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Abstract 
 

In the service industry, performance-based contracts are a growing trend. Companies provide a service, 

and their yearly revenues depend on the quality or performance of that service during this year. This 

means that long-term averages are no longer sufficient for predicting cost-flow, the system also has to be 

analyzed during specific time intervals. This is usually done by considering an appropriate Markov chain, 

however closed form expressions for higher moments of the interval availability are only known for 2-

state Markov chains. We have extended this model to a 3-state Markov chain, for which we have derived 

a closed form expression for the second moment of the interval availability under a few general 

constraints. We consider possible expansions of our model by examining specific cases, and for these 

cases we give results on the second moment and the constraints under which these results hold. We also 

provide a general framework for analyzing larger systems by considering their components individually. 

Using a few numerical examples, we outline the possible uses of our results. 
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Management Summary 
 
Motivation 
In the service industry, performance based contracts are a growing trend. For companies such as Thales 
Netherlands it’s common to not only sell a product or system, but to also sell a support package often 
covering up to 20 years. During that time they provide service for the system, and their yearly revenues 
depend on the quality or performance of that service during this year. Since Thales would like to predict 
its costs-flow, the performance of the system should be analysed closely. However, critical parts are 
sometimes very unreliable, and there is great variability involved in the performance of the system. The 
main performance indicator is usually the system availability during a finite interval of time, the so-
called interval availability.  
 
Goals 
The Goal of this research is to inquire insight into the variability of the system performance. With that 
goal in mind, we formulated the main research question as follows: 
 

“How can Thales improve service contract performance by specifically focusing on reducing the 
variability in the system availability?” 

 
We look at this from a theoretical angle. We aim to start by examining existing literature to try to find 
models that fit the situation at Thales Netherlands. We will then try to extend these models, in order to 
provide better predictions for the system behaviour 
 
Approach 
To answer our main research question, we study a currently existing model. We observe a simple case of 
the general system, to see if we can find a numerically efficient way of determining variability 
parameters. After analysing this simple case, we extend it in several possible ways and we check if the 
results still hold. We construct a general way of analysing large systems by focusing on specific (smaller) 
parts.   
 
Results 
We adapted the original model by providing an explicit way to determine certain variability parameters 
for a basic system. We then show how this system can be extended in several ways, and explain for 
which extensions the results still hold and how they are altered. After that we consider an approach that 
allows us to combine several smaller systems into larger systems, thus allowing a large system to be 
analysed by analysing the (much simpler) subsystems. We show how this can be used to compare 
different options when trying to determine an optimal service strategy.    
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1. Business Description of Thales Group & Thales Netherlands 
 
In this section we will provide an overall picture of Thales, and more specifically of Thales Netherlands. 
We will briefly describe its history in section 1.1, and the organization of Thales Group and Thales 
Netherlands in section 1.2. To acquire some insight into the logistic area in which we conduct this 
research, we elaborate on the activities of the Business Unit Naval Systems and the department of 
Logistic Engineering – where I’ve conducted this research -  in section 1.3. 

1.1 History 
Thales Group is a French based multinational company that was originally established in 1893 under the 

name Compagnie Française Thomson-Houston (CFTH). Over the years they created a large variety of 

electronic products, and in 1966 they merged their electronics arm with that of Compagnie Générale de 

Télégraphie Sans Fil (CSF) to form Thomson-CSF. In 1982 the company was nationalized by French prime 

minister François Mitterrand. During the eighties and nineties they remained a major electronic and 

defence contractor. To be able to apply more focus to their respected areas, in 1999 the defence and 

the consumer electronics part of the business were split by the French government before being 

privatized again. The consumer electronics business formed Thomson Multimedia (currently Technicolor 

SA), and the defence business changed their name to Thales Group in 2000. 

The Dutch part of Thales originated in 1922, when  “N.V. Hazemeyers fabriek van signaalapparaten” was 

established in Hengelo. Hazemeyer became one of the world’s leading suppliers of naval surface 

systems, and a large contractor of the Dutch Royal Navy and later also of other European navies. During 

World War 2 the factory was hit hard (being close to the German border), however after the war the 

Dutch government decided to buy the company to be able to maintain (rebuild) a strong defence 

industry. The company was renamed to “Hollandse Signaalapparaten B.V.”, and they developed systems 

for areas such as air traffic equipment, fire control systems, and most notably radar. 

In 1956 Philips became the main shareholder of the company, and business was going so well that new 

plants were opened in Huizen, Delft and Eindhoven. However when the cold war ended the company 

faced a significant cut in their order intake due to defence budget cuts, and Philips decided that 

‘Defence and Control Systems’ were not part of their core business. Therefore Hollandse 

Signaalapparaten B.V. was taken over by the French based multinational Thomson-CSF, which changed 

its name to Thales in 2000. In accordance to this, Hollandse Signaalapparaten B.V. was renamed to 

Thales Netherlands B.V. 

 

1.2 Organisation 
The Thales Group is a world leader in electrical systems and provides services for the aerospace, defence 

and security markets . The company is split up into roughly six core businesses: Aerospace, Air Systems, 

Land & Joint Systems, Naval, Security Solutions & Services, and Space. Together they generated an 

annual revenue of 13.03 billion euros in 2011, and the Thales Group employs 68.000 employees spread 

over 50 different countries. The company is ranked as the 475th largest company in the Fortune 500 list, 
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and is the 11th largest defence contractor in the world. Globally 60% of the Thales Groups sales are 

military products. 

Thales Netherlands houses the Naval section of the Thales Group, focusing mostly on radar and combat 

management systems. It is the largest defence company in the Netherlands, with roughly 2000 

employees. Its business is divided into the categories Naval, Land & Joint Systems, Air Systems, 

Transport Security, and Services. This research concerns the business unit Naval Services, specifically the 

department of Logistic Engineering.  

 

1.3 Naval Services and Logistic Engineering 
Most of the products that Thales offers have a lifetime of twenty years or more. During this time the 

products require maintenance and sometimes even repair. The business unit Naval Services delivers this 

after sales support for the radar systems that Thales sells. They serve more than 85 customers spread 

over 42 different countries. The core services consist of delivering spare parts and carrying out repairs. 

Furthermore, Naval Services also offers upgrade programs, modifications, documentation and training. 

The exact form and amount of after-sales support a customer receives depends completely on the 

specific wishes of that customer. Depending on the customer and on the system properties, Naval 

Services can provide anywhere from only initial logistic support to full life-time support. 

The Logistic Engineering departments plays a key role in the processes of Naval Services. For any 

contract that is made, they conduct a logistic support analysis to determine what kind of logistic support 

is needed for that specific system. They also provide input to the designers, to ensure that the products 

Thales creates are actually serviceable. Other tasks performed by the Logistic Engineering department 

are performing a life cycle cost analysis, supporting the technical authors with system knowledge, 

designing a specific service plan for specific customers, and determining the optimal allocation of spare 

parts by optimizing system availability while minimizing costs. 
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2. Research Design 
 
In this chapter we will provide an outline of the research. In section 2.1 we will discuss the context of our 
research by giving an introduction to the long term service agreements that Thales offers and the 
products we consider. In section 2.2 we define the exact problem statement and in section 2.3 we define 
the corresponding research objective. Section 2.4 gives an outline of this thesis. 

2.1 Context Description 

2.1.1 Long-Term Service Agreements 

Thales constantly has to deal with a large amount of technical- and customer specific developments. 

One of those developments is the closer relation between Thales and its customers. Performance-based 

contracts are a growing trend that aims to achieve this goal. Instead of offering separate services, Naval 

Services can take over all services at a fixed fee. This means Thales gets to determine the optimal 

support strategy, which should lead to more predictable and possibly lower costs. (One can assume 

Thales is more knowledgeable about its own systems than its customers are.) 

In the case of a long-term service agreement, a certain performance is settled which covers a period of 5 

to 25 years. The key performance indicator is the system (or operational) availability. Operational 

availability is the time a radar system is working, divided by the total system’s operating time (uptime + 

downtime). According to Sherbrooke (2004) the operational availability is commonly expressed as 

                          
      

               
  

    

        
        

Increasing the mean time between maintenance (MTBM) or decreasing the mean down time (MDT) 

increases the operational availability. The MDT consists of mean preventive maintenance time (MPMT), 

mean corrective maintenance time (MCMT), and mean supply delay (MSD). However Thales defines 

downtime as a system waiting for a spare part, which is only the mean supply delay. Sherbrooke defines 

this kind of availability as supply availability. Supply availability is heavily influenced by the stocking 

policy, and is defined as 

                     
    

        
        

In this thesis we are interested in the Supply Availability as defined above, if at any time we mention 
‘availability’ then we will imply the supply availability as defined above.  
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2.1.2 Product Information 

Radar systems have a modular design. They consist of several subsystems, which all consist of several 

different modular units. The picture below displays an approximation of the product tree of the SMART-

L radar system, one of Thales’ main products.  

