges corresponding to rare �ood events, which is crucial
for �ood protection policymaking.

6.6.2 Resampling the systematic data set

The shape of the constructed FF curve strongly depends on the climate conditions
of the period considered. If the data set is extended with a period which only
has a small number of large �ood events, this will result in a signi�cant shift of
the FF curve in the downward direction. This shift can be overestimated if the
absence of large �ood events only applies to the period used to extend the data
set. Furthermore, by resampling the measured data set, we assume that the �ood
series consists of independent and identically distributed random variables. This
might not be the case if climate variability plays a signi�cant role in the considered
time period resulting in a period of extreme low or high �ows. However, up till
now no consistent large-scale climate change signal in observed �ood magnitudes
has been identi�ed (Blöschl et al, 2017).

In Section 6.5, we found that extending the data set from 1901 to 1772 resulted in a
shift in the downward direction of the FF curve. This is because in the period 1772-
1900, a relatively small number of �oods exceeded a discharge larger than 10,000
m3/s. Since no large �ood events were present in the period 1772-1900, this data
set has a lower variance compared to the 1901 data set. Using both the 1772 and
1901 data sets for resampling purposes in�uences the uncertainty of the FF curve.
To identify this e�ect, we compared the results if solely the measured discharges
(1901-2018) are used for resampling purposes and if the entire systematic data
set (1772-2018) period is used. We �nd that using the entire systematic data set
results in a reduction in the 95% con�dence intervals compared to the situation
in which solely the measured discharges are used caused by the lower variance in
the period 1772-1900. However, the reduction is a maximum of 12% for a return
period of 100,000 years. Although the lower variance in the 1772-1900 data set
might be explained by the fact that these discharges are not normalized, the lower
variance may also be caused by the natural variability in climate.
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6.6.3 Distribution functions and goodness-of-�t tests

In Section 6.5, only the results for a GEV distribution were presented. We found
that the uncertainty interval of the �ood event with a return period of 100,000 years
was reduced by 73% by extending the data set of approximately 120 years of annual
maximum discharges to a data set with a length of 700 years. Performing the
analysis with other distributions yields similar results. A reduction of 60% is found
for the Gumbel distribution and a reduction of 76% for the Weibull distribution.
This shows that, although the uncertainty intervals depend on the probability
distribution function used, the general conclusion of reduction in uncertainty of
the �tted FF curve holds.

However, by only considering a single distribution function in the analysis, model
uncertainty is neglected. One approach to manage this uncertainty is to create a
composite distribution of several distributions each allocated a weighting based on
how well it �ts the available data (Apel et al, 2008). Furthermore, the uncertainty
related to the use of various goodness-of-�t tests was neglected since only the
maximum likelihood function was used to �t the sample data to the distribution
function. Using a composite distribution and multiple goodness-of-�t tests will
result in an increase in the uncertainties of FF curves.

6.6.4 The length of the extended data set and the considered

perception threshold

The measured data set starting at 1901 was extended to 1317. However, the
extended data set still has limited length compared to the maximum return period
of 100,000 years considered in Dutch water policy. Preferably, we would like to have
a data set with at least the same length as the maximum safety level considered
such that extrapolation in FFAs is not required anymore. However, the proposed
method is a large step to decrease uncertainty.

Furthermore, the systematic data set was used to create a continuous data set us-
ing a bootstrap approach. However, preferably we would like to have a continuous
historical record since now the low �ows are biased on climate conditions of the
last 250 years. Using this data set for resampling in�uences the uncertainty inter-
vals of the FF curves. If the historical climate conditions highly deviated from the
current climate conditions, this approach does not produce a reliable result. In
addition, the perception threshold in�uences the variance of the considered data
set and hence the uncertainty of the FF curve. Using a smaller threshold results
in an increase in the variance of the data set and hence in an increase in the un-
certainty intervals. The proposed assumption related to the perception threshold
can only be used if there is enough con�dence that the smallest known �ood event
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in the historical time is indeed the actual smallest �ood event that occurred in the
considered time period.

6.6.5 A comparison with Bayesian statistics

The FFA was performed based on frequentist statistics. The maximum likelihood
function was used to �t the parameters of the GEV distribution function. How-
ever, only point estimates are computed. To enable uncertainty predictions of the
GEV parameter estimates, the maximum likelihood estimator assumes symmetric
con�dence intervals. This may result in an incorrect estimation of the uncertainty
which is speci�cally a problem for small sample sizes. For large sample sizes, max-
imum likelihood estimators become unbiased minimum variance estimators with
approximate normal distributions. Contrarily, Bayesian statistics provide the en-
tire posterior distributions of the parameter estimates and thus no assumptions
have to be made. However, a disadvantage of the Bayesian statistics is that the
results are in�uenced by the priors describing the distributions of the parameters
(Neppel et al, 2010). For future work, we recommend studying how uncertainty
estimates di�er between the proposed bootstrap method and a method which relies
on Bayesian statistics such as the study of Reis and Stedinger (2005).

Moreover, a disadvantage of the proposed bootstrap approach is that, by resam-
pling the systematic data set to �ll the gaps in the historical time period, the
shape of the �ood frequency curve is in�uenced in the domain corresponding to
events with small return periods (i.e. up to ∼ 100 years corresponding with the
length of the 1901 data set). Methods presented by Reis and Stedinger (2005)
and Wang (1990) use historical information solely to improve the estimation of
the tail of the FF curves, while the systematic part of the curve stays untouched.
Table 6.2 shows the discharges corresponding to a return period of 100 years for
both the 1901 data set and the extended 1317 data set following the bootstrap
method described in Section 6.3. We �nd that this discharge decreases from 12,036
m3/s to 11,585 m3/s by extending the systematic data set. This decrease in de-
sign discharge by 3.7% indicates that resampling the systematic data set over the
historical time period only has a little e�ect on the shape of the �ood frequency
curve corresponding with small return periods. This �nding justi�es the use of the
bootstrap method.

6.7 Conclusions

Design discharges are commonly determined with the use of �ood frequency anal-
yses (FFAs) in which measured discharges are used to �t a probability distribution
function. However, discharge measurements have been performed only for the last
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50-100 years. This relatively short data set of measured discharges results in large
uncertainties in the prediction of design discharges corresponding to rare events.
Therefore, this study presents an e�cient bootstrap method to include historic
�ood events in an FFA. The proposed method is e�cient in terms of computa-
tional time and set-up. Additionally, the basic principles of the traditional FFA
remain unchanged.

The proposed bootstrap method was applied to the discharge series at Lobith. The
systematic data set covering the period 1772-2018 was extended with 12 historic
�ood events. The historic �ood events reconstructed by Meurs (2006) had a large
uncertainty range, especially for the most extreme �ood events. The use of a
1D-2D coupled hydraulic model reduced this uncertainty range of the maximum
discharge at Lobith for most �ood events as a result of the over�ow patterns and
dike breaches along the Lower Rhine. The inclusion of these historic �ood events
in combination with a bootstrap method to create a continuous data set, resulted
in a decrease in the 95% uncertainty interval of 72% for the discharges at Lobith
corresponding to a return period of 100,000 years. Adding historical information
about rare events with a large uncertainty range in combination with a bootstrap
method thus has the potential to signi�cantly decrease the con�dence interval of
design discharges of extreme events.

