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Abstract

Intensive Care Units (ICU) in the Netherlands often cope with capacity prob-
lems. This is a serious problem, because patients requiring immediate intensive
care can not wait for a bed. The Erasmus Medical Centre (Erasmus MC) also
copes with these capacity problems. Consequently they occasionally have to
send regional emergency patients to a hospital outside the region. Regional
emergency patients are patients not yet placed in the care of a hospital. They
are the joint responsibility of the hospitals in the region where the patient comes
from. Hospitals, however, tend to give priority to patients already hospitalised.
These are patients needing intensive care after an elective (planned) operation
(elective patients), or coming from a ward after deteriorating (internal emer-
gency patients). Consequently, the Erasmus MC receives a large part of the
regional patients and therefore, besides not being able to help all the regional
patients, has to cancel elective operations or create so called “over beds” for
the internal emergency patients. An over bed is a bed that is actually not
staffed but in case of emergency can be used. These beds can be created as the
constructional bed capacity is larger than the operational (staffed) beds. The
research documented in this report aims to find a solution to the problem of a
region not being able to take care of the regional patients requiring immediate
intensive care. The research question is, whether jointly reserving IC beds in
the region for regional emergency patients, will considerably reduce the number
of regional patients sent outside the region. We want to determine how many
regional beds are needed.

To answer the research questions, we develop a mathematical method, based
on the Equivalent Random Method (ERM). The ERM is a method that deals
with overflow and is widely used in the telecommunications industry. In the
situation of the ICUs, the regional beds are the overflow. We distinguish three
patient types: regional emergency patients, elective patients and internal emer-
gency patients. We assume they all arrive according to a Poisson Process, their
Length of Stay (LOS) is exponentially distributed and that all patients have
the same mean LOS. Regional emergency patients who find all operational beds
at the ICU occupied are transported to an overflow ICU. Elective operations
are cancelled when no bed is available, and the internal emergency patients are
placed on an over bed. The adjustment to the ERM concerns the over beds.
Insofar we know, no version of the ERM has been developed with a flexible
capacity. Using the ERM adjusted to ICUs, an approximation can be given of
how many beds in a region should be allocated for regional emergency patients,
in order to guarantee a certain probability of not having to send such a patient
to a hospital outside the region.
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To verify the analytic method, we develop a simulation model using the object
oriented simulation software package eM-Plant. In the simulation we use data
concerning the arrival process and the LOS of the Erasmus MC, and estimated
data concerning the arrival process of several hospitals in the region Rijnmond
(the region where the Erasmus MC is located). First of all, the results show
that correct and sufficient data is important for a good approximation. To de-
termine how many regional beds should be appointed in the region Rijnmond,
the necessary data of the cooperating hospitals should be analysed accurately.
We explore the different outcomes when the exponential distribution is used
and when the more plausible Log Normal distribution is used for the LOS.
The simulation model shows no significant difference to this matter. The dif-
ferent hospitals, however, do seem to have a different mean LOS. The results
of the method when used solely with data of the Erasmus MC let expect that
the method can provide a good approximation of the number of regional beds
required in the region. Finally the results show that jointly reserving several
regional IC beds will yield a profit compared to the situation where ICUs will
try to solve the problem self-handedly.

The allocation of regional beds for the overflow of regional emergency patients
appears to be a good solution. We do, however, not know if it is the best
solution and therefore recommend, investigating other options and comparing
the different options. If the management of the region decides to implement
regional beds, the ERM for ICUs is a good method to approximate the number
of regional beds required. The management of the region will first need to
consider what boundary is acceptable for the probability of having to refuse a
regional patient in the region. Subsequently, using data of the region in the
method, an approximation can be made of the number of regional beds needed.
Finally, after having made a decision on the number of regional beds needed,
the management of the region will have to consider how to distribute the beds
over the different ICUs in the region, and how these beds can be introduced
such that they are used only for regional patients.
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Chapter 1

Introduction

1.1 Rationale

“Each year, hundreds of patients die unnecessarily.” This was the announcement
in the NOVA1 broadcast on November 6th, 2001 in which the capacity shortage
on Intensive Care Units (ICUs) in Dutch hospitals was discussed with several
specialists. Although the Dutch minister of Health, Welfare and Sports (HWS)
denied that patients decease because of bed shortages, she did admit there were
problems concerning the ICUs. At that time, some enquiries had been made at
the request of the minister. In April 2001, the Julius Centre for Health Sciences
and Primary Care presented a report [27] in which they concluded that there
was an extensive problem with regard to the admission and release of Intensive
Care (IC) patients. Their research was done for a selected group of 18 general
IC departments of large non-academic hospitals. They discovered that almost
10% of the severely ill patients who needed intensive care was refused, 4% was
admitted even though there was actually no space, and 3% was released earlier
to make place. The most important reason for the refusal of a patient or the
stop of admissions was the unavailability of operational (staffed) beds. In most
of the cases, when beds were closed, this was caused by a shortage of nurses.
The results of an earlier enquiry of the Julius Centre [26] had already shown that
at the 113 cooperating IC departments, every six days a patient was refused or
an admission stop was announced.

Short after the Julius Centre had presented their second report, the minister of
HWS requested the Dutch Board for Hospital Facilities to picture the current
capacity and use of intensive care for adults. The research that followed this
request is documented in two reports ([5] and [6]). All Dutch IC departments
for adults participated in the enquiry. From these two reports it appears that a
large part of the IC capacity in the Netherlands is unused due to a shortage of
nurses. Insufficient finances for new personal and scarcity on the labour market
cause the shortage of nurses. In addition, many ICUs have an occupation degree
higher than 80% (mainly the academic hospitals). According to [5] there is, with
such a high occupancy rate, a large probability of having to refuse a patient.

1Nova is a Dutch current affairs programme
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In 2001, the minister of HWS founded an Intensive Care group that had to
propose solutions for the problems concerning the adult ICUs. Based on the
aforementioned enquiries, the group proposed three objectives to resolve the
capacity problem [31]:

• Bring the available IC capacity that is not yet operational, in use.
• Increase the accessibility of the available capacity.
• Implement a system for the safe transportation of IC patients.

A program that has to realise these objectives follows up the group. The pro-
gram is coordinated by the Dutch society of care insurers, the society for hospi-
tals and the society for academic hospitals. Its main target is to offer patients
controllable high qualitative intensive care. Much has been done since the start
of the program, but the main target has not been achieved up to now.

The Erasmus Medical Centre (Erasmus MC) in Rotterdam also has IC capac-
ity problems. Here too, scarcity of nurses restricts the number of operational
beds. In practice an operational bed is always found for a patient needing in-
tensive care, but this does not mean that there is no problem. First of all, it
may take hours to locate an operational bed for a patient needing immediate
care. Furthermore, a patient may have to be transferred to another hospital,
an operation may have to be postponed, an over bed2 may have to be created
or another patient may have to be released earlier. All these situations are not
preferable.

Since 1999, the Erasmus MC (at that time still the Academic Hospital Rot-
terdam) is appointed a trauma centre3 for the region Southwest Netherlands.
Therefore the Erasmus MC is specialised in the treatment of trauma patients
(victims of accidents). According to a strategic analysis of cluster 17 of the
Erasmus MC [30], the number of trauma patients offered to the IC department
of the Erasmus MC has increased since the acknowledgement of the trauma
centre. The further extension of the trauma centre and the expected 24 hours
trauma helicopter will most likely increase this demand more.

Some of the capacity problems at the IC department of the Erasmus MC are
presumably caused by some other hospitals in the region, which are not will-
ing to cancel elective (planned) operation for emergency patients in the region.
Consequently, many of these patients are sent to the Erasmus MC, which is
obliged to cancel elective operations on patients that require an IC bed after-
wards, in case of emergency. As mentioned in [30], the impression exists that
the operational IC capacity in the region Rijnmond reasonably approaches the
demand for IC beds. At present however, emergency patients are occasionally
sent outside the region Rijnmond because no operational bed can be found in

2An over bed is a bed that originally is not staffed. An over bed can be created when no
operational beds are available. In such a case the available staff will have to take care of an
extra patient, which decreases the level of care at the ICU.

3A trauma centre is a facility for integral care for patients from severe accidents. In the
Netherlands the minister has appointed ten hospitals to fit out a trauma centre. For more
information, see the National Atlas of Public Health[23].
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the region. If all hospitals in the region allocate several IC beds as emergency
beds, the region can most likely take care of all emergency patients in the region
Rijnmond [30]. This does imply that sometimes hospitals might have to cancel
elective operations while having an empty operational bed.

During the project documented in this report we used mathematical methods to
examine whether the region Rijnmond is able to take care of all the emergency
patients in the region.

1.2 Problem formulation

1.2.1 Objective

The research documented in this report has the following objective:

To minimise the number of emergency patients that are transferred from the
region Rijnmond to an ICU outside the region Rijnmond because of a shortage
of operational IC beds, and to distribute the emergency patients more evenly
among the hospitals in the region taking into account the size and location of
the ICUs.

The number of cancelled operations due to a full ICU and the number of times
an over bed is created should stay under a certain threshold.

1.2.2 Research questions

We want to answer the following questions:

1. Will the number of emergency patients needing intensive care in the region
Rijnmond that are sent outside the region because of capacity shortages be
reduced, if all ICUs in the region jointly appoint several IC beds for regional
emergency patients?

2. How many beds does each ICU need to appoint as regional emergency bed
in case the number of patients transferred outside the region is minimised?

1.2.3 Research demarcation

The models developed for this research, are based on the patient streams of
the ICUs of cluster 17 of the Erasmus MC. Examining other ICUs is beyond
the scope of this graduation project. We assume, however, that similar patient
streams exist in other ICUs. Consequently the outcomes of our research can
be used for different regions with a different number of ICUs. Further we have
taken the streams of arriving patients as input for our models and we have not
tried to optimise these.

1.3 Research approach

Analytical models can give a good understanding of the system they represent.
Furthermore analytical models can be accurate and can give concrete solutions.
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Simulation models can model more complex systems than analytic models can,
but are less accurate. Simulation models demonstrate the behaviour of the sys-
tem rather than that they give an exact solution. The two approaches therefore
form a good combination for research. Often simulation models are used to
validate an analytical model or to determine how an approximation approach
performs. For these reasons an analytic model and a simulation model are de-
veloped. The analytic model is developed in order to assist the management of
a region to decide how many regional beds to reserve. The simulation model is
developed to validate the analytic model and to demonstrate the patient flows
in the ICUs of a region. The IC department of the Erasmus MC is studied to
model the patient flows concerning an ICU.

1.4 Overview
In Chapter 2 the Intensive Care Unit and its patient streams are discussed.
First the Intensive Care department of the Erasmus MC is considered. Conse-
quently information on the patient flows through this Intensive Care department
is translated into a model. Finally a model is given for a region of ICUs with
regional beds. Then, in Chapter 3 an analytical method for the approximation
of the number of regional IC beds needed in a region is developed. Next, in
Chapter 4 the simulation model developed to validate the analytic method is
discussed. Subsequently, in Chapter 5 the results generated by the analytical
method and the simulation model are given. Finally, in Chapter 6 the conclu-
sions and recommendations are presented.



Chapter 2

The Intensive Care Unit:
present and future

In this Chapter we discuss the current situation and a future scenario of the
Intensive Care Unit. First, in Section 2.1 we describe the Intensive Care depart-
ment of the Erasmus Medical Centre. Subesequently, in Section 2.2 we shortly
discuss two models of ICUs. The first model describes the current situation, the
second model describes a future scenario of ICUs with regional beds.

