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Summary / Samenvatting Static user equilibrium

Summary

There are many algorithms which converge to a static user equilibrium (UE) in a network
without junction modeling. We have investigated eight algorithms and compared these algo-
rithms based on convergence rate, memory usage and proportionality. We considered “Traffic
Assignment by Paired Alternative Segments” (TAPAS) as a promising algorithm. We have
found modifications for TAPAS such that the convergence rate may increase and we investi-
gated a manner in which we can modify it in such a way that it is also useful in networks with
junction modelling. We have included a proof of the convergence of TAPAS, the existence of
a unique UE in terms of link-flow in networks without junction modelling and, under certain
conditions, in networks with junction modelling.

Samenvatting

Er zijn veel algoritmen die convergeren naar een gebruikersevenwicht in een netwerk zon-
der kruispuntmodellering. We hebben acht algoritmen onderzocht en vergeleken op basis
van convergentiesnelheid, geheugenverbruik en proportionaliteit. Wij vinden ”Traffic Assign-
ment by Paired Alternative Segments” (TAPAS) een veelbelovend algoritme. We hebben
modificaties voor TAPAS gevonden zodanig dat de convergentiesnelheid wellicht kan worden
verbeterd en we hebben een manier gezocht om kruispuntmodellering mogelijk te maken bij
TAPAS. We hebben ook een bewijs van convergentie van TAPAS, het bestaan van een uniek
gebruikersevenwicht in termen van link-flow in netwerken zonder kruispuntmodellering en,
onder bepaalde voorwaarden, in netwerken met kruispuntmodellering toegevoegd.

2



Preface Static user equilibrium

Preface

This thesis is the final work of my graduation study at Stochastic Operations Research (SOR),
department of Applied Mathematics (AM), University of Twente. The corresponding research
has been conducted at Omnitrans International.

Since I was a little child I have been interested in mathematical problems and puzzles. There
was always a battle between a friend of mine and me to be number one at the annual mathe-
matics challenge (Kangeroe wedstrijd) of our secundary school. In the first year of secundary
school I already knew I wanted to do a study with mathematics in it, and so I did. The further
I came in the study the more I knew AM was the right study, but the less certain I became
about the master track: Discrete Mathematics and Mathematical Programming (DMMP)
or SOR. Courses were chosen that fitted in both tracks. I began with DMMP, switched to
SOR and the final project has more to do with DMMP. I think the conclusion must be that
mathematics is beautiful and both tracks are interesting.

The website of Omnitrans International cought my attention and luckily they invited me
over after they read my letter of application. Although I had no experience in their field, the
project is interesting en challenging. Doing my final project here has been a nice and valuable
experience.

One cannot do a final project alone. I want to thank Maarten and Werner for their time,
expertise and guidance. It was a pleasure to have you as my supervisors. Further I want to
thank Michiel for his interest in my work and the other professors, Georg and Richard, for
making my final project possible. And let’s not forget to thank all colleagues who answered
my questions and made Omnitrans Interanational an enjoyable company. Finally of course
all my friends and family who supported me. Special thanks to Erik who is always there for
me, even when I was moody when something did not work out as planned.

Deventer/Enschede, Maart 2011
Saskia Ton

3



Notation Static user equilibrium

Notation

Symbol Meaning
α empirical determined coefficients
β empirical determined coefficients
γ constant used to define a flow-effective PAS

δj equals 1 if C̃si = cij + C̃sj and 0 otherwise

δ
{p}
ij equals 1 if path p contains link ij and 0 otherwise

∆ path-edge incidence matrix
η constant used to define a cost-effective PAS
κ constant

µ(m) with m={1,2,3} Lagrangian multiplier
ε small number
εm with m={2,3,4} small number
λ scalar
λ∗ optimal scalar
λn scalar at iteration n
Λ path-OD incidence matrix
σ vector where |σTrs| = [1, 1, · · · , 1] = m when there are m path between OD-pair rs.
Φn thresholds at iteration n
ξ(f r,•ij , rc

r,•
ij ) decrease of the objective function

A set of all links
B(r) bush of origin r
B(s) bush of destination s
cij cost of link ij
cĩıj cost of the turn ĩıj
c∗ij cost of link ij in UE-assignment

cij(fij) cost of link ij when it contains flow fij
c{p} cost of a path p

Cji minimum cost of a path from node i to node j

C̃si cost from node i to destination s
c̄r,s average cost of OD-pair rs

c(n) cost of iteration n
D vector with demands
Dr,s demand from origin r to destination s
eij alternative flow on link ij
e•,sij alternative flow through link ij with destination s

esi alternative flow leaving node i with destination s

e(n) alternative flow on iteration n
e{p} alterantive flow for path p

fij flow on link ij
f vector of link-flows

f̂ vector of link-flows

f̃ vector of link-flows

4



Notation Static user equilibrium

Symbol Meaning
f̄ r,sij flow on link ij of all OD-pair except rs

fi flow leaving node i
fsi flow leaving node i with destination s
f r,•ij flow through link ij with origin r

f•,sij flow through link ij with destination s

f{p} flow on path p

fīıj flow on turn īıj
f{p} vector of path-flows

f r,sij flow through link ij from origin r to destination s

f(n) flow at iteration n in terms of link-flow

f
(n)
ij flow on link ij at iteration n

F set of feasible flows in terms of link-flow
F{p} set of feasible flows in terms of path-flow

FSB(i, s) containing all nodes j which satisfy i− j − ...− s
gij derivative of the cost at link ij
g{p} descent direction of path p

Gr,sij gradient of a link ij caused by OD-pair rs

G̃si derivative of C̃si
i node
ı̃ node
ı̂ node
I set of all nodes
ij link from node i to node j
j node
̃ node
J set of all nodes in the current forward star bush (FSB)
l number
l0 number
n iteration number
ñ iteration number
N maximum number of iterations
O(f) objective function with flow f
p path
p̂ path
P set of all paths
Pr,s set of all directed paths for an OD-pair rs
P+
r,s set of all directed paths for OD-pair rs that carry flow

Qij capacity of link ij
r origin (resource)
r̄ origin
R set of all origins
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Symbol Meaning
rcij reduced cost for link ij
rcr,•ij reduced cost origin r, link ij

rcr,•ij (f) reduced cost origin r, link ij flow f

s destination (sink)
s̄ destination
S set of all destinations
tij travel time on link ij
tij(fij) travel time on link ij when there is fij flow
T sceneryij “cost” of scenery on link ij

T fuelij cost of fuel on link ij

T remainingij cost of remaining influences on link ij

V s
i number used to calculate esij ∀j ∈FSB(i, s)

w dummy variable for integration
x amount of flow
ysij fraction of flow which leave node i going to j
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Introduction Static user equilibrium

1 Introduction

In this chapter we begin with some background information. Next we define the problem
definition and we end with the structure of this thesis.

1.1 Background

Some responsibilities of local governments are maintenance of the infrastructure and building
residential areas. New residential areas cause people to move from/to these areas, changing
the flow of traffic. Local governments want to know the influence on the roads caused by
these changes to anticipate on the new situation. New traffic situations can be modelled by
assigning travellers to a route, assuming the origin and destination of travellers are known.
The assignment of travellers on a network is called “traffic assignment problem” (TAP) and
can be done in the software “OmniTRANS”. As input information is needed the velocities
in the network and the number of people departing from and arriving at a zone. The output
contains information about the velocity and the number of travellers on a road. This thesis
focuses on static assignment, which means that the travellers demand is time independent.
We can interpret the static assignment as the flows that would appear if the traffic demand
would be constant for a long time. We look for a user equilibrium (UE), meaning that we
assume that each traveller minimizes his own cost.

1.2 Problem definition

OmniTRANS uses iterative algorithms with bad convergence; the convergence decreases when
the solution gets closer to equilibrium. The algorithms used by OmniTRANS - “incremental
assignment”, “method of successive averages” and the “Frank-Wolfe” method - were used by
almost all TAP-solving programs ten years ago. Substantial improvements in computation
times and convergence for finding the UE-assignment were made in the last five years, which
caught the attention of Omnitrans International, the developer of OmniTRANS. Since most
algorithms are examined exhaustively nowadays, the company is searching for a new algo-
rithm. Newer algorithms store more information and use more memory, but the improvement
on computer memory makes these algorithms interesting for Omnitrans International. The
algorithms investigated in this thesis are “incremental assignment” (IA) [1], “method of suc-
cessive averages” (MSA) [1], “Frank-Wolfe” (FW) [2], “simplicial decomposition” (SD) [2],
“projected gradient method” (PG) [3], “linear user cost equilibrium” (LUCE) [4], “algorithm
B” (Alg. B) [5] and “traffic assignment on paired alternative segments” (TAPAS) [6].
We will compare these algorithms by means of memory requirements, convergence rate and
proportionality. With these results we will design a new algorithm based on the requirements
of Omnitrans International.

1.3 Structure of this thesis

The rest of this thesis is structured as follows. Chapter 2 explains the TAP in greater detail.
A description of the properties can be found in Chapter 3. In Chapter 4 the eight algorithms
mentioned above are described, an example is provided and the properties are determined.
The modified algorithm can be found in Chapter 5. The result are stated in Chapter 6. In
Chapter 7 we can find the conclusion and recommendations.
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2 Static user equilibrium

In this chapter the TAP is explained in greater detail and in a mathematical formulation, an
often used cost function is described, next it is explained how we can add junction modelling
and the section ends with a proof of the equivalence of two mathematical descriptions, the
existence and uniqueness of a UE on a network without junction modelling and under certain
conditions on a network with junction modelling.

2.1 Mathematical formulation

We begin with the notation and explaining some terminology. A network consists of nodes
(areas), links (streets or lanes) and flow (travellers). A link between node i and j is called ij.
The flow on link ij is fij , the cost cij and an alternative flow eij . The cost on a link is only
dependent on the flow on that link and the cost of a path is the sum of the costs of all links
in that path. The flow on path p is f{p}, the cost of this path is c{p} and an alternative flow
on this path is e{p}. Origin r ∈ R is the node where a flow begins and destination s ∈ S the
node where a flow ends, where R is the set of all origins and S is the set of all destinations.
The set of all paths is P and the set of all paths with origin r and destination s is Pr,s. A
path p ∈ Pr,s is thus a path with r − i− ...− s. The objective function O(f) is depending on

the flow f. F{p} is the set of feasible path-flows and F the set of feasible link-flows. δ
{p}
ij is 1

if link ij is part of path p and 0 otherwise. The cost of a minimum cost path is Csr .
Our problem is finding the flow which satisfies all demands in such a way that each traveller
minimizes his own cost, where we assume the demand Dr,s is known in advance.

To show what we mean by a UE we will show an unequilibrated network and a equilibrated
network. We will first confirm that Figure 2.1.1a is not equilibrated. The demand from node
2 to node 4 is 2, where the flow on path 2−4 is 1.13. This means that node 2 uses path 2−3−4
while path 2− 4 is cheaper. The travellers of OD-pair 24 can lower their cost, which means
that the network is not in equilibrium. Figure 2.1.1b is in equilibrium, since all paths between
every OD-pair are equal. We have c{1−2−3} = c{1−3}, c{1−2−3−4} = c{1−2−4} = c{1−3−4} and
c{2−3−4} = c{2−4}.

All travellers from a certain origin to a certain destination are called travellers of an origin-
destination-pair, or OD-pair. We assume that the demand of every OD-pair is known in
advance and that travellers cannot change their path during their journey. In a UE all trav-
ellers minimize their own cost, leading to equal cost of each path used by that OD-pair. It is
proved that the cost of this path is equal to the minimum cost path of that OD-pair. We can
prove this by contradiction. Suppose there is a path used with a higher cost then the cheapest
path. The traveller on this path can lower his cost by changing to the cheapest path. This
will be repeated until there is no used path costlier then the cheapest one. But then there is
no path more expensive then the cheapest one, meaning all used path have equal cost, namely
equal to the cheapest path possible from the origin to the destination.

In case of link-flows we define fij =
∑

p∈P δ
{p}
ij f{p} ∀ij ∈ A.

We want that the cost of every used path is equal to the minimum cost path of an OD-pair,
the flow on a path is non-negative and the demand-requirement is met.

10
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(a) An unequilibrated network.
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41
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(b) An equilibrated network.

Figure 2.1.1: The network of Figure 4.0.1, without the junction, with flow that does not
equilibrate the cost in (a) and flow that does equilibrate the cost of (b). The blue number
above a link is the flow and the red number below a link is the cost of that link.

This is written down in 1952 in Wardrop principles [7]:

f{p} (c{p} − Csr ) = 0 ∀ p ∈ Pr,s
c{p} ≥ Csr , ∀ p ∈ Pr,s
f{p} ≥ 0, ∀ p ∈ P∑

p∈Pr,s
f{p} = Dr,s ∀ r ∈ R, s ∈ S

The solution of the following variational inequality (VI) problem describes a Wardrop UE.
We want to find flows f{p} ∈ F{p} such that∑

p∈P
c{p}(f{p}) · (e{p} − f{p}) ≥ 0, ∀e ∈ F{p}

When we rewrite this path-based VI problem into a link-based VI problem, we want to find
link flows fij ∈ F such that∑

ij

cij(fij) · (eij − fij) ≥ 0, ∀e, f ∈ F

Beckmann, McGuire and Winsten developed in 1956 the formulation of the standard UE
problem as a mathematical program under the assumptions of separable additive costs, the
cost and flow are at least zero (cij ≥ 0, fij ≥ 0) and the cost of a link is dependent of the flow
on this link (cij(fij)). Existence and uniqueness are proven for Beckmann’s formulation [8].
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The following is Beckmann’s formulation:

min
f

O(f) =
∑

ij∈A
∫ fij
w=0 cij(w) dw

subject to fij =
∑

p∈P f{p}δ
{p}
ij ∀ij ∈ A∑

p∈Prs
f{p} = Dr,s ∀r ∈ R, s ∈ S

f{p} ≥ 0 ∀p ∈ P

When we would have the objective function min
f

∑
ij∈A

fij · cij we would find the system opti-

mum instead of the user equilibrium. The system optimum is a flow where the total cost of
all travellers together is minimal.

It can happen that two quite similar algorithms are developed at the same time without
knowlegde of each others algorithm, but many formulations and algorithms are based on
earlier papers. Although there are many more algorithms and maybe other formulations, we
have made a timeline for the formulations and algorithms used in this paper, which can be
found in Figure 2.1.2.

1952

Wardrop

’56

Beckmann

FW

’60

PG-R

’76

SD

2006

Alg.B

’09

LUCE

PG-F

’10

TAPAS

Figure 2.1.2: Timeline of the publications of the algorithms and formulations. PG-R is the
original projected gradient method of Rosen [9] and PG-F is the PG method of Florian et al
[3]. All other abbreviations are the algorithms described in this thesis. Red are mathematical
formulations, orange abbreviations are link-based, blue are path-based and green are bush-
based.

2.2 BPR-function

Now that the formulations are known, we continue with an explanation of the links and the
cost of these links.
A road consists of at least one traffic lane. Different traffic lanes can have different proper-
ties, like maximum velocity and permitted vehicles. But a link in a network can only have
one specification. So it is, for example, a highway, accessible for all traffic and a maximum
velocity of 100 km/h or a bicycle path, only accessible for bicycles and a maximum velocity
of 25 km/h. If different lanes have different specifications they are modelled as two separate
links.
The relation between load and travel time is represented by a time loss function. The Bureau
of Public Roads function, or shortly BPR-function, is used most often.
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The BPR-function has the following formulation: [10]

tij = tij(0) (1 + α

(
fij
Qij

)β
)

tij travel time on link ij
tij(0) travel time on link ij in an unloaded network
Qij maximum capacity of link ij
α, β empirical determined coefficients
fij flow on link ij

The often chosen values for α and β give a function which is slightly increasing at the beginning
but with a dramatic increase when the flow approaches full capacity. Two BPR-functions for
β = 4.0 are plotted in Figure 2.2.1. The x-axis goes beyond 1 since some algorithms send
more than a 100% of the capacity through a link during the iterations.

volume/capacity (fij/Qij)
0 0.2 0.4 0.6 0.8 1 1.2

T
ra

ve
l

ti
m

e
(t
ij

)

T0

α = 0.5

α = 2.0

Figure 2.2.1: The BPR-function for β = 4

With the BPR-function we can calculate the travel time. Previously however cost was men-
tioned instead of time. Which paths travellers choose is not only dependent on the travel
time, but also of, for example, scenery, travel distance or number of traffic-lights. All these
factors are considered and put together to yield the generalized cost. The travel time, and
thus the BPR-function, plays an important role in calculating the generalized cost. An ex-
ample of the generalized cost as cij = tij +T sceneryij +T fuelij +T remainingij , where T sceneryij is the

“cost” of scenery, T fuelij the cost of fuel and T remainingij the cost of the remaining influences
on link ij. Finding the UE is hard, causing the methods to be iterative instead of solving the
problem at once. All methods, except incremental assignment, always converge to a UE, but
since this can take very long or exceeds computer precision we end up with an approximated
UE-assignment.