Since correct prediction of �ood frequency relations with little uncertainty is of
high importance for future national �ood protection programs, we recommend us-
ing historical information in the FFA. Additionally, extending the data set with
historic events makes the �ood frequency relation less sensitive to future �ood
events. Finally, we highlight that the proposed method to include historical dis-
charges in a traditional FFA can be easily implemented in �ood safety assessments
because of its simple nature in terms of mathematical computations as well as its
computational e�orts.
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Discussion



The aim of this study was to extend the data set of measured discharges with
historic �ood reconstructions using various kinds of hydraulic models such that
uncertainties in �ood frequency relations can be decreased. Several e�cient hy-
draulic modelling tools were developed that reduce computational time compared
to a fully 2D model. In this chapter, we �rst discuss the applicability of the pro-
posed methods. Next, we discuss the e�ect of climate change on �ood frequency
relations. Then, the applicability of the proposed methods to other �elds and the
co-bene�ts are presented. The Chapter ends with remaining knowledge gaps and
a comparison with GRADE which is a new modelling approach used by the Dutch
water policy to create a synthetic data set of 50,000 years of discharge series.

7.1 The applicability of hydraulic modelling

7.1.1 The applicability to other extreme events

In this study, the Rhine river was used as a case study. However, the proposed
methodologies can be applied to any river of which data about the historical
bathymetry and some water level records are available. Furthermore, the method-
ologies can be applied to reconstruct other extreme events as well. While we only
focused on river �oods, also e.g. �oods from sea and storm events can be recon-
structed. However, it must be noted that if a surrogate model is used, it is only as
good as its high-�delity model. Therefore, only extreme events that are accurately
simulated by the high-�delity model can be predicted with the surrogate model
as well. We found, for example, that the hydraulic models were not able to repro-
duce correct water levels for �ood events a�ected by ice jams since the physical
processes of normal �ow conditions do not hold. For this reason, the causes of the
extreme events must be determined and afterwards it must be evaluated whether
the hydraulic model is capable of reproducing these processes before setting up a
surrogate model.

7.1.2 Hydraulic and surrogate modelling methods

In Chapter 2, a fully 2D model with a hybrid grid was developed. Furthermore,
a 1D-2D coupled lower-�delity physically based surrogate model was developed
in Chapter 3 in which 1D pro�les were located in the main channels and their
�oodplains. The embanked areas were discretized on a 2D grid. Finally, an Arti-
�cial Neural Network (ANN) was developed in Chapter 4. However, much more
hydraulic and surrogate modelling methods exist, all with their own bene�ts and
drawbacks. The 1D-2D coupled modelling strategy might be inappropriate if many
model runs have to be performed, as computational time of such a physically based
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model is still relatively large compared to a response surface surrogate model which
represents a statistical or empirical data-driven model emulating the original sys-
tem. On the other hand, an ANN structure, as set up in Chapter 4, might be
inappropriate if the objective of the study is to reconstruct the entire discharge
wave shape of the historic event. This is because this type of ANN is only capable
of predicting output parameters at a speci�c moment in time. There are other
kinds of ANN structures that are capable of reproducing the entire discharge wave
shape. However, these were not considered in the analysis of this thesis since we
were only interested in the maximum discharge at Lobith. We advice to clearly
identify the main purpose of the study and which uncertain input parameters have
to be considered, before deciding on which type of surrogate model to set up. If
the purpose of the study is to get insight in the system behaviour of the historical
time period considered, we advise to use a lower-�delity physically based surro-
gate model. These types of models are still based on the original input and they
capture most of the physical processes of the system. On the other hand, response
surface surrogate models are more applicable if many uncertain input parameters
have to be considered in the analysis. The computational time of response surface
surrogate models is very low such that many model runs can be performed within
a couple of seconds. However, a drawback is that the model does not provide
any information about physical processes like �ow patterns and inundated areas
throughout the model, because the model is based on a data-driven (non-physical)
approach.

7.1.3 Uncertainty of historical geometrical reconstructions

In Chapter 3 and 4, the 1926 and 1809 �ood events of the Rhine river were recon-
structed. Relatively much data was available of these events, such as measured
main channel bathymetry pro�les and land use maps. Hence, we assumed that
the river course was not subject to any uncertainties. Therefore, only one river
course was considered in the analysis. Although for the Rhine river much his-
torical information is available from the �rst maps dating back to ∼1700, such
information might not exist for rivers in other parts of the world (e.g. develop-
ing countries). As a consequence, those geometrical reconstructions will be more
uncertain (Van Leeuwe, 2018). This increased uncertainty a�ects the uncertainty
of the reconstructed maximum discharges in the studied area. Consequently, this
in�uences the uncertainty of �ood frequency relations. Therefore, the uncertainty
in geometrical reconstructions must be included in the analysis.

A way to do this is to develop a hydraulic model and corresponding surrogate model
for each potential river course and bathymetry. If the course of the main channel
is uncertain, but the locations of the boundaries of the �oodplains are known, a
1D-2D coupled model is most convenient. In these models, the main channel and
�oodplains are schematized with 1D pro�les. These pro�les can easily be updated
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such that various potential main channel courses can be included in a Monte Carlo
analysis. Contrarily, for a fully 2D model using an e�cient hybrid grid (Chapter
2) including various potential river courses is quite time consuming since for each
potential river course a grid has to be constructed. The curvilinear grid cells in
the hybrid grid must follow the course of the main channel.

If also the boundaries of the �oodplains are unknown, the use a 1D-2D coupled
model as surrogate model becomes less attractive since now for each potential
bathymetry a new model must be set up. Now the locations of the boundaries
between the 1D pro�les and 2D grid change. Hence, the new bathymetry cannot
be altered by just updating the 1D pro�les as described above. Consequently, the
Monte Carlo analysis should be performed with each of the di�erent models. As a
result, the total number of computations that has to be performed to include all
potential uncertainties in bathymetry increases signi�cantly. A response surface
surrogate model such as an Arti�cial Neural Network (ANN) is most convenient
for these cases since the computational time is low. However, to train each ANN,
training data has to be created with their corresponding high-�delity model. Set-
ting up these models and performing simulations is quite time consuming. There-
fore, it is important that much e�ort is put into the geometrical reconstruction in
order to decrease its uncertainty as much as possible. It is thus desired that all
existing data providing information about the river course is gathered. Although
time demanding, it may reduce the overall time investment since the number of
simulations can be reduced.

7.1.4 Future normalization steps

In this study, we have normalized the historic �ood events for anthropogenic and
natural changes in the river system with the use of a hydraulic 1D-2D coupled
model. The question may arise whether these time-consuming normalization steps
must be repeated when again changes in the river system occur such as dike height-
ening or dike shifts along the Lower Rhine. If the �ood defences along the Lower
Rhine are heightened or reinforced, the maximum discharge that may reach the
Netherlands increases. Furthermore, the dike breach thresholds along the Lower
Rhine changes. Indeed, the historic �ood events must again be normalized for these
changes to correctly establish a �ood frequency curve for the new altered situation.
However, the use of a regression function is most probably more suitable since the
e�ect of these changes on �ood wave propagation are relatively small, compared
to the changes between e.g. 1374 and present times. Identifying the in�uence of
the altered river system on �ood wave propagation, by simulating hydraulic model
runs with various scenarios in terms of maximum upstream discharge and dike
breach characteristics, can be used to set up such a regression function. Hence,
the maximum discharges of the historic �ood events in the altered river system
can easily be computed with the use of such a regression function. The relatively
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time-consuming normalizations steps performed in this study thus only have to be
performed once.

