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“Fourier is a mathematical poem.”

Sir William Thomson
(later known as Lord Kelvin)

Joseph Fourier Lord Kelvin
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Summary

In 1918 the State Committee, chaired by professor Hendrik Antoon Lorentz, was commissioned
to investigate the consequences of constructing the Dutch closure dam the Afsluitdijk. The
Committee’s assignment was to determine to what extent one may expect the water levels to
rise during storm events. The Committee developed a process-based one-dimensional network
model simulating separately the tidal and surge water levels. Essential was the energy argument
applied to linearize the quadratic friction parametrization of the tidal model. Lorentz determined
a steady friction coefficient by equaling the linearized energy dissipation to the quadratic.

Recently, Reef et al. (2016) continued the State Committee’s pioneering work by recon-
structing their storm model and extending it to a non-stationary model which simulates the
time-dependent forcing in the frequency domain. This allowed them to investigate the transient
behaviour of Wadden Sea storms. Concluding their research, Reef et al. argue that when the
flow velocity is lower than the maximum velocity, their steady friction model overestimates en-
ergy dissipation. They propose for future research a time-dependent friction coefficient, in which
a varying velocity scale may be better suited with the varying wind stress and tidal forcing.

This study implemented a time-dependent friction coefficient. We have done this in a lin-
earized fashion by applying a convolution sum to the frictional term in the momentum equation.
This couples each frequency in the spectrum, which is a large advantage since it enables inter-
action between frequencies (e.g. the interaction between tide and surge).

We have performed simulations for an idealized single channel and the Wadden Sea network.
The qualitative behaviour is good. The single channel simulations show that when the steady
friction coefficient overestimates energy dissipation, the time-dependent friction model feels less
friction. The steady friction simulations display overdamping and a phase lag compared to the
time-dependent friction model. We observe significant interaction between tide and surge. The
peak surface elevation of the simultaneously forced model is nearly 20% lower then when forced
separately. The reduction is likely to be a result of the larger tidal velocities, which in turn
result in more friction. The simulations for the Wadden Sea network are performed for the 2013
Sinterklaasstorm. The simulations are in good agreement with measurements. The differences
are often within 10 centimetres. During storm there are some outliers of at most 30 centimetres.

The solution method applied in this study is promising, especially for research on interaction
(e.g. tidal constituents or tide and surge) with idealized analytical network models.
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Chapter 1

Introduction

Hydrodynamic models are widely used, for instance in scenario analysis. The State Commit-
tee (1926) was the first to successfully set up a large scale hydrodynamic model. Using their
one-dimensional tidal and storm network model they investigated the hydrodynamic impact of
constructing the closure dam the Afsluitdijk. One of the team leaders (Thijsse, 1972) later
recalled that the calculations of the existing tide took one month for two persons. Essential in
State Committee’s tidal model was the energy argument applied to linearize the quadratic fric-
tion. This resulted in a steady friction coefficient with which in tidally-averaged sense equalled
the energy dissipation to the quadratic friction.

Reef et al. (2016) extended the State Committee’s stationary storm model with time-dependent
wind forcing. While doing so, they showed that the State Committee’s idealized model is still
valuable for rapid assessment. The model runs take in this digital era only seconds to minutes.
Reef et al. (2016) applied a steady friction coefficient to their storm model. However, the less
predictable behaviour of storms made it unclear how to specify this coefficient accurately.

This study continues with extending the State Committee’s tidal channel network model.
We propose a new bottom friction parametrization that captures the non-linear time-dependent
behaviour. Our report offers a detailed description of the full model and its extension. We
provide simulation results for a single channel with focus on physical processes and hindcast
the Dutch Wadden Sea tidal channel network with focus on model performance during storm
conditions.

This chapter provides background information on the topic (section 1.1), further elaboration
of our objective (section 1.2), the research questions (section 1.2), a detailed description of the
modelling domain (section 1.1.5), an introduction to our methodology (section 1.3) and a report
outline (section 1.3).

1.1 Background

This section starts with previous work on network models, including State Committee (1926) and
Reef et al. (2016) (subsection 1.1.1). We discuss Lorentz’ linearized bottom friction parametriza-
tion in subsection 1.1.2, which is the inspiration to our parametrization. Information on tide-
surge interaction is provided in subsection 1.1.3. Our parametrization enables interaction. Sub-
section 1.1.4 provides information on extra-tropical storms. The Wadden Sea is located in the
mid-latitudes which is dominated by extratropical storms.

1.1.1 Network modelling

Our research focuses on idealized analytical network models that are one-dimensional and based
on the depth-averaged shallow water equations. The State Committee (1926) and Reef et al.
(2016) considered such models.
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Wadden Sea network model by the State Committee (1926)
Headed by Hendrik Antoon Lorentz, the State Committee was commissioned in 1918 to inves-
tigate the hydrodynamic consequences of constructing a closure dam which would disconnect
the Dutch Zuiderzee1 from the Wadden Sea. In 1926 the State Committee developed a process
based model that was able to simulate the tidal and storm water levels for the Dutch Wadden
Sea reasonably well. The possible hydrodynamic effects were investigated with this model and
the parliament subsequently decided to construct the so-called Afsluitdijk.

The idealized model by the State Committee (1926) applied several simplifications. The
model simulates the tidal and surge water levels separately and therefore the effects of tide-surge
interaction were not incorporated. The model considered a network of one-dimensional channels
that allowed only for along-channel flow. Cross-channel flow was neglected as it was assumed
to be limited. The dominance of along-channel flow results from the tidal channel bathymetry
of the Wadden Sea. The network of channels were set up to mimic the actual (tidal) channels.
The quadratic bottom friction parametrization of the tidal model was linearized (see subsection
1.1.2). This, and the exclusion of other non-linear effects as a further simplification, made an
analytical solution feasible. The storm model considered a unidirectional constant wind stress,
both uniform in space and time. Contrary to the tidal model, the storm model was stationary.

Extended non-stationary storm model by Reef et al. (2016)
Reef et al. (2016) studied the transient behaviour of storm surges in the Wadden Sea. They
added inertia and a time-dependent wind stress to the storm surge model by the State Committee
(1926).

Similar to the State Committee, Reef et al. considered the storm to be unidirectional and the
wind stress spatially uniform. The time-dependent wind stress field was decomposed into time-
dependent sinusoidal signals by using the Discrete Fourier Transformation. In comparison to the
tidal model by the State Committee, Reef et al. applied a slightly different linearized bottom
friction parametrization. Both parametrizations are discussed further in subsection 1.1.2.

The simulation results were reasonably accurate. Reef et al. found that the water level peaks
after the moment of maximum wind stress. This was attributed to the inclusion of inertia, which
was not part of the stationary storm model by the State Committee.

Reef et al. also reproduced the tidal model by the State Committee, which had similar
results.

Other developments
Many network models have been created since the State Committee, both complex and idealized
that were either numerical or analytical. Ridderinkhof (1988a,b) studied for instance tidally-
driven residual flows in the western Dutch Wadden Sea with a one-dimensional analytical model
and an extension of a two-dimensional numerical model. Bakker and de Vriend (1995) studied
possible resonance and the morphological stability of tidal basins in case of a modification to
the tidal basins. Their analytical model was based on the linearized friction model by the
State Committee. Hill and Souza (2006) created an algorithm which provides rapid assessment
of linear tidal dynamics for an arbitrarily complex network of tidal channels. Their work is
an extension of their previous analytical solution for a single channel (Souza and Hill, 2006).
Alebregtse and de Swart (2016) incorporated non-linearities in their network model by using a
perturbation expansion.

1Nowadays the Zuiderzee is split into two fresh water lakes, known as the Markermeer and IJsselmeer.
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1.1.2 Lorentz’ linearized friction coefficient r

Energy dissipation due to bottom friction is proportional to the quadratic velocity. The bed
shear stress is thus often parametrized by

τb,quad,j = cdρ|uj |uj ,

with channel number j, channel-dependent bed shear stress τb,quad,j , water density ρ, dimen-
sionless drag coefficient cd that is depth and spatially averaged and along-channel and cross-
sectionally averaged velocity uj . The quadratic velocity poses mathematical difficulties when
seeking analytical solutions. To bypass this problem, Lorentz (1922) proposed a linear parametriza-
tion

τb,lin,j = rjρuj ,

with bottom friction coefficient rj in metres per second. The friction coefficient – that is chan-
nel dependent, steady and spatially uniform within the channel – follows from equalling the
quadratic energy dissipation to the linear dissipation (Lorentz, 1922). To facilitate the deriva-
tion, Lorentz assumed a sinusoidal tidal velocity signal uj = ûj cosωt, with time t, tidal velocity
amplitude ûj and tidal frequency ω. Lorentz neglected tidal asymmetry, this proved to be of
negligible influence since the tidal calculations were up to a few centimetres accurate. The drag
coefficient cd was described as g/C2 with gravitational acceleration g and Chezy smoothness
coefficient C (m1/2s−1). The derivation of rj using the energy argument above over a full tidal
cycle is given by

rj

∫ + π
ω

− π
ω

û2j cos2 ωt dt =
g

C2

∫ + π
ω

− π
ω

û3j cos3 ωt dt,

leading to rj =
8

3π

gûj
C2

.

Note that the friction coefficient rj is dependent on the velocity amplitude and with that the
solution to uj . In turn is the solution dependent on the friction coefficient. Lorentz solved this
fundamental difficulty by pre-determining the velocity amplitude from measurements. The tidal
model by Reef et al. (2016) showed that approximate equal simulation results were obtained
when the velocity amplitude resulted from converging iterations.

