Math notation: convention or convenience?

Werner Scheinhardt

AM Education Prize, February 27, 2020
 University of Twente

Lifestyle mathematics

- Math as a way of life
- (Math as a) language: communication and thought
- Semantics of languages: based on convention
- Semantics of math: also, + aim for convenience

Three examples of conventional/convenient notation

- Representation of numbers
- Triangle trig
- 2 pi or not 2 pi?

Representation of numbers

Convention was ‘Roman’ numerals, e.g. MMXX

- For many centuries
- Uniqueness? (HII or IV? MIM or MCMXCIX?)
- Cumbersome for calculations

Convenient is 'Arabic' numerals, e.g. 2020

- Only since 500 AD
- Positional system
- Any integer $x \in \mathbb{N}$ has unique representation:

$$
x=\sum_{k=0}^{\infty} x_{k} \cdot 10^{k} \quad \text { with } \quad x_{k}=\left\lfloor\frac{x}{10^{k}}\right\rfloor \bmod 10 \in\{0, \ldots, 9\}
$$

- (Can be generalized to \mathbb{R}^{+}and to base $B \neq 10$)

Representation of numbers

Product:
123
$\frac{24 x}{492}$
$2460+$
2952

$$
\begin{aligned}
& (=400+80+12) \\
& \frac{(=2000+400+60)+}{(=2000+800+140+12)}
\end{aligned}
$$

$$
z=x y=\left(\sum_{i} x_{i} 10^{i}\right)\left(\sum_{j} y_{j} 10^{j}\right)=\sum_{i} \sum_{j} x_{i} y_{j} 10^{i+j}
$$

$$
\stackrel{j=k-i}{=} \sum_{k} \underbrace{\left(\sum_{i} x_{i} y_{k-i}\right)}_{\hat{z}_{k}} 10^{k}=\sum_{k} z_{k} 10^{k}
$$

where $z_{k}=\tilde{z}_{k} \bmod 10$ and $\tilde{z}_{k}=\hat{z}_{k}+\left\lfloor\frac{\tilde{z}_{k-1}}{10}\right\rfloor$.

- Today, we take this revolutionary new notation for granted
- Lesson \#1: (highly) conventional notation can be replaced

Triangle trig

- Convention was (once): sides $A B, A C$ and $B C$, and angles $B A C, A B C$ and $A C B$.
- Convenient is: sides a, b and c, \quad and angles α, β and γ.

$$
\begin{array}{ll}
\frac{\sin (B A C)}{B C}=\frac{\sin (A B C)}{A C}=\frac{\sin (A C B)}{A B} & \frac{\sin (\alpha)}{a}=\frac{\sin (\beta)}{b}=\frac{\sin (\gamma)}{c} \\
B C^{2}=A C^{2}+A B^{2}-2 \cdot A C \cdot A B \cdot \cos (B A C) & a^{2}=b^{2}+c^{2}-2 b c \cos (\alpha) \\
A C^{2}=B C^{2}+A B^{2}-2 \cdot B C \cdot A B \cdot \cos (A B C) & b^{2}=a^{2}+c^{2}-2 a c \cos (\beta) \\
A B^{2}=B C^{2}+A C^{2}-2 \cdot B C \cdot A C \cdot \cos (A C B) & c^{2}=a^{2}+b^{2}-2 a b \cos (\gamma)
\end{array}
$$

Triangle trig

Redundant, but convenient:

- a, b, c, α, β and γ
- Tangent:

$$
\tan (\alpha)=\frac{\sin (\alpha)}{\cos (\alpha)}
$$

- Secant, Cosecant and Cotangent (convenient?):

$$
\sec (\alpha)=\frac{1}{\cos (\alpha)}, \quad \csc (\alpha)=\frac{1}{\sin (\alpha)}, \quad \cot (\alpha)=\frac{1}{\tan (\alpha)}
$$

- Lesson \#2: use redundant notation when convenient

2 pi or not 2 pi?