7.1.5 E�cient two dimensional grids

Chapter 2 showed that the structure of a two dimensional grid can highly in�u-
ence model results. It was found that both grid shape and grid size in�uence
computational times as well as model accuracy. Commonly, hydraulic models are
calibrated by altering the friction of the main channel until simulated water levels
are close to measurements. Validation is then performed by routing another dis-
charge wave and again simulated water levels are compared with measurements.
Other physical processes, such as velocity pro�les, are generally not considered
while these may be unrealistic even though water levels are simulated accurately.
Therefore, we recommend not only to validate model results on water levels but
to also validate other physical processes.

Although we showed that a combination of curvilinear and triangular grid cells can
be highly bene�cial in terms of computational times while model accuracy remains
su�cient, still most hydraulic studies use grid types that consist of only curvilinear
or only triangular grid shapes. This, while other research �elds (e.g. aerodynamic,
�uid mechanics) are generally applying grids with multiple cell shapes to solve
the system. Even adaptive grids, which are updated with time, are applied with
great success. These grids may speci�cally be useful in case of complex geometries
and if the locations of rapid variations in the �ow are not known a priori (Tysell,
2010). An adaptive grid has as advantage that grid re�nement can be executed
during the simulations at locations where more detail is required. Tysell (2010)
distinguishes four di�erent strategies to generate adaptive grids.

1. The number of grid nodes is constant, but the grid nodes are redistributed

2. New nodes are inserted into the existing grid

3. Cells which are too large are divided into smaller ones

4. The entire grid is regenerated

Liang et al (2008) did use an adaptive grid to simluate �ood inundation over an
urban area of 36 km2. They made use of an adaptive quadtree grid to solve the
Shallow Water equations. This adaptive grid could be locally re�ned by splitting a
single square grid cell into four square grid cells. The grid was dynamically adapt-
ing to dominant �ow features such as steep water surface gradients and wet-dry
fronts. They found that the approach is e�cient in terms of computational times
and model accuracy. Another approach was shown by Volp et al (2016). They
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developed a subgrid based approach which is typically applicable in areas charac-
terized by sub-critical �ow such as estuaries, coastal areas and lowland rivers. This
method uses di�erent resolutions to compute the hydrodynamics and morphody-
namics. The hydrodynamic computations were carried out on a coarse 2D grid in
which only the bathymetry and surface friction were based on a high-resolution
grid to compute volumes, friction and advection (Volp et al, 2016). The morpho-
dynamic computations were entirely carried out on a high resolution grid. The
di�erent grid resolutions were coupled by interpolating water levels and velocities
from the coarse grid to the high resolution grid. Volp et al (2016) found that the
subgrid approach leads to a substantial increase in accuracy of the morphodynamic
results at a minimal computational cost.

Although some studies showed the bene�ts of using adaptive grids in the hydraulic
�eld, it still seems that other �elds are far ahead of using e�cient grid structures
compared to the hydraulic �eld. Therefore, for future work we want to highlight
the importance of studying the applicability of more e�cient hybrid and adap-
tive grids for hydraulic modelling purposes such that computational time can be
reduced even further while model accuracy remains su�cient.

7.2 Climate change

In this study, climate stationarity was assumed which means that climate condi-
tions did not change over the considered time period. However, literature shows
consensus that varying climate conditions during the considered time period in-
�uence �ood frequency relations (e.g. Khaliq et al (2006); Murawski et al (2018)).
Therefore, it must be evaluated to what extent the assumption of a constant
climate is justi�ed in this study. Furthermore, the foreseen global warming is ex-
pected to have an impact on the magnitude, frequency and timing of future �oods.
Both historical climate variability as well as future climate change conditions are
discussed below.

7.2.1 Historical climate variability

Using historical �ood events to extend the data set of measured discharges intro-
duces a climate signal in the data set. By de�nition, the historic �ood reconstruc-
tions cover the variability of climate since these are reconstructed based on the
historical data. However, the �ood producing mechanisms may have changed over
time caused by a changed climate and altered land-use conditions. Therefore, the
use of long historical records in FFAs brings in the question of �ood stationarity
since climate and land-use conditions can a�ect the relevance of past �ooding as
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a predictor of future �ooding (Machado et al, 2015). Although we have normal-
ized the historic �ood events for natural and anthropogenic changes in the river
system, we assumed that the �ood producing mechanisms in climate conditions
did not change over the period 1300-2018. Thus, we assume climate stationarity
which represents the idea that the natural systems �uctuate within an unchanging
envelope of variability (Milly et al, 2008). In other words, the variability in cli-
mate conditions have been constant over time. This assumption is made because
it is di�cult to include the e�ects of changing historical climate variability in the
analysis since the �ood regime is also a�ected by other factors, such as land use
change and river training. On a local scale, Hewitson and Crane (2006) found that
land use changes can modify the link between �oods and weather patterns. This is
one of the main reasons why, up till now, no consistent large-scale climate change
signal in observed �ood magnitudes has been identi�ed (Blöschl et al, 2017). Fur-
thermore, the temporal inconsistency (not with a constant frequency measured
over time) of the data sets of measured discharges and their limited spatial ex-
tents makes it unfeasible to identify a large-scale climate change signal. More
speci�c for central Europe, Beck et al (2007) found that large parts of the climate
variability between 1780 and 1995 could not be explained by variability in regional
scale weather patterns. The assumption of �ood stationary is thus in line with the
�nding that the �ood producing mechanisms regarding peak discharges did not
change over time.

Regarding the timing of �ood events, Blöschl et al (2017) did �nd a correlation be-
tween this timing and changing weather patterns in Europe. For the Rhine delta,
a shift was found towards the timing of �oods caused by the shift in the timing
of extreme winter precipitation events (Blöschl et al, 2017). The study shows
that �oods occur later in the winter period as a result of later winter storms.
Although a change in timing of the annual maximum discharge may have consid-
erable economic and environmental consequences, it does not in�uence the results
of �ood frequency analyses since we solely consider the annual maximum dis-
charges. Hence, it is not required to cope with this changing climate pattern in
the proposed bootstrap method (Chapter 6).

Although we have normalized the historical �ood events for anthropogenic and nat-
ural changes in the river system in the study area, we did not normalize the historic
�ood events for changes upstream of our study area. The reconstructed historic
�ood events at Cologne by Herget and Meurs (2010) were used as upstream bound-
ary conditions to predict corresponding discharges at Lobith in present times. It
might be that, as a result of e.g. deforestation, the historical maximum discharges
were lower than they will be now if the same rainfall event will happen nowa-
days. Now, most probably, water is discharged faster to the rivers as a result of
a larger direct runo�. Furthermore, the increase in dike heights in the trajectory
upstream of our study area may result in an increase in the maximum discharge at
Cologne since the discharge capacity of the Rhine river has been increased over the
years. Ideally, we would like to know the rainfall events that caused the various
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historical �ood events of the entire Rhine basin. These events can subsequently be
routed with the use of a hydrological model and consequently a hydraulic model,
to compute corresponding discharges at Lobith in present times. However, it is im-
possible to reconstruct the historical weather pattern with reasonable uncertainty.
Furthermore, it is expected that the e�ect of upstream anthropogenic and natural
changes in the river system only have a little e�ect on the maximum discharge
of the historical �ood events reconstructed at Cologne since the intensive rainfall
events would lead to large amount of direct run-o� for both historical and present
times. For future work, we suggest to study the e�ect of upstream changes in the
river system on the maximum discharges at Cologne in more detail.