2.1 The Intensive Care department of the Eras-
mus MC

The Erasmus MC [10] originated in 2002 from a merger of the Academic Hos-
pital Rotterdam and the faculty of medicine and health science of the Erasmus
University Rotterdam. The Erasmus MC is the largest and most diverse acad-
emic hospital of Europe, with more than 10,000 employees. The mission of the
Erasmus MC is to create new knowledge in the area of disease and health, to
pass this knowledge on to future professionals and to provide health care. The
main tasks of the Erasmus MC are patient care, education and research. The
hospital consists of 17 clusters (see Appendix B.1 for the organisational chart
of the hospital). Each cluster consists of several departments connected by a
shared patient population or shared logistic. Each department contains several
units. A unit is a recognisable part of a medical department. For example, an
outpatient clinic and a nursing department are units. The supporting activities
of a cluster, e.g. finance, human resource management and logistics, are accom-
modated in the cluster office. Cluster 17 has a facilitating service for the other
clusters. It consists of three departments: the Operation Theatre Department,
the department of Intensive Care and the department of Anaesthesiology (see
Appendix B.2 for the organisational chart of cluster 17). In Section 2.1 we dis-
cuss the Intensive Care department of the Erasmus MC. In Section 2.2.1, we
use the information from this section to develop the model of an Intensive Care
Unit.
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2.1.1 Description of the Intensive Care department

Intensive Care (IC) is specific medical treatment and nursing to severely ill
patients of whom one or more vital organ functions are disrupted or have failed.
Patients who are indicated as IC patients require intensive monitoring, mostly
elaborate pharmacological treatment and in many cases support with artificial
ventilation. Cluster 17 of the Erasmus MC has three Intensive Care Units (ICUs)
(located at the south side of floor 3, 6 and 10). Besides the ICUs of cluster 17
the Erasmus MC has an ICU specialised for children and neonates and an ICU
for cardiac surgery patients. These two ICUs are not part of cluster 17 and are
not considered here. Each ICU of cluster 17 has its own specialisation. Unit 3
south receives patients from internal medicine, unit 6 south from neurosurgery
and unit 10 south from other surgical specialisations. Currently, patients are
only admitted to one of the other units in case an operational bed is unavailable
at the original unit. This policy is due to the staff’s high specialisation, which
makes exchange of patients and staff difficult. The intention is to broaden the
expertise of the three units such that the exchange of patients will be easier and
the capacity of the ICUs will be utilised better. The current bed capacity of the
ICUs is represented in Table 2.1.

ICU Number
of con-
structional
beds

Number of
operational
beds

Specialisation

3 south 18 9 - 11 Internal medicine
6 south 16 15 Neurosurgery
10 south 18 10 - 12 Surgery

Total 52 34-38

Table 2.1: The number if IC beds

The IC department has a head of department and a manager. Each ICU has a
nursing head, a medical coordinator, intensivists, fellow specialists in training
and nurses. An intensivist is a physician specialised in the care of critically ill
patients and is the one who decides whether a patient will be admitted to the
ICU (depending on the condition of the patient and the availability of beds).

In the near future some changes will be realised at the IC department of cluster
17. One of the changes is the introduction of special care beds. The other change
is the realisation of a Post Operation Care Unit (POCU). In the POCU patients
will be treated who require, for at most 24 hours, some kind of monitoring after
an operation. Currently these patients occupy an IC bed because they can only
spent a few hours in the recovery room1.

The IC department holds patients with different care weights (need for care).
Based on these care weights, the patients at the ICU can be categorised into

1A recovery room is a hospital ward where the vital organ functions of the patient are
strictly guarded after surgery.
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Intensive Care patients, High Care patients and Medium Care patients. Inten-
sive Care patients have a threatening or existing disorder at more than one of
the vital organ functions and therefore need guarding, nursing and treatment
by approximately one nurse per patient. High Care patients have a threatening
or existing disorder at one vital organ function and therefore need guarding,
nursing and treatment by approximately 0.5 nurse per patient. Medium Care
patients do not have a threatening or existing disorder at a vital organ func-
tion but need intensive guarding because of their critical situation. For these
patients approximately 0.25 nurses per patient is needed. Some hospitals have
separate high care or medium care units but at the Erasmus MC these patients
are all taken care of at an ICU. Until now these patients have been treated
with the same care weight (the bed-nurse ratio is the same for each bed). On
average there are 0.9 nurses per bed during daytime, 0.6 during the evening and
0.5 during the night. Plans are being made to fit out several special care beds.
These beds will be used for step up patients. Step up patients are patients who
at arrival need high care or medium care treatment. An example is a patient
who has undergone major surgery, and does not require mechanical ventilation.
Currently these patients are unnecessarily treated like IC patients. The patients
in a special care bed will not require mechanical ventilation and there will be
0.25 nurse per bed instead of 0.5 up to 1. Step down patients (patients who are
recovering) will not be transferred to a special care bed. When they no longer
need mechanical ventilation, step down patients usually still require more at-
tention than high care or medium care patients. As soon as these step down
patients require less care, they can most often be discharged from the ICU and
transferred to the ward. In case of emergency, the special care beds can be used
for IC patients. In this case two special care beds become one Intensive Care
bed, because of the difference in nurse-bed ratio.

2.1.2 Patient flows through the Intensive Care depart-
ment

The arrival and admission of patients at the IC department are not straight-
forward. The patients arrive at random, any time of the day and usually need
to be admitted immediately. The Dutch Society for Intensive Care has for-
mulated directives for the admission and release of IC patients [3]. There are,
however, no unambiguous agreements on how to deal with an arriving patient
when no operational IC bed is available. Figure 2.1 gives an overview of the
most likely made decisions and carried out actions when a patient arrives at the
IC department of the Erasmus MC.

There are two kinds of patient arrivals: elective arrivals, and emergency ar-
rivals. Elective arrivals come from the operating theatre. These patients have
undergone a planned operation and require intensive care after the operation.
Their arrival is announced the morning of the operation. Emergency arrivals
can come from outside the hospital or from inside the hospital. These patients
arrive unexpectedly and require immediate intensive care.

A surgion plans an operation two weeks in advance. The surgeon does not
consult the intensivist but does use his knowledge on the occupation of the ICU.
For the utilisation of the ICUs it would be better if specialists would consult
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Does the intensivist agree on
IC requirement?

Patient arrival is
announced

No IC bed is seeked for
patient No

Is the patient elective?

Yes

Is day in advance bed
available?

Yes

Patient is sent home and
operation is resceduled

No

Is bed available in the
morning?

No

Yes

Patient is admitted to the
IC department

Yes

Patient stays at IC
department until

recovered or deceased

Patient leaves the IC
department

Is bed available?

No

Can other patient be
discharged or sent back to

other hospital?

No

Other patient is
discharged or sent backYes

Can patient be transferred?

No

Overbed has to be
createdNo

Patient is transferred
and leaves hospital

Bed in other hospital is
sought

Yes

Yes

Figure 2.1: Flow chart of patients arriving at the IC department
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an intensivist while planning the operations. The day before the operation the
elective patient is hospitalised, most often at the ward, and the surgeon contacts
the intensivist to check the availability of an operational bed for the next day.
If there is no operational bed available in any of the three units the operation
is cancelled and the patient is sent home. If a bed is available, the surgeon
contacts the intensivist a second time in the morning before the operation (if the
patient is scheduled for the first operation, this happens at 7.30 a.m., otherwise
it happens at 9.00 a.m.). If the bed is still available, the operation is carried
out and the patient is certain of a bed at an ICU after the operation. If the bed
is taken by an emergency patient, the operation is cancelled and the patient is
sent home. This patient has priority the next time he / she is scheduled for the
operation. Again however, the operational bed capacity is not considered when
planning the operation. Some elective operations can not be cancelled. These
are operations that involve many people (staff and patients), for example a liver
transplantation with a living donor. For such patients, beds are reserved that
will not be taken by another patient.

Emergency patients arrive unexpectedly and require immediate care and con-
sequently their admission can not be postponed. They come in through the
emergency room (regional emergency patients) or from a nursing ward (internal
emergency patients). The patients that come in through the emergency room
are in most cases brought by an ambulance. The ambulance nurse, in coop-
eration with the central ambulance post, decides to which hospital the patient
is taken. In case of an emergency the patient is taken to the nearest hospital.
In the region where the Erasmus MC is located, the ambulance nurse does not
have information on the availability of beds.

Occasionally patients are transferred from other hospitals. One cause is that
the patient immediately requires an IC bed and the hospital he / she came from
did not have an IC bed available. Another cause is that the patient requires
treatment that can not be offered in the hospital of origin. Before sending the
patient, the other hospital phones to the IC department to check the availability.
Therefore these patients only arrive if there is a bed available.

After the specialist has informed the intensivist on the patient who needs in-
tensive care, the intensivist decides whether the patient is admitted to the ICU.
The specialist usually informs the intensivist by phone. Only in case of doubt
will the intensivist see the patient before admitting him / her to the ICU. If
a patient arrives at night, the acting representative of the intensivist makes
the decisions on new arriving patients. In case of doubt, an intensivist can be
contacted at home.

If an emergency patient should be admitted to an ICU but there is no bed
available, the intensivist contacts the other units to check their operational bed
availability. If no bed is available at all, another solution has to be found. In
these cases it might happen that a patient already at an ICU is predischarged
from the ICU. This can only be done if the discharge of the patient was already
at hand. In addition, a patient who originates from a different hospital because
a special procedure could not be carried out in that hospital, can be sent back if
the special procedure is finished off. If no operational bed can be made available,
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Type of arrival Mean Std. Deviation
Elective 0.58 0.92
Elective excluding weekend days 0.42 0.79
Internal emergency 0.62 0.74
Regional emergency 0.46 0.60

Total 0.18 0.39

Table 2.2: Interarrival times in days

the decision taken depends on the type of patient. If the patient is a regional
emergency patient, generally an operational bed in another hospital is sought. If
the patient is an internal emergency patient, it is preferable to keep the patient
in the hospital. Juridically a patient can only be transferred if the transfer has
benefits for the patient. Moreover, it is not preferable to transport a critically
ill patient. Therefore it might happen that an over bed is created for an internal
emergency patient. This denotes that the patient is placed in an IC bed that
was not staffed. In such a case the physicians and nurses have to work harder
as they have a patient extra to take care of. Such a solution requires flexible
staff. Also for the patients at the ICU it is not preferable to create an over bed.
The quality of care of the patients at the ICU decreases because the patients
have to share the care with the patient in the over bed. One of the reasons that
for internal emergency patients over beds are created and for regional patients
not, is that hospitals tend to give priority to patients already admitted to their
hospital. Another reason is that a patient not yet admitted to the hospital can
jurdically be sent to another hospital, whereas a patient already admitted can
not always be sent to another hospital.

When a patient is admitted to an ICU he stays there for a certain amount
of time, we call this the length of stay (LOS). During the stay at the ICU a
patient’s health can improve or deteriorate. When a patient requires less than
high care / medium care he is discharged from the ICU and transferred to the
ward. Occasionally a patient stays longer at the ICU because there is no bed
available at the ward. Unfortunately patients do not only leave the ward because
their need for care has decreased, but also because of mortality.

2.1.3 Data concerning the patient flows

This report is part of a larger project. As another part of this project, Lesscher,
Meutstege and Rouhof [19] analyse data concerning the patient arrivals and the
Length of Stay at the IC department of cluster 17 of the Erasmus MC. In this
section we discuss the relevant outcomes of their research.

Lesscher, Meutstege and Rouhof [19] find the average time interval between two
arrivals at the IC department to be 0.18 days. If a distinction is made between
the three different types of arrivals (elective arrivals, internal emergency arrivals
and regional emergency arrivals) a significant difference between the interarrival
times of these patients is found. Table 2.2.gives these interarrival times.

As the elective patients never arrive on weekend days, we also calculate the mean
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Type of arrival Mean Std. Deviation
Elective 3.88 6.44
Internal emergency 8.15 12.69
Regional emergency 7.95 13.78

Total 6.93 11.90

Table 2.3: Mean Length of Stay in days

and standard deviation of the interarrival times for elective patients leaving
out the weekend days. This mean and standard deviation is given in Table
2.2. From the data analysis it appears that there also is a difference in mean
interarrival times between patient groups from different specialisms. For our
research, however, we do not make this distinction. We test the hypothesis
that the patients arrive according to a Poisson process. This hypothesis is not
rejected for internal and regional emergencies, using the Kolmogorov-Smirnov
Test in SPSS (statistical software for data management and analysis). For
elective patients, however, this hypothesis is rejected.