In our example networks we will use BPR-functions. When we look at the cost for link 12 in

Figure 4.0.1 we have c12 = t12(0) (1+α
(
f12
Q12

)β
) = 5 (1+ 1

5

(
f12
1

)2
) = 5+f2

12. We can interpret

the cost function in the following way: going from node 1 to node 2 costs 5 +f2
12 = 5 + 02 = 5

if there is zero flow. When there is a flow of 3, the cost of using this street becomes 5+32 = 14
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due to congestion.

2.3 Junction modelling

When thinking about traffic lights, we think about the green light we just missed and the
extra travel time this adds to our journey. Traffic-lights or, more general, a junction may lead
to extra costs. The extra cost caused by crossing roads is strongly preferred to be taken into
account when calculating the costs.
A junction may also change the maximum capacity of the links connected to it. Suppose we
have a link with a maximum capacity of 1000 vehicles per hour. When there is a traffic light
on this road with a green-time of 40% for turning right, then we have a maximum capacity
of 0.40 · 1000 = 400 vehicles per hour for that link turning right.

When we do not include junction modelling we have a network of directed arcs where the cost
of a route is the sum of the costs of the links it uses, where the cost of a link is dependent on
the flow on that link. In junction modelling we can not fulfil this assumption, leading to a
network that may have no unique UE or even a network that has no UE at all. Most real-life
networks with junction modelling however do have a UE.

When we add junctions to a network we “expand” the junction. This means that we add
nodes at every ramp and exit and add a link for every turn. We can see an expanded junction
in Figure 2.3.1 where one can go left, right and straight on. To mark the difference between old
links and new links, we will call the new links “turns” and the costs of turns are “turns costs”.

Figure 2.3.1: Expanded junction. The colors are added to make clear which turns one can
make when one arrives from a certain link.

By expanding the junction, we get a new network where some links are only depent on the
flow on that link (the old links) and some are also dependent on the flow on other links
(the turns). With a little adaptation, all algorithms described in this paper can be used on
a network with junction modelling, although we have to be careful when saying something

14
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about the convergence rate. The adaptation can be that during an iteration the cost of a
turn is assumed to be constant, which is described into more detail in Chapter 5.3.

2.4 Theoretical background

For completeness we will prove some theorems in the next section. We will first prove that
Beckmann’s formulation and Wardrop’s UE are equivalent. Next we prove the existence of
a UE in a network without junctions and provide a condition for the existence of a UE in a
network with junction modelling. Then we prove that in networks without junction modelling
there is, under strict monotonicity on c, a unique solution in terms of link flow and provide
a condition for a unique UE for the case when there is junction modelling.

2.4.1 Equivalence Beckmann and UE

We will prove in this subsection that searching for an f that minimizes Beckmann’s minimiza-
tion is equivalent with searching for an f that satisfies Wardrop’s conditions under monotonic-
ity of cij(fij).

For convenience we will introduce some matrices: Λ is the path-OD incidence matrix and ∆
is the path-edge incidence matrix. When we recall Beckmann’s formulation with the old and
the new notation we get

min
f

O(f) =
∑

ij∈A
∫ fij
w=0 cij(w) dw

subject to ∆f{p}= f
∑

p δ
{p}
ij f{p}= fij (1)

Λf{p}= D
∑

p δ
r,s
{p}f{p}= Dr,s

f{p}≥ 0 f{p}≥ 0

The Lagrangian of this minimization problem can be formulated as

L(f, f{p},µ
(2),µ(3),µ(1)) = O(f)− (µ(2))T (Λf{p} −D) + (µ(3))T (∆f{p} − f)− (µ(1))T f{p}

subject to f{p} ≥ 0

µ(1) ≥ 0,

where µ(1), µ(2) and µ(3) are Lagrange multipliers.

The Karush-Kuhn-Tucker (KKT) conditions for this minimization are

∂L/∂f = 0, ∂L/∂f{p} = 0, µ(1)f{p} = 0, f{p} ≥ 0 and µ(1) ≥ 0

When we write out the first two conditions we get

∂L/∂f = ∂O(f)/∂f−µ(3) = 0
∂L/∂f{p} = −ΛTµ(2) + ∆Tµ(3)−µ(1) = 0

We can fill in ∂O(f)/∂f = c(f), which gives c(f) =µ(3)

ΛTµ(2) −∆T c(f)+µ(1) = 0
µ(1) f{p} = 0 (2)
f{p} ≥ 0

15
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µ(1) ≥ 0

Note that Λp,rs =

{
1 if path p ∈ Prs
0 otherwise

And thus

ΛTµ(2) =


σ1 0 0 0 · · ·
0 σ2 0 0 · · ·
0 0 σ3 0 · · ·
...

...
. . .

. . .

0 0 0 0 σ|OD|





µ
(2)
1

µ
(2)
2

µ
(2)
3
...

µ
(2)
|P |


=



µ
(2)
1 σ1

µ
(2)
2 σ2

µ
(2)
3 σ3

...

µ
(2)
|P |σ|P |


where σTrs =

[
1 · · · 1

]
with |σrs| = m if OD-pair rs has m paths.

When we rewrite the formula’s we get µ(2) = ∆T c(f)−µ(1). When we write this out we get

µ
(2)
rs = [∆T c(fij)]p−µ(1)

p =

{
= c{p}(f) if f{p} > 0

≤ c{p}(f) if f{p} = 0

This means that a path between OD-pair rs has the same costs as the minimum cost path
of rs if it contains flow and has equal or higher cost when the path does not contain flow.

This is exactly the description of a Wardrop UE. We can see that when we fill in µ
(2)
rs = Csr

we can reformulate the above to f{p} (c{p} − Csr ) = 0 and c{p} ≥ Csr , ∀ p ∈ Pr,s, which are
Wardop’s conditions. One can remark that Wardrop has also the conditions f{p} ≥ 0 and∑

p∈Pr,s
f{p} = Dr,s, but these are also conditions in Beckmann’s formulation.

From the above argumentation and using standard results in optimization we obtain

Theorem 1
For a feasible edge flow vector f with corresponding path-flow vector f{p} the following holds
(a) f is a Wardrop UE if and only if f (and thus f{p}) satisfies the KKT conditions (2).
(b) If f is a minimizer of (1) then it satisfies the KKT conditions (2), and by (a) it is a
Wardrop UE.
(c) If O(F) is convex and f (f{p}) satisfy the KKT conditions (2) then f (f{p}) is a minimizer
of (1).

2.4.2 Existence UE

In this subsection we will give conditions for the existence of a UE, which are satisfied by
networks without junction modelling.
Since the feasible set of (1) is compact and bounded we can obtain from the Weierstrass
(existence) theorem:

Theorem 2
If the function O(f) in (1) is continuous on the feasible set of (1), then there exists at least
one minimizer f̃ of (1).

Note that by Theorem 1(b) f̃ is a Wardrop UE.
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We can remark from Theorem 2 that the same holds for any cost function c(f) such that
c(f) = ∇Õ(f) for some function Õ. By Poincaré’s lemma [11] such a function Õ exists if c(f)

is C1 and the conditions
∂cij(f)
∂fı̃,̃

=
∂cı̃,̃(f)
∂fi,j

hold.

For in the general case we can use the lemma of Hartman and Stampacchia’s lemma [12].

Hartman and Stampacchia’s lemma
If c(f) is continuous then there exist a feasible flow f̃ such that c(̃f)(f− f̃) ≥ 0 ∀f ∈ F .

When we combine Stampacchia’s lemma with variational inequality, we get that if c(f) is
continuous f̃ is a UE.

2.4.3 Uniqueness UE

In this subsection we will give conditions for the uniqueness of a UE, which are satisfied by
networks without junction modelling.
The uniqueness of a Wardrop UE depends on a monotonicity condition for the cost function
c(f).

Theorem 3
If c(f) satisfy [c(̃f)− c(f)]T (̃f− f) > 0 ∀f 6= f̃, f̃, f ∈ F then f̃ is a unique Wardrop equilibrium.

We want to show that if we assume that f̂ and f̃ are distinct equilibrium flows this leads to a
contradiction, and thus the equilibrium flow must be unique.

Suppose there are two equilibrium flows f̂ and f̃ where f̂ 6= f̃.
We know from variational inequality that c(̃f)T (f − f̃) ≥ 0 ∀f ∈ F , so this is also true for
f = f̂, giving c(̃f)T (̂f− f̃) ≥ 0. The same reasoning can be used for the other equilibrium flow,
resulting in c(̂f)T (̃f− f̂) ≥ 0.

When we sum up these two expressions we get c(̃f)T (̂f − f̃) + c(̂f)T (̃f − f̂) ≥ 0, which can be
rewritten as [c(̃f)− c(̂f)]T (̂f− f̃) ≥ 0.
This is the same as [c(̃f)−c(̂f)]T (̃f− f̂) ≤ 0. This is a contradiction with [c(̃f)−c(̂f)]T (̃f− f̂) > 0.
We can conclude from this that our assumption, the existence of 2 equilibrium flows, is not
true if [c(̃f)− c(f)]T (̃f− f) > 0. We already proved that there exists an equilibrium flow, thus
the equilibrium flow must be unique.
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3 Properties

At the end of every paragraph in Section 4 there is a table with an overview of four proper-
ties; the property table. First we will explain how to interpret this table, next we explain the
properties.

As example of a property table we will show here is the table of MSA:
Memory usage ++
Proportionality +
Rate of convergence −

We have chosen for the three properties “memory usage”, “proportionality” and “rate of con-
vergence” since Omnitrans International is interested in these and we believe we need these
properties to distinguish the algorithms properly.

A + is a desirable and a − is less desirable, but the exact explanation of the used signs are
explained in the following three tables.

Memory usage
Sign Used when the algorithm is

++ link-based
+ link-based and stores multiple iterations

+− bush-based
− bush-based and stores PASs between iterations
−− path-based

Proportionality
Sign Used when the algorithm

+ satisfies proportionality condition
− does not satify proportionality condition

Rate of convergence
Sign Used when rate of convergence is

+ high
+− average
− low

3.1 Memory usage

The memory usage of the algorithms differs greatly, mostly caused by the aggregation level. A
second cause of larger memory usage is the storage of “pairs of alternative segments” (PASs).
First the different levels of aggregation are explained, next the PASs.

Level of aggregation

There are three levels of aggregation: link-, path- and bush-based.
A link-based algorithm stores the total amount of flow through a link. An example of a
link-based assignment can be found in Figure 3.1.1.
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Figure 3.1.1: Link-based assignment on a network with demands D1,8 = 100 and D2,8 = 60
travellers. The origins are 1 and 2 and the destination is 8. The circles are nodes, the arcs
are links and the number above a link is the flow on that link.

It is also possible to store every used path. Figure 3.1.2 is an example of a path-based as-
signment on the same network as Figure 3.1.1.

1

2

3 4

5

6

7 8

25
75

15
45

25
75

15
45

25

15

75
45

25
15

75

45

25
75

15
45

Figure 3.1.2: Path-based assignment with proportionality on a network with demands D1,8 =
100 and D2,8 = 60 travellers. The purple number above a link is the amount of flow of path
1− 3− 4− 6− 7− 8 on this link, the gray number of path 1− 3− 4− 5− 7− 8, the red number
of path 2− 3− 4− 5− 7− 8 and the brown number is of path 2− 3− 4− 6− 7− 8.

A bush is a set of predetermined paths. Two examples are an origin-based bush, where a set
consists of all paths with origin r, and a destination-based bush, where a set consists of all
paths with destination s. An origin-based assignment can be found in Figure 3.1.3. Other
special cases of bush-based are path-based, where every path is a set, and link-based, where
the entire network is one set.

Pair of alternative segments (PAS)

The algorithms Alg. B and TAPAS use PASs to converge to a UE-assignment. A PAS con-
sists of two distinct paths with the same begin node and the same end node and with no
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Figure 3.1.3: Origin-based (bush-based) assignment with proportionality on a network with
demands D1,8 = 100 and D2,8 = 60 travellers. The blue number above a link is the amount of
flow with origin 1 on this link and the green number below a link is the amount of flow with
origin 2 on this link.

common nodes in between. Looking at Figure 3.1.4 we can see one PAS. One segment of this
PAS is outlined by a blue arrow and the other segment is outlined by a red arrow. These two
segments are together one PAS.

1
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3 4

5

6

7 8

Figure 3.1.4: An example of a PAS. The blue segment (4−6−7) and the red segment (4−5−7)
are together one PAS.

Alg. B determines a few PASs every iteration and forgets these PASs at the end of the
iteration. The storage of PASs is not increasing the memory usage much. TAPAS eliminates
a PAS if it is not used in the last 3 iterations, potentially increasing the memory usage much.
It depends on the network what percentage of memory usage is needed to store PASs. Some
numbers from the paper [6] are that for Chicago regional there is an memory usage of 607.51
MB of which is 532.85 MB on origin-based link flow and 12.29 MB on storing PASs, and for
Berlin center the memory usage is 204.30 MB of which is 8.71 MB on origin-based link flows
and 0.15 MB on storing PASs.
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3.2 Proportionality

The UE has a unique solution when we look at the amount of flow on a link, but is not unique
when we look at the paths travellers take. We can make the assignment unique in terms of
path-flow by requiring maximum entropy. An assignment satisfies maximum entropy when
the probability distribution of choosing a certain path is the one with the largest entropy.
This condition makes sure that travellers of an OD-pair choose all likely paths instead of, for
example, using as least different paths as possible. In the ideal case an assignment satisfies
maximum entropy, but this is difficult to check. An approximation of entropy maximization is
proportionality, which is easy to check. Consider Figure 3.1.1 as an example. There are multi-
ple path flows possible corresponding to these link flows. Two examples are Figure 3.2.1a and
Figure 3.2.1b. We neither expect that only origin 1 uses path 4−5−7 (a) nor only origin 2 (b).
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(a) Path 4 − 5 − 7 is only used by origin1.

1

2

3 4

5

6

7 8

100

60

100

60

40

10020

40

10
0

60

100

60

(b) Path 4 − 5 − 7 is only used by origin 2.

Figure 3.2.1: Origin-based (bush-based) assignment without proportionality on a network with
demands D1,8 = 100 and D2,8 = 60 travellers. The blue number above a link is the amount of
flow with origin 1 on this link and the green number below a link is the amount of flow with
origin 2 on this link.

There are 160 vehicles per hour arriving at node 4. A quarter of them uses the upper path
and the rest is using the lower path. We expect that a quarter of the 100 vehicles of origin
1 uses the upper part and a quarter of the 60 vehicles of origin 2. Thus for path 4 − 5 − 7
we expect 40/160 · 100 = 25 vehicles of origin 1 and 40/160 · 60 = 15 vehicles of origin 2. For
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path 4− 6− 7 we have f1,8
{4−6−7} = 120/60 · 100 = 75 and f2,8

{4−6−7} = 120/60 · 60 = 45. This
is exactly as depicted in Figure 3.1.3, which satisfies proportionality.
We can equilibrate every PAS such that the proportion of flow in one segment is equal to the
proportion of flow in the other segment.
In mathematics we have

f r,s{i−..−ı̃−..−j}

f r̃,s̃{i−..−ı̃−..−j}
=
f r,s{i−..−ı̂−..−j}

f r̃,s̃{i−..−ı̂−..−j}

where i, ı̃, ı̂ and j are nodes, r and r̃ are origins, s and s̃ are destination and i− ..− ı̂− ..− j
and i− ..− ı̃− ..− j are both paths in a PAS.

3.3 Rate of convergence

We need a criterion to measure the rate of convergence. One can, for example, do 100 iter-
ations and compare the time it took to do 100 iterations. This is however not a very good
manner, since an algorithm may need less iterations then another but the time one iteration
takes is higher. A better way is to determine a gap after a certain amount of time or deter-
mine the time needed to reach a certain gap. This gap can be defined in several ways. We
recall the following notation for defining the gap:
The flow on link ij is fij and cij(fij) is the cost of link ij when there is fij flow. Cji is the
cost of the minimum cost path between node i and node j and c{p} is the cost of path p. Dr,s

is the demand from origin r to destination s.

A gap can be defined by the following criteria:

• Relative gap (RGAP) = 1− total minimum cost
total cost

= 1−

∑
r∈R

∑
s∈S

CsrDr,s∑
ij∈A

fij cij

This manner is used most often. The advantage of RGAP is that it gives a good mea-
surement of the percentage of reducible costs. This criterion can be used for path-based,
bush-based and link-based assignments. It can happen that a small part of the network
is very bad, but that the RGAP is small, which is a disadvantage.

• Average excess cost (AEC) = total cost−total minimum cost
total demand

=

(

∑
ij∈A

fij cij)− (
∑
r∈R

∑
s∈S

CsrDr,s)∑
r∈R

∑
s∈S

Dr,s

The AEC is a measure of the average reducible cost per demand. This criterion can
be used for path-based, bush-based and link-based assignments. It is the RGAP but
instead of dividing it by the total cost it is divided by de total demand. This criterion
has the same disadvantage as RGAP, since this criterion has also the possibility that a
small part of the network is very bad while the AEC is small.