7.2.2 Future climate change

Typically, �ood protection programs are established to protect the hinterland from
�oods over a time period of 50 till 100 years. The �ood frequency analyses pre-
dict design discharges based on the climate conditions of the considered data set.
Hence, the e�ect of predicted changes in future climate are not included in the
analyses. For the Rhine delta, it is likely that the design discharges are under-
estimated considering future scenarios: It is expected that peak discharges will
become larger as a result of earlier snow melt in the Alps, coinciding with the
period of high rainfall intensities in the Lower Rhine catchment areas (de Wit
et al, 2008). If such a clear climate change signal is identi�ed, it is important to
include this signal in �ood safety assessments to correctly predict future design
discharges. This can be done by including climatic variables as covariates of the
Generalized Extreme Value (GEV) distribution parameters in the �ood frequency
analysis (Steirou et al, 2019). In this way, it is assumed that the probability den-
sity function of discharges is not constant in time, but it is conditioned on external
variables (Steirou et al, 2019). As a result, the �ood frequency distribution can
be assessed by including the in�uence of changes in large-scale climate patterns.
This type of non-stationary �ood frequency analysis has been studied by many
researchers in the last decades, and many di�erent covariate types have been ex-
amined for their in�uence on �ood extremes. A review of these approaches is given
by Khaliq et al (2006), while their limitations are discussed by Koutsoyiannis and
Montanari (2015) and Serinaldi et al (2018).

Although non-stationary �ood frequency analyses have been applied in literature,
there is still a lack of research on assessing the reliability of these analyses to repre-
sent low-frequency climate variability over centennial historical periods (Machado
et al, 2015). Machado et al (2015) argues that future climate models incorpo-
rate too much uncertainty to accurately specify expected patterns of precipita-
tion change or to estimate expected changes in the frequencies and magnitudes
of extreme storm and �ood events. Therefore, their study concludes that �ood
frequency predictions can only be improved by incorporating historical long-term
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�ood records in �ood frequency analyses (Machado et al, 2015). This shows the
importance of accurate historic �ood reconstructions to extend the data set of
measured discharges which was the main purpose of this study. We thus conclude
that the data set of measured annual maximum discharges must only be extended
with past events since incorporating expected future �ood scenarios only increases
the uncertainty in �ood frequency relations.

7.3 Co-bene�ts of the proposed methodologies

We reconstructed historic �ood events of the Rhine river to calculate their max-
imum discharges at Lobith. Besides providing maximum discharges, the use of
hydraulic models for �ood reconstructions provides knowledge about the poten-
tial inundated areas as well as the system behaviour under extreme conditions in
general. This information is also important for historical research. It can be used
to explain e.g. human behaviour in terms of settlement locations. In the historical
time period, the inhabitants built their houses on higher terraces that did not
inundate during extreme �ood events. Knowing which areas did not inundate in
the past can explain locations of villages, cities and current land use patterns.

Furthermore, the �ood events can help to get insight in past river management and
how this management has changed over time. Typically, past river management
was reactive rather than proactive. This means that a �ood event was needed
before actions were taken to improve �ood safety. Typical and quite recent ex-
amples for the Netherlands are the sea �ood in 1953 and the �ood events of the
Rhine river in 1993 and 1995. These �ood events stimulated decision makers to
reconsider the current �ood protection measures.

In addition, the historical system behaviour can be compared with the current
system behaviour. In the past, �oodplains of rivers were commonly much wider
(Klijn et al, 2018) and the rivers had a more meandering pattern. However, the
size of river �oodplains has been decreased and many meanders were cut o� to
improve navigation. Using information of historical system behaviour, some river
management interventions might not have been taken in the last century. For ex-
ample, in 1955 and 1969 two great meander bends in the IJssel river were cut o�.
As a result, the �ood wave is now capable of propagating much faster in down-
stream direction. This has a negative e�ect on �ood safety further downstream.
Comparing historical system behaviour with current system behaviour can thus
improve decision making on potential future �ood measures.

Finally, simulating historic �ood events can help in creating awareness of present-
day �ood risk. Some of the historic �ood events, such as the �ood in 1374 (Bomers
et al, 2019e), were larger than ever occurring in our measured record. IPCC
scenarios suggest that, due to climate change, such events occur more frequently
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in the near future (IPCC, 2014). Predicting the consequences of such events helps
to understand the potential e�ects in present times.

7.4 The applicability of the proposed methodolo-

gies to other problems

In this study, we showed how uncertainty in �ood frequency predictions of the
Rhine river can be reduced by extending the data set of annual measured discharges
with reconstructed historic �ood events. The proposed methodologies can also be
applied to coastal areas. Bermudez et al (2018) showed that response surface
surrogate models are capable of reproducing inundation maps with tide times
series as input parameter. A least squares support vector machine was set up to
construct a synthetic 500 year time series of daily maximum water levels. Such
a surrogate model can also be used to reconstruct historic �ood events caused by
a combination of spring high tide and storm water level. Since �oods from sea
commonly resulted in large inundation areas and casualties, su�cient historical
information of such events is available such that the proposed methodologies in
this study can be applied. As a result, the physical characteristics (e.g. wave set-
up, storm duration) of the �ood event and to hence determine its frequency can
be determined.

Furthermore, the proposed methodologies can be applied to low �ows. In this
study, we extended the �ood frequency curve with historic �ood events. Such
curves can also be set up for low �ow conditions. Although the consequences of
severe �ood events are generally known, also low �ows can have large societal
impacts. It may hinder navigation, and limit the amount of water available for
irrigation and drinking water. However, most probably the amount of historical
sources providing information about the severeness of the low �ow conditions is
much less than for �ood events. This is because low �ows do not result in large
casualties at a speci�c moment in time, but rather has its consequences on a longer
time period. Furthermore, low �ows a�ect economic losses rather than mortality
rates, but can cause societal disruption.

7.5 Computational cost reduction using e�cient

hydraulic modelling tools

Up till now, no sophisticated hydraulic modelling methods have been used for his-
toric �ood reconstructions. However, the use of these models has the potential to
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decrease uncertainty in future �ood predictions. The reduction in this uncertainty
is twofold. Firstly, the con�dence intervals of reconstructed maximum discharges
of a �ood event can be decreased compared to existing methods. Secondly, extend-
ing the data set of measured annual maximum discharges with these reconstructed
historic �ood events results in a reduction of the uncertainty in �ood frequency
relations. We �rstly focus on the remaining knowledge gaps related to the �rst
uncertainty in terms of computational cost reduction using hydraulic modelling
tools. In the next section, the reduction in the uncertainty in �ood frequency
relations is elaborated.

The development of e�cient hydraulic models in terms of computational time
and model accuracy enables the possibility of highly detailed historic �ood recon-
struction with potentially little uncertainty. With these models, it is possible to
include all uncertain input parameters related to the historic �ood event as ran-
dom parameters in a Monte Carlo framework. By doing so, knowledge about the
maximum discharge and its uncertainty during historic events can be gained with
high accuracy. Furthermore, the most important input parameter in�uencing the
uncertainty of the simulated maximum discharge can be determined. This can be
done by performing a sensitivity analysis in which the uncertain input parameters
are varied using a Monte Carlo approach. The reconstructed maximum discharges
and corresponding uncertainties can be used, after normalization for alterations
in the river system, to extend the data set of measured discharges. This leads
consequently to a reduction in �ood frequency predictions. However, a major
disadvantage of the hydraulic models is the large computational cost.