 

We see that subsystems generally consist of LRU’s (Line Replaceable Units). These are a complex 
collection of items that are designed to allow the entire LRU to be efficiently replaced as a whole. LRU’s 
usually consist of several Shop Replaceable Units (SRU’s), which in turn consist of multiple parts. A 
failure of one of these SRU’s (or parts) will lead to a failure of the LRU, which in turn may lead to 
downtime for the entire radar system (depending on the criticality of the LRU). SRU’s and LRU’s are 
usually expensive and can possibly fail during missions (when the system is operating). 
 

2.1.3 Repair Information 

If an item in the system fails and a spare part is available, the broken item is immediately replaced. This 
is called repair-by-replacement. The failed item is brought to a repair facility, which depending on the 
complexity of the item can be either on board, locally at the shore, or at Thales. If the item cannot be 
repaired at a certain station, the part is sent to a higher echelon location. This kind of a repair network is 
called a multi-echelon network. It consists of different locations that all have different capacities with 
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regards to stock, supply and repair. When an item fails, choices have to be made regarding whether to 
repair or discard the item (sometime buying a new one is cheaper) and where to repair the item. The 
main decision in multi-echelon network is usually the allocation of stock over the different echelons.  
 
 

2.2 Problem Statement 
A problem for the availability driven contracts is that Thales has to estimate the contract costs before 
the start of the contract. The estimated costs depend on the expected amount of failures and the 
interest- and inflation rate. This expected amount of failures (the demand) is not accurately known. Also 
the annual operating hours of the ships vary in practice, which obviously directly influences the demand 
for spare parts. These factors lead to difficulties in estimating the contract costs, and also affect the 
average availability during a contract. This in turn impacts the service perception of the customer. 
 
A similar problem occurs when there are multiple ships involved in a single contract. If these ships go on 
a mission together, there will be high demand for spare parts during that time. Once the ships return 
(together), this demand will obviously become very low. If the ships operate independently however, 
the demand is more stable during the year. Also the repair throughput times are not accurately known, 
and Thales uses (roughly) estimated values of these. All these factors lead to a large variability in the 
system availability. Since Thales has to pay a penalty when the attained availability is too low and 
receives a bonus when the attained availability is high, they would like to predict the system availability 
as well as they can. However the availability is obviously a stochastic parameter, which depends heavily 
on the system parameters. 
 
Currently Thales uses commercial software (INVENTRI) for determining optimal spare part stock levels to 

maximize the average availability. However this software uses Vari-Metric which does not take 

variability of the availability into account, and neither does other comparable software. This means that 

the resulting stock allocation may (should) yield a very high average availability, but could also result in a 

very large variation (that might be unacceptable for the customer). Having a radar system working for 9 

years and then being broken for 1 year would result in a 90% availability over 10 years which could be 

quite good. However if the 1 year of downtime is exactly the only year out of the ten that the ship is 

actually on a mission, this 90% is not good at all (as opposed to roughly 1 month of downtime each year 

in between missions which would be fine). 

The problem described above lies in the variability of the system availability. It is very hard to predict, 

and most currently used methods simply maximize the expected availability. However if Thales would 

have more insight into the factors that have a large effect on the variability, perhaps specific actions 

could be taken to reduce it. 
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2.3 Research Objective 
The goal of this research is to acquire insight into the variability of the system performance. With this 
goal in mind, we formulate the main research question as follows:  
 
 

 “How can Thales improve service contract performance by specifically focusing on reducing the 
variability in the system availability?” 

 
 
We will answer this main research question by answering the following sub questions: 

 

1. What currently existing literature is applicable to this research? 
 

2. Which theoretical model and/or analysis currently provides the best approximation of the 
practical situation at Thales? 

 
3. Can we extend or improve this model? 

 
4. How well does our extended model represent the practical situation? 

 
5. Which further advantages does our extended or improved model provide? 

 
 

2.4 Outline of Thesis 
This thesis is structured as follows. In section three we provide a literature overview. We start with a 
general introduction into after sales business models and spare parts strategies. After that we give a 
short write-down of the METRIC algorithm as it is essential to the research field, and we follow up with a 
literature overview of interval availability. 
 
In section four we introduce the theoretical models in which we conduct this research. Section 4.1 
introduces a general model and some basic results. We extend those in section 4.2 by following the 
approach of [De Souza, 1986], and in section 4.3 where we give several results from [Al Hanbali, 2012] 
on which we build extensively. In chapter 5 we present our own work as additions/extensions to these 
models. Section 5.1 contains our adaptation of the model and one of our two main results. Sections 5.2 
through 5.5 describe specific cases for which we can further evaluate our results. In section 5.5 we 
consider an approach which allows us to combine simple systems into larger systems.  
Section six provides some numerical data backing up our results, and section seven concludes. The 
appendices contain some of the lengthier parameter values, as well as some of the more advanced 
matrix operations that are used in the research.     
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3. Literature Review 
 
In this chapter we will provide a review of the currently existing literature that is applicable to this 
research. We will start by briefly examining the after sales business-models that correspond to the LTSA 
contracts that Thales offers. Furthermore we will provide an introduction to spare parts management, 
focusing mainly on the METRIC and VARI-METRIC models which are used by Thales to determine spare 
part allocations. We will also review existing literature about interval availability, and more specifically 
about variability of the attained (interval) availability. 

3.1 After Sales Business Models used by Thales 
Cohen et al. (2006) define multiple after-sales business models that companies can deploy in order to 
support their service products. These models are distinguishable by the service priority that the 
customers require for the specific product. They vary from products with no service priority at all 
(disposable products such as razor blades), to products with a very high service priority that generally 
play a critical role in keeping a system running (engine of an aircraft). 
 
These models also differ by product ownership. Products with a low service priority are usually owned 
by the customer, whereas products with a very high service priority are often owned by the service 
provider so that they can guarantee a certain service level. In that case customers pay for the service but 
never own the actual product. Lease agreements (cars) are a common example of this.  
 
The LTSA contracts that Thales offers can be classified as having a high service priority. When comparing 
the different contracts to the business models of Cohen et al. (2006) , we find the following 
classifications for the multiple LTSA contracts that Thales offers: 
 

LTSA Contract Service Priority Guarantee Upon Corresponding Business Model 

Traditional High Support and Design Services Cost-Plus 

Spares Inclusive High Repair and Supply Services Cost-Plus 

Contract for Availability Very High System Availability Performance Based 

Contract for Capability Very High System Capability Power by the Hour 

 

3.2 Spare Part Strategies 
Rustenburg (2000) defines different types of spare part strategies. These are classified by the price of 
the item (high or low), and by the maintenance concept (predictive or corrective). Predictive 
maintenance is performed to reduce the probability that an item breaks down, and thus is predictable 
since it is done regardless of the condition of the item in the system. Corrective maintenance is 
performed to restore an item once a breakdown or failure has occurred, and therefore has 
unpredictable behaviour. 
 
In the case of LTSA’s at Thales, the probability of failures is generally low, spare parts are relatively 
expensive, and the focus lies on corrective maintenance. Therefore Rustenburg’s classification puts us in 
the Spare Part Management Strategy. This is the most difficult (and arguably the most interesting) 
category, where spare parts are both expensive and critical. To manage this category effectively, 
advanced methods that are able to deal with unpredictability are required. A method that deals with 
this problem is the Multi-Echelon Technique for Recoverable Inventory Control (METRIC), developed by 
Sherbrooke (1968). 
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3.3 METRIC 

3.3.1 Introduction 

The METRIC model is based on maximizing the steady state system availability under a budget 
constraint. The goal is to determine optimal stock levels for each item at every location, such that the 
availability of the entire system is maximized. Note that the METRIC model uses the system approach 
where the availability of the entire system is optimized, and not the item approach where the optimal 
stock levels are determined for each item individually based on inventory-, holding- and stock out costs.  
 
In the system approach the performance indicator is the system availability, the percentage of time that 
the system is available. Usually either the required availability or the budget constraint is considered as 
input. An availability-cost curve (see below) can often be determined, and is very useful for gaining 
insight in the relation between money spent and the attained availability. All points below the curve are 
considered inefficient, since either the same availability could be attained cheaper or a higher 
availability could be attained with the same investment. 

 
 
Considering the importance of the METRIC model in current literature and the fact that Thales uses (an 
extension of) the METRIC model, we will provide a short overview of the model. For a complete 
overview, see [Sherbrooke, 2004]. 

3.3.2 Assumptions 

Here we will discuss the assumptions that are made in the METRIC model. One of the most important 
assumptions is that we use an (s-1,s) inventory policy for every item at every echelon. This is the most 
common ordering strategy for items with a sufficiently low demand rate and a sufficiently high price. It 
means that for each item an inventory level s is determined, and if the stock falls below this level then 
an order for an additional unit will be placed immediately. If the order cannot be delivered immediately, 
it is backordered. The orders are placed for an individual item (one-for-one replenishment), the items 
are not batched for repair.  
 
Furthermore the METRIC model assumes that breakdowns of items occur according to independent 
Poisson processes. This means that all failures are individually independent, and that items continue to 
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fail upon system failure. The repair times are assumed to be generally distributed with a given mean, 
which can also obviously differ per item. If an item fails it is directly taken into repair and the repair shop 
has infinite capacity. This results in a repair shop that can be modelled as an (M/G/∞) queuing model.  
 
