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Summary  
The emergence of new mobility services as a result of the societal transition from owning to using 
goods and services, requires travel demand models to include the decision maker’s context. The 
traditional aggregated, macroscopic, trip-based 4-step model is not able to fulfil this requirement. 
Therefore, a generation of more advanced models has arrived with clear theoretical advantages. These 
models are disaggregated, microscopic, and tour-based, and take the decision maker’s context into 
account. However, empirical comparisons between these two approaches are scarce and do not 
address the prediction quality of both models, while the primary aim of travel demand models is to 
forecast future situations.  
 
The presented study attempts to fill this knowledge gap by conducting a backcast: predicting a 
historical year for which observed travel behaviour is available and compare this with the base year 
performance. The city of Almere in the Netherlands between 2010 and 2017 is used as case. The model 
performance is evaluated using three aggregated Key Performance Indicators (KPIs) that can be used 
for both models: trip frequency, modal split, and trip length distribution.  
 
The results demonstrate that the advanced model, called Octavius, is more capable of describing the 
base year compared to the 4-step model when evaluated against travel survey data. However, the 
backcast results show that both models perform similarly in terms of prediction quality. Hence, the 
longitudinal stability of both models is similar. In addition to the three KPIs, the disaggregated 
behaviour is analysed using two scenarios. The findings show that Octavius is able to include factors 
that affect travel behaviour in a manner that is consistent with literature. The 4-step model on the 
other hand exhibits counterintuitive results with increasing car use when car ownership decreases, 
which demonstrates its lack of behavioural realism. Moreover, the possibility of Octavius to model 
certain subgroups in society is a valuable tool to evaluate transport policies and other developments, 
such as the development of new neighbourhoods; analyses that the 4-step is not able to provide.  
 
Finally, the main limitation of this study is the limited differences between 2017 and 2010 in travel 
behaviour and socioeconomic development. Consequently, it is not possible to accurately evaluate 
how the models respond to changes, and in which situations one model performs better than the 
other. Future research could clarify this by using a longer backcast period, while ensuring that input 
and evaluation data are of sufficient quality.  
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1 Introduction 
The 4-step model has been widely applied to calculate travel demand since the 1960s, and is still in 
use today (Elmorssy et al., 2019). It generally describes travel demand as a function of attractiveness 
and resistance: an analogue to Newton’s law of gravitation. However, due to the societal transition 
from owning to using goods and services, and the emergence of new mobility services that respond to 
this development (Jittrapirom et al., 2017), transport demand models that are able to describe more 
complex behavioural choices are required. Examples include the effects of travel decisions of other 
household members, transport mode availability at mobility hubs, but also home working among 
employees in certain industries. The 4-step model does not, and is not able to, consider the decision 
maker’s context (Elmorssy et al., 2019). A different approach is to model individual travellers with 
distinct characteristics, that live in a certain type of household, and that want to perform particular 
activities. All these factors affect subsequently the travel choices made, which means that the decision 
maker’s context directly influences travel behaviour.  
 
The conceptual differences between the two approaches are: aggregated versus disaggregated, macro 
versus microscopic, and trip versus tour-based. Disaggregated means that travel behaviour is modelled 
for segments: groups of travellers for whom the same set of variables determines their travel decisions 
through choice models. To model segments efficiently, microsimulation is required. That is, all 
characteristics – including interaction with the environment, such as other household members – are 
stored in agents that together form a synthetic population. Subsequently, the agents are grouped into 
segments, which can differ per choice model. Without microscopic simulation, the number of 
segments would increase enormously, because each combination of characteristics, would be stored 
as a separate segment (Ortúzar & Willumsen, 2011). Lastly, tours capture a complete home to home 
journey, including the trips to the primary and possible secondary activities. As a result, tour-based 
models are (at least) consistent in mode and destination choice (Vovsha, 2019), while trip-based 
models do not model any connection between trips.  
 
Although the theoretical advantages of these types of models have been extensively discussed in 
literature (e.g., Davidson et al., 2007; Rasouli & Timmermans, 2014; Vovsha, 2019), only few studies 
were found that empirically compared these two approaches. However, these studies focussed on the 
base year performance or scenario testing only, while transport demand models are applied to forecast 
future situations. Consequently, it is not clear how the prediction quality of both approaches 
compares. The presented study conducts a backcast, which is the opposite of a forecast, to evaluate 
the prediction quality. The advantage of backcasting is that observed travel behaviour is already 
available as evaluation data, which means that one does not have to wait until the data for the 
predicted year become available (Roorda et al., 2008).  
 
Goudappel developed Octavius, a software implementation of the second discussed approach, which 
is used in this study together with a traditional 4-step model of Goudappel. Although completely 
functional, the choice models that take fully advantage of considering the decision maker’s context 
(such as travel decisions of other household members, see the examples given above) are not included 
yet. Therefore, this study focuses on comparing the disaggregated approach of Octavius with the 
aggregated approach of the 4-step model. The city of Almere was used as a case, because a fully 
functional 4-step model is available for that city, as well as a 2010 network that could be used to 
reconstruct the 2010 situation. The remainder of this document is structured as follows. In section 2, 
relevant literature is discussed. Section 3 presents the research dimensions, including the research 
questions. The models used for the comparison are discussed in section 4. Subsequently, the 
methodology is explained in section 5. The results obtained are demonstrated in section 6, after which 
they are discussed in section 7. The conclusions are drawn in section 8, with the limitations and 
recommendation of this study presented in section 9.  
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2 Literature review 

2.1 Traditional 4-step model 
Before discussing the 4-step model, it should be noted that a variety of different implementations of 
the 4-step model exist. The aim of this section is to give a description of how the model works in general 
terms, while section 4.1 describes the specific implementation used in this study. As explained by 
Rasouli and Timmermans (2014), the traditional 4-step model is an aggregate travel demand model, 
using trips as modelling unit. A trip is a journey made from one origin (i.e., home) to one destination 
(i.e., work). The aim is to predict the number of trips coming from and going to so-called Traffic Analysis 
Zones (TAZs). TAZs originate from the aggregate nature of the model, meaning that travel decisions of 
a group of individuals are estimated at an aggregated level, rather than modelling individual travellers. 
The traditional 4-step model consists of four stages, which explains the name. In the first step, the trip 
production and attraction for each TAZ is determined based on socioeconomic characteristics of that 
particular TAZ. The second stage models the destination choice of travellers. A common approach is to 
use a gravity model, which is an analogue to Newton’s law of gravitation. It describes that TAZs with a 
higher attractiveness, for instance a high number of workplaces, inhabitants, or shops, attract more 
trips. Furthermore, the attraction of a particular zone is inversely proportional to the cost involved to 
travel to that zone, where cost can refer to travel time, monetary costs or other (combination of) 
factors. The third step calculates the cost of travelling from a certain origin 𝑂 to a destination 𝐷 for all 
considered travel modes. Subsequently, the mode choices of all travellers are modelled, resulting in 
mode-specific matrices which contain the probability of choosing that mode for each OD-relation. 
Then, the mode-specific matrices are multiplied with the number of trips per OD-relation, which was 
calculated in the second step. This results in OD-matrices that specify how many trips are made from 
each origin to each destination by which mode. Traditionally, the last step is to model the route choice 
of travellers, often referred to as traffic assignment, which results in the number of trips made over 
each link in the network. Although the traditional model consists of four stages, a fifth stage can be 
added which includes the time of travel. In this way, the travel demand over different time periods can 
be modelled.  
 

2.2 Limitations of the traditional 4-step model 
Four main limitations of the traditional 4-step model were identified. First, travel decisions are 
modelled at a highly aggregated level, meaning that individuals and households within the same TAZ 
are considered identical, or only a limited number of characteristics are distinguished (Vovsha, 2019). 
This introduces a bias, because average individuals and households do not automatically represent a 
population accurately. Or, in other words, “the probability of an average is not necessarily equal to the 
average of the probabilities across individual underlying values” (Rasouli & Timmermans, 2014, p. 33). 
Similarly, predicting the impacts of measures on certain subgroups is difficult if not impossible, 
depending on the subgroup of interest. 
 
Secondly, dependencies between travel decisions of household members (so-called ‘intra-household 
interactions’) cannot be modelled. However, research suggests that interaction among members of 
the same household affect individual’s travel behaviour (Davidson et al., 2007). For instance, joint 
activities such as going to the movies, or doing grocery shopping on behalf of all the household 
members. Due to this independency, secondary effects of transportation policies cannot be captured 
(e.g., the effect of changing travel behaviour due to policy development of household member A on 
member B).  
 
Thirdly, travel decisions are modelled independently and can therefore not be described consistently 
(Rasouli & Timmermans, 2014). As a result, different modes of transport can be used for trips that in 
reality belong to the very same journey. Similarly, the connection between home-based (i.e., trips that 
start or end at home) and non-home-based trips (i.e., trips that neither start nor end at home) does 
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not exist. However, Dutch research has demonstrated that approximately twenty percent of journeys 
made include at least one non-home-based trip (Schneider et al., 2021).  
 
Lastly, time of travel cannot be included on an individual level as this depends on the daily schedule of 
a traveller. Moreover, the distances that can be realistically travelled within a daily schedule (i.e., time-
space constraints) limit the number of possible destinations. Examples include opening hours of stores 
and working hours (Rasouli & Timmermans, 2014). Since these constraints are not considered in a 4-
step model, unrealistic travel behaviour may occur and policies that aim to influence time of travel, 
such as congestion pricing, are difficult to evaluate.  
 

2.3 Advanced travel models: disaggregated, microscopic and tour-based  
To address the abovementioned limitations of the traditional four-step model, several improvements 
have been made in the travel demand modelling field. In this section, disaggregated, microscopic and 
tour-based modelling is compared with the aggregated, macroscopic trip-based approach of the 4-step 
model. Although the improvements are complementary, and one can function without the other, they 
are often jointly implemented (Davidson et al., 2007).  
 
Firstly, disaggregate models are estimated with a dependent variable representing an observation of 
one occurrence: a trip within travel demand modelling (Richards, 1974). In contrast, a group of 
observations represents a dependent variable in the case of aggregated models. The major benefit of 
disaggregated models is the highly efficient use of available data, as all observations can be used for 
variable estimation, while aggregate models such as the 4-step model are estimated on clustered 
observations. Moreover, grouping observations results in averaging of the observed travel behaviour, 
which means that variability within the data is lost and homogeneous TAZs are modelled (Richards, 
1974). Disaggregated models on the other hand take advantage of the data variability, such that 
heterogeneity in travel behaviour is included in the model.   
 
Secondly, modelling at a microscopic level entails that individuals and households are explicitly 
modelled, which contrasts with the zonal approach of the 4-step model. The technique translates 
probabilistic travel choices into discrete choices, creating synthetic travellers which are similar to real 
persons with distinct characteristics and travel behaviour (Davidson et al., 2007). It should be noted 
that modelling individual travel behaviour is not aimed to pinpoint that behaviour, but rather to predict 
aggregate travel behaviour with higher accuracy. The concept is that when individual travel choices 
are modelled in a more consistent and realistic manner, the aggregate predictions become more 
consistent and realistic as well (Davidson et al., 2007). Consequently, the aggregation bias inherent to 
the four-step model is prevented, since the effects of changing travel conditions are captured at an 
individual and household level (Vovsha & Bradley, 2006).   
 
Thirdly, individual trips are replaced by tours. Tours are “a sequence of trips that begins at home, 
involves visits one or more other places, and ends at home” (Ye et al., 2007, p. 97). As a result, mode 
choice and destination (and possibly time of the day) are consistent across all trips in the same tour 
(Vovsha, 2019). Note that two types of tours can be distinguished: simple tours with one activity (2-
trip tour), and complex tours with two or more activities (3-trip tour), outside the home location (Ye 
et al., 2007). Since twenty percent of the Dutch journeys involves a complex tour (Schneider et al., 
2021), it is a significant part of the journeys that cannot be accurately modelled by the 4-step model.  
 
In addition to the advantages of disaggregated, microscopic, and tour-based travel models, literature 
also identified three main drawbacks of this modelling approach. Firstly, the increased complexity 
requires the estimation and calibration of more sub-models and parameters compared to a 4-step 
model, which leads to increased time efforts (Lemp et al., 2007). Similarly, the increased complexity 
requires more detailed input data, which can be costly and time-consuming to collect (Omer et al., 
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2010). Thirdly, due to the stochastic nature of microsimulators, model results change with different 
random seed values (Walker, 2005). As a result, the comparability of model outcomes decreases. 
Although this limitation can be addressed by performing multiple runs, this requires additional effort. 
 

