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Abstract

Mental health care is a relatively new research area. Over the years research
was done in hospitals and other health care institutions. In The Netherlands
a new reimbursement system was developed for health care institutions. And
with this system a new registration system was born. Diagnosis and treatments
were put together in a Diagnosis Treatment Combination (DTC), i.e. a DTC
represents the whole care episode belonging to a specific demand of care of
a patient. With this new reimbursement system DTCs can be used for other
purposes than payments. Logistical pathways and other information like time
spent between activities can be calculated.

In this research a methodology is developed to predict logistical pathways.
We use a smoothing technique from language modelling to make a linear com-
bination of relative frequencies with a variable number of history steps. The
result is a transition matrix that can be used to predict the progress of a patient
in the health care system. Statistically, there is a differenct between short, mod-
erate, long and chronical DTCs. Hence, we make a refinement to the model
and make four smoothed matrices instead of one. The validation is done by es-
timating the average length of a DTC and we compare this with the test results.
We can conclude that the methodology predicts logistical pathways really well
for non-chronical DTCs.

This research is the basis of the solution to logistical planning and capacity
problems, not only in Mental Health Care institutions, but also in the Somatic
Health Care.
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Chapter 1

Introduction

1.1 Rationale

Roughly four years ago the decision was made to fundamentally change the
reimbursement system for mental health care (MHC). In the old situation, the
MHC institutions were paid per individual activity. In the new situation, they
will be paid for each complete treatment. Each MCH employee treating a pa-
tient registers every activity, date, medical attendant and admission. At the end
of the treatment all the activities are combined and the insurer will pay for this
complete treatment. Besides the change in payment of a treatment, the new
system will also show explicitly the relationship between the demand of care
and the payments. This relationship gives answers to questions like, which ac-
tivity is brought in for which demand of care and against which costs? This
product reimbursement increases transparency. And thus, makes the control
of care and a free-market possible in MHC.

The system of Diagnosis Treatment Combination’s (DTCs) is a form of prod-
uct reimbursement. The DTC is a description of a ’product’, which is the com-
plete care episode belonging to a specific demand of care: the diagnosis. In
most cases a DTC already starts in an outpatient situation. That means that
already when a patient calls the doctor, that activity will be registered. And
a DTC generally ends when the patient is discharged. The costs are allocated
to the intermediate products, i.e. the medical activities, the sum gives the to-
tal cost of a DTC. The basic goal of the DTC case mix system is to establish a
transparent reimbursement system for health care in the Netherlands [1].

Since the implementation of the DTC system in MHC institutions, it is pos-
sible to use the DTCs for other purposes than payments. The received trans-
parency gives the institutions more options to control the care both on opera-
tional and strategical level. From the DTCs, logistical pathways of patients can
be obtained. A logistical pathway of a patient is the sequence of all performed
activities. For example: a patient is diagnosed first. Then he gets psychotherapy
alone with his therapist and after that he gets psychotherapy with his family.
He ends with psychotherapy again. A logistical pathway is then: diagnostic,
psychotherapy, remaining psychotherapy, psychotherapy. Not only the activi-
ties are known. Also the time of the activities and the time between activities
can be included in a logistical pathway.

Logistical pathways in health care 1
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A number of examples why logistical pathways can be of use for health
care:

• Development of treatment protocols: treatment protocols can be devel-
oped by best-practices and scientific insight. By reflecting protocols in-
side the diagnosis groups both protocols and practice can be improved.
Health processes can be optimized and different pathways will come for-
ward, efficient pathways and less efficient pathways. A pathway is called
efficient if the costs or the time is minimized. The less efficient pathways
can be investigated closer to improve them.

• The logistics of MHC institutions and hospitals is complicated. Doctors
need operating or appointment schedules. A ward where acute patients
are hospitalized, needs a minimum number of beds and nurses to take
care of the patients. Hence, logistical pathways is the starting-point of lo-
gistical planning: in order to develop a good schedule and have enough
beds and nurses it is important to have a thorough insight in the re-
quested capacity.

• Development of care programs: in many institutions there are initiatives
to organize the control of care within so called care programs. Realistic
insight in the current treatments can help both in defining care programs
and to control the care within the care programs.

1.2 Literature

A lot has been written about logistical pathways in health care and include a
lot of different theories and approaches to look at optimization problems. In
this section we will give some of these theories and applications in practice.

The definition of a logistical pathway, also called (clinical) care pathway, is
an outline of what is likely to happen on the patient’s journey. It is as a time
line, on which every event relating to treatment can be entered. Events such as
consultations, diagnosis, treatment and medication can all be mapped on this
time line.

In the UK and the USA, the pathways in hospitals are all constructed with
the help of a multidisciplinary work-team [2]. They can help to find the bot-
tlenecks in treatments protocols, reduce the length of stay and minimize costs
without compromising patient care [3], [4]. However, in MHC it is more diffi-
cult to construct such pathways, since there is professional antagonism and a
dearth of evidence-based practice [5]. With the introduction of the DTC system
and received transparancy, it will be easier to obtain these pathways and use
them to optimize for example, protocols and schedules [6]. Besides, the quality
of care and the efficiency in care programs will be higher [7].

To reduce the length of stay of a patient in a hospital or MHC institution
and obtain an optimal capacity planning [8] and schedules [9] (operating, ap-
pointment and doctors and nurses), queueing theory can help us [10]. More-
over, the data on lengths of stay can be analysed using phase-type distributions
[11]. Simulation models are used a lot to simulate one or more wards or even a
complete hospital [12].

2 Logistical pathways in health care
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With the increasing availability of health care data, all kind of new methods
for data analysis arise. Bayesian networks, machine-learning, neural networks
and regression trees are heavily discussed, since we want to know the best way
to analyse all this data [13].

1.3 Problem formulation

In this section we will analyse the problems at the start of this research. After
that we will formulate the objectives with the corresponding research questions
and will give our approach to solve the problems.

1.3.1 Starting-point of the research

The model that has been developed by Capgemini Nederland B.V. is as in Fig-
ure 1.1, where each node represents an activity. The percentages at the branches
tell us how many percent of the patients coming from the last node go to the
next activity. For example: we start at the node ’Start DTC’. In total there are
18,216 patients. Of all the patients, 3,578 patients go to pre-intake, which equals
22.6%. From pre-intake 86.9% of the patients go to diagnostic etc. There are also
loops in the current situation. That means the patient can return to a previous
activity with a certain probability. For example: 306 patients are in diagnostic.
About 50% of the patients go to crisis care and 77 patients (26%) returns to
diagnostic.

This tree decomposition is not useful to correctly predict logistical path-
ways. One of the problems is that the pathways do not become clear, since
there are only percentages at the branches and the number of branches will
explode if we want to show all the possibilities. After a few activities, the per-
centages are also not reliable anymore, as the dataset has become much smaller.
Moreover, the history of a patient is not taken into account. Only the last activ-
ity determines the next activity. The history of a patient is important, since for
example, the probability of going to diagnostic is different if the patient was
in psychotherapy or in physiotherapy before. Another problem is that nothing
has been done about the time element. In this model it is not clear how long a
patient stays in the medical system or between activities. The loops in Figure
1.1 only represents one repeating activity. However, if the activity is repeated
more times, the percentages are different, which can not be shown in this fig-
ure.

1.3.2 Objectives

To continue from the present model, a couple of things have to be examined
and developed:

• In DTCs there are activities which occur more than one time. For patients
with a long pathway, this repeating activities show some kind of a pat-
tern. One objective is to find this pattern and reflect this in a mathematical
model.

• The present model is a tree decomposition, which gives the probabilities
of going from one activity to another. However, after a couple of nodes

Logistical pathways in health care 3



1.3. PROBLEM FORMULATION CHAPTER 1. INTRODUCTION

Figure 1.1: Tree decomposition at the starting-point of this research.

the number of branches will be very large and for the following nodes a
different kind of model has to be found or a whole new model has to be
developed.

• In the current model there is no time element. The institutions and the pa-
tients do not know how long it takes before a patient goes to the next ac-
tivity. For the time in between activities depending on the activity where
the patient is coming from, a model has to be developed.

1.3.3 Research questions

Given the scope of the problems described in Subsection 1.3.1 and 1.3.2 the
following questions are important for this research:

• We want to choose a proper model, which can help to predict logistical
pathways. To choose a proper model it has to be clear which elements
are important. Elements like history of a patient and repeating activities
have to fit in the chosen model.

• The chosen model will have parameters, which have to be evaluated. We
have to decide which method we want to use to evaluate them.

• After we estimated the parameters and made the model we want to pre-
dict the pathways. Thus, we derive a transition matrix with the evaluated

4 Logistical pathways in health care
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parameters, since the probabilities of a transition matrix can help to pre-
dict logistical pathways and find a way to give insight in the pathways.