Further on it is assumed that each backorder is equally important (no priorities). Obtaining a new part 
by taking it out of the stock of a parallel system is not allowed; only the depot resupplies the bases (no 
lateral supply). 

3.3.3. Maximizing Availability 

In the METRIC model the steady state system availability is maximized. One of the main arguments used 
is that maximizing the average system availability is achieved by minimizing the total expected number 
of backorders. This expected number of backorders can be calculated for each item individually, using 
that item’s yearly demand and its repair throughput time. 
 
The optimization procedure is based on using a marginal approach. First all stock levels are set to zero. 
Then for each possible choice of adding a unit of stock to any stock point, the marginal expected 
backorder reduction per invested euro is calculated. We then add the item for which this backorder 
reduction per invested euro is the largest. After that we recalculate the marginal reductions and pick the 
next item, and so forth until we reach our budget constraint. This constructs the most cost-efficient way 
of maximizing availability. For proofs or further elaboration see [Sherbrooke, 2004]. 

3.3.4 VARI-METRIC 

The VARI-METRIC model is an extension of the METRIC model, and is the model that Thales currently 
uses for their stock allocation. The extension is that VARI-METRIC does not only use mean values for the 
amount of backorders, but also determines their variance. For each LRU, this is done by considering the 
demand that occurs during a products repair time, as well as the sum of the backorders of all its 
individual components (SRU’s).  
 
VARI-METRIC is definitely a more accurate version of the METRIC algorithm, however its goal is still the 
same: maximizing the expected system availability. This is exactly where our research intends to expand, 
we aim to get a grip on not only the expected interval availability but also its variability. 
 

3.4 Interval Availability 
In this section we review the existing literature on interval availability. In highly critical systems, steady 
state results can be very poor and do not always provide sufficient information for practical use. 
Therefore there is an increasing interest in calculating results for a limited time interval, instead of 
calculating long-term steady state averages. The interval availability, usually denoted by A(T), is defined 
as the fraction of time that the system is operational during the interval [0,T]. It is a random variable 
between 0 and 1. 
 
Early research about interval availability was mostly about on-off (two state) Renewal Processes, see for 
example (Takács 1957). The results of this research are difficult to compute numerically. Therefore 
approximations were made by fitting phase-type distributions on the on and off periods, which yields an 
accurate result with a relatively small computation time, see (van der Heijden 1988). Smith (1997) made 
another approximation, which is based on fitting the approximated first two moments, the zero percent 
and the hundred percent probability in a beta distribution. The first two moments of the interval 
availability of an on-off two-state Markov chain are derived exact and in closed-form in (Kirmani and 
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Hood 2008). The main assumptions in all these studies are that the on periods are independent of the 
off periods, and furthermore that they are all independent of each other. 
 
When extending the two-state Markov chain to a larger state space, an essential result was achieved in 
[De Souza, 1986]. They derived the cumulative distribution of the time spent in a subset of states of a 
Markov chain during a finite amount of time, in closed form. This subset could obviously be chosen as 
the set of states in which the system is operational. However computing the entire distribution of the 
interval availability using this result is numerically rather inefficient, the same can be said for the 
improved version derived in (Rubino and Sericola 1995). An efficient algorithm to determine the interval 
availability distribution was determined in (Carrasco 2004), however this result is limited to Markov 
chains that contain an absorbing set of states.  
 
A different numerically efficient approach to determine the distribution of the interval availability was 
obtained in (Al Hanbali and van der Heijden, 2012), where the absorbing set of states is no longer a 
requirement. The authors determine the expectation, the variance, and the probability of a hundred 
percent interval availability using Markov analysis. They are then able to fit this using a combination of a 
beta distribution and a probability mass at one.  Using simulation, the authors show that their 
approximation is highly accurate, especially for points of the distribution below the mean value which 
are practically most relevant. This thesis builds heavily on the results of (Al Hanbali and van der Heijden, 
2012).  
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4. Theoretical Model 
 
Explicit closed form expressions for the variance and survival probability of the interval availability were 
determined in [Al Hanbali 2012]. However these expressions are rather extensive and thus provide little 
intuitive (analytical) insight into which system parameters have the largest impact on variability.  
 
To see if we can obtain these insights, we analyse the theoretical models that are applicable to our 
research. In section 4.1 we describe the general model that we work with, and show some of its basic 
properties. Section 4.2 contains an important result obtained in [De Souza, 1986], and its derivation. 
After that we discuss the work of [Al Hanbali 2012], which is the framework on which we build our own 
results in chapter 5.  

4.1 The General Model 
In this section we will describe the model of [Al Hanbali 2012], which in turn builds heavily on the results 

of [De Souza, 1986]. They consider a 2-echelon multi-item supply network, we simplify this to a 1-

echelon case. This system can be viewed as a single machine, containing multiple items that are all 

subject to breakdowns. The machine is considered operational if all items are operational. Spare items 

can be put on stock, and upon a failure a spare item is immediately installed (if one is available) and the 

broken item goes into repair. If there is no spare part available when a failure occurs, then the system 

will breakdown and will have to wait for a completed repair.  

For the general model, we consider a system consisting of M items. Assume that the jth item fails 

according to a Poisson process with rate             Moreover we assume that all items are 

individually independent, meaning the breakdown behaviour of one item has no effect on any of the 

other items. The repair time of the jth item is exponentially distributed with rate     Furthermore we 

assume infinite repair capacity, which supplies the fact that repairs are also individually independent.  

Let    denote the number of items of type j that are in the system, including the one currently in use 

(stock level plus one). Given these values of    for all j, we can now easily set up a Markov chain which 

describes the state of the system. We only need to know how many parts are currently in repair for each 

item j. For that we define       as the number of type j items in repair at time t. Now for each item j we 

can define a Markov chain where the state denotes      , this yields the following transition diagram: 

 

 

 

 

 

This is the well-known M/M/s/s queue, which is generally used to describe a queue with exponential 
inter-arrival and repair times and a finite (s-sized) number of servers. This system is also known as the 
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Erlang Loss Model. The steady state probabilities for this model are relatively easy to determine, and are 
given by 

      

(
  
  

)
 

   

∑ (
  
  

)
 

   
  
   

                   (1) 

 
where in this case       denotes the steady state probability of having i items of type j in repair. The 
probability of item j being unavailable,     

    in this case, is also known as the blocking Probability.  

 
We can also easily determine the generator matrix. Let Gj denote the transition generator of Rj, matrix Gj 

then looks as follows 

   

(

 
 
 

        

   (     )     

 
 
 

   

 
 

 
 
 

 
 

    

 
  

 (    ))

 
 
 
   

 

(2) 

 
Now having introduced the M/M/s/s queue, we see that our system can be seen as M individually 

independent Markov chains, all with their individual breakdown rates (  ), repair rates (  ) and item 

levels (  ). Each individual item is up and running if one or more of the of the total item amount    are 

not in repair. In other words, the only non-operational state is the state on the very right where every 

single item of type j is in repair. 

In more general terms, we define       as the state of item j at time t. This means that         if item 

j is operational at time t, and          if it is not. Linking this to our Markov chain, we see that 

        if and only if          . So we can state that our entire system is operational if              

              . 

The random variable we are interested in in this model is the interval availability. We define it as A[T], 

and it denotes the fraction of time during the interval [0,T] that the system is working. We can 

determine its expectation rather easily. If we assume that the system is in its steady state at the start of 

the interval, then the expected interval availability is equal to the steady state operational probability: 

 [    ]   ∏ (    )   

 

   

∏   (     )  ∏

(

 
 
  

(
  
  

)
  

    

∑ (
  
  

)
 

   
  
   

)

 
 
 

 

   

 

 

   

  (3) 

 
This is a very straightforward and intuitive result, giving the proof here would be rather superfluous (it is 
given in for example [Al Hanbali, 2012]) 
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Before we go on to further analysis in the next section, we first introduce some notation. We define    

as the state space of the Markov chain   , which consists of the set of operational states    and the set 

of non-operational states   . Next we define     as a row vector of size equal to the cardinality of   . 

This vector is obtained by taking the steady state probabilities      and replacing these by zero for all 
malfunctioning states.  
 
We also define the column vector    of size equal to the cardinality of   . This vector also has zero 

entries for all the non-operational states, and all entries corresponding to operational states are one. In 
our case this results in 

   {         }                [                     ]                

[
 
 
 
 
 
 
 
 
 

]
 
 
 
 

   

 

(4) 

Note that throughout this section and in fact throughout this report, we will assume that at time 0 the 
system is in steady state. This is a relatively small assumption to make, and it prevents a lot of 
complications in further derivations.  
 
Now that we have presented a general model, we will present the model and a main result of de Souza 
in the next section. 
 

4.2 The De Souza Model 
In this section, we show the main results obtained in [De Souza, 1986]. In that paper they analyse the 
same kind of systems that we are currently looking at, though they consider an application based on 
repairable computer systems instead of radar components. 
 
For their results they randomize (uniformize) the Markov chain. This uniformization method (also known 
as Jensen’s Method) is commonly used in probability theory to compute transient solutions for finite 
state continuous time Markov chains. It involves the construction of an analogous discrete time Markov 
chain. This is done by picking a uniformization constant ν which is at least as large as the largest 
transition rate out of any of the states in the original system. You then assume that all transitions occur 
at this rate, and you add self-transitions to compensate for the difference between ν and the actual 
outgoing rate. This results in an equivalent uniformized Markov chain.  
 