• max-min cost difference (MMCD) = max
p∈Pr,s

{c{p} − Csr}

Wardrop’s principles stated that the maximum used cost and the minimum cost of an
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OD-pair must be the same. MMCD is thus directly related to Wardrop’s principles. The
downside of this criterion is that it needs the minimum cost route and the maximum
used cost route, which is not available for link-based assignments.

In this thesis RGAP is used to determine the rate of convergence. The first reason for this
is that we want a criterion usable for link-based, bush-based and path-based. The second
reason is that AEC and RGAP are closely related, but RGAP is used in most papers.

We have ∑
ij

fijcij =
∑
ij

(
∑
p

δ
{p}
ij f{p})cij

=
∑
ij

∑
p

δ
{p}
ij f{p}cij

=
∑
p

f{p}
∑
ij

cijδ
{p}
ij

= f{p}c{p}

and therefore we can write RGAP as 1−
∑

r∈R

∑
s∈S C

s
rDr,s∑

p∈P f{p} c{p}
.

Since c{p} ≥ Csr we have

1−
∑

r∈R
∑

s∈S C
s
rDr,s∑

p∈P f{p} c{p}
= 1−

∑
r∈R

∑
s∈S C

s
rDr,s∑

r∈R
∑

s∈S
∑

p∈Pr,s
f{p} c{p}

≥ 1−
∑

r∈R
∑

s∈S C
s
rDr,s∑

r∈R
∑

s∈S
∑

p∈Pr,s
f{p}Csr

= 1−
∑

r∈R
∑

s∈S C
s
rDr,s∑

r∈R
∑

s∈S Dr,sCsr
= 1− 1 = 0

When we are close to an equilibrium, we have that c{p} and Csr are almost equal. The fraction
will then be almost 1 and the RGAP close to 0.
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4 Algorithms

We begin this chapter with a description of a small example network. Then the “all-or-
nothing-assignment” (AON-assignment) is described and an example of this assignment is
given. Further are the bush of an origin and a destination given based on the AON-assignment.
After that all subsections have the following structure: a small introduction, a description,
an example on the network of Figure 4.0.1, where some algorithms use this figure without the
junction modelling of node 3, and a summary of the properties.

We will explain first why we have chosen this example network. We wanted a network that is
small enough to perform 3 iterations by hand. The basis of this network can be found in the
paper of LUCE [4], where the network has 2 origins and 1 destination. To make the differ-
ences between the algorithms in this thesis more clear we added an OD-pair to create 1 more
destination. The junction is added to show how junction modelling works in the algorithms.
The downside of a small network is that some algorithms may look like each other since the
assignments of the first one or two iterations can be the same.

The number of travellers are real numbers instead of integers, so one may think that the flow
must be an integer. Restricting the flow to integers makes the computing time unnecessarily
high, since the demands in real life networks are very high and rounding does not affect the
assignment significantly.

Before the example network is presented, we will look at the notation. The f stands for flow,
but there are a lot of different flows: total flow through a link, flow through a path, flow with
origin r, et cetera. The flow leaving node i has the notation fi. The flow through a link can
be subdivided by the total flow (fij), the flow with origin r (f r,•ij ), the flow with destination

s (f•,sij ) and the flow of OD-pair rs (f r,sij ). The cost of link ij is cij . There exists a junction

in our example network. The flow from node i to node j via the junction of node ĩ is fĩij and
has cost cĩij for using the junction.

Example network

The example network and interpretation of the cost function is described in this subsection.

We will use the network of Figure 4.0.1 as example network for the IA and MSA. All other
algorithms will be done on that network without the junction (we assume node 3 to be a
node without junction modelling), since we have to calculate the amount of flow we want to
shift in these algorithms. Calculating the turn costs in a junction is often time intensive, due
to the complicated tun cost function. The amount of flow we want to shift is dependent on
the turn costs, so calculating the optimal shift is time intensive. We refer to Section 5.3.3 for
more information about the turn costs.
The circles in Figure 4.0.1 are nodes, which can be an origin or destination, and the rectangle
is a junction. A junction consists of multiple turns. The only possible turns at junction 3 are
from node 1 to 4 and from node 2 to 4, since link 34 is the only link leaving node 3. The cost
of a turn is dependent on the flow of other turns in the junction or on other links.
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(b) The circles are nodes. The rectangle is a junc-
tion enlarged at (a).

Figure 4.0.1: The example network with demands D1,3 = 2, D1,4 = 9 and D2,4 = 2 travellers.
The red formula gives the cost function of that link. If an algorithm cannot handle junctions
we assume node 3 ordinary, if an algorithm can handle junctions we assume node 3 to be the
junction described in (a)

The demands are given in the following table:

OD-pair Demand

13 2
14 9
24 2

Now that the example network is described we will look at the frequently used AON-assignment
and perform an AON-assignment on this example network.

All-or-nothing-assignment (AON-assignment)

Multiple algorithms in this thesis begin with an AON-assignment, therefore we will do an
AON-assignment on the example network in this subsection.
The AON-assignment is an assignment where the demand of an OD-pair is put entirely on
the minimum cost path. Only one path is selected when there are multiple minimum cost
paths. In this way a link or path has either all the flow of an OD-pair or none.

We begin the AON-assignment with determining the cost of every link and turn based on the
current flow. In our case there is no initial solution, so there is no flow at the network. The
cost of a link or turn with zero flow is calculated. For link 12 we have c12(0) = 5+02 = 5. The
zero flow costs of all links and corresponding minimum cost paths can be found in Figure 4.0.2.
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Figure 4.0.2: The example network with zero flow. The blue “-” above a link means there is
no flow on that link. The red number below a link is the cost of the link based on zero flow.
The green thick arrows mark the minimum cost path of OD-pair 13, the blue ones of 14 and
the thick black arrows mark the minimum cost path of OD-pair 24.

The assignment of the demands to these minimum cost paths can be found in Figure 4.0.3,
where the green number represents the flow of OD-pair 13, the blue number of 14 and the
black number of 24. The red number below a link states the cost of that link. This cost is
calculated after the assignment is done. In general, the cost of a link in a figure is the cost
belonging to the flow of that link in that figure.

To get familiar with the notation we give Figure 4.0.3 in formula:
f1,•

12 = 11 f1,•
13 = 0 f1,•

23 = 11 f1,•
24 = 0 f1,•

34 = 9 f1,•
134 = 0 f1,•

234 = 9

f2,•
12 = 0 f2,•

13 = 0 f2,•
23 = 2 f2,•

24 = 0 f2,•
34 = 2 f2,•

134 = 0 f2,•
234 = 2

f•,312 = 2 f•,313 = 0 f•,323 = 2 f•,324 = 0 f•,334 = 0 f•,3134 = 0 f•,3234 = 0

f•,412 = 9 f•,413 = 0 f•,423 = 11 f•,424 = 0 f•,434 = 11 f•,4134 = 0 f•,4234 = 11

f12 = 11 f13 = 0 f23 = 13 f24 = 0 f34 = 11 f134 = 0 f234 = 11

f1 = 11 f2 = 13 f3 = 11 f4 = 0

We can see in that the flows are updated, but the costs are dependent on these flows. When
a flow changes, we have to update the costs.
In Section 3.1 we mentioned origin-based as example of a bush-based assignment. The flows
f1,•
ij (the flow with origin 1) and f2,•

ij are stored when the algorithm is origin-based. The bush
of one origin and one destination are determined in the next subsection.
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Figure 4.0.3: An AON-assignment on our example network. The green number represents
the flow of OD-pair 13, the blue number of 14 and the black number of 24. The red number
states the cost of a link.

Bush and bush modification

This subsection explains the need of bush modification and determines the bush and its im-
provement of origin 2 and destination 4.

A bush-based algorithm stores the flow per bush every iteration, where a bush consists of all
path of a group of OD-pairs. Suppose we have a destination-based algorithm, thus a group
is all OD-pairs of one destination. A bush consists of all links used by destination s. The
modified bush consists of the bush plus some paths with less cost then the current minimum
cost path used by an OD-pair. One can improve the bush by adding only the cheapest path,
all paths with less cost or something in between. But why would we modify the bush? In
equilibrium we cannot modify the bush, since all used paths between an OD-pair have mini-
mal cost. During iterations the flow within a bush is shifted to minimize the cost. If we do
not modify the bush, no links are added and the origin cannot use other links than it had
during the initial solution.
We need to know which paths have less costs then the cheapest path in the bush to perform a
bush modification. How these paths are found is explained here. Suppose we want the bush
of a destination. This can be done by comparing the cost of the minimum cost path from a
node to the destination, Csi , with the cost of the minimum cost path from another node, Csj .
We add a link ij if Csi ≥ Csj + cij and drop a link when there is no flow on that link. The
improvement of the bush consists of finding all nodes with the property Csi ≥ Csj + cij , given
there is a path r − ... − i − j − ...s and demands Dr,s > 0, and finding all links in the bush
with zero flow.
The origin-bush is determined analogously. We will calculate first the bush of destination 4
and thereafter the bush of origin 2.
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The bush of destination 4 is equal to the used links, so it consists of the links 12, 23 and 34.
To determine the modification of this bush we have to calculate the minimum cost paths in
the network from any node to destination 4.
C4

4 = 0,
C4

3 = min{124} = 124,
C4

2 = min{174 + 80.7 + 124, 10} = min{378.7, 10} = 10 and
C4

1 = min{126 + 174 + 80.7 + 124, 126 + 10, 11 + 30.3 + 124} = min {504.7, 136, 165.3} = 136.
We already have flow on links 12, 23 and 34, so that is the bush. To determine which links ij
we have to add, we have to look for Csi ≥ Csj + cij . We can see that C4

2 = 10 ≥ 10 = C4
4 + c24,

so we have to add link 24. This is not the case for link 13, thus we don’t add this link to the
modified bush. The modified bush of destination 4 is the entire network except link 13. These
results can be found in Figure 4.0.4, where besides the minimum path cost in the network also
the maximum cost in the bush is stated. This maximum cost is added to show the difference
between the used paths and the minimum paths.
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Figure 4.0.4: The (modified) bush of destination 4 based on Figure 4.0.3. The thick arrows
mark the bush of destination 4. The blue lines are added during bush modification. The
green number above a link is the flow with destination 3 and the grey number is the flow with
destination 4. The upper number next to a node is the maximum cost used by destination 4
and the lower number is the cost of a minimum path from that node to destination 4.

The (modified) bush of origin 2 is calculated likewise. This bush is also based on Figure 4.0.3.
We identify the bush by detecting the flow on 23 and 34. For the modification we need the
cost from origin 2 to any other node, which can be found in Figure 4.0.5. Here we see that
C4

2 = 10 ≥ 10 = C2
2 + c24. The modified bush exists of the links 23, 34 and 24.
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c134 = 30.3
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Figure 4.0.5: The (modified) bush of origin 2 based on Figure 4.0.3. The thick arrows mark
the bush of origin 2. The blue lines are added during bush modification. The blue number
above a link is the flow with origin 1 and the black number is the flow with origin 2. The
upper number next to a node is the maximum cost used by destination 2 and the lower number
is the cost of a minimum path from origin 2 to that node, where “−” means no such path
exists.

4.1 Incremental assignment (IA)

In this section we will describe the incremental assignment (IA).
Most programmes, including OmniTRANS, store link-flows when using this algorithm. It is
possible to store path-flows or bush-flows, but in the example and in the property table we
will assume this algorithms is link-based.
The idea of this algorithm is assigning a fraction of the demand every iteration. OmniTRANS
is able to use junction modelling when applying the incremental assignment, therefore we do
this algorithm on a network with junction modelling.

Description

A predetermined fraction of all demands is assigned according to an AON-assignment based
on the cost of the previous iteration. One can choose a different fraction for every iteration.
For example, one can choose ten iterations with a fraction of 0.1 or one can choose 0.4, 0.3, 0.2
and 0.1 for respectively the first, second third and fourth iteration.
In formula we have

f(n) = f(n−1) + λn e(n)

where f(n−1) is the flow of iteration n− 1 and e(n) is the AON-assignment of iteration n.

29



Algorithms - IA Static user equilibrium

Example

To make the algorithm more clear we will give an example on the network of Figure 4.0.1.
The fractions used are 0.5, 0.3 and 0.2 for respectively the first, second and third iteration.

Every iteration starts with determining an AON-assignment based on the current costs. This
is already done at the beginning of this chapter and can be found in Figure 4.0.3. The fraction
is 0.5 for the first iteration, thus 0.5 ·Dr,s is assigned to the minimum cost path of OD-pair

rs. We have f
(1)
12 = 0.5 · (2+9) = 5.5, f

(1)
23 = 0.5 · (9+2+2) = 6.5 and f

(1)
34 = 0.5 · (9+2) = 5.5

travellers. This assignment together with the matching costs can be found in Figure 4.1.1.
Iteration 2 starts with determining the minimum cost paths hereon which are marked by thick
arrows in this figure.

3

f134 = −

f234 = 5.5

c134 = 7.6

c234 = 20.2

1

23

4

35
.3

5.
5

11

−

47.3

6.5

10

−

33
.35.

5

Figure 4.1.1: Assignment after 1 iteration of IA. The blue number represents the flow and
the red number the cost of a link. The thick green arrow indicates the minimum cost path for
OD-pair 13, the blue ones for 14 and the thick black one for 24.

The next step of iteration 2 is summing up the assignment of iteration 1 and 0.3 times the
new AON-assignment. The new AON-assignment is sending 2 flow through the thick green
arc, 9 through the thick blue arcs and 2 through the thick black arcs of Figure 4.1.1. We

will calculate a few links as illustration: f
(2)
24 = f

(1)
24 + 0.3 · e(2)

24 = 0 + 0.3 · (9 + 2) = 3.3,

f
(2)
34 = 5.5 + 0.3 · 0 = 5.5 + 0 = 5.5 and f

(2)
12 = 5.5 + 0.3 · 9 = 8.2. Iteration 2 results in

Figure 4.1.2.

For iteration 3 we begin with determining the minimum cost paths based on the costs of
iteration 2. The minimum cost paths are 1− 3, 1− 2− 4 and 2− 4. The fraction of flow we

must assign is 0.2. We add f
(3)
13 = 0.2 · 2 = 0.4, f

(3)
12 = 0.2 · 9 = 1.8 and f

(3)
24 = 0.2 · 11 = 2.2

travellers to the previous iteration, which gives Figure 4.1.3.
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Figure 4.1.2: Assignment after 2 iterations of IA. The blue number represents the flow and
the red number the cost of a link. The thick green arrow indicates the minimum cost path for
OD-pair 13, the blue ones for 14 and the thick black one for 24.
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Figure 4.1.3: Assignment after 3 iterations of IA. The blue number above a link represents
the flow and the red number the cost of a link.

Properties

Memory usage ++
Proportionality −
Rate of convergence n/a
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4.2 Method of successive averages (MSA)

MSA is a specification of volume averaging (VA). All demand is assigned in the first iteration
by an AON-assignment. During every iteration a predetermined ratio of the last iteration,
1−λn, and the AON-assignment, λn, based on this last iteration is taken as new assignment.
This algorithm is called VA in general and MSA if λn is specified as λn = 1/n. OmniTRANS
is able to use junction modelling when applying MSA, therefore we do this algorithm on a
network with junction modelling.

Description

Every iteration begins with searching an AON-assignment based on the cost of the previous
iteration. For the first iteration an AON-assignment is done based on the free-flow costs. The
new assignment consists of a proportion of the previous assignment and a proportion of the last
found AON-assignment. In formula we have (1−λn)f(n−1)+λne

(n) = f(n−1)+λn·(e(n)−f(n−1)),
where e(n), the alternative flow at iteration n, is the AON-assignment.

Example

This section gives 3 iterations of MSA on the example network. We have λn = 1/n. The first
iteration consists of finding an AON-assignment. This is already done at the beginning of this
chapter and can be found in Figure 4.0.3. The second iteration is finding an AON-assignment
based on these costs. The minimum cost paths are 1−3, 1−2−4 and 2−4. The corresponding
assignment and costs can be found in Figure 4.2.1.

3

f134 = −

f234 = −

c134 = 0

c234 = 0

1

23

4

86
9

19
2

5

−

252

9
2

3
−

Figure 4.2.1: The AON-assignment based on the assignment of iteration 1 of MSA (Fig-
ure 4.0.3). The green number is the flow of OD-pair 13, blue of 14 and black of 24. The red
number is the costs of a link.

We have λn = 1/n, thus for iteration 2 we have λ2 = 1/2. Taking half of iteration 1 (Fig-
ure 4.0.3) and half of the AON-assignment based on the costs of iteration 1 (Figure 4.2.1)
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gives Figure 4.2.2.
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Figure 4.2.2: Assignment after 2 iterations of MSA. The blue number represents the flow and
the red number the cost of a link. The thick green arrow indicates the minimum cost path for
OD-pair 13, the blue ones for 14 and the thick black one for 24.