Lesscher, Meutstege and Rouhof [19] also examine the LOS of the patients. The
total mean LOS is 6.93 days. If again distinction is made between the three
different types of arrivals it can be concluded that the mean LOS of internal
emergencies and regional emergencies do not significantly differ. The mean LOS
of the elective patients, however, does differ significantly from the two types of
emergency patients. The mean LOS of the three patient types can be found in
Table 2.3

From the data analysis it follows that there is a significant difference in the mean
LOS of the patients situated at the different units. Most likely this difference
results from a different mean LOS of patient from the different specialisms.
For our research we leave this difference out of consideration and only make a
distinction between elective patients, internal emergency patients and regional
emergency patients. Lesscher, Meustege and Rouhof [19] try to fit a distribution
to the data of the LOS of these three patient types. They find the Lognormal
distribution, with mean and standard deviation as given in Table 2.3, to fit well.

A note has to be made on the LOS. The LOS as registered is larger than the
actual LOS. Each calendar day the patient is at an ICU is counted as a whole
day, even if the patient is only there a part of the day. For example, if a patient
arrives one day at 11:00 p.m. and leaves the ICU at 3 p.m. the next afternoon,
the LOS of the patient is two days. In reality the patient is there for less than
24 hours.

2.2 Models of a region of Intensive Care Units
In the previous section we discussed the Intensive Care Units (ICUs) of the
Erasmus MC and the patient flows through these ICUs. In this Section we will
first use this information to describe a model of the current situation of the
ICUs. Subsequently we will describe a future scenario of a region of ICUs with
regional beds.
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Figure 2.2: Patient flows through the ICU

2.2.1 Model of the current situation

Figure 2.2 gives a schematic representation of the patient flows as discussed
in Section 2.1.2. In this figure we only depict one patient flow for the other
hospitals. The reason for this is that we only know the number of patients that
overflow the other hospitals and are taken to the Erasmus MC. We do not know
anything about the patient flows in these hospitals or between these hospitals.
Although the IC department of cluster 17 of the Erasmus MC consists of three
separate units with different specialisms, the units take patients actually meant
for another unit in case of operational bed shortages. Therefore, as long as an
operational bed is available in one of the units, there are no consequences for
patients who arrive at any of the three ICUs. In addition, we assume that the
unit the patient is situated at does not influence the Length of Stay (LOS) of
the patient, in spite of the different specialisms of the units. For these reasons
we model the IC department of cluster 17 of the Erasmus MC as one unit, as
can be seen in Figure 2.2. From now on, when we talk about an ICU, we intend
a group of one or more ICUs that act as one Unit.

In Figure 2.2, patient flow 1 reflects the flow of regional emergency patients who
are transferred to or from another hospital in case all beds are occupied. Patient
flow 2 reflects the flow of elective patients. If no operational bed is available
at their arrival, they are sent home to return later. Patient flow 3 reflects the
flow of internal emergency patients who are not transferred in case of a full IC
department. If no operational bed is available an over bed is created for these
patients. If another patient leaves the ICU while the patient is still in the over
bed, the over bed becomes an operational bed. If none of the other patients
leave during the stay of the patient in the over bed, the patient leaves the ICU
directly from the over bed and the over bed disappears. Patient flow 4 reflects
the patients whose discharge is at hand and who can be predischarged in case of
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an incoming emergency. As long as these patients are at the ICU they occupy
a normal, staffed, IC bed. Patient flow 5 is the flow of patients who leave the
ICU (because of recovery or mortality). Patients who leave the ICU because of
recovery go to the ward of the treating specialism.

2.2.2 Model of the scenario with overflow

In the previous section we discussed the model of the current situation of the
patient streams through a region with ICUs. Next we want to study the scenario
where the ICUs in a region jointly reserve beds (regional beds) for regional
emergency patients. In such a situation, regional emergency patients refused at
an ICU in the region because of bed shortages, will be sent to a regional bed
instead of to another ICU. Elective patients and internal emergency patients
cannot occupy these beds. We study this scenario because we want to know if
the reserving of regional beds can be a solution to the problem that regional
patients are refused at the ICUs in the region. To model the regional beds, we
will add a (virtual) overflow, containing the regional beds, to the model of the
region. We model the overflow as an extra ICU that is intended for regional
emergency patients that are refused at an original ICU. In practise such an
overflow will not actually exist. The beds of our virtual overflow will in reality
be distributed over the ICUs in the region, but will function like the virtual
overflow ICU.

We assume all ICUs to have the same patient streams as the IC department of
the Erasmus MC. Therefore our model is generic and can be used for any region
with any number of ICUs. Figure 2.3 pictures the model of the the ICUs with
overflow. Although the model developed in this section can be used for any
number of ICUs, we only depict two ICUs. The patient streams are the same
as those described in the previous section.

2.2.3 Assumptions about the arrivals and Length of Stay

In this section we make assumptions concerning the arrival process at the ICUs
and the Length of Stay of patients for both models discussed.

Arrivals

As can be seen in Figure 2.2 and 2.3 , three flows of patients arrive at the ICU.
Two flows consist of emergency patients and one flow consists of elective pa-
tients. We assume all arrivals are Poisson arrivals. For the emergency arrivals
this is a good assumption. Emergency patients originate from a large population
(all inhabitants of the region in which the ICU is situated) and the probability
that someone from the population suddenly needs to be treated at an ICU is
very small. For the elective arrivals, however, the assumption is questionable as
their arrivals are actually planned. Nevertheless, if we assume that the surgeon
does not use his knowledge on the occupation of the ICU when planning the
operations and given that only a fraction of operated patients require inten-
sive care after the operation, the assumption of Poisson arrivals is plausible.
Furthermore we assume all ICUs to have a different mean arrival rate.
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Figure 2.3: Overview of the ERM including all patient streams

Let λi denote the total arrival rate at ICU i, this is the average number of
patients arriving per time unit at ICU i. For ICU i we denote the probability
that an arriving patient is a regional emergency patient by p1,i, the probability
that an arriving patient is an elective patient by p2,i and the probability that an
arriving patient is an internal emergency patient by p3,i (p1,i + p2,i + p3,i = 1).
Accordingly, the rate of regional emergency arrivals at ICU i is p1,iλi, the rate
of elective arrivals at ICU i is p2,iλi and the rate of the internal emergency
arrivals at ICU i is p3,iλi.

We have to note that we model the return of elective patients after a cancelled
operation as a new arrival. If we modelled the returning of arrivals as a separate
arrival stream, we would have a retrial queue. A retrial queue is a queue in which
customers who find all servers occupied may retry after a period of time. Falin
and Templeton [11] consider retrial queues with Poisson arrivals in full detail.
As we consider more than one IC bed, the ICU would involve a multiserver
retrial queue. From [11] it can be concluded that for multiserver retrial queues
it is difficult to find an analytical solution. Falin and Templeton, however, prove
that as the retrial rate goes to zero, the number of servers has an Erlang loss
distribution with the arrival rate equal to the sum of the primary arrival rate
and the retrial rate. The retrial rate of the elective patients is very low. It is
not preferable that an operation is postponed and much is done to prevent this
from happening. Sometimes, however, it is inevitable and consequently there is
a small number of cancelled operations. Because of the low retrial rate we can
approximate the retrial queue with a loss system in which returning patients
are modelled as new arrivals.
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Length of stay

The LOS at an ICU is known to be highly variable. The expected LOS at
an ICU is several days, but some patients stay for weeks. The exponential
distribution does not model this high variability well. We, however, use the
exponential distribution for the LOS. We do this for reasons of simplicity. Using
the exponential distribution makes it easier to find explicit formulas for the
expectation and variance of the overflow. Later on, the model can be adjusted
for another distribution of the LOS. A phase type distribution can be used for
this. Phase type distributions are a mixture of Erlang distributions and can
approximate almost any distribution. Therefore it will most likely be easy to
adjust the model with exponential LOS to a model with a phase type LOS.

We assume the mean LOS of patients with different disorders to be the same.
Moreover we assume the three different patient types, regional emergencies,
electives and external emergencies, to have the same mean LOS. For internal
emergency patients and regional emergency patients this assumption is plausi-
ble. Elective patients, however, are usually more stable than emergency patients
and their LOS is more predictable. Therefore, it is likely that the LOS has a
smaller mean and variance than that of emergency patients. For now we assume
the mean LOS of the three patient types to be equal. Furthermore we assume
that the mean LOS of the overflow is the same as the mean LOS of the ICU the
overflow originates from. As we take the same mean LOS for all three patient
types this assumption is plausible. We do assume the mean LOS to be depen-
dent of the ICU because some ICUs treat more severely ill patients than other
ICUs. We denote the mean LOS for patients at ICU i by µ−1i .



Chapter 3

Analysis

3.1 Introduction

In Chapter 2 we have discussed a model of a region with regional beds. In
this chapter we will use this model to develop a method to calculate how many
regional beds the overflow of the region requires, in order to guarantee a certain
minimum probability of admitting a regional patient to an IC bed in the region.
We do make one simplification of the model. This simplification concerns the
patients that are prereleased in case new patient arrives to the ICU. This patient
flow is difficult to define as it is not clear if and when a patient can be pre-
released; there are no distinct norms for this. Therefore, we have decided to
leave this flow out of consideration and from now on, we only consider patient
flows 1, 2, 3 and 5 of Section 2.2.2. The model of the ICUs with overflow that
we will use from now on is depicted in Figure 3.1.

Although overflow at ICUs or other hospital departments has not been discussed
in literature, overflow of other systems have been discussed. In the telecommu-
nications overflow systems are more common and much research has been done
on this. From the literature it appears that the Equivalent Random Method
(ERM) is much used to analyse the overflow of telecommunication systems. The
Equivalent Random Method (ERM) is a method for the approximate analysis
of an overflow system. It has proven to give a good approximation of blocking
probabilities of overflow systems. Furthermore, the client flows in a telecom-
munication overflow system resemble the patient flows in the overflow model of
the ICUs. Therefore we believe that the ERM is a good method to analyse the
patient streams through the ICUs in a region with regional beds. In Section
3.2 we discuss the ERM. In this section we talk about customers, servers and
stations which can be translated to patients, beds and ICUs. In Section 3.3
we find formula for the expectation and variance of the overflow of an ICU.
Finally, in Section 3.4 we give a method to determine how many regional beds
a region requires in order to be able to guarantee regional emergency patients
to be admitted with a certain minimum probability.
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Figure 3.1: Model of the ERM including elective patients and overbeds

3.2 Equivalent Random Method

The ERM is developed by Wilkinson [34] and it is widely used in telecommuni-
cations where it has proven to be a good approximation method. Bretschneider
[7] developed, independent of Wilkinson, a similar model. Consider a system
consisting of n primary stationsS. Customers arrive at station Si according to
a Poisson process with rate λi. Station Si has ci servers reserved for customers
arriving at that station. Each server has a negative exponential service time
with rate µi. The customers who find all servers busy at their primary station
are directed toward a single overflow station S0 that has c0 servers. The service
time of the overflow station is also assumed negative exponential with rate µ0.
The overflow load of station i is represented by its expectation Ei and variance
Vi. Customers who are blocked at the overflow station are cleared from the
system. This system is illustrated in Figure 3.2.

The expectation Ei and the variance Vi of the overflow load can be calculated
through:

Ei = ρiB(ci, ρi), i = 1...n, (3.1)

Vi = Ei(1−Ei) +
ρi

si + 1 +Ei − ρi
i = 1...n, (3.2)

with ρi = λi/µi the offered load and B(ci, ρi) the Erlang loss formula:

B (ci, ρi) =
(ρi)

ci ci!Pci
k=0 (ρi)

k /k!
.
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Figure 3.2: Overflow system

The objective is to calculate the amount of customers that find all servers busy
at their primary station and also find all servers in the overflow station busy.
Therefore the n primary stations with the Poisson loads are replaced by an
“equivalent random” primary station S and a single “equivalent random” load
such that the expectation and variance of the traffic that overflows the equivalent
primary station are equal to the expectation and variance of the total overflow
of the primary stations S1, S2, .., Sn:

E =
nX
i=i

Ei

V =
nX
i=1

Vi

The equivalent random system is illustrated in Figure 3.3.The equivalent pri-
mary station has service rate µ0 and the offered load ρ and the number of servers
c can be determined from the following equations:

E = ρB(c, ρ), (3.3)

V = E

µ
1−E +

ρ

c+ 1 +E − ρ

¶
. (3.4)

Then the expected load overflowing the overflow station can be approximated
by :

E = ρB (c+ c0, ρ) .