In [De Souza, 1986] they analyse O[T] which is defined as the sojourn time in a certain set of states up to 
time T. During this section we will assume that this set of states will be the set of operational states 
    . This of course means that 

 [ ]     [ ]  (5) 

The main result of de Souza is a formula for the cumulative distribution of O[T]. Since our result builds 
heavily on this result, we will give the theorem here and show its proof.  
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Theorem [De Souza] 
The cumulative distribution of the sojourn time in a subset of states, is given by: 
 

          ∑      
     

  
 ∑        ∑(

 

 
) (

 

 
)
 

(  
 

 
)
   

  

 

   

   

   

 

   

 (6) 

 
Where T denotes the length of the interval, ν is the uniformization constant, and the       ’s are 
probabilities that can be determined recursively. 
 
 
The derivation of this formula is as follows.  
 
To determine the probability of spending less time than a certain value x (or equivalently spending less 

time than the fraction  
 

 
 ) in operational states, we condition on the number of transitions made during 

the interval of length T. In other words: 
 

          ∑          |                               

 

   

   

 

(7) 

We know that in all states, the transitions occur at rate ν. Hence 
 

                      
     

  
    (8) 

so 

          ∑      
     

  
          |              

 

   

   

 

(9) 

Now given the fact that there are n transitions during the time interval [   ], this interval is divided into 
n+1 intervals of length                   . We then further condition on the number of times that the 
process visits one of the operational states (  ) during interval [0,T], denoted by k           : 
 

          ∑      
     

  
 

 

   

  

∑          |                                                  |              

   

   

 

 

(10) 

We now denote                   |               by       , so 
 

          ∑      
     

  
 ∑                 |                          

   

   

  

 

   

 (11) 
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Now          |                                means that the sum of all the interval lengths Y 
corresponding to the operational intervals must be smaller than x.  
 
To determine this probability, we consider the time-distribution of the n transitions. We know that for a 
given number of Poisson events during a certain interval, the distribution of these events over the 
interval will be uniform. When we apply this fact directly to our situation, we can state that the time-
distribution of the n transitions made during the interval is in fact a uniform distribution over [   ]. 
Now, we know that k of those visits are into operational states. In order for the total availability to be 
smaller than x, we need the sum of the interval lengths of these k operational intervals to be less than x.  
 
We then use a well-known result on exchangeability (see for example [Ross 1996]): 
 
If                 and                 are any two sequences of length k, then they have the same joint 

distribution if all Y’s are equally distributed and individually independent. Note that by setting    , 

this implies that           (    )  for all           . 

 
Using these results we can state that the probability of the sum of the k operational interval lengths 
being smaller than x, is equal to the probability that the sum of the first k interval lengths is less than x. 
For this to happen, we would need at least k out of the n Poisson events to occur earlier than x. Now we 
know that given the fact that there are n Poisson events in a certain interval, we can assume that they 
are all distributed uniformly on this interval [0,T]. So the probability of having at least k of these 

occurring before x, is simply a sum of binomial probabilities with success probability  
 

 
.  Hence: 

 

         |                                ∑(
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(12) 

Filling this into equation (11) on the previous page yields our desired result: 
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 ∑        ∑(
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(13) 

Now that we have proven the de Souza result, we move on to the model of al Hanbali.  
 

4.3 The Al Hanbali Model 
The model of [Al Hanbali 2012] is an extension on the work [De Souza, 1986]. In the paper, the variance 
of the interval availability is computed in closed and exact form. This variance along with the 
expectation of the interval availability and the probability that the interval availability equals one, is 
then used to approximate the survival function (cumulative distribution) using a Beta distribution. 
 
For our work, we are interested in the exact and closed-form result on the variance of the interval 
availability. Based on de Souza’s theorem (or equation (13)), they present the following result on the mth  
moment of the interval availability: 
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 [     ]  ∑      

 

   

     

      
 ∑       

   

   

 ∏  

     

   

   

 

(14) 

The exact derivation can be found in [Al Hanbali 2012]. Given de Souza’s result, the derivation is rather 
straightforward and not of great importance to our work.  
 
The good thing here is that filling m=2 into equation (14) yields the second moment of the interval 
availability, which is the most significant term when analysing its variability. Among other things, it 
allows the computation of the variance since we already have its expectation. Considering the 
importance of the second moment term, we will evaluate it further. An evaluation of the term was done 
in [Al Hanbali 2012], which we will discuss. We will then attempt to further evaluate this result in 
chapter 5. 
 
Theorem [Al Hanbali] 
The second moment of the fraction of time that the Markov Chain R(t) sojourns in the subset    during 
[0,T] is given by:  
 

 [     ]   ∑      

 

   

     

      
     ∑           

 

   

  ∑   

         

     
    

   (15) 

 
where P denotes the transition probability matrix of the uniformized process R(t) ,    is the steady state 
probability of the Markov chain in state I,    is the column vector with i-th entry equal to    if        
and zero otherwise, and    is the column vector with i-th entry equal to 1 if       and zero otherwise. 
 
 
The derivation of this formula is as follows. Filling m=2 into equation (14) yields 
 

 [     ]  ∑      

 

   

     

      
 ∑       

   

   

           

 

(16) 

The thing left to do here is to determine the         , which denote the probability of visiting k 
operational states when making n transitions. To do this, we extend the          to            , where 
j denotes the state in which the Markov chain appears in time T. Now we let        denote a row 
vector with the jth entry equal to         . Obviously summing over the elements of         yields 
        If we then examine the relation between the  ’s, we find that the vector        satisfies the 
following recursion: 
 

                                                      

                                                                                                      
(17) 

Where    denotes the probability matrix with only the transitions into the operational states (and all 
other values zero),    denotes the probability matrix with only the transitions into the unoperational 
states (and all other values zero). 
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The initial condition for the recursion is given by: 
 

                       

                       
(18) 

where            denotes the starting distribution (which we assume to be the steady state 
distribution). 
 
For determining expressions for the second moment, we don’t necessarily need expressions for the 
individual       ’s though. What we need are the terms 

∑       

   

   

            

 

(19) 

To determine these, we use an approach based on generating functions. We multiply quation (17) with 

   and then sum over k. Using the recursion, this yields 
 

      ∑           

   

   

      (      )
 

            (      )
 
  

 

(20) 

If we then take the derivative of this equation to z, set z=1 and then multiply with the column vector e, 
we find 
 

            ∑               ∑   

    

   

   

   (21) 

 
where we used that        along with                           and                 
(remember that we start in steady state). 
 
Now if we do the same with the second derivative of         to z and setting in z=1, we find 
 

  ∑                  ∑           

 

   

   

   

 (22) 

 
We clearly see that if we sum (22) with two times (21), this yields our required 
 

∑       

   

   

         

 

(23) 

So, we can give the formula for the second moment: 
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(24) 

 
We can evaluate this further by working out the brackets: 
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(25) 

The second term can be evaluated as follows 
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If we then substitute      , we find that the last summation can be evaluated as 
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(27) 

Here we see that the first of the two summations is exactly the expectation of a Poisson process with 
rate   , which is     And the second summation is a summation over all Poisson probabilities, which of 
course equals 1. Filling these values into equation (26), yields exactly our required result: 
 

 [     ]   ∑      
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   (28) 

 
In the next chapter we build on this result, by decomposing the P matrix and evaluating its eigenvalues 
and eigenvectors for specific cases. 
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5. Specific Models 
 
In this section we will analyse several specific versions for the models of [De Souza, 1986] and [Al Hanbali 
2012] that we discussed in the previous chapter. Section 5.1 contains the most analysis, when we apply 
the model to a relatively simple case. We analyse this case, and aim for an explicit formula for the second 
moment of the interval availability. In section 5.2 we will discuss a generalization of our basic model. 
Section 5.3 considers a system with an additional unit of stock. After that, we consider a system with 2 
items with both a single unit of stock in section 5.4. And finally section 5.5 considers an approach based 
on Kronecker operations which allows us to combine any of the systems mentioned above. 
 

5.1 One Item, One Stock 
In this section we look at the specific case of a system consisting of 1 item, which has 1 additional 
replacement unit in stock. The item breaks at an exponential rate λ. Once the item is broken the spare 
part will be placed into the system, and simultaneously the broken item will start being repaired with 
exponential rate µ. If this spare part breaks down before the original part is fixed, then the system is no 
longer working. 
 
This system can be displayed by the following Markov chain, where the state denotes the number of 
broken items: 

 
and the symbols corresponding to the arrows denote the transition rates. 
 
