Math notation: convention or convenience?

Werner Scheinhardt

AM Education Prize, February 27, 2020 University of Twente

Math notation: convention or convenience?

Werner Scheinhardt

AMEP February 27, 2020 1/14

Lifestyle mathematics

- Math as a way of life
- (Math as a) language: communication and thought
- Semantics of languages: based on convention
- Semantics of math: also, + aim for convenience

Three examples of conventional/convenient notation

- Representation of numbers
- Triangle trig
- 2 pi or not 2 pi?

Representation of numbers

Convention was 'Roman' numerals, e.g. MMXX

- For many centuries
- Uniqueness? (## or IV? ### or MCMXCIX?)
- Cumbersome for calculations

Convenient is 'Arabic' numerals, e.g. 2020

- Only since 500 AD
- Positional system
- Any integer $x \in \mathbb{N}$ has unique representation:

$$x = \sum_{k=0}^{\infty} x_k \cdot 10^k$$
 with $x_k = \left\lfloor \frac{x}{10^k} \right\rfloor \mod 10 \in \{0, \dots, 9\}$

• (Can be generalized to \mathbb{R}^+ and to base $B \neq 10$)

Math notation: convention or convenience?

Representation of numbers

$$z = xy = \left(\sum_{i} x_{i} 10^{i}\right) \left(\sum_{j} y_{j} 10^{j}\right) = \sum_{i} \sum_{j} x_{i} y_{j} 10^{i+j}$$

$$\stackrel{j=k-i}{=} \sum_{k} \underbrace{\left(\sum_{i} x_{i} y_{k-i}\right)}_{\hat{z}_{k}} 10^{k} = \sum_{k} z_{k} 10^{k},$$

where $z_k = \tilde{z}_k \mod 10$ and $\tilde{z}_k = \hat{z}_k + \lfloor \frac{\tilde{z}_{k-1}}{10} \rfloor$.

Today, we take this revolutionary new notation for granted

Lesson #1: (highly) conventional notation can be replaced

Math notation: convention or convenience?

Werner Scheinhardt

Triangle trig

 Convention was (once): sides AB, AC and BC, and angles BAC, ABC and ACB.

Convenient is:

sides *a*, *b* and *c*, and angles α , β and γ .

$$\frac{\sin(BAC)}{BC} = \frac{\sin(ABC)}{AC} = \frac{\sin(ACB)}{AB} \qquad \qquad \frac{\sin(\alpha)}{a} = \frac{\sin(\beta)}{b} = \frac{\sin(\gamma)}{c}$$
$$BC^{2} = AC^{2} + AB^{2} - 2 \cdot AC \cdot AB \cdot \cos(BAC) \qquad \qquad a^{2} = b^{2} + c^{2} - 2bc\cos(\alpha)$$
$$AC^{2} = BC^{2} + AB^{2} - 2 \cdot BC \cdot AB \cdot \cos(ABC) \qquad \qquad b^{2} = a^{2} + c^{2} - 2ac\cos(\beta)$$
$$AB^{2} = BC^{2} + AC^{2} - 2 \cdot BC \cdot AC \cdot \cos(ACB) \qquad \qquad c^{2} = a^{2} + b^{2} - 2ab\cos(\gamma)$$

Triangle trig

Redundant, but convenient:

 $\blacktriangleright a, b, c, \alpha, \beta and \gamma$

Tangent:

$$\tan(\alpha) = \frac{\sin(\alpha)}{\cos(\alpha)}$$

Secant, Cosecant and Cotangent (convenient?):

$$\sec(\alpha) = \frac{1}{\cos(\alpha)}, \quad \csc(\alpha) = \frac{1}{\sin(\alpha)}, \quad \cot(\alpha) = \frac{1}{\tan(\alpha)}$$

Lesson #2: use redundant notation when convenient

Math notation: convention or convenience?

Werner Scheinhardt

AMEP February 27, 2020 6/14

 2π is everywhere, more than π itself! (transformations, transforms, normal distribution, etc., etc.)

$$\pi = \frac{\text{circumference}}{\text{diameter}} = 3.14...$$
 $2\pi = \frac{\text{circumference}}{\text{radius}} = 6.28...$

 2π is "more fundamental" than π , since...

- diameter versus radius
- half turn versus full turn

•
$$e^{\pi i} = -1$$
 versus $e^{2\pi i} = 1$

Define

$$\tau = 2\pi = 6.28\ldots$$

NB Archimedes (Greece, 250 BC), al Kāshī (Persia, 1424), Euler (Basel, 1727)

Working with τ is also "more convenient" than with π

Unit circle:

Expressed in τ : angles as fractions of a full turn (360°)

Math notation: convention or convenience?

Werner Scheinhardt

AMEP February 27, 2020 8/14

Working with τ is also "more convenient" than with π

Unit circle:

Expressed in π : angles as fractions of a **half** turn (180°)

Math notation: convention or convenience?

Werner Scheinhardt

AMEP February 27, 2020 9/14

Expressed in τ , angles are where you "expect them to be"

Werner Scheinhardt

$$270^{\circ} = \frac{3}{4} \text{ turn} = \frac{3}{4}\tau \text{ rad} \ (= 1\frac{1}{2}\pi \text{ rad})$$

Compare:

$$3rac{3}{4} au$$
 rad $=3rac{3}{4}$ turns $=$ 3 turns $+$ 270 $^\circ$

$$7\frac{1}{2}\pi$$
 rad = $7\frac{1}{2}$ **half**-turns
= 3 turns + $1\frac{1}{2}$ half-turns
= 3 turns + 270°

Periodic functions:

$$\cos(x)$$
 has period τ (or: 2π) $\cos(5x)$ has period $\frac{\tau}{5}$ (or: $\frac{2}{5}\pi = \frac{2}{5}$ th of half-period of $\cos(x)$)

Math notation: convention or convenience?

Werner Scheinhardt

AMEP February 27, 2020 11/14

2 pi or not 2 pi – Area

- Convention: Circumference $C = 2\pi r$ Area $A = \pi r^2$
- Convenient: Circumference $C = \tau r$ Area $A = \frac{1}{2}\tau r^2$

Why a factor $\frac{1}{2}$?

- Cf. many other quadratic forms
- Integrating a linear function ax gives $\frac{1}{2}ax^2$, so:
- Integrating $C = \tau r$ gives $A = \frac{1}{2}\tau r^2$

• Integrating $C_{\varphi} = \varphi r$ gives $A_{\varphi} = \frac{1}{2}\varphi r^2$

2 pi or not 2 pi – Area

From wikimedia: https://commons.wikimedia.org/wiki/File:RolledUpTriangleInsideEveryCircle.ogv

Math notation: convention or convenience?

Werner Scheinhardt

AMEP February 27, 2020 13/14

Conclusions

- Notation is important part of 'our language'
- As part of a math lifestyle: choose notation wisely!
- Lesson #1: (highly) conventional notation can be replaced
- Lesson #2: use redundant notation when convenient
- > 2 pi or not 2 pi? Something really wrong with π ? No,...

... but use $\tau,$ and let

$$\pi = \frac{1}{2}\tau$$

... or don't use τ , and let

$$\pi = \frac{1}{2} (2\pi)$$

(Find out more about τ ? See tauday.org)

Math notation: convention or convenience?

AMEP February 27, 2020 14/14