Tool support for change impact analysis using formalization of requirements relations

by: W. Spijkerman

supervisors: A. Göknil
I. Kurtev
K. van den Berg
Outline

$ Scope

$ Problem
 $ Illustration of the issue
 $ Poor change impact analysis support

$ Approach
 $ Building blocks used
 $ Steps taken

$ Tool support
 $ Demonstration
 $ Future features
Scope
Outline

§ Scope

§ Problem
 § Illustration of the issue
 § Poor change impact analysis support

§ Approach
 § Building blocks used
 § Steps taken

§ Tool support
 § Demonstration
 § Future features
Impact explosion problem (1)

<table>
<thead>
<tr>
<th>R97</th>
<th>The system shall allow only the administration to manage courses</th>
</tr>
</thead>
<tbody>
<tr>
<td>R98</td>
<td>The system shall allow only the administration to create new courses</td>
</tr>
<tr>
<td>R99</td>
<td>The system shall allow only the administration to delete courses</td>
</tr>
<tr>
<td>R100</td>
<td>The system shall allow only the administration to update static course information</td>
</tr>
<tr>
<td>R101</td>
<td>The system shall allow only the administration to appoint (principal) lecturers to courses</td>
</tr>
<tr>
<td>R102</td>
<td>The system shall allow only the administration to specify the minimum number of students for a course. If there are too little subscriptions in a semester, that course will not be given during that semester</td>
</tr>
</tbody>
</table>
Impact explosion problem (2)

<table>
<thead>
<tr>
<th>Change</th>
<th>Requirement</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>R97</td>
<td>R97</td>
<td>The system shall allow only the administration to manage courses</td>
</tr>
<tr>
<td>R98</td>
<td>R98</td>
<td>The system shall allow only the administration to create new courses</td>
</tr>
<tr>
<td>R99</td>
<td>R99</td>
<td>The system shall allow only the administration to delete courses</td>
</tr>
<tr>
<td>R100</td>
<td>R100</td>
<td>The system shall allow only the administration to update static course information</td>
</tr>
<tr>
<td>R101</td>
<td>R101</td>
<td>The system shall allow only the administration to appoint (principal) lecturers to courses</td>
</tr>
<tr>
<td>R102</td>
<td>R102</td>
<td>The system shall allow only the administration to specify the minimum number of students for a course. If there are too little subscriptions in a semester, that course will not be given during that semester</td>
</tr>
</tbody>
</table>
Impact explosion problem (3)

<table>
<thead>
<tr>
<th>Change</th>
<th>Requirement</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>R97</td>
<td>The system shall allow only the administration to manage courses</td>
<td></td>
</tr>
<tr>
<td>???</td>
<td>R98</td>
<td>The system shall allow only the administration to create new courses</td>
</tr>
<tr>
<td>???</td>
<td>R99</td>
<td>The system shall allow only the administration to delete courses</td>
</tr>
<tr>
<td>???</td>
<td>R100</td>
<td>The system shall allow only the administration to update static course information</td>
</tr>
<tr>
<td>???</td>
<td>R101</td>
<td>The system shall allow only the administration to appoint (principal) lecturers to courses</td>
</tr>
<tr>
<td>???</td>
<td>R102</td>
<td>The system shall allow only the administration to specify the minimum number of students for a course. If there are too little subscriptions in a semester, that course will not be given during that semester</td>
</tr>
</tbody>
</table>
Problem

§ Performing change impact analysis results in imprecise results
 § Impact explosion
 § Many false positives
§ Current requirements management tools
 § Have informal requirements relations
 § Do not support (formalized) types of change
Goals

- Providing formalized change impact rules
- Providing tool support
- Intension of providing *better* tool support
 - Less false positives
 - Hopefully a smaller impact explosion
Outline

§ Scope
§ Problem
 § Illustration of the issue
 § Poor change impact analysis support
§ Approach
 § Building blocks used
 § Steps taken
§ Tool support
 § Demonstration
 § Future features
Approach

- Use available formalization of requirements and relations
- Determine requirements data model
- Derive classification of change and formalization of change types
- Determine decision trees
- Use rationale of change
Approach – Requirements meta model
Approach – Requirements relations

§ Requirements relations description
 § Contains: related through a part-whole hierarchy
 § Requires: only fulfilled when related required requirement is fulfilled
 § Refines: derived from the other by adding more details to it
 § Partially refines: derived from the other by only capturing a part of the requirement, but this part in more detail
 § Conflicts: Fulfillment of one excludes the fulfillment of the other

§ Formalized in First Order Logic
Approach – Requirements data model

§ Textual requirement primitives (Wasson)

§ Formalized requirements
Approach – Classification of change

- Add/delete/update requirements relation
- Add requirement
- Delete requirement
- Update requirement
 - Add property to requirement
 - Add constraint to requirement
 - Remove property from requirement
 - Remove constraint from requirement
 - Change property in requirement
 - Change constraint in requirement
Approach – Requirements meta model with change
Approach – Terminology

- Rationale of change:
 - Domain change: originates from environment that the stakeholders want to be modeled, and possibly implemented
 - Refactoring: change in representation of requirements, which is not a result from a change in the environment

- Proposed change
 - Change captured in the model, but not yet applied

- Propagated proposed change
 - Impact caused by a (propagated) proposed change
Example – Changing a requirement (1)

$ R97$ The system shall allow only the administration to manage courses.