• Finally the time element has to be introduced. We have to decide how im-
portant the duration of the activities and the time between the activities
are. We have to be able to implement these time elements to calculate for
example the time a patient spends in a DTC.

1.3.4 Research demarcation

The research must be based on adequate data. The data used in this work con-
tains about 45,000 DTCs. These DTCs are complete care episodes belonging to
a specific demand of care. Together with information about the patient, like age
and gender, a DTC is a complete data source. The information we use in this
research is the sequences of activities. The treatments and the general time a
doctor registers are ordered in time. Thus, the first treatment the patient gets is
the first activity in the sequence. In this report, this sequence is called ’DTC’.

1.4 Research approach

Our approach is inspired by the techniques from language modelling. This
choice is based on the following intuitive reasoning. It is not possible to model
the activities as a Markov process. For a Markov process the Markov property
has to hold. That means the conditional probability distribution of future ac-
tivities of the process, given the present activity and all past activities, depends
only upon the present activity and not on any past activity. We can not use a
Markov process, since we want to take more history into account. Conversely,
in language modelling the history is important, as the construction of sentences
is determined by the grammar. A model used in language modelling is the tri-
gram model. This model estimates the probability of a word, given the two pre-
vious words that is necessary to maintain the grammar. To get this probability
we construct a linear combination of matrices with a different number of his-
tory steps. Eventually, since we have a linear combination, we get a smoothed
transition matrix. If necessary, we will make a refinement to the model, since it
will better predicts logistical pathways.

For the implementation of the time element we examine the continuous
phase-type distribution. A continuous phase-type distribution can be defined
as the time until absorption. We will investigate if we can use this distribu-
tion. The duration of the activities is negligible compared to the time between
activities, since the first is in minutes or hours and the last is in days. With a
refinement to the model, that means we get more than one smoothed transi-
tion matrix, a continuous phase-type is difficult to use. Therefore, we derive
a different model with our smoothed matrices. Together with the mean time
between activities we determine the average time in the system by a patient.

1.5 Overview

In Chapter 2, we will take a look at the data. The distribution of the length
of a DTC, the frequencies of the activities, the duration of activities and the
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1.5. OVERVIEW CHAPTER 1. INTRODUCTION

time between activities will be discussed. The model is described in Chapter
3, together with the evaluation of the parameters. We will give a methodology
to make a smoothed transition matrix with the trigram language model. The
smoothed matrix can be used to predict logistical pathways and is the start-
ing point of the solution to planning and capacity problems. In Chapter 4, the
model will be validated by estimating the average length of a DTC and refine-
ments will be made. In Chapter 5 the results will be given and the conclusions
are drawn in the last Chapter 6 of this report.

6 Logistical pathways in health care



Chapter 2

Data analysis

Before constructing a mathematical model, we have to get insight in the data.
The data describes the sequences of activities. In this chapter we will take a
look at the distribution of lengths of DTCs, the frequencies of the activities and
the time element in activities. The information about this data will tell us for
example, how long most of the DTCs are and how important history is.

2.1 Length of DTC

First of all, the length of a DTC is investigated. By summing the number of
DTCs which have length n or smaller and dividing this by the total number of
DTCs, a cumulative probability is calculated.

Figure 2.1: The distribution of the length of a DTC is given by the probability
that a DTC has length n or smaller, that equals the cumulative probability.

The plot shows that 30% of the DTCs have length 1, 2 or 3. The DTCs with

Logistical pathways in health care 7
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length 9 or less count for 60% and 80% of the DTCs have length 20 or less. The
other 20% varies from length 21 to a DTC with length 2,028.

2.2 Frequencies of the activities

Activities in MHC can be divided into levels. The highest level represents the
main activities, compiled by managers of health care institutions and managers
of Capgemini Nederland B.V.. The lowest level represents all the activities used
for a patient. In this research we take the highest level, because this level is
the most important for the managers in health care institutions. For example:
diagnostic exists of all kinds of examinations, like physical and intelligence
examination. If a patient gets a psychiatric examination, it will be registered
at the lowest level. However, in this research, psychiatric examinition will be
part of diagnostic at the highest level. Hence, the activity diagnostic will be
registered. The list of activities of the highest level is given in Table 2.1. In total
there are 19 states at this highest level. A state represents a kind of activity a
patient gets for his or her diagnosis, except for state 0. That means the DTC
ends.

Activity
number Activity
0 Finished
1 Pre-intake
2 Diagnostic
3 Psychodiagnostic examination
4 Follow up treatment contact
5 Supporting and structuring treatment contact
6 Psychotherapy
7 Other form of communicative treatment
8 Pharmacotherapy
9 Physical therapy
10 Course therapy
11 Physiotherapy
12 Occupational therapy
13 Accompanying
14 Nursing and caring
15 Crisis care
16 General indirect time
17 Stay (per day of stay)
18 Daily spending (per hour)

Table 2.1: List of activities at the highest level.

In Figure 2.2 the distribution of the activities is shown. The most frequent
activity is general indirect time (activity 16), which means administration about
patients and the like. The least frequent activities are physical therapy (activ-
ity 9), physiotherapy (activity 11) and occupational therapy (activity 12). In the
model we will choose, we have to take into account that there are activities that
are rare. As we build a model, we divide the data in a training set and a test set.

8 Logistical pathways in health care
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With the training set we build our model and with the test set we validate our
model. In case where activities are rare, it is possible that activities or combi-
nation of activities appear in the test set. However, they will not appear in the
training set. Especially, when the data set is small. Hence, we have to find a
model that takes rare activities or combinations of activities into account.

Figure 2.2: The distribution of activities. For example, diagnostic (activity 2)
equals 8% of all the activities.

2.3 Repeating activities

In Appendix C the simplest transition matrix is given in Table C.1 to get an
impression of the probabilities going from one activity to another.

After building this simplest transition matrix we take a look at a transition
matrix where we take into account how many times a patient has been in that
activity before. It is interesting to see whether the probability of going from
activity i to the same activity i given that a patient has been there only once
is different from the probability of going from activity i to the same activity i
given that the patient has been there for three times already. We want to know if
it is possible to see a connection among the number of times a patient has been
in an activity before and the probability of returning to that activity again.

Every line in Figure 2.3 represents the probability of one activity given the
number of times the patient has been in that activity before. That shows that
most of the activities have the same distribution. The probability of activity i
given that the patient has been a number of times in activity i before, gets larger
as the number of activities i grows. We can also see that some probabilities
fluctuate or drop to zero. There are two reasons for this. The first reason is that
some activities appear not very often in the data. That is why repetitions do
not appear very often. The second and most important reason, is that it is a
feature of certain activities to not appear more times in succession. This kind

Logistical pathways in health care 9
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of activities is different from the other activities. Thus, the probability of an
activity is dependent of the number of the same activities in the past.

The frequencies of the activities after 5 activities are different than after 45
activities. Therefore, the transition probabilities of going from activity i to activ-
ity j will change. Hence, we conclude that the history of a patient is important,
if we want to model the repetitions of activities.

Figure 2.3: The probability of activity i given the number of times the patient
has been there before.

The corresponding probabilities are given in Table 2.2. We see the proba-
bilities dropping to zero after 7 and 10 times are the activities pre-intake and
psychodiagnostic examination respectively. For example, a patient is sent to a
MHC institution and gets the activity pre-intake. However, the first time the
institution does not know exactly what is wrong with the patient. Thus, the
patient gets a pre-intake for a couple of times and if they find the problem he
gets treatment. If not, the patient will be sent to another MHC institution or
will be sent home and the DTC stops for this patient in this MHC institution.

2.4 Time between activities

To get an impression of the time element in this research, an investigation of
time between activities and the duration of the activities is made. Table 2.3
shows the mean time between activities, all in days.

