
An Admission Control Look Ahead Policy in a
Loss Network

M. Wingender
University of Twente

January 20, 2007

Contents

1 Introduction 5
1.1 Telecommunication Branch . 5
1.2 Overview . 6

2 Literature 7

3 Preliminarily 11
3.1 System Variables and Parameters 11
3.2 System Assumptions . 12

4 Decision Model 13
4.1 Main Idea . 13
4.2 Transient Period . 15
4.3 Problem Formulation . 17

5 Policies 18
5.1 Threshold Policy . 18
5.2 Complete Partitioning Policy . 18
5.3 Reservation Policy . 19
5.4 Kelly . 19
5.5 Iyengar & Sigman . 20
5.6 Penalty Policy . 21
5.7 Look Ahead Policy . 22

5.7.1 One Step Look Ahead . 22
5.7.2 Two Steps Ahead . 36
5.7.3 � Steps Ahead . 36
5.7.4 Look Ahead Policy Compares to other Policies 36

5.8 The Optimal Policy . 37

1

6 Bounds 40
6.1 Transient State . 40
6.2 Long-run Revenue Rate . 40

6.2.1 Upper Bound . 41
6.2.2 Lower Bound . 41

7 Computation Time 44
7.1 The Optimal Threshold Policy 44
7.2 The Optimal Complete Partitioning Policy 44
7.3 The Optimal Reservation Policy 45
7.4 One Step Look Ahead Policy . 45
7.5 Two Steps Look Ahead Policy . 46
7.6 � Steps Look Ahead Policy . 46
7.7 The Optimal Policy . 47

8 Simulation Results 48
8.1 Simulation Parameters . 48
8.2 Transient Period . 48
8.3 Steady State Period . 51

8.3.1 Deeper Insight . 54
8.4 Overview . 55

9 Conclusions 57

10 Recommendations 58

11 Appendix 58
11.1 Blocking Probabilities . 58

11.1.1 Model for Equal Sizes . 58
11.1.2 Model for Di¤erent Call Sizes 64
11.1.3 Blocking Probability with Di¤erent Call Sizes with De-

creasing Rate of the Departures 68
11.2 Policies . 70

11.2.1 Critical to Critical . 70
11.2.2 Threshold Dependency Policy 72
11.2.3 Look Ahead Policy (Equal Size) 73

11.3 Elaborations . 75
11.4 Codes . 80

11.4.1 Maple Code . 80
11.4.2 C++ code . 80
11.4.3 Excel Sheets . 81

2

12 References 81

3

Summary 1 This report consideres an admission control policy in a loss net-
work. The networks nowdays are expected to carry multimedia tra¢ c such as
voice only, mixed voice and data, image transmission, WWW browsing, E-mail
etc. In order to support such a wide range of tra¢ c the network needs a large
capacity to satisfy all the quality of services. Since capacity is scarce, we need
an admission control policy with a high revenue rate and simple heuristics. In
this report the family of look ahead policies are introduced. The policy have good
performance measures in the both the transient period and on the long run. The
policies� computational complexity is at best for large capacity systems with a
small number of di¤erent classes.

4

1 Introduction

For many years now tra¢ c lights and more recently tra¢ c circles controls the
streams of tra¢ c during the day on very crowded roads. This would not be
necessary if there were less tra¢ c or more roads, then there would not be any
congestion or tra¢ c jams. But nowadays, without any control at tra¢ c inter-
changes, there would be complete chaos. The same control is needed in many
applications were items arrive at random times and occupying some resource al-
location for a random time. And of course only limited recourses are available.
Applications in the telecommunication, transportation industry and many more
experience the same problems. They need an admission control policy which
has the function of limiting the number of tra¢ c �ows in a class such that the
required Quality of Service (QoS) can be satis�ed. Since the capacity is always
limited, it is necessary to develop policies that e¤ectively use the network while
satisfying the QoS requirements. An admission control policy is needed in or-
der to satisfy these QoS requirements. This means that various tra¢ c should
get predictable service from the available resources in the network. Another
requirement for an admission control policy is that it has to be capable of han-
dling several classes, since each type of tra¢ c has its own characteristics. The
design of admission control policies has important consequences for network
performance, since an policy that unnecessarily denies access to tra¢ c �ows
that could be admitted will under-utilize the recourses, but a policy that incor-
rectly admits too many �ows will induce the QoS violations. Therefore it is very
important to develop a good admission control policy applied to the problem.

1.1 Telecommunication Branch

As mentioned before one of the main applications for admission control is the
telecommunication branch. Here it is called call admission control (CAC). With
the appearance of the �berglass industry it seemed like there was plenty enough
capacity in the telecommunication network, but during the last decade there
has been a rapid growth of (wireless) communication technology. The networks
are expected to carry multimedia tra¢ c such as voice only, mixed voice and
data, image transmission, WWW browsing, E-mail, etc. In order to support
such a wide range of tra¢ c over the network, the network should be capable
of satisfying various QoS requirements in terms of the call blocking probability
and the dropping probability. Of course, capacity is the limiting factor again.
Examples of telecommunication networks are (virtual) circuit-switched net-

works, mobile cellular systems or content delivery networks (CDN). In circuit-
switched networks, an access link with certain amount of bandwidth needs to
accommodate di¤erent service types including data, audio, video, each with het-
erogeneous bandwidth requirement and tra¢ c statistics. The goal of CAC is to
maximize the throughput of the link for example. In mobile cellular systems,
at each cell, a base station with a limited number of channels needs to handle
both new calls and hando¤ calls. Normally hando¤ calls have higher priority
over new calls because one does not want to terminate an ongoing call. The

5

goal of the CAC policy is to minimize the new and hando¤ call blocking proba-
bilities while giving priority to hando¤ calls for example. In multimedia content
delivery networks, a CDN server with a certain amount of streaming bandwidth
needs to serve user requests for di¤erent types of multimedia objects that have
di¤erent session times and streaming bandwidth requirements. The CDN server
collects a revenue from each accepted server. The goal of the CAC policy is to
maximize the revenue rate of the CDN server for example.

1.2 Overview

Like the CDN server, the goal in this report is also to maximize the revenue
rate in a telephone network with di¤erent types of classes. To develop a good
admission control policy this report is build up with the following sections. The
�rst section of this report discusses the well-known information about this topic.
It tells us what kinds of models are used in common and what the achievements
are. It appears that a lot of articles make some assumptions on the problem
in practice to develop an optimal policy. All the variables and assumptions are
list up in the second section. Next the decision model is intensively discussed.
It explains the main problem of developing a good admission control policy and
investigates all the pros and cons. This section ends with the problem formula-
tion. Section �ve starts with mentioning three well-known classic policies, the
threshold, complete partitioning and the reservation policy and the policy from
Iyengar & Sigman, see [22]. Then the penalty policy and look ahead policy are
discussed. The penalty policy is not simulated, because a part of the calculation
was very hard to determine and therefore it is not simulated. But since it took
a lot of e¤ort to develop the policy, it is discussed in section �ve. The end
of section �ve discusses how the optimal policy should look like, but never be
useful in practice. Next we analyze the look ahead policy and try to �nd the
bounds on the revenue rate. In section seven the computational complexity of
the simulated policies are investigated of the policies. Section eight starts with
the discussion about the transient period and explains the choice of the length
of the transient period. Next it shows the results of the total reward in the tran-
sient period and the long-run revenue rates. Section eight ends with a deeper
insight of the di¤erences in the long-run revenue rates and an overview of all
results. Subsequently the conclusion and some recommendations are discussed.
This report ends with the appendices and the references.

6

2 Literature

The access control problem where a decision-rule decides which calls are send
over the network with arbitrary arrivals and departures is called the stochastic
knapsack problem. One can �nd many policies in the literature which tries to
solve this problem for di¤erent kinds of interest. Some are maximizing the re-
ward or the reward rate where others are minimizing the blocking probabilities
of high priority classes or some other QoS measurements. Most papers model
the problem as a Semi Markov Decision Problem (SMDP). In [3], [37], [25], [26],
[40] and [42] they posed the access control problem as a SMDP. A Markov De-
cision Process (MDP) is a discrete time stochastic control process characterized
by a set of states, actions, and a state transition function (usually a transition
probability matrix for discrete state- and action-spaces). An MDP also pos-
sesses the Markov property. This means that if the current state of the MDP at
time t is known, transitions to a new state at time t+ 1 are independent of all
previous states. A semi-Markov process is a stochastic process that, when it en-
ters state i, spends a random time having some distribution depending on state
i before making a transition. For a SMDP the Markov property holds in discrete
time. In [48] they apply both the linear programming (LP) and value-iteration
algorithms of SMDP�s to the network access problem for maximizing utiliza-
tion, and for maximizing utilization subject to constraints on the probability of
blocking of certain classes. The theory of SMDP is used to construct an opti-
mal CAC policy for wireless cellular networks (WCN) that supports multimedia
services, see [37]. The multi-class guard channel CAC policy is formulated as
a SMDP with constraints on the dropping probabilities of multimedia hando¤
calls. The optimal multi-class guard channel policy decisions are obtained by
applying SMDP linear programming formulation. The optimal CAC decisions
for each state are found by solving the linear programming formulation with
the objectives of maximizing the system utilization and guaranteeing QoS of
hando¤ calls. In [3] they showed also that a linear programming method for
solving the SMDP is employed to �nd out the optimal CAC decisions for each
state. A dynamic call admission control scheme is proposed for voice calls in
cellular mobile communication networks and modeled as a SMDP [40]. They
claimed that this policy signi�cantly reduces the dropping probability of hand-
o¤ calls, while it marginally increases the blocking probability of new calls and
suppresses the channel utilization. The admission control problem is modelled
as a continuous time Markov decision process with an expected total discount
reward criterion, see [42], and an equivalent model is developed in discrete time
with an undiscounted expected reward objective. From this the existence of an
optimal monotone policy is established. More papers do not try to maximize
the reward rate, but show monotonicity results. These articles like [1],[46],[29]
proof with event based dynamic programming that classes can be ordered, which
means that: if it is optimal to accept a class, then to accept a more pro�table
class is optimal too. These results are also used in this report to develop the
policy.
The optimal admission control policy for all kinds of interest faces the "curse

7

of dimensionality", because the number of states grows exponentially with the
number of classes and the available capacity. This will be explained later, see
section 5.8. In the literature all models make some assumptions to deal with the
numerical over�ow problem. Below is a list of the most common assumptions
to �nd a solution. Every assumption will be discussed on the basis of the
accompanying papers. So to reduce the computational complexity some papers

� give in on the number of classes [49],[3],[43]

� reduces the word optimal to near-optimal in order to model the optimality
problem [39],[22]

� do not �nd the optimal reward, but decreases the computational complex-
ity by aiming at some QoS measures [44],[37],[4],[40]

� scale the system parameters to the limiting regime [24]

� claim to know the service times of the arriving call [38],[2] or solve the
problem with fractional costumers [16],[12].

There are more assumptions that reduce the computational complexity, but
these assumptions have very speci�c properties. The above assumptions are
now discussed in further details.

Only Two Types of Classes When the objects arrive and depart at random
times the problem is a stochastic knapsack problem. In [49] they showed that
when there are only two types of classes, the object volumes are integer multiples
of each other and the inter-arrival times are exponential (i.e. Poisson arrivals),
the optimal policy is one of a threshold-type. Moreover, the sojourn times are
permitted to have an arbitrary distribution. They only looked at coordinate
convex policies. They distinguish two types of threshold policies. There are
threshold type-k policies and double threshold-type policies. A threshold type-
1 policy limits the number of class-1 object permitted in the system and always
accepts a class-2 object when su¢ cient volume exists. This is similar to a
threshold type-2 policy. A policy is said to be a double-threshold policy when
it limits both classes of objects.
For the same system assumptions as above but now with random revenues,

there are also conditions where preferred jobs exist from either class, see [43].

Near Optimal Reward Another way to reduce the computational complex-
ity is to search the maximize reward rate in a limited number of policies, because
the number of structured policies grows exponentially with the number of classes
and the capacity of the system. Two types of policies which are intensively in-
vestigated are the threshold and the reservation policy, see [39]. The search
algorithms for �nding the optimal parameters of the threshold and reservation
policy are very quick and they work for large capacity systems and many call
classes. The rewards that these policies gain are near optimal and outperform

8

the structured policy with parameters chosen based on simple heuristics. An-
other policy which acceptance rule included multi-classes but is not optimal is
the penalty-function-based admission control policy in [22].

Limiting Regimes The optimal steady state reward can be determined by
making an strong assumption on the system parameters. The arrival rate tends
to in�nity for each class [24] (i.e. the inter-arrival times tends to zero) and the
sizes and the reward rates of each class tend to zero in the same order. In this
manner the total workload for each class bi�i and the total reward rate ri�i
remain the same.

Aim at other QoS At call-level, the two important QoS parameters are the
call blocking probability and the call dropping probability. An active mobile
user in a cellular network may move from one cell to another. The continuity of
service to the mobile user in the new cell requires a successful hando¤ from the
previous cell to the new cell. During the life of a call, a mobile user may cross
several cell boundaries and may require several successful hando¤s. Failure to
get a successful hando¤ at any cell in the path forces the network to drop the
call. Since dropping a call in progress has a more negative impact from the
user perspective, hando¤ calls are given higher priority than new calls in ac-
cessing the wireless resources. This preferential treatment of hando¤s increases
the probability of blocking new calls and may degrade the bandwidth utiliza-
tion. The most popular approach to prioritize hando¤ calls over new calls is by
reserving a portion of available bandwidth in each cell to be used exclusively
for hando¤s. Based on this idea, a number of call admission control (CAC)
schemes have been proposed which basically di¤er from each other in the way
they calculate the reservation threshold [5],[39],[43],[49]. The generalization to
multi-classes, where are N classes of tra¢ c and each having a di¤erent level of
QoS needs a multi-threshold guard channel [4],[7].
Minimizing the blocking probability instead of maximizing the average re-

ward is the goal in [44]. Suppose there is a two class system in which class one
calls are more important than class two calls. A system with a guard channel is
considered, which is whenever the channel utilization exceeds a certain thresh-
old it always rejects calls of the lower class and accepts the main prior class. It
is shown that there is an optimal threshold in which the blocking probability
of the class two calls is minimized subject to the constraint on the dropping
probability of the class one calls. In order to have more control on both the
blocking probability of class one calls and class two calls, limited fractional
guard channel policy is proposed. They show that analyzing the problem as a
continuous time Markov chain the optimal control policy for the MINOBJ is
of the threshold type. MINOBJ: minimizing a linear objective function of the
two blocking probabilities. Then they �nd an algorithm for the MINBLOCK
problem. MINBLOCK: for a given number of channels, minimizing the new
call blocking probability subject to a hard constraint on the hando¤ blocking
probability. Finally they �nd an algorithm for the MINC. MINC: minimizing

9

the number of channels subject to hard constraints on the new and hando¤ call
blocking probabilities.

10

3 Preliminarily

In this section one can �nd all the needed variables and parameters in table 1.
Every variable or parameter will be explained the �rst time it occurs in this
report.

3.1 System Variables and Parameters

C maximum capacity of the network
Di minimum capacity for blocking a class i 2 f1; 2; ::;mg call
Ci minimum capacity where the policy may reject a class i 2 f2; ::;mg call
m number of di¤erent classes, m 2 N
Xi stochastic variable of the inter-arrival time of class i 2 f1; 2; ::;mg
Xmin stochastic variable of the minimum inter-arrival time of all classes
Yi stochastic variable of the service time of class i 2 f1; 2; ::;mg
Ymin stochastic variable of the minimum service time of all classes
�i inter-arrival rate of class i 2 f1; 2; ::;mg
�i service rate of class i 2 f1; 2; ::;mg
�m �1 + �2 + ::+ �m =

mP
i=1

�i;

�m �1 + �2 + ::+ �m =
mP
i=1

�i

EAi mean inter-arrival time of class i 2 f1; 2; ::;mg
EBi mean service time of class i 2 f1; 2; ::;mg
bi the size of class i call which occupies bi of the capacity
ri reward that is gained when class i 2 f1; 2; ::;mgcall is accepted
ni number of class i calls in the system, ni 2 N
n the system state with n = (n1; n2; ::; nm)
di(n) decision parameter for class i in state n with di = 1 (accept) or di = 0 (reject)
Ni(t) number of units capacity that has become available from class i calls in [0; t]
FQ(t) cumulative distribution function of the stochastic variable Q
fq(t) probability density function of the stochastic variable Q
T critical time period
ER�n the expected reward in state n when the classes f1; 2; ::; �g are active
ET �n the expected time period in state n when the classes f1; 2; ::; �g are active
P (BLni ; T) probability that class i 2 (1; 2; ::;m) call in state n is blocked

upon arrival in a time period T
P (TBLnj ; T) total probability that in state n the system blocks any

of the classes f1; 2; ::; jg upon arrival in a time period T
ak; T the event that a class k 2 (1; 2; ::;m) call arrives in a time period T

 all the possible states,
 = fn : n � b � Cg
� number of steps to look ahead for the look ahead policy
� least pro�table active class f1; 2; ::; �g
� scale parameter

(1)

11

3.2 System Assumptions

� the inter-arrival times are exponential and independent for each class

� the service times are exponential and independent for each class and the
number of calls in the system

� the number of calls in the system when the capacity constraint is almost
violated is large enough. This means that after a call is leaving the system,
the rate of departures is unchanged

� the capacity constraint can never be violated,
mP
i=1

bini � C

� reject means not accepted because of the decision

� blocked means not accepted because of the capacity constraint

12

4 Decision Model

4.1 Main Idea

A good admission control policy could be judged on two topics. First, the goal of
a good admission control policy should approach the goal of the optimal admis-
sion control policy for the same problem. Second, the computational complexity
of the construction of the policy should be polynomial. The construction of the
policy consists in general of the calculation of the decision parameters. In many
applications the goal is to gain as much pro�t as possible on the long run or
in a �xed time period. In mathematical terms this is the same as maximizing
the total expected reward or the reward rate. To do so, the approach in this
report is based on minimizing the rejections of the more pro�table classes in
the system by looking only a few events ahead or a �xed time period. Looking
more events ahead would give better results, but also a higher computational
complexity. Therefore the main idea is to look only a few events ahead in order
to have a near optimal policy with a low computational complexity. There are
many policies known that are based on this approach, for example the threshold
policies or the trunk reservation policies. But they only make there decision
based on the capacity that is left on the moment of an arrival. So it does not
really matter if there is a high or low probability that in a short moment of time
more capacity becomes available. One can imagine that if the system has a lot
of calls that has a large size but small expected service durations, then there
will be more capacity available in a shorter time period then if the system is
�lled with calls which has a small size and long expected service durations. To
understand the main idea of minimizing the blocking-probabilities of the more
pro�table classes look at �gure 1.