We will apply the models of the previous chapter to this specific model, as we aim for an explicit 
expression for  [     ]. We continue where we left off in section 4.3, with the following expression: 
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   (29) 

 

Now the only unknown here is the Matrix   . To be able to give an explicit expression for this, we try to 
determine its eigenvalues and corresponding eigenvectors in order to create a decomposition. If we 
were to find a decomposition in the form of 

          (30) 

then determining its i-th power would be easy since  
 

            (31) 
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Keep in mind that the matrix P is the transition matrix of the uniformized process. To uniformize the 
process, we selected a uniformization constant ν and added self-transition to attain to following Markov 
Chain: 

We now see that in all states the outgoing rate equals ν, so we can consider an analogous discrete time 
Markov Chain with transition probability matrix 
 

    

[
 
 
 
 
   

 

 

 

 
 

 

 
  

   

 

 

 

 
  

 
  

  

 ]
 
 
 
 
 

   (32) 

 
Where we should not forget the constraint that the uniformization constant has to be larger than or 
equal to all outgoing rates: 

                          (33) 

 
So, we are looking for the eigenvalues of the P given in equation (32).  Obviously since this is a stochastic 
matrix, θ=1 is one of the eigenvalues. It’s corresponding eigenvector is either the steady state 
probability distribution (when using the left eigenvector) or the vector of ones (corresponding right 
eigenvector).  
 
We influence the other eigenvalues by picking an appropriate value for    Solving det(P- θI)=0 in MAPLE 
yields: 
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(34) 

Now by picking an appropriate value for   we can fix one more of the eigenvalues. Since we already 
have 1 as an eigenvalue, the next obvious choice would be to also aim for     as an eigenvalue. Two 
choices for   assure this: 

     
 

 
  

 

 
√         (35) 

     
 

 
  

 

 
√         (36) 
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However we quickly see that    would not be an appropriate value for  , since √         so 
        which is not allowed. 
 

So we pick   equal to   
 

 
  

 

 
√      , which yields our 3 eigenvalues 

 

                
√      

  
 
 
  

 
 
√      

                  (37) 

 
Now we can determine the corresponding eigenvectors that we need to complete the decomposition of 
P. The matrix V of (right) eigenvectors is given by 
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(38) 

where the v’s are given by 
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(39) 

As for    , we can use the fact that it’s rows are the left eigenvectors of P, or we can simply invert V. 
This results in  
 

    

[
 
 
 
 ̅    ̅    

 ̅    ̅    

   

  

 

 
 ]
 
 
 

   

 

(40) 

The values for the  ̅’s are of similar form as the v’s, and are also given in appendix A. 
 
Now that we have given the matrices V and D, we can use them to finally diagonalize P: 

          (41) 
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This gives us all that we need for determining  [     ] : 

 [     ]   ∑      

 

   

     

      
  [     ]  ∑             [

 
 
 
]

 

   

  ∑   

         

     
  

    

 

(42) 

 
We simplify this further by working out both summations. First of all we note that all matrices and 

vectors except for    contain no i’s or n’s, so can be moved out of the summations, this results in 
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(43) 

 
We can then evaluate the two summation terms inside the brackets when we simply fill in matrix D: 
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Here the central term is simply a power series, which can be further evaluated as follows: 
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We can now work out the first summation (the summation over n) as well, which is given by 
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]   (46) 

 
This is simply a combination of power series, which are all known.  
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Evaluating the summations results in the matrix  
 

  [
   
          
    

]   (47) 

 
where the expressions for the a’s are: 
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(48) 

 
 
We are now (finally) ready to present the main result of this section: 
 
Theorem 1 
In a one-item one-stock system where items breakdown at an exponential rate λ  and are repaired at an 
exponential rate µ (or 2µ if they are both broken), the second moment of the interval availability during 
an interval [0,T] is given by: 

 [     ]    [     ]        [
 
 
 
]            

         

     
 

Where            denotes the steady state distribution, the matrices V and     are given by equations 
(38), (39) and (40), and A is given by (47) and (48). 
 
 
Note that this result contains no infinite sums, and no implicitly defined variables. Every parameter is 
defined explicitly. This is a very interesting result, as it not only gives a closed form and exact expression 
for the second moment of the interval availability, it is also an efficient method since due to our matrix 
decomposition we were able to evaluate the infinite sums to eventually attain a straightforward 
expression. 
 
In the next few sections, we will analyse similar models to see if this result also translates to slightly 
more advanced cases. 
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5.2 A Generalization 
In this section we try to determine if the result from the previous section also holds for a generalized 
version of the model we used there. The system we now look at can be graphically displayed as follows: 
 

 
This is obviously a generalized version of the original model, in the previous section    was equal to    
and    equalled    . To see if we can attain the same result, we go through the same steps performed 
in section 5.1. 
 
First we uniformize the system with uniformization constant  . Adding the self-transitions yields: 

If we then consider the analogous discrete time Markov chain, it has the following transition matrix: 
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    (49) 

Where we have the obvious constraint that the uniformization constant has to be larger than or equal to 

all outgoing rates: 

                                                    (50) 

 
Now we take a look at the eigenvalues for this matrix, some algebra shows us that they are 
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(51) 
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Where                is a long but relatively easy function containing combinations of the first and 
second powers of its parameters (see Appendix A)  
 
Similar to the approach in the previous paragraph, we then pick a value for   such that one of the 
eigenvalues becomes zero. In this case, we use 
 

  
 

 
              

 

 
√               (52) 

which sets    equal to zero, and simultaneously turns    into such a horrendously large function that we 
will not even put it in the appendix (it’s pretty straightforward, just very big). Next we have a look at the 
eigenvectors of the P matrix. We see that they are of the same form as in the previous section: 
 

  [
 ̇    ̇    

 ̇    ̇    

   

]   (53) 

where the  ̇’s are given by large terms of the λ’s and µ’s. In the same spirit     can be found by simply 
inverting the V matrix. 
 
We now have our three eigenvalues (though one of them requires some evaluation), our V matrix and 
our V inverse matrix. This means that we can diagonalize P explicitly, and we can then use Theorem 1 to 
determine the second moment of the interval availability.  
 
One of the main uses of this more general model, would be to use it to fit larger models to. Currently if 
one would want to analyse variability for a larger system, these systems are often fitted into (2-state) 
on-off processes. This allows you to determine the variability parameters for the aggregated system (for 
which they are known), however for the aggregation you would somehow have to aggregate all the on-
states into one single state and all the off-states into one single state. Since we have now shown that we 
have an exact and closed form expression for the second moment of the interval availability in this 3-
state model, we can use this extra state to make a much more significant distinction between the states 
in the large system.  
 
You could for example aggregate all down-states into state 2, all up-states for which a single failure 
would constitute downtime into state 1, and all other up-states could be aggregated to state 0. This is 
just one possible way of aggregating a large system into this 3-state system, there are many more 
possibilities that are all much better approximations than fitting it to a 2-state system. For the fitting 
purpose the model discussed in this section is also obviously more suitable than the model in section 
5.1, due to the fact that this model has two extra parameters which can be selected.  
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5.3 An Additional Unit of Stock 
In this section we look at another slightly extended version of our original model, we consider the case 
of one additional unit of stock. This means that we have 1 item for which we now have 2 extra units in 
stock. Breakdowns occur at rate λ, and the server has infinite repair capacity (in this case infinity equals 
three, interesting) and a repair rate of µ per broken item. This is shown by the following figure: 

 
Similar to our approach in section 5.2, we try to perform the same steps as in our original model to see if 
the result holds. We start by uniformizing the system with a uniformization constant  . Adding the self-
transitions yields: 

 
with the corresponding transition matrix for the analogous discrete time Markov chain: 
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   (54) 

Keeping in mind the constraints on the uniformization constant: 

                                (55) 

 
Now if we have a look at the eigenvalues of this system, we find them to be: 
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(56) 
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where the   -functions are in the ‘easy but very long’-category.  
 
Here we see that we do have a slightly more complicated situation than in the previous two sections. 
We still have the possibility of selecting a suitable value for  , however this only allow us to set one of 
the three complicated eigenvalues equal to zero. The other two remain large terms. This does not mean 
that it is no longer possible to use our method, however most of the numerical efficiency is no longer 
attained. 
 
Let’s say we pick   to be equal to         , this results in     . This leaves us with two hopelessly 
long expressions for    and   . Also both   and     lose the reasonably nice structural properties they 
had. For any given values of    and   they can still be computed of course, but it is no longer possible to 
explicitly give the expressions for them without filling entire pages. 
 
Without going into too much detail, we can still work towards the result on the second moment of the 
interval availability by working through equations (42) through to (48). Eventually we will derive a matrix 
A that is of the form 
 

  [

    
   ̇   
    ̇  
     ̇

]   (57) 

where the  ̇’s are summations of terms similar to the a’s given in equation (48). Using this A matrix and 
the V and    , we can give a modified version of theorem 1 for this extended case: 
 
Theorem 1b 
In a one-item two-stock system where items breakdown at an exponential rate λ  and are repaired at an 
exponential rate µ per broken item(infinite repair capacity), the second moment of the interval 
availability during an interval [0,T] is given by: 
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where               denotes the steady state distribution, V is the matrix of eigenvectors and A is given 
by (57). 
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5.4 Two Items, No Stock  
In this section we look at a system consisting of two different items, but no stock. The items have their 
individual breakdown rates    and repair rates   . The system is represented by the following figure: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Here the first number denotes the number of broken items of type one, and the second number 
denotes the number of broken items of type two. Note that this system has only one operating state, 
namely the (0,0) state. If one of the two items is broken the system can be considered unoperational. 
 