10 Logistical pathways in health care
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Number of times the patient has been before in activity i
Activity 1 2 3 4 5 6 7 8 9 10

1 0.1228 0.3114 0.3778 0.4118 0.3571 0.2 0 0 0 0
2 0.4019 0.4496 0.4736 0.4599 0.4758 0.4842 0.5399 0.6107 0.6703 0.6557
3 0.2364 0.3612 0.4384 0.4831 0.6047 0.6538 0.5882 0.4 0.25 0
4 0.4884 0.6607 0.7367 0.7727 0.8045 0.8317 0.8499 0.8632 0.8718 0.8817
5 0.487 0.6147 0.6931 0.7425 0.7856 0.8093 0.8348 0.8499 0.8693 0.8868
6 0.5562 0.6916 0.778 0.8018 0.818 0.8236 0.8356 0.8457 0.8537 0.8615
7 0.4981 0.6568 0.7378 0.7808 0.802 0.8197 0.832 0.8469 0.8595 0.8657
8 0.2023 0.3245 0.4382 0.5167 0.5833 0.619 0.6154 0.6667 0.6875 0.7273
9 0.4599 0.5963 0.6462 0.5952 0.56 0.5714 0.5 0.75 0.6667 0.5

10 0.3297 0.4687 0.621 0.7009 0.7528 0.7887 0.817 0.8279 0.8275 0.8436
11 0.4766 0.6626 0.75 0.8025 0.8462 0.8909 0.9184 0.9111 0.9268 0.9211
12 0.4155 0.4505 0.561 0.6087 0.7143 0.65 0.6154 0.75 0.6667 0.75
13 0.666 0.8325 0.9147 0.9421 0.9602 0.9683 0.9727 0.9753 0.9772 0.9779
14 0.468 0.6311 0.7786 0.8147 0.8471 0.8611 0.8548 0.8868 0.8865 0.92
15 0.4855 0.5314 0.596 0.6275 0.6436 0.6789 0.7048 0.7117 0.6962 0.6818
16 0.5196 0.5994 0.6416 0.6622 0.6785 0.6913 0.7205 0.7426 0.7778 0.8032
17 0.5654 0.799 0.8339 0.8529 0.8639 0.8716 0.8855 0.8959 0.8994 0.902
18 0.6203 0.7302 0.8056 0.8214 0.8498 0.8628 0.8624 0.8759 0.8988 0.9144

Table 2.2: The probability of going to activity i given the number of times the
patient has been there before. For example: a patient has been in psychotherapy
(activity 6) for 8 times. Then the probability that he gets psychotherapy again
will be 0.8457.



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
1 12.2 21.1 27.8 31.2 25.3 18.6 34.0 28.0 1.0 26.3 0 0 33.3 0 8.2 15.8 17.7 40.5
2 5.5 13.3 15.3 20.3 21.5 21.8 21.1 18.2 16.5 6.8 3.1 5.8 22.2 15.6 8.9 12.1 10.9 7.8
3 17.9 11.5 7.1 15.0 15.6 15.5 13.6 26.0 6.0 5.9 2.0 0 10.3 6.0 3.9 10.0 4.5 1.6
4 18.0 12.3 11.7 12.6 12.1 8.1 4.4 12.9 3.1 3.5 2.4 4.4 5.8 4.3 6.9 11.0 2.6 3.8
5 15.4 13.3 10.0 12.0 9.2 4.6 5.3 12.4 10.1 1.9 2.7 3.7 5.7 2.2 8.3 4.9 4.0 4.9
6 5.8 8.8 5.8 11.2 5.5 10.8 4.5 11.0 16.7 2.7 1.5 4.9 2.1 2.0 6.0 5.1 2.1 3.9
7 7.3 13.8 10.5 5.2 4.7 4.5 10.3 10.4 4.0 2.2 1.8 2.9 5.2 3.1 11.8 6.2 3.1 3.0
8 5.0 12.5 8.5 14.3 12.2 12.2 10.1 29.7 2.0 4.8 1.3 5.5 11.2 3.4 7.6 13.3 5.8 3.5
9 1.0 4.0 8.0 3.2 2.9 1.8 3.2 7.5 2.5 1.8 2.2 27.3 4.1 1.6 4.0 3.0 15.7 0
10 2.3 3.7 3.0 3.5 2.0 2.5 2.1 3.2 1.8 3.0 2.2 2.0 2.7 1.5 4.1 1.9 2.5 3.0
11 0 2.3 1.4 2.8 2.3 7.0 2.0 2.5 3.0 3.1 2.9 3.5 1.8 0 0 3.2 3.8 0
12 0 13.8 0 5.6 3.0 3.9 2.6 4.3 1.0 2.3 1.8 2.4 2.8 1.6 6.0 7.0 5.9 1.0
13 20.7 10.0 7.7 6.8 7.0 2.3 6.6 11.9 2.1 2.5 3.3 5.0 5.3 1.8 8.0 6.6 1.8 3.7
14 1.0 8.8 3.7 3.7 2.3 3.0 4.6 3.2 1.3 1.6 0 1.2 2.2 6.1 3.5 2.6 2.1 0
15 4.6 8.8 12.6 8.1 8.3 6.3 10.6 7.0 2.0 6.6 0 3.0 8.0 2.6 5.2 5.7 2.6 3.3
16 6.4 10.2 10.5 11.1 4.7 4.6 6.0 14.1 1.8 1.8 2.2 6.9 6.0 2.7 6.1 3.8 3.7 3.6
17 10.0 4.8 2.5 4.7 4.2 2.3 3.2 3.2 16 2.2 7.7 6.7 1.8 2.6 1.8 3.2 2.4 4.9
18 1.0 5.7 2.0 3.4 4.3 2.9 7.0 4.9 0 3.0 0 1.0 3.1 0 3.3 3.1 3.5 3.7



Table 2.3: Mean time between activities in days. For example: a patient gets
physiotherapy (activity 11). Then it takes 7.0 days before he gets psychotherapy
(activity 6).

2.5 Duration of the activities

In Table 2.4 the mean time of the activities is given. Activities consist of direct
and indirect time. Direct time is the time that the doctor is in contact with the
patient, i.e. the patient is treated for his diagnosis. Indirect time is the time the
doctor needs to work on his documentation or the time to write a prescription
and the like. Time like travel time of a doctor is not included. Hence, total time
is an additive sum of the direct and indirect time. Most of the activities are
in minutes, except for stay and daily spending. These are in days and hours
respectively. They do not have direct or indirect time, since the patient is ’hos-
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pitalized’.

Mean time per activity
Activity Direct time Indirect time Total

1 24 minutes 24 minutes
2 47 minutes 16 minutes 63 minutes
3 80 minutes 42 minutes 121 minutes
4 31 minutes 10 minutes 41 minutes
5 23 minutes 5 minutes 28 minutes
6 32 minutes 8 minutes 40 minutes
7 24 minutes 4 minutes 29 minutes
8 23 minutes 6 minutes 29 minutes
9 26 minutes 6 minutes 32 minutes

10 17 minutes 5 minutes 22 minutes
11 16 minutes 3 minutes 19 minutes
12 25 minutes 13 minutes 38 minutes
13 39 minutes 2 minutes 41 minutes
14 31 minutes 3 minutes 33 minutes
15 87 minutes 7 minutes 94 minutes
16 16 minutes 16 minutes
17 3.6 days
18 4.9 hours

Table 2.4: Duration of the activity. For example: a patient gets treated by a psy-
chotherapist (activity 6) for 32 minutes. After the treatment the psychothera-
pist has to work on the patient’s administration for 8 minutes. The total time
the psychotherapist worked on the patient equals 40 minutes.

2.6 Summary

We conclude that 80% of the DTCs has length 20 or less. Some activities, like
diagnostic and general indirect time appear very often and some activities, like
physical and physiotherapy are very rare. In the model that we are going to
choose, we have to take this into account. Besides, we have to take the history of
the patient into account, since the transition probabilities depend on previous
activities.
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Chapter 3

Trigram model for DTCs

In language modelling the grammar in a sentence is important. Therefore, the
history of a word matters. If we include history of words, some combinations of
words will become rare in the data. According to Jelinek [14] the trigram model
takes two history steps into account. Besides, he reckons with the combination
of words that are rare, by using linear combinations of probabilities with less
history. Hence, the model is commonly used in language modelling and it can
predict a word from previous words. The same model can be applied in health
care, since the preceding activities of a patient are important for the upcoming
activities. Moreover, some combinations will be rare. In this chapter we will
describe the model and evaluate the parameters of the model.

3.1 Model description

In language modelling a common model used is a so called trigram model to
estimate a transition matrix. The transitions represent the probability of word,
given the two previous words. This trigram model is a linear smoothing model,
since in text samples the number of words to predict from is not big enough.
Hence, to estimate the probability p(w3|w1, w2), where (w1, w2, w3) is a string
of three words, a linear combination of the probabilities f (w3), f (w3|w2) and
f (w3|w1, w2) is made.

