Graphical Representation of OMNeT++4 Simulation Traces

Nicky van Foreest

July 7, 2002

1 The Problem

It is often difficult to track the behavior of a simulated distributed system. The problem is that a number
of instances communicate and change state continuously. To understand ‘what is going on’ it is helpful to
have an overview of the instance states at the same time. As simulation traces are usually just prints of lists
of events, i.e., sequential in time, it is hard to obtain this desired information, i.e., a cross section in time of
the instance states.

2 Some Sort of a Solution

A graphical representation of the evolution of the system helps towards getting an overview of its behavior.
One method to represent this is a message sequence chart (msc). Here I demonstrate the use of msc’s by
means of a multiserver fifo queue. In brief, the behavior of a multiserver queue is as follows. A generator
generates jobs and sends these jobs to a queue. When a job arrives at the queue and sees a free server, it
starts its service immediately. When all servers are busy, the job is queued until a server becomes free. Once
a job’s service is finished, it moves from the server to the sink.

The msc in Figure 1 contains six instances: a job generator, a queue, three servers, and a job sink. Jobs
are represented as arrows between instances. The arrival times, as well as the service starting times, are
shown at the far left; the departure times are at the right. Time runs downward. When a job is generated
it moves to the queue. This is shown by an arrow from the Gen to the Queue. At the Queue a small arrow
from right to left gives the number of jobs in queue that the arriving job sees. For instance, job-4 sees 1
job in front of it in queue. When a job moves from the Queue to one of the Servers, a small arrow gives the
number of jobs in queue that the job leaves behind. Consider job-0, clearly the system (and the queue) is
empty when it arrives, and since the job can start its service immediately, it leaves an empty queue behind.

3 Producing the MSC

I wrote a class MSC that writes ’TEX commands to a file during a simulation. When the simulation finishes,
WTEX produces the msc using msc.sty, a style file written by V. Bos and S. Mauw, [1].

Admittedly, this procedure is a bit of a hassle. I tried to find a GPL tool that could parse an automatically
generated list of messages. However, I could not find such a tool. The work-around via IWTEX is quite
acceptible for my goals. A nice offspin of using the msc style file is that the result looks really pretty.

As an aside, the code can handle multipage msc’s without problems (IATEX may run out of memory when
processing the file, though). However, I find reading very long msc’s not that enjoyable, although it is still
far better than reading the event lists. Hence, I use the msc’s for very short simulations to check (and debug)
my code. Once I decide that the code is bug free, I switch off producing msc’s.

References

[1] V. Bos and S. Mauw. The MSC Macro Package. 2002. Style file and manual available at: http:
//www.win.tue.nl/"sjouke/mscpackage.html.

msc A multiserver queue
| Gen | |Queue| |Server—0| |Server-1| |Server—2| | Sink |
= job-0 [0
0f
— job-1 |0
1.1758
— job-2 |0
1.20382
job-3 |0
1.26679 10 o
. _4 1
1.57246 job o
b 2
1.61119 job-5 °
job-1 e
2.73474
2 .
P _ job-3
2.73474 °
job-3 —
2.86981
1
Papyp— _ job-4
2.86981 °
job-0
10 4.05692
0| job-5
— R jo
4.05692 °
job-2
10 4.24156
job-4 —
4.78663
job-5
10 5.36702
I N D D DN

Figure 1: A demonstration of using msc’s to represent the evolution of a multiserver queue.