Storm coefficient by Reef et al. (2016)
Where the tidal velocity profile has a characteristic sinusoidal shape, the velocity profile during
storm conditions has not. Henceforth, the energy argument is not that easily applied. Reef et al.
used for their storm model the friction coefficient

rj =
gua,j
C2
j

. (1.1)

Due to the less predictable behaviour of storms, it was unclear which value for ua,j would
approximately equal the linear dissipation to the quadratic. In the storm model ua,j was taken
equal to the average of the maximum velocity at both channel ends. The coefficient was obtained
through iterations. To incorporate the effect of decreasing friction with increasing depth, the

smoothness coefficient Cj as h
1/6
j M−1n with Manning coefficient Mn in s m−1/3 and mean depth

hj . The Manning relation is often described with the hydraulic radius instead of the mean depth.
However, since the tidal channels in the Wadden Sea have an much larger width than depth,
then the hydraulic radius is approximately the mean depth.
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Empirical Manning coefficient
The friction coefficient by Reef et al. applies an empirical parameter, namely the Manning
coefficient Mn. These type of parameters are based on observations or experience. This is in
contrast to physical parameters that describe a physical property, for instance the density of
a fluid. The Manning coefficient incorporates the local channel conditions. This includes for
instance (I) bed resistance like bed material and bed forms and (II) bank resistance due to
vegetation, all conditions that may change over time. Henceforth, the Manning coefficient is a
rough estimation of local conditions. Chow (1959) has estimated the Manning coefficient for
many conditions and is therefore often referenced, also by Reef et al.

1.1.3 Tide-surge interaction

It has long been recognized that tide-surge interaction must exist since residual maxima generally
occur on the rising tide. Doodson (1929) and Rossiter (1961) noted this in the Thames estuary,
Prandle and Wolf (1978) and Horsburgh and Wilson (2007) confirmed this statistically. Brown
and Wolf (2009) observed that wind stress peaks are not in phase with surge peaks and that
residual is significantly larger at low water. Prandle and Wolf mention that interaction frequently
leads to a reduction.

Prandle and Wolf (1978) simulated the quadratic friction and shallow water interaction
mechanisms in the Thames estuary. Their results showed that quadratic friction is the dominant
mechanism. In shallow water the friction term becomes increasingly important as bottom friction
is inversely dependent on water depth.

Wind stress is more effective at raising the sea surface in shallow water (Pugh, 1987). There-
fore the timing of the wind event with respect to spring/neap phase and tidal high/low stage is
determinant for the size of interaction (Horsburgh and Wilson, 2007; Brown et al., 2010). Con-
sidering this, interaction can increase as well as decrease surge levels; low tide will increase surge
levels as the water depth is below the normal depth, whereas high tide will have the reversed
effect.

1.1.4 Extra-tropical storms

Sea-level variations are chiefly caused by a tidal and meteorological component. The meteorolog-
ical component consists of atmospheric pressure and wind stress, two closely related phenomena.
Atmospheric pressure acts vertically on the sea surface. Horizontal pressure differences result
in differences in sea level elevation; as pressure decreases, sea level will increase (Pugh, 1987).
Large spatial gradients in atmospheric pressure result in strong winds. These winds act as a
horizontal drag force on the sea surface (i.e. wind stress). Sea level elevation due to atmospheric
pressure is only small and extreme surge in the Wadden Sea generally exceeds the tidal elevation.
The order of importance is thus respectively wind stress, tidal forcing and atmospheric pressure.

The Wadden Sea is located in the mid-latitudes, a region that is subject to extratropical
storms. These storms occur predominantly in winter when the horizontal temperature gradients
are strong (Renggli, 2011). Forced by low pressure, storms have radii between a few hundreds
and thousands of kilometres and travel eastward due to the polar jet stream entering the North
Sea in the northern part. Influenced by the rotation of the earth (Coriolis effect), winds rotate
counter-clockwise in the Northern Hemisphere along the isobars (Lipari and van Vledder, 2009;
Klein, 2015; and references therein).

Due to the excessive size of storms, the Wadden Sea is generally affected by the southern
part of a North Sea storm. This results in some key characteristics for the direction of the
wind stress in the Wadden Sea (schematically displayed in Figure 1.1). As the south eastern
quadrant of the storm approaches, the anticlockwise wind originates from the south and south-
west. As the storm progresses easterly, the south western quadrant causes wind to originate
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from the north-west and north. Due to this rotational behaviour positive surges can be well
preceded by negative surges. The 2013 Sinterklaasstorm2 displays this rotational behaviour, see
wind measurements from the Vlieland station in Figure 2.7. Before peak wind speeds there is a
rotational wind direction change from north to east to south.

1.1.5 Case description: the Wadden Sea

The Wadden Sea is a system of coupled tidal inlets that is characterized by a series of tidal inlets
that separate the barrier islands and connect the open sea with the back-barrier bay (Figure
2.4). In the Dutch part of the Wadden Sea are five tidal inlets, namely from south-west to
north-east Marsdiep-, Eierlandse gat-, Vlie-, Ameland- and Pinkegat-inlet. Sediment transport
both going into and out of the back-barrier basin result in ebb- and flood deltas. This results in
typical elevated tidal flats and deepened tidal channels. As a result the main flow goes through
these tidal channels. In the back-barrier bay, tidal inlet systems can be both single systems or
coupled systems. The tidal inlet systems of the Eierlandse Gat and Ameland have for instance
a limited flow exchange with other systems, whereas the Marsdiep- and Vlie-inlet are connected
by the streams Texelstroom and Vliestroom. Tidal inlet systems are divided by tidal flats, this
boundary is named the tidal divide or watershed.

Long term measurements confirmed that the Wadden Sea is dominated by tidal currents
(Buijsman and Ridderinkhof, 2012; Wang et al., 2012). Wang et al. note that flow across the
tidal divides is limited. Analysis by van Vledder and Adema (2007) of two winter storms in
2006-2007 showed that storms can increase water levels significantly and align currents with the
wind direction. These flows are able to cross tidal divides.

1.2 Objective and research questions

The behaviour of storms is less predictable compared to tides. This made it unclear for Reef
et al. what value would be appropriate as velocity scale for the bottom friction coefficient. Reef
et al. applied the maximum velocity. As a result, the friction coefficient is overestimated when

2 The name of the 2013 Sinterklaasstorm refers to the Dutch national holiday Sinterklaas. The storm occurred
on the same date, that is December 5th. European meteorological services generally apply their own naming
to storms. For instance, the 2013 Sinterklaasstorm is named by Germany Xaver and the United Kingdom uses
Cameron.

Figure 1.1: Schematic display of the rotational wind behaviour in the Wadden Sea (blue dyed). The storm
displayed by the rotating arrows (not to scale) travels eastward (horizontal arrow) resulting, respectively
in the figures from left to right, in wind originating from the south, the west and eventually the north.
Wadden Sea background from Wikipedia.
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the velocity is not equal to the maximum velocity. Reef et al. discuss this drawback and, as a
recommendation for future research, propose a time-dependent friction coefficient:

τb,lin,j = rj(t)ρuj .

They suggest to solve the problem by applying a Fourier transformation and linear algebra.
The time-dependency of rj(t) allows us to capture the nonlinear variation in bottom stress

over the various stages in the storm event: rj(t) will be large whenever the flow is strong and
small when it is weak.

Our objective is to investigate the implementation of this time-dependent coefficient while
retaining its attractive linear properties.

Besides implementing rj(t), we construct a non-stationary network model that is simultane-
ously forced by both tide and wind. Together with the time-dependent friction coefficient, this
allows us to investigate the tide-surge interaction due to bottom friction.

The following research questions have been formulated to address the objective:

1. How can we implement a time-dependent bottom friction parametrization
semi-analytically without losing its linear advantages?

2. How do the simulation results with a time-dependent friction coefficient
compare quantitatively and qualitatively with the steady coefficient for

a) a single channel that is synthetically forced by wind, tide and both?

b) Lorentz’ channel network forced by the 2013 Sinterklaasstorm?

3. What insights do the simulation results provide for tide-surge interaction?

1.3 Methodology and report outline

The model formulation in chapter 2 includes the governing linearized shallow water equations,
the boundary conditions and the system’s simultaneous tide and wind forcing. Besides, this first
chapter discusses our time-dependent bottom friction coefficient that captures its essentially
non-linear behaviour.

Chapter 3 describes how the time-dependent friction coefficient is implemented linearly. The
non-linear nature of both the friction coefficient and the forcing is modelled in the frequency
domain. By applying the Discrete Fourier Transformation to the model input – which includes
the time-dependent friction coefficient –, both the input and output are Fourier series. The
additional frictional Fourier series – with respect to Reef et al.’s (2016) steady friction model
– causes a product of two series. This results in a mathematical difficulty which is solved by
translating the double Fourier series to a convolution sum of coupled frequencies. By using
a matrix notation we apply linear algebra to decouple and solve the problem. The resulting
product is a linearized non-stationary model that allows for non-linear energy dissipation. The
beforehand unknown friction coefficient is determined by an iterative process.

We use our model to investigate the following aspects:

• Our results should be equal to Reef et al.’s when applying the same friction coefficient.
The Wadden Sea modelling domain in Figure 2.4 is used for this;
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• Also for the Wadden Sea network, we compare our time-dependent friction simulations
with Reef et al.’s steady friction model;

• The additional processes captured by the time-dependent friction model are difficult to in-
vestigate with the comprehensive Wadden Sea network. Therefore, we perform simulations
with idealized single channels forced by tide, wind and both (Figure 2.2);

• The simultaneous forcing and time-dependent friction coefficient allows for tide-surge in-
teraction and offers with that new insights for idealized modelling.

The simulation results for the single channel system and the Wadden Sea network are given in
chapter 4 and chapter 5, respectively.

The above mentioned chapters provide the necessary information to answer the research ques-
tions, which is subsequently discussed and answered in respectively chapter 6 and chapter
7.
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Chapter 2

Model formulation

The model formulation is described in the following sections. Firstly, section 2.1 discusses the
general network geometry and how it is applied to our simulation cases. The model presented in
this study should be applicable to any shallow water system with predominantly one-dimensional
flow. This is for us the tidal channel system of the Dutch Wadden Sea. However, it could
also be a fjordic channel network, which was for instance modelled by Hill and Souza (2006).
Secondly, section 2.2 discusses the hydrodynamics, that is the governing equations, the forcing
and the boundary conditions. Section 2.3 discusses the description of our time-dependent friction
coefficient rj(t).