Figure 1: sample path of the look ahead policy

This picture shows a realization of a telephone network with maximum ca-
pacity C. The red line indicates the total capacity that is used. At time t the

13

system in a state n and a class k call arrives with size bk: Now one have to
decide to accept this class k call and gains rk amount of pro�t or to reject this
call and gains nothing. The disadvantage of accepting this class k call is that
the system has not enough capacity available for of a more pro�table class j.
One can see this in �gure 1 as the interrupted black line at high Cj : The size of
a class j call is bj = C � Cj : When such a class j arrives within the time that
the system has not enough capacity, then this call has to be rejected because
the capacity constraint C is violated.
So in order to avoid this event, one could always reject such a class k call if

the system has not enough capacity left for a more pro�table class. But if the
blocking-probability of a more pro�table class j is very small, then accepting this
class k call is more pro�table than blocking this class k call. The probability that
a class j call is blocked depends on the available capacity, the size of class j, the
total departure rate and the class j arrival rate. The admission control policy
accepts an arriving call if the expected reward rate is higher than the expected
reward when the policy rejects the arriving call. The expected reward rate in
the latter can be calculated when the policy pretends to reject the arriving call
and waits for a more pro�table class to accept. So we make the decision to
accept or reject based on the blocking-probability of the more pro�table classes.
In this way the policy is conditioning on the events in the future.
The �rst policy that is developed is based on the di¤erence between the pro�t

of accepting an arrival and the losses caused by the accepted arrival in a certain
time period. From now on this is the penalty policy. The pro�t of accepting an
arrival is very easy to calculate, since the policy has accepted this arrival and
only takes this call into account. The losses have to be predicted and are much
harder to calculate. A call is blocked or lost if it arrives when the system has
not enough capacity available. We could calculate the expected losses in a �nite
or in�nite time period. It is logical to calculate the losses in an in�nite time
period because in theory an arrival can be blocked in any moment of time. But
the calculations could be much faster when the time period is �nite. Suppose
this time period is called the critical time period. An example of a �xed critical
time period which is chosen based on the parameters of the system is shown in
�gure 1. This critical time period can be determined by the extra capacity that
is needed divided by the total departure rate times the capacity per class call.
Equation (1) shows the formula of this critical time

T =
(n+ ek)�b� Cj

mP
k=1

�knkbk

(1)

where (n+ ek)�b is the dot product of the number of calls in the system (inclu-
sive the accepted class k call) with the capacity per class. In the next section
the policy is discussed in further details.
The decisions in the second policy that is developed are based on maximizing

the expected reward looking a few events ahead at the decision epoch. The
policy pretends that the next arrival is accepted or rejected and determines the
expected reward rate based on the assumptions at the decision epoch.

14

In section 2 some monotonicity results are discussed. A class with a higher
reward is more pro�table than a class with a lower reward, both with equal
service durations and sizes. Here is assumed that the reward is gained instanta-
neous at the moment the call is in the system. The look ahead policy also uses
the instantaneous rewards in their decision. But in practical it is more common
that the customer pays per unit time (seconds). In this case a class with a higher
reward rate is more pro�table than a class with a lower reward rate, both with
equal sizes. In the simulations the total reward is used to compare the policies
with each other. This is the summation of the reward that is gained per unit
time. On the long run both methods generate the same total reward.
To order the classes we need to know if the reward is given as the reward

rate or as an instantaneous reward. In the latter the most pro�table class is the
class for which i in equation (2) holds that

max
i=1;::;m

ri�i
bi

(2)

which could be considered as the class with highest reward per unit time per
capacity. The second most pro�table class is of course the same formula as
above, but now without the most pro�table class.
If the reward rate is given the most pro�table class is

max
i=1;::;m

ri
bi

(3)

which has the same meaning as before.

4.2 Transient Period

In most papers the main and only goal is to maximize the long-run revenue rate.
But in almost all applications the problem of making the optimal decisions is
over a �xed time period. Therefore the start up of the system, also known as
the transient period, is also important. When the simulation period is relatively
short, i.e. the total load of capacity �ts in the total capacity of the system
with high probability, the accept all strategy would be optimal. Because the
probability of blocking a class is very low and therefore it is a sin to reject any
call. In case of a relatively short simulation period the transient period is more
important than the reward rate.
For problems where the period is relatively large, the accept all strategy is

in general not optimal. On the other extreme, the Kelly policy rejects already
calls in the very beginning of the simulation period. It aims at the optimal
average class ratio. The class ratio is the ratio of the number of calls of all types
of classes. Therefore on the long run it catch up with the accept all policy when
both use the same amount of capacity, but it has a very slow start, see �gure 2.
The main idea in the transient period of the look ahead policies is to com-

promise with both extremes, see �gure 2. As one can see, the rejection of calls
increases when the available capacity becomes less. The next section discusses
this idea in further details.

15

Figure 2: average occupation rate of the accept all policy, look ahead policy and
the Kelly policy over time

As mentioned before, the policy that accepts all classes independent of the
system state is called the accept all policy. When more or equal capacity is
needed (�i � bi) than the total capacity (C), some arrivals are blocked because
not enough capacity is available. A good policy tries to avoid that the most
pro�table classes are blocked. The probability that a more pro�table class will
be blocked can be decreased by saving some capacity for the more pro�table
classes. The question is: how much capacity should the policy reserve and for
which classes. Or in other words: at what level should the policy rejects the
less pro�table classes in order to reserve some capacity for the more pro�table
classes. Because di¤erent types of classes have normally di¤erent sizes, a good
policy reserves a di¤erent amount of capacity of every class. A critical transition
is denoted as a transition from state n! n+ei (acceptance of class i call) where
in state n+ ei is a possibility is that a more pro�table class will be blocked. A
state is called a critical state when at least one critical transition is possible.
The set of all critical states is

� =

�
n 2
j(n+ ei) � b > C � � max

j=1::i�1
bj

�
for some i 2 2; :;m (4)

In case that � is one, then all the critical states have a more than zero probability
that the �rst more pro�table class which arrives after the decision epoch is
blocked in a certain time period after accepting a (less pro�table) call. In case
that � is m then all the critical states have a more than zero probability that
the m-th call which arrives after the decision epoch is blocked in a certain time
period after accepting a (less pro�table) call.
Since is it not �xed how many steps the policy should look ahead in order

to get a (near) optimal policy, many levels are simulated. The calculations
are faster if the critical level is such that the policy reserves some capacity for
only one more pro�table class (� = 1) than for two (� = 2). But there are

16

disadvantages of reserving capacity for only one more pro�table class. If for
example after the moment that a class k call is accepted two more pro�table
classes arrive with a very short inter-arrival time, then the second one could be
rejected. So in this case it was better to reject the class k call. This disadvantage
could be avoided if the policy looks two arrivals ahead. But than again, it could
be that three more pro�table classes arrive and the third should be rejected. But
the more steps the policy looks ahead the higher the computational complexity.
This balancing between a better policy and fast decisions is the main problem
for all policies.
Another decision is how important are events in future for the decision that

has to be made. In other words what should be the length of the time period
in which the policy have to make its decision? The impact of accepting and
rejecting a call is visible till the system is in the same state again. It could take
a very long time to happen. Therefore the computational complexity is very
high if the policy wants to calculate the reward rate till the system state is in
the same state again as at the moment of the decision epoch. To avoid this, the
policy should reduce the time period which it looks ahead. The policy needs a
good time period in order to keep the calculations fast but the information valid
about the di¤erence in reward rate for both decisions. The information could not
be completely valid when the policy looks one event ahead and reserves for two
more pro�table classes, because there is a possibility that two pro�table classes
arrive consecutively close. Therefore it should compromise with the validity of
the information on the reward rates and the computational complexity. In this
report the policy is simulated for � = f1; ::; 5g:

4.3 Problem Formulation

In this report the calculations are done by looking only one arrival ahead after
the decision epoch, but there are di¤erent sets of critical levels simulated. The
main goal of this report is to develop a policy which has a good balance between
generating the (near) optimal reward and having a reasonable computational
complexity. Therefore the problem formulation for this report becomes

Problem 2 Construct an admission control policy which generates near opti-
mal rewards in both transient and steady state period with a reasonable compu-
tational complexity.

17

5 Policies

In this section the most important policies are described. The section starts
with the four policies which already exist. We shortly mention the policies and
describing how the policies make their decision. The �rst two are from the
family of the structured call admission control policies. These are the well-
known threshold and reservation policies. These policies are easy to implement
and generate pretty good revenues in practice. Next are two policies which are
also been simulated and compared with other policies, namely the policy from
Kelly and the policy from Iyengar and Sigman. This sections ends with the
penalty policy and the look ahead policies. The look ahead policies are also
simulated and compared with the previous two policies.

5.1 Threshold Policy

The threshold policy shares the capacity among all classes. This type of policy
is called a sharing policy. The accept all policy is also a complete sharing policy,
where all the capacity is shared with no restrictions. The threshold policy shares
also the capacity but restricts the number of calls of each class to a certain
threshold.
For an admission control problem with only two types of classes the optimal

threshold policy always accepts one type of class and the other one is accepted up
to a threshold. When the optimization is carried out over the class of coordinate
convex policies, then the optimal policy is one of a threshold type [49]. In case
of more than two classes, the optimal policy is in general not one of a threshold
type. For an admission control problem with m types of classes, each class k is
associated with a threshold parameter tk: A class k call is accepted upon arrival
if and only if there are su¢ cient resources and the number of class k calls in
the system does not exceed tk after acceptance. Under a threshold policy with
parameters t1; t2; ::; tm , the policy accepts the class k call if and only if the class
k call does not violate the capacity constraint and the number of class k calls
in the system is below the threshold tk, see equation (5).

dk(n) = 1, (n � b+ bk � C) \ (nk + 1 � tk) (5)

where dk(n) = 1 means that the system accepts the class k call arrival when
the system is in state n 2 (n1; ::; nm) and C is the total capacity. In order to
simulate the threshold policy we use the algorithm of [39] to �nd the parameters
t1; t2; ::; tm: Once the parameters are determined the policy is �xed and can be
simulated.

5.2 Complete Partitioning Policy

Unlike the threshold policy which is a sharing policy, the complete partitioning
policy is not a sharing policy. The complete partitioning policy allocates a �xed
amount of capacity to each class. Denote sk, k = f1; ::;mg; as the number
of volume units allocated to class k calls. Any allocation s = (s1; :::; sk) must

18

satisfy s1+ s2+ ::+ sm = C: A given allocation s uncouples the capacity into m
smaller capacities where capacity k has sk volume units fully dedicated to class
k calls. If a class k call in state n arrives then for the decision parameter dk(n)
under a complete partitioning policy with parameters s1; s2; ::; sm holds

dk(n) = 1, (nk + 1)bk � sk (6)

where nk denotes the number of calls in the system of class k upon arrival.

5.3 Reservation Policy

Under a reservation policy, each class k is associated with a reservation parame-
ter sk: A class k call is accepted upon arrival if and only if the system has sk or
more free resources (reserved for other classes) after acceptance. The reservation
policies are also known as trunk reservation policy in the literature of telephone
or circuit-switched networks and guard channel policy in the literature of mobile
cellular systems [44].
For homogeneous cases in which all classes have the same size b = bk and

mean service time � = �k; the optimal reservation policy is always better than
the optimal threshold policy [1]. But in our problem not all the sizes are the
same nor the mean service times are equal. Therefore both policies will be
simulated. Under a reservation policy with parameters s1; s2; ::; sm the policy
accepts the class k call if and only if the used capacity plus the size of class k is
at most the total capacity minus sk, see equation 7.

dk(n) = 1, n � b+ bk � C � sk (7)

where the system upon arrival is in state n 2 (n1; ::; nm) and C is the total
capacity. In order to simulate the threshold policy we use the algorithm of [39]
to �nd the parameters s1; s2; ::; sm: Once the parameters are determined the
policy is �xed and can be simulated.

5.4 Kelly

The policy of Kelly is also very simple to describe. It always accepts the most
pro�table classes and always rejects the least pro�table classes. Only one type of
class is accepted with a certain probability. In this manner the policy generates
the maximum expected reward rate on the long run when the scale parameter �
goes to in�nity. Then the arrival intensity for every class tends to in�nity, but
the amount of work remains the same and the reward per capacity remains also
the same. The new system parameters are

��i = ��i (8)

b�i =
bi
�

r�i =
ri
�

19

where also the b�i could remain constant and then the capacity C
� = �C. This

policy performs very well in the steady state period but not in the transient
period. Equation (9) determines which are accepted and rejected and which
class is accepted with a certain probability.

max
mX
i=1

ri�idi (9)

s.t.
X

bi�idi � b

0 � di � 1; for i = 1; ::;m

The d0is denote which classes are accepted and rejected. If di = 1 then this class
i is always accepted and if di = 0 then this class i is always rejected. In general,
there is one di that is between zero and one. This number is also the fraction
of calls which are accepted. The idea is that the most pro�table class is always
accepted as longs as it does not violate the capacity constraint. Then they look
for the second best class and do the same. Till for one class not all the load can
be accepted on the long run. Therefore only a percentage of the requests of the
extra class which violates the capacity constraint have access. All the classes
which are less pro�table are always rejected.

5.5 Iyengar & Sigman

This policy extends the information from the previous results from equation (9)
and the paper from Kelly [24]. They introduce penalty-function-based admission
control policies to approximately maximize the expected reward rate in a loss
network. The exponential penalty function (10) penalizes deviations from the
desired target set. Thinning policies perform well in steady state but under-
utilizes in the transient period, but the penalty policy does not su¤er from these
drawbacks. They claim that the use of this policy leads to an expected reward
rate which is close to the expected reward rate of [24], when the requests sizes
are small compared to the total capacity. They introduce an alternate system,
where each request which is blocked goes into service in the alternate system.
In this way, the penalty function depends on the requests in the normal system
and the amount of requests in the alternate system. The policy tries to limit
the accepted requests. They accept a request if the costs of accepting a request
are lower than blocking the request and if the capacity constraint is not violated
(11). The policy is a threshold-type policy in the expanded state space, because
an alternate system has added. The penalty function is

	(s) =
mX
i=1

�
exp(�

bixi
c0i
) + exp(�

biyi
c1i
)

�
| {z } (10)

	i(si)

where s = (x;y) ,the capacities (c0; c1) and � come from (12) and (13). The
vector x = (x1; x2; ::xm) describes the state of the accepted requests and the

20

vector y = (y1; y2; ::; ym) describes the state of all requests that have been
rejected. The decision rule for the penalty control policy is for class i

di(s) = 1,
�
@	i(si)

@xi
� @	i(si)

@yi

�
\

0@ mX
j=1

bjxj + bi � b

1A (11)

The latter of the union of (11) means that the capacity constraint can not be
violated. An �-perturbation of the steady state LP is de�ned as follows

max
mX
i=1

ri�idi (12)

s:t:
X

bi�idi � b

1 + 4�
0 � di � 1; i = 1; ::;m

where �� is the solution of (12). The bound on � must satisfy

� � �(1 + 4�)min
�
min

i:1�i�m
fd�i�ig; min

i:i2Uc
�

f1� d�i)�ig
�

(13)

where U c� = fi : d�i < 1; i = 1; ::;mg and they have dropped all classes with
d�i = 0.

5.6 Penalty Policy

A very simple and logic way the make the decision rule is to compare the pro�t of
accepting an arrival with the losses caused by the accepted arrival in a certain
time period. After an acceptance, the available capacity decreases and the
probability that the �rst call will be blocked could increase, especially when the
system has almost used all the capacity. When the size of class call is bigger
the available capacity, this call is lost and more important is that the policy
misses the reward of this call. The higher the reward that the policy misses,
the more important is it to avoid. The decision of the penalty policy is based
on the lost losses caused by the acceptance of an arrival. Of course the reward
that is gained by accepting this arrival is also important. In other words, after
every acceptance there is a risk that another call is blocked because the capacity
constraint is violated. The question reads: is it worth to take that risk? The
reward that is lost is determined as the reward of the �rst arrival after the
decision epoch caused by the acceptance of the arrival. This means that it is
important whether the system is already in a state where for some classes the
�rst arrival could be blocked. Because these reward losses in state n must be
extracted from the reward losses in state n+ ek:
Hence, if the instantaneous reward is more than the average reward that is

lost, the policy accepts the arrival and if the average reward losses are more
than the instantaneous reward then the policy rejects the arrival. The policy

21

does not need to order the classes, because any class is part of the decision at
any time. The instantaneous reward of class k call is of course

ER = rk (14)

The average reward that is lost in a time period T after the acceptance of a
class k arrival in state n becomes

ELostnk =
mX
i=1

�
P (TBLn+ekk�1 ; T)� P (TBL

n
k�1; T)

� �i
mP
i=1

�i

ri (15)

where P (TBLnk�1) is the total blocking probability that the �rst call of any
the classes f1; 2::; k � 1g is blocked in state n:This can be determined with the
general rule of sum. Using the "or" statement the total blocking probability is

P (TBLnk ; T) = P (BL
n
1 ; T) _ P (BLn2 ; T) _ :: _ P (BLnk�1; T) (16)

where the probability that a class j call is blocked in a time period T in state
n is

P (BLnj ; T)=1-exp(��jT)-
1X
l1=0

..
1X

lm=

�
bj�(C�n�bj)�b1l1�::�bm�1lm�1

bm

�
�j(�1)

l1 ::(�m)
lm

l1!::lm!

0BBB@
(l1 + ::+ lm)!�

l1+::+lmX
i=0

(l1+::+lm)!
i!

exp(�T (�m + �j))(T (�m + �j))i

(�m + �j)l1+::+lm+1

1CCCA (17)

For further details we refer to Appendix 11.1 equation (92), where the blocking
probability for equal and unequal sizes is extensively discussed.
Hence the overall strategy using this policy is

dk(n) = 1, ER � ELostnk (18)

5.7 Look Ahead Policy

In this section the family of look ahead policies will be discussed. The section
starts with the one step look policy. Next, the two steps look ahead policy will be
mentioned and the section ends the � steps look ahead policies. The � indicates
the number the steps which the policy looks ahead.

5.7.1 One Step Look Ahead

In the previous section the decision was based on the expected reward losses
caused by the accepted arrival and the instantaneous reward of the accepted
arrival. In this section the decision is based on looking a few events ahead. Later

22

this section the meaning of "a few events ahead" will be intensively discussed.
But from now on consider "a few events ahead" as an unspeci�ed period. The
expected reward rate for both decisions is calculated in the time period from
the decision epoch till a few events ahead. The expected reward rate is the
expected total reward divided by the expected time period. The total reward
can be calculated by adding all the rewards that are gained by the policy, i.e.
all the accepted arrivals (or calls which are not blocked or rejected). The time
period is from the decision epoch until all accepted arrivals are out of the system.
Which arrivals are accepted will be speci�ed later. Since the policy makes the
decision based on looking a few events ahead, the decisions are not necessary
optimal. The optimal decision is the one that maximizes the average reward
rate on the long run. To calculate the optimal decision one has dimensionality
problems, see section 5.8.
Because the time periods are de�ned from the decision epoch until some

speci�ed event happened, the time periods in general di¤er for both decisions.
This could be a subject for discussion since it is not unquestioned that a small
time period with a high reward rate is better than a long time period with a
little reward rate. But the purpose of the time period is that it re�ects all
advantages and disadvantages of the decision, so the period with the highest
reward rate is the best.
The most fair strategy is to compare two sample paths after the decision,

but this involves too complex calculations. As mentioned before, the decision
is in general based on two di¤erent time periods. The reason why the time
periods di¤er is that after the decision epoch not all classes are active. Active
classes are denoted as classes which are seen by the system. The policy could
accept, reject or block these classes. Thus even when the system has not enough
capacity for a class it could be an active class upon arrival. Inactive classes are
not taken into account by the system and therefore they could not be accepted,
but only rejected. When the policy rejects a class k call at least all the classes
from fk; ::mg are inactive until enough capacity has become available. When
the policy accepts a class k call then only a class call could be active but also all
classes f1; 2; ::;mg could be active. The policy pretends in advance which classes
are active and calculated the reward rate. He does so for all the combinations
of the ordered active classes. This means that every combination is calculated
but if a class k is active then also a class k � 1 is active. Remember that the
class one calls are the most pro�table ones and the class m calls are the least
pro�table ones. There are m di¤erent combinations. In case the policy rejects
a class k call there are k � 1 combinations. Therefore the event of the �rst
accepted arrival is di¤erent for both situations after the decision epoch.
Also the system state ends di¤erent in general for both decisions. To force

the policy to look ahead until the system is in the same state again after the
decision epoch is too hard to solve. Then all the probabilities of all the states
where the system could end have to be known. This are many states, in theory
the system could be even empty again (i.e. all call are departed before the �rst
call arrives). Therefore it is to hard too calculate what the reward rates are until
the system is in the same state again. In appendix 11.2 a model can be found

23

where the time period is from the decision epoch till the system is again in a
critical state. But to determine the expected reward rate a lot of assumptions
are made and therefore this policy is not simulated or analyzed.
As mentioned before, the problem now is to �nd a good time period in which

both advantages and disadvantages become visible after accepting or rejecting an
arrival. The disadvantages and advantages of accepting and rejecting an arrival
have already been discussed. The advantage of accepting a class k arrival is
the guarantee of the reward rk:The disadvantage is that a more pro�table class
arrives which could be blocked. The most simple case is where one just calculates
the expected reward rate of the �rst class k arrival, see equation 19.