The probability that a customer arriving to primary station Si is blocked is then
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approximated as:

Bi ∼ B(ci, ρi)
B(c+ c0, ρ)

B(c, ρ)
.

Jagers and van Doorn [16] prove the uniqueness of the solution of the equations
(3.3) and (3.4). Rapp [24] gives approximations for the offered load ρ and the
number of servers c of the equivalent primary group:

ρ ≈ V + 3
V

E

µ
V

E
− 1
¶
,

c ≈ ρ
¡
E + V

E

¢
α+ V

E − 1
−E − 1.

Jagerman [15] presents practical formula and a computer program for the ERM.
He uses Newton’s method to solve equation (3.3) for ρ.

3.2.1 Modifications of the ERM

Fischer, Garbin and Swinsky [12] consider a system where primary customers
can also arrive directly at the overflow station. In this case the ERM can
not separately compute blocking probabilities for the calls first arriving at a
primary station and calls directly arriving at the overflow station. In [12] an
extension to the ERM is presented that can compute the individual blocking
probabilities. Customers first arriving at the primary station are of type 1 and
customers arriving directly at the overflow station are of type 2. Expressions
are then given for the loss probabilities that type 1 customers see (B1) and the
loss probabilities that type 2 customers see (B2):

B1 = B(c, ρ)
PB1
PB

µ
1 +

µ
V

E
− V + ρ2

E + ρ2

¶
k

¶
,

B2 =
PB1
PB

µ
1 +

µ
1− V + ρ2

E + ρ2

¶
k

¶
.
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Hereby PB is the blocking probability of the primary station, PB1 is the block-
ing probability of the primary and the overflow station, ρ2 is the load offered
directly to the overflow station and

k = (2.5459[(V + ρ2)/(E + ρ2)]
−2.82) exp(γ1 + γ2),

with

γ1 = −0.0528c0[(V + ρ2)/(E + ρ2)]
−4.163,

γ2 = −5.456PB1/PB[(V + ρ2)/(E + ρ2)]
−2.025.

Schehrer [25] also considers arrivals directly to the overflow station, but does
this in combination with different mean holding times for the primary group
and the overflow group. He defines the expectation and variance of the traffic
overflowing primary server i as Ei and Vi,prim and the expectation and variance
of the traffic from server i offered to the overflow station as Ei,sec and Vi,sec.
The ratio of Ei,prim and Ei,sec is given by the ratio of the corresponding holding
times: Ei,prim/Ei,sec = µ2/µ1 = c. In [25] calculations can be found for the
variances Vi,sec(c). When the expectation and variance of the traffic offered to
the overflow station have been calculated, the ERM can be used to calculate
the equivalent random total load offered to the overflow station. Figure 3.4
illustrates the overflow system, as discussed by Schehrer.

Borst, Boucherie and Boxma [4] extend Schehrers modified ERM for systems
with repacking. Customers at the overflow station, originating from primary sta-
tion Si, are arbitrarily repacked into station Si with rate γi. Let EX0,i be the
expected number of customers in the overflow station that come from primary
station Si. In [4] the overflow system is approximated by saying that customers
arrive at the primary station Si with Poisson rate λi + γiEX0,i and that cus-
tomers leave the overflow station with rate µ0,i + γi. Schehrers method is used
to approximate the expected number of customers in the overflow station. An
approximation is given for the probability that a customer arriving at primary
station Si is blocked.

Machihara [20, 21] considers the ERM in combination with hyper-exponential
service distributions: k1e

−µ1t + k2e
−µ2t with k1 + k2 = 1. In this case the

service rate is µ = (k1/µ1 + k2/µ2)
−1. In [20] an exact calculation is given

for the load Ei/Vi of the overflow of the primary server groups with hyper-
exponential service distributions. However, this calculation is slow. In [21]
Machihara gives a quick approximation, but this approximation only applies for
certain combinations of ρ (the load) and c (number of servers of the primary
group). Shortle [29] modifies the approximation of Machihara so that it applies
for all values of ρ and c. He uses this modified approximation to adjust the
ERM for hyper-exponential service times.

Labetoulle [17] discusses the shortcomings of the ERM when customers have
different mean holding times. Mixing customers with different holding times
influences the overall blocking at the overflow group. The ERM does not take
this into account as it computes load blocking (ratio of the blocked load to the
total offered load) and not call blocking (ratio of the number of blocked calls to
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the total number of call attempts). Fredericks [13] introduces a modified ERM
that does take this into account. Assume that two groups of customers arrive
at the same server group, with rate λi, i = 1, 2 and service rate µi. Then the
average call blocking BC and the average load blocking BL are given by:

BC =
λ1BC,1 + λ2BC,2

λ1 + λ2
,

BL =
ρ1BC,1 + ρ2BC,2

ρ1 + ρ2
.

Fredericks [13] found the following relationship between call blocking and load
blocking:

BC =
³
BL (1 + f(z1, z2)) + f(z1, z2)BC,1

³
µ1
µ2 − 1

´´
/
³
1 + µ1

µ2
f(z1, z2)

´
,

(3.5)

with zi the peakedness (ratio of the variance and expectation) of the servers, z
the overall peakedness defined by z = (ρ1z1 + ρ2z2)/(ρ1 + ρ2) and f(z1, z2) =
(z2 − z)/(z − z1) for z1 6= z2 and f(z1, z2) = 1 for z1 = z2. According to
Fredericks [13] formula (3.5) can be used in addition to the ERM to predict the
call blocking, which takes the different mean holding times into account.

3.3 Expectation and variance of the overflow
In the previous section we have discussed the ERM. We have seen that, to
apply the ERM, we need to find formula for the expectation and variance of the
number of patients that overflow an ICU. We can not use the formulas that are
used for the classical ERM, as we have different patients flows. Particularly the
flow of internal emergency patients causes differences as for these patients over
beds can be created and thus the capacity of the ICU can be exceeded. In this
Section we develop formula for the expectation and variance of the number of
patients that overflow one of the ICUs in this model, let us say for ICU i. For
this model we make the same assumptions as we make in Section 2.2.3. We will
shortly repeat these assumptions. The patients arrive to the ICU according to
a Poisson process with rate λi. Regional emergency patients arrive with rate
p1,iλi and are transferred to the overflow ICU in case of a full ICU. Elective
patients arrive with rate p2,iλi and are sent home in case of a full ICU. Internal
emergency patients arrive with rate p3,iλi and are placed in an over bed in
case of a full ICU. Now p1,i + p2,i + p3,i = 1. The LOS for ICU i is assumed
exponential with mean µ−1i .We assume the ICU to have an operational capacity
of ci and the overflow to have an infinite capacity. The ICU can be represented
by an M/M/ci system. To find the expectation and the mean of the overflow
of ICU i we assume the regional patients that are blocked at ICU i to be sent
to an overflow ICU with infinite capacity. Figure 3.5, shows the patient flows
used to calculate the expectation and variance of the number of patients that
overflow ICU i.

Let Pi (j, k) be the probability Pi (J = j,K = k) that J = j patients are at ICU
i and K = k patients are at the overflow (j = 0, 1, ..; k = 0, 1, ..). To find
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Figure 3.5: ICU i with overflow

the expectation and variance of the number of patients in the overflow we use
balance equations. Balance equations reflect that in the long run, the rate at
which transitions into state (j, k) occur must equal the rate at which transitions
out of state (j, k) occur. For the ICU and its overflow the balance equations
are:

(λi + jµi + kµi)Pi (j, k)
= λiPi (j − 1, k) + (j + 1)µiPi (j + 1, k)

+ (k + 1)µiPi (j, k + 1) ,
Pi (−1, k) = 0, j = 0, 1, .., ci − 1, k = 0, 1, ...

(3.6)

((p1,i + p3,i)λi + ciµi + kµi)Pi (ci, k)
= λiPi (ci − 1, k) + p1,iλiPi (ci, k − 1)

+ (ci + 1)µiPi (ci + 1, k)
+ (k + 1)µiPi (ci, k + 1) ,

P (ci,−1) = 0, k = 0, 1, ...

(3.7)

((p1,i + p3,i)λi + jµi + kµi)Pi (j, k)
= p3,iλiPi (j − 1, k) + p1,iλiPi (j, k − 1)

+ (j + 1)µiPi (j + 1, k)
+ (k + 1)µiPi (j, k + 1) ,

Pi (j,−1) = 0, j = ci + 1, ci + 2, .., k = 0, 1, ...

(3.8)

Next we shall perform some manipulations on these balance equations. We
multiply the balance equations (3.6), (3.7) and (3.8) by zk, |z| ≤ 1, and sum



24 Analysis

both sides of the equations over k. We now obtain

(λi + jµi)
P∞

k=0 Pi (j, k) z
k = λi

P∞
k=0 Pi (j − 1, k) zk

+(j + 1)µi
P∞

k=0 Pi (j + 1, k) z
k

+µi(1− z)
P∞

k=0 kPi (j, k) z
k−1,

Pi (−1, k) = 0, j = 0, 1, .., ci − 1,
(3.9)

((p1,i (1− z) + p3,i)λi + ciµi)
P∞

k=0 Pi (ci, k) z
k

= λi
P∞

k=0 Pi (ci − 1, k) zk
+(j + 1)µi

P∞
k=0 Pi (ci + 1, k) z

k

+µi (1− z)
P∞

k=0 kPi (ci, k) z
k−1,

(3.10)

((p1,i (1− z) + p3,i)λi + jµi)
P∞

k=0 Pi (j, k) z
k

= p3,iλi
P∞

k=0 Pi (j − 1, k) zk
+(j + 1)µi

P∞
k=0 Pi (j + 1, k) z

k

+µi (1− z)
P∞

k=0 kPi (j, k) z
k−1,

j = ci + 1, ci + 2, ...

(3.11)

Next, let G(i)j (z) be the marginal generating function

G
(i)
j (z) =

∞X
k=0

Pi (j, k) z
k.

with |z| ≤ 1. The expectation and variance of the overflow can be calculated by
using first and second order derivatives of G(i)j (z) with respect to z:

∞X
j=0

∂

∂z
G
(i)
j (z)

¯̄̄̄
z=1

=
∞X
j=0

∞X
k=0

kPi (j, k) ,

∞X
j=0

∂2

∂z2
G
(i)
j (z)

¯̄̄̄
z=1

=
∞X
j=0

∞X
k=0

k(k − 1)Pi (j, k) .

The expectation and variance are now:

Ei =
P∞

j=0
∂
∂zG

(i)
j (z)

¯̄̄
z=1

, (3.12)

Vi =
P∞

j=0
∂2

∂z2G
(i)
j (z)

¯̄̄
z=1

+Ei − (Ei)
2 . (3.13)

Therefore we next differentiate both sides of equations (3.9), (3.10) and (3.11)
with respect to z and take z = 1. This results in the following equations:

(λi + (j + 1)µi)E
(i)
j = λiE

(i)
j−1 + (j + 1)µiE

(i)
j+1

E
(i)
−1 = 0, j = 0, 1, .., ci − 1,

(3.14)

(p3,iλi + (ci + 1)µi)E
(i)
ci = λiE

(i)
ci−1 + (ci + 1)µiE

(i)
ci+1

+p1,iλiPi (ci) ,
(3.15)
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(p3,iλ+ (j + 1)µi)E
(i)
j = p3,iλiE

(i)
j−1

+(j + 1)µiE
(i)
j+1 + p1,iλiPi (j) ,

j = ci + 1, ci + 2, ...