2.4 Empirical comparison between 4-step model and more advanced models 
As discussed in section 2.3, disaggregated, microscopic, and tour-based models have theoretically 
distinct advantages over an aggregated, macroscopic, trip-based model such as the 4-step model. 
However, little studies empirically compared these two types of models to evaluate if the theoretical 
benefits are evident in practice. This section will discuss the few studies found that conducted such a 
comparison. Table 1 gives an overview of the studies reviewed, together with the most relevant 
findings. It can be concluded that the advanced models did not demonstrate a better traffic count fit; 
at best it was similar. This is an interesting finding, since traffic counts are frequently used in practice 
to evaluate the performance of travel models. Furthermore, it was found that advanced models were 
more sensitive towards changes in input data. Lastly, the more advanced models allowed for analysing 
the effects of transport-related changes on certain groups in society.    
 

Table 1 - Studies that compared a 4-step model with a (theoretically) more advanced model 

Study Type of model  Location Indicators Findings  

Walker 
(2005) 

Disaggregate, 
trip-based 
microsimulator 

USA Traffic counts, 
VMT1, 
elasticity  

- Similar performance in terms of 
traffic counts fit; 
- Diversity of population preserved 
by microsimulator; 
- Aggregation bias prevented with 
microsimulator; 
- Higher sensitivity of 
microsimulator for car travel time. 

(Lemp et 
al., 2007) 

Disaggregate, 
tour-based 
microsimulator 

USA VMT1, VHT2, 
destination 
and route 
choice, modal 
split  

- In base scenario, microsimulator 
shows worse fit of VMT estimations 
than 4-step 
- Tour-based showed higher 
sensitivity for job locations. 

Griesenbeck 
and Garry 
(2007) 

Disaggregate, 
tour-based 
microsimulator 

USA VMT1, traffic 
counts, modal 
split, elasticity  

- Tour-based predicted VMT closer 
to observed values; 
- Similar traffic count fit with RMSE 
of 33-34%; 
- Tour-based showed higher 
elasticities. 

Ferdous et 
al. (2012) 

Disaggregate, 
tour-based 
microsimulator 

USA Worker flow 
distribution, 
work trip 
travel time 

- Observed work flows better 
predicted by tour-based model; 
- Similar performance in terms of 
traffic counts fit.  

1 Vehicles Miles Travelled 
2 Vehicle Hours Travelled 

 
Walker (2005) compared an aggregate four-step model with a disaggregated trip-based household 
microsimulator, for the Southern Nevada region (USA). Although the focus of this comparison is on 
tour-based models, Walker found interesting results and was therefore included. The study showed 
that both models performed similarly in terms of traffic count fit. In addition, three relevant benefits 
of the advanced model were found. Firstly, the diversity of the population in the output was preserved, 
which means that the effect of policies or adjustments to infrastructure can be studied at a subgroup 
level. Secondly, the aggregation bias of the aggregated 4-step model was eliminated. Lastly, a 
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sensitivity analysis was conducted for which car travel times were incrementally increased. Both type 
of models performed similarly in terms of VMT, but the microsimulator showed a stronger cross 
elasticity with a higher shift from car to PT trips.  
 
Lemp et al. (2007) conducted a similar comparison as Walker (2005) but used a tour-based 
microsimulator rather than a trip-based version. A base year was modelled, as well as two scenarios 
for Austin (USA). For the reference situation, modelled VMT figures were overestimated with 27 
percent compared to observed data, while the aggregate 4-step model overestimated by 14 percent. 
Furthermore, the first scenario modelled a capacity expansion for two key highways in the study area. 
Both models responded similarly and intuitively: during peak hours the VHT reduced, while VMT 
increased over all time periods. Moreover, both models determined different destinations and routes 
in favour of the highways with increased capacity. For the second scenario, job locations were moved 
from rural (-50% jobs) and suburban (-30% jobs) locations to urban and central business district zones 
(+58%). The advanced model demonstrated a larger VMT decrease compared to the 4-step model 
(2,5% and 0,6% respectively). The reason found was that although the commute distance increased, 
secondary activities were located closer to the work activity which reduced the VMT in the end. 
Moreover, the 4-step model estimated a similar model split as the reference situation, while the 
advanced model predicted a 19 percent increase in active mode use. The latter was likely to be caused 
by households living in areas with higher job opportunities, choosing destinations close to their homes.  
 
Griesenbeck and Garry (2007) evaluated a traditional 4-step model with what they describe as an 
activity-based model. However, the model does not account for time-space constraints, which is why 
the model is considered to be a disaggregate, tour-based microsimulator, following the definition of 
Vovsha (2019). The advanced model predicted 3% higher daily VMT than observed, while the 4-step 
model predicted 9% lower VMT. In terms of traffic count fit on highways, both models performed 
similarly with a root mean squared error (RMSE) of about 33%. Furthermore, the sensitivity of both 
models was tested by means of aggregate point elasticities. The household VMT with respect to 
household income was +0,08 for the advanced model compared to -0,02 for the 4-step model. The 
number of public transport trips with respect to household income was -0.17 for the advanced model 
and -0,06 for the 4-step model. The higher elasticities seemed to correspond with the greater 
sensitivity of the advanced models reported by Walker (2005) and Lemp et al. (2007). Finally, model 
output was compared to travel survey data. The analysis demonstrated that the advanced model 
estimated an increasing share of active modes with increasing population and employment density, 
which was similar to observed travel behaviour. Similarly, VMT by households decreased sharply when 
the employment density increased, again in line with the survey data.  
 
Lastly, Ferdous et al. (2012) compared a traditional 4-step model with a disaggregate, tour-based 
microsimulator by analysing the model outcomes for three highway projects in the metropolitan area 
of Columbus (USA). The comparison was based on four relevant indicators: work flow distributions, 
work flow distribution by trip start time of the day, average travel time for work trips, and traffic 
counts. The advanced model performed better in terms of observed work flows, both in general for 
work flow trips and when start time was considered. The average travel time estimation for work trips 
was in most cases either better or similar compared to the 4-step model, evaluated against travel 
survey data. Lastly, when comparing link volumes with traffic counts, both models performed similarly 
with RMSE values between 25% and 40%, which are similar to the values found by Griesenbeck and 
Garry (2007). 
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2.5 Backcasting: why and how? 
The reviewed studies in section 2.4 compared the two types of models for a base year situation. 
Although relevant, it only demonstrates the base year performance; the situation for which the model 
parameters were calibrated. As a result, the model’s performance in a context other than the base 
year (referred to as ‘longitudinal stability’) has not been compared. However, travel demand models 
are generally applied to predict future situations. Therefore, Roorda et al. (2008) described two 
methods to assess the longitudinal stability of a model: forecasting and backcasting (see Figure 1). In 
the former, forecast results are evaluated with observed travel behaviour several years later. As a 
result, the model’s prediction quality can be evaluated (e.g., Shelton et al. (2016). A significant 
drawback of this approach is that one has to wait until the forecasted year is reached and observed 
data are available. The second method addresses this issue, because it models a past year: rather than 
forecasting a backcasting exercise is conducted. The advantage is that already available observed travel 
behaviour can be used as evaluation data. Although literature acknowledges backcasting as an 
appropriate technique to assess the reliability of model predictions and the model quality in general, 
examples of backcasts are scarce (Lange & Huber, 2015). 
 

 
Figure 1 - Backcasting and forecasting illustrated 

In literature, three prerequisites for backcasting are described (Sammer et al., 2010, as cited in Lange 
& Huber, 2015): 1) a calibrated and validated model, 2) historical data as input for and validation of 
the backcast, and 3) a difference of at least ten years between the backcast and the base year. The 
latter is required to ensure that changes in terms of demographics, land-use, travel behaviour, etc. are 
significant enough to determine the model’s response.  
 
In addition to these requirements, also a backcasting sequence is described:  

1. Model the base year with an established model; 
2. Determine input data and identify evaluation data for the backcast year;  
3. Model the travel demand for the backcast year; 
4. Compare the modelled and observed travel demand; 
5. Interpret and document the results.  

 
Note that an 'established model’ refers to a model which has been estimated and calibrated. 
Furthermore, input data for step 2 consists primarily of socioeconomic data and networks for the 
relevant transport modes. The evaluation data represents data that can be used to assess the model 
outcomes, and includes observed travel behaviour from travel surveys, traffic counts, boarding and 
alighting numbers, etc. Examples of studies that performed a backcast are: Gunn et al. (2006), Lange 
and Huber (2015), and DfT (2020).  
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3 Research dimensions   

3.1 Research aim 
From the literature review it became clear that disaggregated, tour-based microsimulators have clear 
theoretical advantages over aggregated, macroscopic trip-based models of which the 4-step model is 
the most prominent example. In contrast to theoretical advantages, only few studies empirically 
compared both types of models. These studies, however, did not analyse how the models compare in 
a situation deviating from the base year. As a result, the longitudinal stability of the models remains 
unclear.  
 
The presented research aims to contribute to the transport modelling community by analysing the 
differences between an aggregated, macroscopic, trip-based 4-step model and a disaggregated, tour-
based microsimulator within the application context. Specifically, by comparing the models’ 
performance in a backcast year relative to the performance in the base year, the longitudinal stability 
of both models is evaluated. To enable a fair comparison, the parameter estimation quality should be 
considered when analysing the results in the application context, such that the calibration quality itself 
does not distort the analysis of the models’ capabilities. The city of Almere between 2017 and 2010 
was used as a case, in combination with two travel demand models developed by Goudappel: an 
aggregated, macroscopic, trip-based 4-step model and a disaggregated, tour-based microsimulator 
called Octavius1.  
 

3.2 Research questions  
Based on the research aim, the main question is formulated as follows: 
 

How do the effects modelled by Octavius compare to the effects modelled by the 4-step model 
when conducting a backcast from 2017 to 2010 using Almere as case, and to what extent do 
these effects correspond to changes observed using travel survey data and literature?  

 
In line with the proposed backcast sequence (see section 2.5), the first sub-question focuses on the 
base-year. The extent to which both models are able to replicate the observed situation in 2017 will 
be used as a reference for the backcast year, such that differences between the model results for 2017 
and 2010 (referred to as ‘backcast effect’) can be isolated: 
 

1. To what extent are the 4-step model and Octavius able to describe the base year (2017) when 
comparing the model outcomes to travel survey data? 

 
Subsequently, the models will be applied using 2010 input data to analyse how the models behave in 
a different situation from the one they were calibrated for. The results are considered using the 2017 
performance as a reference. This leads to the second sub-question: 
 

2. To what extent do the modelled effects from the 4-step model and Octavius for Almere 2010 
relative to 2017, correspond with changes observed in travel survey data between 2017 and 
2010? 

 
Lastly, the ability to model specific changes in society (and underlying policy questions) is analysed and 
compared to literature. Using specific TAZs as cases allows to evaluate changes at a detailed level.   
 

3. How do both models respond to specific changes in society at the TAZ level and how does this 
compare with literature?  

 
1 Note that Octavius is also called ‘OmniTRANS Horizon’.  
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4 Model descriptions  
In this chapter, a description of the 4-step model and Octavius is given. While both models are strategic 
travel demand models, they use fundamentally different systematics to determine in the end the 
number of people that want to travel from origin 𝑂 to destination 𝐷. The first difference is the 
aggregation level: the 4-step model considers only the aggregated behaviour of average travellers, 
while Octavius models disaggregated travel behaviour of segments: groups of travellers for whom the 
same set of variables determine their travel decisions through choice models. Secondly, the 4-step 
model operates at the macro-level, which means that traffic is modelled at a TAZ level. Octavius on 
the other hand models agents with discrete travel choices (micro-level), reducing the computational 
efforts when considering a large number of possible segments. Lastly, the 4-step model uses trips to 
represent journeys made by people, while Octavius uses tours: chains of trips that start and end at 
home and which include a primary activity and possibly a secondary activity which is subordinate to 
the main activity. As a result, trips within a tour are consistent in space and mode choice, in contrast 
to trips.  
 

4.1 4-step model 
The 4-step model of Almere is structured in three parts: trip generation, a gravity model which models 
the destination and mode choice simultaneously, and route choice. However, the scope of this 
research is transport demand modelling, which means that any effect of route choice on travel demand 
is distorting the comparison. Therefore, route choice is excluded from this study. The trip generation 
describes the number of trips produced and attracted by each TAZ. It is defined per purpose, both from 
home and to home (e.g., home-work and work-home), and distinguishes between car availability and 
non-car availability. The purposes considered are work, business, shopping, education for 18 years and 
older, education for 17 years and younger, and other. The trip generation is used as input for the 
gravity model that simultaneously distributes produced trips among destinations and travel modes 
whilst satisfying both zonal production and attraction constraints.  
 