To see if our result holds for this system, we follow the same approach as in section 5.1. We start by 
uniformizing with a uniformization constant  . This results in the following transition matrix: 
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   (58) 

 
With the uniformization constraint 

                                                       (59) 

 
Now if we have a look at the eigenvalues, we see that they are given by 
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An obvious choice here would be to pick   equal to            , this results in: 

                                                           
     

           
    

                                                           
     

           
  

(61) 

The corresponding eigenvectors are given by: 
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 (62) 

 
This system is computationally a lot easier than the original case even. If we work out equations (42) 
through (47), we will find an A matrix of the form 

  [

    
           
   ̌   ̌   ̌  
     

]    (63) 

 
Where the values for          and    are those given in (48), and the  ̌   are also simply the a’s of (48) 
but with    substituted for   .  
 
Since we now have all we need, we can provide another modified version of theorem 1: 
 
Theorem 1c 
In a two-item no-stock system where items break down at rates    and    and are repaired at rates 
  and   , the expectation of the squared interval availability during an interval T is given by: 

 [     ]    [     ]        [

 
 
 
 

]         
         

     
   

where               denotes the steady state distribution, V is the matrix of eigenvectors given in (62) 
and A is given by (63). 
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5.5 The Kronecker Approach 
In this paragraph we consider an approach based on Kronecker sums and products. For a short 
introduction to this topic and several important operations and theorems, see appendix B. Kronecker 
sums and products are often used to combine matrices, in this section we see if we can use this 
approach to combine two or more smaller systems into one large system. In section 5.5.1 we show how 
our approach works by applying it on the two most basic systems. In section 5.5.2 we state our main 
result, and we show how it can be used for larger systems. 

5.5.1 The Basic Case 

We start by trying out the easiest case, combining two single item no stock systems with each other. If 
we combine them correctly, the result should be the system we analysed in the previous section (5.4).  
 
So we have two systems of the form 

 
To combine them we use Theorem B.1 in appendix B, which uses the Kronecker Sum. An important thing 
to note here is that we must combine the systems before we uniformize them. Combining two 
uniformized systems would be an unnecessary approximation, as we would then most likely have 
different uniformization constants in the two systems for which we will then have to compensate in our 
combined system (most likely the largest one will be selected). 
  
So instead of the transition matrix of the uniformized system, we look at the generator matrices for the 
original systems: 

   [
     

     
]             (64) 

Now we attempt to combine two of those into the generator  ̅ , which we are hoping will turn out to be 
exactly the generator matrix of a two-item no-stock system (the system in section 5.4). We use the 
Kronecker Sum on the two generator matrices: 
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(65) 
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Here we first used the definition of the Kronecker Sum, and then the definition of the Kronecker Product 
(as given in Appendix B). We see that  ̅ is exactly the generator matrix of a two-item no-stock system. 
Now to check if we can also determine the eigenvalues of the combined system, we use Theorem B.1 
found in Appendix B which states that the eigenvalues of a Kronecker Sum are in fact all combinations of 
the eigenvalues of the two components. In this case, the eigenvalues (and eigenvectors) of the original 
systems are easily determined: 

   [
     

     
]                [

 
        

]                 [
  

  

  

  

] (66) 

So if we look at the possible sums out of the two pairs of eigenvalues, we find: 
 

                                                                         

                                                            
(67) 

as eigenvalues for the generator of the combined system. However in our derivation we only look at 
eigenvalues for the uniformized system. Luckily, for the uniformized system which is given by 

    
 

 
 ̅ (68) 

we can easily determine the eigenvalues, because  

          (  
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     ̅   (69) 

where the      ̅ ’s are given in equation (67). So, when we fill these into equation (67) we find: 

                                                                       
     

 
    

     
           

 
                           

     

 
  

(70) 

 
And these are exactly the same eigenvalues we found in the previous section (see equation (61)).  
Following theorem B.1 in appendix B, we can also determine the eigenvectors of the combined system 
as they are given by the Kronecker products of the eigenvectors of the two small systems. 
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(71) 
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And this matrix is exactly the same as the one we found in equation (62) when we observed the 2 by 2 
system. Note that in equation (71) we interchanged the two columns of the original V matrices, so that 
the ordering of the vectors matches the ordering in section 5.4.  
 
So we have shown that for determining the eigenvectors and eigenvalues of a system consisting of two 
parts with no stock, we can use Kronecker operations on two one-part systems to combine them and 
determine the eigenvalues and eigenvectors of the combined system. In this simple case the approach 
doesn’t save a whole lot of time or effort though, as the combined system is still relatively easy (see 
section 5.4). However for combining more or larger systems using this Kronecker approach is very 
effective, as we will illustrate in the next paragraph. 
 

5.5.2 The General Model 

Here we present our result on using the Kronecker approach for combining systems (possibly larger than 
2 by 2). We then give the example of combining a 2-state system with our 3 state system, and show how 
it could be used to determine which of two items to add to stock. 
 
Theorem 2 
Consider a system consisting of M items, with stock levels   , breakdown rates   , and repair rates    

(         ). This system can be constructed and analysed by combining the M individual systems. The 
generator matrix of this combined system will be given by 
 

 ̅              
 
its eigenvalues will be given by 

 ̅              
 
and its corresponding eigenvectors will be given by 
 

 ̅              
 
where    denotes the generator matrix of item i,    is the vector containing its eigenvalues, and   is the 
matrix containing the corresponding eigenvectors. 
 

 
The proof for this theorem directly follows the derivation in the previous paragraph. To show a slightly 
more advanced case, we will now proceed to apply this theorem by combining a 2 state system with a 3 
state system.  
 
We consider a system consisting of 2 items, item 1 which has one unit in stock, and item two which has 
zero units in stock. In order to be able to apply theorem 2, we first need to determine the individual 
generator matrix (Q), and its eigenvalues (θ) and eigenvectors (V). For the one stock model (as analysed 
in section 5.1): 
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We quickly find that 
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] (72) 

 
Where the values for the v’s are given in equation (39). Note that the first and third column have been 
exchanged in the V matrix. This is due to the fact that the eigenvalues of the generator matrix are not 
the same as those of the uniformized matrix. Uniformizing alters the eigenvalues (and thus scrambles 
their order), but has no effect on the eigenvectors. 
  
The parameters for the second item (that doesn’t have any stock) were already determined in the 
previous section: 
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] (73) 

We can now determine the parameters for the combined system. First we determine its generator 
matrix: 
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(74) 

We can then determine its eigenvalues, they are given by all possible combinations of an 
element of     plus an element of    : 
 
 
 

 



34 
 

 ̅  

[
 
 
 
 
 
 
 
 
 
 

 
        

    
 

 
   

 

 
√        

 

    
 

 
   

 

 
√        

         

    
 

 
   

 

 
√        

 

    
 

 
   

 

 
√        

         ]
 
 
 
 
 
 
 
 
 
 

  

 
The corresponding eigenvectors can then also be determined: 
 

(75) 
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(76) 

We can now use these parameters to determine the second moment of the interval availability of the 
combined system. For that we still need to  select a uniformization constant though. For the 
uniformization constraint we know it needs to be at least as large as the largest outgoing rate, so: 

     
 

| ̅   | (77) 

We can then determine the eigenvalues for the uniformized process, using that 

     ̅     (  
 

 
 ̅)    

 

 
     ̅   (78) 

We know that the eigenvectors stay the same. So when we put the elements of  ̅ in the diagonal matrix 
 ̅, we have found the decomposition for our new matrix  ̅: 
 

 ̅   ̅ ̅ ̅    (79) 

This means that we can explicitly evaluate the second moment of the interval availability, as we have 
done in sections 5.1 through 5.4. 
 
Note that we could use this method to compare several possible choices for allocating stock. Imagine 
having a two-item system with no units of stock for either item (the system described in section 5.4.1). 
When adding a unit of stock you would have to choose between the two, and you would like to pick the 
item that would reduce the variability the most. You can analyse this by applying theorem 2 twice, first 
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combining the 2 systems where the first item has a unit of stock (as shown in the example above), then 
combining the 2 systems where the second item has a unit of stock. That last option would in this case 
simply mean substituting    for     and    for    in equations (74) through (79) of course, but for 
combining systems with a large amount of stock the method works in exactly the same way. 
 
It is also worth noting that the use of theorem 2 is not limited to combining two systems, any number of 
systems can be combined. Simply add a system, determine the combined generator matrix, eigenvalues 
and eigenvectors, then add another system. Though this is a lot of work, it is still numerically efficient 
compared to determining all the parameters without using the individual systems. 
 
The biggest possibility for applying theorem 2 might lie in combining it with the aggregation method 
discussed at the end of section 5.2. One could aggregate each individual system into the 3 state Markov 
chain given by: 

Theorem 2 could then be used to combine any number of these relatively small systems (small 
compared to their original system at least). In that way the results for the second moment of the 
interval availability can be obtained for very large systems.  
 