(3.16)

with Pi (j) the probability that there are j patients at ICU i, and E
(i)
j =

∂
∂zG

(i)
j (z)

¯̄̄
z=1

, the expected number of patients in the overflow with j patients

in ICU i. To obtain the expected number of patients in the overflow we sum
these equations over j. It now follows that

Ei = p1,iρi
P∞

j=ci
Pi (j) , (3.17)

with ρi the load λi/µi.

To find the variance of the number of patients in the overflow, we take the
second order derivatives of equations (3.9), (3.10) and (3.11) with respect to z
and take z = 1. This results in the following equations:

(λi + (j + 2)µi)E
0(i)
j = λiE

0(ı́)
j−1 + (j + 1)µiE

0(i)
j+1

E
0(i)
−1 = 0, j = 0, 1, 2, .., ci − 1,

(3.18)

(p3,iλi + (ci + 2)µi)E
0(i)
ci = λiE

0(i)
ci−1 + (ci + 1)µiE

0(i)
j+1

+2p1,iλiE
(i)
ci ,

(3.19)

(p3,iλi + (j + 2)µi)E
0(i)
j = p3,iλiE

0(i)
j−1 + (j + 1)µiE

0(i)
j+1

+2p1,iλiE
(i)
j ,

j = ci + 1, ci + 2, ...,

(3.20)

with E
0(i)
j = ∂2

∂z2G
(i)
j (z)

¯̄̄
z=1

. When we sum these equations over j we find the

expectation of (K (K − 1)). This, together with Ei, gives the variance of the
number of patients in the overflow:

Vi = p1,iρi
P∞

j=ci
E
(i)
j +Ei − (Ei)

2 . (3.21)

It now remains to find
P∞

j=ci
Pi (j) and

P∞
j=ci

E
(i)
j . The probabilities Pi (j) that

there are j patients at ICU i can be found by using the fact that G(i)j (1) = Pi (j) .
We take z = 1 in equations (3.9), (3.10) and (3.11) to obtain

Pi (j + 1) =
³

λi
(j+1)µi

+ j
j+1

´
Pi (j)− λi

(j+1)µi
Pi (j − 1) ,

Pi (−1) = 0, j = 0, 1, .., ci − 1.
(3.22)

Pi (ci + 1) =
³

p3,iλi
(ci+1)µi

+ ci
ci+1

´
Pi (ci)− λi

(ci+1)µi
Pi (ci − 1) , (3.23)

Pi (j + 1) =
³

p3,iλi
(j+1)µi

+ j
j+1

´
Pi (j)− p3,iλi

(j+1)µi
Pi (j − 1) ,

j = ci + 1, ci + 2, ...
(3.24)

From this it follows that

Pi (j) =

(
1
j! (ρi)

j Pi (0) , j = 0, 1, .., ci,
1
j! (p3,i)

j−ci (ρi)
j Pi (0) j = ci + 1, ci + 2, ...,

(3.25)
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with ρi = λi/µi. From equations (3.25) together with the fact that
P∞

j=0 Pi (j) =
1 we obtain Pi (0) :

Pi (0) =
hPci

j=0
(ρi)

j

j! +
P∞

j=ci+1
(ρi)

j

j! (p3,i)
j−ci

i−1
,

=
hPci

j=0
(ρi)

j

j! (1− (p3,i)j−ci) + (p3,i)−ci ep3,iρi
i−1

.
(3.26)

From formulas (3.25) together with formula (3.26) we obtain

P∞
j=ci

Pi (j) = 1−
Pci−1

j=0
(ρi)

j

j!

∗
hPci

j=0
(ρi)

j

j! (1− (p3,i)j−ci)
+ (p3,i)

−c
ep3,iρi

i−1
.

(3.27)

Next we want to find
P∞

j=ci
E
(i)
j . We know that

∞X
j=ci

E
(i)
j = 1−

ci−1X
j=0

E
(i)
j .

Therefore we need to find formula for E(i)j , j = 0..ci − 1. By iterating equations
(3.14) from j = 0 to ci − 1 we obtain

E
(i)
j =

jX
l=0

1

l!
(ρi)

l
E
(i)
0 , j = 0, 1, .., ci. (3.28)

To find E
(i)
0 we need to find E

(i)
j , j > ci, so that we can use the fact that

Ei =
P∞

j=0E
(i)
j . By iterating equations (3.15) and (3.16) from j = ci to ∞ we

obtain

E
(i)
j =

Ã"
1− (p1,i + p2,i)

jX
l=ci+1

(p3,i)
l−(ci+1) (ρi)

l−ci ci!
l!

#

∗
ciX
l=0

1

l!
(ρi)

l

!
E
(i)
0 +

jX
l=ci+1

(p3,i)
l−(ci+1) (ρi)

l

l!
E
(i)
0 (3.29)

−p1,iPi (0)
jX

l=ci+1

(l − ci)
(p3,i)

l−(ci+1) (ρi)
l

l!
,
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with P0,i given by formula (3.26). Next E
(i)
0 can be calculated:

E
(i)
0 = p1,iPi (0) ∗

 ∞X
j=ci+1

(ρi)
ci+1

ci!
+

ciX
j=0

(p3,i)
j−ci (ρi)

j+1

j!

− (p3,i)−ci ρiep3,iρi + (p3,iρi − ci)

∗
∞X

j=ci+1

jX
l=ci+1

(p3,i)
l−(ci+1) (ρi)

l

l!

" ciX
l=0

ci + 1− l

l!
(ρi)

l (3.30)

+
∞X

j=ci+1

ciX
l=0

1

l!
(ρi)

l +

Ã
1− (p1,i + p2.i)

ci!

(ρi)
ci

ciX
l=0

1

l!
(ρi)

l

!

∗
∞X

j=ci+1

jX
l=ci+1

(p3,i)
l−(ci+1) (ρi)

l

l!

−1 .
The sum

P∞
j=ci

E
(i)
j is now given byP∞

j=ci
E
(i)
j = 1−E

(i)
0

Pci−1
l=0

ci−l
l! (ρi)

l
. (3.31)

Formulas (3.17) and (3.21) together with formulas (3.27) and (3.31) give the
expectation and variance of the overflow.

3.4 The ERM for ICUs
In this section we give a method to calculate the number of regional beds re-
quired, given the expectation and variance of the overflow of the ICUs in the
region. The expectation and variance of the overflow of each ICU in the region
can be calculated using the formulas from Section 3.3. Let Ei be the expectation
of the overflow of ICU i and Vi the variance of the overflow of ICU i. The total
expectation and variance of the overflow of IC patients in the region is

E =
Pn

i=1Ei, (3.32)

V =
Pn

i=1 Vi. (3.33)

Using the ERM we have considered two approaches. In the first approach we
model the equivalent ICU as an ICU with only one patient stream, the stream
of regional emergency patients. This equivalent ICU is depicted in Figure 3.6.
The second approach is less straightforward but probably more realistic. In
this approach we model the equivalent ICU as an ICU with all three patient
streams. This equivalent ICU is depicted in Figure 3.7. In Section 3.4.1 we
discuss the first approach. In Section 3.4.2 we discuss the second approach
which is not completely worked out. Finally, in Section 3.4.3, an algorithm is
given to determine the number of regional beds required. For the algorithm the
results of either the simplified approach or the more complex approach can be
used.
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Regional beds

Equivalent
ICU

Figure 3.6: Equivalent Random IC with regional emergency patients.

Regional beds

Equivalent
ICU

1.3. 2.

1. Regional emergency arrivals
2. Elective arrivals
3. Internal emergency arrivals

Figure 3.7: Equivalent Random IC with three patient types
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3.4.1 Simplified Equivalent Random ICU

In this section we give formula for the expected number of patients that over-
flow the simplified equivalent ICU and the regional beds. The equivalent ICU
is modelled like the classical equivalent station, with only regional emergency
patients in the system. In case all operational IC beds are occupied but a re-
gional bed is available, (regional emergency) patients that arrive are placed in
a regional bed. If all regional beds are occupied too, the patient is sent to the
(virtual) overflow. The patients in the overflow are patients for whom a bed in
another hospital has to be sought. For a given number of regional beds r, we
will give formula for the probability that a patient has to be sent outside the
region (to the virtual overflow). Formulas from the classical ERM are used.

First we need to find a random load ρ and an equivalent random capacity c such
that (see [8]):

E = ρB (c, ρ) ,

V = E

µ
1−E +

ρ

c+ 1 +E − ρ

¶
,

with B (c, ρ) the blocking probability of an ICU with load ρ and capacity c. The
load ρ and capacity c represent the load and capacity that one ICU with only
regional emergency patients would have if the expectation and variance of the
overflow were equal to E and V. To estimate ρ and c we use equations given by
Rapp [24]:

ρ = V + 3VE
¡
V
E − 1

¢
, (3.34)

c =
ρ(E+V

E )
Er+

V
E−1

−E − 1. (3.35)

Cooper [8] states that these estimates of ρ and c are generally on the high side
of the exact values. Rounding c down to an integer bcc and then finding ρ by

ρ =
(bcc+E+1)(E+V

E−1)
E+V

E

, (3.36)

gives a better approximation.

Let r be the capacity of the overflow (the number of regional IC beds). The
expected number of patients that overflow the first ICU as well as the regional
ICU is then:

E = ρB (c+ r, ρ) ,

= ρρ
c+r/(c+r)!
c+r
k=0 ρ

k/k!

(3.37)

3.4.2 Complex Equivalent Random ICU

In this section we give a first step to find formula for the expectation of the
number of patients that overflow the more complex equivalent random ICU and
the regional beds. This complex equivalent ICU has, like the original ICUs,
three patient types (regional emergency patients, elective patients and inter-
nal emergency patients). In case all operational IC beds are occupied, regional
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emergency patients first flow to the regional beds. If all regional beds are occu-
pied too, the regional patient is sent to the (virtual) overflow. The patients in
the overflow are regional emergency patients for who a bed in another hospital
has to be sought. In case all operational beds are occupied at the ICU, arriving
elective patients are sent home and internal emergency patients are placed in
an over bed. We give formula for the probability that a patient has to be sent
outside the region (to the virtual overflow) for a given number of regional beds
r.

The probabilities p1, p2 and p3 that a patient arriving at an ICU in the region is
a regional emergency patient, an elective patient or an internal emergency can
be calculated as follows

pt =

Pn
i=1 pt,i
n

, t = 1, 2, 3,

with n the number of ICUs in the region. We now need to find a random load
ρ and an equivalent random capacity c such that

E = p1
λ

µ

∞X
j=c

P (j) , (3.38)

V = p1ρ
∞X
j=c

Ej +E −E2, (3.39)

with
P∞

j=c P (j) given by formula (3.27) and
P∞

j=cEj given by formula (3.31).
These formulas are the same as those in Section 3.3 because the equivalent
random ICU is similar to an original ICU. A solution to equations (3.38) and
(3.39) still has to be found.

We use the same method as in Section 3.3 to calculate the expected number
of patients in the overflow. The model of the equivalent ICU with regional
beds and virtual overflow with infinite capacity is depicted in Figure 3.8. Let
P (j, l, k) be the probability P (J = j, L = l,K = k) of having J = j patients
in the operational IC beds, L = l patients in the regional beds and K = k
patients in the overflow, with j = 0, 1, .., c + 1, ...; l = 0, 1, .., r and k = 0, 1, ...
The balance equations for these probabilities are

(λ+ jµ+ lµ+ kµ)P (j, l, k)
= λP (j − 1, l, k) + (j + 1)µP (j + 1, l, k)
+ (l + 1)µP (j, l + 1, k) + (k + 1)µP (j, l, k + 1)

P (−1, l, k) = 0, j = 0, 1, .., c− 1, l = 0, 1, .., r − 1, k = 0, 1, ...

(3.40)

((p1 + p3)λ+ jµ+ lµ+ kµ)P (j, l, k)
= λP (j − 1, l, k) + p1λP (j, l − 1, k)
+ (j + 1)µP (j + 1, l, k) + (l + 1)µP (j, l + 1, k)
+ (k + 1)µP (j, l, k + 1)

j = c, l = 0, 1, .., r − 1, k = 0, 1, ...