4.1.1 Estimation context 

The parameters for the trip generation and the gravity model were estimated and calibrated during 
the original model construction at Goudappel. Note that the estimation and calibration process are 
performed simultaneously and use the same dataset: weighted2 Dutch national travel survey data 
(OViN) from 2010 up to and including 2017 with the origin or destination being in Almere. See the 
documentation provided by CBS (n.d.-c) for more information on OViN. The 4-step model used in the 
presented study contains three parameters: the trip generation coefficient and the alpha and beta 
used in the lognormal distribution function of the gravity model.  
 
The trip generation parameters were calculated by dividing the number of trips found in OViN over a 
variable of interest. These variables come from Almere-specific socioeconomic data, meaning that the 
estimation and application context overlap. Similarly, the alpha and beta in the lognormal deterrence 
function used in this gravity model were estimated and calibrated using the modal splits and trip length 
distributions found in OViN for Almere 2010-2017. The considered modes are car, public transport 
(PT), and bicycle. For PT, access and egress transport is modelled separately, considering walking and 
cycling as available options. Note that walking is only considered as possible access/egress mode for 
PT, while cycling is both an option as access/egress mode as well as a separate mode for entire trips.  
 

 
2 Note that weighted means that the sampling results are extrapolated to find a representative dataset for the 
whole of the Netherlands. See the website of the CBS for more information (n.d.-a).  
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4.1.2 Application context  

The 4-step model with the estimated parameters was subsequently used in combination with the 
socioeconomic data and networks of Almere. The data collection itself will be discussed in the research 
methodology (section 5.1), but here the required socioeconomic input data are presented in Table 2.  
 

Table 2 - Socioeconomic variables required for the 4-step model in Almere 

Variable name Variable name 

Households Student enrolments 18- 
Residents Student enrolments 18+ 
Residents 0-17 years old Retail jobs 
Residents 18-24 years old Jobs in total 
Labour force  

 

4.2 Octavius 
Octavius is a disaggregated tour-based microsimulator developed by Goudappel, which consists 
currently of three modules: population synthesizer, tour generator, and tour simulator (Brederode et 
al., 2020). The population synthesizer creates agents with characteristics on a personal and household 
level. For most of the choice models in the other modules, agents with similar characteristics for 
specific variables such as age, gender, or purpose of last visited location, are grouped into so-called 
segments. These segments can differ between modules, depending on the variables that are significant 
within the relevant choice model. Subsequently, the tour generator determines the tour frequency – 
which is limited to 0, 1, or 2 tours – and the main and secondary activity (if applicable). The tour 
simulator models after that the destination(s) the agent will visit to conduct these activities and the 
mode(s) of transport used. Figure 2 illustrates the process of finding the destinations for a 3-trip tour. 
The main destination is determined in step 1 based on the residential location of the specific agent, 
after which the destination of the secondary activity is chosen based on the residential and (in this 
case) work location. The trips are subsequently combined to one tour, omitting one trip of step 1 (could 
be the return trip but also the first trip, depending on the order of the first and second purpose). The 
result of the destination choice is the location of the main activity and secondary location (if 
applicable), per mode (see Figure 3). Lastly, the probability of choosing each mode with the 
corresponding destinations is calculated. Note that for car driver it is checked whether the agent has 
a driving license and a car in the household. Similarly, for car passenger the household should have a 
car and an (other) adult. Rather than discretising the mode choice into one mode, the probabilities are 
directly used as (continuous) trips. The output of Octavius are agents with synthetic travel diaries.  

 
Figure 2 - Octavius' destination choice order (Goudappel, 

2022) 

 
 
 

Figure 3 - Octavius' destination choice result  (Goudappel, 
2022) 



Page | 15  
 

4.2.1 Estimation context 

Within the estimation context of Octavius, variables which were found to have a statistically significant 
effect on travel behaviour in one or more of the Octavius’ modules were included. For the population 
synthesizer, personal and household distributions were extracted from national OViN 2010-2017 data 
(CBS, n.d.-c) to define synthetic agents and households distributions. To assign agents to households, 
household composition distributions were taken from the Netherlands Mobility Panel (MPN). For the 
other modules of Octavius, logit choice models were used to distribute agents over a given set of 
discrete choice alternatives. The parameters and variables for the choice models used in the tour 
generator and simulator – describing agents’ travel choices – were estimated on observed travel 
behaviour found in national OViN 2010-2017 (CBS, n.d.-c) and CBS microdata 2011-2017 (CBS, n.d.-b). 
The modes of transport included in the estimation context of Octavius are car driver, car passenger, 
PT, bicycle, and bicycle-car passenger.     
 

4.2.2 Application context  

After the estimation context, Octavius uses input data and networks to calculate travel demand. The 
input data can be categorised into different types of data. For the population synthesizer, the 
characteristics of individual agents and households in which they live are required. In practice this 
means that for each zone the total number of females, residents, students, etc. is part of the input 
data. Based on these subtotals per zone, in combination with a seed population distribution from OViN 
and a seed household composition from the MPN which were determined in the estimation context, 
characteristics are assigned to each agent and household. In Table 3, the socio-economic variables for 
the population synthesizer are listed. Note that the variables are only combined into segments if they 
exist in reality. For instance, gender (2 categories) and household size (6 categories) results in 12 
classes, but the segment 0-17 years with driving license is omitted as it does not exist. This yields 180 
person segments and 216 household segments. To be comparable to the 4-step model, the modes car 
(including car driver and car passenger), PT, and bicycle were included in the application context.  
 

Table 3 – Personal and household variables included in Octavius’ population synthesizer  

Individual class Variables  Household class Variables  

Age groups 0-17 Household size 1 person 
18-29 2 persons 
30-44 3 persons 
45-64 4 persons 
65 and older  5 persons 

Gender Male 6 persons or more 
Female Household structure single 

Ethnicity Dutch Without children 
Western With children 
Non-Western Number of cars in 

household 
0 cars 

Driving license Driving license 1 car 
No driving license  2 cars 

Social participation Employed 3 cars or more 
Students  
Other 

 
In addition to the input data for the population synthesizer, data on size variables – which describe 
partially the attraction of destinations – are required (see Table 4). In contrast to the 4-step model, 
these variables are not modelled as constraints. In addition to the size variables, also the person and 
household characteristics determine the attraction of a destination and the mode choice.  
 
 



Page | 16  
 

Table 4 – Input data for Octavius’ destination choice  

Variable class Subtypes  Variable class Variables 

Jobs Education Student 
enrolment 

Primary education 
Industry  Secondary education 
Office Intermediate vocational education 

(Dutch: MBO) Retail 

Other Higher education (Dutch: HBO and WO) 
Total number Total number  

Other Parking costs Household 
density  

Number of households per km2 

 

4.3 (Post-)processing operations 
In practice, various (post-)processing operations are performed to closer match observed travel 
behaviour. However, not all those adjustments should be considered within the scope of this study. In 
this section, the most relevant changes are discussed. Firstly, to consider the higher speeds of e-bikes 
compared to regular bikes, the calculated travel times for the mode bicycle are decreased within both 
models. For three distance classes, the e-bike and regular bike shares are defined (see Table 5). These 
shares have been empirically determined by Goudappel (2018) for the region The Hague – Rotterdam 
and are assumed to be representative for the whole of the Netherlands for 2017. The final travel time 
matrices are the weighted mean of the regular and e-bike travel times. For 2010, the e-bike shares are 
considered to be zero (BOVAG, 2022). The e-bike correction was applied in this study, as it potentially 
improves the prediction quality without affecting the model systematics itself.  
 

Table 5 - E-bike and regular bike shares per distance class for 2017 

Distance class [km] E-bike share  Regular bike share 

0 – 2.5  5% 95% 
2.5 – 7.5 10% 90% 
+7.5 25% 75% 

 
Secondly, OD-matrices resulting from a travel demand model are in practice often modified to better 
match traffic counts. This post-processing operation was not used within this study, as it is unrelated 
to the working of both models, traffic assignment is not within the scope of this research, and would 
distort the comparison between the model systematics. Thirdly, after the standard travel demand 
modelling, additional trips are generally added for specific Points of Interest (POIs). For these POIs, the 
number of attracted trips is in reality significantly higher than expected based on the averaged 
attraction variables. For instance, IKEA is significantly more often a destination than expected based 
on the number of jobs. Although this post-processing operation is defendable, it is not an integral part 
of the travel demand model. Therefore, this modification was not used within the presented study.  
 

4.4 Qualitative comparison between both model types 
In addition to the quantitative approach of the presented study, two advantages of the disaggregated, 
microscopic, and tour-based nature of Octavius are worth mentioning compared to the traditional 4-
step approach. Firstly, Figure 4 demonstrates that Octavius models tours, where the lines demonstrate 
the number of trips between one origin and all destinations in Almere. As can be seen, Octavius models 
chains of trips, while the 4-step model demonstrates merely individual trips. The second advantage of 
Octavius is that it models explicitly non-home-based trips, such as from work to the store, or from 
school to meeting friends, while the 4-step model considers these trips as ‘other’. Hence, the 4-step 
model approach results in a loss of detail.  
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Figure 4 - Example of how journeys are modelled by Octavius and the 4-step model (from one centroid). Note: the lines do 

not represent route choice but OD-relations; thicker lines mean more trips between a certain OD-pair.  
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5 Research methodology  
Figure 5 presents the research methodology graphically. The first step was to model the base year 
2017, such that it can be used as a reference for the backcast. As explained in section 4, the model 
parameters of both models have already been estimated during the construction of the models by 
Goudappel and were directly adopted for this study (light grey part of Figure 5). However, since the 
original socioeconomic data were not adequate (primarily due to inconsistent data collection and 
insufficient level of detail; further explained in section 5.1), new data were collected. As a result, new 
trip generation parameters for the 4-step model were estimated. Additionally, Octavius’ choice models 
were adjusted to better represent Almere-specific travel behaviour; a process called regionalisation. 
After applying the models with the re-estimated parameters, together with the socioeconomic data 
and networks for the base year 2017, the results were compared with observed travel behaviour from 
OViN using three Key Performance Indicators (KPIs): trip frequency, modal split, and trip length 
distribution. Due to the relatively small sample size of OViN, the number of data points for Almere was 
limited. To increase the number of observations, and simultaneously decreasing data uncertainty, four 
years of OViN were combined: from 2014 up to and including 2017. The fit to OViN figures described 
the quality of the parameter estimation and was used as a reference for the backcast to 2010. 
 
Subsequently, the models were applied to 2010 which required socioeconomic data and networks for 
that year. The closer socioeconomic data and networks corresponded with the real situation in 2010, 
the better it could be analysed to what extent the model systematics were able to reproduce travel 
behaviour for 2010 without having the noise of data inaccuracies. In other words, minimising the 
deviation from reality in the input contributed to isolate and analyse the effect of modelling a non-
calibrated year. Therefore, the fourth step was to compare the model output to OViN 2010 to 2013 
using the same assessment framework as for 2017: trip frequency, modal split, and trip length 
distribution. However, this time the 2010 OViN fit was analysed relative to the 2017 OViN fit (referred 
to as ‘backcast effect’). Hence, if a model demonstrated an equal deviation in trip frequency in 2010 
compared to OViN 2010-2013 as it showed for 2017, the longitudinal stability was outstanding; same 
applies to the modal split and trip length distribution. This also means that two equally poor OViN fits 
for 2017 and 2010 is better than a poor OViN fit for 2017 and a good OViN fit for 2010. Lastly, the 
disaggregated approach of Octavius allowed for modelling travel behaviour of specific groups. To 
analyse if the models responded consistently with literature, two hypotheses were tested: 1) an 
increase in immigrants results in a decrease of bicycle use (Harms, 2006) in Octavius, but not in the 4-
step model as it does not consider ethnicity, and 2) an increase in car availability results in more car 
use (KiM, 2016) within both models, but in Octavius more pronounced because it considers car 
ownership explicitly in its mode choice calculation. 
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Figure 5 – Research methodology illustrated  

5.1 Input data collection for Almere 2017 
Both travel demand models had the same topography and were structured around Almere. The models 
consisted of 1400 TAZs, which are used as origins and destinations (see Figure 6). The smallest TAZ is 
located in the built-up area of Almere, while the TAZ size increased as the distance to Almere increased. 
 