The minimum cost paths in this assignment are 1− 3 for OD-pair 13, 1− 3− 4 for OD-pair
14 and 2 − 4 for pair 24. Since we are working on iteration 3 we have λ3 = 1/3. Doing
2/3 · f(2) + 1/3 · e(3) gives Figure 4.2.3.
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Figure 4.2.3: Assignment after 3 iterations of MSA. The blue number is the flow and the red
number the cost of a link.
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Properties

Memory usage ++
Proportionality +
Rate of convergence −

4.3 Frank-Wolfe (FW)

The Frank-Wolfe (FW) method is published by M. Frank and P. Wolfe in 1956 [13]. There
are many variants and extensions based on this algorithm. FW looks like MSA, but instead of
a predetermined fraction between the old assignment and the new AON-assignment FW uses
a line search to determine the optimal fraction. We will use the network without junction
modelling for FW and the next algorithms, since we have to determine the fraction ourselves
and this may be time intensive, depending on the turn cost function. This is explained into
greater detail in section 5.3.3.

Description

One makes an AON-assignment based on the current link costs. Then a λ is chosen such that
O(f(n−1) + λ(e(n) − f(n−1))) = O((1− λ)f(n−1) + λe(n)) is minimized.

Example

We will show three iterations of the FW algorithm in this subsection.

The first iteration consists of finding an AON-assignment on the zero-flow network. The sec-
ond iteration begins with finding an AON-assignment based on the costs of the first iteration.
This is exactly the beginning of MSA. The first iteration is the same as Figure 4.0.3, except
that we have no junction modelling for FW. The shortest paths used for the AON-assignment
based on the first iteration are 1− 3, 1− 3− 4 and 2− 4. This AON-assignment can be found
in Figure 4.2.1. Instead of using a predetermined fraction, as in MSA, we want to

min
0≤λ≤1

∫ 11+λ(0−11)

0
c12(w) dw +

∫ 0+λ(11−0)

0
c13(w) dw +

∫ 13+λ(0−13)

0
c23(w) dw

+

∫ 0+λ(2−0)

0
c24(w) dw +

∫ 11+λ(9−11)

0
c34(w) dw

The λ fulfilling this criterion is 0.56. The assignment f(2) = f(1) + 0.56 · (e(2) − f(1)) can be
found in Figure 4.3.1.
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Figure 4.3.1: Assignment after 2 iterations of FW. The blue number is the flow and the red
number the cost of a link.

Now the second iteration is calculated we are ready for the third iteration. Again an AON-
assignment is made based on the previous iteration, iteration 2. The minimum paths are
1− 2− 3 for OD-pair 13, 1− 2− 4 for OD-pair 14 and 2− 4 for OD-pair 24. Minimizing the
objective function with a combination of the AON-assignment and the assignment of iteration
2 (min0≤λ≤1O(f(2) + λ (e(3) − f(2))) gives λ = 0.19 and the assignment of Figure 4.3.2.
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Figure 4.3.2: Assignment after 3 iterations of FW. The blue number is the flow and the red
number is the cost of a link.
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Properties

Memory usage ++
Proportionality +
Rate of convergence −

One way to handle junctions is calculating the cost of every turn at the end of every iteration.
One can take this function as a constant for the next iteration.

4.4 Simplicial decomposition (SD)

Simplicial decomposition (SD) is FW in multiple dimensions.

The FW method stores the flow per link of the last iteration. An extension to FW is storing
multiple iterations, say N , and using these to determine the flows in a new iteration.
The fraction of assignments one uses can be a constant. For example, f(n+1) = 3

6 f(n)+ 2
6 f(n−1)+

1
6 f(n−2). When one extra iteration is stored (N = 2), the procedure is called Conjugated Frank
Wolfe. In case of storing two extra iterations (N = 3), the algorithm is called Bi-Conjugated
Frank Wolfe.
Another possibility is not to use a constant, but to determine the optimal fraction every
iteration. This is done in SD.

Description

FW stores only the last iteration where SD stores multiple iterations. The number of iterations
stored, N , is determined before the algorithm starts. An iteration begins with making an
AON-assignment based on the costs of the previous iteration. The new assignment is a linear
combination of the last N iterations and the AON-assignment which minimizes the objective
function. In formula we have

min
0≤λ1,...,λN≤1∑N

ñ=1 λn≤1

O(

n−1∑
ñ=n−N+1

λñ f(ñ) + λn e(n))

Example

The first iteration is the same as FW: finding an AON-assignment based on the free flows. The
second iteration is also the same, since we now have a combination of the first two assignments.
The third iteration begins the same, namely searching for the same AON-assignment based
on iteration 2. From here the algorithms differ. FW searched for a combination of f(2) and
e(3) where SD searches for a combination of f(1), f(2) and e(3). So we want to minimize

min
0≤λ1,λ2≤1
λ1+λ2≤1

O(λ1 f(1) + λ2 f(2) + (1 − (λ1 + λ2)) e(3). When these λ1 and λ2 are found one can

construct the new assignment and go on with the next iteration.

Properties

Memory usage +
Proportionality +
Rate of convergence +−
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4.5 Projected gradient method (PG)

The basis of this section is [3]. Since there are some mistakes in this paper we have explained
in the appendix what we changed and used our revised version.
This subsection first gives an idea of the algorithm in “description” after which the algorithm
is given in formula. Next an example is given and we end this section with an overview of
the properties.

Description

The idea of this algorithm is to look at an OD-pair, lower the cost of active paths and go to
the next OD-pair. A set of active paths consists of the used paths and the paths we want
to use (minimum cost paths). For an OD-pair one determines the difference for every active
path between the average cost of the active paths and the cost of a path. Every active path is
updated by a factor times this difference, where the factor minimizes the objective function.
Next one searches for a new minimum cost path. If there is no such path the next OD-pair
is considered, if there is such a path this path is added to the active paths and the OD-pair
is evaluated again with the new set of active paths.
In formula we have for every OD-pair
Step 0 Compute an initial solution and determine P+

r,s = {p|f r,s{p} > 0}.

Step 1 Compute the descent direction for every active path:

g{p} = c̄r,s − c{p} ∀p ∈ P+
r,s.

where c̄r,s is the average cost of a path of OD-pair rs.
If max
p∈P+

r,s

(|g{p}|) < ε go to Step 4.

Step 2 Find the optimal step size λ∗ which is the solution of the subproblem

min
λ

∑
ij∈A

∫ fr,sij +f̄r,sij +λGr,s
ij

0
cij(w)dw

with the restriction

0 ≤ λ ≤ min

{−f{p}
g{p}

∣∣∣∣ g{p} < 0

}
where

Gr,sij =
∑

{p}∈P+
r,s

δ
{p}
ij g{p}

and
f̄ r,sij =

∑
(r,s)∈D
r 6=s

∑
p∈P+

r,s

δ
{p}
ij f{p}

is the fixed flow of all other OD-pairs of the network.
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Step 3 Update the path flows and link flows

f{p} = f{p} + λ∗g{p}, p ∈ P+
r,s

f r,sij = f r,sij + λ∗Gr,sij , ij ∈ A

If a path p̂ diminishes to zero (fp̂ → 0) it is eliminated, that is, P+
r,s = P+

r,s − p̂.

Step4 Compute the minimum cost path p̃ of minimal costs c{p̃}(f) = minp∈P+
r,s
c{p}(f).

If c{p̃}(f) ≤ minp∈P+
r,s
c{p}(f), then add path p̃ to the set of active paths P+

r,s (P+
r,s = P+

r,s + p̃)

and return to Step 1. Otherwise, stop.

Example

We assume ε = 0.01. The initial solution is the AON-assignment calculated in the begin-
ning of this chapter, which is Figure 4.0.3. From this figure we get P+

13 = {1 − 2 − 3},
P+

14 = {1− 2− 3− 4} and P+
24 = {2− 3− 4}.

We start with OD-pair 13.

Step 1
The descent directions are:
c{1−2−3} = 126 + 174 = 300
c̄1,3 = c{1−2−3} = 300
g{1−2−3} = c̄1,3 − c{1−2−3} = 300− 300 = 0
maxp∈P+

13
{|g{p}|} = max{|g{1−2−3}|} = 0 < ε⇒Step 4

Step 4
The minimum cost path between origin 1 and destination 3 is 1 − 3. We have to add this
path to P+

13, so we get P+
13 = {1− 2− 3, 1− 3}. We have added a path, so we go back to Step

1 to equilibrate the cost in the new set of active paths.

Step 1
c{1−2−3} = 300
c{1−3} = 11

c̄1,3 = 1
2 (300 + 11) = 155.5

g{1−2−3} = c̄1,3 − c{1−2−3} = 155.5− 300 = −144.5
g{1−3} = c̄1,3 − c{1−3} = 155.5− 11 = 144.5
maxp∈P+

13
{|g{p}|} = max{| − 144.5|, |144.5|} = 144.5 ≮ ε, thus we go to Step 2.

Step 2

min
{
−f{p}
g{p}

∣∣∣ g{p} < 0
}

= min{ −2
−144.5} = 1

72.25 . This is the upper bound for λ. We are search-

ing for a λ∗ which satisfies:

38



Algorithms - PG Static user equilibrium

min
0≤λ≤1/72.25

∫ 2+9+λ·(−144.5)

0
c12(w) dw +

∫ 0+0+λ·(144.5)

0
c13(w) dw +

∫ 2+11+λ·(−144.5)

0
c23(w) dw

+

∫ 0+0+λ·(0)

0
c24(w) dw +

∫ 2+9+λ·(144.5−144.5)

0
c34(w) dw

Solving this minimization problem gives λ∗ = 1
72.25 and g{1−2−3} λ

∗ = −2. We can see this
number is right, since path 1− 2− 3 has only a flow of 2, thus we cannot change more, and
in the next step we will see that changing 2 flow makes the network more equilibrated.

Step 3
Changing the flow with f{p} = f{p} + λ∗g{p} gives Figure 4.5.1.
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Figure 4.5.1: Assignment after 1 iteration of PG. The red number below a link is the cost of
that link. The orange number is the flow of path 1 − 3, blue of 1 − 2 − 3 − 4 and black of
2− 3− 4.

Step4
We can delete path 1 − 2 − 3 from P+

13 since there is no flow left on this path. We get
P+

13 = {1− 2}.
There is no cheaper path then the one used right now. Since there is no path added we choose
another OD-pair to equilibrate.
We choose now OD-pair 14.

Step 1
We have P+

14 = {1− 2− 3− 4}. We will calculate the cost of every active path.
c{1−2−3−4} = 86 + 126 + 124 = 336
c̄1,4 = c{1−2−3−4} = 336
maxp∈P+

14
{|g{p}|} = g{1−2−3−4} = c̄1,4 − c{1−2−3−4} = 336− 336 = 0 < ε⇒ Step 4
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Step 4
Since there was only one path there was nothing to equilibrate. In this step we are going to
search for a path we can add. The minimum cost path from 1 to 4 is path 1− 2− 4. Adding
this path to the set of active paths gives P+

14 = {1− 2− 3− 4, 1− 2− 4}.

Step 1
The descent directions for the active paths are:
c{1−2−3−4} = 336
c{1−2−4} = 86 + 10 = 96

c̄1,4 = 1
2(c{1−2−3−4} + c{1−2−4}) = 1

2(336 + 96) = 216
g{1−2−3−4} = 216− 336 = −120
g{1−2−4} = 216− 96 = 120
maxp∈P+

14
{|g{p}|} = max{| − 120|, |120|} = 120. There is enough flow to change, so we go to

Step 2

Step 2

The upper bound of λ is min{−f{p}g{p}
|g{p} < 0} = min{ −9

−120} = 3
40 . We want to minimize

min
0≤λ≤3/40

∫ λ(120)

0
c24(w) dw +

∫ 11+λ(−120)

0
c23(w) dw +

∫ 11+λ(−120)

0
c34(w) dw∫ 11+λ(−120)+λ(120)

0
c12(w) dw +

∫ 0+λ(0)

0
c13(w) dw

This minimization gives λ∗ = 0.05.

Step 3
The amount of flow we have to change is λ∗ g{1−2−4} = 5.45 and λ∗ g{1−2−3−4} = −5.45.
Changing the flows results in Figure 4.5.2.

Step 4
The minimum cost path from 1 to 4 is path 1− 3− 4. This path is not used right now, so we
add it to the set of active paths P+

14 = {1− 2− 3− 4, 1− 2− 4, 1− 3− 4}. We have added a
path, so we go to Step 1.

Step 1
The descent directions of the active paths are:
c{1−2−3−4} = 86 + 35.8 + 33.8 = 155.5
c{1−2−4} = 86 + 69.5 = 155.5
c{1−3−4} = 19 + 33.8 = 52.8

c̄1,4 = 1
3(155.5 + 155.5 + 52.8) = 121.3

g{1−2−3−4} = 121.3− 155.5 = −34.3
g{1−2−4} = 121.3− 155.5 = −34.3
g{1−3−4} = 121.3− 52.8 = 68.5
maxp∈P+

14
{|g{p}|} = max{|155.5|, |155.5|, |68.5|} = 155.5 6< ε, so we go to Step 2.
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Figure 4.5.2: Assignment after 2 iterations of PG. The red number below a link is the cost of
that link. The orange number is the flow of path 1− 3, blue of 1− 2− 3− 4, black of 2− 3− 4
and brown of 1− 2− 4.

Step 2

min{−f{p}g{p}
|g{p} < 0} = min{−3.55

−34.3 ,
−5.45
−34.3} = 3.55

34.3 . This is the upper bound for λ. We minimize

the objective function with flow fij = f r,sij + f̄ r,sij + λGr,sij . This gives λ∗ = 0.05 and as flow
shift λ∗ g{1−2−3−4} = −1.86, λ∗ g{1−3−4} = 3.72 and λ∗ g{1−2−4} = −1.86.

Step 3
Changing the flow for all links with f{p} = f{p} + λ∗ g{p} gives Figure 4.5.3.

Step 4
We use all possible paths, also the minimum cost path, so we cannot add a path. Since we
do not add a path, we have to go to the next OD-pair. The only OD-pair we have not looked
at yet is 24. We stop here with this example, but if we would go on with the next iterations
we would go to OD-pair 24, next to 13, then to 14 et cetera.

Properties

Memory usage −−
Proportionality −
Rate of convergence +

4.6 Linear user cost equilibrium (LUCE)

This bush-based algorithm determines an alternative assignment for a bush and determines
the optimal linear combination of the assignment of the last iteration and the alternative
assignment. Our bush initialization differs from the paper. Why and how we changed it is
explained in Appendix B.
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Figure 4.5.3: Assignment after 3 iterations of PG. The red number below a link is the cost of
that link. The orange number is the flow of path 1−3, blue of 1−2−3−4, black of 2−3−4,
brown of 1− 2− 4 and purple of 1− 3− 4.

First we will give the main idea of the algorithm after which the pseudo code is given. Next
the algorithm is provided with an example and the property table is given.

Description

The main idea of this algorithm is redistribute flow within a (modified) bush, where the
amount of flow on a link is dependent on the cost and its derivative. LUCE assumes the link
cost function is differentiable. The nodes are visited in reverse topological order to determine
the average cost of the paths using node i, or the minimum path from i to the destination if
i isn’t used by any path, and its derivative. Visiting nodes in reverse topological order means
starting at the destination node and visit nodes further and further away of the destination
until every node is visited. The alternative assignment is determined by assigning flow to the
nodes in topological order, where the cost and derivative play an important role. At the end
the (approximated) optimal linear combination of the assignment of the last iteration and the
alternative assignment is made.