In our DTCs some activities are also rare and some appear very often. To
get a good estimation of the transition probabilities, the smoothing model is
applied. In stead of two previous activities we use three previous activities,
since our data set is quite large. Hence, we want to estimate the probability
P(w4|w1, w2, w3), where (w1, w2, w3, w4) forms a string of four activities and
the first three activities are the previous activities. We construct a smoothed
model by making a linear combination of the probabilities f (w4), f (w4|w3),
f (w4|w2, w3) and f (w4|w1, w2, w3). Every probability has a factor λi which has
to be evaluated. The evaluation is done by using the maximum likelihood esti-
mation.
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3.2 Parameters evaluation

To predict a word from previous words in a sample of a text, Jelinek [14] uses
n-gram models. Let wi be a word from a fixed and known vocabulary V . Then
the number of words in a sample of text is huge. However, still a couple of
words do not appear very often. With a training set twice as big as the test set,
we can calculate the following probabilities:

f (wi) =
C(wi)

∑i C(wi)
,

f (wi|wi−1) =
C(wi−1, wi)

C(wi−1)
and

f (wi|wi−2, wi−1) =
C(wi−2, wi−1, wi)

C(wi−1, wi)
.

where
C(wi−1, wi) = # of transitions from wi−1 to wi .

The first probability f (wi) is called unigram, where C(wi) is the number
of words wi and ∑i C(wi) is the total number of words. The second probabil-
ity f (wi|wi−1) bigram and the last transition f (wi|wi−2, wi−1) is called trigram.
Naturally, it is possible to take more history into account and construct a four-
gram or even a fivegram.

In the test set some combination of words may never appear, since some
phrases are rare. That is where the smoothing comes in. A linear combination
of uni-, bi- and trigrams gives:

P(w3|w1, w2) = λ1 f (w3) + λ2 f (w3|w2) + λ3 f (w3|w1, w2) , (3.1)

where,
λ1 + λ2 + λ3 = 1 .

Now, instead of words activities are used. The λi’s are computed using the
maximum likelihood method as described below. To determine the λi’s, the
same data on which the relative frequencies f (·|·) are computed, can not be
used, since in that case the estimates would be λ1 = λ2 = 0 and λ3 = 1. Hence,
the total training data must be divided into two parts. The first part, called
kept data which is twice as big as the second part, is used to estimate the rela-
tive frequencies f (·|·). The second part, called held-out data is used to estimate
the weights λi. We can imagine that this frequency f (w3|w1, w2) approximates
P(w3|w1, w2) better, if it is based on a larger count C(w1, w2). Hence, the λi’s
should depend on the counts C(w1, w2) and C(w2).

In Section 2.2 we concluded that the activities in the past are important for
the probability of activity i. In this model we will use instead of two, three
previous activities. Thus, P(w4|w1, w2, w3) is smoothed in three steps. First we
get:

P∗(w4|w3) = γ(C(w3)) f (w4) + (1−γ(C(w3))) f (w4|w3), (3.2)
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where f (w4) and f (w4|w3) are relative frequencies from the kept data. Then,

P∗(w4|w3, w2) = θ(C(w2, w3))P∗(w4|w3) +
(1−θ(C(w2, w3))) f (w4|w3, w2) (3.3)

and the final step

P(w4|w1, w2, w3) = ζ(C(w1, w2, w3))P∗(w4|w2, w3) +
(1−ζ(C(w1, w2, w3))) f (w4|w1, w2, w3) (3.4)

The coefficient γ in Equation (3.2) can be estimated by using the maximum
likelihood estimation for each different value of the count C(w3). The value γ

should actually depend only on ranges into which C(w3) falls, since very few
activities w3 will have high values of C(w3). According to Jelinek [14], we have
to split our activities. For instance, ranges can be used as follows: two ranges R
can be derived by splitting the activities. The first range R1 contains the activi-
ties that appear more than average and the second range R2 contains activities
appearing less than average. With the help of some numerical computations
the estimation can be done with the following steps.

1. The total training data is divided into kept and held-out data sets. The
kept data set is twice as big as the held-out data set.

2. The relative frequencies f (w4|w1, w2, w3), f (w4|w2, w3), f (w4|w3) and
f (w4) are calculated from the kept data set.

3. N(w4, w3, w2, w1), N(w4, w3, w2) and N(w4, w3) are derived. N(w4, w3)
is the number of times the bigram (w4, w3) takes place in the held-out
data set.

4. Finding γ maximizing the value

∑
v∈R

∑
w4

N(v, w4) log[γ f (w4) + (1−γ) f (w4|w3)] . (3.5)

As said, in step 4 above, γ is estimated by using the maximum likelihood
method. To apply this method we first have to define the likelihood function:

L(γ; a1, . . . , an, b1, . . . , bn) =
n

∏
i=1

n

∏
j=1

P(w4 = ai|w3 = b j; γ) .

With 18 activities we get

L(γ; a1, . . . , a18, b1, . . . , b18) =
18

∏
i=1

18

∏
j=1

P(w4 = ai|w3 = b j; γ)

=
18

∏
i=1

18

∏
j=1

γ(C(b j)) f (ai) + (1−γ(C(b j))) f (ai|b j) .

We search for the maximum of log L, since it is easier to work with somma-
tions than products. Clearly, log L and L have the same extreme points, since
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L(γ) > 0 for 0 ≤ γ ≤ 1 and because the logarithm is a monotone increasing
function. This is how we obtain Equation (3.5) in step 4:

L∗(γ; a1, . . . , a18, b1, . . . , b18) = log L(γ; a1, . . . , a18, b1, . . . , b18)

= log
18

∏
i=1

18

∏
j=1

γ(C(b j)) f (ai) + (1−γ(C(b j))) f (ai|b j)

=
18

∑
i=1

18

∑
j=1

log
[
γ(C(b j)) f (ai) + (1−γ(C(b j))) f (ai|b j)

]
.

To maximize Equation (3.5), we take the derivative with respect to γ and
set the result to 0:

∑
v∈R

∑
w4

N(v, w4)
[
γ +

f (w4|v)
f (w4)− f (w4|v)

]−1
= 0 . (3.6)

We have to find γ ∈ [0, 1] satifying Equation (3.6). We know that although
the expression on the left hand side of Equation (3.6) has singularity points, the
singularity points are not in [0,1]. The proof is given in Appendix D.1. To solve
for γ we substitute γ’s ∈ [0, 1] in Equation (3.6) and take the one which ap-
proaches the maximum the most. Once γ is found, the probability P∗(w4|w3)
in Equation (3.2) can be determined. With P∗(w4|w3) known, finding the val-
ues θ for Equation (3.3) and ζ for Equation (3.4) is the same as finding γ’s for
Equation (3.2).

Eventually, we have all the γ’s, θ’s and ζ’s. They can be used to determine
the λi’s. Substituting Equation (3.2) and (3.3) in Equation (3.4) gives:

P(w4|w1, w2, w3) = ζ
(
θ
(
γ f (w4) + (1−γ) f (w4|w3)

)
+

(1−θ) f (w4|w2, w3)
)

+ (1−ζ) f (w4|w1, w2, w3)

and the λi’s become:

λ1 = ζ ·θ ·γ
λ2 = ζ ·θ · (1−γ)
λ3 = ζ · (1−θ)
λ4 = 1−ζ .

Hence, the smoothed transition matrix becomes:

P(w4|w1, w2, w3) = λ1 f (w4) + λ2 f (w4|w3) + λ3 f (w4|w2, w3) +
λ4 f (w4|w1, w2, w3) .

3.3 Result of evaluated parameters

In the last subsection we showed how the parameters could be evaluated. For
simplicity we only used one range. Now, we apply the maximum likelihood
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Linear smoothing parameters λi
λ1 = 0.0008
λ2 = 0.0467
λ3 = 0.3836
λ4 = 0.5691

Table 3.1: The λi’s for all the activities.

estimation to evaluate the parameters of the model. Hence, the λi’s become as
in Table 3.1.

With these λi’s we are able to build our smoothed transition matrix. We are
not able to print the matrix, since the dimensions of the matrix are 5832 by 19.
However, with this matrix we can predict the pathways of patients.

3.4 Summary

In this chapter we presented a solid model for the prediction of activities and
therefore, the prediction of logistical pathways. We evaluated the parameters
by applying the maximum likelihood estimation. As a result, we got 4 smooth-
ing parameters and our smoothed transition matrix.
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Chapter 4

Model validation &
refinement

An important methodological issue is to insure that a model is credible, i.e.
to evaluate the model in terms of its performance. In Chapter 3 we used the
training set to evaluate the parameters for our model. We need the test set to
measure its performance. In this chapter we use the training set to validate our
model by estimating the average length of a DTC and compare this with the
average length of the test set.

4.1 Model validation

To see whether our model works correctly and predicts accurately, we have to
validate the model. This is done by estimating the average length of a DTC
using the smoothed transition model. We chose to estimate the average length
as validation, since the average length is easy to calculate for both test set and
training set.