Furthermore, the networks for different modes of transport were available from the original 4-step 
model developed by Goudappel. Networks for car, PT, bicycle, and walking were used for both models. 
Note that walking is only considered as possible access and egress mode for PT, while cycling is both 
an option as access/egress mode as well as a separate mode for entire trips. The network for car is 
depicted in Figure 7, while Figure 8 demonstrates the PT network.  
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Figure 6 – Traffic Analysis Zones (TAZs) at different levels 

 

 
Figure 7 - Car network used in this study 
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Figure 8 - Public Transport network used in this study 

The main principle for the socioeconomic data collection was that for both models the input data were 
collected and prepared in a consistent manner. If inconsistencies between input data existed, 
differences in results could be caused by the input data rather than the systematics of the models, 
while the aim of this research is to compare the model systematics. However, the socioeconomic data 
collected during the original model construction originated from various sources with inconsistent 
definitions and was at the aggregation level of the 4-step model, whereas Octavius requires more 
detailed data on a personal and household level. Therefore, data collected within OmniTRANS 
Spectrum (Goudappel, n.d.) was used, which gathered and combined data from different data sources 
in a consistent and reliable manner (see Table 6). In addition, Spectrum data could be used for all 
variables required for both models. The Spectrum data were only available for the years 2018 and 2020 
during the time of this research, which meant that 2018 socioeconomic data were used.  
 

Table 6 - Data sources used within OmniTRANS Spectrum 

Data source Used for 

CBS (Centraal Bureau 
voor de Statistiek) 

Demographic characteristics: 

• Inhabitants 

• Households 

• Gender 

• Age group 

• Ethnicity  

• Household types (with/without children, persons and cars) 

• Driving license ownership 

• Social participation (working, studying, other)  

• Household density 

 Table continues on next page  
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LISA (Landelijk 
Informatiesysteem van 
Arbeidsplaatsen) 

Number of jobs: 

• Education  

• Industry  

• Office 

• Retail  

DUO (Dienst Uitvoering 
Onderwijs) 

Student enrolment: 

• Primary education 

• Secondary education 

• Intermediate vocational education (Dutch: MBO) 

• Higher Professional education (Dutch: HBO) 

• University (Dutch: WO) 

BAG (Basisregistratie 
Adressen en Gebouwen) 

Address information: 

• Number of addresses  

• Floor area per address  

 

5.2 Re-estimation of selected model parameters for Almere 2017 

5.2.1 Re-estimation of trip generation parameters 4-step model 

Since the trip generation parameters were determined using the original socioeconomic data (see 
section 4.1.1) and these data were replaced (see section 5.1) a re-estimation was required for the 4-
step model. The procedure was equal to the original: the number of weighted trips found in OViN 
divided by the variable of interest (see eq. 1). Note that OViN is divided by a variable to ensure that 
the total number of modelled trips matched the total number of weighted trips found in OViN. To keep 
the model parameters consistent, OViN 2010-2017 was used: the same dataset on which the lognormal 
distribution function was calibrated during the original construction of the model.  
 

𝑃𝑝,𝑎,𝑐 =
𝑇𝑝,𝑎,𝑐

𝑉𝑝,𝑎

(1) 

Where: 

• 𝑃 the trip generation parameter;  

• 𝑝 trip purpose;  

• 𝑎 area of interest (Almere or rest of the Netherlands); 

• 𝑐 car available (yes or no) 

• 𝑇 number of weighted trips found in OViN 2010-2017; 

• 𝑉 variable of interest.  
 
For instance, to determine the trip generation parameter for home-work trips for people that have a 
car at their disposal, the number of weighted OViN trips was divided by the number of workers in 
Almere: 
 

𝑃𝑤𝑜𝑟𝑘,𝐴𝑙𝑚𝑒𝑟𝑒,𝑐𝑎𝑟 𝑎𝑣𝑎𝑏𝑖𝑙𝑒 =
39301

94759
= 0,415 𝑡𝑟𝑖𝑝𝑠 𝑝𝑒𝑟 𝑤𝑜𝑟𝑘𝑒𝑟 (2) 

 
To analyse the effects of re-estimating the trip generation parameters of the 4-step model, the before 
and after OViN fit was evaluated at the level the parameters were estimated (i.e., all trips and all 
purposes), using the OViN data they were evaluated on. In that way, it was assessed whether the re-
estimation had the required effect.  
 

5.2.2 Regionalisation Octavius  

As mentioned in section 4.2.1, Octavius applies parameters estimated from national OViN data in its 
choice models. However, (average) national travel behaviour is different from regional travel 
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behaviour. This is particularly relevant for Almere, due to its location close to Amsterdam, relatively 
high share of households compared to the number of jobs and commercial area, and the fact that it is 
surrounded by nature. Therefore, Alternative Specific Constants (ASC) were added to the utility 
functions such that Almere-specific travel behaviour was modelled; a process called regionalisation. 
Note that the regionalisation is applied to the mode and destination choice. The ASCs were calculated 
by a mathematical solver which minimised the difference between modelled and OViN 2010-2017 
modal split and trip length distributions for Almere. The reason to use 2010-2017 OViN data was to 
keep the utility functions consistent, as the parameters are estimated on this dataset as well. The 
mathematical solver was available at Goudappel and was applied without modifications in the 
presented study. The effect of regionalising was evaluated at the same level as the estimation: tours. 
 

5.3 Assessment framework 2017 
The 4-step model with the re-estimated trip generation parameters and regionalised Octavius were 
subsequently evaluated using the assessment framework. By analysing the 2017 results, a reference 
was created against which the results of the backcast were compared. The goal of the presented study 
was to compare the model systematics rather than only the model outcomes. Although both models 
determine travel demand, the approach is fundamentally different: the 4-step model works at an 
aggregated, macroscopic, trip-based level, while Octavius operates at a disaggregated, microscopic, 
tour-based level. As a result, comparing the models can only be done at a level which both models can 
describe. In this case, the 4-step model determined the possible aggregation level to which the more 
disaggregated Octavius results needed to be aggregated. This also means that the purposes social-
leisure and other were omitted, because social-leisure was not defined in the 4-step model of Almere, 
and other was differently defined between the two models. To maintain consistency between the 
models, both purposes were kept outside the scope of the comparison. Moreover, the purposes 
education 18+ and 18- were merged in the 4-step model, since Octavius applies only one education 
purpose. Similar to the aggregation level, the tours of Octavius were separated into trips, since the 4-
step trips cannot be combined into tours due to the unknown relation between trips, or rather: the 
non-existing relation. It does not exist because the 4-step model uses trips as modelling unit rather 
than individual agents. For home-based trips this was not problematic, as the place of residence was 
determined by combining the purpose with the origin or destination. For instance, home-work trips 
that start in Almere or work-home trips that end in Almere disclosed that these trips belong to 
Almeerders. However, for non-home-based trips this was not possible, because within the 4-step 
model it was unknown where the homes of these individuals were located. Therefore, the comparison 
between the two models was based on home-based trips. This aggregation level contained the most 
information that both models can possibly describe.  
 

5.3.1 Key Performance Indicators 2017 

The Key Performance Indicators (KPIs) were selected based on the possible aggregation level. The first 
KPI was trip frequency and described the absolute number of home-based trips made by Almeerders 
for the purposes: work, education, business, shopping, and the four purposes combined. The analyses 
were conducted using graphs which described the number of OViN trips per purpose including the 
confidence interval (see section 5.3.2 below) and the number of modelled trips by both models. The 
second KPI was the modal split determined per purpose-mode combination. Since trip frequency 
described the performance in absolute trip numbers, the modal split compared the relative shares of 
modes among the different purposes; for instance, the shares of car, PT, bicycle for work trips. The 
results were evaluated using graphs that demonstrated the distribution over the modes per purpose 
for OViN (including confidence interval) and both models. Lastly, the trip length distributions were 
calculated per mode-purpose combination and presented the relative distribution of trips per distance 
class, separately for each mode and purpose combination. This KPI compared the destination choice 
between OViN (again including confidence intervals) and both models.  
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5.3.2 Evaluation data 2017 

Observed travel behaviour data from OViN were used to evaluate the plausibility of the model 
outcomes. The reason to use OViN as evaluation data is because no other data sources were available 
containing sufficient data on travel behaviour of Almeerders. Nonetheless, OViN 2017 contained 
information on merely 500 trips made by 190 respondents. To decrease data uncertainty, multiple 
years of OViN were combined. Since OViN was conducted from 2010 up to and including 2017, and a 
trend break occurred with its predecessor (MON) and successor (ODiN), the years 2010-2017 were 
split in half to use as evaluation data: 2010-2013 for 2010 and 2014-2017 for 2017. This resulted in 
3047 trips made by 1218 respondents for 2014-20173; a significant increase compared to 2017 only.  
 
Furthermore, trips were grouped into tours when the location and time matched logically and if the 
tour started and ended at home, such that complete and realistic travel behaviour was obtained. Using 
the trip purposes defined in OVIN, the activity at the origin and destination was known. Subsequently, 
the evaluation data were filtered on home-based trips according to the assessment framework (see 
5.3.1), based on the activity at the start and end location. The final selection for 2014-2017 home-
based trips included 2884 trips. Note that this number represents the OViN sample size, while for the 
evaluation the sample was extrapolated to obtain a representative dataset for Almere. The weights for 
the extrapolation are determined by CBS (n.d.-a), and results in a weighted OViN dataset .  
 
To gain insight into the uncertainty of the evaluation data, confidence intervals (CI) were calculated 
around the OViN 2014-2017 data. The methodology described by Pots (2018, p. 26) was adopted as it 
was specifically developed for determining CIs around OViN trip data. The CI was calculated following 
eq. (3), using a standard normal distribution to approximate a binomial distributed variable:  
 

𝑝𝑖 = �̂�𝑖 ± 𝑧𝛼/2
√

�̂�𝑖(1 − �̂�𝑖)

𝑁
 (3) 

Where: 

• 𝑝𝑖   true fraction of trips made within class 𝑖 

• 𝑖  bin, which can be mode for modal split or distance class for trip length distribution  

• �̂�𝑖  sampling fraction for bin 𝑖 

• 𝑧𝛼/2 (1 − 𝛼/2)-percentile of the normal distribution 

• 𝑁 the total number of trips    
 
However, a dependency exists between the outward and return trip of a 2-trip tour: the trip lengths 
will be approximately similar, and the mode will be equal as well for most of the observations. 
Therefore, the number of observations 𝑁 is reduced by a factor 2 (see eq. 4). It was argued that eq. (4) 
can be applied to the home-based trips in a 3-trip tour as well, because the secondary (non-home-
based) trip generally occurs close to the home or primary location.  
 

𝑝𝑖 = �̂�𝑖 ± 𝑧𝛼/2
√

�̂�𝑖(1 − �̂�𝑖)

𝑁
√2 (4) 

 
Using eq. (4), the difference in data uncertainty between OViN 2014 up to and including 2017 and OViN 
2017 for Almere in terms of modal split per purpose was calculated (see Figure 9). As can be seen using 
only one year of Almere OViN data resulted in unacceptable wide 95% confidence interval. On the 
other hand, four years combined resulted in acceptable CI, except for business trips.   

 
3 Note that this number was found after initial processing by Goudappel, including working days only and 
removing trips made by people that toured for leisure purposes without stopping somewhere.  
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Figure 9 – Modal split in OViN 2014-2017 and OViN 2017 for Almere with 95% confidence interval 

The result of applying the assessment framework was the OViN 2014-2017 fit of the 4-step model and 
of Octavius measured against the three KPIs. It described the performance in the base year, which was 
used as a reference for the backcast results. Since the calibration of the model parameters determines 
the OViN base year fit, the result is a measure of parameter estimation quality.  
 

5.4 Input data collection for Almere 2010 
After modelling and evaluating the base year 2017, the backcast to 2010 was performed. The first step 
was to collect input data for 2010. Similar to the base year, the aim was to collect and prepare input 
data for both models in a consistent manner. However, OmniTRANS Spectrum was not available for 
2010. Therefore, the required data were gathered either from the same source used in Spectrum or 
the Spectrum data were translated from 2017 to 2010. As a consequence, the same variable definitions 
were used for 2017 and 2010 resulting in consistent data. In the following sections, the data collection 
is discussed per variable (group).  
 

5.4.1 Demographic data (CBS)  

CBS (2013) provides extensive 2010 demographic data in the form of CBS buurt/wijk/gemeente 
(neighbourhood, district, municipality). Although CBS neighbourhood data were defined at a detailed 
spatial level, a significant part of the TAZs were still smaller. As such, a connection between intersecting 
CBS neighbourhoods and TAZs was made. Since no information on the distribution of any demographic 
characteristic within the CBS neighbourhood was provided, a homogeneous distribution is assumed to 
be able to make the division into smaller zones based on the area of intersection. This process is 
depicted in Figure 10, where the number of inhabitants is distributed among the TAZs according to the 
overlap with the neighbourhood. Further away from the study area, the TAZs are larger than the 
neighbourhoods. In these situations, the neighbourhoods located in the TAZ, are combined. In reality, 
most neighbourhoods overlap with multiple TAZs. Therefore, the percentage overlap of each 
neighbourhood on each TAZ was determined based on the intersection between them.  
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Figure 10 – Illustration of the distribution of CBS neighbourhood data among TAZs 

The following variables were taken from CBS neighbourhood data: inhabitants, households, one-
person households, households without children, households with children, cars, males, females, 
western immigrants, non-western immigrants, inhabitants 0-14 years, inhabitants 15-24 years, 
inhabitants 25-44 years, inhabitants 45-64 years, and inhabitants 65 years and older.  
 