The notation used in the pseudo code is N for the maximum number of iterations, fij for the
flow on link ij and fsi is the flow from node i to destination s. The alternative flow on link ij
is eij and esi is the alternative flow from node i to destination s. The cost of a link with flow
fij is cij(fij). The cost of a link which is determined at the beginning of an iteration has the
notation cij and its derivative is gij . The average cost from node i to destination s denoted
by C̃si and its derivative by G̃si . y

s
ij is defined as 0 if fsi = 0. If this flow is greater than zero

ysij is defined as f•,sij /f
s
i . The modified or initialized bush B(s) is a function of the old bush,

the cost and the flow of the network, notated by B(B(s), c(n), f (n)). V s
i is a variable used for

calculation simplification and J is the forward star bush FSB(i, s) of node i to destination s.
An FSB(i, s) contains every node j such that ij ∈ B(s).
Now we’ll give the pseudo code [4]:
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f (0) = 0
for n = 1 to N

for each s ∈ S
for each ij ∈ A

cij = max{cij(fij), ε}
gij = max{∂cij(fij), ε}
if fsi > 0 then ysij = f•,sij /f

s
i else ysij = 0

B(s) = B(B(s), c(n), f (n))

C̃ss = 0

G̃ss = 0
for each i : ∃ij ∈ B(s) in reverse topological order

if fsi > 0 then

C̃si =
∑

j∈FSB(i,s) y
s
ij · (cij + C̃sj )

G̃si =
∑

j∈FSB(i,s)(y
s
ij)

2 · (gij + G̃sj)

else

C̃si = minj∈FSB(i,s){cij + C̃sj }
δj = 1 if C̃si = cij + C̃sj and 0 otherwise

G̃si =
∑

j∈FSB(i,s)[δj(gij + G̃sj)]/
∑

j∈FSB(i,s)[δj ]

es = 0
for each r ∈ R

esr = Dr,s

for each i : ∃ij ∈ B(s) in topological order
J = FSB(i, s)
λ = 0
until λ = 1 do

λ = 1

V s
i = (esi +

∑
j∈J [(cij + C̃sj )/(gij + G̃sj)]/

∑
j∈J [1/(gij + G̃sj)]

for each j ∈ J
e•,sij = V s

i /(gij + G̃sj)− (cij + C̃sj )/(gij + G̃sj) + esi · ysij
if e•,sij < 0 then

e•,sij = 0

J = J\{j}
λ = 0

for each j ∈ J
esj = esj + e•,sij

λ = 1
if n > 1 then
∂O(1)/∂λ =

∑
ij∈A cij(fij + λ(e•,sij − f

•,s
ij )) · (e•,sij − f

•,s
ij )

if ∂O(1)/∂λ ≤ 0 then
∂O(0)/∂λ =

∑
ij∈A cij · (esij − f

•,s
ij )

if ∂O(0)/∂λ ≤ 0 then λ = 0 else λ = 1/(1− (∂O(1)/∂λ) / (∂O(0)/∂λ))
for each ij ∈ A

fij = fij + λ · (e•,sij − f
•,s
ij )

f•,sij = f•,sij + λ · (e•,sij − f
•,s
ij )
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Example

We will do 3 iterations of LUCE and start with zero flow on the network. The first destination
we will consider at iteration 1 is destination 3.
As example we will calculate the cost and its derivative of link 12, the cost and derivative
of all links can be found in Figure 4.6.1. c12 = max{c12(f12), ε} = max{5 + (f12)2, ε} =
max{5 + 02, ε} = 5 and g12 = max{∂cij(fij), ε} = max{2 · f12, ε} = max{2 · 0, ε} = ε.

1

23

4

5
ε

−11
ε

−

5 ε

−

10
ε

−

3
ε

−

Figure 4.6.1: The cost and derivative of every link in a flowless network. The blue “-” means
there is no flow. The red number below a link is the cost and the orange number is the
derivative of the cost of that link.

All flows are zero, so we have y3
ij = 0 for all ij ∈ A.

There is no bush, so we have to initialize it. We are now looking for all links ij in the network
with the property C3

i ≥ C3
j + cij , where C3

i is the cost of a minimum path between i and 3.

This is the case for links 12 and 23 (C3
1 = 10 = c12 + C3

2 , C3
2 = 5 = c23 + C3

3 ). The bush of
destination 3 consists of B(3) = {12, 23}.
We can go on with calculating C̃3

i , G̃3
i et cetera, but since there is only one path we know the

demand from 1 to 3, D1,3, will be assigned entirely to this path.
We are calculating the first iteration (n = 1), so λ = 1 and the flow is updated with fij =

fij+1·(e•,3ij −f
•,3
ij ) = 0+1·(e3

ij−0) = e3
ij and f•,3ij = f•,3ij +1·(e•,3ij −f

•,3
ij ) = 0+1·(e•,3ij −0) = e•,3ij .

We get fij = f•,3ij = 2 for ij = 12 and ij = 23 and fij = f•,3ij = 0 for all other ij ∈ A. This
flow can be found in Figure 4.6.2.

Now the demands of destination 3 are assigned we will look at destination 4, so s = 4.
The cost and derivatives can be found in Figure 4.6.2.
We have assigned flow to the network with destination 3, but the flow with destination 4 is
zero, so y4

ij = 0 ∀ij ∈ A.

Searching for C4
i ≥ C4

j + cij gives links 13, 34 and 24. Again, there is only one path possible
per OD-pair. The only path from 2 to 4 is 2−4 and from 1 to 4 is 1−3−4. Like destination 3
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Figure 4.6.2: Assignment during iteration 1, when only destination 3 is considered.The green
number above a link is the flow with destination 3 on that link. The red number below a link
is the cost and the orange number is the derivative of the cost of that link.

there is only one path at iteration 1, so we get f•,413 = e•,413 = 9, f•,434 = e•,434 = 9, f•,424 = e•,424 = 2

and f•,4ij = e•,4ij = 0 for all other ij ∈ A. We have:

f•,312 = 2 f•,313 = 0 f•,323 = 2 f•,324 = 0 f•,334 = 0

f•,412 = 0 f•,413 = 9 f•,423 = 0 f•,424 = 2 f•,434 = 9

f12 = 2 f13 = 9 f23 = 2 f24 = 2 f34 = 9

f1 = 11 f2 = 4 f3 = 9 f4 = 0

These flows, together with the cost and cost derivative, can be found in Figure 4.6.3.

We want to calculate iteration 2 and begin this iteration with destination 3, meaning we have
n = 2 and s = 3. The first step is calculating the cost cij and cost derivatives gij , which are
given in Figure 4.6.3.
There is flow with destination 3 at the nodes 1 and 2, so we get y3

12 = f•,312 /f
3
1 = 2/2 = 1,

y3
23 = 2/2 = 1 and y3

13 = 0, y3
24 = 0 and y3

34 = 0.
The bush of destination 3 consists of links 12 and 23, since these two links have flow.
C3

1 6≥ c13 + C3
3 meaning we do not add link 13 to the bush. The bush doesn’t change

and still has only one path. The flow can’t change, thus we keep the same f3
ij and fij .

We go on with iteration 2 by equilibrating the bush of destination 4, thus we set s = 4.
We will now calculate y4

ij :

y4
12 = 0, y4

23 = 0, y4
13 = f4

13/f1 = 9/9 = 1, y4
24 = 2/2 = 1, y4

34 = 2/2 = 1
There is flow on link 13, 24 and 34, thus these links are part of the bush of destination 4. We
have to add link 12 since it is part of the minimum cost path 1−2−3 and thus C4

1 ≥ C4
2 +c12.

B(4) = {13, 24, 34, 12}
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Figure 4.6.3: Assignment after 1 iteration of LUCE. The green number above a links is the
amount of flow with destination 3 and the blue number the amount flow with origin 4. The
red number below a link is the cost and the orange number is the derivative of the cost of that
link.

C̃4
3 = 1 · (84 + 0) = 84 C̃4

2 = 1 · (18 + 0) = 18 C̃4
1 = 1 · (173 + 84) = 257

G̃4
3 = 1 · (18 + 0) = 18 G̃4

2 = 1 · (8 + 0) = 8 G̃4
1 = 1 · (18 + 36) = 54

To determine the alternative flow, we begin with setting it to zero: e4 = 0
We fill in the demands e4

1 = 9 and e4
2 = 2.

We will look at each node in the bush in topological order. We begin with i = 1. The bush
consist of {12, 24, 13, 34}, meaning the forward star bush of 1 is J =FSB(1, 4) = {2, 3}.
V 4

1 = (e•,41 +
∑

j∈J [(c1j + C̃4
j )/(g1j + G̃4

j )]/
∑

j∈J [1/(g1j + G̃4
j )] = 68.82

e•,412 = V 4
1 /(g12 + G̃4

2)− (c12 + C̃4
2 )/(g12 + G̃4

2) + e4
1 · y4

12 = 3.48

e2 = e2 + e•,412 = 2 + 3.48 = 5.48

e•,413 = V 4
1 /(g13 + G̃4

3)− (c13 + C̃4
3 )/(g13 + G̃4

3) + e4
1 · y4

13 = 5.52

e4
3 = e3 + e•,413 = 0 + 5.52 = 5.52

We go on with i = 2 and J =FSB(2, 4) = {4}
V 4

2 = (e4
2 +

∑
j∈J [(c2j + C̃4

j )/(g2j + G̃4
j )]/

∑
j∈J [1/(g2j + G̃4

j )] = 38

e•,424 = V 4
2 /(g24 + G̃4

4)− (c24 + C̃4
4 )/(g24 + G̃4

4) + e4
2 · y4

24 = 5.48

The next node we consider is i = 3 and J =FSB(3, 4) = {4}
There is a demand of 2 travellers at node 3, all other flow arriving at node 3 must go to
destination 4. We get e•,434 = 5.52.

We now have determined the alternative flow. To determine λ, we have to calculate

∂O(1)

∂λ
=
∑
ij∈A

cij(fij + esij − fsij) · (esij − fsij)

46



Algorithms - LUCE Static user equilibrium

∂O(1)
∂λ = −104.8 < 0, thus we get λ = 1.

Filling in λ = 1 gives us fij = fij + e•,4ij − f
•,4
ij . This means that the new assignment of flow

with destination 4 is exactly the alternative assignment, thus iteration 2 has Figure 4.6.4 as
assignment.
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Figure 4.6.4: Assignment after 2 iterations of LUCE. The green number above a links is the
amount of flow with destination 3 and the blue number the amount flow with origin 4. The
red number below a link is the cost and the orange number is the derivative of the cost of that
link.

We will look at iteration 3 and destination 3 (n = 3, s = 3). cij and gij can be found in
Figure 4.6.4.
There is flow with destination 3 at nodes 1 and 2, giving y3

12 = 1, y3
23 = 1 and y3

13 = y3
24 =

y3
34 = 0

The bush is B(3) = {12, 23}. We don’t have C3
1 ≥ C3

3 + c13, thus we don’t add link 13. The
bush isn’t modified and there is still only one path in the bush, so the flow won’t change. We
will consider the next destination.

We are still busy with iteration 3, but now with destination 4 (n = 3, s = 4)
cij and gij are still the same as in n = 3 and s = 4, since the network didn’t change.

y4
12 = f•,412 /f

4
1 = 0.39, y4

13 = 0.61, y4
23 = 0, y4

24 = 1 and y4
34 = 1

The modified bush consists of B(4) = {12, 13, 24, 34, 23} since 23 is in the minimum cost path
and thus C3

1 ≥ C3
3 + c13 and 12, 13, 24 and 34 were already in the bush.

C̃4
2 =

∑
j∈FSB(2,4) y

4
2j ·(c2j+C̃

4
j ) = 1·(70.2+0)+0·(9+33.4) = 70.2 and G̃4

2 =
∑

j∈FSB(2,4)(y
4
2j)

2·
(g2j + G̃4

j ) = 12 · (21.9 + 0) + 02 · (4 + 11.0) = 21.9. C̃4
i and G̃4

i ∀i ∈ I are stated here:

C̃4
4 = 0 C̃4

3 = 33.4 C̃4
2 = 70.2 C̃4

1 = 105.3

G̃4
4 = 0 G̃4

3 = 11.0 G̃4
2 = 21.9 G̃4

1 = 33.0

We are now going to determine the alternative flow e.
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We set the alternative flow to zero and then assign the demands to the origin node: e4
1 = 9

and e4
2 = 2

Determine the forward star bush and alternative flow for every node in the bush, except the
destination node, in topological order.
The first node is i = 1 with forward star bush J =FSB(1, 4) = {2, 3}
V 4

1 = 105.25

e•,412 = 3.48 e•,413 = 5.52 e•,423 = 0.75 e•,424 = 4.73 e•,434 = 6.27
e4

1 = 9 e4
2 = 5.48 e4

3 = 6.27
as can be seen in Figure 4.6.5.

1

23

4

3.
48

25.52
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27

Figure 4.6.5: Alternative flow at iteration 3 of LUCE. The green number above a link is the
flow with destination 3 and the blue with destination 4 of that link.

∂O(1) / ∂λ = 35.5 > 0 and ∂O(0)/∂λ = −20.8 < 0.

We get λ =
1

1− (∂O(1) / ∂λ) / (∂O(0) / ∂λ)
= 0.37

Filling in the λ gives Figure 4.6.6.

Properties

Memory usage +−
Proportionality −
Rate of convergence +

4.7 Algorithm B (Alg. B)

Algorithm B is a bush-based algorithm, which uses the minimum cost tree and maximum cost
tree to determine segments. Within these segments the flow is changed in order to equilibrate
the cost.
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Figure 4.6.6: Assignment after 3 iterations of LUCE. The green number above a link is the
flow with destination 3 and the blue with destination 4 of that link. The red number below a
link is the cost of that link.

Description

This algorithm starts with an initial feasible bush. This can be determined by doing an
AON-assignment on a flowless network and initialize the bush or by using an initial assign-
ment where the bush is known. The algorithm continues with selecting an origin. Next one
determines the minimum cost paths between the origin and every destination, also known as
the minimum path tree. Simultaneously the maximum path tree is determined, which are all
maximum cost paths within the bush from the origin to all destinations. One searches for
“pairs of alternative segments” (PASs) where one part of a PAS is an element of the mini-
mum path tree and the other part is an element of the maximum path tree. If the bush is
not optimal when the PASs are equilibrated then the bush is modified by adding the cheapest
path(s), otherwise another origin is selected to equilibrate its bush.

Example

We will give an example of this algorithm on the network of Figure 4.0.1.
We begin with making an AON-assignment and determine the bush and modified bush.
The realization of the AON-assignment can be found at the beginning of this section. In
Figure 4.7.1 the thick black arrows mark the maximum path tree and the blue lines the min-
imum path tree of origin 1. The bush consists of all the paths with flow and the modified
bush consists of the bush plus the minimum cost tree.

We can see a PAS, PAS1, in the lower triangle (1− 2− 3, 1− 3): with segment 1− 2− 3 as
element of the maximum path tree and segment 1− 3 as element of the minimum path tree.
This is the only PAS with one segment as part of the minimum and one segment as part of
the maximum path tree. We are going to shift x flow with origin 1 within this PAS, so we
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Figure 4.7.1: Origin-based assignment of Figure 4.0.3. The red number below a link is the
cost of that link. The blue number above a link is the flow with origin 1 and the black number
is the flow with origin 2. The thick black arrow marks the maximum cost tree and the blue
arcs the minimum cost tree of origin 1.

can shift at most 11 travellers. We have

min
0≤x≤11

∫ 11−x

0
c12(w) dw +

∫ 0+x

0
c13(w) dw +

∫ 2+11−x

0
c23(w) dw

which has x = 6.02 as result. Updating the network gives Figure 4.7.2.

We had only one PAS and this one is equilibrated, but when we look at the whole network
origin 1 is not equilibrated. We can see that path 1− 2− 4 costs far less than path 1− 3− 4.
The next step is searching the minimum and maximum path tree. These are already shown
in Figure 4.7.2 by thick black arcs and blue arcs. We can see the lower triangle is equilibrated
but the upper triangle (2−3−4, 2−4) is not. This upper triangle, PAS2, has segment 2−3−4
as part of the maximum path tree and the segment 2− 4 as part of the minimum path tree.
We are now going to equilibrate PAS2 by changing x flow with origin 1 within this PAS.
The maximum flow shift is 4.98, since this is the amount of flow on the expensive segment
where we extract flow from. Minimizing

min
0≤x≤4.98

∫ 2+4.98−x

0
c23(w) dw +

∫ 0+x

0
c24(w) dw +

∫ 2+9−x

0
c34(w) dw

gives x = 4.66. Shifting this x flow results in Figure 4.7.3.

By equilibrating PAS2 we changed a segment of PAS1, annulling the equilibrium of PAS1.
We can see this in the maximum path tree and minimum path tree of Figure 4.7.3, where a
link in the lower triangle is used which is not part of the minimum path tree. We are equi-
librating PAS1 again by changing the flow of origin 1. The result can be found in Figure 4.7.4.
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Figure 4.7.2: Assignment after 1 iteration of Alg. B. The red number below a link is the cost
of that link. The blue number above a link is the flow with origin 1 and the black number is
the flow with origin 2. The thick black arrow marks the maximum cost tree and the blue arcs
the minimum cost tree of origin 1.

1

23

4

29
.84.

9883.5

6.02

10.4

0.32 2

53.5

4.66

43
.1

4.
34

2

Figure 4.7.3: Assignment after 2 iterations of Alg. B. The red number below a link is the cost
of that link. The blue number above a link is the flow with origin 1 and the black number is
the flow with origin 2. The thick black arrow marks the maximum cost tree and the blue arcs
the minimum cost tree of origin 1.

This algorithm will go on with changing flow with origin 1 in alternating PAS1 and PAS2.
We began with origin 1 and will go to origin 2 when the bush of origin 1 is in equilibrium.
In our example the flow with origin 2 will never change, since when the bush of origin 1 is in
equilibrium the entire network will be in equilibrium.
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Figure 4.7.4: Assignment after 3 iterations of Alg. B. The red number below a link is the cost
of that link. The blue number above a link is the flow with origin 1 and the black number is
the flow with origin 2. The thick black arrow marks the maximum cost tree and the blue arcs
the minimum cost tree of origin 1.