To calculate the average length of the test set we just add all the lengths of
the DTCs and divide this by the number of DTCs. The average length of the
training data is calculated by summing the probability of the length of a DTC
being larger than n, i.e. the probability that a DTC will not end. The estimated
average length calculated with the training set, is compared with the average
length calculated with the test set. Hence, if the probabilities of a DTC that ends
after n activities is equal for both the training set as the test set, we may assume
that our model is correct and can be used to predict logistical pathways.

4.1.1 Estimating the average length of a DTC

In Figure 2.1 a cumulative probability is given to show the distribution of the
lengths of DTCs. In this section we use our model to determine the average
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length of a DTC. The random variable X is the length of a DTC.

E(length of DTC) =
∞
∑

n=0
P(X > n)

=
∞
∑

n=1
P(X ≥ n)

=
∞
∑

n=1
P(no ”end” till n)

= 1 +
∞
∑

n=2
P(no ”end” till n) . (4.1)

The probability a DTC is longer than n activities equals: P(no ”end” till n).
That means the DTC will not end at activity n. Thus, P(no ”end” till 1) = 1,
since there are no DTCs of length 0. Hence, they are always 1 or longer.

P(X ≥ 2) = ∑
i, j

π1(i)A1(i, j)

= ∑
i, j

π2(i j) , (4.2)

where,
π1(i) = P(DTC starts with i) .

A1(i, j) is the same as the bigram transition matrix in section 3.2:

A1(i, j) = P(transition to j | started at i) .

For P(X ≥ 3), π2(i j) and the trigram A2(i j, jk) are used. π2(i j) is the prob-
ability that a DTC starts with (i j). Using the same Equation as (4.2), π3(i jk)
follows. The same can be done for P(X ≥ 4): π3(i jk) and the smoothed tran-
sition matrix A3(i jk, jkr) are used. In Equation (4.1) we sum over n from two
to infinity. Thus, our next step would be determining a fivegram. However,
instead of a fivegram, we use our smoothed transition matrix again. To reach
infinity a recursive equation in vector-matrix notation emerges:

We obtain the following result, since we use An−1 = A3 ∀n ≥ 4.

Proposition 1

P(X ≥ n) = πn = πn−1 An−1

= πn−2 An−2 An−1

= πn−3 An−3 An−2 An−1

...
= π3 A3 A4 . . . An−1

= π3 An−3
3 ∀n ≥ 4 .

Using Equation (4.1) and Proposition 1, we can validate our model, by cal-
culating the average length of a DTC.
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4.1.2 Results of the model validation

The results of our approach validation are shown in this subsection. The vali-
dation is done by estimating the average length of a DTC.

We calculated the average length of a DTC using the test set. After that,
we calculated the average length using Proposition 1. In Table 4.1 the average
length of a DTC, calculated with the test set and calculated with our approach,
is given.

Further in the report we will give the conditional expectation of the length
of a DTC and conclude that with a refinement to the model we can predict
logistical pathways very good for DTCs which are not chronical. That means,
DTCs shorter than 75 activities.

Dataset E[X]
Test set 24.63
Smoothed model 16.38

Table 4.1: Average length of DTC, calculated with the test set and our smoothed
model.

In Figure 4.1 we see the model validation. The lines describe the probability
of the length of a DTC being smaller or equal than n, i.e. P(X ≤ n) with variable
X = length of DTC. We can see that the distance between the smoothed data
and the test data is large, and not acceptable. Whereas, if the smoothed data
is that much underneath the test set, the model has to be adjusted in order to
predict a logistical pathway.

Figure 4.1: The distribution of the length of DTCs. We compare our smoothed
model with the test set.
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4.2 Refinement of the model

From the last section we saw that there is a difference between the average
length derived with our model and with the test set. This makes us wonder if
we can make a refinement to the model and if there are more indications that
point out a refinement is necessary. In this section we make a refinement and
estimate the average length of a DTC much better.

In Figure 2.1 we see that 80% of the DTCs have length 20 or less. The ques-
tion arises if the transitions of the first 20 activities of a DTC are different than
the transitions after 20 activities. In Figure 4.2 we can see that if we divide a
DTC into two intervals the distribution of the percentages of the activities is
different. The distribution in the figure on top is of the first 20 activities and
the figure below is of activity 20 until the end of the DTCs. We can conclude
that we have to use more than one smoothed matrix, since the distribution of
the percentages between the first 20 activities and the remaining activities and
also the number of times an activity happens is different in the stages of the
patient’s progress in MHC.

Figure 4.2: Percentage of DTC, divided into two intervals. One interval contains
the first 20 activities and the other interval contains activity 21 until the end of
the DTCs.

Let us try to split the activities after 5 activities and after 10 activities. The
result in Figure 4.3 is not as good as in the right picture in Figure 4.4, where we
make four intervals. By trial and error we come to the conclusion that the cu-
mulative probabilities with the refinement of making four intervals at activity
20, 45 and 75 follow the cumulative probabilities of the test set much better.

In the beginning of the DTC the cumulative probability of our refinement
follows the cumulative probability of the test set perfectly. Which means that
with four intervals the prediction of the pathways will be much better than
with one interval. Hence, we make 4 smoothed matrices. The first matrix is A3
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Figure 4.3: Percentage of DTC, divided into two intervals at activity 5 and 10.

Figure 4.4: Percentage of DTC, divided into two intervals, after 20 activities.

with short DTCs, computed with the data of the first 20 activities. The second
matrix is A4 with moderate DTCs, with the data of activity 21 until activity
45. The third matrix A5, long DTCs, with the data of activity 45 until activity
75. And the last matrix A6 of activity 76 until the end with DTCs of chronical
patients. All intervals need their own transition matrix with their own corre-
sponding λi’s.

The result is shown in Table 4.2. The parameter λi is the factor that deter-
mines how much weight the relative frequencies get. For example: the larger
λ4, the more the three previous activities are important to predict the next activ-
ity. The smaller λ1, the less important the relative frequency f (w4) is to predict
P(w4|w1, w2, w3).

The differences between the λi’s are pretty large. Together with the rela-
tive frequencies f (wi), f (wi|wi−1), f (wi|wi−1, wi−2) and f (wi|wi−1, wi−2, wi−3)
and the number of times a bigram N(w4, w3), trigram N(w4, w3, w2) and four-
gram N(w4, w3, w2, w1) takes place, four smoothed matrices are derived. We
observed that the four matrices are considerably different. For example, there
are more zeros where a DTC ends, in the probability matrix for short DTCs.
Therefore, the smoothed matrix for short DTCs will be different.
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Short DTCs Moderate DTCs Long DTCs Chronical DTCs
λ1 = 0.0010 λ1 = 0.0003 λ1 = 0.0006 λ1 = 0.0028
λ2 = 0.0791 λ2 = 0.1529 λ2 = 0.2132 λ2 = 0.0913
λ3 = 0.4469 λ3 = 0.4878 λ3 = 0.4782 λ3 = 0.4348
λ4 = 0.4730 λ4 = 0.3590 λ4 = 0.3080 λ4 = 0.4711

Table 4.2: The λi’s for the four intervals.

The smoothed transition matrices are too large to represent in this report.
Because of the total number of activities being equal to 18 and the three pre-
vious activities, we get 18 · 18 · 18 = 5832 combinations of activities, which
are states in the smoothed transition matrices. These states can make a transi-
tion to 19 states, since we get one extra state, called ’finished’. These matrices
are completely filled with elements between 0 and 1, since the elements are all
probabilities.

In Table 4.3 we see the difference between the model and the refinement to
the model. We take the smoothed transition matrices and add all the probabili-
ties for each activity a patient can undergo. We see that the smoothed matrix of
short DTCs is different from the other matrices. The refinement to the model is
recommended and applied in this research.

Probability mass in percentage %
Activity Complete DTCs Short DTCs Moderate DTCs Long DTCs Chronical DTCs

0 34.47 39.57 34.14 33.38 34.10
1 0.59 0.70 0.42 0.02 0.31
2 4.45 5.23 3.10 1.93 2.79
3 1.52 1.38 1.30 1.05 1.22
4 4.89 4.93 4.81 4.87 4.71
5 6.66 6.06 7.08 7.37 6.96
6 4.47 4.16 4.51 4.89 4.47
7 4.68 4.00 5.25 5.05 5.00
8 2.25 2.52 2.06 1.56 1.77
9 1.54 1.23 1.14 1.60 1.54
10 3.75 3.10 4.55 4.23 4.36
11 1.73 1.05 1.72 1.86 1.88
12 2.15 1.62 1.58 1.95 2.19
13 4.30 3.76 4.33 5.55 4.76
14 1.96 1.95 1.94 1.91 1.88
15 2.05 2.15 2.06 1.62 1.78
16 12.83 11.64 13.93 14.49 14.12
17 3.02 2.29 3.24 3.91 3.49
18 2.69 2.67 2.83 2.74 2.69

Table 4.3: Probability mass per activity. We used the smoothed matrices and for
each matrix we added all the probabilities going to activity i.