We showed several methods to signi�cantly reduce computational times. A lower-
�delity physically based surrogate model reduces total computational cost since
simulation time of a single run is reduced by neglecting several physical processes
of the original system. In Chapter 3, a 1D-2D coupled model is set up in which
the main channels and their �oodplains are schematized with 1D pro�les and the
embanked areas are discretized on a 2D grid. This model computes much faster
compared to a fully 2D model if the water levels are below the dike crest levels and
water is thus only �owing in the 1D pro�les. However, as soon as water starts to
�ow into the embanked areas and thus into the 2D grid, the computational time of
this surrogate model starts to increase. The larger the overland �ows, the smaller
the reduction in computational times of a 1D-2D coupled model is compared to a
fully 2D model.

The reduction in computational cost in case of response surface surrogate models
is even less straightforward since still model runs have to be performed with the
high-�delity model to create the training data used to set up the response surface
surrogate model. However, the computational time of such a trained surrogate
model is in the order of seconds. Hence, after setting up the surrogate model many
simulations can be performed in just a short period of time which is bene�cial for
Monte Carlo and scenario studies.
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Although the surrogate models reduce computational time, the total cost remains
large. This is because the historic �ood events, after being reconstructed, also have
to be normalized for changes in the river system. Again, many model runs with
a high-�delity or lower-�delity physically based surrogate hydraulic model have
to be executed to perform this translation of historical discharges into present-
day discharges. For this reason, it is clear that the proposed methodologies must
only be used if a signi�cant reduction of the con�dence interval of the predicted
maximum discharge can be reached compared to results of earlier reconstructions
(Chapter 4). Input data that is required to perform a �ood reconstruction with a
hydraulic model is at least:

• Information about the potential course of the main channel

• Estimation of the bathymetry of the main channel

• Land use of the hinterland

• At least one (preferably several) maximum water level(s) of the �ood event

For the Rhine river, the number of �ood reports gradually increased during the
13th century and in the 14th century river �oods became a recurrent problem (Tol
and Langen, 2000). It is therefore likely that for reconstructing �ood events before
the 12th century there is too little reliable data to predict a maximum discharge
with a reasonable con�dence interval.

7.6 Construction of a continuous data set of annual

maximum discharges

To perform a �ood frequency analysis, we created a continuous data set in Chapter
6. We proposed a bootstrap method in which the missing years in the historical
time period, i.e. the years of which no data is available, are drawn from resampling
the systematic data set. However, the proposed methodology is based on two
assumptions which are discussed in more detail below.

Firstly, by resampling the systematic data set, it is assumed that the current
�ooding regime is applicable for the historical time period. It is thus assumed
that the systematic data set consist of independent and identically distributed
random variables. This assumption only holds if the �ood producing mechanisms
did not change which might not be the case in periods of e.g. glacial periods.
For an elaborated discussion on the e�ect of climate change on �ood frequency
relations see Section 7.2.
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Secondly, it is assumed that for the years of which no data is available, no large
�ood event occurred and the maximum annual discharge was relatively small, i.e.
smaller than the smallest �ood event known in the historical time period. This
smallest event is referred to as the perception threshold. This assumption is based
on the fact that a �ood event was only considered as a catastrophe if it had a huge
impact on the society. However, if other events, such as a civil war or famine,
had a larger impact on society it might be that a �ood event was not perceived as
a disaster. Hence, no information of this event may be available. Therefore, the
assumption about the perception threshold is only valid if no other catastrophes,
having a larger societal impact, took place in the time period considered.

The assumptions explained above in�uence the shape of the �tted �ood frequency
relation and its uncertainty interval. Therefore, these assumptions must be eval-
uated before they can be applied to another river basin. Furthermore, although
the data set of approximately 120 years of annual maximum discharges has been
increased to a length of 700 years in Chapter 6, its size is still relatively small
compared to the maximum safety standard of 1/100,000 years considered in the
Dutch water policy. However, it is impossible to create a data set of such an extent
using historic �ood reconstructions. Information about historic �ood events only
goes back to certain moment in time.

7.7 A comparison with GRADE results

In the Netherlands, the �ood safety assessment has changed from an exceedance
probability approach towards a risk based approach. In this new approach, not
only the probability of a �ood event is considered but also its consequences (Van
der Most et al, 2014). While previously a maximum exceedance level of 1/1,250
years was de�ned along the Dutch Rhine river branches, the new approach has a
maximum safety standard of 1/100,000 years (Van Alphen, 2016). This new safety
standard is expressed in the probability of �ooding and considers the impact of
various dike failure mechanisms. Predicting design discharges corresponding to
such extreme safety standards results in large uncertainties if only the data set of
120 years of measured annual maximum discharges is used.

To overcome this problem, a new modelling approach has been developed, which is
called GRADE: Generator of Rainfall And Discharge Extremes (Fig. 7.1). Using
a stochastic weather generator, GRADE creates annual maximum discharge series
with a length up to 50,000 years based on daily precipitation and temperature
observations covering the 56-years period 1951-2006 (Hegnauer et al, 2014). The
generated weather data is used as input data for a HBV rainfall-runo� model (Fig.
7.1). The annual maximum discharges are selected and routed through the river
by a hydrodynamic SOBEK model (Fig. 7.1), resulting in discharges through
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Figure 7.1

Components of GRADE.

the river system (Hegnauer et al, 2014). The created data set of 50,000 years
of annual maximum discharges is then used to set up a �ood frequency relation
in which the Weismann �t is used to extrapolate to return periods of 100,000
years (Hegnauer et al, 2014). Because of the long time series of annual maximum
discharges used, the statistical uncertainty caused by extrapolation is reduced.
However, the method of GRADE itself is still subject to several uncertainties.
Firstly, uncertainty is introduced by resampling measured weather data since each
created time series varies as a result of the resampling method (Van den Boogaard
et al, 2014). Therefore, many time series are created such that the variability
in current climate uncertainty is included. Secondly, the model parameters of
the HBV-model are uncertain as a result of model calibration. Various sets of
input parameters are capable of producing correct model results. The calibration
of an HBV-model for a particular basin thus consists of a set of "behavioral"
parameter combinations rather than a single deterministic estimate for each of the
input parameters (Van den Boogaard et al, 2014). Finally, also the hydrodynamic
SOBEK model is subject to uncertainties. Relevant sources of uncertainty in the
hydrodynamic model are: measurement errors in the dike heights, the storage
volume of the embanked areas which are schematized by 1D retention areas, the
surface friction, the locations and heights of the sand bags (emergency measure)
and �nally whether a dike breach occurs (Prinsen et al, 2015).

To compute the 95% con�dence intervals of the GRADE �ood frequency curve,
�rstly the uncertainties introduced by resampling measured weather data and the
uncertainties in the model parameters of the HBV-model are considered. The un-
certainty was determined by simulating 11 resampled weather data sets, all having
a length of 20,000 years, with �ve di�erent HBV parameter combinations (Van den
Boogaard et al, 2014). The simulated 20,000 years of annual maximum discharges
are sorted in ascending order. Next, the annual maximum discharges can be cou-
pled to a return period such that a �ood frequency curve is constructed. The
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Table 7.1

Di�erence between GRADE (Prinsen et al., 2015) and the bootstrap method where T represents the

return period, and the upper and lower boundaries of the 95% con�dence interval.