Properties

Memory usage +−
Proportionality −
Rate of convergence +

4.8 Traffic assignment by paired alternative segments (TAPAS)

As the name of this algorithm suggests, TAPAS uses PASs to converge to the optimal assign-
ment. The algorithm is a bit similar to Alg. B, but ”the main differences from Dials algorithm
(Algorithm B red.) are: the procedure to identify PASs which is based on Bar-Gera (2006)
([14] red.); there are no restrictions to a specific bush; PASs are stored from iteration to
iteration; and all relevant origins for each PAS are considered” [6].

Description

We will first give a sketch about how the algorithm works, next the description as in the
paper [6] is cited.

The main idea of this algorithm is equilibrating cost in a PAS and redistribute the flow in
this PAS between the relevant origins. The algorithm uses PASs, where a PAS consists of two
alternative paths where one path has low costs and the other path has higher costs. A PAS is
constructed by finding two segments with the same begin node and the same end node where
one segment is part of a minimum cost tree and the other segment is used by the origin you
are currently investigating and not part of a minimum cost tree. When equilibrating cost in
a PAS one changes the flow of multiple relevant origins at the same time. We try to find a
PAS with as least links as possible, since we try to change flow of as many origins as possible.
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It would take relatively much time to determine every iteration, for every PAS, which origins
it uses; therefore the origins are marked as relevant for a PAS.

The algorithm starts with an initial solution. One has to investigate all origins one by one
and search for links that are used by the origin one is currently investigating but are not part
of a minimum cost path. A PAS is needed for these links. Either there was already a PAS
using this link, then the origin is marked as relevant for this PAS, or there was no such PAS
yet and a new PAS is constructed. Next the cost is equilibrated within a PAS and the flow
is redistributed between the relevant origins by the proportionality conditions.

The pseudo code for this algorithm is [6]:

Find initial solution using all or nothing assignment
Repeat iteratively

For every origin
Remove all cyclic flows
Find tree of minimum cost routes
For every link used by the origin which is not part of the tree

If there is an existing effective PAS
Mark the origin as relevant for this PAS

Else
Construct a new PAS
Mark the origin as relevant for this PAS

Choose a random subset of active PASs
Shift flow within each chosen PAS

For every active PAS
Check if it should be eliminated
Perform flow shift to equilibrate costs
Redistribute flows between origins by the proportionality condition

Final proportionality iterations:
For every active PAS

Redistribute flows between origins by the proportionality condition

Summarizing, we have that the iterations consists of investigating an origin for PASs, shift
flow in a random subset of PASs and investigate the next origin until every origin is looked
at. The iteration ends with shifting flow for every active PAS, which can be done multiple
times. We will do these iterations until the stopping criterion is met. When this criterion
is met, we will end the algorithm with performing some proportionality iterations for every
active PAS.

Example

We will do two iterations of TAPAS to make clear how it works. We assume there is no
special junction at node 3 of our example network.

TAPAS starts with an initial assignment. Ours is the AON-assignment on a zero flow net-
work, which is drawn in Figure 4.7.1. We will now determine all possible PASs. There are two
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alternative paths from origin 1 to node 3, namely 1− 2− 3 and 1− 3. These paths are called
segments and together they form a pair of alternative segments, or shortly a PAS. There are
also two paths from 2 to 4: 2 − 3 − 4 and 2 − 4. There are three paths from 1 to 4, so one
might think that these three paths result in 3 PASs, but this is not true. One condition of a
PAS is that the two segments have no common link. When we shift flow from 1− 2− 3− 4
to 1− 2− 4, the flow on link 12 does not change, since this link is part of both segments. A
possible PAS for these paths consists of the segments 2− 3− 4 and 2− 4, which was already
found. The three paths from 1 to 4 results in one new PAS with the segments 1− 2− 4 and
1 − 3 − 4. The example network has 3 possible PASs, which are coloured in Figure 4.8.1.
PAS1 is blue, PAS2 is red and PAS3 is green.

1

23

4

Figure 4.8.1: The three possible PASs of our example network. PAS1 is blue, PAS2 red and
PAS3 green.

We consider origin 1.
There are no cyclic flows, since all links are directed in such a way that no cyclic flow can be
made.
Links 12, 23 and 34 are used by origin 1. The minimum cost paths are 1− 3 for OD-pair 13
and 1− 3− 4 for OD-pair 14. The tree of minimum cost routes is {13, 34}. We can see that
the used paths and minimum cost paths are different at links 13, 12 and 23. This is exactly
PAS1 (blue PAS). The set of active PASs consists of PAS1, where the relevant origin of PAS1
is origin 1. We shift flow for a random subset of PASs. To make this example not too large,
we assume the random subset is empty for all iterations. Notice that although the random
subset is empty, we will perform a flow shift for every active PAS at the end of every iteration.

We consider origin 2 now. There is no cyclic flow.
Path 2 − 3 − 4 is used where 2 − 4 is the minimum cost path. These two paths are both
a segment in PAS2. We add PAS2 to the set of active PASs and mark origin 2 as relevant
origin for PAS2. Suppose our subset of active PASs is empty.
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For every active PAS we have to check if it should be eliminated, shift flow and redistribute
the flow between the relevant origins. The PASs are just found, so we do not eliminate them.
We begin with shifting flow between the two segments within PAS1 to equilibrate the cost.
This means

min
0≤x≤11

∫ 11−x

0
c12(w) dw +

∫ 0+x

0
c13(w) dw +

∫ 2+11−x

0
c23(w) dw

The answer to this minimization problem is x = 6.02. We don’t have to do any redistribution
since there is only one relevant origin. Our current answer is the same as in iteration 1 of
Alg. B, which can be found in Figure 4.7.2. Notice that in this figure the thick black arrows
mark the maximum path tree of origin 1 and not the minimum cost tree of origin 2.

We want to equilibrate the cost of PAS2 now. The only relevant origin is origin 2, which
has a flow of 2 travellers at the higher cost segment. This means we can only change 2 this
iteration. Minimizing the objective function gives as result to move all 2 to the lower cost
segment, as can be seen in Figure 4.8.2.

1

23

4

29
.84.

9883.5

6.02

84
9

18

2

4.98

29.8

Figure 4.8.2: Assignment after 1 iteration of TAPAS. The blue number above a link is the
flow with origin 1, the black number the flow with origin 2 and the red number below a link
is the cost. The thick blue arrows are the minimum cost paths of origin 1 and the thick black
arrows the minimum cost paths of origin 2.

We can equilibrate the PASs a few more times, but to keep this example small we will not
do this. We have investigated all origins and done a flow shift for every active PAS, so we
go on with iteration 2. We start iteration 2 with establishing that there is no cyclic flow in
the bush of origin 1. The tree of minimum costs of origin 1 is {12, 23, 24}. The links used by
origin 1 which are not part of the minimum cost tree are 13 and 34. 13 is part of PAS1 and
34 of PAS2. Origin 1 is relevant for PAS1 and PAS2.
Since we assumed the subset is empty, we continue with origin 2. The minimum cost tree is
{24} where the used links are {23, 34}. These links are part of PAS2, so origin 2 must be
marked as relevant for PAS2, which was already done.
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We have to check if a PAS should be eliminated and if not, equilibrate the cost and redis-
tribute the flow between the relevant origins. Both PASs are used the previous iteration, thus
they should not be eliminated. We begin the flow shift for PAS2. We now have both origins
marked as relevant, so we can change flow of both origin 1 as origin 2. The maximum flow
we can shift is 4.98. Shifting flow to equilibrate the cost and redistributing the flow between
the relevant origins gives Figure 4.8.3.
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Figure 4.8.3: Assignment during iteration 2, when the cost of PAS2 is just minimized. The
blue number is the flow with origin 1 and the black number above a link is the flow with origin
2. The red number below a link is the cost.

The last part of iteration 2 is equilibrating the cost in PAS1. We shift flow from the more
expensive segment, 1 − 3, to the cheaper segment 1 − 2 − 3 in order to equalize the cost of
both paths. The result can be found in Figure 4.8.4.

After we have done N iterations or the relative gap is small enough, we stop with equilibrat-
ing PASs and do a predetermined amount of proportionality iterations. A proportionality
iteration exists of redistributing the flow between the relevant origins for every active PAS,
where the flow redistribution is according to the proportionality condition.

Properties

Memory usage −
Proportionality +
Rate of convergence +

56



Algorithms - TAPAS Static user equilibrium

1

23

4

42
.26.

1059.0

4.90

16.8

2.78 0.66

53.5

3.33
1.3443

.1
5.
68

0.
66

Figure 4.8.4: Assignment after 2 iterations of TAPAS. The blue number is the flow with
origin 1 and the black number above a link is the flow with origin 2. The red number below a
link is the cost.
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5 Modified TAPAS

In this chapter we will first unfold why we have chosen TAPAS to look closer at. Next our
modifications to TAPAS are explained and then the additions to TAPAS to include junction
modelling.

5.1 Why TAPAS

The ideal algorithm would only have “+” in the property table. Unfortunately, there is no
algorithm known that uses very little memory and converges fast while maintaining propor-
tionality. We have to make a compromise between the desirable properties. We want a faster
converging algorithm than the current algorithms in OmniTRANS: IA, MSA and FW. The
algorithms PG, LUCE, Alg. B and TAPAS have all converge rates in the same order of
magnitude. The cost function for a link is often the BPR-function, but we want the possibil-
ity to choose any increasing function, which is not possible in LUCE. One of the discussed
properties in Chapter 4 is proportionality, which is in our opinion an important property.
PG and Alg. B are not proportional, which leaves us with TAPAS as possible choice. The
disadvantage of TAPAS is the more than average memory usage, but the amount of memory
in PC’s and laptops is increasing fast, making the memory usage less and less a restriction.
Junction modelling was not proposed for TAPAS before, but this is described in Section 5.3.

5.2 Small modifications to TAPAS

We can have PASs where the cost difference between the 2 segments are almost zero. One can
consider to stop with determining the flow shift to equalize the cost and go on with shifting
flow in another PAS in order to spend the time “more useful”. These and other considerations
can be found in Section 5.2.1. The determination of the approximated RGAP can be found
in Section 5.2.2 and in the last part of this section we say something about the random subset
and reproducibility.

5.2.1 Shift flow

It is not always possible to shift much flow in a PAS. This can be caused by a badly chosen
PAS or by the fact that the flow is too spreaded to have much flow on a link. The solutions
proposed in the paper [6], which will be explained next, require flow-effective PASs, cost-
effective PASs and making branch shifts if there is no cost-effective PAS.

A PAS consists of 2 segments. Suppose segment 1 is the one with a higher cost and the other
segment is segment 2, where segment 1 ends with link ı̂j and segment 2 with ı̃j. This can be
found in Figure 5.2.1

A PAS is called cost-effective for origin r if c{segment1} + c{segment2} ≥ η · rcr,ij , link ı̃j ∈
minimum cost tree and ı̂j /∈ minimum cost tree, where η is a constant between 0 and 1 and
the reduced cost is rcr,ij = C ı̂r − C

j
r + cı̂j .

A disadvantage is that we have to determine the cost of both segments for many PASs. The
other part, determining if ı̂j and ı̃j are in the minimum cost tree, is less difficult since we
look for PASs after the tree of minimum cost routes is determined. Which links are part of a
minimum cost route is already known. If no existing PAS is cost-effective one can construct
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a new PAS which is automatically cost-efficient, since the lower cost segment is always part
of the minimum cost tree.

r

ı̂

ı̃

j

Segment 1

Segment 2

Figure 5.2.1: The notations used for the explanation of effective PASs. Circles are nodes and
the upper segment is segment 1 and the lower segment is segment 2.

A PAS is effective if it is not only cost-effective but also flow-effective, where a PAS is flow-
effective if minij∈segment 1 f

r,•
ij ≤ γ · f r,•ı̂j , with 0 ≥ γ ≥ 1. If a PAS is not flow-effective,

one has to search for a flow-effective PAS. Due to flow spreading there may not exist such a
PAS. In this case a branch shift is recommended in the paper. A branch is a set of segments
from an origin ending with a single link. A branch shift means that instead of shifting flow
from one path to the other path we shift flow from multiple paths (a branch) to the other
path. The paper [6] does not describe how branches can be found. The three solutions, cost-
effective PAS, flow-effective PAS and branch shifts, help to identity PASs which are almost
equilibrated or have almost no flow. One can say that requiring effective PASs and allow
branch shifts help to ignore “not interesting” PASs. These requirements are the basis of the
proof of convergence of TAPAS. We will give a little example to show why we would require
flow-effective PASs.
Suppose we have the network of Figure 5.2.2a and we have PAS1 {1− 2− 3− 5− 7, 1− 6− 7}
and PAS2 {2− 3− 5, 2− 4− 5}. Equilibrating PAS2 will lead to a shift of 0.1 and then PAS1
will shift this 0.1 to path 1 − 6 − 7. This will continue until f{2−4−5} = 0, which takes 100
iterations. When we have c23 = 2− ε the number of iterations needed until the UE is found
can even be much larger.
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(a) Network.
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0

2
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(b) Initial assignment.

Figure 5.2.2: Example to show that requiring effective PASs may be beneficial. Red for-
mula’s/numbers are the cost and the blue formula’s/numbers the flow of that link.
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PASs are eliminated when they are not used for three iterations. A PAS will also stay in
memory when only a little bit of flow is shifted every iteration. So PASs can be saved while
they are not “interesting”. We will consider next some options which lead to an earlier elim-
inition of PASs.

When we have a PAS where we want to shift flow from the expensive segment to the cheaper
segment, we have to go through a few steps. First we determine the cost of both segments in
order to know which segment is the more expensive one. Next we determine the maximum
amount of flow we can shift. Then we determine how much flow we have to shift in order to
equalize the cost and at last we shift them. We mark the PAS with the iteration number to
make sure the PAS is not eliminated the next iteration. We call all these steps together the
shift flow function.
A modification of TAPAS is that after each step we can decide to go on to the next step or
to stop with the shift flow function for this PAS and go further with TAPAS. The first step
is determining the cost of the segments. We can say that when there is a cost difference of at
least ε2 we go to the next step and otherwise we stop with the shift flow function for this PAS.
Another possibility is to make a restriction on the maximum amount of flow we can shift.
When we can shift maximal ε3 flow we stop with the shift flow function. Next we determine
the amount of flow we want to shift in order to equilibrate the cost. Also here we can say
that when this is less than an epsilon, ε4, we stop with this shift flow function and when it is
more we do shift the flow.

We will now give a little example to make the previous subsection more clear.
Suppose we have the network of Figure 5.2.3, where the blue line marks segment 1, the expen-
sive segment, and the green line segment 2. Assume ε2 = ε3 = ε4 = 0.1. First we calculate the
cost of both segments. These are already given: 65 and 5 for respectively segment 1 and 2.
The cost difference is 65−5 = 60. This is greater than ε2, thus we go on with determining the
maximum possible shift. The blue segment, segment 1, is the expensive one. This segment
has a flow of 8, so we can shift at most 8. We go on with determining the shift since 8 > ε3.
The segments have equal cost when we shift 3. Also this number is greater than its epsilon,
3 > ε4, thus we perform the flow shift.

1 2
(f1,2/10)2

10
1

(f1,2/10)2

10
1

1 + f2
top

8
65

1 + f2
bottom

2
5

Figure 5.2.3: Example to make the shift flow function more clear. The red formula is the cost
function where ftop is the flow on the upper (blue) segment and fbottom of the lower (green)
segment, the red number is the cost and the blue number the flow of that link. We have
D1,2 = 10.
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In the example we had ε2, ε3 and ε4 equal, but this is not necessary. They can be a constant
but also dependent on, for example, iteration number, RGAP or the amount of flow shifted
during the previous iteration. In this way one can prevent that flow shifts are performed on
PASs which are almost equilibrated while one should forget about these PASs. We suggest
to make the epsilons dependent on the RGAP or maximum flow shifted during the last iter-
ation(s).

When we have determined how much flow we can shift, we have done the biggest part of the
shift flow function. When the flow to shift is less than ε4 one can say it is a pity to have done
these calculations and not using them. In this case we can “cheat”. Instead of stopping with
the shift flow function with this PAS we can do the flow shift, but not mark the PAS as used
in this iteration. In this way the PAS is not stored longer than necessary and the assignment
is closer to equilibrium.

The advantage of the epsilons is that it takes almost no extra computation time while deleting
“not interesting” PASs iterations earlier.

5.2.2 Determination relative gap (RGAP)

We recall the definition of the relative gap (RGAP):

1− total minimum cost
total cost

= 1−

∑
r∈R

∑
s∈S

CsrDr,s∑
ij∈A

fij cij

where Csr is the cost of the minimum cost route from origin r to destination s, Dr,s is the
demand from r to s, fij is the flow on link ij and cij is the cost of this link.