Proposition 1 transforms into the expression given in the next proposition.

Proposition 2

P(X ≥ n) =


π3 An−3

3 for 4 ≤ n ≤ 20
π3 An−3

3 An−20
4 for 21 ≤ n ≤ 45

π3 An−3
3 An−20

4 An−45
5 for 46 ≤ n ≤ 75

π3 An−3
3 An−20

4 An−45
5 An−75

6 for 76 ≤ n < ∞
.
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In the left picture in Figure 4.4 we can see that if the DTC becomes longer
than 75 activities, the probability the length of a DTC is shorter than n, calcu-
lated with our smoothed matrices, goes to one much faster than the test set
shows. If a patient gets more than 75 treatments, the test set implies that the
patient will stay much longer than 75 activities. A patient will not leave the
system as fast as our model predicts. This explains why the average length of
our model is smaller than calculated with the test set. In Table 4.4 we can see
that the average length of our refined model is smaller than the average length
of the test set. We conclude that chronical DTCs should be taken into account
separately.

Dataset E[X]
Test set 24.63
Smoothed model 16.38
Refined smoothed model 16.40

Table 4.4: Average length of DTC, calculated for the test set, the smoothed
model and our refined smoothed model, where the data was split in four inter-
vals.

Because of the difference in lengths between the test set and the refined
model, we calculate the average length of a DTC given that it is smaller than
y. If the difference is small, we can say our refined model will predict logistical
pathways very well for DTCs smaller than y activities.

If we take a look at the average length given that a DTC is smaller than y
activities, we get the following formula

E[X|X ≤ y] =
∞
∑

n=1
nP(X = n|X ≤ y)

=
∞
∑

n=1

nP(X = n, X ≤ y)
P(X ≤ y)

=
1

P(X ≤ y)

y

∑
n=1

nP(X = n) .

In Table 4.5 the results of E[X|X ≤ y] with different y’s are given. The
average length E[X|X ≤ 100] = 16.58 for the testset and calculated with the
refined model E[X|X ≤ 100] equals 15.66. The average length of our refined
model approaches that of the test set with a difference of 5.5%. In future work
another model for DTCs of chronical patients has to be developed.

We conclude that the methodology predicts the pathways really well for
short, moderate and long DTCs.

4.3 Average time in system

In the current situation a time element is not implemented. It is not known
how long a patient stays in a DTC. In Section 2.4 we saw the mean time a
patient spends between two activities. In Section 2.5 we presented the mean
duration of the activity. However, we want to know how long a patient stays in
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80 15.77 15.31 2.9
90 16.19 15.51 4.2
100 16.58 15.66 5.5
110 16.93 15.78 6.8

Table 4.5: Average length of DTC given the maximum number of activities.

a DTC. Therefore, we have to investigate how to implement the time elements.
First, we consider a continuous phase-type distribution. After that, we derive
a new equation to calculate the total time in a DTC, since we have our refined
smoothed model.

With the time a patient spends in the system, we have two time elements
which we have to consider. The first element is the time the patient spends in
the activities, also called: the duration of the activities. The second element is
the time the patient spends between the activities. To derive the expected time
of the patient in the system we neglect the duration of an activity, since this
time is registered in minutes and hours and the time in between activities in
days.

A continuous phase-type distribution can be defined as the time until ab-
sorption in a continuous time Markov chain with one absorbing state and all
other states are transient [15]. The transition rate matrix Q of that process can
be written as:

Q =
[

t T
0 0

]
,

where the first entry in the state space represents the absorbing state. The ab-
sorbing state in our case is the end state, when the DTC has finished. The vector
t is given by the following equation, since the sum of the elements on each row
must equal zero:

t = −T · 1 ,

where 1 is a m× 1 column vector of ones and T a m×m matrix:

T =



−ν1 λ1,2 λ1,3 · · · λ1,m
λ2,1 −ν2 λ2,3 · · · λ2,m

...
. . . . . . . . .

...
...

. . . . . . . . .
...

λm,1 · · · · · · · · · −νm

 .

In this research we focus on the mean time between activity i and all the
other activities. The time in each activity can be investigated in future research.

In our case νi = pi,iλi, since the patient stays between activity i and the
other activities for a mean time and can return to this activity with probability
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pi,i. λi equals 1
µi

, that is the arrival rate of patients at activity i. Where, µi is the
mean time a patient stays between activity i and the other activities. The λi, j

equals the rate going from i to j, which can be calculated through λi, j =
pi,iλi pi, j
1−pi,i

.

With
pi, j

1−pi,i
the probability of going to activity j given that the patient does not

go to activity i again. Hence,

T =



−p1,1λ1
p1,1λ1 p1,2

1−p1,1
· · · · · · p1,1λ1 p1,m

1−p1,1
p2,2λ2 p2,1

1−p2,2
−p2,2λ2

p2,2λ2 p2,3
1−p2,2

· · · p2,2λ2 p2,m
1−p2,2

...
. . . . . . . . .

...
...

. . . . . . . . . pm−1,m−1λm−1 pm−1,m
1−pm−1,m−1

pm,mλm pm,1
1−pm,m

· · · · · · pm,mλm pm,m−1
1−pm,m

−pm,mλm


.

One state of matrix T represents the transition rate of activity i to activity j.
Therefore,

t = −


(−p1,1λ1 + ∑i\{1}

p1,1λ1 p1,i
1−p1,1

)

(−p2,2λ2 + ∑i\{2}
p2,2λ2 p2,i

1−p2,2
)

...
(−pm,mλm + ∑i\{m}

pm,mλm pm,i
1−pm,m

)

 =


− p1,1λ1 p1,0

1−p1,1

− p2,2λ2 p2,0
1−p2,2

...
− pm,mλm pm,0

1−pm,m

 .

The probability pi,0 equals the probability of going from activity i to 0, that
is where the DTC ends.

The process has an initial probability of starting in any of the m + 1 phases
given by the probability vector [

α0 α
]

,

where α is the probability of starting the process in one of the non-absorbing
activities and α0 = 0, since we always begin the DTC in a non-absorbing activ-
ity.

The distribution of a continuous phase-type variable Y is then completely
determined by the parameters (α, T) and its cumulative distribution function
becomes:

F(y) = 1−αeTy1 y ≥ 0 .

It follows that the probability density function can be computed as

f (y) = αeTya y > 0 .

The derivation of the cumulative distribution function and the probability den-
sity function can be found in Neuts [16]. Using the Laplace-Stieltje transform
of F(·), the non-centered moments become:

E[Yk] = (−1)kk!αT−k1 for k ≥ 1 .

Hence, the first moment, which equals the total time spent in the system by
a patient until his DTC has finished, becomes

E[Y] = −αT−11 . (4.3)

Logistical pathways in health care 27



4.3. AVERAGE TIME IN SYSTEM CHAPTER 4. MODEL VALIDATION & REFINEMENT

For the refined model, we have to modify Equation (4.3) in the following
way:

Let µ be the mean time spent between one activities and the others, as
shown in Table 4.6. The dimension of µ equals 18, since there are 18 activities.

Average in between time in days
Activity µi

1 18.8
2 13.2
3 9.8
4 10.2
5 6.7
6 7.4
7 7.5
8 14.5
9 3.1

10 2.4
11 2.9
12 3.3
13 5.1
14 3.6
15 4.9
16 4.5
17 2.7
18 3.6

Table 4.6: Mean time between activity i and the other activities.

With probability π1 the patient starts in an activity and spends some time
µ between that activity and the next activity. Hence, the time spent after one
activity is:

E[Y1] = π1µ .

After the first activity the patient goes to second activity with probability π1 A1
and we also have to multiply this probability with µ to get the time he stays
between the second and the third activity

E[Y2] = π1 A1µ .

To get the expected value of our total time spent in the system we have to add
all the probabilities of going to the next activity multiplied by the probability
that we spend some time in between the activities. We use the other smoothed
matrices A4, A5 and A6, since we made a refinement where we devided the
DTCs in intervals, short, moderate, long and chronical DTCs, respectively. The
expected time spent in the system by a patient is given as follows.
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Proposition 3

E[Ytotal ] = E[Y1] + E[Y2] + · · ·+ E[Y∞]
= π1µ + π1 A1µ + π1 A1 A2µ + π1 A1 A2 A3µ +

π1 A1 A2 A2
3µ + · · ·+ π1 A1 A2 A17

3 µ +

π1 A1 A2 A17
3 A4µ + · · ·+ π1 A1 A2 A17

3 A25
4 µ +

π1 A1 A2 A17
3 A25

4 A5µ + · · ·+ π1 A1 A2 A17
3 A25

4 A30
5 µ +

π1 A1 A2 A17
3 A25

4 A30
5 A6µ + · · ·+ π1 A1 A2 A17

3 A25
4 A30

5 A∞
6 µ .

Once we know the vector π1 and the matrices A1, A2, A3, A4, A5 and A6
in Proposition 3 we are able to calculate the total expected time spent in the
system by a patient. The result is that a patient stays 114.7 days in the system
against the 153.5 days the patient stays in the system calculated with the test
set.