Lower bound [m3/s] T = 100,000 years [m3/s] Upper bound [m3/s]

Bootstrap 14,420 16,560 19,300

GRADE 15,070 17,710 20,350

Di�erence 650 1.150 1,050

uncertainty interval is hence determined by including the uncertainty as a result
of the 11 sampled weather data sets and the �ve di�erent HBV parameter com-
binations (Prinsen et al, 2015). Finally, the uncertainties caused by the hydraulic
model are added, since each simulated annual maximum discharge is uncertain
caused by uncertainties in the bathymetry and the occurrence of dike breaches
(Prinsen et al, 2015). After that, the uncertainty intervals of the GRADE �ood
frequency curve are recomputed.

Comparing the results of this thesis with those generated by GRADE, we �nd
that GRADE predicts higher design discharges corresponding to return periods
of between 50 and 500 years (Fig. 7.2). This is most probably caused by the
occurrence of the 1993 and 1995 �ood events in the observational data set. These
two events had a maximum discharge of approximately 11,000 and 12,000 m3/s at
Lobith respectively. As GRADE only uses a data set of 56 years of daily weather
observations to create a data set of 50,000 years, the 1993 and 1995 �ood event
have a relatively high probability of occurrence. However, Chapter 6 showed that
only the 1926 �ood event had a higher maximum discharge at Lobith than the
1995 �ood event in the last 250 years.

Furthermore, GRADE predicts higher design discharges corresponding to return
periods larger than 1,000 years compared to the results of this study (Fig. 7.2).
GRADE includes the potential e�ects of emergency measures on the maximum dis-
charge at Lobith in the hydrodynamic SOBEK model. During a �ood event, sand
bags might be placed on the dike crests along the Lower Rhine resulting in higher
crest levels. GRADE assumes that the sand bags increase the dike crests with a
maximum of 0.5 m and that they stay in place even during high discharges. As
a result, the maximum discharge that can �ow in downstream direction increases
and subsequently the maximum discharge at Lobith can increase. Consequently,
we �nd that GRADE predicts a design discharge with a return period of 100,000
years of 17,710 m3/s. This is 1,150 m3/s larger than predicted by the proposed
bootstrap method (Table 7.1). If no emergency measures are included in the
GRADE analysis, the design discharges corresponding to large return periods are
close to our �ndings: both GRADE without emergency measures (Hegnauer et al,
2014) and this study �nd a design discharge of approximately 16,600 m3/s for a
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return period of 100,000 years.

The comparison of the con�dence intervals of the two methods is more trouble-
some since both methods consider di�erent sources of uncertainties in their anal-
ysis. The uncertainty of the bootstrap method is mainly determined by statistical
uncertainty caused by extrapolation of the relatively short data set of annual max-

Figure 7.2

FFA results of the 1317-2018 data set and GRADE (Prinsen et al., 2015). In the upper �gure, the

dashed lines of the 1317-2018 data set represent the 95% con�dence intervals. The 95% con�dence

intervals of GRADE are presented by the purple vertical lines.
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imum discharges to large return periods. This uncertainty is still small for small
return periods (Fig. 7.2), whereas GRADE has a larger con�dence interval caused
by the various sources of uncertainty (the weather generator, the HBV-model and
the SOBEK model) included in the analysis. Furthermore, we observe that the
uncertainty of GRADE decreases for return periods larger than 100 years (Fig.
7.2). This is most probably caused by the system behaviour of the Upper Rhine
basin. In this region, over�ow starts to occur for discharges corresponding to re-
turn periods larger than 100 years. This results in a decrease of the peak �ow in
downstream direction and consequently into a decrease of the uncertainty in corre-
sponding discharges at Lobith. After a return period of approximately 1,000 years,
the uncertainty increases again caused by statistical uncertainty. The uncertainty
of the bootstrap method shows a smoother pattern: the uncertainty increases for
larger return periods (Fig. 7.2) which is mainly caused by the still limited length
of the extended data set of approximately 700 years.

Overall, we can conclude that the 95% con�dence interval of GRADE is larger
for small return periods compared to the proposed bootstrap method. For return
periods larger than 250 years, the con�dence intervals are comparable. However,
the synthetically created 50,000 years of weather data is only based on 56 years
of daily observations. Hence, the long-term climate variability is neglected. The
question arises then whether the 56 years of daily observations are su�cient to
cover the variability of 50,000 years of current climate conditions. Although a
Jackknife procedure has been used to estimate this uncertainty (Van den Boogaard
et al, 2014), it still might be that the variance in the created data sets of annual
maximum discharges is underestimated. This results in an underestimation of
the con�dence intervals of discharges corresponding to large return periods in the
GRADE analysis.

Chapter 7 197



198 Chapter 7



Conclusions and recommendations



8.1 Conclusions

The aim of this thesis (Section 1.5) is to develop novel hydraulic modelling ap-
proaches to reconstruct historic �ood events such that these events can be used
to extend the data set of measured discharges. To reach this aim, we �rstly stud-
ied which type of 2D grid is most e�cient in terms of computational time and
model accuracy. Then, two types of surrogate models were developed, namely: a
lower-�delity physically based model and a response surface model, used for the
analysis of the 1926 and 1809 Rhine river �oods, respectively. With these models
it is possible to reconstruct the maximum discharges of the historic �ood events.
However, these discharges must be translated into present-day discharges since the
river system has signi�cantly altered over the last decades. For this translation, we
use a current topography in combination with a hydraulic 1D-2D coupled model.
Finally, a bootstrap method was developed that enables the inclusion of the nor-
malized maximum discharges of historic �ood events in a �ood frequency analysis.
We found that uncertainties in �ood frequency predictions can be reduced sig-
ni�cantly by extending the data set of measured discharges. In this section, we
answer the research questions formulated in Section 1.5.

Q1 What kind of computational 2D grid is most e�cient for hydraulic modelling
of large river systems in terms of �ood events?

In Chapter 2, we studied the e�ect of grid shape and grid size on computa-
tional time and model accuracy. Structured, unstructured and hybrid grids
with each high and low resolutions were compared. It was found that all grids
are capable of predicting accurate water levels with the main channel friction
as a calibration parameter. However, the di�erent grid types showed a large
range in calibrated main channel friction values and computational time.
These di�erences can be explained by three factors that in�uence simulated
water levels, namely: (1) bathymetry accuracy, and (2) numerical friction
which are both caused by grid resolution, and (3) numerical viscosity which
is caused by grid shape. Low resolution grids are not capable of correctly
representing the cross-sectional area of the rivers main channel. Therefore,
the discharge capacity and hence simulated water levels are not correctly
predicted for the uncalibrated model results. In addition, the low resolution
grids result in high numerical friction and therefore in high simulated water
levels. Finally, it was found that grids that are well-aligned with the �ow
direction have low numerical viscosity and hence perform better compared
to less aligned grids.