2.1 Network geometry

The simulation cases are translated to a network of one-dimensional flow channels. This sub-
section describes first the general network geometry, secondly the single channel case and then
the Wadden Sea.

General network geometry
Figure 2.1 provides an example of a typical network with all key features of tidal networks. The
tidal channels are considered straight and are on both ends connected to a node. There are
three types of nodes.

1. Closed boundary nodes are indicated by bars.

2. Internal nodes that are indicated by solid circles. This type connects two or more channels
with each their own dimensions.

3. Open boundary nodes are indicated by open circles. This type connects the open sea with
a tidal channel and forces the system by imposing the sea surface elevation as a boundary
condition.

Tidal channels are numbered and nodes are named by capitalized letters. Each channel is
dimensionalized with a depth hj , width bj and length Lj , where subscript j indicates the channel
number. To mimic the non-rectangular tidal channel bathymetry more closely, we allow for
multiple rectangular channels that are parallel aligned and originate and terminate in the same
nodes. The channels are given a specific direction (see arrow). Note that this is not the flow
direction – which changes during ebb and flood –, it is necessary for the coordinate direction
(see section 2.2). The channel angle with respect to north is given by βj . This angle is in degrees
and increases in clockwise direction. The entire system is forced by a spatially uniform wind
stress which is projected on each channel. The time-dependent wind angle is given by α(t). This
angle is also in degrees and increases also in clockwise direction.
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Figure 2.1: An example network forced by both tide and wind.

Single channel
We investigate three single channel subcases, see Figure 2.2, forced by (a) wind, (b) tide and
(c) both. The channel length is 100 kilometres and the depth is 4 metres. The synthetic forcing
signals are depicted in Figures 2.3.

Figure 2.2: A singe channel forced by (a) wind, (b) tide and (c) both. Note that an open boundary node
can be forced by both tide and wind, henceforth, it is named open boundary forcing.

Figure 2.3: The single channel forcing signals for both the open boundary elevation and wind stress.

Wadden Sea network
The State Committee (1926) applied two different Wadden Sea networks. A tidal channel
network for forcing conditions dominated by tide and a storm network to accommodate the
larger discharges during storms. Reef et al. (2016) applied the same networks. We proceed with
the storm network since our main interest is in storm conditions. This network is depicted in
Figure 2.4.

The channel-dependent information is provided in Table 2.1. Rijkswaterstaat (2017) provides
measurement data for sea surface elevations. There are three measurement stations near the
tidal inlets, that is Den Helder near the Marsdiep-inlet, Vlieland haven near the Vlie-inlet and
Wierumergronden near the Pinkegat-inlet. There are also three measurement stations inside the
back-barrier bay, that is Den Oever near node D, Kornwerderzand near node E and Harlingen
between nodes E, F and K. The sea surface elevations for the 2013 Sinterklaasstorm are plotted
in Figures 2.5 and 2.6.

KNMI (2017) provides wind measurements for several locations in and around the Wadden
Sea. Figure 2.7 depicts the wind stress and direction for the measurement station on the Vlieland
barrier island.
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Figure 2.4: The Wadden Sea tidal channel network setup. The underlying map displays the nineteenth
century Dutch Wadden Sea. This map, and the network setup, are obtained from the State Committee
(1926). The closure dam the Afsluitdijk is not displayed on this map. The time-dependent wind angle
of the 2013 Sinterklaasstorm is not indicated on this figure. The tidal channels and labels have been
highlighted red to stand out.

Figure 2.5: Surface elevations with respect to N.A.P. at measurements stations Den Helder, Vlieland
Haven and Wierumergronden during the 2013 Sinterklaasstorm. First measurement is at December 1th
01:00 local time. The hourly values are 10 minute averages over the previous and next 5 minutes at the
stroke of the clock.

Figure 2.6: Surface elevations with respect to N.A.P. at measurements stations Den Oever, Korn-
werderzand and Harlingen during the 2013 Sinterklaasstorm. First measurement is at December 1th
01:00 local time. The hourly values are 10 minute averages over the previous and next 5 minutes at the
stroke of the clock.
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Figure 2.7: The wind stress and direction at measurement station Vlieland during the 2013 Sinterk-
laasstorm. The first measurement is at December 1th 01:00 local time. Note that the wind direction is
actually measured and that the wind stress is calculated from wind speed measurements, see equation
(2.1). The wind speed values are hourly averages. The hourly wind direction values are 10 minute aver-
ages of the previous 10 minutes before the stroke of the clock. The wind direction is 360, 270, 180 and
90 degrees for respectively north, west, south and east. Data obtained from KNMI (2017).

2.2 Hydrodynamics

Each channel j is described by the linearized one-dimensional shallow water equations. Assuming
that the surface elevation with respect to the undisturbed water level is much smaller than
the mean depth, that is ζj � hj , the cross-sectionally-averaged shallow water equations are
expressed in linearized form by

∂uj
∂t

+
τb,j
ρhj

+ g
∂ζj
∂xj

=
τw,j

ρhj
,

∂ζj
∂t

+ hj
∂uj
∂xj

= 0,

with cross-sectionally averaged velocity uj , along-channel coordinate xj and time t. Unless
explicitly mentioned otherwise, when we discuss the velocity, we mean the cross-sectionally
averaged velocity. The surface elevation ζj is with respect to the undisturbed water level. The
gravitational acceleration g and water density ρ are steady and spatially uniform throughout
the basin. These parameters are provided in Table 2.2. Channel dependent parameter hj is the
mean water depth and is provided in Table 2.1, along with length Lj , width bj and direction
βj . These parameters are time-independent and spatially uniform within the channel. The
linearized bottom stress τb,j is described with a time-dependent friction coefficient rj(t) and
is further discussed in section 2.3. The steady friction coefficients rj – for the performance
comparison of rj(t) – are described at the end of this section. The along-channel and time-
periodic wind stress τw,j is provided in Figure 2.3 for the single channel case. The channel
dependent wind stress signals for the Wadden Sea network result from the wind measurements
in Figure 2.71. These measurements provide the time-dependent direction α(t) and wind speed
uw(t), which are assumed spatially uniform within the back-barrier bay. The projected wind
stress τw,j on channel j is calculated with

τw,j(t) = τw(t) cos
(
βj − α(t)

)
.

An example of wind direction α and channel direction βj is given in Figure 2.1. The time-
dependent wind stress τw(t) is – as suggested by Pugh (1987) – calculated with

τw(t) = cwρau
2
w, (2.1)

1 The wind measurements in Figure 2.7 are obtained on the barrier island Vlieland. There are several mea-
surement stations in and around the Wadden Sea. However, these measurements are at varying altitudes and
therefore require different values of cw. Since we are comparing our model results with Reef et al. (2016), we have
chosen to also assume the Vlieland measurements as spatially uniform throughout the basin. Note however that
the wind forcing could be better approximated.
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where cw is the dimensionless wind drag coefficient and ρa the air density. These parameters
are provided in Table 2.2.

With the inclusion of friction and the periodic wind forcing, the system tends toward a
dynamic equilibrium in which frictional dissipation balances wind power input (Chen et al.,
2015)2. Henceforth, our model solutions are designed for a dynamic equilibrium and there is no
need to consider the initial conditions.

Boundary conditions and open boundary forcing
There are two boundary conditions per channel, or in terms of nodal requirements, there are
four types of nodal requirements.

The kinematic condition states that at closed boundaries the cross-sectionally averaged flow
is zero, that is

uj(Xj , t) = 0,

with channel end Xj that is either xj = 0 or xj = Lj .
There are two nodal requirements at each internal node. The first states that the net

incoming discharge is equal to zero, that is∑
JC

fjQj =
∑
JC

fjbjhjuj = 0,

where JC is the set of adjacent channels. Parameter fj is +1 for an incoming channel direction
and −1 for an outgoing channel direction (see Figure 2.1). Qj is the channel discharge. The
second requirement states that the surface elevation must be equal at all channel ends. Let JC
be the set of channels 1, 2 and 3 with channel ends L1, 0 and L3, then there are two conditions,
for instance

ζ1(L1) = ζ2(0),

ζ2(0) = ζ3(L3).

The last nodal requirement is at the open boundary. This condition imposes the adjacent
sea-surface elevation onto the node, that is

ζj(Xj) = ζ̂N (t),

where N is the node index. Open boundary forcing can be the astronomical tide, the residual
or a combination of both, that is the measured sea-surface elevation. The residual consists of
the elevation due to surge and tide-surge interaction. The measured sea-surface elevations are
given in Figure 2.5. The synthetic forcing signal for the single channel case is given in Figure
2.3.

2.3 Time-dependent friction coefficient rj(t)

The bottom friction parametrization τb,j is usually quadratic, which we replace by a parametriza-
tion that includes a linearly applied friction coefficient rj(t), that is

τb,j(t) =

quadratic︷ ︸︸ ︷
cd,jρ|uj |uj =

linearly
applied︷ ︸︸ ︷
rj(t)ρuj , (2.2)

with cd,j =
gM2

n

h
1/3
j

.

2Without friction, pure resonance may result in a net input of energy by the wind forcing leading to ever-
increasing oscillations.
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Here, cd,j is the dimensionless drag coefficient and Mn is the Manning roughness coefficient. The
latter is taken equal to Reef et al. (2016)3 and is provided in Table 2.2. The cross-sectionally
averaged velocity uj varies both in time and space and the bottom friction coefficient rj(t) is
allowed to vary in time but not in space. Note that the nonlinear cd,j |uj |uj is replaced by the
essentially nonlinear rj(t)uj , both parametrizations have products of unknowns. However, the
bottom friction coefficient rj(t) will be determined through iterations and subsequently described
by a Fourier transformation to enable linear calculations. This will be discussed further in
chapter 3. The time-dependency allows us to capture the nonlinear variation in bottom stress
over the various stages of the storm event: rj(t) will be large whenever the flow is strong and
small when it is weak.