5.4.2 Driving license  

To determine the number of agents with a driving license for each TAZ, the trend in driving license 
ownership per age group in the Netherlands was determined. Data from CBS (2022a) was available as 
of 2014. Additional data were found in a report by Goudappel (2012), concerning driving license 
ownership in 2007 per age group. Combining these data resulted in Figure 11, which was used to 
interpolate the ownership levels in 2010. Lastly, the percentages were multiplied with the age groups 
from CBS neighbourhood data (see section 5.4.1) to obtain the 2010 figures.  
 

 
Figure 11 - Driving license ownership per age group in the Netherlands 

5.4.3 Household characteristics: number of people and cars per household distribution 

In addition to the number of households taken from CBS (see section 5.4.1), also the number of people 
in each household per TAZ was required to find the number of households with one person, with two 
persons, etc. However, the total number of households and inhabitants should match the subtotals 
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determined in section 5.4.1. Therefore, a mathematical solver was developed that used the number 
of inhabitants and households as constraints and minimised the Sum of Squares Error (SSE) compared 
to the 2017 distribution for that TAZ. Hence, it was assumed that the distribution of number of persons 
per household (i.e., number of households with one person, with two persons, etc.) per TAZ was similar 
in 2010 compared to 2017.  
 
Similarly, the number of cars per household was determined (i.e., number of households with one car, 
with two cars, etc.), using the same mathematical solver as in the previous paragraph considering the 
number of cars and households per TAZ as constraints. Furthermore, Octavius uses the category 
‘household with 3 cars or more’. The average number of cars for those households was set at 3.3, based 
on KiM (2022). 
 

5.4.4 Household density  

The household density for 2010 was initially calculated based on 2010 CBS neighbourhood data. 
However, due to a different spatial scale of CBS data compared to the TAZs, the result was insufficiently 
detailed because all TAZs within one neighbourhood received the same household density (see Figure 
12). Therefore, the 2017 data from Spectrum were used for 2010, but corrected for the construction 
of Almere Poort which was developed between 2010 and 2017: TAZs located in this neighbourhood 
were manually set to ‘not urbanised’. Based on the same CBS neighbourhood data, no other significant 
changes in terms of household density were found in Almere.  
 

 
Figure 12 - Comparison household density using Spectrum and CBS data 

5.4.5 Social participation 

Detailed social participation data were not available for 2010. As a result, the number of workers, 
students, and other were determined using the following methodology. For workers, the relative 
labour force per TAZ for 2017 was calculated by dividing the number of workers over the number of 
people aged 15-65 years. The resulting percentage was subsequently applied per TAZ to the number 
of people aged 15-65 years in 2010, which was determined in section 5.4.1 by using CBS data. If a TAZ 
contained no labour force in the 2017 but did in 2010, the average relative labour force for all TAZs in 
2017 was used to multiply with the number of people aged 15-65 years in 2010.  
 
Similarly, the share of students per TAZ was calculated for 2017 as a fraction of the total number of 
inhabitants. Although the age group 4-25 could have been used, it was decided to use all residents as 
reference, since students are not necessarily tied to a certain age group. The determined fraction was 
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subsequently applied to the number of inhabitants per TAZ in 2010, which was determined in section 
5.4.1. Lastly, the group ‘other’ was subsequently determined by subtracting the calculated number of 
workers and students from the total number of inhabitants.  
 

5.4.6 Job figures  

For 2017, the number of jobs was based on LISA data (see Table 6). However, no 2010 data were 
available, which forced the use of other data. To keep the definitions of job categories (e.g., office, 
retail, industry, etc.) identical to 2010, it was chosen to translate the job figures from Spectrum 2018 
to 2010, using the relative difference in total number of jobs per municipality of CBS (2022b). Although 
Spectrum used LISA figures, it is assumed that the relative differences between 2010 and 2018 in CBS 
data also applies broadly to LISA data. A limitation of this approach is that for all TAZs within a 
municipality, the relative difference in jobs is assumed to be equal. See Appendix B.1: Number of jobs 
for a more in-depth discussion of the applied corrections.   
 

5.4.7 Student enrolments  

One of the attraction variables within both models is the number of student enrolments. In the 
Netherlands, these numbers are registered at Dienst Uitvoering Onderwijs (DUO). Since the required 
data were not publicly available, they were requested directly from DUO. For primary and secondary 
education, the process was straightforward since the number of students enrolled per location were 
provided, including the address and postal 6 code. Combining the postal codes with the ESRI postal 
code shapefile (2022), ensured that each location was spatially joined with the corresponding TAZ. The 
same procedure was performed for secondary education enrolments. 
 
The process was different for other levels of education, because DUO registers all students at the main 
location of organisations. For instance, all students of ROC van Twente – which has multiple locations 
in among others Almelo, Hengelo and Enschede – are registered at the main location, which is in this 
case Hengelo. Obviously, this distribution would not be suitable for determining travel demand. 
Therefore, the number of enrolments was distributed among the main and secondary locations, 
proportionally to their floor area from BAG. These distributions were taken from OmniTRANS Spectrum 
2018, which was consistent with the base year data processing process. Nevertheless, some manual 
adjustments were required because between 2010 and 2017 a number of educational organisations 
have changed. These adjustments are described in Appendix B.2: Student enrolments.  
 

5.5 Network changes 2010 
Since the networks for car, PT, bicycle and walking have changed between 2010 and 2017, some 
network characteristics required adjustments; not only in terms of infrastructure, but also in terms of 
speed limit (car), frequency (PT) and the addition of new stops (PT). Despite the existence of 2010 
networks for car, PT, and bicycle at Goudappel, it was technically infeasible – considering the time 
constraints of this research – to use these networks for the backcast. Although some issues were 
resolved, others required extensive knowledge about OmniTRANS. Therefore, it was decided to adjust 
the 2017 network to the 2010 situation considering the most influential changes found between both 
networks. The main adjustments were related to the PT network at Almere Poort, including the 
removal of the trains station and the train line ‘Hanzelijn’ between Lelystad and Zwolle. With respect 
to the car network, some speed limits were adjusted. In Appendix C – Network adjustments for 2010, 
all adjustments are listed. Furthermore, the e-bike correction (see section 4.3) was deactivated since 
the share of e-bikes in 2010 was limited (BOVAG, 2022). Additionally, the parking costs were adjusted 
using the figures from the previous Almere model with base-year 2010 (see Table 7).  
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Table 7 - Parking costs 2017 and 2010 

Region Parking costs 2017 [€/h] Parking costs 2010 [€/h] 

City centre of Almere 2,79 2,00 
Edge of city centre of Almere - 1,00 
Almere Buiten 1,87 - 
Amsterdam city centre - 2,84 

 

5.6 Assessment framework 2010 

5.6.1 Key performance indicators 2010 

The model outcomes for 2010 were compared using the same KPIs as for the base year: trip frequency 
per purpose, modal split per purpose, and trip length distribution per mode-purpose combination. 
However, the performance in 2017 should be considered to determine the prediction quality for a non-
calibrated year, since a backcast is about the differences between the base and backcast year (further 
referred to as ‘backcast effect’). For instance, when a model underestimates the share of educational 
trips made by PT for a distance class in the base year, and a similar underestimation is found in the 
backcast year for the same mode-purpose combination, the cause of the underestimation is the 
parameter estimation in the base year, and not the longitudinal (in)accuracy of the model. In other 
words, the model would be able to achieve the same prediction quality in a non-calibrated year as in 
a calibrated year, demonstrating good explanatory power. Therefore, the differences in backcast effect 
were determined, rather than the absolute OViN data fit. 
 
In addition to comparisons of the graphs, the trip frequency was calculated as a fraction of the OViN 
means for the given purpose. In that way, the backcast effect could be determined more easily than 
with graphs alone. For the modal split, the relative distribution over the modes was of interest, as the 
absolute trip numbers were already evaluated through the trip frequency. Since the differences in 
modal split were very small, and the number of comparisons was limited, only graphs were used. For 
the trip length distribution, graphs and the Mean Absolute Error (MAE) were used, because of the high 
number of comparisons. In literature, the MAE and Root Mean Square Error (RMSE) are often used as 
metric to capture the deviation between modelled and observed data (Chai & Draxler, 2014)4. The 
main difference between these two methods is that the RMSE squares the difference between 
observed and measured data, meaning that larger errors in terms of absolute values weight more than 
smaller errors, while the MAE increases linearly (Chai & Draxler, 2014). In other words, the RMSE is 
more sensitive to outliers. Since there was no reason to give more weight to outliers in this study, the 
MAE was used as metric. The MAE was calculated using eq. (5): 
 

𝑀𝐴𝐸 =
1

𝑛
∑ |𝑦𝑖 − �̂�𝑖|

𝑛

𝑖=1

 (5) 

 
Where: 

• 𝑛  number of test instances 

• 𝑦𝑖  modelled number of trips for distance bin 𝑖 

• �̂�𝑖  observed number of trips in OViN for distance bin 𝑖 
 
 

 
4 Note that in literature also the terms Root Mean Square Deviation (RMSD) and Mean Absolute Deviation (MAD) 
are used.  
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5.6.2 Evaluation data 2010 

Similar to the base year, four years of OViN were used as evaluation data for the KPIs. However, in this 
case OViN 2010 up to and including 2013 was used. Home-based trips were selected from the dataset, 
using the same methods as for 2017 (see section 5.3.2). Furthermore, the confidence interval was 
calculated around the OViN data based on eq. (4). The OViN fit of the model outcomes was 
subsequently determined, in order to compare the difference in OViN fit between 2017 and 2010 for 
the 4-step model and Octavius.  
 

5.6.3 Hypotheses at segment level 

In addition to evaluating the model outcomes at the aggregation level of the 4-step model, hypotheses 
were defined that compare model behaviour with literature at a segment level; the aggregation level 
of Octavius. Firstly, from literature it is known that within the Dutch context immigrants are less likely 
to use a bicycle (Harms, 2006). In contrast to the 4-step model, Octavius considers immigrants 
explicitly. Therefore, it was hypothesised that Octavius demonstrates a decrease of bicycle use when 
a significant relative increase of immigrants occurs. In line with the aggregated analysis, the differences 
between the 2017 and 2010 situation were analysed. However, to understand the behaviour of both 
models at a spatially finer level, the analysis was conducted for a selected number of TAZs. To avoid 
interference of other changing socioeconomic variables, only the ethnicity distribution was changed 
for the selected TAZs relative to 2017 (see Table 8). In other words, the 2010 socioeconomic data were 
applied to all TAZs, except for the selected TAZs for which only the share of immigrants was changed, 
while the other variables remained unchanged from 2017.  
 
Secondly, increasing car ownership results in a higher share of car trips (KiM, 2016). Car ownership is 
considered by both models, which made it interesting to see how the models compared. However, 
since Octavius explicitly takes car ownership into account when modelling mode choice, it was 
hypothesised that Octavius demonstrates more pronounced differences. Similar to the first 
hypothesis, only the car ownership was adjusted for a selected number of TAZs (see Table 8), while the 
other socioeconomic variables were kept the same for these TAZs. Figure 13 shows the location of the 
selected TAZs.  
 
Lastly, the results were analysed by means of model split analyses and adjusted trip length distribution. 
Rather than determining the distribution as a function of distance per purpose-mode combination, the 
distribution as a function of distance for all modes for all purposes together was analysed. In other 
words, it described the ratio of trips made between car, PT and bicycle per distance class.   
 

Table 8 - Adjustments made to test hypotheses 

Hypothesis  TAZ Adjustment 4-
step model 

Adjustment Octavius 

Immigrants and 
bicycle use 

 N/A Relative share immigrants 
adjusted  

 128 N/A 32% to 60% 
 156 N/A 67% to 20% 
 354 N/A 59% to 10% 

Car ownership and use  Car ownership share adjusted 
 86 71% to 61% 
 170 40% to 81% 
 322 69% to 62% 
 330 69% to 87% 
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Figure 13 - Location of the TAZs with changed socioeconomic variable 
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6 Results 

6.1 Re-estimation of selected model parameters 
The effect of re-estimating the trip generation parameters in combination with the Spectrum data is 
depicted in Figure 14. The updated 4-step model matches the OViN data to a greater or equal extent 
compared to the original model for all purposes, except for the total number of trips. The reason the 
number of trips produced in the model does not equal the OViN 2010-2017 data is because the doubly 
constrained gravity model is set to equal the home-side of the trips in the end. In other words, for 
home-work trips the row totals match the OViN figures and for work-home trips, the column totals 
match the OViN figures. Additionally, the number of iterations to balance the row and column totals 
is set to 25. Increasing this number is likely to result in a smaller deviation from OViN, but since the 
scope of this study is to evaluate the practical implementation of a gravity model this configuration 
was maintained.  
 