ERRacc =
ER

ET
=

rk
EBk

(19)

But this is not completely fair, because in this time period a more pro�table
class could be blocked because the capacity constraint is violated. Hence, the
time period should be longer to see if the acceptance was a good decision.
The advantage of rejecting a class k call is that it has a higher acceptance-

probability of a more pro�table class when it arrives. The disadvantage is that
it could take a very long time until it arrives. Therefore the time period of the
policy after accepting a call is until a next call arrives which should be accepted,
even when it is blocked. In the latter the policy is waiting for the next arrival
but gains nothing. If the policy accepts the other arrival, then the time period
is till both calls are out of the system. The reward of the policy after rejecting
a call is the reward from the next arrival which is accepted. The time period
is from the decision epoch until the accepted call is out of the system. Now all
disadvantages and advantages are exposed in this time period and the average
reward rate is fast to calculate.
The last problem is: which classes should be active after the decision epoch?

When the policy accepts a class k call, the system has less capacity available
and therefore the highest reward rate could be reached by accepting all classes
or only the class one calls. Therefore one has to split the problem in m smaller
problems. First, the policy determines the expected reward rate by pretending
that only the class one calls are active. Then the policy determines the expected
reward rate by pretending that the classes f1; 2g are active. The policy continues
this process till all classes f1; 2; ::;mg are active. The expected reward rate is
the maximum over all m reward rates. In other words the policy pretends if it
knows what to do when the second call arrives, but it makes the decision only
for the �rst arrival.

Sample Path The underneath �gures 3 and 4 explain the main idea of the
policy when the decision is to accept the arriving call. Figure 3 below shows two
sample paths with in top the events. At t0 a class k call arrives and the policy
has to make the decision to accept or reject this call. There are four types of
classes and ordered alphabetically. The sooner the letter in the alphabet the
more pro�table the class fi; j; k; lg:

24

Figure 3: sample path: in the above graphic the classes fi; j; lg are accepted and
in the graphic below all classes fi; j; k; lg are accepted

The top graphic in �gure 3 shows that the class k call is accepted and the
big L in the black circle shows that all the classes fi; j; k; lg are also accepted
on arrival, which in equation (22) means that � = l: At t1 a class l call arrives
and is also accepted. The total reward is rk + rl: The time period is until all
accepted calls are out of the system. This is at t5. In the lower graphic the
policy also accepts the class k call but accepts only the classes f1; ::; kg: At time
t1 the class l call is not seen by the system, therefore it has to wait until the
next arrival at t2: At this moment a class j call arrives and is accepted. Now
the total reward is rk + rj and the time period is till t6:
In the �rst sample path in �gure 3 the second arrival is accepted, because

there was enough capacity available. In �gure 4 a sample path is shown as above
but now with less available capacity at t0.
On top the same events occur and in upper graphic at t0 a class k call is

accepted. At t1 a class l call arrives and would be accepted if enough capacity
was available, but in this case the call is blocked. The end of this period is at
t3, the departure of the class k call. In the graphic below is also at t0 a class
k call accepted. But this time at t1 the arrival of the class l call is not seen by
the system and thus it waits till t2, the arrival of a class j call. Also the class j
call is blocked, because there is not enough capacity left. The period ends at t3:
Suppose the class j call was at t4 arrived and still blocked then the time period

25

Figure 4: sample path: in the above graphic the classes fk; lg are accepted and
in the graphic below the classes fkg are accepted

ended at t4:
When the policy rejects a class k call it should reject at least all classes from

fk; ::mg. But should it reject also the classes fk� 1; k� 2; ::g , even when there
is enough capacity left. This problem can be split in k � 1 smaller problems.
First the policy determines the expected reward rate by pretending that only
the class one calls are active. Next, the policy determines the expected reward
rate by pretending that the classes f1; 2g calls are active. The policy continues
this process till all the classes f1; 2; ::k � 1g are active. The expected reward
rate is denoted as the maximum over all k � 1 reward rates. Figure 5 uses the
same path as in �gures 3 and 4 to explain the main idea when the arrival is
rejected at time t0.
Since the class k call is rejected, the policy surely rejects the classes fk; lg:

In the above graphic the policy accepts all the classes fi; jg: The arrival of class
l is not seen by the system, so its wait till t2: Here the system accepts the class
j call. The end of the period is at t6; the departure of the class j call. In the
graphic below the classes fj; k; lg are rejected, because they are inactive. Thus
the system has to wait till t4; the arrival of the class i call. The time period ends
at t7: When comparing the sample paths of the �gures 3 and 5, the strategy

26

Figure 5: sample path: in the above graphic the classes fi; jg are accepted and
in the graphic below the class fig is accepted

would be

dk(n) = 1, max

�
rk + rl
t5

;
rk + rj
t6

�
� max

�
rj
t6
;
ri
t7

�
(20)

and if the �gures 4 and 5 would be compared, the strategy would be

dk(n) = 1, max

�
rk
t3
;
rk
t3

�
� max

�
rj
t6
;
ri
t7

�
(21)

where is assumed that at t0 the same capacity is available.

Overall Strategy Now the main idea is intensively discussed, the overall
strategy can be formulated. The expected reward rate after both decisions is
determined for di¤erent combinations of active classes. The expected reward
that the policy gains in state n is denoted as ER�n: The expected time period
from the decision epoch until the �rst accepted arrival is out of the system (this
could be immediately after the arrival when the policy blocks the arriving call)
in state n when the classes f1; 2; ::; �g are active is denoted as ET �n : The least
pro�table class that is still active is �: Now we search the maximum value of
equation (22) over � 2 f1; 2; ::mg for both decisions. Then the overall strategy
becomes

27

dk(n) = 1,
(

max
��f1;2;::;mg

rk + ER
�
n+ek

EmaxfBk; T �n+ekg
� max

��f1;2;::;mg

ER�n

ET �n

)
(22)

where the nominator is the expected reward and the denominator is the ex-
pected time period. In the next sections the calculations for ER�n and ET

�
n are

extensively discussed.

Expected Reward There are two possibilities to interpret the decision rule
of the policy. The �rst possibility is that once the policy accepts or rejects a
class k call it does not change its decision when no arrival has been accepted,
even when the system reaches a non-critical state. This means that if the policy
accepts the classes f1; 2; ::; �g or rejects the classes f�; � + 1; ::;mg; the policy
still accepts or rejects these classes even when the system state reaches a non-
critical state: The second possibility is the main rule is still applied. This means
that once the system is in a non-critical state, the policy always accepts all calls.
The reason for the �rst option is that once the system has been in a critical

state, we know that the system has almost used all the capacity. Therefore
one might think to hold back the number of calls and only accepts the more
pro�table classes. On the other hand, once the system reaches a non-critical
state, more capacity becomes available and the bene�t of rejecting becomes
more negligible. Hence, both possibilities have their pros and cons. They are
both worked out in this section. The �rst part discusses the policy which holds
on to its decision. The second part discusses the policy which applies the main
rule.

First Decision Holds In this part the expected reward that is gained
after the decision epoch could easily be determined, because the active classes
do not change in time and only the reward from the accepted call is taken into
account. Suppose all classes f1; ::�g are active, which means that these classes
should be accepted upon arrival if enough capacity is available. The probability
that the �rst arrival is blocked is denoted as P (TBLn�): The probability that a
class i is the �rst arrival is �1

��
: Thus the probability that a class i is blocked is

P (TBLn�) times
�1
��
and the probability that the class i is accepted is one minus

the probability that the class i is blocked. The total expected reward is the
sum of the probability that a class i is accepted times the reward over all active
classes. The calculation of the total expected reward is for both decisions the
same, only the number of active classes and the system state di¤er. Hence, the
total expected reward is

ER�n =

�X
i=1

�
1� P (TBLn� ;1)

�i
�m

�
ri (23)

where P (TBLn� ; T) is the probability that the �rst arrival is blocked in a certain
time period T . This is calculated in Appendix 11.1. For a lot of di¤erent types

28

of classes this is not easy to calculate, see equation (??) and therefore this policy
is not simulated or analyzed.

Main Rule Holds Unlike in the section where the �rst decision holds, the
policy has the main rule that if the system state is not in a critical state after
accepting an arrival, then the arrival must be accepted. The problem of �nding
the expected reward in this case is more di¢ cult, because for each di¤erent state
the active classes are di¤erent. When the �rst (or more) events are departures,
the system state changes in time. Therefore the active classes change in general,
because more capacity becomes available.
Figure 6 shows an example where the active classes change in time.

class

6:pdf

Figure 6: sample path where in state n a class k is rejected and in state
�
n a

class k is accepted

At a certain moment in state n a class k arrives and it has been rejected.
At this moment only the classes f1; ::; k � 1g are accepted. A little later (no
arrival has occurred) the system is in state n: (departure of a class i). Now a
class k can be accepted because after accepting a class k call the system is in
state bn which is not critical. Therefore one has to know which classes are active
if a class k call arrives in state n. Whether a class is active or not depends
on the index � in (22) and the total used capacity c. Therefore we develop a
tensor with ones and zeros. A "1" means that class i is active and a "0" means
that class i is inactive for some index � and the used capacity c: The tensor
Active-Classes can be developed by

ACi;�;c =

�
1 ,if (i � �) [(c < Ci)
0 ,otherwise

(24)

Ci = C �max fb1; b2; ::; bi�1g � bi +
1

�
,for i 2 f2; 3; ::;mg

where c = n � b; � is the scale parameter and C1 is set at C, because a class one
call is always accepted if the capacity constraint is not violated. The critical
level Ci is the start where all the critical states begin. We add the term 1

�
instead of 1, because we assume that the every size b is an integer for � = 1:

29

If � = 2 then all sizes are divided into half. Figure 7 shows an example for
b = (2; 3; 2; 5):

Figure 7: example of the dead levels and the critical levels when b = (2; 3; 2; 5)

In this example all states with at least 8 unit�s capacity available accepts
all classes. Thus for c� = minfC2; ::; Cmg � 1 = 8 holds that ACi;�;c� = 1,
where c� is the minimum amount of capacity where all classes are active. For
� = 1; (and � = 1) C4 = 100�maxf2; 3; 2g� 5+ 1 = 93 is a critical level, which
is correct because when the system has 93 units capacity used and after a class
4 is accepted then the system has 98 units capacity used and a class 2 call will
be blocked. For � = 2; C4 = 100�maxf 22 ;

3
2 ;

2
2g�

5
2 +

1
2 = 96:5 is a critical level,

which is correct because when the system has 96:5 units capacity used and after
a class 4 is accepted then the system has 99 units capacity used and a class 2
call will be blocked. Thus when the system is in a state n which has at least
c� units capacity available, then the active classes do not change anymore. In
fact, all classes are active. In these states the expected reward can easily be
determined by

ER�n=
mX
i=1

�i
�m

ri ,f8njc� � n � bg (25)

Not all active classes are always accepted. It could happen that an active class
is blocked because of the capacity constraint. In this case the time period where
classes can be accepted ends here and the policy gains nothing. To take this in
consideration, we develop a matrix which has also only ones and zeros. A "1"
means that a class i is accepted and a "0" means that a class i is blocked by
the capacity constraint. The Non-Block-Class matrix can be determined by

NBCi;c =

�
1 ,if c < Di
0 ,otherwise

(26)

Di = C � bi + 1 ,for i 2 f1; 2; ::;mg

where c = n � b.
To determine the expected reward in the critical states one has to distinguish

whether the �rst event is an arrival or a departure, because these have di¤erent
in�uence on the reward.

30

When the �rst event is an active class i arrival and it �ts into the system
than the policy gains ri. When the call belongs to an inactive class or the call
does not �t into the system, then no reward is gained.
When the �rst event is a departure then the available capacity increases

which gives a possibility that more classes become active. The reward must be
determined again, but now for a di¤erent state with may-be di¤erent classes.
Applying all the above information one can develop a recursive formula for the
expected reward. The expected reward for the critical states is

ER�n=
mX
i=1

�iACi;�;c
AC�;c��+ n � �

NBCi;cri+
mX
i=1

ni�i
AC�;c��+ n � �

ER�n�ei (27)

where the term before the plus is the probability that the �rst event is an arrival
and the term after the plus is the probability that the �rst event is a departure.
Formula (27) could be veri�ed in the set of the non critical states using

formula (25). The following theorem is developed.

Theorem 3 If ER�n =
mP
i=1

�i
�m ri for f8njc

� � n � bg =) ER�n = ER
�
n�m ,with

m � n 2 Rmand m 6= 0.

Theorem 1 shows that equation (27) holds for all the non-critical states.
Proof.

ER�n =

mX
i=1

�iACi;�;c
AC�;c��+ n � �

NBCi;c
ri
bi
+

mX
i=1

ni�i
AC�;c��+ n � �

ER�n�ei (28)

=

mX
i=1

�i
�m + n � �

ri
bi
+

mX
i=1

ni�i
�m + n � �

mX
i=1

�i
�m

ri
bi

!

=
�m
�
r1
b1
�1 + ::+

rm
bm
�m
�
+ (�1n1 + ::+ �mnm)

�
r1
b1
�1 + ::+

rm
bm
�m
�

�m
1

�m + n � �

=

(�m+n1�1+::+nm�m)
�
r1
b1
�1+::+

rm
bm

�m
�

�m

�m+n � � =

�
r1
b1
�1+::+

rm
bm
�m

�
�m

=

mX
i=1

�i
�m

ri
bi

Expected Time Period The two possibilities to interpret the decision rule
are also of in�uence for the expected time period. Therefore both possibilities
are worked out in the next sections.

First Decision Holds Like in the previous section where the reward is
calculated for the �rst decision holds, the active classes do not change in time.
Now we have to �nd the expected time period. First, the expected time period
is determined for the second arrival if the policy accepts the �rst arrival. In this

31

case the expected time period is from the decision epoch until the arrival is out
of the system again. This could be immediately after its arrival if the call is
blocked. Then the time period is from the decision epoch until the second call
arrives. Otherwise the time period is until its departure. The calculation for the
expected time period of the second arrival if the policy rejects the �rst arrival is
the same as if the policy accepts the �rst arrival, but only for a di¤erent system
state.
The expected time period of the second arrival consists of two parts. The

�rst part is the average residual inter-arrival time, which is for exponential
distributions just the average inter-arrival time of the of the second arrival.
Second is the service time of the arrival which could be zero. In the same
manner as in (23) the probability that the �rst arrival is not blocked could be
determined. The expected time period is the expected time period of the �rst
active class arrival plus its expected service time.

ET �n= EA
�
min+

�X
i=1

�
1� P (TBLn� ;1)

�i

��

�
EBi (29)

where EA�min is the minimum expected arrival time of all f1; 2; ::�g active classes.
The expected time of the �rst arrival which is accepted is simply its expected

service time. The total expected time period is when both calls are out of the
system. This is the same as the expected maximum of the time period of the
�rst arrival and the second arrival. To calculate this, one needs the density
functions of both time periods. The expected time period of the �rst arrival
has of course an exponential distribution. The expected time period of the
second arrival is the sum of one exponential distribution (the arrival time) and
a hyper-exponential distribution (the second arrival�s service time). To �nd the
density function of the total time period of the second arrival one can use the
convolution integral [54]. Let T1 be the stochastic variable of time period from
decision epoch till the arrival of second arrival. Let T2 be the stochastic variable
for the service time of the second arrival. The density function of T2 is

f�n(t) =

�X
i=1

�
1� P (TBLn� ;1)

�i

��

�
�i exp (��it) (30)

where the integral of f�n(t) from zero to in�nity not necessary adds to one,
because an arrival could be blocked. The density function of T1 is

g�n(t) =

�X
i=1

�i exp (�t
�P
i=1

�i) (31)

Using the theory about the sum of two stochastic variables

fX2+X1 = f�n(t) � g
�
n(t) (32)

fET �n (z) =
zR

t=0

f�n(t)g
�
n(z � t)dt

32

where fET �n (z) is the density function of the total time period of the second
arrival and " � " is the convolution product. Let h(x) be the density function
of the total time period of the �rst arrival in the system. The maximum of the
total expected time period could be determined by

Emax
n
Bk; ET

�
n

o
=

1R
z=0

1R
x=0

max (x; z)hBk
(x)fET �n (z)dxdz (33)

But since P (TBLn� ;1) is very hard to determine for systems with many dif-
ferent types of classes, we do not analyze or simulate this policy. In appendix
11.3 equation (115) one can �nd the further details of (33) in case of the two
exponential distributions.

Main Rule Holds For calculating the expected time period where the
main rule is still applied, the same problems occur as in the previous section
for the expected reward, the active classes change in time. For both decisions
the calculation of the expected time period is again the same, only the system
starts in a di¤erent state and when the policy accepts a class k arrival, the policy
has to wait till all accepted calls are out of the system. To �nd the expected
time period, we condition on the events and make a discretization of the time
interval, where each interval is the expected time period between two events.
When the event is an arrival of an active class, the time period is over after
its departure. When the event is a departure the system state changes and
again the expected time period can be calculated. Till the system has c� units
of capacity available which means all classes are active. From this moment a
departure is not of interest anymore. Figure 8 shows an example.

Figure 8: example how ETsp changes in time when departures occur

The red arrows denote the departures. The expected time period from the
moment that the system is in state n until the system state changes (the arrival
of an active class or any departure) is

ET �spn=
1

AC�;c��+ n � �
(34)

where ACi;�;c is the tensor from (24) with the information about the active
classes. As mentioned before, the expected time period in state n where at

33

least c� units of capacity are available consists of two parts. The expected time
period in a non critical state n is

ET �n=
1

�m
+

mX
i=1

�i
�m

1

�i
, f8njc� = n � bg (35)

where the �rst term is the expected time of �rst arrival of all m classes and
the second term is the expected service time of the arrival. To determine the
expected time period the same argumentation can be used as for the expected
reward. We also distinguish the �rst event is an arrival or a departure.
When the �rst event is an active class i arrival and it �ts into the system

then the call is accepted and the time period is till the departure of class i, see
equation (34). In case of an inactive class arrival this call should be rejected.
This causes no jump. In case an active call does not �t into the system then
the call is blocked and the time period ends. Of course when an inactive call
arrives which not �t into the system the policy just simply rejects this call. It
does not matter whether it �ts into the system or not.
When the �rst event is a departure then the available capacity increases

which gives a possibility that more classes become active. The time period
must be determined again, but now for a di¤erent state with may-be di¤erent
classes. The average inter-arrival time of a jump is now increased, because a
call has left the system. Applying all the above information one can develop a
recursive formula again for the expected time period for the critical states. The
expected time period in state n is

ET �n =

mX
i=1

�iACi;�;c
AC�;c��+ n � �

�
NBCi;c

1

�i
+ ET �spn

�
+

mX
i=1

ni�i
AC�;c��+ n � �

h
ET �n�ei + ET

�
spn

i
(36)

where the term before the plus is the probability that the �rst event is an arrival
and the term after the plus is probability that the �rst event is a departure.
At the moment that the policy rejects the arrival, the reward rate can be

determined by dividing ER�n over ET
�
n , see equation (22). But when the policy

has accepted the �rst two arrivals, the time period last till both calls are out
of the system. To �nd a formula for the expected maximum time period of
both possible accepted arrivals, one needs to know both density functions of the
time period as mentioned before in the previous section. For the �rst accepted
arrival is it very easy, because all service times are assumed to be exponential.
For the second call the distribution is much harder to �nd. It consists of a
sum of exponential distributions plus some constant. Assuming that the second
distribution is also an exponential distribution with the same mean as the real
distribution it is not so hard to calculate the maximum expected time period.
Let Z1 be the time period from accepting the arrival at the decision epoch till its
departure with mean 1

�1
and let Z2 be the time period from the decision epoch

until the second arrival is out of the system with mean 1
�2
. Assuming that

the latter is exponential, then Z1~Exp(�1), Z2~Exp(�2) and can the expected

34

maximum time period be calculated via

Emax fZ1; Z2g =
(�1)

2
+(�2)

2
+�1�2

�1�2(�1+�2)
=
(EZ1)

2
+(EZ2)

2
+EZ1EZ2

EZ1+EZ2
(37)

One can �nd the further details of (37) in appendix 11.3 equation (115). Now the
expected reward rate when the policy accepts an arrival can also be calculated.
Formula (36) could be veri�ed in the set of the non critical states using

formula (35). The following theorem is developed.