To specify the friction coefficient, we adopt an energy argument analogous to that of Lorentz
(1922), but now in an instantaneous rather than tidally averaged sense. Specifically, rj(t) must be
such that the instantaneous frictional energy dissipation integrated over the channel is identical
for both parametrizations in equation (2.2):∫ Lj

0
cd,jρ|uj |u2j dx =

∫ Lj

0
rj(t)ρu

2
j dx.

This balance results in the linearization criterion for the time-dependent friction coefficient:

rj(t) = cd,j

∫ Lj
0 |uj |u

2
j dx∫ Lj

0 u2j dx
. (2.3)

Note that both the numerator and denominator can only be positive, henceforth, rj(t) is positive
throughout time. We make two remarks:

• Just as the steady friction coefficient rj , specifying rj(t) requires knowledge of the flow
solution uj(xj , t), which in turn depends on rj(t). This fundamental difficulty is tackled
by adopting an iterative procedure that seeks to improve this first guess. This is further
described in section 3.4.

• The linear friction coefficient rj(t) depends on t but not on xj . It is thus meant to represent
the channel as a whole, which remains an important simplification compared to the original
quadratic parametrization in equation (2.2).

Considering the latter remark and supposing a sinusoidally varying velocity uj(xj , t
∗) throughout

the channel and rj(t
∗) at the instantaneous moment t = t∗, then the quadratic bottom friction

is constantly under- or overestimated throughout the channel. Overestimating results in an
overestimated delay4 of the progressing current whereas underestimating has the reverse effect.
Analogously, overestimation results in overdamping of the velocity.

The temporal profile of rj(t) is obtained with Matlab.

Simulations with steady friction coefficient
In these first simulations, we compare our Wadden Sea network results with the earlier results
by Reef et al. (2016). We therefore apply the same friction coefficient as Reef et al., that is rj
in equation (1.1).

The single channel simulations are more focused on how much rj(t) includes the physical
processes. We choose therefore a steady friction coefficient that represents the energy dissipation

3Reef et al. cites Chow (1959) on the Manning coefficient. It should however be noted that roughness
coefficients are empirical and uncertain. For example the range of the Manning coefficient given by Chow for
major natural streams (larger than 100 feet width) is from 0.025 to 0.060.

4Friction holds the flow back (delays).
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better. We specify rj in this case by equalling the linearized energy dissipation throughout time
and space to the quadratic energy dissipation, that is

rj

∫ Trecur

0

∫ Lj

0
u2j dx dt = cd,j

∫ Trecur

0

∫ Lj

0
|uj |u2j dx dt,

which results in the linearized friction coefficient

rj = cd,j

∫ Trecur
0

∫ Lj
0 |uj |u2j dx dt∫ Trecur

0

∫ Lj
0 u2j dx dt

, (2.4)

that is uniform in time and space. Trecur is the storm duration. By ensuring that the total
linearized energy dissipation is equal to the quadratic version, we assist the comparison with the
energy dissipation by the time-dependent friction coefficient rj(t).
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Table 2.1: The values of the channel-dependent parameters for the Wadden Sea network in Figure 2.4.
Source: the State Committee (1926) and Reef et al. (2016).

Nodal Channel Mean Mean Length Direction
connection number depth width
N j h b L β

m km km degrees

AB 1 9 8 10 67.4
2 20 2

BC 3 27 2 13 67.4
4 15 2
5 8 2

CD 6 4 20.5 15 135
7 20 1.5
8 10 1

DE 9 6 12 16 69.8

EF 10 6 9 17 166
11 16 1.5
12 4 10.5

FG 13 3.5 14 12 104
14 8 2

HG 15 10 1.5 8.5 104
16 6 2.5
17 1 4

FK 18 6.5 4 16 206
19 3.5 6

FI 20 18 1.3 19 159.9
21 4 9.7
22 9 2

IJ 23 9 11 9 135
24 18 2

IK 25 16 1 14 93.8
26 9 2
27 4 5

KL 28 5 16 13 239.3

LM 29 21 1.2 14 135
30 5 3.8

LN 31 5.5 8.5 19 268.9

NO 32 5 11 13 143.1
33 12 1.5

Table 2.2: Parameter values that are steady and spatially uniform throughout the basin.

Description Sym. Value Units Source

Air density ρa 1.225 kg m−3 Pugh (1987)
Gravitational acceleration g 9.81 m s−2

Manning coefficient Mn 0.03 s m−1/3 Chow (1959)
Sea water density ρ 1025 kg m−3

Wind drag coefficient cw 0.0033 − State Committee (1926)
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Chapter 3

Solution method

This chapter implements our time-dependent friction coefficient is a linear fashion. Using the
Discrete Fourier Transformation, we first express the non-linear behaviour of the forcing and fric-
tion in the frequency domain (subsection 3.1.1). This spectral approach results in a Helmholtz-
type differential problem per frequency which is coupled to other frequencies (subsections 3.1.2
and 3.1.3). Section 3.2 expresses the problem in matrix notation and diagonalizes the problem to
a Helmholtz-problem, for which a solution is familiar. The problem is then solved in section 3.3
using linear algebra. Our friction coefficient is dependent on the the cross-sectionally averaged
velocity solution, which in turn is dependent on the friction coefficient. The iterative process
adopted to address this difficulty is discussed in section 3.4.

3.1 Spectral approach

3.1.1 Fourier representation

We decompose the friction coefficient rj(t) and forcing signals into continuous sinusoidal signals
in the frequency domain, such that the superposition of these continuous signals is equal to the
original signals. For this we apply the Discrete Fourier Transformation. These simple sinusoidal
signals allow us to apply the non-linear behaviour in a linear solution method. Reef et al. (2016)
applied the same technique and based this on Chen et al. (2015) and Chen et al. (2016). We
obtain a solution for each frequency since the model input is in the frequency domain. The full
solution is the superposition of all frequencies.

All Fourier series are given by
rj(t)

ζ̂N (t)
τw,j(t)
uj(xj , t)
ζj(xj , t)

 =

M∑
m=−M


Rj,m

HN,m

Tj,m
Uj,m(xj)
Zj,m(xj)

 exp iωmt, (3.1)

ωm = m
2π

Trecur
= mωmin,

where complex amplitudes Rj,m, HN,m, Tj,m, Uj,m and Zj,m are for the positive modes m the
complex conjugates of negative modes −m. This is necessary since the in- and output are
real-valued. The Fourier signals are strictly speaking recurring sinuses and we can therefore
consider the forcing duration Trecur to be the fictitious recurrence period of the storm event.
Associated with this is the minimum frequency ωmin. The truncation number M results firstly
from the number of measurements of the forcing input, that is the temporal resolution. A small
resolution results in a small truncation number. Since we are considering analytical solutions,
note that the output in-between measurements is solely based on the temporal interpolation to

23



continuous signals in the Fourier expansion. Secondly, the computational burden can be reduced
by lowering the truncation number, this in turn results in loss of representation. As example is
in Figure 3.1 the Fourier domain and the reconstructed wind stress profile for the single channel
case given.

Figure 3.1: The Fourier domain (top) and the reconstructed wind stress (bottom) of the single channel
case (see Figure 2.3). The frequency ωm is given by equation (3.1) and truncation number M = 95 and
recurrence period Trecur = 8 days.

3.1.2 Convolution sum

Reef et al. (2016) found the differential problem to the complex amplitudes Uj,m(xj) and Zj,m(xj)
by first substituting the Fourier series into the shallow water equations and boundary conditions
and then dividing out the exponential term. Since only the exponential term is dependent on
time t, Uj,m and Zj,m are solely dependent on the along-channel coordinate xj .

We apply – in contrast to Reef et al.’s steady rj – the friction coefficient as a Fourier series,
and with that, have a product of two Fourier series in the frictional term of the momentum
equation. This results in unequal frequencies per term and prevents us from dividing out all
time-dependencies. If we would want to continue using Reef et al.’s method and exclude the
double frequency, we could only use the zero mode of the frictional Fourier series for each mode
m. However, this would mean that we are – again – applying a steady friction coefficient.

Choosing an appropriate frictional mode in combination with the mode m-dependent dif-
ferential problem leads in fact to our new implementation method in which we must apply a
convolution sum. In this convolution sum we superpose all combinations of the frictional and
velocity modes that are combined the mth frequency. The frictional term in the momentum
equation then becomes for the mth frequency

1

hj

{
rj(t)uj

}
m

=
1

hj



Rj,m−M exp iωm−M t × Uj,M exp iωM t
...

+ Rj,0 exp iω0t × Uj,m exp iωmt
...

+ Rj,m exp iωmt × Uj,0 exp iω0t
...

+ Rj,M exp iωM t × Uj,m−M exp iωm−M t


m

,

=
1

hj

{∑
n

Rj,m−nUj,n exp iωmt
}
m
, (3.2)
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with the convolution sum between the curly brackets and appropriate ranges for n such that
indices n and m− n do not outrange ±M . Section 3.2 provides more clarity on these ranges.

3.1.3 Differential problem for Zj,m(xj)

We express our problem in terms of Zj,m(xj) and eventually find the solution to the velocity
amplitude Uj,m(xj) through the momentum equation, which is discussed in section 3.2. The
differential problem for Zj,m(xj) is found by substituting the convolution sum and Fourier series
into the shallow water equations and boundary conditions.

The shallow water equations can then be expressed in one single differential equation by
substituting the conservation of mass into the spatial derivative of the momentum equation,
that is

Z ′′j,m =
i2ω2

m

ghj
Zj,m +

1

gh2j

[∑
n

Rj,m−niωnZj,n

]
. (3.3)

The result is a coupled Helmholtz-type boundary value problem in terms of Zj,m and Zj,n

only.

The boundary conditions transform towards

Uj,m(Xj) = 0,

Zj,m(Xj) = Zj+1,m(Xj+1),∑
JC

fjbjhjUj,m(Xj) = 0,

Zj,m(Xj) = HN,m,

Note that the elevation condition considers channel j + 1 to be connected to channel j. This is
an example and does not reflect the Wadden Sea geometry. Section 3.2 expresses the boundary
conditions in terms of Zj,m(xj) only. We use a simpler matrix notation for this.