Based on model performance of the six grid types studied, we recommend
to use a hybrid grid with curvilinear grid cells in the main channel and
triangles in the �oodplains for hydraulic 2DH modelling since it combines
the advantages of both a structured and an unstructured grid. With a hybrid
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grid, it is possible to have a high resolution grid in the main channel, resulting
in good representation of the bathymetry. The resolution in the �oodplains
can be much lower which is bene�cial for computational time. A triangular
grid in the �oodplains is thus more e�cient than a curvilinear grid.

Q2 What kind of lower-�delity physically based surrogate model can be used to
reconstruct a historic �ood event if the upstream discharge wave is known?

In Chapter 3, we developed a 1D-2D coupled model for historic �ood recon-
struction purposes. The 1926 �ood event of the Rhine river was used as a
case study. It was found that this type of lower-�delity model predicts max-
imum discharges close to those predicted by the high-�delity fully 2D model.
Furthermore, the method can be applied to any type of historic �ood event
since the model is capable of accurately simulating �ood wave propagation
for both discharges below as above bankfull conditions.

For the 1926 �ood event, a maximum discharge at Lobith of 12,402 m3/s
was found with a standard deviation of only 49 m3/s. The uncertainty was
relatively small since much data (e.g. measured water levels, land use maps)
was available. Reconstruction of an older �ood event will probably result
in larger uncertainties. The sensitivity analysis showed that for this speci�c
�ood event the output uncertainty is mostly a�ected by the roughness of
grassland areas which also was the roughness class with the largest share in
surface area.

Q3 What kind of response surface surrogate model can be used to reconstruct a
historic �ood event if the upstream discharge wave is unknown?

In Chapter 4, an Arti�cal Neural Network (ANN) was set up to reconstruct
the maximum discharge of the 1809 �ood event at Lobith. The 1D-2D cou-
pled modelling approach, as developed in Chapter 3, was used to create the
training data. An ANN with one hidden layer and two neurons was capable
of reproducing the input-output relations of the 1D-2D coupled model with
high accuracy. Therefore, this ANN was used to perform a Monte Carlo
analysis with varying upstream discharge wave and main channel friction of
the Dutch Rhine river branches to �nd the 1809 maximum discharge and its
95% con�dence interval.

We found a maximum discharge of 11,265 m3/s with a 95% con�dence in-
terval of between 10,787-11,919 m3/s for the predicted 1809 �ood. The pro-
posed methodology decreased the 95% con�dence interval of the maximum
discharge at Lobith signi�cantly compared to the studies that did not use
hydraulic models for historic �ood reconstruction purposes.
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Q4 What are the most important elements in normalizing reconstructed historic
�ood events?

The 1D-2D coupled modelling approach developed in Chapter 3 was extended
in Chapter 5 such that �ood wave propagation can be simulated in which
both over�ow and dike breaches are possible to occur. The method is ap-
plied to the present-day geometry. Potential dike breach locations along the
Lower Rhine and Dutch Rhine river branches were included in the modelling
approach.

We found that, as a result of the over�ow and dike breaches along the Lower
Rhine, the maximum discharge decreases in downstream direction. Conse-
quently, the maximum discharge that can enter the Netherlands at Lobith is
restricted to a maximum value. A large amount of water that �ows into the
embanked areas �ows through the Old IJssel Valley towards the embanked
areas of the IJssel river. As a result of this overland �ow pattern, the �ood
risk increases in the latter area. Also, the maximum discharge at the IJs-
sel river, downstream of Doesburg, can become much larger than currently
expected during extreme �ood events.

Q5 How can maximum discharges of historic �ood events be included into a �ood
frequency analysis to reduce the uncertainty interval of the �ood frequency rela-
tion?

In Chapter 6, we have set up an e�cient bootstrap method to extend the
data set of measured discharges. The data set of measured discharges at
Lobith, dating back to 1901, was extended with the 1772-1900 continuous
data set constructed by Toonen et al (2015). Furthermore, the modelling
approach as developed in Chapter 5 was used to determine the maximum
discharges at Lobith of 12 historic �ood events being reconstructed near the
city of Cologne by Herget and Meurs (2010). Using the bootstrap method,
a continuous data set was created starting around 1300 AD.

It was found that extending the data set of measured discharges results in
a signi�cant decrease of the 95% uncertainty interval. This speci�cally ap-
plies for �ood events with an extremely low probability of occurrence, which
are the ones policy makers are interested in for designing �ood protection
measures and determining dike heights. Even though some of the historic
�ood events were highly uncertain themselves, including these in the data
set still results in a large reduction of the uncertainty intervals of the pre-
dicted �ood frequency relations. The proposed method to include historical
discharges into a traditional �ood frequency analysis can be easily imple-
mented in �ood safety assessments because of its simple nature in terms of
mathematical computations as well as of its computational e�orts.
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8.2 Recommendations

We conclude this chapter with some recommendations for future research on his-
toric �ood reconstructions, hydraulic modelling related to historic �ood recon-
structions and �ood frequency analyses. We also discuss some recommendations
for policy makers.

8.2.1 Future work to further decrease uncertainty in historic

�ood reconstructions

1. Reconstruct historic �ood events of the Rhine river

We showed that extending the data set of measured discharges with historic �ood
events has the potential to signi�cantly reduce uncertainty intervals of �ood fre-
quency relations. In this study, only the 1926 and 1809 Rhine river �oods were
reconstructed by setting up two types of surrogate modelling approaches. For
future work, it is recommended to reconstruct more historic �ood events that oc-
curred in the Rhine river delta for which su�cient data is available such that a
reconstruction is feasible. Herget and Meurs (2010) showed that in total 13 �ood
events occurred after AD 1350 that were not in�uenced by ice jams. For these
events su�cient information was available to reconstruct the maximum discharges
at Cologne, Germany. However, Herget and Meurs (2010) reconstructed these
events using a single cross section near the city of Cologne which resulted in quite
large con�dence intervals of the maximum discharges of the historic events. These
maximum discharges and related uncertainties were used as input data in Chapter
5 to predict corresponding discharges at Lobith. Reducing the uncertainty of the
input data can be reached by reconstructing the 13 historic �ood events along a
long stretch of the Rhine river with the use of the hydraulic models presented in
this thesis. As a result, the maximum discharges at Cologne can be estimated
more precisely. These discharges can subsequently be routed towards Lobith on
the present bathymetry to normalize the reconstructed historic �ood events. In
this way, the uncertainty of the �ood frequency relation at Lobith can be reduced
even further. Note that the proposed methodologies can be applied to any river
system of which su�cient information about historic �ood events is available.

2. Altered river system of the Upper Rhine

In Chapter 6, the reconstructed �ood events at Cologne (Herget and Meurs, 2010)
were used to predict corresponding maximum discharges at Lobith in present times.

Chapter 8 203



By routing the historic discharges over the present bathymetry, the historic �ood
events have been normalized for anthropegenic interventions and natural changes
in the river system of the Middle and Lower Rhine. However, the reconstructed
�ood events at Cologne were not normalized for land use changes upstream of
Cologne. It might be that the reconstructed maximum discharges at Cologne
would be larger in present times, because of more direct run-o� as a result of
deforestation. For future work, we recommend to study the e�ect of land use
changes and changes in the river system (e.g. canalization of the Upper Rhine)
on the maximum discharges at Cologne. As a consequence, the reconstructed
maximum discharges by Herget and Meurs (2010) can be adapted such that they
are normalized for changes upstream of Cologne. Routing these discharges over
present bathymetry results in a more reliable result of the maximum discharges of
the historic �ood events at Lobith in present times.