 
Figure 14 - Trip frequency deviation from OViN 2010-2017 for the original and updated model 

Similarly, the regionalisation of Octavius resulted in a better OViN fit for all purposes in terms of modal 
split and trip length distribution. Since the tour generator is not regionalised, the number of tours 
remains the same. Figure 15 demonstrates the total modal split. See Appendix A – Regionalisation 
result for a side-by-side comparison for the other purposes and the trip length distributions.  
 

 
Figure 15 - Total modal split modelled by Octavius before and after regionalisation for 2017 

The re-estimated trip generation parameters and the regionalised utility functions were subsequently 
applied, and the outcomes are evaluated in the next sections. As explained in the methodology (section 
5.3), the home-based trips for the purposes work, education, business, shopping, and all four purposes 
combined were compared using the trip frequency, modal split, and trip length distribution.  
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6.2 Trip frequency 
Figure 16 presents the modelled trip frequency for 2017 and 2010 as well as the OViN trip frequency. 
What stands out is that the number of modelled trips differs considerably from the OViN figures in 
2017 for several purposes (e.g., education by the 4-step model and shopping by Octavius). There are 
multiple reasons for this. Firstly, both models have been calibrated on a different aggregation level 
than shown here: the 4-step model on home-based and non-home based trips and Octavius on tours, 
while Figure 16 demonstrates home-based trips only. Secondly, both models have been calibrated on 
combined OViN 2010-2017 data, while here the years 2014-2017 and 2010-2013 are used separately. 
Thirdly, the tour generator of Octavius has been estimated on the number of observations in OViN 
2010-2017, rather than on the weighted OViN data which are representative for the whole of the 
Netherlands. As a result, the tour generator underestimates the number of tours. 
 
Additionally, it appears that the OViN figures in 2010 are higher compared to 2017 for all purposes, 
while both models generate fewer trips in 2010 compared to 2017 (see Figure 16). The primary reason 
is that the evaluation data for 2017 is based on OViN 2014-2017 with an average home-based trip rate 
of 2,45 per person per day, while OViN 2010-2013 includes 2,78 home-based trips per person per day. 
Hence, people travelled more in 2010-2013 compared to 2014-2017 according to OViN. The models 
on the other hand have been calibrated on OViN 2010-2017 for both periods. In other words, it 
assumes that people made the same number of trips in both periods. In combination with fewer 
Almeerders in 2010, less trips are being modelled.  
 

 
Figure 16 - Trip frequency for 2017 and 2010 

Table 9 demonstrates per purpose the deviation in trip numbers of both models relative to the OViN 
mean. For the base year 2017, Octavius is closer to OViN compared to the 4-step model for all 
purposes, except business for which both models score equally. Then, the backcast effect is found by 
calculating the difference between the 2017 and 2010 OViN fit. As can be seen, the 4-step model 
performs marginally better than Octavius, with a smaller difference in OViN fit between 2017 and 
2010. Only for business Octavius scores better, but the uncertainty for that purpose is high, illustrated 
by the large confidence interval in Figure 16. 
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Table 9 - Trip frequency relative to OViN for 2017 and 2010 

   Octavius  4-step model 

Purpose   2017 2010 %difference  2017 2010 %difference 

Total 0.86 0.73 -15.4% 1.42 1.22 -13.9% 

Work  0.86 0.73 -14.5%  0.97 0.84 -14.2% 

Business  1.41 1.35 -3.7%  1.41 1.79 27.0% 

Education  0.95 0.78 -17.7%  1.66 1.42 -14.5% 

Shopping  0.73 0.62 -15.9%  2.01 1.73 -14.1% 
 

6.3 Modal split 
Figure 17 and Figure 18 present the work modal splits for 2017 and 2010, respectively. As can be seen, 
the car share is similar between 2017 and 2010 for OViN and both models. The PT share decreases 
from 28% to 23% in OViN between 2017 and 2010, while both models calculate the same PT shares for 
both years. For bicycle, the share in OViN increased with 4 percentage points (pp), while both models 
demonstrate the same share for 2017 and 2010.  
 

 
Figure 17 - Modal split work for 2017 

 
Figure 18 - Modal split work for 2010 

The modal split of educational trips in OViN is similar between 2017 and 2010 (see Figure 19 and Figure 
20). However, both models demonstrate a modal split change: Octavius models 4 pp more bicycle use 
in 2010 than 2017, while PT and car trips decrease with 2 pp for the same years. The 4-step model 
calculates slightly more car trips in 2010 compared to 2017 at the expense of bicycle use. PT trips are 
modelled similarly poorly by the 4-step model for both years.  
 

 
Figure 19 - Modal split education for 2017 

 
Figure 20 - Modal split education for 2010 
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Business trips are rare in OViN, which results in wide 95% confidence intervals (see Figure 21 and Figure 
22). As a consequence, no meaningful conclusions can be drawn from these figures.  
 

 
Figure 21 - Modal split business trips for 2017 

 
Figure 22 - Modal split business trips for 2010 

Figure 23 and Figure 24 show the modal split of shopping trips. The average car share in OViN changes 
from 48% in 2017 to 57% in 2010 at the expense of the bicycle share which decreases from 41% to 
32%. Interestingly, Octavius demonstrates (nearly) no change in car and bicycle share, while the 4-step 
model overresponds: for car an overestimation of 12 percentage points in 2010 compared to a perfect 
OViN fit in 2017, and for bicycle 5 pp underestimation in 2010 compared to 4 pp overestimation in 
2017.   
 

 
Figure 23 - Modal split shopping for 2017 

 
Figure 24 - Modal split shopping for 2010 

Figure 25 and Figure 26 present the modal split for the four analysed purposes together. As can be 
seen, the OViN modal split changes marginally: 2 pp increase for car in 2010 compared to 2017, and 2 
pp decrease for PT. Octavius calculates the same car share for 2017 and 2010, but PT decreases with 
2 pp in 2010 compared to 2017; similar to OViN. The bicycle share is somewhat overestimated in 2017, 
which rises further in 2010, while OViN remains stable. Moreover, the 4-step model calculates a car 
share six percentage points higher in 2010, while 2017 was perfectly aligned with OViN. The PT share 
is stable between 2017 and 2010, while OViN decreases two percentage points. Finally, the modelled 
bicycle share decreases considerably in 2010 compared to 2017, while OViN 2010 equals 2017. 
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Figure 25 - Modal split in total for 2017 

 
Figure 26 - Modal split in total for 2010 

6.4 Trip length distribution 
The Mean Absolute Error (MAE) was calculated to evaluate the trip length distribution results. Since 
the modal split results (section 6.3) demonstrated clearly that there are insufficient OViN data on 
business-related trips, this purpose was omitted from the trip length distribution analysis. From Table 
10 it is clear that Octavius demonstrates a better base year performance with lower MAE for all mode-
purpose combinations. This means that the trip length distributions modelled by Octavius are closer 
to the average OViN 2014-2017 distribution compared to the 4-step model. However, the relative 
differences between 2017 and 2010 indicate that neither of the two models is clearly superior in terms 
of longitudinal stability.  
 

Table 10 - MAE for the trip length distributions of both models for base year and the backcast year 

Car Octavius 4-step model 

 2017 2010 diff %diff 2017 2010 diff %diff 

Total 1253 1524 271 22% 7465 9511 2046 27% 

Work 1601 1375 -225 -14% 3373 3939 566 17% 

Education 331 375 44 13% 1820 1880 60 3% 

Shopping 1125 1326 201 18% 2134 3788 1653 77% 

         
Public Transport  Octavius 4-step model 

 2017 2010 diff %diff 2017 2010 diff %diff 

Total 849 1140 290 34% 3965 3456 -509 -13% 

Work 827 684 -143 -17% 2618 2263 -355 -14% 

Education 408 552 143 35% 1234 1188 -46 -4% 

Shopping 362 242 -120 -33% 451 692 240 53% 

         
Bicycle   Octavius 4-step model 

 2017 2010 diff %diff 2017 2010 diff %diff 

Total 1346 1379 33 2% 3965 4330 366 9% 

Work 1009 536 -473 -47% 2618 1183 -1435 -55% 

Education 408 784 375 92% 1234 1878 645 52% 

Shopping 362 224 -138 -38% 451 1414 963 213% 

  
When analysing the trip length distributions graphically, the conclusions from Table 10 are confirmed:  
Octavius demonstrates a better OViN fit for 2017 compared to the 4-step model (see Figure 27), while 
the backcast effect for both models is similar (see Figure 28). Interestingly, OViN changes slightly 
between 2017 and 2010 for 37,5-47,5 km, while both models show (nearly) the same distribution. An 
overview of all trip length distributions is given in Appendix D – Trip length distribution graphs.  
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Figure 27 - Trip length distribution work by car for 2017  

(blue → OViN 2014-2017 mean, blue dotted → OViN 95% 
CI, magenta → Octavius, yellow → 4-step) 

 
Figure 28 - Trip length distribution work by car for 2010 

(blue → OViN 2010-2013 mean, blue dotted → OViN 95% 
CI, magenta → Octavius, yellow → 4-step) 

 

6.5 Hypotheses at segment level  
Table 11 demonstrates the response of Octavius to a changing share of immigrants in the population 
of a selected number of TAZs. The behaviour of Octavius is in line with literature: if the share of 
immigrants increases, the bicycle share decreases and vice versa. The 4-step does not take ethnicity 
into account, which means that no change in modal distribution occurs.  
 

Table 11 - Modal split change Octavius with respect to change in share of immigrants 

  Immigrants share  Octavius output 

TAZ     Car PT Bicycle 

 2017 Scenario 2017 Scenario 2017 Scenario 2017 Scenario 

128  32% 60%  46% 45% 22% 25% 32% 30% 
156  67% 20%  40% 36% 24% 20% 36% 44% 
354  59% 10%  50% 49% 22% 17% 29% 34% 

 
Interestingly, Octavius returns different changes per TAZ: only 2 percentage points (pp) decrease, while 
a 28 pp increase in immigrants occurred for TAZ 128. For TAZs 156 and 354, the change in immigrants 
is approximately similar (approx. 50 pp decrease), while the change is bicycle share is 8 and 5 pp. The 
differences are likely to be caused by multiple factors. Firstly, TAZ 128 is located in a quiet residential 
area with predominantly 30 km/h streets, and a high-frequent bus line (8-12 times per hour). When 
analysing the mode share per distance class (see Figure 29), it appears that the bicycle was and remains 
the most appealing option for short trips even though immigrants prefer to use another mode. For 
longer trips, PT substitutes a portion of the car trips. This second finding is consistent with literature 
as well, which found that immigrants are more likely to use PT and are less likely to own a car or a 
driving license compared to native Dutch people (Harms, 2006).   
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Figure 29 - Mode share per distance class for TAZ 128; modelled by Octavius 

Secondly, for both TAZ 156 and 354 the share of immigrants decreased. However, TAZ 156 is located 
near the city centre of Almere, while TAZ 354 is located at the edge of the city. As a result, the bicycle 
becomes more interesting for trips up to 5.5 km for TAZ 156 at the expense of cars (see Figure 30), 
while for TAZ 354 this is less the case (see Figure 31). Moreover, the car ownership rate is lower for 
TAZ 156 compared to TAZ 354, which is likely to contribute to the smaller bicycle use increase for TAZ 
354. Lastly, the PT share decreases for both TAZs, which is again consistent with literature which states 
that immigrants make more use of PT compared to native Dutch people (Harms, 2006). Hence, as the 
share of immigrants in the total population decreases, the PT share is likely to decrease as well.  
 

 
Figure 30 - Mode share per distance class for TAZ 156; modelled by Octavius 
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Figure 31 - Mode share per distance class for TAZ 354; modelled by Octavius 

For the second scenario, the car ownership rate was changed. Octavius demonstrates an intuitive 
result: when the car ownership decreases, the car ownership decreases as well (see Table 12). The 
precise impact of the change in car ownership differs somewhat between the TAZs, but are all in line 
with literature (KiM, 2016). The mode shares per distance class for all four TAZs can be found in 
Appendix E – Mode shares per distance class.  
 