3.2 Decoupling problem

This section decouples the coupled Helmholtz-type problem to a Helmholtz problem, a problem
for which the solution is familiar and solved in section 3.3. The differential problem is first
written in a matrix notation and then diagonalized to a decoupled Helmholtz problem.

Matrix notation
The boundary value problem of equation (3.3) is given in matrix notation by

z′′j =
1

ghj

[
D +

1

hj
Rj

]
Dzj =

1

ghj
VjDzj = Bjzj . (3.4)

where zj =
(
Zj,−M · · · Zj,0 · · · Zj,M

)T
,

D = diagonal
(
iω−M · · · iω−1 0 iω1 · · · iωM

)
,

and Rj =



Rj,0 . . . Rj,−M 0 0
... Rj,0 . . . Rj,−M 0

Rj,M
... Rj,0 . . . Rj,−M

0 Rj,M
... Rj,0

...
0 0 Rj,M . . . Rj,0


.
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Diagonal matrix D is the time-derivative matrix with entries imωmin. Henceforth, the middle
entry is zero since the middle mode is also zero. The frictional convolution matrix Rj is a Toeplitz
matrix; the elements in the descending diagonals are constant. The friction matrix consists of
values Rm−n with per column increasing n and per row increasing m. Both n and m increase
from −M to zero to M . The values Rm−n are the complex amplitudes that resulted from the
Fourier transformation of the time-dependent friction coefficient, see equation (3.1). Hence, the
values of Rm−n with |m−n| > M , are zero. Matrix Vj is necessary for the boundary conditions
and finding the velocity solution. Provided rj(t) is time-dependent, the friction matrix Rj makes
matrix Bj non-diagonal and thus the problem coupled.

The boundary conditions are preferably in terms of Zj,m only, this can be achieved by
substituting the momentum equation into the closed boundary condition and the equal flow
condition. The momentum equation is given in matrix notation by

Duj +
1

hj
Rjuj + gz′j =

1

ρhj
tj ,

where uj =
(
Uj,−M · · · Uj,0 · · · Uj,M

)T
,

and tj =
(
Tj,−M · · · Tj,0 · · · Tj,M

)T
.

The vectors uj and tj contain the Fourier amplitudes of the velocity and the wind forcing.
The boundary conditions – the closed boundary condition, equal elevation condition, equal flow
condition and open boundary condition respectively – are then given by

gV−1j z′j(Xj) =
1

ρhj
V−1j tj ,

zj(Xj) = zj+1(Xj+1),∑
JC

fjbjhjgV
−1
j z′j(Xj) =

∑
JC

fjbjhj
ρ

V−1j tj ,

zj(Xj) = HN,m.

Diagonalizing the problem
Would Bj have been a diagonal matrix, then the boundary value problem in equation (3.4)
would have been a Helmholtz problem.

Boas (2006) shows in section 3.11, and specifically equation (11.11) of that section, that
matrix Bj can be transformed to diagonal matrix Qj with the eigenvector matrix of Bj ,
that is

P−1j BjPj = Qj ,

where Pj is the right-hand eigenvector matrix.

Substituting the above expression into the boundary value problem results in a Helmholtz prob-
lem as given by

P−1j z′′j = QjP
−1
j zj or relabelled as y′′j = Qjyj .

Vector yj has entries Yj,n where index n goes from −M to zero to M . The entries of diagonal
matrix Qj are the eigenvalues λj,n of matrix Bj (in arbitrary order), or written with wave
numbers µj,n as entries −µ2j,n. Since matrix Bj has a zero column, we know that there is also
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a zero eigenvalue1. By using P−1j zj = yj , we can express the complex amplitude solutions and
boundary conditions in terms of Yj,n only, that is

zj = Pjyj ,

uj = V−1j

[
1

ρhj
tj − gPjy

′
j

]
,

y′j(Xj) =
1

ρghj
P−1j tj ,

Pjyj(Xj) = Pj+1yj+1(Xj+1),∑
JC

fjbjhjgV
−1
j Pjy

′
j(Xj) =

∑
JC

fjbjhj
ρ

V−1j tj ,

yj(Xj) = P−1j HN,m.

Note that the elevation condition considers channel j + 1 to be connected to channel j. This is
an example and does not reflect the Wadden Sea geometry.

3.3 Solving problem

The solution to our Helmholtz problem in terms of Yj,n and wave number µj,n is given by

Yj,n(xj) =

{
Aj,n cosµj,nxj +Bj,n sinµj,nxj if µj,n 6= 0,
Aj,nxj +Bj,n if µj,n = 0,

where Aj,n and Bj,n are the integration constants. Notice that there are a total of 2(2M + 1)
unknown integration constants per channel j. We need the same number of boundary conditions,
which we indeed have.

The integration constants are found by substituting the solution of Yj,n into the boundary
conditions and concatenating all conditions into one matrix equation, that is

MC = A, or reordered as C = M−1A, (3.5)

where each row consists of one condition, matrix M consists of all terms dependent of the
integration constants, vector C consists of all integration constants and vector A consists
of all terms independent of the integration constants.

Note that the expression above consists of all conditions for each channel j. Since the equal
elevation and equal flow conditions are coupled among all modes n, equation (3.5) consists of
the conditions for each mode and especially matrix M can become extremely large. This is in
contrast to Reef et al. (2016) who had uncoupled boundary conditions and was therefore able
to solve the integration constants per mode. We have provided an example of how matrices M,
C and A are setup in Appendix A, corresponding to the example network in Figure 2.1.

3.4 Iteration process

As already noted in section 2.3, the bottom stress depends on the velocity solution, which in turn
depends on the bottom stress. This difficulty is solved by adopting an iterative process. The

1Eigenvalues can be found by solving |Bj − λjI| = 0 where the vertical bars indicate the determinant and I
the identity matrix. When evaluating the determinant by using the row containing the −λj-element, we notice
that all minor determinants – except one – have a zero column and are thus zero. The exception is multiplied
by the −λj-element and thus has the characteristic polynomial only λnj -terms with integers n ≥ 1. Henceforth,
there is an eigenvalue of zero.
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iterative procedure is chosen to be under relaxation by averaging the previous friction coefficient
with the coefficient resulting from the new velocity profile. Iterations will proceed until the
average is equal to the previous friction coefficient. This is when the friction coefficient r(t)
satisfies the linearization criterion in equation (2.3). This process is portrayed in Figure 3.2.

Figure 3.2: The iteration process of the time-dependent friction coefficient r(t). In this figure, r0 is a
steady value and the first quess of rj(t), rj,new(t) results from the linearization criterion in equation (2.3),
rj,calc(t) is equal to r0 at the first iteration run and the green boxes indicate either the start or the end
of the iteration process. This figure displays the general setup of the model. However, the the model in-
and output besides the friction coefficient are not displayed.
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Chapter 4

Results: Single channel

This chapter presents the simulations for the single channel case. We compare the results with
steady and time-dependent friction coefficient for three subcases, that is (a) a closed channel
forced by wind only, (b) a channel forced by tide only and (c) a channel forced by both tide and
wind. The results are presented in section 4.1. The interaction between tide and surge for case
(c) is presented in section 4.2.

The steady friction coefficient is described by the energy based parameter in equation (2.4).
This coefficient is a better representation for the quadratic friction (compared to the coefficient
by Reef et al. (2016) which overestimates energy dissipation) and with that allows us to highlight
the improvements of a time-dependent coefficient. Besides differences in forcing and boundary
conditions, is each case the same. The case descriptions are provided in section 2.1, this includes
the synthetic forcing signals, channel dimensions and channel setup. Subcase (a) – that is only
forced by wind – applies truncation number M = 95, which is equal to a time step ∆t of 1
hour. Simulations involving tide apply a truncation number M = 577 (∆t = 10 minutes). The
six hour difference between low and high tide (semi-diurnal) requires a larger resolution. The
recurrence period Trecur of all subcases is 8 days.

4.1 Synthetic forcing

The results for each subcase are presented below the bold highlighted title. We present for each
subcase the time-dependent velocity scale (i.e. Ûj(t) = 1

Lj

∫ L
0 |uj | dx), the steady and time-

dependent friction coefficients and the surface elevation at the closed channel end x = L. The
results for the closed channel forced by wind only (subcase a) are given in Figures 4.1 to 4.3.
The results for the channel forced by tide only (subcase b) are given Figure 4.4 to 4.6. The
results for the channel forced by tide and wind (subcase c) are given Figure 4.7 and 4.8.

(a) Closed channel forced by wind only
Figure 4.2 shows that the time-dependent friction coefficient follows the time-dependent channel-
averaged velocity scale. The steady coefficient exceeds the time-dependent coefficient during
peak velocities. This is because the steady coefficient is time- and channel-averaged. The steady
friction simulations display critical damping for the surface elevation and slight underdamping
for the velocity. The time-dependent friction model displays underdamping when the wind stress
has dropped and the elevation attempts to restore to its undisturbed state. This underdamping
– which is displayed as sloshing – is visible in both the surface elevation and velocity scale. Un-
derdamping delays the relaxation process significantly such that the fictitious next storm is still
influenced by the previous. Underdamping occurs also when the gravitational acceleration and
wind stress are in balance; the depth-averaged flow decreases to nearly zero. The overestimated
steady friction coefficient slightly delays the increase in velocity at the start of the wind event.
The same occurs when the wind stress decreases again.
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Figure 4.1: The simulated channel-averaged velocity scale for a single channel with closed boundaries
and forced by wind. The black and red line are respectively the velocity scale simulated with the time-
dependent friction coefficient rj(t) and steady coefficient rj .

Figure 4.2: The simulated friction coefficients for a single channel with closed boundaries and forced by
wind only. The black and red line are the coefficients at the closed boundary x = L simulated with
respectively the time-dependent version rj(t) and the steady version rj .

Figure 4.3: The simulated surface elevations for a single channel with closed boundaries and forced by
wind. The black and red line are the surface elevations simulated with respectively the time-dependent
friction coefficient rj(t) and the steady coefficient rj .