The accuracy of these results would heavily depend on the accuracy of the aggregation though. 
Examining the best way to aggregate a large system into the 3 state system shown above is a very 
interesting topic, but regrettably one that does not fit within the timeframe of this research.  
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6. Numerical Results 
In this section we provide some numerical results, to serve as both a validation for the theory and as an 

interesting chapter in itself. Where possible, we will use our model given in section 5.5 to determine the 

system parameters. For some cases however we will use the approximation of [Al Hanbali, 2012] as 

presented in section 4.3.  

6.1 Basic Numerical Model 
The numerical case we observe is a basic 1-echelon model. We consider 1 system of 3 components, for 

all 3 components stock levels can be held. All three items have an expected breakdown time of 40.000 

hours (roughly 4-5 years) and an expected repair time of 20.000 hours. We use these numbers as a basis 

for our numerical examples, for each specific example we will modify either some of the repair times or 

some the breakdown times by a certain factor. This allows us  to observe the effect of adding (or not 

adding) one of these altered items to your stock. Note that though these repair and breakdown times 

are reasonably realistic, they are mostly selected to display interesting results in this numerical example. 

We consider time intervals of one year, and we use the formulas derived in chapter five to determine 

the expected interval availability and the variance of the interval availability. For determining the 

survival rate of the interval availability we use the approximation of [Al Hanbali, 2012] as given in section 

4.3.  

6.2 Modifying Repair and Breakdown Times 
We start by modifying both the repair and breakdown times, while keeping the ratio constant. To be 

able to clearly observe the effect of this, we make item 1 into a ‘slow mover’ by making the breakdown 

and repair times ten times as large as they originally were, and we make item 3 into a ‘fast mover’ by 

making the repair and breakdown times ten times smaller. 

We then observe a system without stock, and consider all 3 possible ways of allocating a single unit of 

stock. Using the results of the previous chapter, this system can be constructed by combining one 3-

state Markov Chain with two 2-state Markov chains. We find the following results for the expected 

interval availability, the variance of the interval availability, the coefficient of variation, and the 80% 

survival probability: 

Constant (λ/µ) Ratio E[A(T)] Var[A(T)] CV P(A(T)>0.8) 

Original Case (0,0,0) 29,5% 0.12 1.17 15,3% 

+1 Slow Mover (1,0,0) 40,9% 0.12 0.85 20,8% 

+1 Average mover (0,1,0) 40,9% 0.13 0.89 22,9% 

+1 Fast Mover (0,0,1) 40,9% 0.18 1.07 33,0% 

 

The first thing we see here is that all 3 of the options provide the same increase to the expected 

availability. This was to be expected, since for determining the expected availability we require only the 

expected number of backorders, which in turn is a function of          terms. The    and    never occur 

individually, thus since the ratio is the same for all three items, adding a unit of stock to any of the three 

yields the same increase in the expected interval availability. 
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However if we observe the results for the survival rate, we clearly see that the last option (adding an 

additional unit of stock for the fast mover) yields a significantly larger survival probability. Apparently 

focusing on the faster moving items in this case yields significantly better results in that aspect. Also 

note that the option that yields the highest survival rate in fact also yields the highest variance, whereas 

intuitively you would argue that a high variance is naturally a bad thing. However if your goal is simply to 

be over a certain percentage (in this case 80%), then you will need a high variance if your average is not 

high enough. 

Keep in mind that these were results for a very low availability though. We now consider the same set of 

possibilities for adding a single unit of stock, in a situation where the base stock is already slightly higher 

(there’s already one unit of stock for each item). Using the results of chapter five, this system could be 

constructed by combining two 3-state Markov chains (analysed in section 5.1) with one 4-state Markov 

chain (analysed in section 5.3). We find the following results:  

Constant (λ/µ) Ratio E[A(T)] Var[A(T)] CV P(A(T)>0.8) 

Original Case (1,1,1) 78,3% 0.10 0.41 68,7% 

+1 Slow Mover (2,1,1) 83,8% 0.07 0.31 73,9% 

+1 Average mover (1,2,1) 83,8% 0.08 0.33 75,4% 

+1 Fast Mover (1,1,2) 83,8% 0.10 0.39 79,4% 

 

Here we observe exactly as in the previous case. We see that for the average interval availability it 

doesn’t matter which item is added, however for the survival probability adding the fast mover yields 

significantly better results. This is very interesting considering the fact that the conventional metric 

approach might not have picked this item since it only considers the average availability, where the fast 

mover is doing just as well. The following figure displays the survival curves of the four different stock 

levels:  
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Here we clearly see that adding an additional unit to the fast movers stock yields the largest increase for 

higher availability. Since each of the three options yields the same expected interval availability, the 

area below these three curves has to be equal. This also means that for low availability it’s in fact 

preferable to add a slow mover. However since in all realistic scenarios we are interested in relatively 

high availabilities, we can say that adding a unit to the fast mover is clearly preferable for the survival 

rate. 

To determine whether the effect observed here is perhaps driven by either one of the altered 
parameters (repair- or breakdown-time), we now consider the case where we keep one constant. 
 

6.3 Only Modifying Repair Times 
In this example we start with the basic system as described in section 6.1 (1 system, 3 components), but 

now we only change the repair times of the items while keeping the breakdown times constant. This 

changes the (λ/µ) ratio which has a significant effect on the system parameters, whereas in the last 

paragraph we kept this ratio constant. 

So we make item 1 into a slow repairer (10 times slower) and item 3 into a fast repairer (10 times 

faster). Since (only) the repair times are now altered, the stock levels will have to be altered as well. To 

compensate for the slow repairing item there will have to be more of them in stock, whereas the fast 

repairing item will require less stock. To clearly demonstrate this effect we increase all breakdown rates 

by a factor of 10. A reasonably balanced stock level would now be (50,9,2), meaning 50 stock of the slow 

repairing item, 9 of the normally repairing item, and 2 of the fast repairing item. Note that these values 

were specifically selected to provide a reasonable balance between the 3 items, and to display 

numerically interesting results. 

If we were to analyse this system use our methods derived in the previous chapter, we would have to 
aggregate two of the Markov chains (the ones for the item with 50 stock and the item with 9 stock). 
Since this is not something we managed to evaluate within this project, we will use the approximation 
by [Al Hanbali, 2012] to determine the results for this example. 
 
We observe the choices we have for adding one additional unit of stock, and find the following results: 
 

Constant Breakdown Rate E[A(T)] Var[A(T)] CV P(A(T)>0.8) 

Original Case (50,9,2) 86,9% 0.05 0.27 78,7% 

+1 Slow Repairer (51,9,2) 87,9% 0.05 0.25 80,2% 

+1 Average Repairer (50,10,2) 87,8% 0.05 0.26 80,1% 

+1 Fast Repairer (50,9,3) 87,9% 0.05 0.26 80,5% 

 

Here we see that though adding each of the three items provide roughly the same increase to the 

expected interval availability, the survival rate increases the most when adding to the fast repairer 

(which currently has the smallest amount of stock). Whether this is because this part repairs faster, or 

because adding a single unit of stock is relatively the largest increase in stock level (50%), cannot be 

concluded at this point. Given the fact that the model of [Al Hanbali, 2012] is an approximation (which 
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has been verified by simulation to give accurate results though), is it also the question whether the 

difference in the survival probability are significant.  

6.4 Only Modifying Breakdown Times 
We now do a similar numerical experiment for modifying the breakdown times. Starting from the basic 

system as described in section 6.1, we now modify item 1 to breakdown at a slower rate and item 3 to 

breakdown faster. A reasonably balanced stock level would now be (2,9,50), where obviously item 1 that 

has less breakdowns requires significantly less stock than item 3 that breaks down a lot (and takes the 

same time to repair). 

We observe the three choices of adding one additional unit of stock: 

Constant Repair Rate E[A(T)] Var[A(T)] CV P(A(T)>0.8) 

Original Case (2,9,50) 85,7% 0.02 0.18 73,2% 

+1 Slow Breakdown (3,9,50) 86,7% 0.02 0.16 75,6% 

+1 Average Breakdown (2,10,50) 86,6% 0.02 0.17 75,2% 

+1 Fast Breakdown (2,9,51) 86,6% 0.02 0.18 75,2% 

 

Here we see that for the survival rate it seems preferable to add an additional unit of stock to the item 

that breaks down slower (and thus has the least amount of stock). However in this case this is also the 

option that METRIC would prefer, since it also provides the largest increase to the expected interval 

availability. 

From these numerical data we’ve obtained reason to believe that in situations where adding a unit of 

stock to different items yields the same increase in the expected interval availability (balanced stock 

levels), for the survival rate it would be preferable to add the unit of stock to the item that current holds 

the smallest stock level. This yielded the largest increase in both the case where repair rates were 

different and breakdown rates were constant, and in the case where repair rates were constant and the 

breakdown rates varied. 

If the ratio between the breakdown rate and the repair rate (λ/µ) is roughly equal for all possible 

options, it is clearly preferable to add a unit of stock to the fastest moving item. In this case this is the 

item where the breakdown rate (and thus the repair rate) is the highest, the item that ‘moves’ the most.  
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7. Conclusions 

7.1 Conclusions 
We conclude by answering our research questions: 

1. What currently existing literature is applicable to this research? 
We examined a large amount of literature in the general area of this research. First off all we examined 
the after sales business models given in [Cohen, 2006] and the spare part strategies given in 
[Rustenburg, 2000]. Combining this with the information that Thales provided regarding its processes, 
were able to classify said processes. 
 