Theorem 4 If ET �n =
1
�m +

mP
i=1

�i
�m

1
�i
forf8njc� = n � bg =) ET �n = ET �n�m

,with m � n 2 Rm and m 6= 0.

Theorem 2 shows that equation (36) holds for all the non-critical states.

Theorem 5 Proof.

ET �n=
mX
i=1

�iACi;�;c
AC�;c��+ n � �

�
BCi;c

1

�i
+ ET �spn

�
+

mX
i=1

ni�i
AC�;c��+ n � �

h
ET �n�ei + ET

�
spn

i
=

mX
i=1

�i
�m + n � �

�
1

�i
+

1

�m + n � �

�
+

mX
i=1

ni�i
�m + n � �

1

�m
+

mX
i=1

�i
�m

1

�i
+

1

�m + n � �

!

=

��
1
�1
+ 1

�m+n��

�
�1 + ::+

�
1
�m

+ 1
�m+n��

�
�m
�

�m + n � �

+
n1�1

�
1
�m

+
�1
�1

+::+�m
�m

�m
+ 1

�m+n��

�
+ ::+ nm�m

�
1
�m

+
�1
�1

+::+�m
�m

�m
+ 1

�m+n��

�
�m + n � �

=
�m 1

�1+::+�m+n�� +
�1
�1
+ ::+ �m

�m
+ (�1n1 + ::+ �mnm)

�
1
�m

+
�1
�1

+::+�m
�m

�m
+ 1

�m+n��

�
�m + n � �

=
(�m + �1n1 + ::+ �mnm)

1
�m+n�� +

�m
�
�1
�1

+::+�m
�m

�
+(�1n1+::+�mnm)

�
1+

�1
�1

+::+�m
�m

�
�m

�m + n � �

=
1

�m + n � �+
�1
�1
+ ::+ �m

�m

�m
+

(�1n1+::+�mnm)

�m

�m + n � � =
�1
�1
+ ::+ �m

�m

�m
+
�m + �1n1 + ::+ �mnm

�m (�m + n � �)

=
�1
�1
+ ::+ �m

�m

�m
+
1

�m
=
1

�m
+

mX
i=1

�i
�m

1

�i

Now the overall strategy (22) can be simulated by combining the equations
(27),(36),(37) and assuming that the time period of the second arrival is expo-
nential.

35

5.7.2 Two Steps Ahead

In the previous section the critical levels are chosen in such a way that at least
for one pro�table class enough capacity is left after accepting a call. A critical
level i corresponds with a class i call. In this section the set of non critical states
decreases and the set of critical states increases. The levels are chosen in such
a way that at least two pro�table classes can be expected after accepting a call
(� = 2). By doing this more capacity could be reserved for the pro�table classes
which could lead to an increasing number of the pro�table calls. The number of
less pro�table calls could decrease. In general, this leads to less reward rates in
the transient period and to better reward rates in the steady state distribution.
But the latter is not necessary, because may-be this leads to an under-utilization
of the system. In this way the extra reward rate that is gained by the increasing
number of the more pro�table calls is less then the reward rate that is lost by
rejecting the less pro�table calls.
The calculations for the tensor Active Classes ACi;�;c of equation (24) are the

same, but the critical levels are di¤erent. The critical level i can be determined
via

Ci= C � 2max fb1; b2; ::; bi�1g�bi+
1

�
,for i 2 f2; 3; ::;mg (38)

This policy is also simulated and worked out in the results section.

5.7.3 � Steps Ahead

Of course, the critical levels could also be chosen in such a way that more then
two pro�table classes can be accepted after accepting a call. Suppose the policy
wants that at least � pro�table classes can be accepted after the acceptance of
a class i call, then the critical level i can be determined via

Ci= C � �max fb1; b2; ::; bi�1g�bi+
1

�
,for i 2 f2; 3; ::;mg (39)

where for � = f1; 2; 3; 4; 5g this policy is simulated.

5.7.4 Look Ahead Policy Compares to other Policies

Unlike the threshold policy, this policy is not a coordinate convex policy. Figure
9 indicates the di¤erence between the threshold and the look ahead policy.
If for a threshold policy an arrow (transition) from state (n1; n2 + 1) to

(n1 � 1; n2 + 1) exists then the dotted arrow from state (n1 � 1; n2 + 1) to
(n1; n2 + 1) also exists. But the dotted arrow does not have to exist in the look
ahead policies and therefore the look ahead policies are in general not coordinate
convex.
The look ahead policies are also not a reservation policy. When the system

has c units of capacity used and a class k will be accepted then it will always be
accepted independent of the system state, because only the total used capacity
matters. The look ahead policies do take the system state into account. It could
happen that the system accepts a class k call when c units capacity are used in

36

Figure 9: part of a Markov chain with two types of classes

state n, but that it rejects the class k call when c units capacity is used in state en:
Suppose in state (n1; n2) in �gure 9 the system uses c = n1b1+n2b2 capacity and
in state (n1�1; n2+1) the system also uses c = (n1�1)b1+(n2+1)b2 capacity.
Then if for a reservation policy an arrow (transition) from state (n1; n2 + 1)
to (n1 � 1; n2 + 1) exists then the dotted arrow from state (n1 � 1; n2 + 1) to
(n1; n2 + 1) also exists. But the dotted arrow does not have to exist for a look
ahead policy. Therefore the look ahead policies are in general not a reservation
policy.
The look ahead policies are also not like a complete partitioning policy, be-

cause it does not reserve a �xed amount of capacity for any type of class. It
does sometimes reserve some capacity for the high pro�table classes by rejecting
the low pro�table classes. This depends on the system state and revenue rate.

5.8 The Optimal Policy

The policy with the highest reward rate in steady state is de�ned as the optimal
policy. When the scale parameter � goes to in�nity, the reward rate is maximal
using the strategy of Kelly. But in this case we drop the assumption that � goes
to in�nity.
Let �n be the steady state probability that the system is in state n. Let

be the set of all possible states then the reward rate in the steady state period
is X

n2

n � r (40)

To �nd the optimal set of possible states, we need to know what the steady
state probabilities are. The set
 has C

b1
� C

b2
� :: � C

bm
= o(Cm) states. To

determine the steady state probabilities one have to solve as many equations as
the number of states. These have the from

(�
m
+n1�1+::nm�m)�n=

mX
i=1

��n�ei+
mX
i=1

(ni�1)�i�n+ei (41)

Equation (41) is re�ected in �gure 10.

37

Figure 10: a part of a Markov chain in system state n with m type of classes

In order to compute the number of di¤erent Markov chains, we could remove
any combination of arrows. Some combinations lead to the same Markov chain,
because the Markov chain has to remain connected. Which Markov chains are
the same is not so easy to determine, therefore we use a di¤erent approach.
The number of Markov chains can also be calculated once we know the

number of di¤erent transition states.

States

11:pdf

Figure 11: part of a Markov chain with m types of classes

Figure 11 shows a part of the Markov chain with m di¤erent types of classes.

The set
 has at most
�

C
minfb1;b2;::;bmg

�m
: Now suppose without loss of gener-

ality that minfb1; b2; ::; bmg = 1 then the system state can be presented with
a vector (n1; n2; ::nm) where ni is the number of calls of class i: Let the zero
vector 0 represent an empty system and let R1 be the set of all states which
uses one unit capacity. This is the �rst row in �gure 11. Then let R2 be the of
all states which uses two units of capacity and let Ri be the set of states which

38

uses i units of capacity, see equation (42).

Ri = fnjn � b = ig; for i 2 f0; ::Cg (42)

The number of transitions equals two times the number of system states (every
arrow is double). To count the number system states with m classes we can use
the theory of combinations with repetition, see [19]. The number of di¤erent
states with m classes and C units of capacity is�

m+ C � 1
C

�
=
(m+ C � 1)!
C!(m� 1)! (43)

To determine all the numbers of di¤erent states, one have to sum over C: Thus

CX
c=0

(m+ c� 1)!
c!(m� 1)! =

(m+ C)!

m!C!
(44)

and the number of arrows is two times the number of system states, 2 (m+c)!C!m! .
Since each arrow can be switch on and o¤, the number of possible Markov

chains is at most 22
(m+c)!
C!m! = 4

(m+c)!
C!m! . This is an upper bound, because we have

assumed that very call has the minimum size of all calls. The order of the
di¤erent types of Markov chains is still o(4

(m+c)!
C!m!). These calculations have a

very worse computational complexity.

39

6 Bounds

In this section we try �nd a lower and upper bound for the long run average
revenue of the look ahead policy. We start this section with �nding an expression
for the total reward in the transient states of the look ahead policy. The next
sections discusses the long-run revenue rates.

6.1 Transient State

Since an upper or lower bound is very hard to found in the transient period,
we �nd an expression for the total average reward. In this section the transient
period is until the �rst call is rejected or blocked. Now let EQi be the average
number of calls in the system of class i and suppose without loss of generality
that the system start at t = 0. Then the average number of class i calls in the
system at time t is

EQi(t) =
�i
�i
(1� exp(��it)) (45)

and the total average reward till the �rst class is blocked is

ER�(t) =

tZ
u=0

mX
i=1

EQi(u)du (46)

where t is at most till the �rst class is blocked or rejected. In case of the look
ahead policy all classes are accepted until the �rst critical level is reached. Let
T � be the moment at the end of this period where the lowest critical level is
reached: The expected moment in time can be determined by the equation

mX
i=1

EQi(T
�
)bi= min

i2f1;2;::mg
Ci (47)

where the C 0is are the critical level of the look ahead policies.

Now the total average reward is

ER�(t) =

tZ
u=0

mX
i=1

EQi(u)du for t 2 [0; T
�
] (48)

6.2 Long-run Revenue Rate

In the next sections the long run average revenue will be investigated. First we
mention the upper bound for every policy and second we try to �nd a lower
bound for the look ahead policy.

40

6.2.1 Upper Bound

An upper bound can be found when � tends to in�nity. The policy of Kelly
generates the maximum revenue rate on the long run, see section 5.4. Once
we drop these assumptions the optimal average reward rate can be determined
as in section 5.8. The optimal policy makes for every arriving call the optimal
decision upon arrival. When we use the optimal policy in general, it could
never have a higher average reward rate than the policy of Kelly. And since
the optimal policy generates at least a higher average reward rate than every
policy, the upper bound of Kelly is an upper bound in general. Thus the upper
bound can be calculated with equation (9).

6.2.2 Lower Bound

To �nd a lower bound for the look ahead policy we split the total capacity. The
�rst part is the capacity till the �rst critical level, minfC1; C2; ::; Ckg: Until this
critical level is reached all types of classes are accepted upon arrival. Now we
want to know the average time that the system is below this critical level and
in which state it is on average. Figure 12 re�ects this idea.

Figure 12: sample path where Ci denotes the lowest critical level

Let RTi be the random variable of the next return time to state i

RT i=min fn : Xn= ijX0= ig (49)

where n is the number of time steps. Let ERThn be the expected return time
when the system is in state n and the �rst event is an arrival. The ERT ln is the
�rst return time when the system is in state n and the �rst event is a departure.
Let us start with �nding the ERT l:
There are a few problems that arise by determining the �rst expected return

time. First we have to distinguish either the system has to return to the exact
same level or that the system has to return to the same or higher level. Reaching
a higher level means that less capacity is available then in state n. Now suppose
that the �rst return time is when the system is at exact the same level. Should
the system also be in exact the same state n or just at the exact level. The
latter means the �rst return time is at the moment that n �b is the same again.

41

It does not matter which choice is made, for all cases the steady state prob-
abilities have to be known. Since this is the main thing to avoid we have to
decrease the number the states. Therefore the �rst assumption is that all sizes
are equal. Then we could say without loss of generality that all sizes are one,
bi = 1 for all i 2 f1; 2; ::;mg. But since the order of equations that have to be
solved is still O(cm), the second assumption is that all classes have the same
departure rate too. Now only the total used capacity is important and we could
model the problem as a Markov chain where every state represents a number of
units used capacity, see �gure 13. Now the number of equations that have to be
solved is O(c):

Figure 13: a Markov chain with c di¤erent states and where �m =
mP
i=1

�i

The departure rate decreases every time that a call departures, but the
arrival rate is the same in every state. The corresponding local balance equations
of �gure 13 are

(k�)�k= �
m�k�1 for k 2 fc; c� 1; ::; 1g (50)

where �k is the steady state probability that the system has used k units of

capacity. Equation (50) together with
cP

k=0

�k = 1 becomes

�k=
(�

m

�)
k

k!
�0 for k 2 fc; c� 1; ::; 1g (51)

where �0 = 1

1+ �
�m+(2�

�m)
2
+(3�

�m)
3
+::+(c�

�m)
c .

According to [51] the expected �rst return time in state c can be calculated
with the transition rates and the steady state probabilities via

ERT l= ERT c=
1

cP
i=0

pic�i

(52)

where pic is the transition rate from state i to c. The transition rates from k to
k� 1 are always k� and the transition rates from k� 1 to k are always �m: The
other rates are always 0. Now all the information is available for calculating the
expected �rst return time.
Now we can �nd a lower bound for long run revenue rate in the period that

the available capacity is below the lowest critical level. During this period the

42

long run revenue rate is at least kminfr1; r2; ::; rmg in each state k. The long
run revenue rate is therefore at least

ERRl=
cX

k=0

kmin fr1; r2; ::; rkg�k (53)

Unfortunately a lower bound for the long run revenue rate in the period that
the available capacity is equal or above the critical level can not be found in
the same way, because not all arrivals are accepted upon arrival. The transition
rates depend on the system state and not on the available capacity. Therefore
we �nd a minimum expected return time. The system has to wait at least until
the �rst departure. On average this period has length 1

c� . The long run revenue
rate during this period is at least

ERRh= kmin fr1; r2; ::; rkg (54)

where the length of this period is on average 1
c� ; thus ERT

h = 1
c� :

At the moment that the system is in state n and the total capacity that
is used is c then the �rst event is with probability �m

�m+c� an arrival and with
probability c�

�m+c� a departure. So a lower bound for the long run revenue rate
is

ERRlb=
�m

�m+c�
ERRhERTh + c�

�m+c�
ERRlERT l

ERTh �m

�m+c�
+ ERT l c�

�m+c�

(55)

Since in general not only the least pro�table class in the system, the lower
bound can be increased. Moreover this policy aims at a better average class
ratio then the accept all strategy. The class ratio is the ratio of the number of
calls of all types of classes. Thus the assumption that the class ratio is equal to
the accept all strategy gives a lower bound. Therefore the lower bound can be
stretched. On average the class ratio depends only on the arrival rate, since all
sizes and departure rates are the same for all classes. Therefore on average the
lower bounds can be extended to

ERRl =
cX

k=0

k�k

mX
i=1

ri
�i
�m

!
(56)

ERRh = k

mX
i=1

ri
�i
�m

!

which leads to an higher ERRlb

43

7 Computation Time

In the previous sections the main goal was to maximize the long run revenue
rate and to get a good performance in the transient period. Since the goal of
this report is also to minimize computational complexity, we intensively com-
pare all policies. The computational complexity is a measure for the number
of calculations of the parameters from the corresponding policy. The goal in
this section is to measure the sensitivity of the parameters that depends on the
computational complexity. In mathematical words, we determine the order of
the algorithm that gives the policy parameters. Almost every policy�s compu-
tational complexity depends on the number of classes and the total capacity.
So the order of the computational complexity will be expressed in C, the total
capacity and m, the number di¤erent classes. During this period we assume
that for all policies the time scale parameter is one (� = 1), because in principle
� also depends linear on the capacity. This section starts with the well-known
policies and �nishes with the look ahead policies.

7.1 The Optimal Threshold Policy

The decision model of a threshold policy is already described in section 5.1.
When the system contains of m di¤erent types of classes then there are m
parameters to be calculated, since every class has it own parameter tk:This pa-
rameter denotes the threshold for class k and there are Cm di¤erent types of
threshold policies. The optimal threshold policy has m di¤erent parameters to
be calculated. Finding the optimal policy using brute-force search becomes in-
tractable for large C and especially for large m. Therefore in [39] they proposed
an iterative coordinate search algorithm to �nd a coordinate optimal threshold
policy among all threshold policies. This algorithm should reduce the computa-
tional complexity. The algorithm searches O(Cm) di¤erent threshold policies.
The number of iterations required by the algorithm is O(m) and the compu-
tational complexity of the evaluating the performance of a threshold policy is
O(C2m logm) with binary tree implementation proposed in [45]. Hence the
practical computational complexity is O(C3m3 logm).