At the end of an iteration we calculate the RGAP to determine whether we have to do another
iteration or not. We stop the iterations when either we have reached the maximum number
of iterations or RGAP < ε. We need the cost of the shortest paths in order to calculate the
RGAP. We can calculate this at the end of the iteration, as described in the paper, but we
can also use an approximation which takes less time to compute. We calculate the cost of the
shortest paths from an origin to all nodes when we determine the tree of minimal cost routes
for that origin. After the tree of minimal cost routes is determined the flows and costs will
change, causing a change in the cost of the minimum cost paths. One can see the cost used
in the approximation as the minimum cost of the previous iteration. The minimum cost will
in general increase during the iterations, producing an approximation which is smaller than
the real minimum cost. This results in an approximated RGAP which is greater than the real
RGAP, meaning that in general the precision will be a bit better than ε. To make sure we
do not end the iterations before the RGAP is small enough we determine the real minimum
cost when the approximated RGAP is smaller than ε.

We can summarize the above as:

if approximated RGAP < ε
determine minimum cost

61



Modified TAPAS - Small modifications Static user equilibrium

if RGAP < ε
stop with iteration, go to proportionality iterations

else
do the next iteration

end
else

do the next iteration
end

Due to the fact that TAPAS converges to a UE, one might think that the minimum cost is
an increasing sequence, and thus the RGAP is a lower bound for the approximated RGAP,
or that the total cost is a decreasing function. These will be shown to be untrue in the next
two examples.
The network used to show a decreasing minimum cost can be found in Figure 5.2.4a. Suppose
our initial assignment is as given in Figure 5.2.4b. The shortest path from the origin to the
destination is marked by the thick blue line. The total cost is 10 · 1 + 0 · 10 + 10 · 14 + 10 · 1 +
10 ·30+10 ·300+0 ·3+10 ·111+0 ·3 = 4570. The minimum cost is 10 ·(1+10+14+1) = 260.
When searching for PASs we will find the segments 3 − 4 and 3 − 6 − 7 − 4, marked by the
green line. When we shift flow in this PAS we get the flow as drawn in Figure 5.2.4c. Now
we have a total cost of 10 · 1 + 10 · 14 + 10 · 14 + 10 · 1 + 0 · 5 + 0 · 200 + 0 · 3 + 0 · 11 + 0 · 3 = 300
and a minimum cost of 10 · (1+ 5+11 +3+ 3+1) = 240. This gives an RGAP 1− 240

300 = 0.20.
The approximated RGAP is 1− 260

300 ≈ 0.13. In this case the minimum cost decreased, which
resulted in a approximated RGAP which was smaller than the RGAP.

We have the following example to show that the total cost can increase. Our network can be
found in Figure 5.2.5a. In Figure 5.2.5b we can see that the total cost is 10·100+1·123 = 1123
and the minimum cost is 11 · 100 = 1100. There is only one PAS, which is marked in
green. When we shift flow in this PAS we get Figure 5.2.5c. The total cost in this figure is
11 · 121 = 1331, which is also the minimum cost. The RGAP was 1 − 1100

1123 = 0.02 and after
the flow shift it is 1 − 1131

1131 = 0. In this example the total cost has increased. Although the
total cost increased the RGAP decreased, due to the increased minimum cost.

5.2.3 Random subset

Omnitrans International and users of OmniTRANS want a reproducible assignment, which
means that when one uses the same input one always obtains the same output. The UE
in terms of link flow is unique, but the algorithms are often stopped before equilibrium is
reached. One part of TAPAS is taking a random subset of PASs and shift flow within these
PASs. If we would take a random subset we will not get the same answer every time we use
the same input. One way to solve this problem is using a seed. A seed always generates the
same “random” string of numbers. In this case we have the profits of a random subset, but
we also get the same answer for the same input.

Bar-Gera takes the size of the subset equal to 20. This number is determined empirically.
Since networks can vary much in the number of OD-pairs, nodes and links, it may be better
to determine the size of the subset as a function of the number of OD-pairs, nodes, links or
PASs. For the n× n grid network we used in Matlab, we used a subset size of n.
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(b) Initial flow, where the green lines mark a PAS.

1 23 4 5

6 7 8

1

10

14

10

14

10

1

10

5−

11

−
3

−

20
0− 3−

(c) Flow after one iteration.

Figure 5.2.4: Example to show that the minimum cost can decrease. The red formula near a
link is the cost function, the red number the cost and the blue number the flow on that link.
The blue link marks the minimum path between 1 and 2. We have D1,2 = 10.

5.3 Junction modelling

In this section we will look at how junction modelling affects TAPAS in terms of number of
PASs and in convergence rate.

5.3.1 Number of extra PASs

By expanding junctions we have added a lot of links and nodes, see Section 2.3, which may
have an increase of PASs as a consequence. In this section we will look at the maximum
number of extra PASs caused by junction expansion.

A PAS consists of two segment where we can change flow from one segment to the other and
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Figure 5.2.5: Example where the total cost increases. The red formula near a link is the cost
function, the red number the cost and the blue number the flow on that link. The blue link
marks the minimum path between 1 and 2. We have D1,2 = 11.

still maintain conservation of flow. This means that a PAS consists of two paths with the
same begin and end node. Suppose Figure 5.3.1 is part of our network and the blue and red
lines mark the two segments of a PAS.

Figure 5.3.1: A PAS when there is no junction modelling.

In case of junction modelling the old nodes are replaced by the expanded junction, so they are
replaced by multiple nodes and links (turns). We still require that the two segments of a PAS
have the same begin and end node and have no other common nodes. In OmniTRANS there
is maximum of 4 links involved in one junction for junction modelling. We will calculate now
how many extra PASs are generated by expanding junctions when there are 4 links involved
at every junction and one can go right, left and straight ahead. The old begin node is the
left junction. One can leave this junction at the right side by arriving at this junction from
the top, left or bottom side. One can leave this junction at the bottom side by arriving from
the top, left or right side. When we want that one segment of the PAS leaves the junction
at the right side and one segment at the bottom side and we want the same entrance point
for both segments, we have two possible starting points: the top side and the left side. So
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Figure 5.3.2: Four possible PASs are marked. Every PAS consists of the blue and red link
and either the green or brown turns as begin point and either the pink or light blue turns as
end point.

we have two possible starting points for a PAS where the old begin node was. The old begin
node has now two possible begin points and, with similar reasoning, the old end node has now
two possible end points, as can be seen in Figure 5.3.2. The maximum total amount of PASs
in a network with junction modelling is therefore 2 · 2 = 4 times as many as in the network
without junctions. When some turns are not allowed at specific junctions, the number of
extra created PASs will be less than 4.
When the assumptions on the allowable number of links involved or the allowable turns are
changed, the maximum number of extra PASs will change. The maximum number of extra
created PASs can be determined in a similar way for other junctions. For example, we can
see a roundabout as a junction where u-turns are allowed. When there are four links involved
at the roundabout it will create a maximum of 4× 4 = 16 times as many PASs as it had in a
network without junction modelling.

5.3.2 Cost of a turn

There are many software packages that assume the cost of the turns to be constant during
one or more iterations and are updated afterwards. One might expect a faster convergence
when the turn cost formula is used. In some packages the formula of a turn contains multiple
if-statements and is dependent on all turns in that junction, such that calculating turn costs
takes a lot of time. This is the case for OmniTRANS. These complicated formula’s make the
calculation time for the cost of a turn high and make it difficult to determine if all types of
junctions satisfy the conditions for a unique equilibrium. If the turn has a “simple” formula
the formula can be used otherwise a (rough) estimation can be made or the cost can be held
constant during one or more iterations. Our idea is that an estimation for the change in a turn
cost can be made by means of the formula or by the changes caused by previous iterations,
depending on the complexity of the formula.

5.3.3 Convergence

In this section we will look at the convergence of TAPAS with junction modelling. To deter-
mine why we can not use the proof of convergence of TAPAS (without junction modelling)
one to one, we will first state the proof of convergence of TAPAS. Next we say something
about the convergence of TAPAS in a network with junction modelling.
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Convergence of TAPAS

This section start with proving two lemma’s which are used to prove convergence of TAPAS
in a network without junction modelling and next the convergence is proved. These proofs
come almost word by word from the paper of TAPAS [6]. We start with making clear what
an origin link combination (OLC) is by giving a very small example. In a network with 20
links and 4 origins, there are 4 · 20 = 80 OLCs.
The proof of convergence is based on the effectiveness of PAS shifts and branch shifts. What
effective PASs and branch shifts are is explained in Section 5.2.1. We explained some modi-
fications in Section 5.2, but the proof is still valid for TAPAS with these modifications since
we still require effective PASs. It is sufficient to ensure that one of the two shifts is performed
only for problematic OLCs, which are used OLCs (non-zero origin-based flow) with high re-
duced cost above a certain iteration-specific threshold, where the sequence of thresholds, Φk,
converges to zero. We show first that there is a constant strictly positive lower bound on the
reduction of the objective function in effective PAS shifts and in branch shifts. Since infinite
repetitions of such reductions are not possible, this result is used to prove convergence by
contradiction.
The function ξ in the following lemma’s and theorem is defined as ξ(f r,•ij , rc

r,•
ij ) = min(η2 ·

(rcr,•ij )2/(8κ|A|), η · γ · f r,•ij · rc
r,•
ij /2), where f r,•ij is the flow on link ij with origin r, rcr,•ij =.

Lemma 1
The reduction in objective function of an effective PAS shift for OLC r, ij is at least ξ(f r,•ij , rc

r,•
ij ,

which is strictly positive if f r,•ij > 0, rcr,•ij > 0.
Proof
Denote the segment that ends at ij as segment 1, and the other segment by segment 2. Since
the PAS is flow effective and cost effective the minimum flow along segment 1 is at least
γ · f r,•ij , and the cost difference between segment 1 and segment 2 is at least η · rcr,•ij , with
0 ≥ γ ≥ 1 and 0 ≥ η ≥ 1, as described in Section 5.2.1. Recall that link cost functions are
uniformly Lipschitz continuous with modulus κ, meaning that |cij(fij +x)− cij(fij)| ≤ κ · |x|.
Therefore, when an amount of flow x is shifted from segment 1 to segment 2, the change
in the cost of every link in these segments is at most κ · x. The total number of links in
each segment is less than |A|, hence the total change in cost difference is at most κ · x · 2|A|.
As long as the shift is less than x ≤ η · rcr,•ij /(4κ|A|), the cost difference remains at least

η · rcr,•ij − 2 · x · κ · |A| ≥ η · rcr,•ij /2. If η · rcr,•ij /(4κ|A|) ≤ γ · f r,•ij , meaning that a shift

of x = η · rcr,•ij /(4κ|A|) is feasible, the reduction in objective function will be at least

(η · rcr,•ij /2) · (η · rcr,•ij /(4κ|A|)) = η2 · (rcr,•ij )2/(8κ|A|). Otherwise, a shift of x = γ ·f r,•ij or more

is implemented, which reduces the objective function by at least (γ · f r,•ij ) · (η · rcr,•ij /2). In

conclusion ξ(f r,•ij , rc
r,•
ij ) = min(η2 ·(rcr,•ij )2/(8κ|A|), η ·γ ·f r,•ij ·rc

r,•
ij /2) satisfies the requirements

of the lemma.

Lemma 2
The reduction in objective function of a branch shift for OLC r, ij is at least ξ(f r,•ij , rc

r,•
ij ).

Proof
The cost of every segment in the branch from origin r that ends at link ij is at least rcr,•ij
above the minimum cost alternative. Thus the difference between the average branch cost and
the alternative segment is at least rcr,•ij . As in the previous proof, a shift of x reduces the cost
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difference by at most κ ·x ·2|A|. If x = rcr,•ij /(4κ|A|) > f r,•ij all the flow will be shifted, and the

reduction in objective function will be at least (f r,•ij ) · (rcr,•ij /2) ≥ ξ(f r,•ij , rc
r,•
ij ). Otherwise, the

amount of flow shifted is at least x = rcr,•ij /(4κ|A|) and the reduction in objective function is

at least (rcr,•ij )2/(8κ|A|) ≥ ξ(f r,•ij , rc
r,•
ij ).

Theorem 4
If Φn → 0 and in every iteration n for every problematic OLC with f r,•ij > 0 and rcr,•ij (f(n)) >
Φn either effective PAS shift or a branch shift is applied, then the sequence of objective
function values O(f(n)) converges to equilibrium.
Proof
The sequence O(f(n)) is monotonically non-increasing and bounded below by the optimal
value of O. The set of feasible origin-based solutions is compact, therefore the sequence of
solutions produced by the iterations has a converging subsequence f(nl) → f̃. Suppose by
contradiction that f̃ is not an equilibrium solution, so that there exist origin r and link ij

such that f̃ r,•ij = x > 0 and rcr,•ij (̃f) = ε > 0. There exist l0 such that Φnl
< ε/2, f

(nl)
ij > x/2

and rcr,•ij (fnl) > ε/2 for all l > l0. Therefore, in each of these iterations the OLC r, ij is
considered problematic, leading to either an effective PAS shift or a branch shift. In both
cases the reduction in objective function is at least ξ(x/2, ε/2) > 0. Infinite repetitions of such
reduction leads to an infinite reduction in the objective function, which is a contradiction.

Convergence of TAPAS with junction modelling

We did not come up with a proof of convergence for modified TAPAS, but we stated our
findings in this section. We can not use the proof of the convergence of TAPAS as described
in Section 5.3.3, since there the fact that the cost of a link is only dependent on that link is
used. The reduction in the objective value not only dependent anymore on the flow shifted
and the reduction of the cost difference between the two segments of a PAS. This section is
divided into 3 parts where the first part describes the convergence of TAPAS when the turn
costs are assumed constant during the determination of the flow shift, in the second part we
assume the turns in the segment are variable but the crossing turns are constant and in the
last part we take all turns into account.

Constant turn costs

There are many software packages that assume the cost of the turns to be constant during the
iteration, and are updated after a flow shift. In this situation convergence is not garanteed.
Long calculation times caused by difficult formula’s for turn costs are often the cause of the
constant turn cost assumption. We will give an example of a network where the flow is shifted
back and forth between the two routes when the turn costs are assumed to be constant during
the determination of the amount of flow we want to shift.
Our example network is Figure 5.3.3a, where the demand is D1,2 = 2, the red formula’s are
the cost of the link/turn they are close to and the rectangle is junction j. Since we have not
drawn any nodes between junction j and node 2 we will name the right side of the junction
3 and the top side 4. The turn from origin 1 via the top side of junction j to destination 2
is called 142 and has cost c142 = 1 + f2

142. An AON-assignment gives Figure 5.3.3b, where
the red numbers are the cost and the blue numbers the flow of that link. When we want to
equalize the cost of both paths we try to minimize 5 + (1 + (f32−x)2)− (0 + 1 + (f42 +x)2) =
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(5 + 1 + (2− x)2)− (0 + 1 + x2) where 0 ≥ x ≥ 2. This results in a flow shift of 2, which is
shifting all flow. The assignment we have after the flow shift can be found in Figure 5.3.3c.
When we try again to equalize the cost of both paths we get the same answer: shifting 2 flow.
This results in Figure 5.3.3b. The assignment will oscillate between (b) and (c) and will not
converge to a UE. The UE assignment, which can be found if Figure 5.3.3d, will never be
reached.
The turns are affecting the amount of flow we want to shift more when the turn is relatively
expensive and increases/decreases much due to the flow shift.
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1 + f2
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1 + f2
132
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2

1
+
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2 3
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4

(a) Network where red formula nearby an
arrow is the cost of that link or turn. The
red number near link is the cost and the
blue number is the flow of that link.
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(b) Initial assignment.
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(c) Assignment after 1 flow shift.
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(d) UE assignment.

Figure 5.3.3: Example of network which does not converge if TAPAS is used and the turns
are assumed to be constant during the iteration. D1,2 = 2.

Take only turns in segments into account

One can take only the turns into account which are part of the segments, and neglect the
cost change in the other turns of the junctions. In this way not all affected turns have to
be calculated during the iteration, saving a lot of time, and the costs of the segments can
be equilibrated, where the costs of the segments will not change after the flow shift. The
downside is that the objective function might increase due to the fact that we do not pay
attention to the other turns. When the objective function might increase, we can not garantee
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convergence. It can be that in real life networks this approach does not converge, but on the
long term gets closer to equilibrium.

Take all affected turns into account

The third way of determining the amount of flow we want to shift between the two segments
of a PAS is to take all affected turns into account. This takes a lot of time when the turn cost
functions are complicated, but we are sure the objective function will not increase. This does
not automatically mean that there is convergence, but we do not have a proof of convergence
nor a counterexample. The proof of convergence for TAPAS for networks without junction
modelling cannot be used one-to-one to this situation, since it is assumed that the cost of a
link is only dependent on the flow of that link.
We cannot predict the decrease of the objective value by only looking at the flow on the two
segments of a PAS and the reduced cost.
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6 Results

We can see in the paper of TAPAS [6] that TAPAS should converge much faster than FW, and
thus should converge faster than MSA. This result could not be duplicated by our Matlab-
program. In this chapter we will explain what we did (not) do to get this result.