4.4 Summary

As we validated our model estimating the average length of a DTC, we con-
cluded that we had to refine it. We made four smoothed transition matrices
instead of one and we could see that they predicted the average length per-
fectly if the DTCs do not have chronical patients.
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Chapter 5

Results

After we validated and refined our model we want to show how it can be
applied. In this chapter we show a couple of trees with the most important
logistical pathways of patients. Also the repeating activities will be discussed.

5.1 Examples of logistical pathways

In Figure 5.1 we give an example of how a logistical pathway can be made. The
beginning of a DTC starts with the first node ’Start’. In the first level we show
only activities that appear at the first step in at least 5% of the DTCs. Thus, in
the first level more than 5% of the patients goes to pre-intake (activity 1), di-
agnostic (activity 2), supporting and structuring treatment contact (activity 5),
crisis care (activity 15) and general indirect (activity 16). In the second level we
use 2.5% threshold. That means, that more than 2.5% of the patients go to the
next activities. For example, the patient in diagnostic (activity 2) gets diagnosed
again, he goes to supporting and structuring treatment contact (activity 5) or
the doctor writes general indirect time (activity 16) to prescribe some medica-
tion, etc.

Another example: if the patient already had 3 activities, than there are 183

possible DTCs he could have had. The 10 most occuring DTCs, are the starting
points of this tree in Figure 5.2. With a probability of 0.15 the patient goes to
the next node. The probability for each node is above the figure.

5.2 Zipf’s law & most frequent DTCs

We can sort the pathways after for instance, three activities. The most frequent
pathways are on top of the ranking. We make a cumulative probability with the
most frequent pathways. In Figure 5.3 we plotted the cumulative probabilities
against the number of most frequent pathways. We can see that with three
activities 66% of the pathways are covered by the 100 most frequent pathways.
With three history steps, there are 5832 activities. Therefore, we can say there
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Figure 5.1: The beginning treeplot of a DTC. For example: on top the DTC
starts. 5% of the patients go to pre-intake and after that 2.5% of all the patients
go to diagnostic. 1% of the patients stays in diagnostic.

Figure 5.2: The treeplot of a DTC after three activities. After 3 activities we take
the 10 pathways with the highest probability. After that, we set bounderies for
going to the next activity. So, 15% of the patients go to the next node.

are definitely vast patterns in the patient’s sequencing activities in MHC. We do
the same for the most frequent pathways after 6, 9, 12, 15, 18 and 20 activities.

In most of the natural systems, as in language, website popularity, cities, a
well-known Zipf’s law is observed [17]. Zipf’s law originally states that, in a
corpus of natural expressions, the frequency of any word is roughly inversely
proportional to its rank in the frequency table. In our case we want to investi-
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Figure 5.3: The cumulative probability of the 100 most frequent pathways after
3, 6, 9, 12, 15, 18 and 20 activities.

gate if this law holds for pathways. Thus, the most frequent pathway will occur
approximately twice as often as the second most frequent pathway, which oc-
curs twice as often as the fourth most frequent pathway, etc.

In Figure 5.4 we depict on the horizontal axis the logarithm of the rank of
the most frequent pathway. On the vertical axis we see the logarithm of the
probability of the most frequent pathways. Instead of frequencies, we used the
probabilities. This does not change the picture, since the difference between
frequencies and probabilities is only in a multiplicative constant. We see that
Zipf’s law holds for the ten most frequent pathways. After that, the function
fluctuates. However, still has a trent downwards, more or less following Zipf’s
law.

5.3 Repeating activities

In Section 2.2 we saw the probability of going to activity i given the number of
times the patient has been there before. Using the smoothed transition matrix,
we see in Figure 5.5 that the probabilities are increasing.

The probabilities are the same after the patient has been there four times be-
fore, since we work with the smoothed transition matrix. This does not predict
the probabilities dropping to zero, since the activities will not happen more
times after each other and the probabilities of the other activities will not in-
crease any further.
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Figure 5.4: Zipf’s law tested on our smoothed model.

Figure 5.5: Repeating activities: the probability of going to activity i given the
number of times the patient has been there before. In the left picture we see the
repeating activities build with the test set. On the right we see the prediction
with our smoothed model.
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Chapter 6

Conclusions &
recommendations

6.1 Conclusions

In order to be able to predict a logistical pathway of a patient, we need a transi-
tion matrix to know the probabilities of going from one activity to another. The
data used in this research is very large. However, if we take only the data of
one MHC institution our dataset is not that large. Especially if we want to take
into account were the patient is coming from and which activities he already
had in the past. A language smoothing model is the solution to this problem.

The refinement of the model, dividing the DTCs in intervals gives us a bet-
ter prediction of the DTCs. Despite the corresponding average length of a DTC
being shorter than the average length calculated with the test set, the division
into four intervals gives a more realistic picture of the pathways of patients.
This is especially true for the non-chronical patients.

The methodology used in this research gives us insight in DTCs. The av-
erage length of a DTC and average time spent in a DTC can be calculated.
Moreover, we can predict logistical pathways and see if these pathways

6.2 Recommendations

In this research we made some choices to make the methodology work. Of
course other choices are possible. In this section we make some recommenda-
tions for further research and give some suggestions were that can take us.

The idea of ranges is that activities appearing very often have other λi’s
than activities appearing less often. As we saw in our data we have activities
that appear very often and other activities that appear less often. We recom-
mend to apply ranges to get a more sophisticated model.

We decided to make an adaptation to the model we developed and we
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chose to split the activities in intervals; short, moderate, long and chronical
DTCs. With these intervals we made four smoothed matrices. We saw that the
logistical pathways could be perfectly predicted for DTCs smaller than 75 ac-
tivities. However, the difference between the average length of the test set and
training set was large. A recommendation will be to further investigate chron-
ical DTCs.

The data used is very general, since the data is of more than one institu-
tion. This methodology takes 3 history steps into account and therefore the
methodology described in this research can also be applied to the SHC. If we
want more specific information we can use clustering techniques to split pa-
tients in groups that are diagnosed to the same disorder. By deriving pathways
of patients we are able to predict where the bottlenecks in capacity will arise.
Schedules for surgeries, doctors and nurses, bed capacity and length of stay
can be derived for MHC institutions as well as for SHC institutions.
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Appendix A

Abbreviations, definitions &
symbols

In this chapter some tables with abbreviations, definitions and symbols.

A.1 Abbreviations
DTC Diagnosis treatment combination
MHC Mental health care
SHC Somatic health care

A.2 Definitions
Activity Treatment a patient gets or action a doctor does.
Bigram Transition matrix with probabilities of going to activity j,

given the previous activity i.
Direct time Time a doctor is in contact with the patient.
Indirect time Time a doctor is not direcly in contact with the patient.

However, he has to work on the patient’s documentation.
Logistical pathway Time line, on which every event relating

to treatment can be entered.
Trigram Transition matrix with probabilities of going to activity k,

given activity (i, j).
Unigram Transition matrix with probabilities of going to activity r,

given activitiy (i, j, k).
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A.3 Symbols

� Contradiction!
� Quod erat demonstrandum, that which had to be proven.
E[Y] Expected time the patient stays in the system calculated

with continuous phase type distribution.
E[Y1] Expected time the patient is between activity 1 and 2.
E[Y2] Expected time the patient is between activity 2 and 3.
E[Ytotal ] Total expected time the patient stays in the system.
α Probability of starting the process

in one of the non-absorbing states.
α0 Probability of starting the process

in the absorbing state.
γ Coefficient for smoothing parameter.
λi Linear smoothing factor.
λi, j Transition rate from activity i to activity j.
µi Mean time between activity i and the other activities.
νi
π1(i) Probability the DTC starts with i.
π2(i j) Probability the DTC starts with (i j).
π3(i jk) Probability the DTC starts with (i jk).
θ Coefficient for smoothing parameter.
ζ Coefficient for smoothing parameter.
A1(i, j) Probability of the transition from i to j.
A2(i j, jk) Probability of the transition from (i j) to ( jk).
A3(i jk, jkr) Probability of the transition from (i jk) to ( jkr).
C(w2, w3) Number of counts of words/activities (w2, w3).
f (w4|w3) Relative frequency of word/activity w4,

given the previous word/activity w3.
f (w4|w2, w3) Relative frequency of word/activity w4,

given the two previous words/activities (w2, w3).
f (w4|w1, w2, w3) Relative frequency of word/activity w4,

given the three previous words/activities (w1, w2, w3).
L(γ; a1, . . . , an, b1, . . . , bn) Likelihood function.
n Length of the DTC.
N(w1, w2, w3, w4) Number of counts the

fourgram (w1, w2, w3, w4) appears in the held out data.
pi, j Probability of going from activity i to activity j.
P(w4|w1, w2, w3) Probability of word/activity w3,

given the three words/activities (w1, w2, w3).
Q Transition rate matrix.
R Range.
t Transition rate vector of absorbing state 0.
T Transition rate matrix of all activities, except absorbing state 0.
wi Word or activity at time i.
V Vocabulary.
y Length of the DTC.
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Appendix B

List of activities

Table B.1 gives the list of activities, which belong to the level that experts find
most important for this research.