(b) Open boundary forced by tide
The elevation profile of the tidal simulations with a steady friction coefficient is more strongly
damped and delayed with respect to the time-dependent friction model. The channel-averaged
velocity scales and friction coefficients do not decreases to zero and the lowest values do not
correspond to high- or low-tide. There is a clear tidal asymmetry visible in both the velocity
scale and the friction coefficient. The rising side of the friction coefficient accelerates faster and
the velocity scale has bump on the falling side. The elevation profile does not display (visible)
tidal asymmetry. Compared with the simulation of rj(t), has the velocity scale profile with rj a
smaller maximum value smaller and the range larger.
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Figure 4.4: The simulated channel-averaged velocity scale for a single channel with an open and closed
boundary forced by tide only. The black and red line are respectively the velocity scale simulated with
the time-dependent friction coefficient rj(t) and steady friction coefficient rj . Due to the repetitive tidal
pattern we have only plotted day 3 to 5.

Figure 4.5: The values for the steady (red line) and time-dependent friction (black line) coefficient
corresponding to surface elevations in Figure 4.6. Due to the repetitive tidal pattern we have only
plotted day 3 to 5.

Figure 4.6: Simulated surface elevations for a single channel forced by tide only. The black and red line
display the elevations with respectively the steady and time-dependent friction coefficient. Due to the
repetitive tidal pattern we have only plotted day 3 to 5.

(c) Simultaneously forced by tide and wind
The simulations with simultaneous forcing display similar phenomena as for the subcases forced
by tide or wind only. For instance, the figures show for simulations with rj with respect to rj(t)
(a) overdamping when flow accelerates, (b) underdamping when flow starts to decelerate and (c)
a similar phase shift. Besides that, there is an asymmetry between the ramp-up and ramp-down
phase, which is different from the closed channel simulations. This is however not related to the
time-dependent friction coefficient but with the change to an open boundary.
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Figure 4.7: Simulated surface elevations for a single channel forced by both tide and wind. The black
and red line display the elevations with respectively the steady and time-dependent friction coefficient.
The first two days are cropped, which only shows a repetitive tidal pattern.

Figure 4.8: The values for the steady (red line) and time-dependent (black line) friction coefficient
corresponding to surface elevations in Figure 4.7.

4.2 Tide-surge interaction with synthetic forcing

Figure 4.9 presents the magnitude of interaction for subcase (c) of subsection 4.1; a single channel
with an open and closed boundary forced by both tide and wind. It displays the surface elevations
forced simultaneously by tide and wind and elevations forced by tide and wind separately. The
latter are two separate model runs where ζtide and ζwind are summed. By separately modelling
we prevent interaction between tide and surge. The simulations forced by wind only apply a
zero elevation boundary condition. The presented surface elevations are at the closed boundary.
Figures 4.10 and 4.11 present the elevation difference with respectively a varying tidal phase
shift and tidal duration. We apply a 90 and 180 degrees tidal phase shift. A larger tidal duration
(from semi-diurnal to diurnal) means a smaller water displacement within the same time-frame.
Before we point out the highlights, note that the elevations with an open boundary and wind
forcing only are not plotted, but it is important to know that they reach nearly 2.5 metres.

The simulations with simultaneous forcing are at peak elevations nearly 50 centimetres lower
than when separately forced. The degree of interaction increases during the ramp-up stage and
decreases during the ramp-down stage of the storm surge. The varying phase differences in the
tidal signal do not result in significant differences in interaction. The degree of interaction for a
diurnal tide is smaller on the ramp-up side of the storm. The ramp-down side has approximate
equal interaction.
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Figure 4.9: The surface elevations forced separately by tide and wind (i.e. ζtide+ζwind, striped black line)
and the simultaneously forced (i.e. ζtide and wind, solid line). The difference between these two time-series
is the degree of tide-surge interaction (stripe-dotted black line). The degree of tide-surge interaction with
a steady friction coefficient is displayed by the red line.

Figure 4.10: The degree of interaction for a varying tidal phase difference.

Figure 4.11: The degree of interaction for a varying tidal duration.
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Chapter 5

Results: Wadden Sea network

5.1 Hindcasting Sinterklaasstorm 2013

This section presents the simulation results for the Dutch Wadden Sea network forced by the
2013 Sinterklaasstorm (both tide and wind). Subsection 5.1.1 re-simulates the model results
by Reef et al. (2016) using their steady and spatially uniform coefficient rj . Subsection 5.1.2
hindcasts the 2013 storm using the time-dependent friction coefficient rj(t) and compares the
results with observations and Reef et al.

5.1.1 Re-simulating the results by Reef et al. (2016)

The model comparison between Reef et al. and this study for the same friction parametrization
are shown in Figures 5.1 to 5.3. Both models apply Reef et al.’s steady and spatially uniform
friction coefficient rj , that is equation (1.1). The values of the friction coefficients are given per
channel in Figure 5.4.

Both time-series show a similar elevation pattern clearly dominated by tide (semi-diurnal)
and during storm also by the increased wind stress. Although one would expect nearly equal
results, they are not. During high tide simulates our model generally around 10 centimetres lower
and when high tide and storm coincide this can be as much as 30 centimetres. The differences
at low tide are approximately the reverse of high tide. It seems that our results have a slight
delay. However, this is difficult to confirm. There seems to be no delay at Harlingen, while
Harlingen is the only location which differs between models. There appears to be overdamping
for our model results. However, Figure 5.4 shows that our friction coefficients are not larger.
The coefficients from Reef et al. are often slightly larger but approximately equal to this study,
with some outliers from both models.

5.1.2 Comparing rj(t) with Reef et al. (2016)

This subsection presents the performance of our time-dependent friction coefficient rj(t) to
hindcast the 2013 Sinterklaasstorm in comparison to Reef et al., who use the steady coefficient
rj . These friction coefficients are respectively given in equations 2.3 and 1.1. The simulated
surface elevations for Den Oever, Kornwerderzand and Harlingen are presented in Figures 5.5 to
5.7. The values of the friction coefficients are given in Figures 5.8 and 5.9. Figures 5.10 to 5.12
zoom into the phase difference of the surface elevations. The measurements are obtained from
Rijkswaterstaat (2017). Note that many remarks of subsection 5.1.1 are also applicable here.

The performance of our model to hindcast the 2013 storm is relatively good. The estimated
surface elevations are close to observations. Now and then are the estimations a couple of tens
of centimetres off, but they are usually within 10 centimetres. The results for Den Oever and
Kornwerderzand display a lack of frictional damping. This is especially visible during high and
low tide and during storm for Kornwerderzand. Peaks exceed the measurements and troughs
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are estimated too low. The largest elevation differences during storm occur at Harlingen, which
does not reflect a lack of frictional damping since it is underestimated. The scatter plots in
Figure 5.10 to 5.12 have – besides during tidal forcing at Harlingen – an clockwise rotation as
time progresses, this indicates a phase lag.

In contrast to Reef et al. are the estimated elevations not in better agreement with the
observations. There is a slight improvement during storm, but the performance outside storm
decreases. The phase shift is often equal or slightly less.
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Figure 5.1: Simulated surface elevations at node D (near Den Oever) during the 2013 Sinterklaasstorm
with Reef et al.’s steady friction coefficient for respectively this model (black line) and Reef et al.’s (red
line). The recurrence period Trecur is 10 days and truncation number M is 128.

Figure 5.2: Simulated surface elevations at node E (near Kornwerderzand) during the 2013 Sinterk-
laasstorm with Reef et al.’s steady friction coefficient for respectively this model (black line) and Reef
et al.’s (red line). The recurrence period Trecur is 10 days and truncation number M is 128.

Figure 5.3: Simulated surface elevations near Harlingen during the 2013 Sinterklaasstorm with Reef
et al.’s steady friction coefficient for respectively this model (black line) and Reef et al.’s (red line). The
recurrence period Trecur is 10 days and truncation number M is 128.
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Figure 5.4: The steady friction coefficient by Reef et al. simulated with respectively this model (black
bars) and Reef et al.’s (red bars) for the 2013 Sinterklaasstorm. This plot also gives an indication of ua,j

since the friction coefficient rj is a product between gh
−1/3
j M2

n and ua,j and only the latter varies per
model.

Figure 5.5: Surface elevations at node D (near Den Oever) during the 2013 Sinterklaasstorm for re-
spectively this model with time-dependent friction coefficient rj(t) (black line), the observed elevations
(Rijkswaterstaat 2017, blue line) and Reef et al.’s (2016) model with steady coefficient rj (red line). The
recurrence period Trecur is 10 days and truncation number M is 128.
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Figure 5.6: Surface elevations at node E (near Kornwerderzand) during the 2013 Sinterklaasstorm for
respectively this model with time-dependent friction coefficient rj(t) (black line), the observed elevations
(Rijkswaterstaat 2017, blue line) and Reef et al.’s (2016) model with steady coefficient rj (red line). The
recurrence period Trecur is 10 days and truncation number M is 128.

Figure 5.7: Surface elevations near Harlingen during the 2013 Sinterklaasstorm for respectively this model
with time-dependent friction coefficient rj(t) (black line), the observed elevations (Rijkswaterstaat 2017,
blue line) and Reef et al.’s (2016) model with steady coefficient rj (red line). The recurrence period
Trecur is 10 days and truncation number M is 128.

Figure 5.8: The time-series of the simulated friction coefficients for channel 9 (nodal connection DE).
The black line is the friction coefficient rj(t) and the blue line is the coefficient rj , both result from
our model. The red line is the friction coefficient rj resulting from Reef et al. (2016). Den Oever and
Kornwerderzand are respectively at the southern and norther side of this channel.
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Figure 5.9: The time-series of the simulated friction coefficients for channel 18 (nodal connection FK).
The black line is the friction coefficient rj(t) and the blue line is the coefficient rj , both result from our
model. The red line is the friction coefficient rj resulting from Reef et al. (2016). The middle point of
this channel is located near measurement station Harlingen.