7.2 The Optimal Complete Partitioning Policy

The decision model of a complete partitioning policy is already described in
section 5.2. In [49] the optimal complete partitioning policy is given by the
following resource allocation problem

max J(s) = R1(s1) +R2(s2) + ::+Rm(sm) (57)

s:t: s1+s2+::+ sk = C

0 � sk � F ; sk2 N for k = f1; ::;mg (58)

where Rk(sk) is the average revenue generated by class k. Let fk(y) be the
maximum revenue generated by classes 1 through m with y units of capacity

44

available. To �nd the parameters s1; s2; ::sm one have to solve the corresponding
dynamic programming equations

f1(y) = R1(y) ; 0 � y � C (59)

fk(y) = max
0�s�y

fRk(s) + fk�1(y � s)g ; 0 � y � C; k = 2; ::;m

The above recursive equations have complexity O(C2m) and gives as by-product
the optimal complete partitioning policy s = (s1; ::; sm): Since equation (59)
already gives the performance evaluating of the complete partitioning policy,
the practical computational complexity is O(C2m):

7.3 The Optimal Reservation Policy

The decision model of the reservation policy is already described in section
5.3. When the system contains of m di¤erent types of classes then there are
m parameters to be calculated, since every class has it own parameter rk and
there are Cm di¤erent reservation policies, like the threshold policy. But unlike
the threshold policy, the reservation policy is in general not coordinate con-
vex. So the binary tree implementation for evaluating the performance of the
reservation policy can not be used. Therefore in [39] they proposed a di¤er-
ent algorithm for the performance evaluation. The computational complexity
of this algorithm is O(C). They also developed an iterative coordinate search
algorithm for reducing the computational complexity. This algorithm does not
search through all di¤erent reservation policies Cm, but searches at most in
(C + 1)(m � 1):policies. The number of iterations of the algorithm is O(m):
Hence the practical computational complexity is O(C2m2):

7.4 One Step Look Ahead Policy

The decision model of the one step look ahead policy is already described in
section 5.7. Let us �rst �nd an upper bound for the number of parameters for
the one step look ahead policy. Let jdk(n)j be the number of parameters for the
look ahead policy. Since the decision parameter depends on the system state
in the critical states and the class arrival, an upper bound for the number of
parameters can be determined via

jdi(n)j =
mX
i=2

fjnj 2
jDi > n � b � Cig (60)

�
mX
i=2

fjnj 2
jn � b � Cig

� (m� 1)
�
jnj 2
jn � b � min

i2f2;::;mg
Ci

�
� (m� 1)(C� min

i2f2;::;mg
Ci)

m

� (C� min
i2f2;::;mg

Ci)
m+1

45

where Ci = C�max fb1; b2; ::; bi�1g� bi+1; Di = C� bi+1 and jnj means the
number of states. The critical factor is of course the number of critical levels,
C �minfC2; ::; Cmg. Let bmax be the maximum size over all classes and let {
be the number of critical levels. Of course the decision parameters for all class
k calls which can not be accepted because of the capacity constraint, have not
to be calculated. Then the maximum number of critical levels becomes

{ = max
i2f2;::;mg

fDi � Cig (61)

= max
i2f2;::;mg

�
(C � bi+1)�

�
C�max

�
b1; b2; ::; bi�1

	
�bi+1

�	
= max

i2f2;::;mg
fmax fb1; b2; ::; bi�1gg

= max
i2f1;::m�1g

bi

= bmax

Hence the maximum number of parameters is

jdi(n)j � (bmax)m+1 = {m+1 (62)

Let us now investigate in the computational complexity of the decision para-
meter. For every decision parameters the expected reward rate and the expected
time period have to be calculated for di¤erent � 2 f1; ::mg, see equation (22).
The reward rate is recursively determined, see equation (27). The number of
recursions is maximal {: Because when the system is not in a critical state any-
more the reward rate is known. Also the expected time period is recursively
determined, see equation (36) with a maximum of { recursions. Hence the
practical computational complexity is O(m{m+2) = O(m(bmax)m+2)

7.5 Two Steps Look Ahead Policy

Like in the previous section, all calculations and equations remain the same
with the one step look ahead policy, except for the critical level Ci = C �
2max fb1; b2; ::; bi�1g � bi + 1. The number of critical states becomes

{= 2 max
i2f2;::;mg

fDi � Cig (63)

= 2bmax

The maximum number of recursions in equations (27) and (36) is {: Thus the
practical computational complexity is O(m{m+2) = O(m(2bmax)m+2)

7.6 � Steps Look Ahead Policy

The critical level now becomes Ci = C � �max fb1; b2; ::; bi�1g � bi + 1: The
number of critical states becomes

{= � max
i2f2;::;mg

fDi � Cig (64)

= �bmax

46

The maximum number of recursions in equations (27) and (36) is {: Thus the
practical computational complexity is O(m{m+2) = O(m(�bmax)m+2)

7.7 The Optimal Policy

The total number of di¤erent Markov chains is already calculated in section
5.8. The computational complexity of calculating the reward rate given such
a Markov chain is not yet calculated. The number of equations to solve the
according Markov chain is Cm, see �gure 10 and equation 41. Since for every
di¤erent Markov chain the reward rate has to be calculated the computational
time is o(4

(m+c)!
m!C! Cm):

47

8 Simulation Results

In this section, we describe some numerical experiments with a call admission
control problem. This problem arises when a service provider with limited
resources (capacity) has to accept or reject incoming calls of several types. The
objective is to maximize long-term average revenue with also a good performance
in the transient period. The latter is intensively investigated in the transient
period subsection and the long-term average revenue will be discussed in the
steady state section. This section ends with some overall conclusions about the
numerical experiments of all the simulated policies.

8.1 Simulation Parameters

The system parameters are from [22]. The system has 100 units of capacity
available and there three types of classes.

Class � � Size (b) Reward Rate (r)
1 40 0:5 0:1 1
2 80 2 0:15 0:25
3 60 0:3 0:55 0:75

(65)

To highlight the di¤erences between all policies in one picture, all the policies
are compared with the accept all strategy.

8.2 Transient Period

The numerical experiments can be split up in two parts. The �rst part in-
vestigates in the so called transient period. This period is not indisputable a
prede�ned time period, but di¤ers in many papers. Some denote the transient
period as the time period from the start of the simulation till the steady state
is reached where others de�ne the transient period from the start of the simu-
lation till t is about 1

�min
;see [22]. In this report we de�ne the transient period

from the beginning of the simulation until the steady state is reached. Of course
there is not one moment in time from which the steady state is reached, but
this happens gradually in a time period. In this period the average reward rate
does not change anymore. This quantity is very important to compare the dif-
ferent policies. Suppose there are two di¤erent policies A and B and the two
policies are in the steady state period at a certain moment t: The reward rate
of policy A is higher than for policy B. Now suppose that policy A has gained
more (money) than policy B, then policy B can never catch up policy A again.
But when policy B has not reached the steady state it could still catch up policy
A. Moreover when in the �rst situation policy B has a higher reward rate, it
de�nitely catch up with policy A. Now let�s turn back to the transient period.
Like mentioned before the steady state is reached when the average reward

rate or when average number of calls in the system from every class do not
change in time. This moment is for every policy di¤erent. It depends on the
strategy of the policy. Some strategies do not depend on the used capacity, like

48

the accept all strategy where other strategies have very di¤erent decisions when
less capacity become available, like the step ahead policy or the reservation
policy. The policy that does not depend on the used capacity reaches in general
the steady state earlier than the strategies which does depend on the used
capacity. An exception to this is the policy of Kelly, which strategy does not
depend on the used capacity but rejects some calls when almost all capacity is
still available. Of all policies that have been simulated this policy reaches the
steady state as last. Therefore we use the Kelly policy to de�ne the transient
period. Figure 14 shows the number of classes with the system parameters of
(65) for the policy of Kelly and one step look ahead policy.

0

50

100

150

200

250

300

A
ve

ra
ge

 N
um

be
r o

f C
al

ls

1 2 3 4 5 6 7 8 9 10 12 14 16 18 20 22 24 26 28 30 50

Class Ratio (a)

Class 1 Class 2 Class 3

0

50

100

150

200

250

300

A
ve

ra
ge

 N
um

be
r o

f C
al

ls

1 2 3 4 5 6 7 8 9 10 12 14 16 18 20 22 24 26 28 30 50

Class Ratio (b)

Class 1 Class 2 Class 3

Figure 14: average number of calls over time

The number of calls in the system when the policy of Kelly is used do not
change from the time period about t = 12 where the number of calls for the one
step look ahead policy do not change from about t = 6. Therefore, the transient
time period is at least till t = 12:
Another method to �nd the steady state period is to look at the used capac-

ity. As mentioned before the decisions of some strategies are di¤erent when less
capacity becomes available. For example the reservation policy could accept
less pro�table classes when a lot capacity is available but rejects the same type
of class when little capacity is available. The period from upon little capacity
is available is very interesting, because the policies now have to deal with the
fact that not all calls can be accepted. From upon the moment that calls are
blocked or rejected, the class ratio could change and therefore the reward rate.
In order to wait till the class ratio remains the same, all calls which are accepted
before the moment that little capacity is available should be out of the system.
Since the service time is stochastic, we claim that all calls should be departed
with high probability, lets say more then 99%
The moment when little capacity is available is de�ned as the moment when

the �rst call is blocked or rejected by the system. In �gure 15 the total used
capacity is shown. When about 95% of the total capacity is used, the �rst calls
are blocked or rejected. All policies use about 97% capacity.
This occupation level is reached about t = 12: In order to have that each

call in the system has departed with at least 99% probability, we only have to

49

Used Capacity

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 2 4 6 8 10 12 14 16 18

Time

U
se

d
C

ap
ac

ity
 in

 %

Kelly Th CP Res 1 SLA
2 SLA 3 SLA 4 SLA 5 SLA 95% bound

Figure 15: Used Capacity

claim the calls with highest average service duration have departed with at least
99%. The class two calls have the highest service duration, �3 = 0:3: In order
to satisfy a 99% probability departure level, equation (66) should hold.

1� exp(� t

�3
) > 0:99 (66)

After solving equation (66) it follows that t is at least 16 units of time. Therefore
we could also de�ne the transient period as from the start of the simulation until
t = 12 + 16 = 26: But since the above calculations are not so exact, we take a
backup and say that the steady state is reached at least from t = 30 units of
time. So the transient period is de�ned as the period from the beginning of the
simulation till t = 30:
Now the transient period is intensively discussed, we show the numerical

results for � = f1; 2; 4; 8; 16; 32g. Figure 16 shows for every policy the di¤erence
with the accept all policy of the total reward.
As you can see an increasing � hardly in�uences the relative rewards in the

transient period:Only the Kelly policy is signi�cantly better for increasing �.
The rest of the policies have more or less the same total average reward. Of
course every policy has gained less (money) at a moment in time than the accept
all policy, but almost every policy catch up with the accept all policy within
a short period of time. Only for small numbers of � the complete partitioning
policy and the policy of Kelly do not catch up with the accept all policy. The
reservation policy and the four, three and two steps look ahead policies have the
highest total average reward. The one step look ahead policy and the threshold
policy have a little less average reward. The complete partitioning policy is a
little worse than the accept all policy and the Kelly policy performs very badly
in the transient period. Thus to come back to our problem formulation, one

50

Eta=1 for 2000 runs (a)

140

120

100

80

60

40

20

0

20

40

60

0 5 10 15 20 25 30

Time

R
ew

ar
d

Eta=2 for 2000 runs (b)

140

120

100

80

60

40

20

0

20

40

60

0 5 10 15 20 25 30

Time

R
ew

ar
d

Eta=4 for 2000 runs (c)

140

120

100

80

60

40

20

0

20

40

60

0 5 10 15 20 25 30

Time

R
ew

ar
d

Eta=8 for 1000 runs (d)

140

120

100

80

60

40

20

0

20

40

60

0 5 10 15 20 25 30

Time

R
ew

ar
d

Eta=16 for 500 runs (e)

140

120

100

80

60

40

20

0

20

40

60

0 5 10 15 20 25 30

Time

R
ew

ar
d

Eta=32 with 250 runs (f)

140

120

100

80

60

40

20

0

20

40

60

0 5 10 15 20 25 30

Time

R
ew

ar
d

Figure 16: average di¤erence in total reward with the accept all policy with a
95% con�dence interval

can say that all the look ahead policies, but also the reservation and threshold
policy perform well in the transient period.
The policy of Iyengar & Sigman is not shown in �gure 16, because the

di¤erence with the accept all policy was too big. It really has bad performance
measures for every �:

8.3 Steady State Period

In the steady state period only the reward rate is of interest. To get a idea
how to generate a high reward rate, the section ends with the ratio between
the di¤erent kind of classes per policy or the class ratio. Figure 17 shows for
� = f1; 2; 4; 8; 16; 32g the reward rates. Notice that the scales on the reward
rate axis di¤er when � increases.
The reward rate is calculated by subtracting the total reward at t = 30 from

51

198.0

198.5

199.0

199.5

200.0

200.5

201.0

201.5

202.0

202.5

203.0

203.5

204.0
R

ev
en

ue
 R

at
e

Kelly Accept All Threshold Complete
Partit ioning

Reservat ion One Step
Look Ahead

Two Steps
Look Ahead

Three Steps
Look Ahead

Four Steps
Look Ahead

Five Step
Look Ahead

Eta=1 with 2000 runs (a)

Lower Average Upper

201.0
201.5
202.0
202.5
203.0
203.5
204.0
204.5
205.0
205.5
206.0

206.5
207.0

R
ew

ar
d

R
at

e

Kelly Accept All Threshold Complete
Partit ioning

Reservat ion One Step
Look Ahead

Two Steps
Look Ahead

Three Steps
Look Ahead

Four Steps
Look Ahead

Five Step
Look Ahead

Eta=4 with 2000 runs (c)

Lower Average Upper

201.0
201.5
202.0
202.5
203.0
203.5
204.0
204.5
205.0
205.5
206.0
206.5
207.0

R
ew

ar
d

R
at

e

Kelly Accept All Threshold Complete
Partit ioning

Reservat ion One Step
Look Ahead

Two Steps
Look Ahead

Three Steps
Look Ahead

Four Steps
Look Ahead

Five Steps
Look Ahead

Eta=32 with 250 runs (f)

Lower Bound Average Upper Bound

201.0

201.5
202.0

202.5

203.0
203.5

204.0

204.5

205.0
205.5

206.0

206.5
207.0

R
ew

ar
d

R
at

e

Kelly Accept All Threshold Complete
Partit ioning

Reservat ion One Step
Look Ahead

Two Steps
Look Ahead

Three Steps
Look Ahead

Four Steps
Look Ahead

Five Steps
Look Ahead

Eta=16 with 500 runs (e)

Lower Bound Average Upper Bound

201.0
201.5
202.0
202.5
203.0
203.5
204.0
204.5
205.0
205.5
206.0

206.5
207.0

R
ew

ar
d

R
at

e
Kelly Accept All Threshold Complete

Partit ioning
Reservat ion One Step

Look Ahead
Two Steps
Look Ahead

Three Steps
Look Ahead

Four Steps
Look Ahead

Five Steps
Look Ahead

Eta=8 with 1000 runs (d)

Lower Bound Average Upper Bound

200.0
200.5

201.0
201.5
202.0

202.5
203.0
203.5
204.0

204.5
205.0
205.5

206.0

R
ev

en
ue

 R
at

e

Kelly Accept All Threshold Complete
Partit ioning

Reservat ion One Step
Look Ahead

Two Steps
Look Ahead

Three Steps
Look Ahead

Four Steps
Look Ahead

Five Step
Look Ahead

Eta=2 with 2000 runs (b)

Lower Bound Average Upper Bound

Figure 17: long run revenue rate with a 95% con�dance interval

the total reward at t = 50 and dividing over 20, the di¤erence in time. Some
policies perform better then other policies when � increases. Beforehand, the
Kelly policy should outperform all policies when � increases. The �rst cylinder
indeed catch up with the other policies, this cylinder indicates the reward rate of
theKelly policy, but even when � = 32, the Kelly policy does not perform as well
as the reservation policy or the look ahead policies. But for large � the problem
is not a stochastic problem anymore. The intensity rate tends to in�nity, with
other words the inter-arrival times becomes deterministic. Therefore this is not
a stochastic problem, but a deterministic. Furthermore, the inter-arrival times
are already very small for small � in this system compared to applications in
the telephone branch.
To most important issue that �gure 17 shows us is the answer to our problem

formulation, the di¤erences in the long-run revenue rates of each policy. For
small numbers of � we see that the reservation policy and the look ahead policies
perform well. The best look ahead policies are the three and four steps look ahead

52

policy for small �. These policies have the same reward rates, but make di¤erent
decisions. The one step look ahead policy and two steps look ahead policy have
a little lower long-run revenue rate, but they are still good. The �ve steps look
ahead policy has also a lower reward rate than the three and four steps look
policy. At �rst this result goes against our feeling, but it is explicable. Figure
18 shows that the di¤erence in critical levels between the �ve steps look ahead
policy and the four steps look ahead policy. The reason why the four steps look
ahead has a higher reward rate is due to the fact that although the �ve steps
look ahead policy reserves more capacity for the more pro�table classes, this is
not always the best decision. It appears that the �ve steps look ahead policy
reserves too much capacity for the more pro�table classes. In state n in �gure
18 the four steps look ahead policy accepts the arriving call, because state n
is not a critical level. In case the system uses the �ve steps look ahead policy
then the state n is a critical level. Since the policy does not make always the
best decision, it could happen that the four steps look ahead policy has a higher
reward rate than the �ve steps look ahead policy. Moreover, when � (the number
of steps which the policy looks ahead) increases the reward rate decreases for
� = 1:

Figure 18: two sample paths where the four step look ahead accepts the call in
state n and the �ve step look ahead rejects the call.

For an increasing � the reward rates are also increasing for every policy, but
the mutual di¤erences also increase. The one step look ahead performs relative
more worse when � increases. For large � the best look ahead policy is always
the �ve steps look ahead policy. Likely a more steps look ahead policy is even
better than the �ve steps look ahead policy, but this is beyond the goals of this
report. Since the �ve steps look ahead policy has already a very good average
reward rate. The reservation policy has for every � the best reward rate, but
does not di¤er much from the best look ahead policy. The increasing � has no
in�uence on the relative reward rates of the complete partitioning policy and
the threshold policy. As expected, the Kelly policy has higher relative reward
rate for increasing �, but never catch up with the reservation policy or the best
look ahead policy. Only theoretical or in extreme situations the policy of Kelly
outperforms the other policies.
The policy of Iyengar & Sigman is not shown in �gure 17, because this policy

53

has very bad results. The reward rate of Iyengar & Sigman is about 49% of the
maximum reward rate for � = 1 and 93% of the maximum reward rate for
� = 32, see [22] Table 1 on page 1716. For the transient state it is even worse.

8.3.1 Deeper Insight

As mentioned before we should give an idea how the strategies di¤er form each
other and why the reward rates are di¤erent. The di¤erence in reward rate could
be caused by either the di¤erence in ratio between the number of classes or an
occupation di¤erence of the used capacity. First the number of resources that
are used by each policy are investigated. Figure 19 shows that the most policies
use more or less the same amount of resources, except the complete partitioning
policy, threshold and the Kelly policy.

93.5% 94.0% 94.5% 95.0% 95.5% 96.0% 96.5% 97.0% 97.5% 98.0% 98.5%

Used Capacity (in %)

Kelly

AA

Th

CP

Res

1 SLA

2 SLA

3 SLA

4 SLA

5 SLA

Average Percentage of the Used Capacity for eta=1 with 2000 runs (a)

Lower Bound Average Upper Bound

96.5% 97.0% 97.5% 98.0% 98.5% 99.0% 99.5%

Used Capacity (in %)

Kelly

AA

Th

CP

Res

1 SLA

2 SLA

3 SLA

4 SLA

5 SLA

Average Percentage of the Used Capacity for eta=4 with 2000 runs (b)

Lower Bound Average Upper Bound

Figure 19: average percentage of the used capacity with a 95% con�dance in-
terval

These policies uses respectively 2%; 1:5% and 2:5% less capacity than the
other policies and since the di¤erences in reward rates are about the same per-
centages this explains why these policies have less reward rates than the other
policies. The policy which uses the most capacity is the accept all policy, al-
though this is certainly not the policy with highest reward. The reason why the
accept all policy has not such a good reward rate can therefore not be the low
occupation level.
A little striking is the fact that the two steps look ahead policy uses the

most capacity among all the look ahead policies, but the four steps look ahead
policy has for � = 1 the highest reward rate and the �ve steps look ahead policy
has for � = 4 the highest reward rate. Apparently the four and �ve steps look
ahead policies have a higher reward rate than the two steps look ahead policy
on di¤erent reasons.
This other reason that could explain the di¤erence in reward rate is the

di¤erence of the average class ratio. The average class ratio is ratio of the average
number of calls in the system in steady state of each class. Figure 20 shows the
average class ratio of each policy at t = 50. All policies are standardized with
the accept all policy. The values of each class is the di¤erence with the accept
all policy of the average number of calls in the system. The average number of

54

classes is calculated over 2000 runs. The length of the 95% con�dence interval
is almost the same for every policy and for every type of class, except the class
three of Kelly and the class two of the complete partitioning policy. The length
of the 95% con�dence interval of the di¤erence in the average number of calls
is for all classes at most 0:4; for the class three calls of Kelly it is 1:22 and for
the class two calls of the complete partitioning policy policy it is 0:92:

12.14

8.86

21.11

13.60

10.03

14.04

13.93

21.18

10.12

13.74

9.54

6.60

7.36
5.22

3.14

10.70

7.70

4.75

12.28

8.95

5.68

13.09

9.59

6.26

13.51

9.90

6.75

25

20

15

10

5

0

5

10

15

N
um

be
r o

f C
al

ls

Kelly Th CP Res 1 SLA 2 SLA 3 SLA 4 SLA 5 SLA

Average Number of Calls for eta=4 for 2000 runs (b)

Class 1 Class 2 Class 3

2.70

1.97

7.50

2.92

2.14

3.27

3.14

6.82

2.20

3.54

2.42

2.61

1.82
1.29

1.05

2.72

1.95

1.64

3.16

2.27

2.09

3.37

2.43

2.40

3.49

2.52

2.69

8

7

6

5

4

3

2

1

0

1

2

3

4

N
um

be
r o

f C
al

ls

Kelly Th CP Res 1 SLA 2 SLA 3 SLA 4 SLA 5 SLA

Average Number of Calls for eta=1 for 2000 runs (a)

Class 1 Class 2 Class 3

Figure 20: di¤erence average number of calls with the accept all policy

Each color has its own type of class. The policy with the highest number
of class one calls (the most pro�table calls) is the complete partitioning policy
policy. But this is by far not the policy with the highest reward rate, see �gure
17 for � = 1 and � = 4. This is due to the fact that the complete partitioning
policy has much less number of class two and three types. Also the threshold
policy has a very high number of class one and class two calls, but is also not
one of the best policies. This policy rejects to many class three calls. The best
policies, the one with the highest reward rates according to �gure 17 are the
reservation policy and the four steps look ahead policy. It is clear that they
have more class one and two calls and less class three calls than the accept all
policy. In fact they have more class one and class two calls than all the other
look ahead policies but less class three calls. It appears that they have the best
ratio between the di¤erent types of classes to get the highest reward rate.