2π is everywhere, more than π itself!
(transformations, transforms, normal distribution, etc., etc.)
$\pi=\frac{\text { circumference }}{\text { diameter }}=3.14 \ldots \quad 2 \pi=\frac{\text { circumference }}{\text { radius }}=6.28 \ldots$
2π is "more fundamental" than π, since...

- diameter versus radius
- half turn versus full turn
- $e^{\pi i}=-1$ versus $e^{2 \pi i}=1$

Define

$$
\tau=2 \pi=6.28 \ldots
$$

NB Archimedes (Greece, 250 BC), al Kāshī (Persia, 1424), Euler (Basel, 1727)

2 pi or not 2 pi?

Working with τ is also "more convenient" than with π
Unit circle:

$\tau \mathrm{rad}=360^{\circ}$

$\frac{\tau}{2} \mathrm{rad}=180^{\circ}$

$\frac{\tau}{6} \mathrm{rad}=60^{\circ}$

Expressed in τ : angles as fractions of a full turn (360°)

2 pi or not 2 pi?

Working with τ is also "more convenient" than with π
Unit circle:

$2 \pi \mathrm{rad}=360^{\circ}$

$\pi \mathrm{rad}=180^{\circ}$

$\frac{\pi}{3} \mathrm{rad}=60^{\circ}$

Expressed in π : angles as fractions of a half turn (180°)

2 pi or not 2 pi?

Expressed in τ, angles are where you "expect them to be"

2 pi or not 2 pi?

$$
270^{\circ}=\frac{3}{4} \text { turn }=\frac{3}{4} \tau \operatorname{rad}\left(=1 \frac{1}{2} \pi \mathrm{rad}\right)
$$

Compare:

$$
\begin{aligned}
3 \frac{3}{4} \tau \text { rad } & =3 \frac{3}{4} \text { turns } \\
& =3 \text { turns }+270^{\circ} \\
7 \frac{1}{2} \pi \text { rad } & =7 \frac{1}{2} \text { half-turns } \\
& =3 \text { turns }+1 \frac{1}{2} \text { half-turns } \\
& =3 \text { turns }+270^{\circ}
\end{aligned}
$$

Periodic functions:

$$
\begin{aligned}
\cos (x) \text { has period } \tau & \text { (or: } 2 \pi) \\
\cos (5 x) \text { has period } \frac{\tau}{5} & \text { (or: } \left.\frac{2}{5} \pi=\frac{2}{5} \text { th of half-period of } \cos (x)\right)
\end{aligned}
$$

2 pi or not 2 pi - Area

- Convention: Circumference $C=2 \pi r$ Area $A=\pi r^{2}$
- Convenient: Circumference $C=\tau r \quad$ Area $A=\frac{1}{2} \tau r^{2}$

Why a factor $\frac{1}{2}$?

- Cf. many other quadratic forms
- Integrating a linear function ax gives $\frac{1}{2} a x^{2}$, so:
- Integrating $C=\tau r$ gives $A=\frac{1}{2} \tau r^{2}$
- Integrating $C_{\varphi}=\varphi r$ gives $A_{\varphi}=\frac{1}{2} \varphi r^{2}$

2 pi or not 2 pi - Area

From wikimedia: https://commons.wikimedia.org/wiki/File:RolledUpTriangleInsideEveryCircle.ogv

Conclusions

- Notation is important part of 'our language'
- As part of a math lifestyle: choose notation wisely!
- Lesson \#1: (highly) conventional notation can be replaced
- Lesson \#2: use redundant notation when convenient
- 2 pi or not 2 pi? Something really wrong with π ? No,...
... but use τ, and let

$$
\pi=\frac{1}{2} \tau
$$

... or don't use τ, and let

$$
\pi=\frac{1}{2}(2 \pi)
$$

(Find out more about τ ? See tauday.org)