(a) Elevations Den Oever during tidal forcing (b) Elevations Den Oever during surge

Figure 5.10: The simulated surface elevations compared to the measurements during the 2013 Sinterk-
laasstorm. The applied friction coefficient is the time-dependent rj(t). The left figure displays the
elevations during two days of tide (day 1 to 3). The right figure displays the elevations during surge (day
4.5 to 6). Both elevation profiles rotate in clockwise manner as time progresses.
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(a) Elevations Kornwerderzand during tidal forcing (b) Elevations Kornwerderzand during surge

Figure 5.11: The simulated surface elevations compared to the measurements during the 2013 Sinterk-
laasstorm. The applied friction coefficient is the time-dependent rj(t). The left figure displays the
elevations during two days of tide (day 1 to 3). The right figure displays the elevations during surge
(day 4.5 to 6). Both elevation profiles rotate in clockwise manner as time progresses. As time progresses
rotates the tidal profile in a counter clockwise manner and the surge profile in a clockwise manner.

(a) Elevations Harlingen during tidal forcing (b) Elevations Harlingen during surge

Figure 5.12: The simulated surface elevations compared to the measurements during the 2013 Sinterk-
laasstorm. The applied friction coefficient is the time-dependent rj(t). The left figure displays the
elevations during two days of tide (day 1 to 3). The right figure displays the elevations during surge (day
4.5 to 6).
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Chapter 6

Discussion

The discussion points are ordered in four sections. These are the model simplifications and
assumptions in section 6.1, the solution method in section 6.2, the interpretation of the results
and time-dependent friction coefficient rj(t) in section 6.3 and the last section discusses tide-
surge interaction.

6.1 General model simplifications and assumptions

There are several model simplifications and assumptions that are (mostly) an expected conse-
quence of idealized modelling. Note that these simplifications and assumptions are not related
to our proposed friction coefficient, but it is important to be aware of them when hindcasting
real events.

First of all, we assume that the surface elevation with respect to the undisturbed water level
is much smaller than the mean depth. This does not always apply and prevents the shallow
water tide-surge interaction mechanism. Pugh (1987) showed that wind stress is more effective
in shallow water and both Brown and Wolf (2009) and Horsburgh and Wilson (2007) showed
that the residual elevation is significantly larger at low water. Alebregtse and de Swart (2016)
incorporated the effect of a varying water depth by applying a perturbation expansion with a
small parameter which is the ratio between the surface elevation and the depth. Alebregtse
and de Swart investigated tidal propagation in combination with an imposed river discharge in
an idealized model with analytical solutions. They also modelled in the frequency domain by
truncating the tidal constituents. Another non-linear dynamic which was neglected is (along-
channel) advection. We propose in subsection 6.2 how this can be incorporated as well.

Our model considers only one-dimensional flow. However, the surface elevation may rise
above the tidal flats and with that enable cross-tidal-divide flow. This occurs especially during
storm conditions. Reef et al. (2016) note that the State Committee (1926) attempted to improve
this by smoothing water levels of unconnected adjacent channels. This study, and Reef et al.’s,
have not attempted to do so.

The Manning roughness coefficient Mn and drag coefficient cw are empirical. The wind stress
is linearly proportional to the drag coefficient. Reef et al. note that the recommended drag value
by Resio and Westerink (2008) is 25% lower than the State Committee (and this study) applied.
This indicates the importance of an empirical coefficient.

Further assumptions and simplification relate to model input. For instance, the wind forcing
was considered spatially uniform within the back-barrier bay, we apply a bathymetry map of the
early 20th century and measurement data were only available for three out of five tidal inlets.
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6.2 Solution method

The discussion points about the applied solution method are divided in two parts. Firstly,
the points that are directly related to our proposed time-dependent friction coefficient rj(t).
Secondly, the discussion points that would also occur without the time-dependent coefficient.

Discussion points related to rj(t)
The convolution sum couples the frequencies which cause interaction between each frequency
response. This is not only interaction between tide and surge, but also interaction between tide
and tide and surge and surge. This offers for instance the opportunity to investigate interaction
between tidal constituents.

A simplification of the time-dependent friction coefficient is that it is spatially averaged.
This would be an important simplification if there are large differences of velocity within the
channel. Velocity differences increase with increasing channel length, velocity amplitude and
forcing frequency. However, large frequencies tend to occur with smaller velocity amplitudes.
Besides that, channel lengths of the Wadden Sea network are too small to cause significant
velocity differences. Henceforth, the simplification of spatially averaging is not influential.

Where the model duration (in computational sense) was approximately proportional to the
truncation number M , it is for our time-dependent friction model quadratically proportional
to M . This results from the coupled frequencies in the convolution sum, which in turn couple
the boundary conditions and cause quadratically larger linear algebra matrices. Depending
predominantly on the required resolution and forcing length (that is M), the model duration on a
personal computer increases for the Wadden Sea network from a minute at most to approximately
10 minutes. These times are for an hourly forcing resolution. Note that an hourly resolution is
essentially too coarse for tidal simulations.

Other discussion points related to the solution method
The Fourier representation of the model output results in continuous sinusoidal signals that
present the storm (or tidal) event as endlessly repeating. To prevent the repeating storm events
to influence each other, we padded zeroes to the synthetic wind forcing such that the system
can return to its undisturbed state before the fictitious next storm event starts. However,
synthetic tidal forcing and an actual storm event – like the 2013 Sinterklaasstorm – do not
(naturally) consist of padded zeroes. It is therefore important to apply a forcing time-series that
is significantly larger than the storm duration, such that the period of interest is not affected.

Channel loops – like the linked nodes F, K and I in the Wadden Sea network – could result
in circulating flow that is unrelated to the forcing when there is no friction. Since this is more a
theoretic principle and we attempt to improve the model performance to mimic realistic cases,
we did not include these type of homogeneous solutions.

We have neglected advection in the momentum equation. However, advection can be incor-
porated in a similar fashion to our time-dependent friction coefficient. One could replace the
advection term ∂u

∂xu with uad(t)∂u∂x where uad(t) represents the advection velocity and is uniform
throughout the channel. This would not complicate the convolution sum further. The coupled
Helmholtz-type spatial boundary value problem changes however to a damped oscillator (a first
order term appears).

6.3 Interpretation of results and insights from rj(t)

The simulation with a single channel, closed boundaries and only wind forcing displayed under-
damping when the friction coefficient approaches zero. This underdamping is a direct result of
(slight) resonance in some of the higher frequencies, which is then displayed as sloshing in the
elevation and velocity profile. The friction coefficient approaches zero when the surface eleva-
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tion restores to its undisturbed state. It also approaches zero when the steady wind forcing and
gravitational acceleration balance. This results also in underdamping. We know however that
this would not occur in reality. This is a drawback of depth-averaged modelling. The surface
elevation may in equilibrium, but there would occur a wind driven water circulation. This would
prevent a (nearly) zero friction coefficient, and with that, prevent the underdamping. The be-
haviour is however in depth-averaged sense correct. Other simulations included tidal forcing and
have therefore a friction coefficient that is always larger than zero. Henceforth, this resonant
behaviour does not appear in the other simulations. The underdamping extends the relaxation
significantly such that the fictitious next storm is still influenced by the previous.

We observe another display of time-dependent friction. The acceleration from zero flow
onwards is faster than the steady friction model. This makes sense since the steady friction
coefficient causes the frictional term to overestimate energy dissipation at that moment.

The simulation with a single channel, an open boundary and only tidal forcing displays ex-
cess of frictional damping for the steady friction coefficient (w.r.t. the time-dependent version).
This was not directly expected since the State Committee’s (1926) energy based steady fric-
tion coefficient displayed very accurate tidal estimations. We do not apply the same friction
coefficient, but our steady coefficient is also energy based. Compared to the time-dependent
simulations is the flow behaviour not strange though. The steady simulations accelerate more
slowly and decelerate faster. This probably explains tidal phase shift and for the velocity scale
the smaller maximum value and the larger range.

The time-dependent friction coefficient causes tidal asymmetry, which is especially visible
in profiles of the friction coefficient and velocity scale. These profiles show respectively a steep
rising side and a bump on the falling side. The steepness makes sense since a low friction allows
for quick acceleration. This relation is however not visible between the velocity scale and the
friction coefficient: at the start of day three we observe an increasing friction coefficient, which
we would expect to correspond with an increasing velocity scale. The velocity scale decreases
however. The bump in the velocity scale is also not clear. Nidzieko (2010) notes on harmonics
and tidal asymmetry that this results from the non-linearities in the equations of motion, for
instance advection, quadratic friction and the varying depth. The asymmetry – which results
for our model from friction – is an indication of interaction between the tidal frequencies.

The simulation with a single channel, an open boundary and both tidal and wind forcing
display similar phenomena as the other single channel subcases.

It would be interesting to simulate the single channel subcases with the original quadratic
friction parametrization. The performance the time-dependent friction coefficient rj(t) is for
now solely based on our interpretation.

One would expect that the simulations with our Wadden Sea network model should produce
equal results as Reef et al. when we apply the same steady friction coefficient. There is however
a continuous excess in damping, with respect to Reef et al.’s results. It is unclear how these
differences are caused. The input is equal, beside small and irrelevant differences. For example
(I) the forcing time-series are one hour shorter; and (II) Reef et al. do apply the same solution
method, but somewhat differently formulated. Next to that, our coupled solution method decou-
ples correctly1 and our internally determined model variables (for instance matrices Bj , Pj and
Qj) posses the expected values. Reef et al.’s (Matlab) model has been searched, but not fully.
When we compare our steady friction results with the time-dependent friction simulations, we
observe the correct qualitative behaviour. The results from our time-dependent friction model
show a good agreement with the measurements. One would therefore expect the simulations
with an overestimated steady friction coefficient to be damped more.

The hindcasting results of the 2013 Sinterklaasstorm show now and then a couple of tens of
centimetres difference with the measurements. The results are however usually within 10 cen-

1 The steady friction coefficient results in a diagonal frictional matrix Rj . Hence, matrix Bj is also diagonal,
eigen vector matrix Pj is an identity matrix, eigenvalues Qj are equal to Bj and thus is the system decoupled.
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timetres. There is some general excess in frictional damping at Den Oever and Kornwerderzand.
This is especially visible for the tidal simulations. This might indicate that the Manning rough-
ness coefficient – which is empirical – should be somewhat larger. Reef et al. (2016) experimented
with different values for the Manning coefficient. They found that a value of 1.5Mn decreases
the surface elevation by a couple of tens of centimetres.