8.4 Overview

In this section all the quantities of all the simulated policies are judged and
summed up in table 2. The table contains information about total reward in
the transient period, the reward rate in de steady state and the computational
complexity. The words "good","medium" and "bad" indicates how well the
policy perform compared to the other policies. The word medium is shorted to
"med".

55

Policy Transient Period Steady State Computation Complexity
Small � Large � Small � Large �

Kelly bad good bad good �
AA med med med bad �
Th med med med med O(C

3
m3 logm)

CP med med med med O(C
2
m)

Res good good good good O(C
2
m2)

SLA good good good good O(m(�bmax)
m+2)

Optimal � � good good O(4
(m+C)!
m!C! Cm)

Iye & Sig bad bad bad med �
(2)

For the threshold, complete partitioning policy, reservation and the look ahead
policy is used the best policy. For some policies the computational complexity
di¤ers when � increases. This is due to the fact that the ratio between the
call sizes and the capacity di¤er. In table 2 the computational complexity
is measured for � = 1. For increasing � the computational complexity also
increases for the threshold, complete partitioning policy, reservation, look ahead
and the optimal policy. Because when � increases, the call sizes decreases, see
(8). This is the same as increasing the total capacity C: So when for example
� doubles, the calls sizes should be divided into halves or the capacity doubles.
The � from the look ahead policies also depend on �, but in a very di¤erent way.
Unfortunately this is not calculated in this report. Practical the � should not
be larger than 5 with the usual parameters, see (65). But for other parameters
this is not excluded.

56

9 Conclusions

In this report the admission control problem in loss networks is studied. The
goal of this report is to develop a policy which performs well in both the transient
and the steady state period and that do not face the curse of dimensionality.
We have proposed a policy that supports several classes of calls and systems

with high capacity levels. First, the basic idea of the construction of the policy
is investigated and what this policy should achieve. Then the policy is compared
with all kinds of policies, like the optimal threshold policy, the optimal complete
partitioning policy, the reservation policy, the policy of Kelly and the policy
of Iyengar & Sigman. The policies are judged on three quantities, the average
reward in the transient period, the long-run revenue rate and the computational
complexity of the policy. All these quantities are measured on basis of numerical
experiments. We also considered a very width range of �, the limiting regimes.
The �rst quantity is the reward in the transient period. According to the

numerical experiments all the policies perform well in the transient period, only
the policy of Kelly and the policy of Iyengar & Sigman. These policies reject
too many calls in the beginning to achieve their desired class ratio.
The second quantity is the long-run revenue rates. The policies with the

best average reward rate are the reservation policy and the look ahead policies.
There is not one indisputable best look ahead policy, but this depends on �.
For small numbers of � (time scale) the � (the number of steps which the policy
looks ahead) should also be small and for large numbers of � the � should also be
larger. The optimal threshold policy, the optimal complete partitioning policy
and the policy of Kelly have less reward rates. The Kelly policy experiences
the most in�uence of �:The reward rates are relative better for large number of
�: An increasing � has no in�uence on the reward rate of the threshold policy
and the complete partitioning policy.
The last quantity is the computational complexity. The policy of Kelly

and the accept all policy are very easy to compute and does not depend on
the number of classes or the capacity. All the other policies depend on the
number of classes and the total amount of capacity. The threshold, complete
partitioning policy, reservation policy have all a polynomial complexity. The
complete partitioning policy has the lowest computational complexity and the
threshold policy has the highest computational complexity. The look ahead
policy and the optimal policy have exponential complexity, but the look ahead
policy does only in theory depends on the capacity. Practical, the number of
classes depends exponential on the largest call size for the optimal look ahead
policy. For systems with a large capacity and a small number of classes, the look
ahead policy needs less computational time than the policies with polynomial
complexity.
Overall, the optimal reservation and the optimal look ahead policy have the

best performance measures and ful�ll the demands of the problem formulation.

57

10 Recommendations

As discussed in section 5.7, all the look ahead policies make their decision based
on the same look ahead period. For the one step look ahead policy this is very
logic, but for the more steps look ahead policies this is a little contradictorily.
The one step look policy tries to reserve capacity for one pro�table class when
this is optimal by conditioning on looking one arrival ahead. The two steps
look ahead policy tries to reserve capacity for two pro�table classes when this
is optimal, but also by conditioning on looking one arrival ahead. It should be
more logic when the two steps look ahead is conditioning on looking two arrivals
ahead. The problem is that the computational complexity grows exponential
with the number of arrivals looking ahead. A policy which make their decision
by looking for every arrival an in�nite steps ahead is the optimal decision and
have according to section 5.8 a very high computational complexity.
An extension to press the computational complexity of the optimal policy

is the use classifying. The problem of the model for the optimal policy in this
report is the number of states, it expands very easily. By classifying the states,
we reduce the state space but make an approximation mistake. The main goal
here is also to develop a policy with a good balance between the approximation
mistake and the computational complexity.
Since the decision of the look ahead policy is very complex, it is very hard

to analyze. Therefore we are not be able to determine the optimal look ahead
policy, the optimal �: Once we know how this � depends on the system para-
meters, we could give the computational complexity of the optimal look ahead
policy in terms of the capacity C and the number of classes m.
The main idea of the look ahead policies is to predict a small period in the

future and make the decision based on the reward di¤erences for both decisions.
Another possibility is to compare the reward per capacity. One could wonder
if this leads to under-utilization of the system. But since the decision rule is
only of importance when the system has almost used the capacity, especially for
� = 1; it could be a good policy.

11 Appendix

11.1 Blocking Probabilities

To �nd the blocking probabilities we start with the most easy case, where only
two types of classes are in the system and all sizes of each class k call are equal.
In the next subsections the essay extends with more di¤erent types of classes
and in the next section one can �nd the blocking-probabilities for unequal sizes.

11.1.1 Model for Equal Sizes

According to the introduction of this essay, the goal is to develop an admission
control policy which maximizes the average reward rate based on looking one
step ahead. This model consists of a telephone network where di¤erent types of

58

calls want to make use of the network but can be rejected on arrival, even when
the capacity constraint is not violated. The system state n = (n1; n2; ::nm) is
the number of calls in the system of class i and m is number of di¤erent types
of calls. The idea is that the policy rejects a call on arrival if the average reward
rate, which is calculated with the blocking-probability, is higher than when the
policy accepts this arriving call. So the blocking-probability of a more pro�table
class depends on the system state, the arrival rate of the more pro�table class
and the di¤erence in reward rate. Although it is possible that more than just one
call leaves the system in the critical time period, this does not matter. Because
all size are equal, a more pro�table class can only be rejected if it arrives before
any other call leaves the system.

Two Classes Suppose the system that has only two types of calls where the
stochastic variable Xi is the inter-arrival time of class i. Assume without loss
of generality that a call arrives at t = 0, then the stochastic variable Xi denotes
the next arrival time. The calls were assumed to follow a Poisson process, so
the inter-arrival times are exponential and without loss of generality the rewards
could be ordered, r1 > r2: Now the goal is to determine the blocking-probability
of a more pro�table class (a class one call) in some time period after accepting a
class k call (in this section it is a class two call). This blocking can only happen
within time period T when two events occur

1. a more pro�table class i arrives in a time period T

2. a more pro�table class i arrives before another call has left the system in
a time period T

Denote for the probability of the �rst event P (ai; T) = P (Xi � T) and the
second P (Xi < min(Y1; Y 2)) = P (Xi < Ymin): In this case Xi = X1 because
only a class two call has a more pro�table class: A class one call has no other
pro�table classes.
To determine the probability that both events occur one can sustain by

determining the probability density function of the second event and integrat-
ing over the correct domain 21. The probability density function of the second
event can be found by �rst determining the probability density function of Ymin:
Because all Yi ,i 2 f1; 2; ::mg are exponential independent stochastic variables
with parameters �i, the stochastic variable Ymin = min(Y1; Y2) is again an ex-
ponential random variable [55] with parameter �1 + �2:The probability density
function ofX1is fx1(x1) = �1 exp(��1x1): The stochastic variablesX1and Y are
also independent, thus the simultaneous density is the product of the marginal
densities is

fx1;y(x1; y) = fx1(x1)fy(y) (67)

59

The probability that a class one call is blocked after accepting a class two call
is the same as if a class one calls arrives before any departure.

P (BL
n
1 ; T) = P (X1< Y min; X1< T) =

1Z
y=0

min(y;T)Z
x1=0

fx1(x1)fy(y)dx1dy(68)

=

min(y;T)Z
x1=0

�1 exp (��1x1)(�1+�2) exp (�y(�1+�2))dx1dy

=
�1(1� exp (�T (�1+�1+�2)))

�1+�1+�2

where the upper and lower bound of equation (68) follows from �gure ??. The
elaboration is in appendix 11.3 equation (109).

Figure 21: graph of the density function fx1;y1;y2

Notice that the actual departure rates also depend on the system state n.
The rate �1 is actually �1n1; but this is done due to a shorter notation. For mea-
suring the blocking-probability in a in�nite time period the same calculations
can be done

lim
T!1

P (BL2;1;1) =
�1

�1 + �1 + �2
(69)

Another way to determine P (X1 > Y1+Y2) is to directly solve the simultaneous
density of three of the stochastic variables.

60

P (TBL
n
2 ; T)= P (X 1< Y min; X1< T) =

1Z
y1=0

1Z
y2=0

min(T;min(y1;y2)Z
x1=0

fx1;y(x1; y1; y2)dx1dy1dy2(70)

lim
T!1

P (TBL
n
2 ; T)= P (X 1< Y min) =

1Z
y1=0

1Z
y2=0

min(y1;y2)Z
x1=0

fx1;y1;y2(x1; y1; y2)dx1dy1dy2

where the upper and lower bound from (70) follows from �gure 22. For further
details we refer to section 11.3 in equation (110).

Figure 22: 3D graph if the fx1y1y2

Both calculations uses the fact the minimum of two exponential stochastic
variables is again a exponential stochastic variable which parameter the sum
of the parameters. When the sizes are unequal then one cannot use this. So
another way to determine the same results

P (TBL
n
2 ; T) = P (X1< Y min; X1< T) (71)

=

1Z
y=0

P (X1< y;X1< T j Ymin= y)P (Y min= y)dy

=

1Z
y=0

(1� exp (�y(min (�1; T))))(�1+�2) exp (�y(�1+�2))dy

=
�1(1� exp (�T (�1+�1+�2)))

�1+�1+�2

Three Classes In this section there are three di¤erent types of calls. The goal
is to determine the same blocking-probabilities as found in the previous section.
The only di¤erence is that sometimes there is more than just one pro�table

61

class. If for example a class three call arrives, then the blocking-probability
that decides to reject or to accept this call has to reckon with class one calls
and class two calls.
First one will determine the blocking-probability when a class two arrives.

The same steps are done as in the previous section. Also the same independency
rules are applied here, thus the stochastic variable Y = min(Y1; Y2; Y3) is again
an exponential random variable with parameter �1 + �2 + �3

P (TBL
n
3 ; T) = P (X1< Y min; X1< T) =

1Z
y=0

min(y;T)Z
x1=0

fx1(x1)fy(y)dx1dy (72)

=

1Z
y=0

min(y;T)Z
x1=0

�1 exp (��1x1)(�1+�2+�3) exp (�y(�1+�2+�3))dx1dy

=
�1(1� exp (�T (�1+�1+�2+�3)))

�1+�1+�2+�3

or direct via

P (TBL
n
3 ; T) =

1Z
y3=0

1Z
y2=0

1Z
y1=0

min(T;y1+y2+y3)Z
x1=0

fy1;y2;y3;x1(x1; y1; y2; y3)dx1dy1dy2dy3

(73)
But for the P (BL3; T) not all the calculations are the same. Because when a
class three call arrives a3, then a �rst and second class call may not be rejected.
The total blocking-probability is the probability that a class one is rejected or
a class two call is rejected. Together the more pro�table classes have a �1 + �2
arrival rate. So

P (TBL
n
3 ; T) = P (X1< Y min; X1< T _ X2< Y min; X2< T) = P (Xmin< Y min; Xmin< T)(74)

= P (min (X1; X2) <min (Y 1; Y 2; Y 3);min (X1; X2) < T)

=

1Z
y=0

min(y;T)Z
x=0

(�1+�2) exp (�(�1+�2)x)(�1+�2+�3) exp (�y(�1+�2+�3))dxdy

=
(�1+�2)(1� exp (�T (�1+�2+�1+�2+�3)))

�1+�2+�1+�2+�3

Or

P (TBL
n
3 ; T) = P (X1< Y min; X1< T _ X2< Y min; X2< T) (75)

= P (X1< Y min; X1< T) + P (X2< Y min; X2< T)

�P (X1 < Ymin; X1< T;X2< Y min; X2< T) (76)

= P (BL3;1; T) + P (BL3;2; T)� P (X1< Y min; X1< T;X2< Y min; X2< T)

=
(�1+�2)(1� exp (�T (�1+�2+�1+�2+�3)))

�1+�2+�1+�2+�3

62

where the �nal step in equation (75) is worked out in section 11.3 equation
(111). For measuring the blocking-probability in a in�nite time period the same
calculations can be done

lim
T!1

P (TBL
n
3 ; T) = P (X1< Y min _ X2< Y min) = P (Xmin< Y min) (77)

=

1Z
y3=0

1Z
y2=0

1Z
y1=0

min(y1+y2+y3)Z
x=0

fy1;y2;y3;x(x; y1; y2; y3)dxdy1dy2dy3

=
�1+�2

�1+�2+�1+�2+�3

m Classes For m classes the same results are determined as in the previous
sections. The blocking-probability when a class two call arrives is

P (BL
n
2 ; T) = P (X1< Y min; X1< T) =

1Z
y=0

min(y;T)Z
x1=0

fx1(x1)fy(y)dx1dy (78)

1Z
y=0

min(y;T)Z
x1=0

�1 exp (��1x1)(
mX
i=1

�i) exp (�y(
mX
i=1

�i))dx1dy

=

�1(1� exp (�T (�1+
mP
i=1

�i)))

�1+
mP
i=1

�i

The blocking-probability of a more pro�table class j if the policy is in state n

P (BL
n
j ; T) = P (Xj< Y min; Xj< T) =

1Z
y=0

min(y;T)Z
xj=0

fxj (xj)fy(y)dxjdy (79)

=

1Z
y=0

min(y;T)Z
xj=0

�j exp (��jxj)(
mX
i=1

�i) exp (�y(
mX
i=1

�i))dxjdy

=

�j(1� exp (�T (�j+
mP
i=1

�i)))

�j+
mP
i=1

�i

and the blocking-probability of any more pro�table class after accepting a class
k call

63

P (TBL
n
k ; T) = P (X1< Y min; X1< T _ :: _Xk�1< Y min; Xk�1< T)(80)

= P (min
i=1;::;k�1

Xi< Y min; min
i=1;::;k�1

Xi< T)

=

k�1X
i=1

�i

! (1� exp (�T (k�1P
i=1

�i+
mP
i=1

�i)))

k�1P
i=1

�i+
mP
i=1

�i

and for a in�nite time period

lim
T!1

P (BLnj ; T) =
�j

�j +
mP
i=1

�i

(81)

lim
T!1

P (TBLnk ; T) =

k�1P
i=1

�i

k�1P
i=1

�i +
mP
i=1

�i

11.1.2 Model for Di¤erent Call Sizes

In the previous section every call from every class has the same size. In this
section the calls have only the same size if they are from the same class. Every
di¤erent class has di¤erent sizes of calls. The goal is again to maximize the
expected reward rate, where also the main goal is actually to minimize the
blocking probability of the more pro�table classes in the system.
The big di¤erence with the previous section where all calls have the same

size is that the blocking-probability can not be determined by only looking to
the �rst event that happened. It can happen that a call is �nished before a
more pro�table class arrives, but can not be accepted because the capacity
constraint is violated. Therefore the events that must happen for determining
the blocking-probability changes.

Two Classes The goal of this model is to determine the blocking-probability
of a more pro�table class in a certain time period after accepting an arriving
class k call. The time period could be �nite or in�nite. If the time period is
�nite then two events must happen before a more pro�table class is rejected

1. A more pro�table class i arrives in the time period T

2. There is not enough capacity bi at the arrival moment of a more pro�table
class i

When the time period is in�nite the �rst event always happened, because
the inter-arrival time has an exponential distribution. First one determines an

64

expression that a more pro�table class j arrives at time t.

fx1(x1) = �1 exp(��1x1) (82)

Second one determines an expression for the probability that in a time period
T 2 (0; t) there are k units of capacity has become available. When there is only
one type of class and the inter-arrival times are exponential then the number of
units capacity that has become available at time t can be modelled as a Poisson
Process. Assuming that the rate is constant when there are enough calls in the
system

P (N1(t)= kb 1) =
(�1t)

k

k!
exp (��1t) (83)

P (N1(t)� k) =
bk=b1cX
l1=0

(�1t)
l1

l1!
exp (��1t)

P (N1(t)� k) =
1X

l1=dk=b1e

(�1t)
l1

l1!
exp (��1t)

P (N1(t)< k) = 1�
1X

l1=dk=b1e

(�1t)
l1

l1!
exp (��1t)

For two type of calls

P (N1(t) +N2(t) < k) = 1�
1X
l1=0

1X
l2=

l
k�b1l1

b2

m
(�1t)

l1

l1!
exp (��1t)

(�2t)
l2

l2!
exp (��2t)

(84)
Unfortunately the events are not independent. Therefore one can use the theory
[54] about the probability that two events happen.

P (X 2 A; Y 2 B) =
Z
A

P (Y 2 BjX = x)dF x(x)dx (85)

Applying this theory to our problem, denote by P (X 2 A) = P (X1 � T) and
by P (Y 2 B) = P (N1(t) +N2(t) < b1) then

65

P (BL
n
2 ; T) = P (X1� T;N1(t) +N2(t) < b1) (86)

=

TZ
t=0

P (N1(t) +N2(t) < b1 j t)fx1(t)dt (87)

=

TZ
t=0

0B@1� 1X
l1=0

1X
l2=

l
b1�b1l1

b2

m
(�1t)

l1

l1!
exp(��1t)

(�2t)
l2

l2!
exp(��2t)

1CA�1 exp(��1t)dt
=1-exp(-�1T)-

1X
l1=0

1X
l2=

l
b1�b1l1

b2

m
�
�1(�1)

l1(�2)
l2

l1!l2!

�
0BBBB@
(l1+l2)!-

l1+l2X
i=0

(l1+l2)!
i!

exp(�T (�1 + �2 + �1))(T (�1 + �2 + �1))i

(�1+�2+�1)
l1+l2+1

1CCCCA
One can �nd the derivation of 86 in section 11.3 equation (112). For a in�nite
time period

lim
T!1

P (BL
n
2 ; T) = 1�

1X
l1=0

1X
l2=

l
b1�b1l1

b2

m
�1(�1)

l1(�2)
l2

l1!l2!

(l1+l2)!

(�1+�2+�1)
l1+l2+1

(88)
where one can �nd the derivation of (88) in section 11.3 equation (??).