(3.41)

((p1 + p3)λ+ jµ+ lµ+ kµ)P (j, k, l)
= p3λP (j − 1, l, k) + p1λP (j, l − 1, k)
+ (j + 1)µP (j + 1, l, k) + (l + 1)µP (j, l + 1, k)
+ (k + 1)µP (j, l, k + 1)

j = c+ 1, c+ 2, ... l = 0, 1, .., r − 1, k = 0, 1, ...

(3.42)
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Overflow

Equivalent
ICU

1.3. 2.

Regional IC
beds

1. Regional emergency arrivals
2. Elective arrivals
3. Internal emergency arrivals

Figure 3.8: Equivalent ICU with regional beds and overflow

(λ+ jµ+ lµ+ kµ)P (j, l, k)
= λP (j − 1, l, k) + (j + 1)µP (j + 1, l, k)
+ (k + 1)µP (j, l, k + 1)

j = 0, 1, 2, .., c− 1, l = r, k = 0, 1, ...

(3.43)

((p1 + p3)λ+ jµ+ lµ+ kµ)P (j, l, k)
= λP (j − 1, l, k) + p1λP (j, l − 1, k)
+p1λP (j, l, k − 1) + (j + 1)µP (j + 1, l, k)
+ (k + 1)µP (j, l, k + 1) .

j = c, l = r, k = 0, 1, ...

(3.44)

((p1 + p3)λ+ jµ+ lµ+ kµ)P (j, k, l)
= p3λP (j − 1, l, k) + p1λP (j, l − 1, k)
+p1λP (k, l, k − 1) + (j + 1)µP (j + 1, l, k)
+ (k + 1)µP (j, l, k + 1)

j = c+ 1, c+ 2, ... l = r, k = 0, 1, ...

(3.45)

We now multiply both sides of these equations by zk and sum them over j and
l:

(λ+ jµ+ lµ)
P∞

k=0 P (j, l, k) z
k

= λ
P∞

k=0 P (j − 1, l, k) zk
+(j + 1)µ

P∞
k=0 P (j + 1, l, k) z

k

+(l + 1)µ
P∞

k=0 P (j, l + 1, k) z
k

+(1− z)µ
P∞

k=0 kP (j, l, k) z
k−1

P (−1, l, k) = 0, j = 0, 1, .., c− 1, l = 0, 1, .., r − 1, k = 0, 1, ...

(3.46)
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((p1 + p3)λ+ jµ+ lµ)
P∞

k=0 P (j, l, k) z
k

= λ
P∞

k=0 P (j − 1, l, k) zk
+p1λ

P∞
k=0 P (j, l − 1, k) zk

+(j + 1)µ
P∞

k=0 P (j + 1, l, k) z
k

+(l + 1)µ
P∞

k=0 P (j, l + 1, k) z
k

+(1− z)µ
P∞

k=0 kP (j, l, k) z
k−1

j = c, l = 0, 1, .., r − 1, k = 0, 1, ...

(3.47)

((p1 + p3)λ+ jµ+ lµ)
P∞

k=0 P (j, l, k) z
k

= p3λ
P∞

k=0 P (j − 1, l, k) zk
+p1λ

P∞
k=0 P (j, l − 1, k) zk

+(j + 1)µ
P∞

k=0 P (j + 1, l, k) z
k

+(l + 1)µ
P∞

k=0 P (j, l + 1, k) z
k

+(1− z)µ
P∞

k=0 kP (j, l, k) z
k−1

j = c+ 1, c+ 2, ..., l = 0, 1, .., r − 1, k = 0, 1, ...

(3.48)

(λ+ jµ+ lµ)
P∞

k=0 P (j, l, k) z
k

= λ
P∞

k=0 P (j − 1, l, k) zk
+(j + 1)µ

P∞
k=0 P (j + 1, l, k) z

k

+(1− z)µ
P∞

k=0 kP (j, l, k) z
k−1

j = 0, 1, .., c− 1, l = r, k = 0, 1, ...

(3.49)

((p1 (1− z) + p3)λ+ jµ+ lµ)
P∞

k=0 P (j, l, k) z
k

= λ
P∞

k=0 P (j − 1, l, k) zk
+p1λ

P∞
k=0 P (j, l − 1, k) zk

+(j + 1)µ
P∞

k=0 P (j + 1, l, k) z
k

+(1− z)µ
P∞

k=0 kP (j, l, k) z
k−1

j = c, l = r, k = 0, 1, ...

(3.50)

((p1 (1− z) + p3)λ+ jµ+ lµ)
P∞

k=0 P (j, l, k) z
k

= p3λ
P∞

k=0 P (j − 1, l, k) zk
+p1λ

P∞
k=0 P (j, l − 1, k) zk

+(j + 1)µ
P∞

k=0 P (j + 1, l, k) z
k

+(1− z)µ
P∞

k=0 kP (j, l, k) z
k−1

j = c+ 1, c+ 2, .., l = r, k = 0, 1, ...

(3.51)

Next, let Gj,l (z) be the marginal generating function

Gj,l (z) =
∞X
k=0

P (j, l, k) zk.

with |z| ≤ 1. The expectation and variance of the overflow can be calculated by
using first and second order derivatives of G(i)j (z) with respect to z:

∞X
j=0

∞X
l

∂

∂z
Gj,l (z)

¯̄̄̄
z=1

=
∞X
j=0

∞X
l=0

∞X
k=0

kP (j, l, k) .

The expectation can therefore be calculated through

E =
∞X
j=0

∞X
l

∂

∂z
Gj,l (z)

¯̄̄̄
z=1

. (3.52)
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Therefore we next differentiate both sides of equations (3.46), (3.47), (3.48),
(3.49), (3.50) and (3.51) with respect to z and take z = 1. This results in the
following equations:

(λ+ jµ+ lµ+ µ)Ej,l = λEj−1,l + (j + 1)µEj+1,l + (l + 1)µEj,l+1

E−1,l = 0, j = 0, 1, .., c− 1, l = 0, 1, .., r − 1, k = 0, 1, ...
(3.53)

((p1 + p3)λ+ jµ+ lµ+ µ)Ej,l

= λEj−1,l + p1λEj,l−1 + (j + 1)µEj+1,l

+(l + 1)µEj,l+1

j = c, l = 0, 1, .., r − 1, k = 0, 1, ...

(3.54)

((p1 + p3)λ+ jµ+ lµ+ µ)Ej,l

= p3λEj−1,l + p1λEj,l−1 + (j + 1)µEj+1,l

+(l + 1)µEj,l+1

j ≥ c+ 1, l = 0, 1, .., r − 1, k = 0, 1, ...

(3.55)

(λ+ jµ+ lµ+ µ)Ej,l = λEj−1,l + (j + 1)µEj+1,l

j ≤ c− 1, l = r, k = 0, 1, ...
(3.56)

(p3λ+ jµ+ lµ+ µ)Ej,l

= λEj−1,l + p1λEj,l−1 + (j + 1)µEj+1,l + p1λP (j, l)
j = c, l = r, k = 0, 1, ...,

(3.57)

(p3λ+ jµ+ lµ+ µ)Ej,l

= p3λEj−1,l + p1λEj,l−1 + (j + 1)µEj+1,l + p1λP (j, l)
j ≥ c+ 1, l = r, k = 0, 1, ...

(3.58)

with Ej,l the expected number of patients in the overflow with j patients in the
equivalent ICU and l patients in the over beds, and P (j, l) the probability of
having j patients in the ICU and l patients in the regional beds.

To obtain the expected number of patients in the overflow we first sum equations
(3.53), (3.54) and (3.55), and equations (3.56), (3.57) and (3.58) over j ≥ 0. This
results in:

p1λ
P∞

j=cEj,l + lµ
P∞

j=0Ej,l + µ
P∞

j=0Ej,l =

(l + 1)µ
P∞

j=0Ej,l+1 + p1λ
P∞

j=cEj,l−1,
l = 0, 1, .., r − 1

(3.59)

rµ
∞X
j=0

Ej,r + µ
∞X
j=0

Ej,r = p1λ
∞X
j=c

Ej,r−1 + p1λ
∞X
j=c

P (j, l) (3.60)

Summing equations (3.59) and (3.60) over l = 0, 1, .., r results in:

E = p1ρ
P∞

j=c P (j, r) (3.61)

It now remains to find a formula for
P∞

j=c P (j, r) . To find the sum, we first
need to find P (j, r) , j = 0, 1, .. To this end we use formulas (3.46) to (3.51).
Taking z = 1 in these equations results in the following equations:

(λ+ jµ+ lµ)P (j, l)
= λP (j − 1, l) + (j + 1)µP (j + 1, l)
+ (l + 1)µP (j, l + 1)

P (−1, l) = 0, j = 0, 1, .., c− 1, l = 0, 1, .., r − 1, k = 0, 1, ...

(3.62)



34 Analysis

((p1 + p3)λ+ jµ+ lµ)P (j, l)
= λP (j − 1, l) + p1λP (j, l − 1) + (j + 1)µP (j + 1, l)
+ (l + 1)µP (j, l + 1)

j = c, l = 0, 1, .., r − 1, k = 0, 1, ...

(3.63)

((p1 + p3)λ+ jµ+ lµ)P (j, l) =
p3λP (j − 1, l) + p1λP (j, l − 1) + (j + 1)µP (j + 1, l)
+ (l + 1)µP (j, l + 1)

j = c+ 1, c+ 2, ..., l = 0, 1, .., r − 1, k = 0, 1, ...

(3.64)

(λ+ jµ+ lµ)P (j, l) = λP (j − 1, l) + (j + 1)µP (j + 1, l)
j = 0, 1, .., c− 1, l = r, k = 0, 1, ...

(3.65)

(p3λ+ jµ+ lµ)P (j, l) = λP (j − 1, l) + p1λP (j, l − 1)
+ (j + 1)µP (j + 1, l)

j = c, l = r, k = 0, 1, ...
(3.66)

(p3λ+ jµ+ lµ)P (j, l) = p3λP (j − 1, l) + p1λP (j, l − 1)
+ (j + 1)µP (j + 1, l)

j = c+ 1, c+ 2, ... l = r, k = 0, 1, ...
(3.67)

Finding formula for P (j, l) is not straightforward. However, making the realistic
assumption that the number of patients in the ICU is restricted by the number
of constructional beds in the ICU, P (j, l) can easily be found through iterating
the equations (3.62) to (3.67) for j from 0 to c and for l from 0 to r.

We have given a first start to this more complex method. To work the method
out, solutions to equations (3.38) and (3.39) need to be found and λ and µ need
be determined.

3.4.3 Algorithm to calculate the number of regional beds
required

In Section 3.4.1 and 3.4.2 we have discussed two different approaches to deter-
mine the expected number of patients who are blocked at the equivalent ICU
and at the regional beds, given a certain number of regional beds. The approach
in Section 3.4.1 is worked out, whereas for the method discussed in Section 3.4.2
a complete solution is not yet given. In this section we therefore use the results
of Section 3.4.1. We give an algorithm for the approximation of the number of
regional beds needed such that the probability that a regional patient needs to
be transferred to an ICU outside the region is satisfying. Let α be the maximum
proportion of regional emergency patients that is allowed to overflow all ICU
beds in the region and ρ and c calculated by formulas (3.34), (3.35) and (3.36).
The number of regional beds r required can then be found through the following
algorithm:

1. Initialise r = 0
2. While � > α do

r := r + 1;
Calculate E through (3.37);
� = E/

Pn
i=1 p1,iρi;

end;

(3.68)
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The total number of regional beds r will need to be distributed over the ICUs in
the region. It is reasonable not to evenly distribute these beds over the ICUs in
the region, but for example distribute them in proportion to the number of IC
beds an ICU has and taking into account the mean number of regional patients
an ICU already takes care of. For the proper functioning of these regional IC
beds it is of importance that only the regional emergency patients use these
beds and not elective patients or emergency patients from within the hospital.
Therefore there should be some kind of regional control on these beds. This can
for example be realised by obliging ICUs to register data on the use of these
regional beds and putting a fine on refusing regional patients when regional
patients do not occupy the regional beds.