Table 12 - Modal split change Octavius with respect to change in car ownership  

  Car ownership share  Octavius output 

TAZ     Car PT Bicycle 

 2017 Scenario 2017 Scenario 2017 Scenario 2017 Scenario 

86  71% 61%  48% 38% 23% 24% 29% 38% 
170  40% 81%  30% 50% 30% 21% 40% 29% 
322  69% 62%  47% 40% 21% 23% 32% 36% 
330  69% 87%  46% 58% 21% 14% 34% 29% 

 
The 4-step model demonstrates a result in line with literature for car ownership increase, modelled 
for TAZs 170 and 330 (see Table 13). However, when the car ownership decreases, the 4-step model 
demonstrates a counterintuitive result: the car use increases for TAZs 86 and 322, at the expense of 
bicycle use.  
 

Table 13 - Modal split change 4-step model with respect to change in car ownership 

  Car ownership share  4-step model output 

TAZ     Car PT Bicycle 

 2017 Scenario 2017 Scenario 2017 Scenario 2017 Scenario 

86  71% 61%  53% 59% 12% 13% 36% 28% 
170  40% 81%  21% 33% 10% 7% 69% 60% 
322  69% 62%  46% 55% 11% 14% 43% 31% 
330  69% 87%  45% 60% 11% 12% 43% 28% 
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Figure 32 demonstrate the mode share per distance class for TAZ 86 as modelled by the 4-step model. 
It appears that the car is used more for trips between 2.75 and 5.5 km compared to the reference 
situation, as well as for the distance class 62.5-82.5 km. Since the majority of the trips for this TAZ is in 
the category 2.75-5.5 km, the total modal shift becomes more car-oriented.   
 

 
Figure 32 - Mode share per distance class for TAZ 86; modelled by the 4-step model 

A similar effect occurs for TAZ 322, where trips up to 12.5 km and between 62.5 and 82.5 km are made 
more often by car in the scenario compared to the 2017 situation (see Figure 33). For the short trips, 
this car increase is at the expense of bicycle use, while the trips between 62.5 and 82.5 km are taken 
from the PT trips.   
 

 
Figure 33 - Mode share per distance class for TAZ 322; modelled by the 4-step model 

Further analysis reveals that the 4-step model distinguishes between ‘car available’ and ‘no car 
available’. Note that ‘no car available’ in combination with car use means that there is no car available 
as being a driver; there is as being a passenger. It appears that for TAZ 86 and 322 the share of car 
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drivers decreases, but the share of passengers increases (see Table 14 for the purpose shopping as 
illustration). For TAZ 170 (increase car ownership), both the car and the driver share increase as one 
would expect. Lastly, TAZ 330 demonstrates a small decrease in driver share, while the car ownership 
increased significantly. A likely explanation is that the number of trips as car driver was already high 
due to the high car ownership and with the further increase of car ownership, being a car passenger 
became much more interesting. In absolute numbers, both the number of car driver and car passenger 
trips increased significantly.  
 

Table 14 - Car availability for a selected number of zones for 2017 and the scenario for shopping 

 
2017 Scenario 

TAZ Driver Passenger Driver Passenger 

86 57% 43% 35% 65% 
170 75% 25% 87% 13% 
322 65% 35% 41% 59% 
330 67% 33% 57% 43% 

 
Lastly, the increase in car share and the decrease in bicycle share in absolute numbers which is visible 
in Table 13 is likely to be caused by the fact that the analysed 4-step model determines first the number 
of car-available trips and no-car-available trips, after which the simultaneous gravity model determines 
the mode and destination choice. Since the car-available and no-car-available have different 
deterrence functions, the mode and destination choice becomes different. Apparently, it becomes 
more attractive to be a car passenger than a cyclist, which results in more car trips.  
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7 Discussion of the results 
When taking a step back and reflecting on the findings, the following aspects are notable. Firstly, the 
trip frequency analysis suggests that both models are not able to accurately model home-based trips 
only when evaluated against OViN figures for the base year, although Octavius is closer to the OViN 
figures than the 4-step model. As explained in section 6.2, there are multiple explanations for this, but 
this does not change the fact that the base year results are not consistent with observed travel 
behaviour for 2017. Furthermore, the modal split and trip length distributions are modelled most 
consistently with OViN by Octavius for the base year, which is attributed to the high number of 
parameters included in Octavius compared to the 4-step model and the regionalisation process.  
 
Secondly, the backcast performance for both models is similar on all three aggregated KPIs, although 
the models behave differently: Octavius reproduces OViN accurately for the base year, but the output 
for 2010 is nearly identical to 2017, while the 4-step model is less accurate for the base year but 
maintains this deviation in the backcast year. The most prominent example is the shopping modal split 
(see Figure 23 and Figure 24) with nine percentage points difference for car and bicycle in OViN, while 
Octavius models no change whatsoever. The 4-step model on the other hand demonstrates more 
sensitivity (although overestimated). Since the differences in the evaluation data for 2017 and 2010 
are limited, it is challenging to analyse which model demonstrates a better prediction quality. 
Nevertheless, further analysis of the models’ systematics suggests that Octavius may be insensitive to 
changes in the input data. The logsum in Octavius’ utility functions – which defines the natural 
logarithm of the total attractiveness of all destinations given a certain mode, purpose and origin – 
contributes significantly more to the utility than the other explanatory variables (see Table 15). As a 
result, changes in the socioeconomic data affect the total utility only to a limited degree. Similarly, the 
Alternative Specific Constant (ASCs) added through the regionalisation may outweigh changes in less 
dominant variables. Since the 4-step model is only directly affected by changes in the input data (i.e., 
in the trip production/attraction, and in the travel costs), this may explain why it shows slightly more 
changes in modal split and trip length distributions.   
 

Table 15 - Example of a utility calculation for a woman, 45-65 years old, couple, no children, 2(+) cars and immigrant 

Explanatory variable Bicycle PT Car driver Car passenger 

Non-Western immigrant 0 0 0 0 
Western immigrant 0 0,5 0,3 0,6 
2(+) cars 0 -0,5 1,7 0,5 
1 car 0 0 0 0 
3(+) persons > 18 years 0 0 0 0 
2 persons > 18 years 0 0 -1,1 -3,4 
Couple, with kids 0 0 0 0 
Couple, no kids 0 0 0 0 
Age 65+ 0 0 0 0 
Age 45-65 0 -0,2 0,2 -0,7 
Age 30-45 0 0 0 0 
Age 18-30 0 0 0 0 
Gender: male 0 0 0 0 
ASC 0 -2,2 1,2 -1,8 
Average logsum 9,6 11,0 9,3 13,0 
Total utility  9,6 8,5 11,6 8,2 

  
The analyses at the disaggregated, segment level indicate that Octavius demonstrates behaviour which 
is consistent with literature. The first hypothesis was for the analysed TAZs correct: when the share of 
immigrants in the population increases, the bicycle use decreases and vice versa. Furthermore, the PT 
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use increased when the share of immigrants increased, which is again consistent with literature 
(Harms, 2006). The second hypothesis was also correct for the considered TAZs, with more pronounced 
differences modelled by Octavius compared to the 4-step model. An unanticipated finding was that 
the 4-step model demonstrates counterintuitive results with increasing car use when the car 
ownership level decreases; especially for short trips. Further analysis indicates that it models a shift 
from car driver to car passenger. This irrational result seems to illustrate the lack of behavioural realism 
resulting from ignoring the decision maker’s context, which is mentioned in literature (Vovsha, 2019).  
The question then becomes why Octavius is not demonstrating this sensitivity at an aggregated level. 
The reasons found are twofold: Firstly, at the aggregated level of the KPIs, many factors play a role 
which can cancel each other out. Secondly, the logsum and ASC applied in the utility functions of 
Octavius determine the total utility mostly. In the segment analysis, significant changes were modelled, 
which did not occur to such an extent at the aggregated level during the seven-year period analysed.  
 
Furthermore, it is argued in literature that disaggregated models predict aggregate travel demand 
more accurately than their aggregated counterparts, because the underlying travel choices are 
modelled more realistically (Davidson et al., 2007; Roorda et al., 2008). Hence, the aggregate level 
predictions would improve as a result of the improved modelling at the disaggregated level. The 
findings of the presented study do, however, not support this hypothesis since the backcast effect for 
both models is similar. A possible explanation is the limited differences between the base and 
predicted year, which means that clearly different model behaviour was hardly observed.  
 
At the operational level, the 4-step model requires significantly fewer socioeconomic input data than 
Octavius. Not only reduces the amount of data to be collected, it also simplifies the data processing to 
create a consistent input dataset. Since Octavius applies a variety of variables, it is (nearly) inevitable 
that data are gathered from multiple sources with inconsistencies as result. Therefore, significantly 
higher time investments are required to collect and prepare suitable input data for Octavius, which is 
in line with literature (e.g., Omer et al. (2010). Nonetheless, the richer dataset is used effectively by 
Octavius to achieve a better OViN fit for the base-year 2017 compared to the 4-step model. Hence, the 
parameters that are used in combination with the explanatory variables in Octavius’ choice models 
allow for a closer OViN fit than the 4-step model with its lognormal distribution function.  
 
Lastly, Octavius allows for evaluating specific transportation and socioeconomic developments. In its 
current form, Octavius is able to model travel behaviour of specific groups in society, such as 
immigrants which was demonstrated in section 6.5, but also students and elderly. This is extremely 
useful when new neighbourhoods are developed, or existing neighbourhoods are changed, because 
the effect on travel behaviour following from these developments is made explicit. Considering the 
housing crisis the Netherlands is facing, resulting in 900,000 additional houses to be built by 2030 
(Ministerie van Binnenlandse Zaken en Koninkrijksrelaties, 2022), the relevance of this characteristic 
is clear. Moreover, choice models that include the decision maker’s context can be easily added to 
Octavius, such that more complex travel behaviour can be described such as multimodal travelling and 
travel choices of other household members. Similarly, more detailed transport policies can be 
evaluated, such as congestion pricing, incentive programs to increase PT or (e-)bicycle use, and tailor-
made travel advice through Mobility As A Service (MaaS). The 4-step model on the other hand is not 
and will not be able to model this more complex behaviour as it ignores the decision maker’s context.  
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8 Conclusions 
The presented research aimed to analyse the differences between an aggregated, macroscopic, trip-
based 4-step model and a disaggregated, tour-based microsimulator called Octavius within the 
application context. Based on the results, the following conclusions can be drawn. Firstly, Octavius 
describes the base year 2017 more accurately than the 4-step model in terms of trip frequency, modal 
split and trip length distribution when comparing the model output with OViN figures. This finding 
suggests that Octavius is better calibrated for the reference situation than the 4-step model, which can 
be attributed to the higher number of parameters applied in Octavius’ choice models and the 
regionalisation process.  
 
Secondly, the identified backcast effects demonstrate that both models perform similarly in terms of 
longitudinal stability at an aggregated level. However, due to the limited differences in evaluation data 
and model outcomes, it is challenging to identify if, and to what extent, the two models respond 
differently to changes. In the few situations with change, it appears that Octavius might be somewhat 
insensitive to changes, which was supported by the high weight of the logsum and ASC observed in 
Octavius’ utility functions. Furthermore, the segment level analyses for selected TAZs indicate that the 
responses to change in the share of immigrants in the population modelled by Octavius are consistent 
with literature. Hence, when the share of immigrants in the TAZ population increased, the bicycle use 
decreased and vice versa. The 4-step model does not consider ethnicity and consequently fails to 
capture this effect. The second hypothesis focused on the relation between car ownership and use. 
Similar to the first segment analysis, Octavius’ response is consistent with literature: an increase in 
ownership results in more car use and vice versa. The 4-step model demonstrated counterintuitive 
results, as the car use increases when the ownership levels decrease. Although the segment analyses 
were merely a case study with only a small selection of TAZs, it supports the theoretical argument 
found in literature that the 4-step model lacks behavioural realism, whereas Octavius takes the 
decision maker’s context into account.  
 