Activity
number Activity
0 Finished
1 Pre-intake
2 Diagnostic
3 Psychodiagnostic examination
4 Follow up treatment contact
5 Supporting and structuring treatment contact
6 Psychotherapy
7 Other form of communicative treatment
8 Pharmacotherapy
9 Physical therapy
10 Course therapy
11 Physiotherapy
12 Occupational therapy
13 Accompanying
14 Nursing and caring
15 Crisis care
16 General indirect time
17 Stay (per day of stay)
18 Daily spending (per hour)

Table B.1: List of activities
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Appendix C

Transition matrix

In Table C.1 we see the transitions from activity i to activity j. One element
of the matrix represents the probability of going from activity i to activity j,
calculated by counting the number of pairs (i j) divided by the total number of
pairs (ik), where k can be every activity.



0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

1 0.0414 0.1092 0.5599 0.0199 0.0093 0.0341 0.0271 0.0033 0.0106 0.0003 0.0033 0 0 0.005 0 0.0093 0.1651 0.002 0.0003
2 0.0747 0.019 0.4046 0.0196 0.0335 0.0616 0.0294 0.0345 0.024 0.0002 0.0063 0.0004 0.0002 0.0087 0.0005 0.0081 0.2688 0.0052 0.0008
3 0.0494 0.0101 0.1994 0.2597 0.0381 0.0535 0.0314 0.0252 0.011 0.0006 0.0082 0.0013 0 0.0123 0.0009 0.0057 0.2774 0.0151 0.0009
4 0.0807 0.0006 0.0362 0.0048 0.5176 0.0531 0.0216 0.0282 0.0342 0.0007 0.0124 0.0021 0.0034 0.0123 0.0036 0.0052 0.1632 0.019 0.0013
5 0.0662 0.0012 0.0297 0.003 0.0236 0.4819 0.0291 0.0286 0.0383 0.0005 0.0415 0.0004 0.0013 0.0144 0.0013 0.007 0.2191 0.0064 0.0064
6 0.052 0.0016 0.0203 0.0027 0.0177 0.0543 0.5406 0.0299 0.0208 0.0001 0.0283 0 0.0004 0.0261 0.0008 0.0012 0.1914 0.0111 0.0007
7 0.0695 0.0008 0.0321 0.0034 0.0255 0.0626 0.0351 0.5024 0.0186 0.0004 0.0329 0.0023 0.0023 0.0155 0.0027 0.0048 0.1684 0.0177 0.0031
8 0.0864 0.0018 0.0553 0.003 0.0684 0.1746 0.0552 0.0413 0.2299 0.0001 0.0115 0.0001 0.0005 0.0458 0.0015 0.017 0.1976 0.0056 0.0043
9 0.0309 0 0.0241 0.0034 0.0412 0.0687 0.0069 0.0378 0.0103 0.6082 0.0069 0 0.0034 0.0069 0.0034 0 0.1375 0.0103 0
10 0.0162 0.0003 0.0186 0.0023 0.0212 0.1608 0.0602 0.0581 0.0098 0.0002 0.3192 0.0033 0.0036 0.0168 0.0021 0.0007 0.2789 0.0179 0.0096
11 0.0116 0 0.0256 0.0093 0.1023 0.0465 0.0023 0.0907 0.0047 0 0.0884 0.393 0.0209 0.007 0 0 0.1884 0.0093 0
12 0.0189 0 0.0208 0 0.0871 0.0966 0.0208 0.0871 0.0114 0 0.0947 0.0057 0.4413 0.0246 0.0038 0.0019 0.0398 0.0398 0.0057
13 0.0279 0.0006 0.0152 0.0023 0.0176 0.0399 0.0386 0.0208 0.0276 0.0003 0.0134 0.0003 0.0005 0.6583 0.0139 0.0051 0.0837 0.022 0.012
14 0.025 0 0.0106 0.0045 0.0477 0.0416 0.0151 0.0394 0.0106 0.0008 0.0174 0 0.0015 0.1544 0.4799 0.003 0.1287 0.0197 0
15 0.178 0.0019 0.0449 0.0024 0.0116 0.0374 0.003 0.0131 0.0166 0 0.0013 0 0.0001 0.0081 0.0003 0.4916 0.1645 0.0241 0.0011
16 0.0668 0.0033 0.091 0.0076 0.0318 0.1056 0.0494 0.0393 0.0211 0.0004 0.0348 0.0009 0.0002 0.0137 0.0018 0.0136 0.5089 0.0074 0.0023
17 0.0331 0.0004 0.0253 0.0057 0.0456 0.0431 0.0367 0.0457 0.0084 0.0003 0.0267 0.0018 0.0026 0.0397 0.0035 0.0206 0.0901 0.5641 0.0065
18 0.0159 0 0.008 0.001 0.0104 0.0911 0.0048 0.0211 0.0114 0 0.0436 0 0.0007 0.0554 0 0.0035 0.0776 0.0145 0.6409



Table C.1: Transition matrix of going from activity i to activity j
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Proofs from the model

D.1 Singularity points

Proof that singularity points /∈ [0, 1]:

f (wt) ∈ [0, 1] and f (wt|v) ∈ [0, 1]

Singularity points from (3.6):

1
γ +α

= 0 gives singularity points ⇒ γ +α = 0 ⇒ γ = −α

Where

α =
f (wt|v)

f (wt)− f (wt|v)
.

If

γ /∈ [0, 1], then−α /∈ [0, 1] ⇒ α /∈ [−1, 0] ⇒ f (wt|v)
f (wt)− f (wt|v)

/∈ [−1, 0] .

Assume:

−1 <
f (wt|v)

f (wt)− f (wt|v)
< 0 .

First we take a look at:
f (wt|v)

f (wt)− f (wt|v)
< 0 .

Then
f (wt)− f (wt|v) > 0 and f (wt|v) < 0


or

f (wt|v) > 0 and f (wt)− f (wt|v) < 0 ⇒ f (wt) < f (wt|v) .

If
f (wt) < f (wt|v) and both ∈ [0, 1]

⇒ f (wt|v)
f (wt)− f (wt|v)

< −1 .
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Secondly:
f (wt|v)

f (wt)− f (wt|v)
> −1 .

Then
f (wt|v) > − f (wt) + f (wt|v) ⇒ f (wt) > 0

If
f (wt) > f (wt|v) and both ∈ [0, 1]

⇒ f (wt|v)
f (wt)− f (wt|v)

< −1 .


If

f (wt|v) > f (wt) and both ∈ [0, 1]

⇒ f (wt|v)
f (wt)− f (wt|v)

> 0 .


Thus:

f (wt|v)
f (wt)− f (wt|v)

/∈ [0, 1] .

Hence:
γ /∈ [0, 1] .

�

D.2 Maximum

We have to proof that the values found by applying the maximum likelihood
estimation is a maximum and not a minimum.

Equation (3.5) is defined for γ ∈ [0, 1]. We will repeat this equation and call
it g(γ):

g(γ) = ∑
w3∈R

∑
w4

N(w3, w4) log[γ f (w4) + (1−γ) f (w4|w3)] . (D.1)

The first derivative of g(γ):

g(1)(γ) = ∑
v∈R

∑
w4

N(v, w4)
[
γ +

f (w4|v)
f (w4)− f (w4|v)

]−1
(D.2)

and the second derivative will be:

g(2)(γ) = − ∑
v∈R

∑
w4

N(v, w4)
[
γ +

f (w4|v)
f (w4)− f (w4|v)

]−2
. (D.3)

The second derivative is always smaller or equal than zero. That means the
function g(γ) ∈ [0, 1] is a concave function. Therefore, the extremum on [0, 1]
will always be a maximum and not a minimum.

�
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