3.5 Discussion of the method

In this chapter we have developed a method with which the required number
of regional beds can be approximated. For the development of this method we
made some simplifications that do not correspond to reality. In this Section we
will discuss the implications of these simplifications.

We have not considered the patients that can be predischarged in case of emer-
gency because their discharge is already at hand. This will most likely result
in a larger proportion of refused patients in the model, compared to reality.
Therefore we advise to consider this patient flow by interviewing intensivist.
When this patient stream is better defined the ERM for ICUs can be modified.
For this the balance equations should be adapted.

We assumed the LOS to be exponentially distributed although this is not real-
istic. More realistic is a LogNormal distribution. However, we do not know for
certain if this bad assumption has implications. It is possible that the method
is insensitive to the distribution and only requires a mean LOS. Therefore we
advise examining whether the method is insensitive to the distribution of the
LOS. If this is not the case we recommend modelling the LOS as a phase type
distribution and modifying the model to this end. The work of Machiahara ([20]
and [21]) and Shortle [29], who modified the ERM for hyper-exponential service
times, can serve as an example

We have assumed all three patient types to have the same mean LOS. This
assumption is not a realistic assumption. The mean LOS of the elective patients
differs from the mean LOS of the emergency patients. We believe the method
will provide more realistic results if it is adjusted to this difference. As discussed
in Section 3.2.1, Fredericks [13] has developed a modified ERM with different
mean service times. Presumably Fredericks ERM can be used to modify the
ERM for ICUs so that different patient types can have different mean LOS.

The assumption that elective patients arrive according to a Poisson process is
not realistic. The arrival of elective patients is in reality less variable than if
modelled by a Poisson process. Therefore we think that, if computed with the
ERM for ICUs, the number of refused elective patients is larger than it is in
reality. We recommend finding a distribution that better models the arrivals
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of elective patients and examining whether the ERM for ICUs can be adjusted
to this end. Adjusting the ERM so that the arrivals are not Poisson is not
straightforward.

The most difficult thing about modelling patient streams is that in reality each
patient is treated as a separate case and much is done to admit an arriving
patient requiring intensive care to the ICU. This can not be modelled, as it
is not possible to treat each arriving patient in a model as a separate case.
Therefore it has to be taken into account that the number of refused patients
determined with the method, will most likely always be higher than in reality.

We did not consider the fact that different ICUs might offer different services.
Therefore, in reality, a patient requiring intensive care cannot just be placed in
any ICU. When distributing the regional beds among the ICUs in the region this
should be taken into account. This might be difficult as it has to be taken into
account how many regional patients need the special care that is only provided
at certain ICU. Considering these difficulties is beyond the scope of this research.



Chapter 4

Simulation model

In the previous chapter we discussed a method to approximate the number of
required regional beds. In this chapter we will discuss the simulation model we
developed to validate the analytic method. Further the simulation model can be
used to demonstrate the patients flows through a region with regional beds. The
simulation was developed in eM-Plant version 7.0.2. EM-Plant is software for
object-oriented, graphical modelling for simulating and visualising systems and
business processes. In Appendix F a short introduction into the basic elements
of eM-Plant is given, for the reader unfamiliar with eM-Plant.

The simulation model developed is generic in the sense that it can be used for
any region with any number of ICUs. Like in the analytic model, when we
talk about an ICU, we mean one or more Intensive Care Units that act as one
Unit (e.g. the IC department of cluster 17 of the Erasmus MC is modelled as
one ICU). The number of ICUs in the region, the number of beds per ICU, the
arrival times and Length Of Stay (LOS) can all be adjusted according to the
wishes of the user.

4.1 Description of the simulation model

The main frame of the simulation model represents the region. The region
contains several ICUs and a unit with several regional beds. The three types
of patients arrive at an ICU according to a poisson process (i.e. exponential
interarrival times), each with its own rate. Elective patients do not arrive on
weekenddays. If a bed is available the patient is treated at this ICU. The
length of stay of the patient is modelled through a LogNormal distribution,
each having a different mean LOS. In case no beds are available and an internal
emergency patients arrives, an over bed is created for this patients. When no
bed is available at the arrival of an elective patient, the patient is deleted from
the system. When a regional emergency patient arrives and no bed is available
the patient is sent to a regional bed (in the frame of the region). Figure 4.1
shows the basic patient streams in the simulation model with one ICU. In the
rest of this section we discuss the simulation model in more detail.
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Figure 4.1: The basic patient streams in the simulation model

4.1.1 The simulation model of the region

The region is the top level of the simulation model. In this level the simulation
has to be started, stopped and reset. Figure 4.2 shows the Frame window of the
region. Before the simulation is run, the number of ICUs and the number of
regional beds used for the experiment have to be chosen. This can be done by ad-
justing the variables ‘NumberofICS’ and ‘NumberofRegionalbeds’ and running
the method ‘CreateRegion’. By running this Method, new units, regional beds,
a CardFile and a TableFile are created. In the CardFile ‘ListofRegionalbeds’
the location of all regional beds is registered. In the TableFile ’TableofICs’ the
location of the ICUs is recorded together with an initial value for the number
of beds per ICU and the arrival rates per ICU. These initial values can be ad-
justed according to the wishes of the user. After having adjusted these values
in the TableFile, the ICUs can be completed according to the chosen values by
running the Method ‘CreateICs’. This Method calls in each ICU the Methods
’SetArrivalRates’ and ‘CreateBeds’ that take care of adjusting the arrival rates
and creating the correct number of beds.

In the Object ‘Regionalbeds’ in the Frame window of the Region, the regional
beds can be found. A regional bed is similar to a normal bed, which is explained
later on.

The Methods ‘Start’ ‘Stop’ and ’ResetInit’ are used to start the simulation, stop
the simulation and reset the simulation. The EventController can be used for
more extensive regulation of the simulation, e.g. for adjusting the rate of the
simulation or by going through the simulation step by step.
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Figure 4.2: The top Frame window of the simulation model

4.1.2 The simulation model of the ICU

The Frame window of the ICU is depicted in figure 4.3. The model of the ICU
consists of three basis elements: the entrance, where patients arrive, the unit
where the patients stay in an IC bed and the ward, where patients leave the
system. In the next three subsections we discuss these three main elements of
the model of the ICU.

Entrance

In the model we distinguish three patient types: elective patients, internal emer-
gency patients and regional emergency patients. Like in our analytic model,
we assume all three patients arrive according to a Poisson process. The three
patient types can have different mean interarrival times. In Section 4.1.1 we
discussed how to adjust the arrival rates.

The internal emergency patients and the regional emergency patients are cre-
ated by the Methods "CreatingIntEmerg" and "CreatingExtEmerg" that are
activated by Generators with exponential interval times. The patients are rep-
resented by different entities. The emergency patients arrive in the Parallelproc
"Arrivals" where the Method "MovingArrivals" is activated. The program code
in this Method regulates what to do with the patient. The Method "Begin-
Day" is activated each weekday at 9:00 a.m. and creates elective patients. The
number of elective patients to be created that morning is pulled from a Poisson
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Figure 4.3: The Frame window of an IC

distribution.

When a patient arrives, it is immediately verified whether one of the beds in
the ICU is available (for emergency patients this happens through the Method
"MovingArrivals", for elective patients through the Method "BeginDay" that
also creates the elective patients). If a bed is available, the bed is given a
’processing time’ and the patient is sent to the available bed. In the following
subsection, we discuss the processing time of the bed (this is the LOS of the
patient). If no bed is available and the patient is an internal emergency patient,
the Method "CreateOverbed" is executed. When this Method is executed, an
over bed is created, the processing time is set and the patient is placed in this
over bed. If no bed is available and the arriving patient is a regional emergency
patient, the Method "TransExtEmerg" is called upon. This Method verifies
whether a regional bed is available. If this is the fact, the processing time is
set and the patient is placed in the available regional bed. If no regional bed
is available the patient is deleted from the system. If not all elective patients
planned for an operation that day can be placed in a bed, the remaining patients
are deleted from the system. This is done through the Method "BeginDay".

Unit

The unit consists of a chosen number of beds. In Section 4.1.1 we discussed
how to create the chosen number of beds for each ICU. While running the
simulation, over beds can be added to the ICU. A bed (normal-, regional- or
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over bed) is modelled as a SingleProc. The ProcessingTime of the SingleProc
is the LOS of the patient. For the LOS we distinguish three patient types:
elective, internal emergency and regional Emergency. Although it is plausible
that more distinction can be made, like difference in the treating specialism, we
have chosen not to get in too much detail. We do not think that making more
distinction in patients concerning the LOS improves the simulation enough (the
extra work of adding details has to be considered against the improvement of
the simulation).

We assume that the LOS has a Lognormal distribution. Marazzi et. al. [22]
established the adequacy of the Lognormal, the Weibull and the Gamma distrib-
ution for describing the distribution of the LOS. Section 2.1.3 discussed that the
Lognormal distribution fits well to the data concerning the LOS of the Erasmus
MC. Therefore we have chosen to use a Lognormal distribution for the LOS in
the simulation model. The exponential distribution can be used to study the
different outcomes when using a Lognormal distribution or an exponential dis-
tribution. We have used a different mean LOS for each patient type but have
not made a distinction for each ICU. We have used the means as calculated in
Section 2.1.3.

When the patient has finished his stay at the ICU, the Method "LeaveIC" is
executed, which moves the patient to the ward. In case of a normal bed, this
Method checks if an over bed is in use. If this is the fact, then the Processing
Time of the bed is adjusted to the remaining LOS of the patient in the over bed,
the patient in the over bed is placed in the normal and the over bed is deleted.

Ward

The ward is modelled as a Drain. The Method "PatientLeavesIC", that is run
when a patient enters the Drain, verifies whether the patient comes from an over
bed. If this is the case, the over bed is deleted. After execution of the Method
"PatientLeavesIC", the patient is removed from the system.

4.2 Data collection
During a simulation run several data is collected. For each ICU data is collected
and for the total region data is collected.

The average bed occupation
For each ICU and for the regional beds, the average bed occupation is registered.
This is calculated every time a patient leaves the ICU or a regional bed. The
average bed occupation is calculated as follows:

Ld : = Ld+ simtime−Et,

Bo : =
Ld

simtime ∗ n,

with Ld the current total number of lying days of al patients that have left
the ICU during the simulation run, simtime the current simulation time (the
time the simulation run has taken up to now), Et the simulation time at which
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the patient entered the bed, Bo the average bed occupation and n the total
number of operational beds at the ICU (when the bed occupation is calculated
for an ICU) or the total number of regional beds (when the bed occupation is
calculated for the regional beds).

The proportion of cancelled operations
For each ICU the proportion of cancelled elective operations on patients that
require intensive care after the operation, is calculated. This is done every time
an elective patient has been admitted to the ICU or an elective operation has
been cancelled due to a shortage of IC beds.

The proportion of refused regional emergency patients
For each ICU and for the region in total, the proportion of regional emergency
patients that is refused due to a shortage of IC beds is calculated. This is done
each time a regional emergency patient is admitted or refused.

The average number of over beds
For each ICU, the average number of over beds is calculated, each time a patient
leaves an over bed:

Od : = Od+ simtime−Et,

Ao : =
Od

simtime
,

with Od the current amount of time over beds have existed, simtime the current
simulation time, Et the simulation time at which the patient entered the bed
and Ao the average number of over beds.