$ $ Textual primitives (Wasson):
$ $ Capability provided: Functionality of managing courses
$ $ Limitation: Only allowed to the administration
$ $ Relational operator: By permission

$ $ (Domain) change such that the `allow only the administration’ limitation is removed, is of type `remove constraint’
Example – Changing a requirement (2)
Example – Changing a requirement (3)
Example – Changing a requirement (4)
Example – Changing a requirement (5)
Example – Changing a requirement (6)
Decision tree for change impact analysis

§ An investigated requirement may have multiple propagation possibilities
§ Choices of which requirement to investigate next and what propagation are captured in decision trees
Approach – Change impact cases for domain changes (1)

<table>
<thead>
<tr>
<th>Change type</th>
<th>R1 contains R2</th>
<th>R1 refines R2</th>
<th>R1 partrefines R2</th>
<th>R1 traces to R2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Add property to R1</td>
<td>No impact</td>
<td>Add property to R2</td>
<td>Delete relation</td>
<td>No impact</td>
</tr>
<tr>
<td></td>
<td>Add property to R2</td>
<td>Delete relation</td>
<td></td>
<td>Change R2</td>
</tr>
<tr>
<td>Remove property from R1</td>
<td>No impact</td>
<td>Remove property from R2</td>
<td>Remove property from R2</td>
<td>No impact</td>
</tr>
<tr>
<td></td>
<td>Delete R2</td>
<td>Remove property from R2</td>
<td>Remove property from R2 & Remove relation</td>
<td>Change R2</td>
</tr>
<tr>
<td></td>
<td>Remove property from R2</td>
<td>Remove property from R2</td>
<td>Remove property from R2</td>
<td>Remove relation</td>
</tr>
<tr>
<td>Change property in R1</td>
<td>No impact</td>
<td>Change property in R2</td>
<td>Change property in R2</td>
<td>No impact</td>
</tr>
<tr>
<td>In R1</td>
<td>Change property in R2</td>
<td>Change property in R2</td>
<td>Change property in R2</td>
<td>Change R2</td>
</tr>
<tr>
<td></td>
<td>No impact</td>
<td>No impact</td>
<td>No impact</td>
<td>Remove relation</td>
</tr>
</tbody>
</table>
Approach – Change impact cases for domain changes (2)

<table>
<thead>
<tr>
<th>Change type</th>
<th>R1 contains R2</th>
<th>R1 refines R2</th>
<th>R1 partrefines R2</th>
<th>R1 traces to R2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Add property to R1</td>
<td>No impact</td>
<td>Add property to R2</td>
<td>Delete relation</td>
<td>No impact</td>
</tr>
<tr>
<td>Remove property</td>
<td>No impact</td>
<td>Remove property from R2</td>
<td>Remove property from R2</td>
<td>Remove property from R2 & Remove relation</td>
</tr>
<tr>
<td>from R1</td>
<td>No impact</td>
<td>Delete R2</td>
<td>Remove property from R2</td>
<td>Remove property from R2</td>
</tr>
<tr>
<td>Change property</td>
<td>No impact</td>
<td>Change property in R2</td>
<td>No impact</td>
<td>Change property in R2</td>
</tr>
<tr>
<td>In R1</td>
<td>No impact</td>
<td>In R2</td>
<td>No impact</td>
<td>No impact</td>
</tr>
</tbody>
</table>
Modeling process
Outline

§ Scope
§ Problem
 § Illustration of the issue
 § Poor change impact analysis support
§ Approach
 § Building blocks used
 § Steps taken
§ Tool support
 § Demonstration
 § Future features
Tool support

$ TRIC
 $ Based on formalization of requirements relations
 $ Supports inferencing of requirements relations
 $ Supports consistency checking of requirement model

$ Extend TRIC
 $ To support proposing changes
 $ To support change impact analysis over these proposed changes
 $ To support consistency checking of proposed (propagated) changes
 $ To support applying proposed changes to the requirements model
Tool demonstration

1. Requirements model in TRIC
2. Example of a single proposed change to a single requirement
3. (Possible) propagation matrix
4. Propagation and determining new candidates
5. Resolving multiple paths to the same target requirement
Tool support – Features

§ Current support
 § Propagation of proposed change consisting of single change
 § Starting change set consists of a single changed requirement
 § Detecting multiple paths from same source to requirement

§ Future support
 § Propagation of proposed changes consisting of multiple changes
 § Starting change set consisting of multiple changed requirements
 § Indication of overlapping propagations from different changes
 § Applying proposed change(s) to requirements model
 § Representation of decision trees
Summary

We provided formalized change impact analysis rules
Tool is still under development
Is the tool support better?
 The change propagation is more precise due to change types
 In theory less false positives
 Have to do measurements to determine how impact explosion compares

Features intended to be implemented by august