We also examined the METRIC model, as it is key to the entire spare parts industry. However our 
research specifically focussed on the area that METRIC disregards (variability), and in chapter 6 we have 
shown that disregarding variability can result in sub-optimal decision making. 
 
Most importantly, we focussed on literature regarding interval availability. The two main articles we 
evaluated were [De Souza, 1986] and of [Al Hanbali, 2012]. The model described in [De Souza, 1986] was 
written with the specific application of repairable computer systems in mind, however its theoretical 
analysis and results can be translated directly to our research.  
 
This is exactly what was done in [Al Hanbali, 2012], this article can certainly be seen as the basis and 
motivation for this research. The model of [De Souza, 1986] was applied to the spare parts management 
at Thales, and several nice results regarding the variance and survival function of the interval availability 
were derived. 
 
2. Which theoretical model and/or analysis currently provides the best approximation of the practical 
situation at Thales? 
This is without a doubt the model presented in [Al Hanbali, 2012]. It was specifically created for Thales, 
and provides a reasonable approximation of the practical situation there. Though some approximations 
were made, they are strictly necessary in order to be able to derive any kind of theoretical results. 
 
A lot of similar models exist that use a two-state Markov Chain and then analyse interval availability. For 
example in [vdHeijden, 1988] the on and off periods were fitted using phase type distributions, which 
yielded a reasonable result. Another example, and the most notable model for two-state interval 
analysis, is the work of [Kirmani, 2008]. They derive the first two moments of the interval availability in 
exact and closed form. However these models are only suitable for on-off processes, and fitting larger 
systems into two states will be too much of an approximation to be able to draw any significant 
conclusions. 
 
3. Can we extend or improve this model? 
We looked for ways to extend or improve on the model of [Al Hanbali, 2012] and its results, and we 
found two ways to do that.  
 
Our first main result involves a further evaluation of the expression for the second moment of the 
interval availability. By decomposing the transition probability matrix and picking an appropriate 
uniformization constant, we were able to create a much more efficient way of calculating this second 
moment for certain specific cases. In section 5.1 we derived our basic results for the one item one stock 
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case in Theorem 1. Furthermore we considered several similar but slightly more advanced models in the 
sections 5.2 through 5.4, and in these models we give results on the second moment and the constraints 
under which these results hold. 
 
Our second main result is derived in section 5.5, and involves using Kronecker operations to build up 
larger systems out of multiple smaller systems. Theorem 2 states exactly how to combine two systems 
and how use the properties of the original system to analyse that of the combined system. We give two 
concrete examples of how our result works, using the basic systems we analysed in the previous 
sections to build a larger system. We also mention the possibilities of combining this result with the 
aggregation method we mentioned in section 5.2. Though this might seem very promising, regrettably it 
did not fit within our project. 
 
4. How well does our extended model represent the practical situation? 
This is a difficult question to answer. Though our initial intentions were for this research to have a 
reasonably applied nature, it turned out to be mostly theoretical. However in section 6 we were able to 
use our results to determine parameters for the numerical evaluation, and we found that they matched 
the simulation results (as derived in [Al Hanbali, 2012]) very well. For the relatively small cases that we 
examined, we found our model to be a good representation of the practical situation.  
 
5. Which further advantages does our extended or improved model provide? 
Our first main results is a further evaluation of the expression for the second moment of the interval 
availability for specific cases. This result allows us to calculate this second moment much more 
effectively. The original result contained infinite sums and implicitly defined variables, which cause 
numerical difficulty especially for larger systems. Our result contains none of this, and is very 
straightforward and efficient. In sections 5.1 through 5.4 we have outlined the basic systems for which 
our results can be applied. 
 
Our second main results allows us to combine small systems into larger systems using Kronecker 
operations. This is a very effective way to construct larger systems, as computational difficulty increases 
very quickly with size. We can use the results that we have derived for smaller systems, to evaluate a 
large system by combining its components. This could for example be used as an efficient way to 
compare several possible choices of allocating stock. 
 

 

7.2 Further Research 
Our research leaves several possibilities for further studies. First of all the result of theorem 1 might be 
applied to a larger set of systems. In our research we only evaluated it for systems that were reasonably 
small and manageable, however there is a good chance the result will hold in a much more general 
setting. Furthermore it might be interesting to try to determine if an approach similar to the one we did 
might also yield a more efficient way to determine higher moments of the interval availability. 
 
The most interesting direction for further research in my opinion would be attempting to combine the 
Kronecker approach given in section 5.5 with the aggregation model mentioned in section 5.2. If there 
were to be an effective way to aggregate large systems into the 3 state system given in section 5.2, then 
this would be a very effective way to analyse them. However there are many possible ways of 
distributing the large amount of states over the three states, so there are plenty of possibilities for trying 
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to determine the most efficient way to do so. If an efficient way were to be found, then combining this 
with Theorem 2 of section 5.5 would results in a very effective way to analyse larger systems. 
 
Another topic for further research could be a more advanced application of my results. Though I have 
currently restricted myself to relatively simple examples, maybe a software implementation can be 
constructed to allow for analysis of more general cases. This would allow a broader scale of numerical 
results, as well as a way to evaluate exactly how good of an approach this is for larger systems. 
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Appendices 

Appendix A: Parameter Values 
For the matrix V given in equation (38)  

  [
         

         

   

]  

the v’s are given by: 
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The function used in equation (51) is given by 
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Appendix B: Matrix properties & Operations 
In this appendix we will provide some results on Kronecker operations, which can be found in [Horn, 
1991] for example.  
 
The Kronecker Product, also known as direct product or tensor product, is a useful tool for studying and 
working with matrix equations. It is defined for two matrices or arbitrary sizes. 
 

Definition B.1 The Kronecker product of matrix   [   ]        and matrix   [   ]       is 

denoted by     and is defined to be the block matrix 
 

     (
         

   
         

)         

 
Notice that         in general. 
 
 
 
We also define the Kronecker Sum: 
 

Definition B.2 The Kronecker sum of square matrices   [   ]      and   [   ]     is denoted by 

    and is defined to be the mn by mn matrix given by 
 

                   
 
 
The following theorem regarding eigenvalues and eigenvectors using Kronecker operations, is perhaps 
the most important theorem for this research 
 
Theorem B.1 Let      and       be given. Now if   is an eigenvalue of A with x as its 
corresponding eigenvector, and if   is an eigenvalue of B with corresponding eigenvector y, then     
is an eigenvalue of    , and     is its corresponding eigenvector. Every eigenvalue of the Kronecker 
sum arises as such a sum of eigenvalue of A and B. 
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Samenvatting 
 

In de service industrie zijn contracten op basis van performance steeds gebruikelijker. Bedrijven bieden 

een dienst aan, en de jaarlijkse betaling die ze hiervoor ontvangen is afhankelijk van de kwaliteit van de 

aangeboden dienst gedurende dat jaar. Dit betekent dat voor het effectief voorspellen van de kosten en 

inkomsten het niet langer voldoende is om lange termijn gemiddeldes te gebruiken, er moet geanalyseerd 

worden hoe het systeem zich gedraagd gedurende specifieke tijdsintervallen.  

Als toepassing hiervan kijken we naar Thales Nederland. Hier worden radar systemen ontworpen, 

gebouwd en verkocht, en naast het systeem zelf wordt meestal ook een bijbehorend onderhoudscontract 

afgesloten. Dit houdt in dat Thales verantwoordelijk is voor het werkend houden van de geleverde 

systemen, en dat de opbrengsten (of boetes) die Thales jaarlijks ontvangt hier direct aan gerelateerd zijn. 

Om het systeem zo vaak mogelijk beschikbaar te houden kan Thales reserve onderdelen aanschaffen en 

op locatie bewaren. Het budget hiervoor is echter beperkt, dus de vraag is hoe we dit budget zo effectief 

mogelijk kunnen besteden over reserve onderdelen. 

Het theoretische model dat we hiervoor bestudeerd hebben is gebaseerd op Markov ketens. Bestaande 

modellen die geschikt zijn voor grotere systemen zijn meestal grove benadering, exacte (expliciet 

gedefinieerde) resultaten over de jaarlijkse beschikbaarheid bestaan voornamelijk voor Markov ketens 

met 2 toestanden. Aan de hand van het model opgesteld door [Al Hanbali, 2012], hebben wij met behulp 

van een matrix-decompositie vergelijkbare resultaten verkregen voor een Markov keten met 3 toestanden. 

We beschrijven meerdere basis modellen waarvoor onze resultaten gelden. 

Daarnaast geven we een algemene methode om grote systemen te analyseren door de kleinere 

componenten van deze systemen individueel te analyseren. Aangezien de numerieke complexiteit snel 

stijgt bij grotere systemen, is dit een relatief efficiënte methode. We geven enkele voorbeelden om 

duidelijk te maken hoe deze methode toegepast kan worden, en we geven indicaties van de verdere 

mogelijkheden die deze methode biedt bijvoorbeeld voor het selecteren van een onderdeel om extra op 

voorraad te leggen. 

 
 
 
 