The simulation results during surge are for Den Oever, Kornwerderzand and Harlingen re-
spectively nearly perfect, overestimated and underestimated. This inconsistent behaviour possi-
bly indicates local modulations, for instance local differences in bathymetry or wind stress. We
applied the measured wind speed at the Vlieland barrier island as spatially uniform within the
back-barrier bay. However, wind measurements from further inbay and inland show a decrease
in wind speed, possibly explaining the overestimation at Kornwerderzand. Reef et al. (2016) ap-
point the overestimation at Kornwerderzand to simultaneous inflow from both adjacent network
channels at Kornwerderzand. That is flow originating from the Marsdiep- and Vlie-inlet.

In contrast to Reef et al. are the estimated elevations not in better agreement with the
observations. There is a slight improvement during storm, but the performance outside storm
decreases. The phase shift is often equal or slightly less.

The Wadden Sea simulation does not provide additional insight in the advantages of a time-
dependent friction coefficient. If the legend was not given, it would be difficult to pinpoint which
time-series has a time-dependent friction coefficient and which has a steady coefficient. On the
other hand, it would also be difficult to pinpoint the measurements.

The Wadden Sea simulations are performed with hourly time-series as input. This is es-
pecially for the (semi-diurnal) tide too coarse. Increasing the resolution might improve the
simulation results.

6.4 Tide-surge interaction

We investigated the interaction between tide and surge for our single channel case, that is a
channel with an open and closed boundary forced by both tide and wind. We have done this
by comparing the summed elevation of two separately forced simulations with a simultaneously
forced simulation.

The degree of tide-surge interaction is significant displaying a reduction of nearly 50 cen-
timetres at peak elevations. Prandle and Wolf (1978) – who investigated interaction for the
Thames estuary – mention that interaction frequently leads to a surge reduction. Although,
Quinn et al. (2012) – who investigated interaction in the Solent–Southampton estuarine – note
that interaction can also increase surge. Prandle and Wolf (1978) concluded that bottom friction
is the dominant mechanism. We have not included other tide-surge interaction mechanisms –
and thus we cannot conclude the same as Prandle and Wolf –, but tidal velocities are larger and
the residual feels with that more friction. This probably explains the surge reduction.

We have performed additional simulations by varying the tidal duration and the tidal phase
shift. The tidal duration was increased from a semi- to a diurnal tide. We suspected that this
decreases the flow displacement within the same time frame, with that a lower tidal friction
coefficient and less tide-surge interaction. We indeed observe 10 centimetres less interaction on
the rising side, however, the falling side is nearly equal. The tidal phase shift did not influence
the tide-surge interaction much.
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Chapter 7

Conclusion and recommendations

Conclusion
Concluding this study, each research question is answered below.

1. How can we implement a time-dependent bottom friction parametrization
semi-analytically without losing its linear advantages?
The drag coefficient and absolute velocity in the quadratic friction parametrization were
replaced by a linearized time-dependent friction coefficient. This friction coefficient was iter-
atively determined by equalling the linearized and quadratic energy dissipation. To retain the
linear advantages, we transformed the friction coefficient to a Fourier series in the frequency
domain. Of main interest was the resulting This resulted in product of two Fourier series; the
frictional series and the output series, which in turn resulted in unequal frequencies within
the momentum equation. This required us to combine the appropriate frictional and output
frequencies – a convolution sum – such that each mode-dependent differential problem has
an equal frequency in each term. The result is a Helmholtz-type differential problem per
frequency which is coupled with all other frequencies. We addressed this by rewriting the
Helmholtz-type problem in matrix notation and diagonalizing to an uncoupled Helmholtz
problem using eigenvector algebra. Linear algebra subsequently allowed us to find analytical
solutions per frequency, which are superposed the full solution.

2. How do the simulation results with a time-dependent friction coefficient com-
pare quantitatively and qualitatively with the steady coefficient for

a) a single channel that is synthetically forced by wind, tide and both?
The simulations with the time-dependent friction coefficient display the qualitative
behaviour corresponding to time-dependent friction. When the steady friction over-
estimates energy dissipation, then the time-dependent friction model displays either a
faster flow acceleration or a slower deceleration. The steady friction simulations display
a delay (phase shift) and overdamping compared to the time-dependent friction model.
The time-dependent energy dissipation results for the tidal simulations in a clear tidal
asymmetry, especially in the frictional profile. The quantitative differences resulting
from simulations with both friction coefficients seem in the correct order. However,
further confirmation with a fully nonlinear is preferred.

b) Lorentz’ channel network forced by the 2013 Sinterklaasstorm?
The Wadden Sea simulation is in good agreement with measurements. The differences
are often within ten centimetres. There are a couple outliers during storm of at most
30 centimetres. The results are nearly equal to the steady friction simulations by Reef
et al. (2016). This is odd since the steady friction coefficient overestimates friction
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significantly. The steady friction simulations by our model do show overdamping com-
pared to the time-dependent friction simulations.

3. What insights do the simulation results provide for tide-surge interaction?
We have investigated tide-surge interaction for the single channel case. The simulations
with simultaneous forcing result in a reduction of peak elevation compared to simulations
with wind forcing only. This reduction is nearly 50 centimetres (20%). The tidal simulation
consists of larger velocities and with that a larger friction coefficient, which is likely to explain
the reduction. We have decreased the tidal velocities – by increasing the tidal duration – and
this indeed decreases the magnitude of interaction (10 centimetres).

Recommendations
We would like to make some recommendations for further research:

1. A fully nonlinear model can further confirm the qualitative behaviour of our solution
method. The performance of the time-dependent friction coefficient rj(t) is at this moment
only based on our interpretation.

2. Our ready-to-use (Matlab) model offers the opportunity to further investigate the inter-
action between frequencies, for instance interaction between tidal constituents or tide and
surge.

For instance, Inoue and Garrett (2007) discusses that a very weak constituent experiences
50% more friction than a strong constituent. Do we observe this in the mode-dependent
(read as constituent-dependent) frictional term in equation (3.2)?

Or one could perform a harmonic analysis on the distortion of a principle constituent.
Nidzieko (2010) notes – while citing Friedrichs and Aubrey (1988) – on tidal distortion
“phase difference between constituents dictates the direction of asymmetry (i.e. flood or
ebbdominance), while the ratio of constituent amplitudes reflects the degree of distortion”.

3. Extending the model is our last recommendation. We have discussed the non-linear effects
advection and shallow water in the discussion. Advection can be included by using the same
solution method as our time-dependent friction coefficient. The perturbation expansion
by Alebregtse and de Swart (2016) may incorporate shallow effects.
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List of symbols

α Wind direction in degrees. 15, 18

bj Channel width in [m]. 15, 18

Bj The product of 1
ghj

VjD in [m−2]. 26

βj Channel direction in degrees. 15, 18

cd,j Dimensionless drag coefficient of the quadratic fric-
tion parametrization. 20

cw Dimensionless wind drag coefficient. 19

D Time-derivative matrix in [rad s−1]. 26

fj Channel direction. 19

g Gravitational acceleration in [m s−2]. 10, 18

HN,m The mth complex amplitude of imposed surface
elevation Fourier series at node N in [m]. 23

hj Mean water depth in [m]. 10, 15, 18

j Channel index, used as subscript for channel depen-
dent variables. 10, 15, 18

JC The set of adjacent channels to a node. 19

Lj Channel length in [m]. 15, 18

λ Eigenvalue of matrix. 26

M Trucation number, i.e. the amount of modes m (sig-
nals) in the Discrete Fourier Transformation. 23

m The mode number per signal in the Discrete Fourier
Transformation. 23

Mn Manning coefficient in [s m−1/3]. 10, 20

N Node letter. 19

n Mode m-dependent index of convolution sum.. 25

ω The mode-dependent angular frequency of the
Fourier series in [rad s−1]. 23

Qj Channel discharge in [m3 s−1]. 19

Qj Diagonal eigenvalue matrix of Qj . 26

rj Bottom friction coefficient in [m s−1]. 10, 19

Rj The frictional convolution matrix in [m s−1]. 26

Rj,m The mth complex amplitude of frictional Fourier
series in [m s−1]. 23

ρ Water density in [kg m−3]. 10, 18

ρa Air density in [kg m−3]. 19

t Time in [s]. 10, 18

τb,j Bottom friction in [kg s−2 m−1] or [N m−2]. 18

τw Spatially uniform and time-dependent wind stress
in [kg s−2 m−1] or [N m−2]. 18

tj Vector containing the wind forcing amplitudes in
[m2 s−2]. 26

Trecur Storm duration, fictitious recurrence period of
storm, in [s]. 21, 23

Tj,m The mth complex amplitude of wind forcing
Fourier series in [m2 s−2]. 23

Uj,m The mth complex amplitude of velocity Fourier
series in [m s−1]. 23

ua,j Velocity scale of the friction coefficient rj by ?.
Average of maximum velocity at both channel
ends in [m s−1]. 10

uj Cross-sectionally averaged velocity in along-channel
direction in [m s−1]. 10, 18

uw Wind speed in [m s−1]. 18

uj Vector containing the velocity amplitudes in
[m s−1]. 26

Vj The summation of D + 1
hj

Rj in [rad s−1]. 26

Xj A specific location, often channel end xj = 0 or
xj = Lj . 19

xj Along-channel coordinate in [m]. 18

Zj,m The mth complex amplitude of surface elevation
Fourier series in [m]. 23

ζj Free surface elevation with respect to the undis-
turbed water level in [m]. 18
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Appendix A

Example linear algebra matrices M,
C and A

This appendix gives an example of the setup of the linear algebra matrices in equation (3.5)
using the example network in Figure 2.1. The matrices below are respectively

• matrix M which consists of all terms dependent of the integration constants;

• vector C which consists of all integration constants;

• and vector A which consists of all terms independent of the integration constants.
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