Three Classes When there are three types of calls in the system, there are
some changes with the previous section. First assume that a class two call
arrives. The blocking-probability can be determined as the same as in the
previous section but now for three types of calls.

P (BL
n
2 ; T)= P (X 1� T;N1(t) +N2(t) +N3(t) < b1)=

TZ
t=0

P (N1(t) +N2(t) +N3(t) < b1 j t)fx1(t)dt(89)

=
TZ

t=0

0BBBBB@1 �
1X

l1=0

1X
l2=0

1X
l3=

�
b1�b1l1�l2b2

b3

� (�1t)
l1

l1!
exp(��1t)

(�2t)
l2

l2!
exp(��2t)

(�3t)
l3

l3!
exp(��3t)

1CCCCCA�1 exp(��1t)dt

0BBBBB@
(l1+l2+l3)!�

l1+l2+l3X
i=0

(l1+l2+l3)!
i!

exp (�T (�1+�2+�3+�1))(T (�1+�2+�3+�1))
i

(�1+�2+�3+�1)
l1+l2+l3+1

1CCCCCA

66

and for a in�nite time period

lim
T!1

P (BL
n
2 ; T)=1-

1X
l1=0

1X
l2=0

1X
l3=

l
b1�b1n1�l2n2

b3

m
�1(�1)

l1(�2)
l2(�3t)

l3

l1!l2!l3!

(l1 + l2 + l3)!

(�1 + �2 + �3 + �1)
l1+l2+l3+1

(90)
The probability that after a class three arrival a more pro�table class will be
rejected because there is not enough capacity left depends on the class one and
class two arrivals. The blocking-probability that a class three call rejects any
pro�table class is the probability that a class one call or a class two call will be
rejected in a certain time period.

P (BL
n
3 ; T)= P (X 1� T;N1(t) +N2(t) +N3(t) < b1_X2� T;N1(t) +N2(t) +N3(t) < b2) (91)

= P (X1� T;N1(t) +N2(t) +N3(t) < b1) + P (X2� T;N1(t) +N2(t) +N3(t) < b2)�
P (max (X1; X2)� T;N 1(t) +N2(t) +N3(t) <min (b1; b2))

= P (BL3;1; T) + P (BL3;2; T)� P (max (X1; X2) � T;N1(t) +N2(t) +N3(t) <min (b1; b2))

=

1Z
t=0

P (N1(t) +N2(t) +N3(t) � b1 j t)fx1(t)dt+
1Z

t=0

P (N1(t) +N2(t) +N3(t) � b2 j t)fx2(t)dt

One can �nd a derivation of equation (91) in section 11.3 equation (113).

m Classes For m types the blocking-probability of a class j call in state n is

P (BLnj ; T) = P (
mX
i=1

Ni(t) < bj ; Xj� T) =
TZ

t=0

P (
mX
i=1

Ni(t) < bj j t)fxj (t)dt (92)

=1-exp(-�jT)-
1X
l1=0

..
1X

lm=

�
bj�(c�n�b)�b1l1�::�bm�1lm�1

bm

�
�
�j(�1)

l1 ::(�m)
lm

l1!::lm!

�
0BBBBB@
(l1+::+ lm)!�

l1+::+lmX
i=0

(l1+::+lm)!
i!

exp (�T (�1+::+ �m+�j))(T (�1+::+ �m+�j))
i

(�1+::+ �m+�j)
l1+::+lm+1

1CCCCCA
And in case of m classes of calls, we want to know the probability that none of
the more pro�table classes will be rejected. And in state n when a call arrives
then the blocking-probability of a more pro�table class becomes

P (TBL
n
k ; T) = P (

mX
i=1

Ni(t) < b1; X1� T _::_
mX
i=1

Ni(t) � bk�1; Xk�1� T)(93)

= P (BLn1) _ P (BLn2) _ P (BLn3) _ :: _ P (BLnk) (94)

this can be calculated with the general rule of sum. (number of terms is 2m�1)

67

11.1.3 Blocking Probability with Di¤erent Call Sizes with Decreas-
ing Rate of the Departures

The assumption that the rate is unchanged whenever a call leaves the system
can only be negligible when there are enough calls in the system. But this
is not always the case. Suppose after accepting a class two call more than
one departures are necessary to accept a more pro�table class. Suppose four
departures of class three are necessary to have enough capacity available to
accept this class one call. Then the rate for the �rst departure would be four
times �3: But the second departure has only a rate of three times �3 and the
last departures has a rate of one time �3: So the blocking-probability is higher
than when assuming the rate is constant. Therefore the blocking-probability is
determined with a decreasing rate of the departures.
This section starts with some de�nitions and notation to develop an expres-

sion for the numbers of calls that has been departed in probability in a certain
time period. Finally the blocking-probability for m classes is determined.

Figure 23: Example of inter-arrival times of the departures where Ti is the
inter-arrival time

Denote with Ti the inter-arrival time of the i-th departure and denote with
N(t) the number of departures from all the classes in the system, see �gure 23.
The probability that three departures has occurred before time t is the same as
one minus the probability that the sum of three inter-arrival times are less than
t.

P (N(t) � 2) = 1� P (T 1+T 2+T 3< t) (95)

P (N(t) � k) = 1� P (T 1+::+ T k�1< t)

P (N(t) < k) = 1� P (T 1+::+ T k< t)

this still holds when the counting process N(t) has a decreasing rate. Every
time when a departure occurred the rate is decreased. This is the same when
T2 has a less mean inter-arrival time as T1: All the T 0is have an exponential
distribution and T1 with mean ni�i; T2 with mean (ni � 1)�i and so on:

68

This subsection starts with only one type of class is in the system we want
an expression for the probability that two departures has occurred before time
t:

P (N(t)> 1) (96)

= 1� P (N(t) � 1) = P (T 1+T 2< t) = P (T 1+T 2< tjT 1= u)P (T 1= u)

=

tZ
u=0

P (T 2< t� u)P (T 1= u)du

= 1� exp (��1(n1�1))t+ (n1�1) exp (�n1�1t)
P (N(t)< 1) = exp (��1(n1�1))t+ (n1�1) exp (�n1�1t)

One can �nd a derivation of equation (96) in section 11.3 equation (114). The
probability that three departures occurred before time t

P (N(t) >2) (97)

= 1� P (N(t) � 2) = P (T 1+T 2+T 3< t)
= P (T 1+T 2+T 3< tjT 1= u1; T 2= u2)P (T 1= u1; T 2= u2)

=

tZ
u1=0

t�u1Z
u2=0

P (T 2< t� u1�u2)P (T 1= u1)P (T 2= u2)du1du2

= 1�1
2
n1(n1�1) exp (�(n1�2)�1t) + n1(n1�2) exp (�(n1�1)�1t)

�(1+1
2
n21�

3

2
n1) exp (�1n1t)

P (N(t)< 2) =
1

2
n1(n1�1) exp (�(n1�2)�1t) + n1(n1�2) exp (�(n1�1)�1t)

�(1+1
2
n21�

3

2
n1) exp (�1n1t)

the probability that k departures occurred before time t

P (N(t)> k) (98)

= 1� P (N(t) � k) = P (T 1+::+ T k< t)
= P (T 1+::+ T k< tjT 1= u1; ::; T k= uk)P (T 1= u1; ::; T k= uk)

=

tZ
u1=0

::

t�u1�::�uk�1Z
uk=0

P (T k< t� u1�::� uk)P (T 1= u1)::P (T k= uk)du1::duk

=

tZ
u1=0

::

t�u1�::�uk�1Z
uk=0

(1� exp (�(n1�k + 1)(t� u1�::� uk))

n1�1 exp (�n1�1u1)::(n1�k + 2)�1 exp (�(nk�k + 2)�1)du1::duk
and for the �nal expression is not a nice closed form. In case of over 20 calls
the di¤erence between the decreasing rate and the constant rate is less than

69

1% for the probability that two calls has left the system. Therefore we use the
assumption that the rate is constant in examples and simulations with more
than 20 calls.

11.2 Policies

All the policies which could not be simulated or have too many assumptions are
mentioned and sometimes discussed in this section.

11.2.1 Critical to Critical

In order to �nd the optimal �k;n we choose to maximize the average reward
that is gained per unit time till the system state is again in a critical state. In
this section one has to assume that the call sizes are all the same. A model for
di¤erent sizes is too hard to calculate.
If the policy accepts the arrival then the time till the next critical state is

the time till a call departures. When the call is rejected, the next event could
be an arrival or a departure. The probability that the �rst event is an class j
(with j < k) arrival is precisely the blocking-probability for a class j call. The
critical state is reached again when a call departures. When the �rst event is
a departure the system reaches a non critical state. Now two possible options
occur. One goes back to the original de�nition of our policies which that in
a non critical state any call will be accepted. The other option is that if the
policy rejects a class k call in the critical state it also reject a class k call in
the state with one unit capacity more available. Both options are considered,
where the �rst option is called Critical to Critical Original and second Critical
to Critical New. If in this state also an arrival or a departure could happen as
second event. When the second event is an arrival the system reaches a critical
state again and the time period is over. When another call departures the policy
gains nothing and the time period is over.
Figure 24 shows the possible transitions, with only two types of class, equal

unit sizes and a maximum capacity of three units. The most pro�table class is
class one. So a class one call will always be accepted if the capacity constraint
is not violated. The class two calls are always accepted if the system is not in
a critical state. The critical states are
� = f(2; 0); (1; 1); (0; 2)g Suppose the
system is in the critical state (2; 0) and a class two arrives. When the policy
accepts this arriving class the system state reaches (2; 1) and could go to (1; 1).
When the policy reject this class two call then a the more pro�table class could
arrives a the system goes to state (3; 0):When a departure occurs the system is
again in (2; 0) and the time period is over. When the policy rejects this call and
the �rst event is a departure, the system state goes to (1; 0): After an arrival
the system goes again to a critical state, suppose (1; 1). But when the system is
in (1; 0) and again a departure occurs, the system is goes to the state (0; 0) and
we consider that the time period is over and no reward has been gained. These
are all the possibilities that can occur.

70

Figure 24: Example of a Markov Chain with type of classes

This policy still has the same problems as in the previous policies. If the
policy rejects a class k call, does it also rejects a class k � 1 call and so on.
Hence we have to maximize over all the possibilities whether to reject or accept
all the class k � 1 calls.
When a class k call arrives and the policy C2CO or C2CN accepts then it

gains per unit time
rk
n � � (99)

and when the policy C2CO rejects this class k call it gains per unit time

max
j2f1;2;::k�1g

8>>><>>>:
jP
i=1

P (BL
n
j;i)ri+P (1�BL

n
j)

mP
p=1

np�p
n��

mP
i=1

P (BL
n�ep
j;i)ri

E (AjBm)
n
min+

jP
i=1

P (BL
n
j;i)EBi+P (1�BL

n
j)

mP
p=1

np�p
n�� E (A

mBm)
n�ep
min

9>>>=>>>;
(100)

with j the number of classes which are accepted on arrival. The expected service
time of a class k call EBi = 1

ni�i
and E

�
AjBm

�n
min

= 1
�1+::+�j+n1�1+::nm�m

; EAi

= 1
�i
is the expected arrival time.
For the policy C2CN

max
j2f1;2;::k�1g

8>>>><>>>>:
jP
i=1

P (BL

n
j;i)ri+P (1�BL

n
j)

mP
p=1

np�p
n�� P (BL

n�ep
j;i)ri

!

E (AjBm)
n
min+

jP
i=1

P (BL
n
j;i)EBi+P (1�BL

n
j)

mP
p=1

np�p
n�� E (A

jBm)
n�ep
min

9>>>>=>>>>;
(101)

For unequal size is to hard, because the available capacity is not always
enough after a departure for a more pro�table class with di¤erent sizes. If the
policy accepts a class k arrival then the time till the next critical state is when
bk units of size departures. When the call is rejected, the next critical state
is when a more pro�table class j arrives before bj units of size of other call
departures and after bj units of size departures again. But the possibilities are
way too many for a fast calculation.

71

11.2.2 Threshold Dependency Policy

The threshold � is assumed to be dependent on the class call arrival and the
system state. One could also assume that the threshold does not depend on the
state of the system. In this case there is only one threshold for each di¤erent
class. This means that �k could be between zero and one. In this case the policy
accepts an arriving class k call if the blocking-probability of any more pro�table
class is below the threshold �k: In this manner the policy is minimizing the
blocking-probability of the most pro�table classes. This approach founds its
applications where a considerably penalty must be paid when the policy rejects
one the most pro�table classes. In the next sections we consider only the cases
that the thresholds does depend on the system state, �k:n:
In the introduction section is considered that with the blocking-probability

the average reward rate can be determined. The time period in which we deter-
mine the reward rate is based on looking one step ahead. The time period for
the calculation of the blocking-probability should be logically in�nite, because
an arrival or departure could be in any point in time. But since the average
reward rate is determined based on looking one step ahead one could also as-
sume to calculate the blocking-probability based on an time period of looking
one step ahead. Another motivation to choose a �nite time period was that the
calculations should become more easy and that the assumption made about the
rate of departures is unchanged becomes more negligible. But when this certain
time period is in�nite, the calculations do not change, instead sometimes they
become more easier.
The probability of blocking tends to a �xed value when the time period tends

to in�nity, because the probability density function of the exponential distribu-
tion is decreasing in time and the available amount of capacity is increasing in
time.
In order to compare the decisions fairly, one need a good time period in

which the rewards are gained. The most fair time period for comparison is the
time after the decision is made till the system state returns to the same state
for both decisions. This means that when a decision is made the system state
could go from n ! n + ei or to stay in n and when the system is in the same
state again the time period is over. But to determine the average reward that
is gained in such a time period is very hard to calculate. Therefore we choose
some other time periods in which the policy gains the rewards. The start time
of the period is always the moment at the decision epoch.
In order to maximize the total reward gained from the accepted calls one

can apply the policy that is achieved in the previous sections.

dk(n) = 1, (n+ ek)�b � min
fi=1;2;::;k�1)

Ci \ P (BLk; T) � �k (102)

72

11.2.3 Look Ahead Policy (Equal Size)

In order to make the optimal decision, we choose to maximize the average reward
that is gained per unit time. The average reward rate can be gained by the �rst
two arrivals only, which would be accepted if the capacity constraint is not
violated. The time period in which the reward can be gained starts at the
decision epoch till the accepted arrivals have been departed.
If the policy rejects the arriving call then the next arrival could always

be accepted. The problem here is that the policy does not know if classes
2; 3; ::; k + 1 must be rejected too. Therefore one has to split this problem in
k � 1 smaller problems. First we pretend that we accept all classes up to class
k�1 and determine the average reward rate. Then one set class k�1 to always
reject and determine again the average reward rate. In this way one can �nd
the maximum average reward rate after rejecting the arriving class k call.
Still the policy can always accepts all the classes in a non critical state, case

2.a or rejects all the classes j; ::m in a non critical state, case 2.b. In case 2.a
all the sizes are equal.
So the pro�t that is gained can be determined for each policy in m�k+k�1

steps. Thus if a class k call arrives in critical state n then the optimal average
reward rate when policy 2.a accepts is with equal sizes is the nominator

rk+(1� P (BLn+ekj ;1))

mX
p=1

(n+ ek)p�p

(n+ ek) � �

jX
i=1

P (BL
n+ek�ep
j;i ;1)ri+

mX
p=1

(n+ ek)p�p

(n+ ek) � �
(1� P (BLn+ek�epj ;1))

!
mX
i=1

�i
�1+::+ �m

ri

!
(103)

and the denominator

Emax

8>>><>>>:Bk;
�
AjBm

�n+ek
min

+(1� P (BLn+ekj ;1))

0BBB@
mP
p=1

(n+ek)p�p
(n+ek)��

��
AjBm

�n+ek�ep
min

+
jP
i=1

P (BL
n+ek�ep
j;i ;1)Bi

�
+

mP
p=1

(n+ek)p�p
(n+ek)��

(1� P (BLn+ek�epj ;1))
!

mP
q=1

mP
p=1

(n+ek�ep)p�p
(n+ek�ep)��

�
(AmBm)

n+ek�ep�eq
min +

mP
i=1

�i
�1+::+�m

Bi

�
1CCCA
9>>>=>>>;

(104)
where we have to take maxj2fm;m�1;::;kgof both parts. The P (BLnj ;1))

is probability that the �rst arrival is blocked in a in�nite time period be-
cause the capacity constraint is violated. One minus P (BLnj ;1)) is the prob-
ability that the �rst arrival is not blocked because of the capacity constraint
or the probability that �rst event is a departure. The term E

�
AjBm

�n
min

= 1
�1+::+�j+n�� ; which means the average minimum time before any arrival

of the classes 1; ::; j or any departure for the classes 1; ::;m occurs. And where
P (BL

n+ek�ep
j;i ;1) = P (BLn+ekj ;1) �i

�1+::+�j
Nominator:

1. Gains rk units because of the acceptance of the arrival

2. The policy gains r1; ::rj if the �rst event is a departure (need some capac-
ity) then the arrival of the accepting arrivals takes place

73

3. The policy gains r1; ::rm if the �rst two events are departures (not in
critical state anymore) then any arrival will be accepted

Denominator:

1. If the �rst arrival has the longest service time needed then this is the cycle
length

2. if the second arrival has the longest service time plus time till arrival is
longer then the �rst arrival then this is the cycle length

3. if (2) then the system has to wait till the �rst event (arrival of the classes
k + 1; ::;m are not events, these are not seen by the system)

4. If �rst event is arrival then if blocked cycle length is over if accepted cycle
length is then till arrival departures

5. if �rst event is departure then the system has to wait till next event (arrival
of the classes k+1; ::;m are not events, these are not seen by the system)

6. if (5) and second event is arrival then the system has to wait till its de-
parture and cycle length is over

7. if (5) and second event is departure then the system has to wait till any
arrival and its departure and cycle length is over

The cycle length can be calculated with the results from 105

E[max (X;Y)] = E[XjX > Y]P (X > Y) + E[Y jY > X]P (Y > X) (105)

where the stochastic variable X denotes the service time of the �rst accepted
arrival and Y of the second one. Equation (105) is worked out in section 11.3
equation (??). Note that Y is a mix of an Erlang distribution and a hyper
exponential distribution. Denote by

�
AjBm

�n+ek
min

= Z; (1�P (BLn+ekj ;1) = p;
then Y can be expressed in terms of p; Z and Bi: But when n is large enough,
then one departure does not change the rate of the other departures, hence it
can be neglected.
and when the policy rejects a class k call it does the same as case 1.
and when policy 1.a equal size rejects a class k call

max
j2fk�1;k�2;::;1g

8>>><>>>:
(1� P (BLnk ;1))

jP
i=1

�i
�1+::+�j

ri+P (BL
n
k ;1)

mP
i=1

�i
�1+::+�m

ri

E (AjBm)min+
�1+::+�j

�1+::+�j+�1+::+�m

jP
i=1

�i
�1+::+�j

EBi+
�1+::+�m

�1+::+�j+�1+::+�m

�
(EA

m
minjEA1> EB

m
min; ::; EAj> EB

m
min)+

mP
i=1

�i
�1+::+�m

EBi

�
9>>>=>>>;

(106)
where the nominator denotes the average reward and the denominator denotes
the average time period. This result needs some clari�cation. First the nom-
inator denotes the average reward that is gained by the policy if it rejects all
classes j 2 fk � 1; k � 2; ::; 1g:

74

For unequal sizes the cycle length must end when the �rst call arrives (after
rejection).

mP
i=1

�i
�1+::�m

(1� P (BLni)) ri

EAnmin+
mP
i=1

�i
�1+::�m

(1� P (BLni))EBi
(107)

E [min(X1; X2; X3)jX1 > Y;X2 > Y] = (108)

E [X1jX1 > Y;X2 > Y;X1 < min(X2; X3)]P (X1 < min (X2; X3)jX1> Y;X2> Y)

+E [X2jX1 > Y;X2 > Y;X2 < min(X1; X3)]P (X2 < min (X1; X3)jX1> Y;X2> Y)

+E [X3jX1 > Y;X2 > Y;X3 < min(X1; X2)]P (X3 < min (X1; X2)jX1> Y;X2> Y)

11.3 Elaborations

The elaboration of equation (??)