The network we used to test the algorithms in Matlab are grid networks with origin/desti-
nation nodes at the corner points where all links are two-way streets and every link has the
same cost function and every turn has the same cost function. An example of a 2 × 2 grid
network is Figure 6.0.1.

1 2

34

Figure 6.0.1: A 2×2 grid network. All links are two-way streets, all intersections of links are
nodes/junctions and the circles are origins/destinations.

A grid network is in the Netherlands not a realistic network, which may affect the results. A
symmetric grid may influence the convergence rate of MSA more than it does to TAPAS.

When we programmed TAPAS we had a lot of numbers as input and a lot of numbers as
output. To better understand what happens we gave an output every iteration of the link
cost and link flow. We made the thickness of a link dependent on the cost or flow on that
link. Since all links have the same cost function, we get as output for the 5× 5 grid network
Figure 6.0.2, if the only positive demand is D1,3 = 40 (node at bottom left to node in top
right).

The results of running our Matlab program on different raster networks can be found in Ta-

Figure 6.0.2: Matlab output of 5× 5 network when D1,3 = 40.
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Network # OD-pairs
MSA TAPAS

# iterations time (sec) # iterations time (sec)

2× 2
1 4 0.2 4 0.2
12 2125 4.0 3 0.4

5× 5
1 1284 7.9 10 8.3
12 2256 13.9 8 12.4

10× 10
1 3340 75.3 15 160.3
12 3802 86.8 13 251.0

20× 20
1 6412 866.8 22 6932.4
12 6402 868.7 24 18723.9

Table 6.1: Results of running MSA and TAPAS in Matlab on an network without junction
modelling.

bles 6.1, 6.2 and 6.3, where the first column in these tables stands for the size of the grid and
the second column stands for the number of OD-pairs with positive demand where 1 means
that there is only a positive demand for OD-pair 13, and 12 means that every possible OD-
pair has demand (except OD-pairs 11, 22, 33 and 44). We did not draw the above mentioned
figures when we determined these times.

When we run TAPAS with different random subsets the number of iterations and time may
differ per run. To cancel out this effect we have done 3 runs for all network and written down
the mean of these in the tables. Our stopping criterion was a relative gap (RGAP) of 10−4 or
smaller. The time per iteration does not change much per run, but the number of iterations
may vary. When we look at the 20× 20 network with 12 OD-pair and no junction modelling,
we got the following times: 33121.0 (37 iterations), 10475.2 (17 iterations) and 12575.4 (19
iterations). The mean is 18723.9, but the time varies much per run.

Table 6.1 is done on networks without any junction modelling. Here we can see that TAPAS
needs more time than MSA on bigger networks, while in the paper TAPAS needed less time.
Noticeble is that MSA needs many iterations where TAPAS only needs a few, but the time
per iteration is longer for TAPAS.
Table 6.2 shows the results of the algorithms on networks with junction modelling. We have
made the turn costs relatively low in comparison with the link costs in order to let the al-
gorithm converge. Here we can see that TAPAS needs less time than MSA on a 5 × 5 grid
network with 1 OD-pair, where the turn costs in MSA are updated every tenth iteration.
When we look at Table 6.3, where the turn costs in MSA are updated every iteration, we
see that MSA needs much more time than when it is updated every tenth iteration. This is
caused by the fact that it takes a lot of time to calculate the turn costs. For TAPAS the turn
cost is updated after every flow shift for all junctions which were affected by the shift.

We want to notice that how good an algorithm is, is not only dependent on the number of
iterations, but on the combination of number of iterations and time per iteration.

71



Results Static user equilibrium

Network # OD-pairs
MSA TAPAS

# iterations time (sec) # iterations time (sec)

2× 2
1 4 0.2 5 1.8
12 188 20.6 6 5.5

5× 5
1 1176 219.7 10 194.4
12 2180 408.2 12 626.2

Table 6.2: Results of running MSA and TAPAS in Matlab on an network with junction
modelling, where turn costs in MSA are updated every 10th iteration.

Network # OD-pairs
MSA

# iterations time (sec)

2× 2
1 162 10.4
12 1881 119.1

5× 5
1 938 1556.6
12 2188 3659.4

Table 6.3: Results of running MSA in Matlab on an network with junction modelling, where
turn costs are updated every iteration.

Due to time limitations we have not programmed a check for flow effectiveness or the possi-
bility for branch shifts. We have to remark that it is checked that a PAS has flow, but it is
not possible to take another value than zero for the γ in the flow-effective condition. This
has a big effect on the convergence rate in certain networks, as explained in Chapter 5.2.1,
but it is hard to predict the effect on our tests. Including a check for flow-effectiveness with
γ = 0 improved the runtime.

Another reason we don’t get the convergence rate of the paper is that the advantages of
Matlab are not used. Matlab is very fast with matrix calculations, but less fast with for-
and while-loops. We didn’t do many matrix calculations and there are many loops in our
Matlab-code, which causes a longer calculation time. We agreed on programming a proof of
concept to show that TAPAS works, where it would be preferable if TAPAS converges faster
than MSA. Since we programmed both algorithms in the same language we did initially not
realize that the programming language makes that much of a difference. We have chosen
Matlab since there is an interface for OmniTRANS in Matlab and we are more experienced
in Matlab. The other option was using Ruby and C, since OmniTRANS is written in these
languages. To make a good comparison between MSA and TAPAS one has to look critically
at the programming code and at the (dis)advantages of programming languages.

We did not have enough time to optimize our Matlab program for speed. Some things one
might change in order to get shorter runtimes is to combine some subprogrammes, like search-
ing for a minimum cost tree and determining which links are used but are not part of this tree,
change the cycle-find-program to the one mentioned in the paper or using another algorithm
for searching shortest paths.
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7 Conclusion and recommendations

In this chapter we will first state our conclusions and next the recommendations.

Conclusion

There exists a unique user equilibrium (UE) in terms of link-flow in a network without junc-
tion modelling, under the assumption that the cost function for every link is strict increasing
and only dependent on the flow of that link.
We have proven that a network with junction modelling has a unique UE in terms of link-flow
if [c(x)− c(y)]T (x− y) > 0.

We have investigated a number of algorithms to find a UE. These algorithms are incremental
assignment (IA), method of successive averages (MSA), Frank-Wolfe (FW), simplicial de-
composition (SD), projected gradient method (PG), linear user cost equilibrium (LUCE),
algorithm B (Alg. B) and traffic assignment by paired alternative segments (TAPAS). We
have chosen TAPAS to look closer at since it converges fast and gives a proportional solution.
It uses more memory than the algorithms used today in omniTRANS (IA, MSA, FW), but
this is less and less an issue due to the growth in available computer memory.

The time needed to achieve the desired level of convergence in our Matlab program is rela-
tively high compared to the runtimes mentioned in the paper [6]. This is caused by the fact
that our program is not optimized for speed.
How and in which programming language the algorithm is programmed influences the runtime
considerable. VA is more optimized for Matlab than TAPAS in our code, so comparing the
two algorithms is difficult. To compare them more accurately one has to optimize both and
for different networks instead of only on raster networks. In general, our tests showed that
MSA needed less time than TAPAS to achive the desired level of convergence.

TAPAS was developed for networks without junction modelling. We developed three small
modifications for TAPAS, but we have also investigated the changes in TAPAS when we add
junction modelling and compared TAPAS with MSA on a network with juntion modelling.
We can add junction modelling by expanding the junctions. When this is done for TAPAS the
number of “pairs of alternative segments” (PASs) can increase to maximal 4 times the number
of PASs in the network without junctions, when there is a maximum of 4 links involved at a
junction and u-turns are prohibited.
The way in which junctions/turns are calculated also greatly affects the convergence time.
The cost of a turn in OmniTRANS is complicated with multiple if-statements, making it too
time consuming to determine which junctions satisfy the conditions for a unique UE, thus
the cost of a turn is assumed to be constant during the iteration. This is also done in our
tests. When the turn costs are updated every iteration, TAPAS needs less time than MSA to
find a UE. When these costs are updated every tenth iteration, sometimes MSA is faster and
sometimes TAPAS. As for networks without junction modelling, for a more accurately com-
parison one has to optimize the code of both algorithms and test them on different networks.
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Recommendations

We recommend to investigate the convergence of TAPAS in networks with junction modelling,
both theoretical and numerical.

We recommend to compare VA and TAPAS more in-depth for networks with junction mod-
elling. One should consider which programming language is optimal and optimize both algo-
rithms.

In TAPAS, one could investigate the effect of branch-shifts, since this was not included in our
Matlab code.

During the determination of the flow we want to shift in a PAS in TAPAS we can decide
to stop determining this flow and go on with the algorithm when certain values are smaller
than a predetermined value, in this thesis they are called ε2, ε3 and ε4. We recommend to
investigate these ε2, ε3 and ε4 into more detail, to determine how many PASs are deleted
extra each iteration, the number of extra iterations needed and the increase or decrease of
time per iteration. In other words, investigate the effect of the ε2, ε3 and ε4 on the runtime.
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A Adaptations on PG

We believe the paper about PG [3] defines variables in an incorrect way. We will explain in
this chapter what we believe is incorrect, why we believe this and what we changed in order
to use the algorithm in this thesis.

Suppose p and p̂ are paths, f{p} is the flow on path p, g{p} is the descent direction of path p
and λ∗ is a scalar. f r,sij is the amount of flow on link ij with origin r and destination s. The
cost of path p is c{p} and the average cost of all path from origin r to destination s is c̄r,s. δ

p
ij

equals 1 if path p contains link ij and is 0 otherwise.

We update the flow of a path by f{p} = f{p}+λ∗g{p}, where 0 ≥ λ∗ ≥ min
{
−f{p}
g{p}

∣∣∣ g{p} < 0
}

.

The paper defines g{p} = c{p}− c̄r,s, where r and s are respectively the origin and destination
of path p. A cheap path, that is a path with less cost than average, has c{p} < c̄r,s, thus
g{p} < 0 in the paper. A cheap path has λ∗ ≥ 0 and g{p} < 0, so λ∗ g{p} < 0. When updating
the flow f{p} = f{p} + λ∗g{p} the paper decrease the flow on this path, while it was cheap.
With similar reasoning the paper increase the flow of an expensive path. This leaves us with
the conclusion that either g{p} = c̄r,s− c{p} instead of g{p} = c{p}− c̄r,s or f{p} = f{p}−λ∗g{p}
instead of f{p} = f{p} + λ∗g{p}.
To determine which one of these two we have to change, we will look at λ∗. The scalar λ∗

should be bounded by an expensive path, since we extract flow from these paths. We have

0 ≤ λ∗ ≤ min
{
−f{p}
g{p}

∣∣∣ g{p} < 0
}

, thus g{p} should be an expensive path. If g{p} < 0 is expen-

sive, we get g{p} = c̄r,s − c{p} instead of g{p} = c{p} − c̄r,s.

A second variable definition we want to point out is Gr,sij . The paper states this to be Gr,sij =∑
p∈P+

r,s
δpij f{p}. We know f{p} ≥ 0 and δ

{p}
ij is either 1 or 0, leading to a non-negative

Gr,sij . We want to find λ∗ which minimizes min0≥λ≥z
∑

ij∈A
∫ fr,sij +f̄r,sij +λGr,s

ij

0 cij(w)dw, where

f̄ r,sij =
∑

(r,s)∈D
r 6=s

∑
p∈P+

r,s
δpijf{p}, z = min

{
−f{p}
g{p}

∣∣∣ g{p} < 0
}

and w is a dummy variable for

integration. All cost functions are increasing functions and the upper bound of the integrals
can only be made greater by increasing λ, since Gr,sij ≥ 0. Minimizing the above function will
always lead to λ∗ = 0, leaving us with the conclusion that Gr,sij is defined incorrect. We will
now derive the correct definition of Gr,sij . We know f{p} is updated by f{p} = f{p} + λ∗g{p}.
When we update f r,sij , we get

f r,sij =
∑
p∈P+

r,s

δ
{p}
ij f{p} =

∑
p∈P+

r,s

δ
{p}
ij (f{p} + λ∗g{p})

=
∑
p∈P+

r,s

δ
{p}
ij f{p} +

∑
p∈P+

r,s

δ
{p}
ij λ∗g{p}

= f r,sij + λ∗
∑
p∈P+

r,s

δ
{p}
ij g{p}

We know f r,sij is updated by f r,sij + λ∗Gr,sij , so we must conclude Gr,sij =
∑
{p}∈P+

r,s
δpijg{p}.

In this thesis we define Gr,sij =
∑
{p}∈P+

r,s
δpijg{p} and g{p} = c̄r,s − c{p}.
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B Adaptations on LUCE

Determining the bush in [4] is our vision not correct. We will show strange results when we
use the definition of LUCE and thereafter state our definitions.

We will have a look at the notation first. We have the nodes i, ı̃ and j. A link from i to j
is called ij and the cost of this link is cij . The minimum cost path from i to destination s
is Csi . The flow at link ij with destination s is fsij and the alternative flow at link ij with
destination s is esij . The bush of destination s is B(s).

The paper [4] states that the bush must be initialized by B(s) = {ij ∈ A|Csi > Csj }, where
the minimum cost are evaluated at zero flow. At the generic iteration the bush is modified
by removing ij if ij ∈ B(s), Csi < Csj and fsij = 0 and adding ij if ij 6∈ B(s), Csi > cij + Csj
and fsji = 0.

We begin with the generic iteration. We will explain here what we changed for which reason.
Suppose the minimum path in a network is i − ı̃ − j, then Cjj = 0, Cjı̃ = cı̃j + Cjj = cı̃j and

Cji = cĩı + Cjı̃ = cĩı + cı̃j . We have Cji = cĩı + cı̃j 6> cĩı + Cjı̃ = cĩı + cı̃j . Since the left side of
the 6>-sign is not strictly greater than the right side (it’s equal) the paper states link ĩı should
not be added to the bush. We believe that the minimum cost paths should be added to the
bush, so we changed it to adding ij if ij 6∈ B(s) and Csi ≥ cij + Csj .

The first iteration of LUCE on our example network is given at the next page, where the
bush initialization is done as in [4]. This iteration results in e4

12 = 0.4
2ε + 54

10 and e4
13 = 0.6

3ε + 54
15 .

The alternative flow should be a number independent of ε. When we have ε = 0.0001 we get
e4

12 = 0.4
2·0.0001 + 54

10 = 2005.4, which is more than the total demand of the network. This is
clearly a sign that the alternative flow is not computed correctly. From this we conclude that
the bush must be initialized differently.

To stay close to the algorithm we used the adapted criterion of the generic iteration of adding
a link: ij 6∈ B(s), Csi ≥ cij + Csj and fsji = 0. Since all flow are zero, the last criterion is
always fulfilled. We have B(s) = {ij ∈ A|Csi ≥ cij +Csj } instead of B(s) = {ij ∈ A|Csi > Csj }
for the bush initialization.
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We will show the beginning of iteration 1 on our example network with an ordinary junction
at node 3, when the bush is initialized as described in [4] here.

The network is Figure 4.6.1. We begin with iteration 1 and destination 4.
The costs are:
c12 = 5 + 02 = 5 c13 = 11 + 2 · 02 = 11 c23 = 5 + 02 = 5
c24 = 10 + 2 · 02 = 10 c34 = 3 + 02 = 3

and the derivatives:
g12 = max{2 · 0, ε} = ε g13 = max{2 · 2 · 0, ε} = ε g23 = max{2 · 0, ε} = ε
g24 = max{2 · 2 · 0, ε} = ε g34 = max{2 · 0, ε} = ε

All flow is zero, so y4
ij = 0 ∀ij ∈ A.

The bush of destination 4, B(4), is the whole network, since we can see that C4
1 > C4

2 > C4
3 >

C4
4 .

C4
4 = 0, C4

3 = 3, C4
2 = 8, C4

1 = 13

G4
4 = 0, G4

3 = ε, G4
2 = 2ε, G4

1 = 3ε

We set the alternative flow to zero
e4 = 0.
Next, the demand is given
e4

1 = 9, e4
2 = 2.

We have to determine the alternative flow for every node in topological order, so i = 1
J =FSB(1, 4) = {2, 3}.

V 4
1 =

9 +
5 + 8

3ε
+

11 + 3

2ε
1

2ε
+

1

3ε

=
54ε

5
+

68

5
.

e4
12 =

0.4

2ε
+

54

10
and e4

13 =
0.6

3ε
+

54

15
e4

12 > 0 and e4
13 > 0.

e4
2 = e4

12 =
0.4

2ε
+

54

10
and e4

3 = e4
13 =

0.6

3ε
+

54

15
.

We stop the iteration here, since e4
12 and e4

13 won’t change during the rest of iteration 1 and
it already shows the alternative flow to be incorrect.
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