Lastly, the current implementation of Octavius – and disaggregated, tour-based microsimulators in 
general – allows already for analysing the impact of transport policies and developments on certain 
subgroups in society. For instance, the transport impacts of a new neighbourhood with specific groups 
such as elderly, students or immigrants can be made explicit. Moreover, Octavius can be extended 
such that more complex travel behaviour can be modelled as well, including the use of shared mobility, 
MaaS, and choices of other household members. Due to its aggregated, macroscopic, trip-based 
nature, the 4-step model is and will not be able to provide any of the abovementioned insights.  
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9 Limitations & recommendations 
An important limitation of the presented research are the limited differences in the evaluation and 
input data between the base and backcast year. As a result, the responses of the models to changing 
input data cannot be accurately assessed. This was further amplified by the use of combined OViN 
years to evaluate the model outcomes (i.e., 2014 to 2017 for 2017 and 2010 to 2013 for 2010) as the 
observed travel behaviour was averaged over the combined years. Nonetheless, the calculated 
confidence intervals demonstrated clearly that multiple years of OViN data for Almere are required to 
reduce the data uncertainty. The limited data availability for 2010 contributed to the minor changes 
as well. For multiple variables – especially the more detailed ones such as driving license ownership, 
number of cars in household, and the number of jobs in a given sector – 2010 data were not available. 
As such, the 2017 figures were translated to 2010 for the required variables. However, it is likely that 
the actual situation is not completely captured, which subsequently contributed to the limited 
differences. Furthermore, using an adjusted 2017 network rather than the 2010 network is likely to 
add to same issue as well. Also, the same values of time and distance were used for 2017 and 2010, 
because the technical implementation would require more time than available. Future research should 
use a longer time period with more distinct differences, which confirms the recommendation of at 
least ten year difference from literature (Sammer et al., 2010, as cited in Lange & Huber, 2015). It is 
important that collected input data is sufficiently detailed and should be available for the base and 
backcast year.  
 
Furthermore, the aim of the study was to compare both types of model systematics, which required 
KPIs that operate at a level which both models describe (i.e., home-based trips for selected purposes). 
However, this resulted in highly aggregated metrics which capture multiple factors simultaneously. 
Although these metrics are used in practice to evaluate model outcomes, they are only useful when 
the changes are noticeable at that aggregation level, which require significant differences in travel 
behaviour and/or socioeconomic development. The segment case study compensated partially for this 
loss of detail but used only a small sample of TAZs and variables. Therefore, further work could analyse 
if the current implementation of Octavius’ utility functions is sensitive enough to changes on an 
aggregated level: the scale at which strategic travel demand models are generally applied. Note that 
more detailed KPIs could also require more detailed evaluation data, which can be challenging. 
Moreover, evaluating one model, or models that operate at the same aggregation level, is likely to 
broaden the range of possible KPIs.  
 
Thirdly, using travel survey data from OViN as evaluation data involves certain limitations. 
Underreporting is a significant shortcoming, as travel information provided by participants is virtually 
always incomplete and therefore not a complete representation of reality (Wolf et al., 2003). 
Moreover, people that travel less frequently are more willing to fill in a travel survey than more 
frequent travellers, which leads to a biased sample (Sammer et al., 2018). Although travel survey data 
are widely applied in research and practice, the limitations remain and apply to the presented study 
as well. Therefore, future research might use additional evaluation data to compensate for these 
limitations and provide a more complete representation of reality. Another reason alternative 
assessment data are preferred, is because the estimation of the model parameters and validation of 
the model outcomes were based on the same dataset.  
 
This study was further limited by the fact that the 4-step was not completely re-calibrated after 
replacing the socioeconomic input data. As described in section 5.2, the 4-step model trip generation 
parameters were re-estimated to correct for this substitution. However, the alpha and beta in the 
lognormal distribution function were not re-estimated because this was beyond the time limits of the 
presented research. Consequently, the 4-step model is likely to perform suboptimally in 2017, 
although the backcast performance was corrected for the parameter estimation quality. Octavius on 
the other hand was regionalised with the Spectrum input data and is therefore performing to the best 
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of its (current) ability. Notwithstanding these limitations, Octavius includes more parameters which 
affect the model outcomes, and is therefore likely to maintain its better performance in a base year 
compared to the 4-step model. A recommendation for further research is to conduct the same 
comparison with a completely calibrated 4-step model. Moreover, further work is needed to analyse 
if the revealed inconsistencies between car ownership and use are applicable to the 4-step model in 
general. This could be achieved by analysing more TAZs and evaluating other regions than Almere.  
 
Lastly, backcasting is one of the possibilities to validate the systematics of a model. While the method 
is recognised as a suitable approach in literature (Lange & Huber, 2015; Roorda et al., 2008), other 
approaches can be applied to broaden the scope of the validation process. In particular, a sensitivity 
analysis is recommended to evaluate if the ASC and logsum used in the utility functions of Octavius 
outweigh changes in other variables, which could result in rigid behaviour. Since the aim of the model 
is to predict future years, inflexibility threatens its longitudinal stability.  
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Appendix A – Regionalisation result  
In the figures below, the output of Octavius without and with regionalisation are demonstrated. Note 
that these graphs demonstrate the result on the level the ASCs were estimated: tours, including home-
based and non-home-based trips, car passenger, and evaluated against OViN 2010-2017. Hence, the 
figures show the regionalisation effect at the calibration level. Figure A.1 demonstrates the modal split 
results, whereas Figure A.2 shows the trip length distribution. Note that the legend has been omitted 
in the trip length distribution graphs to improve readability. However, they follow the same logic as 
for the modal split: blue = OViN 2010-2017, grey = not regionalised, and magenta = regionalised.  
 

  
 

  
  

  
Figure A.1 - Octavius' modal split per purpose not regionalised versus regionalised.  

Note that the y-axes have different scales  
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Figure A.2 - Octavius' trip length distribution per purpose not regionalised versus regionalised.  
Note that the y-axes have different scales  
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Appendix B – Manual adjustments to input data 2010 

Appendix B.1: Number of jobs  
In addition to the process described in section 5.4.6, manual adjustments were required for 
municipalities which merged between 2010 and 2018. This issue is illustrated by Figure B.1, where 
Muiden, Naarden, and Bussum have merged into one new municipality called ‘Gooise Meren’. 
Between 2010 and 2018, 51 municipalities have merged into 16 new municipalities. To address this 
mismatch, old and new municipalities were linked based on publicly available information. 
Subsequently, the former municipalities were summed to determine the change with respect to the 
2018 classification. The change was calculated according to, and subsequently assigned to, each of 
constituent municipalities of the 2010 municipalities.  
 

 
Figure B.1 - Example of municipalities that merged between 2010 and 2018 

In the case of Gooise Meren, the number of jobs in 2010 in Muiden, Naarden, Bussum were summed 
and subsequently divided by the number of jobs in Gooise Meren in 2018. The result is that in 2010 
1,029 more jobs were located in these municipalities compared to 2018:  
 

Δ𝐽𝑀𝑢𝑖𝑑𝑒𝑛,𝑁𝑎𝑎𝑟𝑑𝑒𝑛,𝐵𝑢𝑠𝑠𝑢𝑚 =
(𝐽𝑚𝑢𝑖𝑑𝑒𝑛,2010 + 𝐽𝑁𝑎𝑎𝑟𝑑𝑒𝑛,2010 + 𝐽𝐵𝑢𝑠𝑠𝑢𝑚,2010)

𝐽𝐺𝑜𝑜𝑖𝑠𝑒 𝑀𝑒𝑟𝑒𝑛,2018
=

21200

20600
= 1,029 (B. 1.1) 

 
Therefore, the number of jobs in 2018 were multiplied with the calculated factor. For example: 
 
𝐽𝑜𝑓𝑓𝑖𝑐𝑒,𝑀𝑢𝑖𝑑𝑒𝑛,2010 = 𝐽𝑜𝑓𝑓𝑖𝑐𝑒,𝑀𝑢𝑖𝑑𝑒𝑛,2018 ∗ Δ𝐽𝑀𝑢𝑖𝑑𝑒𝑛,𝑁𝑎𝑎𝑟𝑑𝑒𝑛,𝐵𝑢𝑠𝑠𝑢𝑚 =  1400 ∗ 1,029 = 1441 (B. 1.2) 
 
For municipalities that merged with other municipalities (e.g., Graft-De Rijp with Alkmaar), a similar 
procedure was performed.  
 

Appendix B.2: Student enrolments  
In addition to the student distribution taken from OmniTRANS Spectrum, some manual adjustments 
had to be made, because some organisations were discontinued or merged between 2010 and 2018. 
In Figure B.2, the adjustment process is visualised. In 2010 ROC Arcus college and VISTA college existed 
as separate organisations, for which the total number of students is known from DUO data (but not 
the distribution of its locations). However, ROC Arcus was discontinued between 2010 and 2018, and 
merged with VISTA college. As a result, ROC Arcus was not in the 2018 data of DUO or MobiSpec. What 
was available for 2018, was the distribution of students among the various locations of VISTA college. 
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Therefore, the student numbers of ROC Arcus and VISTA were summed for 2010 and subsequently 
distributed according the 2018 distribution over the locations of VISTA college. Although this was not 
the reality, it is reasonable to assume that, in this case, VISTA is located in the vicinity of ROC Arcus, 
because MBO students are not likely to travel significantly longer. On top of that, manual adjustments 
were made for organisations outside the study area, meaning that the exact locations are of less 
importance, since 1) the TAZ size outside the study area is larger, and 2) the further away from Almere, 
the less likely that Almeerders will go to that educational institution.  
 

 
Figure B.2 - Example of redistribution of student enrolments between 2010 and 2018 

For Higher Professional Educations (HBO) and universities, the distribution of students over the various 
locations in MobiSpec 2018 could be directly applied to the 2010 student numbers, since the 
organisations of 2018 are the same as those of 2010. One exception was NHL Stenden Hogeschool, 
which existed in 2010 as two separate organisations. Although HBO students are more likely to travel 
further, this organisation is located in Leeuwarden which falls within a TAZ defined at the COROP level. 
Hence, the exact location of the organisations is not relevant. Lastly, the translated MobiSpec locations 
were joined with the TAZs to determine the socioeconomic variable student enrolments.  
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Appendix C – Network adjustments for 2010 
The adjustments made to the 2017 network to represent the 2010 situation are listed in Table B.1. 
Note that the changes are based on the differences between the 2010 and 2017 networks that were 
both available at Goudappel.  

Table B.1 – 2017 network adjustments  

Action Result 

Train connection ‘Hanzelijn’ 
removed 

Intercity The Hague – Zwolle – Leewarden ends at Lelystad; 
Intercity The Hague – Zwolle – Groningen ends at Lelystad; 
Sprinter The Hague – Zwolle ends at Lelystad. 

Train stop Almere Poort 
removed 

Sprinter Utrecht – Almere Centrum skips Almere Poort; 
Sprinter Amsterdam – Zwolle skips Almere Poort; 
Sprinter Hoofddorp – Almere Oostvaarders skips Almere Poort. 

Bus frequency on lines passing 
Almere Poort adjusted (both 
line directions) 

Line Almere Poort station – Almere Centrums station: 12/h to 6/h 
during rush hour and 8/h to 4/h for off-peak;  
Line Almere Centrum station – Amsterdam Bijlmer station: 2/h to 
4/h during rush hour and 1/h to 4/h for off-peak hours;  
Line Almere Stad Parkwijk – Amsterdam Amstel station: 2/h to 
4/h during rush hour and 1/h to 4/h for off-peak hours;  
Line Almere Poort station – Almere Muziekwijk station and 
Almere Centrum station: 6/h to 4/h during rush hour and 4/h to 
4/h for off-peak hours. 

Highway speed limits adjusted A6 east of Almere 130 km/h → 120 km/h (from interchange 
Emmeloord to exit Almere Buiten Oost); 
A6 south of Almere 130 km/h → 120 km/h (from interchange 
Soest to interchange Almere); 
A6 south of Almere 100 km/h → 120 km/h (from interchange 
Gooimeer to interchange Almere). 

 
The car network inside Almere was checked between both model versions (2017 and 2010), and no 
meaningful changes were found. The bike 2017 network was more detailed for residential areas (see 
Figure C.1 and Figure C.2), which was kept the same for the backcast, since in 2010 these streets did 
exist in reality, but simply not in the model.   
 

 
Figure C.1 - Example of bicycle network in 2017 network 

 
Figure C.2 - Example of bicycle network in 2010 network 
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Appendix D – Trip length distribution graphs 
In Figure D.1, the trip length distributions per mode-purpose are depicted. Note that for all figures the 
legend is: blue dotted → OViN 95% confidence interval, magenta → Octavius, yellow → 4-step model.  
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Figure D.1 - Modelled trip length distributions by Octavius (magenta) and 4-step model (yellow) compared to OViN 95% 
confidence interval (blue dotted) 
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Appendix E – Mode shares per distance class 
In this appendix, the mode shares per distance class can be found which were used for the scenario 
analyses. 
 

 
Figure E.1 - Mode share per distance class for TAZ 86, modelled by Octavius 

 

 
Figure E.2 - Mode share per distance class for TAZ 170, modelled by Octavius 
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Figure E.3 - Mode share per distance class for TAZ 322, modelled by Octavius 

 

 
Figure E.4 - Mode share per distance class for TAZ 330, modelled by Octavius 
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