=

1Z
y=0

min(y;T)Z
x1=0

�1 exp (��1x1)(�1+�2) exp (�y(�1+�2))dx1dy (109)

=

1Z
y=0

(� exp ((��1min (y; T)) + 1)(�1+�2) exp (�y(�1+�2))dy

=

TZ
y=0

(�1+�2) exp (�y(�1+�2)� (�1+�2) exp (�y(�1+�2+�1))dy

+

1Z
y=T

(� exp (��1T) + 1)(�1+�2) exp (�y(�1+�2))dy

= � exp (�T (�1+�2)+
(�1 + �2)

(�1 + �1 + �2)
exp (�T (�1+�2+�1)) + 1�

(�1 + �2)

(�1 + �1 + �2)

+ exp (��1T)) exp (�T (�1+�2))+ exp (�T (�1+�2))

= exp (�T (�1+�2+�1))
�

(�1 + �2)

(�1 + �1 + �2)
+ 1

�
+
(�1 + �1 + �2)

(�1 + �1 + �2)
� (�1 + �2)

(�1 + �1 + �2)

=
�1(1� exp(�T ((�1 + �1 + �2)

(�1 + �1 + �2)

The elaboration of equation (??)

75

1Z
y1=0

1Z
y2=0

min(T;min(y1;y2)Z
x1=0

fx1;y(x1; y1; y2)dx1dy1dy2 (110)

=

1Z
y1=0

1Z
y2=0

min(T;min(y1;y2)Z
x1=0

�1 exp (��1x1)�1 exp (�y1�1)�2 exp (�y2�2)dx1dy1dy2

=

1Z
y1=0

1Z
y2=0

[� exp(��1min(T; y1; y2) + 1]�1 exp (�y1�1)�2 exp (�y2�2)dy1dy2

=

TZ
y1=0

y1Z
y2=0

(1� exp (��1y2)�1 exp (�y1�1)�2 exp (�y2�2)dy1dy2

+

TZ
y2=0

y2Z
y1=0

(1� exp (��1y1)�1 exp (�y1�1)�2 exp (�y2�2)dy1dy2

+

1Z
y2=T

1Z
y1=T

(1� exp (��1T)�1 exp (�y1�1)�2 exp (�y2�2)dy1dy2

The elaboration of 75

= P (X1< Y min; X1< T) + P (X2< Y min; X2< T)� P (X1< Y min; X1< T;X2< Y min; X2< T) (111)

=

1Z
y=0

P (X1< y;X1< T j Ymin= y)dy+
1Z

y=0

P (X2< y;X2< T j Ymin= y)dy�
1Z

y=0

P (max (X1; X2) <min (y; T) j Ymin= y)dy

=

1Z
y=0

(1� exp (�y(min (�1; T))))(�1+�2) exp (�y(�1+�2))dy+
1Z

y=0

(1� exp (�y(min (�2; T))))(�1+�2) exp (�y(�1+�2))dy

�
1Z

y=0

(1� exp (�y(min (�1; T))))(1� exp (�y(min (�2; T))))(�1+�2) exp (�y(�1+�2))dy

=
(�1 + �2)(1� exp(�T (�1 + �2 + �1 + �2 + �3)))

�1 + �2 + �1 + �2 + �3

76

The elaboration of equation (86)

TZ
t=0

0B@1� 1X
l1=0

1X
l2=

l
k�b1l1

b2

m
(�1t)

l1

l1!
exp (��1t)

(�2t)
l2

l2!
exp (��2t)

1CA�1 exp (��1t)dt (112)

=

TZ
t=0

(�1 exp(��1t)) dt�
1X
l1=0

1X
l2=

l
k�b1l1

b2

m
�1(�1)

l1(�2)
l2

l1!l2!

TZ
t=0

�
tl1+l2 exp(�t(�1 + �2 + �1))

�
dt

= 1� exp (��1T)�
1X
l1=0

1X
l2=

l
k�b1l1

b2

m

�1(�1)

l1(�2)
l2

l1!l2!

!
0BBBBB@
(l1+l2)!�

l1+l2X
i=0

(l1+l2)!
i! exp (�T (�1+�2+�1))(T (�1+�2+�1))

i

(�1+�2+�1)
l1+l2+1

1CCCCCA
And for in�nite time

=

1Z
t=0

(�1 exp(��1t)) dt�
1X
l1=0

1X
l2=

l
b1�b1l1

b2

m
�1(�1)

l1(�2)
l2

l1!l2!

1Z
t=0

�
tl1+l2 exp(�t(�1 + �2 + �1))

�
dt

= 1�
1X
l1=0

1X
l2=

l
b1�b1l1

b2

m
�1(�1)

l1(�2)
l2

l1!l2!

(l1 + l2)!

(�1 + �2 + �1)
l1+l2+1

The elaboration of equation (91)

P (X1 � T;N1(t) +N2(t) +N3(t) < b1) + P (X2� T;N1(t) +N2(t) +N3(t) < b2)� P (X1� T;N1(t) +N2(t) +N3(t) < b1; X2� T;N1(t) +N2(t) +N3(t) < b2)(113)

= P (X1� T;N1(t) +N2(t) +N3(t) < b1) + P (X2� T;N1(t) +N2(t) +N3(t) < b2)� P (max (X1; X2) � T;N1(t) +N2(t) +N3(t) <min (b1; b2))

=

TZ
t=0

P (N1(t) +N2(t) +N3(t) < b1) j t)fx1(t)dt+
TZ

t=0

P (N1(t) +N2(t) +N3(t) < b2 j t)f(t)dt�
TZ

t=0

P (N1(t) +N2(t) +N3(t) <min (b1; b2) j t)fmin(x1;x2)(t)dt

�
TZ

t=0

0B@1� 1X
l1=0

1X
l2=

l
min(b1;b2)�b1l1

b2

m
(�1t)

l1

l1!
exp (��1t)

(�2t)
l2

l2!
exp (��2t)

1CA�1 exp (��1t)(1� exp (��2t)) + �2(1� exp (��1t)) exp (��2t)dt

The elaboration of a �i is the arrival rate of the more pro�table class given
that it has arrived before any other departure (j classes) is

77

=

1Z
y=0

0@ mX
j=1

�j exp(�
mX
j=1

�jy)

1A�� (1 + �ixi) exp(��ixi)
�i

�y
0

dy

=

1Z
y=0

0@ mX
j=1

�j exp(�
mX
j=1

�jy)

1A�1� exp(��iy)� �iy exp(��iy)
�i

�
dy

=

1Z
y=0

mP
j=1

�j

�i

0@exp(� mX
j=1

�jy)� exp(�

0@�i + mX
j=1

�j

1A y)� �iy exp(�
0@�i + mX

j=1

�j

1A y)
1A dy

=

mP
j=1

�j

�i

2666664�
exp (�

mP
j=1

�jy)

mP
j=1

�j

+

exp (�

�i+

mP
j=1

�j

!
y)

�i+
mP
j=1

�j

+

�i(
mP
j=1

�jy + 1 + �iy) exp (�

�i+

mP
j=1

�j

!
y)

�i+
mP
j=1

�j

!2
3777775
y=1

y=0

=

mP
j=1

�j

�i

2666664�0+
1

mP
j=1

�j

� 1

�i+
mP
j=1

�j

� �i
�i+

mP
j=1

�j

!2
3777775 =

1

�i
�

mP
j=1

�j

(�i+
mP
j=1

�j)�i

�
�i

mP
j=1

�j

�i

�i+

mP
j=1

�j

!2

=

�i +

mP
j=1

�j

!2
�

mP
j=1

�j

�i +

mP
j=1

�j

!
� �i

mP
j=1

�j

�i

�i +

mP
j=1

�j

!2

=

�2i + 2�i
mP
j=1

�j +

mP
j=1

�j

!2
� �i

mP
j=1

�j �

mP
j=1

�j

!2
� �i

mP
j=1

�j

�i

�i +

mP
j=1

�j

!2

=
�2i

�i

�i +

mP
j=1

�j

!2 = �i
�i +

mP
j=1

�j

!2
elaboration of

78

P (T1 + T2 < t) = P (T1 + T2 < tjT1 = s)P (T1 = s) (114)

=

tZ
s=0

P (T2 < t� s)P (T1 = s)ds

=

tZ
s=0

(1� exp(�(n1 � 1)�1)(t� s))n1�1 exp((�n1�1)s)ds

=

tZ
s=0

(1� exp(�(n1 � 1)�1t) exp((n1 � 1)�1s)))n1�1 exp(�n1�1s)ds

=

tZ
s=0

n1�1 exp(�n1�1s)� exp(�(n1 � 1)�1t) exp((n1 � 1)�1 � (n1�1))s)ds

=

tZ
s=0

n1�1 exp(�n1�1s)� exp(�(n1 � 1)�1t) exp(��1s)ds

= 1� exp(��1(n1 � 1))t+ (n1 � 1) exp(�n1�1t)

elaboration of (105)

EmaxfX;Y g = (115)
1Z

y=0

1Z
x=0

max(x; y)fx(x)fy(y)dxdy

=

1Z
y=0

yZ
x=0

y� exp(��x)� exp(��y)dxdy +
1Z

y=0

1Z
y=x

x� exp(��x)� exp(��y)dxdy

=

1Z
y=0

[y (1� exp(��x))� exp(��y)]x=yx=0 dy +

1Z
y=0

[x (1� exp(��x))� exp(��y)]x=1x=y dy

=

1Z
y=0

[y (1� exp(��y))� exp(��y)] dy +
1Z

y=0

� [y (1� exp(��y))� exp(��y)] dy

=
�2 + �2 + ��

��(�+ �)

79

11.4 Codes

11.4.1 Maple Code

11.4.2 C++ code

11.4.3 Excel Sheets

80

12 References

References

[1] control for broadband services: Stochastic knapsack with advance infor-
mation (1996) European Journal of Operational Research, 89 (1-2), pp.
127-134

[2] Chlebus, E., A. Coyle, W. Henderson Mean-value Analysis for Examining
Call Admission Control Thresholds in Multi-service Networks (1994) Con-
ference/Journal: 14th International Teletra¢ c Congress, Antibes Juan Les
Pins, France

[3] Choi, Jihyuk, Kwon, Taekyoung, Choi, YangheeAltman, E., Jiménez, T.,
Koole, G. On optimal call admission control in a resource-sharing system
(2001) IEEE Transactions on Communications 49 (9), pp. 1659-1668

[4] Beigy, H., Meybodi, M.R. A general call admission policy for next gen-
eration wireless networks (2005) Computer Communications 28 (16), pp.
1798-1813

[5] Beigy, H., Meybodi, M.R A two-threshold guard channel scheme for min-
imizing blocking probability in communication networks (2004) Interna-
tional Journal of Engineering, Transactions B: Applications 17 (3), pp.
245-262

[6] Beigy, H., Meybodi, M.R. An adaptive call admission algorithm for cellular
networks (2005) Computers and Electrical Engineering 31 (2), pp. 132-151

[7] Beigy, H., Meybodi, M.R. Multi-threshold Guard Channel Policy for Next
Generation Wireless Networks (2003) Lecture Notes in Computer Science,
2869, pp. 755-762.

[8] Bertsimas, D., Chryssikou, T. Bounds and policies for dynamic routing in
loss networks (1999) Operations Research, 47 (3), pp. 379-394.

[9] Chen, Ing-Ray, Chen, Chi-Ming Threshold-Based Admission Control Poli-
cies for Multimedia Servers (1996) Conference/Journal: Computer Journal
39

[10] Chiu S.Y., Lu L., Cox Jr. L.A. Optimal access , Naghshineh, Mahmoud
Call admission control for multimedia services in mobile cellular networks:
A Markov decision approach (2000) IEEE Symposium on Computers and
Communications - Proceedings, pp. 594-599

[11] Cosyn, J., Sigman, K. Stochastic Networks: Admission and Routing Using
Penalty Functions (2004) Queueing Systems 48 (3-4), pp. 237-262

[12] Das, S., Ghosh, D. Binary knapsack problems with random budgets (2003)
Journal of the Operational Research Society 54 (9): 970-983

81

[13] Dean, B.C., Goemans, M.X., Vondrák, J. Approximating the stochastic
knapsack problem: The bene�t of adaptivity (2004) Proceedings - Annual
IEEE Symposium on Foundations of Computer Science, FOCS, pp. 208-
217.

[14] Dziong Zbigniew, Mason Lorne An analysis of near optimal call admission
and routing model for multi-service loss networks (1992) Proceedings - IEEE
INFOCOM, 1, pp. 141-152

[15] Elhedhli, Samir Exact Solution of a class of nonlinear knapsack problems
(2005) Operation Research Letters 33 pp. 316-324

[16] Ezziane Z Solving the 0/1 knapsack problem using an adaptive genetic
algorithm (2002) AI Edam-Arti�cial Intelligence for Engineering Design
Analysis and Manufacturing 16 (1): 23-30

[17] Gavious, Arieh, Rosberg, Zvi Restricted complete sharing policy for a sto-
chastic knapsack problem in B-ISDN (1994) IEEE Transactions on Com-
munications, 42 (7), pp. 2375-2379.

[18] Gibbens, Richard J., Kelly, Frank P., Key, Peter B. A Decision-Theoretic
Approach to Call Admission Control in ATM Networls (1995) IEEE Jour-
nal on Selected areaur in Communications, Volume 13, No. 6, pp. 1101-
1114

[19] Grimaldi, Ralph P. Discrete and combinatoral mathematics 5th ed. (1999)
Pearson Addison Wesley, pp. 27

[20] Hunt, P.J., Laws, C.N. Asymptotically optimal loss network control (1993)
Mathematical Operations Research, 18, pp. 880-900.

[21] Hunt, P.J., Laws, C.N. Optimization via trunk reservation in single resource
loss systems under heavy tra¢ c (1997) Annals of Applied Probability, 7 (4),
pp. 1058-1079.

[22] Iyengar, G., Sigman, K. Exponential penalty function control of loss net-
works (2004) The Annals of Applied Probability, 14 (4), pp. 1698-1740

[23] Karmankar, Uday S., Yoo, Jinsung Stochastic dynamic product cycling
problem (1994) European Journal of Operation Research Volume 73, Issue
2, 1994, pp. 360-373

[24] Kelly, F.P. Loss Network (1991) The Annals of Applied Probability, Volume
1, No.3.,pp 319-378

[25] Kleywegt, A.J., Papastavrou, J.D. The Dynamic and Stochastic Knapsack
Problem (1998) Operations Research, 46 (1), pp. 17-35.

[26] Kleywegt, A.J., Papastavrou, J.D. The dynamic and stochastic knapsack
problem with random sized items (2001) Operations Research, 49 (1), pp.
26-41

82

[27] Knightly, Edward W., Shro¤, Ness B. Admission Control for Statistical
QoS: Theory and Practice (1999) Volume 13, Issue 2, Pages 20-29

[28] Koole, Ger Stochastic scheduling with event-based dynamic programming
(2000) Mathematical Methods Operation Research 51 pp. 249-261

[29] Koole, Ger Structural results for the control of queueing systems using
event-based dynamic programming (1998) Queueing Systems 30 pp. 323-
339

[30] Ku, C.-Y., Yen, D.C., Chang, I.-C., Huang, S.-M., Jordan, S. Near-optimal
control policy for loss networks (2006) Omega 34 (4), pp. 406-416

[31] Ku, C.-Y., Jordan, S. Near optimal admission control for multi server loss
queues in series (2003) European Journal of Operations Research 144 (1),
pp. 166-178

[32] Lee, Tae-Eog, Geun Tae Oh The asymptotic value-to-capacity ratio for
the multi-class stochastic knapsack problem (1997) European Journal of
Operations Research 103 pp. 584-594

[33] Lin K.Y., Ross S.M. Admission control with incomplete information of a
queueing system (2003) Operations Research, 51 (4), pp. 645-654

[34] Lin K.Y., Ross S.M. Optimal admission control for a single-server loss queue
(2004) Journal of Applied Probability, 41 (2), pp. 535-546

[35] Lippman, Steven A. Applying a New Device in the Optimization
of Exponential Queueing Systems (1975) Operations Research, Vol.23,
No.4.,pp.687-710

[36] Marchetti-Spaccamela, A., Vercellis, C. Stochastic on-line knapsack prob-
lems (1995) Conference/Journal: Mathematical Programming: Series A
and B

[37] Nasser, N. Stochastic decision-based analysis of admission control policy
in multimedia wireless networks (2005) Lecture Notes in Computer Science
3462: 1281-1296

[38] Nawijn, M. Wim Look Ahead Policies for Admission to a Single Server Loss
System (1990) Operations Research, Vol. 38, No. 5, pp. 854-862

[39] Ni, J., Tsang, D.H.K., Tatikonda, S., Bensaou, B. Threshold and reserva-
tion based call admission control policies for multiservice resource-sharing
systems (2006) Operations Research 54 (1), pp. 11-25

[40] Ohmikawa M, Takagi H, Kim SY Optimal call admission control for voice
tra¢ c in cellular mobile communication networks (2005) IEICE Transac-
tions on Fundamentals of Electronics Communication and Computer Sci-
ences E88A (7), pp. 1809-1815

83

[41] Örmeci, E.L., Van Der Wal, J. Admission policies for a two class loss system
with general inter-arrival times (2006) Stochastic Models 22 (1), pp. 37-53

[42] Örmeci, E.L., Burnetas, A. Dynamic admission control for loss systems with
batch arrivals (2004) Advances in Applied Probability 37 (4), pp. 915-937

[43] Örmeci, E. Lerzan; Burnetas, Apostolos N.; Emmons, Hamilton Dynamic
policies of admission to a two-class system based on customer o¤ers (2002)
IEEE Transactions on Communications, 34 (9) pp. 813-822 (10)

[44] Ramjee R., Towsley D., Nagarajan R. On optimal call admission control in
cellular networks (1997) Wireless Networks, 3 (1), pp. 29-41

[45] Tsang, Danny H.K. Ross, Keith.W. Algorithms to determine exact block-
ing probabilities for multiratetree networks (1990) IEEE Transactions on
Communications, 38 (8) pp. 1266-1271

[46] Ross, Keith W., Yao, David D. Monotonicity properties for the stochastic
knapsack (1990) IEEE Transactions on Information Theory, 36 (5), pp.
1173-1179.

[47] Ross, Keith W. Multiserice Loss Models for Broadband Telecommunication
Networks (1995) Springer, New York

[48] Ross, Keith W., Tsang, Danny H.K. Optimal circuit access policies in an
ISDN environment: A Markov decision approach (1989) IEEE Transactions
on Communications, 37 (9), pp. 934-939.

[49] Ross, Keith W., Tsang, Danny H.K. Stochastic knapsack problem (1989)
IEEE Transactions on Communications, 37 (7), pp. 740-747.

[50] Saquib, Mohammad, Yates, Roy Optimal call admission to a mobile cellular
network (1995) IEEE Vehicular Technology Conference, 1, pp. 190-194

[51] Taylor Howard, M., Karlin, Samual Introduction to Stochatic Modeling
(1998) Acadamic Press

[52] Yin, Z., Xie, J. Admission Control scheme for multi-class services in QoS-
based mobile cellular networks (2004) School of Electronics and Information
Technology, Shang hai Jiaotong University, Shanghai 200030, China

[53] Ziedins I. Optimal admission controls for Erlang�s loss system with phase-
type arrivals (1996) Probability in the Engineering and Informational Sci-
ences, 10 (3), pp. 397-414

[54] Dictaat Kansrekening pp. 71

[55] Dictaat Queueing Theory

[56] http://mathworld.wolfram.com/IncompleteGammaFunction.html

84