3. Main channel friction

Although many research has been done on the main channel friction during �ood
events (e.g. Best (2005); Naqshband et al (2014); Paarlberg et al (2010)), the value
of this parameter under varying discharge stages is still largely unknown. There-
fore, this parameter is commonly used as calibration parameter (Bomers et al,
2019d; Caviedes-Voullième et al, 2012). Generally, with a discharge wave as up-
stream boundary condition, the main channel friction is altered until the water
levels are predicted close to water level measurements. However, for historic �ood
events this upstream discharge is often unknown. As a consequence, there is in
principle an in�nite number of potential combinations of maximum upstream dis-
charge and main channel friction values that results in the same simulated water
levels. To enable prediction of the maximum discharge of a historic �ood event,
a range of potential main channel friction values must be de�ned. In Chapter
4, this range was based on a calibrated hydraulic model using data of the 1995
�ood event. However, calibrated friction values are model dependent since they
compensate for e.g. grid generated errors in the model. Hence, these values are
not directly transferable to another model. Therefore, it is important to gain more
knowledge on the main channel friction values that are appropriate for hydraulic
river models if calibration is not possible. The di�culty lies within the fact that
the calibrated main channel friction values have no physical interpretation any-
more. The appropriate calibrated friction values can thus not be explained by
the physical behaviour of sand dunes, and resulting bed friction, under varying
discharge conditions.
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8.2.2 Future work to increase hydraulic modelling e�ciency

1. Advanced 2D grids for hydraulic modelling purposes

In Chapter 7 we discussed the use of e�cient 2D grids in other �elds. It seems
that other �elds such as �uid mechanics and aerodynamics are already using more
e�cient schemes compared to the �eld of hydraulics. We recommend to study
the applicability of adaptive grids for hydraulic modelling of large river branches.
These grids have as advantage that they can be updated during the simulation
such that a smaller resolution can be implemented in areas where locally rapid
changes in �ow velocity and �ow direction occur. This has the potential to reduce
the computational times of hydraulic models even further. Consequently, Monte
Carlo analyses incorporating uncertainties related to historic �ood reconstructions
can be performed faster.

2. Validation hydraulic models

Generally, hydraulic models are calibrated by adapting the main channel friction
until simulated water levels are close to measured water levels (Bomers et al,
2019d; Caviedes-Voullième et al, 2012). However, in Chapter 2 we found that,
although maximum water levels are simulated correctly, other physical processes
may not be accurately simulated. Maximum �ow velocities in a meander bend
highly deviated from physical expectations. Therefore, we recommend not only
to validate hydraulic models on simulated water levels but also on other physical
processes.

8.2.3 Future work in �ood frequency analyses

1. Combination of multiple distributions

In Chapter 6, we �tted the Generalized Extreme Value (GEV) distribution func-
tion to the data set of annual maximum discharges since several studies showed
the applicability of the GEV distribution on the �ooding regime of the Rhine river
(Chbab et al, 2006; Te Linde, 2011; Toonen et al, 2015). This distribution has,
such as the other most commonly used distributions, three parameters. These
parameters describe the location, scale and shape of the distributions, giving the
distributions the �exibility to approximate a wide range of potential distribution
shapes (Parkes and Demeritt, 2016). The uncertainty related to the chosen distri-
bution function is referred to as model uncertainty in literature. This uncertainty
was not considered in Chapter 6. One approach to manage this uncertainty is to
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create a composite distribution of several di�erent distributions (e.g. GEV, Gum-
bel, Pearson) each allocated a weighting based on how well it �ts the available
data (Apel et al, 2008). For future work, it is advised to perform this analysis to
identify the increase in uncertainty in �ood frequency predictions if a composite
distribution is considered instead of the use of a single distribution function. Fur-
thermore, the uncertainty related to the use of various goodness-of-�t tests must
be included since each test will result in a slightly di�erent �tted distribution
function.

2. Bayesian statistics

In Chapter 6, a �ood frequency analysis was performed based on frequentist statis-
tics. However, the last decade, Bayesian statistics are increasingly used to predict
�ood frequency relations. Several studies have shown the applicability of Bayesian
statistics for a data set of annual maximum discharges extended with several his-
toric �ood events. This has various advantages compared to the proposed boot-
strap method based on frequentist statistics (Chapter 6). Among others, frequency
statistics provide a point estimate of the parameter values of the distribution func-
tion considered. These point estimates are computed based on a goodness-of-�t
test such as the Maximum Likelihood function. However, solely providing a point
estimate is not su�cient since we think that policy makers should also know the
related parameter uncertainty. To estimate this uncertainty, it is commonly as-
sumed that the parameters are normally distributed in frequentist statistics. An
advantage of Bayesian statistics is that one does not have to use any approxima-
tion because the full posterior distribution of the parameters are provided (Reis
and Stedinger, 2005). Furthermore, Bayesian statistics can be applied to a non-
continuous data set such that the use of a bootstrap approach provided in Chapter
6 becomes redundant. However, Bayesian statistics also have several drawbacks.
The greatest drawback is related to the choice of the priors describing the distri-
butions of the parameters. This prior is generally based on some foreknowledge
about the data set and is used to compute the posterior distributions of the param-
eters. Consequently, the prior in�uences the results of the parameter estimates and
hence related uncertainties. For future work, we recommend to study the e�ects
on uncertainty intervals of �ood frequency relations by using the two statistical
methods. This will provide knowledge on whether the use of the two methods
results in large di�erences in uncertainty interval estimates of �ood frequency re-
lations. If this is the case, it must be evaluated which method is most reliable to
use for �ood safety assessment purposes.
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8.2.4 Recommendations for policy makers

1. Overland �ow patterns

Up till now, overland �ow patterns have not, or only in a very simple way, been
included in �ood safety assessments. However, in Chapter 5 we found that overland
�ow patterns caused by over�ow and dike breaches can have a large impact on
�ood risk and maximum discharges of downstream river branches. For the Waal
river and Nederrijn river, it was found that �ood risk decreases as a result of dike
breaches along the Lower Rhine. However, the �ood risk along the IJssel river
can increase tremendously. As a result of dike breaches near the city of Wesel,
Germany, a large amount of water is capable of �owing through the Old IJssel
Valley towards the hinterland of the IJssel river. Consequently, �ood risk of the
embanked areas along the IJssel river becomes larger than if solely �ood risk caused
by dike breaches and over�ow from the IJssel river itself is considered. Therefore,
we recommend to include the e�ects of potential overland �ow patterns in future
�ood safety assessments.

2. Evaluate uncertainty in GRADE analysis

Chapter 7.7 discusses the di�erences between the uncertainty intervals of the pro-
posed bootstrap method (Chapter 6) and GRADE. It was found that the method
of GRADE results in smaller 95% con�dence intervals for discharges correspond-
ing to large return periods because of the use of 50,000 years of annual maximum
discharges. However, this data set is only based on 56 years of daily weather obser-
vations. It is unlikely that the 56 years of observations are su�cient to cover the
variability of 50,000 years of current climate conditions. If the variability in the
56 years of measured weather conditions is too low to su�ciently describe 50.000
years of current climate conditions, the 95% con�dence intervals of GRADE are
underestimated. Therefore, we recommend to evaluate the computed uncertainty
intervals of GRADE by assessing the in�uence of the length of the resampled data
set on the 95% con�dence intervals of the �ood frequency curves.
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