4.3 Validation of the simulation model
Before using the simulation model for predictions, we want to validate the simu-
lation model. That is, we want to know if the simulation is a good representation
of the reality. Therefore we have run the simulation model with one ICU con-
sisting of 36 IC beds and no regional beds. This is the situation of the IC
department of cluster 17 of the Erasmus MC. We have used the arrival rates
as given in Section 2.1.3. We made 20 runs, each consisting of 30 years. The
first 10 runs were used for calculating the warm-up period, the last 10 runs were
used to get the results. For calculating the warm-up period we used Welch’s
graphical method as discussed in [18]. The confidence intervals are calculated
using the Replication / Deletion Method as discussed in [18]:

X ± tn−1,1−α/2

r
S2(n)

n
, (4.1)

S2(n) =

Pn
i=1[Xi −X]2

n− 1 ,

with X the mean of the observations, excluding the warm-up period, n the
number of runs, tn−1,1/α/2 the upper 1−α/2 critical point for the t distribution
with n− 1 degrees of freedom and Xi the mean of run i excluding the warm-up
period. First we compare the outcomes with the data of the IC department
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Simulation results Actual data
Mean bed occupation 0.89± 0.001 ±0.87
Proportion of cancelled operations 0.26± 0.005 0.07± 0.01
Proportion of refused regional emergencies 0.18± 0.004 0.09± 0.01

Table 4.1: Comparing the simulation results with the reality

of cluster 17 of the Erasmus MC. At the end of this section, we discuss these
outcomes.

Bed occupation
Using formula (4.1) the 95% confidence interval for the mean bed occupation
is 0.89 ± 0.001. Because the actual number of operational beds can vary from
day to day (depending among others on the available staff) we can only give
an estimate of the actual bed occupation, using the average number of beds.
This results in a mean bed occupation of 0.87, which is close to the confidence
interval of the mean bed occupation in the simulation model.

Proportion of cancelled operations
The Replication / Deletion method gives a 95% confidence interval of 0.26±0.005
for the proportion of cancelled operations. Using data from the year 2003 of the
IC department of cluster 17 of the Erasmus MC we find a confidence interval of
0.07±0.01 for the proportion of cancelled operations. That means the simulation
gives a high proportion of cancelled operations.

Proportion of refused regional emergency patients
During the simulation we have collected data on the proportion of refused re-
gional emergency patients. These are the patients that at present are transferred
to an ICU in another hospital and later on in our model will be transferred to
a regional bed. When a large number of observations is taken, the proportion
of refused regional emergency patients approaches the probability a regional
emergency patient is refused. The 95% confidence interval for the proportion of
refused regional emergency patients is 0.18 ± 0.004. Using data from the year
2003 of the ICUs of cluster 17 of the Erasmus MC we find a confidence interval
of 0.09 ± 0.01 for the proportion of refused regional emergency patients. That
means the proportion of refused regional emergency patients in the simulation
model is high compared to the actual proportion of refused regional emergency
patients.

In Table 4.1 an overview is given of the results presented in this section. It
can be seen that the proportion of cancelled operations and the proportion of
refused regional emergency patients are on the high side. Several explanations
can be found for that. First of all, as already mentioned in Section 2.1.3, the
mean LOS is most likely to be too large. The only solution to this is to collect
correct data on the lying days. Another explanation for the high proportion of
cancelled operations and refused regional emergency patients in the simulation
is that in reality it may happen that IC patients are predischarged to release
the bed for an arriving patient whereas in the simulation model it is possible
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that one minute before a patient is released, another patient is refused. More
research on the predischarging of patients has to bed done before this can be
added to the simulation model. Adapting the simulation model to this end is not
difficult. The high proportion of cancelled operations can also be explained by
the assumption on the arrival process. We have assumed that elective patients
arrive according to a Poisson process although we believe that this is not correct.
The variability of elective arrivals is assumed to be smaller than the variability
of the Poisson process. With a higher variability it is more likely that patients
are being rejected. The solution to this is to consider other distributions for the
arrival of elective patients.
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Results

In this chapter we discuss the results concerning the analytic model and the
simulation model as treated in Chapters 3 and 4. To this end, the data of the
IC department of cluster 17 of the Erasmus MC, as discussed in Section 2.1.3, is
used. In addition, we have used estimated data, concerning arrivals, from three
other hospitals in the region Rijnmond1. Information on these hospitals can be
found in the Appendix C. As we only have information on the arrivals at the
other hospitals but not on the LOS, we will assume the mean LOS to be the
same for each ICU. Besides, it has to be noted that the data from these hospitals
are estimated values. Moreover, we only have information from a few hospitals
in the region Rijnmond. Therefore the results in this chapter are merely used to
evaluate the analytic model and to show the benefit of using regional emergency
beds.

For the implementation of the analytical method we have used Maple v. 8.00
(software to analyse and solve mathematical problems). We have only imple-
mented the simplified method with one patient type in the Equivalent ICU,
as discussed in Section 3.4.1. The rationale behind this is that we do not yet
have practical formula to compute the capacity and the load of the equivalent
ICU with three patient types as discussed in Section 3.4.2. We, however, do
recommend implementing this adjusted ERM so that the differences between
these two methods can be studied. The Maple code for the implementation of
the adjusted ERM with one patient stream at the equivalent ICU can be found
in Appendix D. In the implementation of the adjusted ERM, we have made
one difference compared to the theoretical method as discussed in this chapter.
For the implementation we have assumed the possible number of over beds to
be limited. The reason for this is that the calculations are difficult for an un-
limited possible number of over beds. Moreover, in practice the total number
of beds (operational beds plus over beds) is actually limited by the number of
constructional beds available. For the correctness of the assumptions we have
verified how much the outcome depends on the number of possible over beds.
For several ICUs we have calculated the expectation and variance of the number
of patients in the overflow for different maximum number of over beds. In Ap-
pendix E, graphs containing the expectation and the variance as a function of

1The data was obtained after requesting 11 hospitals in the region for information on the
arrivals at their IC.
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the maximum number of beds, for different ICUs, are given. It can be seen that
both the expectation and the variance converge fast. Therefore the difference in
outcomes do not differ much when using an infinite maximum number of over
beds or a finite maximum number of over beds. For correctness we, however,
advise to take a finite maximum number of over beds equal to the total num-
ber of beds available in the ICU. The ERM takes approximately one minute to
approximate the blocking probabilities for 0 to 50 regional beds.

To obtain results from the simulation model we have made 20 runs for each
test. Results of the first 10 runs are used to determine the warm-up period.
This is necessary because the system starts empty, which is not the case in
reality. Results of the second 10 runs are used to calculate the 95% confidence
intervals for the results of the simulation model. To this end we have used the
Replication / Deletion Method as shortly discussed in Section 4.3. Formula
(4.1) is then used to calculate the confidence interval. Each run simulates 30
or 60 years, depending on the amount of observations required for the warm-up
period and the confidence interval. A run of 60 years, including four hospitals
takes approximately half an hour. A run of 30 years with one hospital takes
approximately 10 minutes.

In Section 5.1 we first compare the outcomes of the simulation model using an
exponential distributed LOS with the outcomes of the simulation model using
a lognormal distributed LOS. To this end we use the data of the Erasmus MC.
Next, in Section 5.2, we give the results of the simulation model for the three
other hospitals, without regional beds. We use these results to discuss the
assumption that the mean LOS is the same for each ICU. Then, in Section 5.3,
we discuss the results for the situation of a region with several hospitals without
cooperation. In this case each ICU reserves beds only for the regional patients
arriving at their ICU. We use the results to compare the analytic model with
the simulation model. Finally, in Section 5.4, we demonstrate the advantages
of jointly reserving regional IC beds. To this end we use the data of the four
hospitals in the region.

5.1 Comparing exponential LOS with lognormal
LOS

In Section 2.1.3 we have seen that the lognormal distribution best fits the data of
the Length Of Stay (LOS) at the ICU. In the analytic model, however, we have
assumed the LOS to be exponentially distributed. To test what the influence of
the exponential assumption is, we have run the simulation model with the data of
the Erasmus MC for exponential distributed LOS and for lognormal distributed
LOS. We now compare the outcomes of the mean bed occupation, the proportion
of cancelled operations, the proportion of refused emergency patients and the
average number of over beds. Table 5.1 gives the confidence intervals, when
using exponential distributed LOS, when using Lognormal distributed LOS, and
for the difference between these two situations. From the confidence intervals of
the differences it can be seen that, although there is a slight difference for the
mean bed occupation, there is no significant difference for the other outcomes.
We are particularly interested in the proportion of refused regional emergency
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patients, for which it does not make a difference if the exponential distribution
or the Lognormal distribution is used for the LOS. Therefore we may use the
exponential distribution for the LOS, even though it does not correspond to
reality.

Exponential
confidence
interval

Lognormal con-
fidence interval

Difference confi-
dence interval

Mean bed occupation 0.90± 0.002 0.89± 0.001 0.003± 0.002
Proportion of cancelled
operations

0.26± 0.006 0.26± 0.005 0.003± 0.009

Proportion of refused
regional patients

0.18± 0.005 0.18± 0.004 −0.002± 0.007

Average number of over
beds

0.08± 0.004 0.08± 0.004 −0.002± 0.008

Table 5.1: Comparing Exponential LOS with LogNormal LOS with data of the
Erasmus MC

5.2 Evaluating the assumption of one mean LOS

To generate results, we have made the assumption that the mean LOS is the
same in every hospital. To verify if this assumption is realistic we have run the
simulation model, without regional beds, for the three hospitals in the region
of which we have obtained estimated data concerning the arrivals of patients.
For the mean LOS we have, for each ICU, taken the mean LOS of the IC
department the Erasmus MC. The outcomes of the simulation model are given
in Table 5.2. We do not have enough data to statistically draw conclusions, but
given the extreme outcomes for the Sint Franciscus Gasthuis and the Albert
Schweizer Hospital, we presume these outcomes are not realistic. Adding to
this the fact that the Erasmus MC, as a university hospital, receives patients
with complicated disorders, we can expect that the mean LOS at the ICU is not
the same for different hospitals. It is therefore wise to verify this conclusion and
if necessary, to collect data concerning the LOS of each ICU and use this in the
analytic model and the simulation model to determine the number of regional
beds required in the region.

5.3 Results for the region without cooperation

In this section we discuss the results for the situation when the ICUs in the re-
gion are not cooperating. In this situation we examine the case if the ICUs each
would reserve there own beds (reserved beds) for regional emergency patients.
We have obtained results from the analytic model and from the simulation
model for several hospitals. For the analytic model we have obtained the block-
ing probability for regional emergency patients and for the simulation model we

2The number of cancelled operations was too small to calculate a 95% confidence interval.
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Sint Franciscus
Gasthuis

Dirksland Albert Schweizer

Mean bedoccupation 1.23± 0.02 0.18± 0.01 1.23± 0.02

Proportion of cancelled
operations

0.74± 0.01 ±02 0.72± 0.01

Proportion of refused
regional patients

0.71± 0.02 0.001± 0.001 0.69± 0.02

Table 5.2: Outcomes of the simulation without regional beds

have obtained the proportion of refused regional emergency patients. These two
should approximately be the same as we have taken a large number of observa-
tions for the proportion of refused regional emergency patients. In Table 5.3 the
results for several numbers of reserved beds are given for the Erasmus MC. It
might seem laborious to use the ERM for the blocking probability of one ICU.
However, we already have formulas for ERM and the approximation should be
as good as when we using the ERM to calculate blocking probabilities for several
ICUs. When we compare the blocking probabilities obtained by the ERM, with
the proportion of refused regional emergency patients obtained by the simula-
tion, it can be seen that the differences are small. In Section 4.3 we established a
difference between the outcomes of the simulation and the real data. Assuming
that these differences are a result of an error in the mean and standard deviation
of the LOS and as a results of the assumption that the elective patients arrive
according to a poisson process, this error should also influence the outcomes of
the ERM. As the difference in results from the simulation and from the ERM
are small we can conclude that the ERM, when using a correct mean LOS, leads
to a good approximation of the blocking probability of the regional emergency
patients. In Appendix H the outcomes of the ERM and of the simulation of the
other three hospitals without cooperation are given. These results too, show
the small difference in outcomes between the ERM and the simulation. This
appendix also gives graphs containing the blocking probabilities of the ERM as
a function of the number of reserved beds for the four hospitals.

5.4 Results for the region with cooperation
We now discuss the results for the region when there is cooperation. We have
obtained outcomes from the ERM and from the simulation model using the data
from the four hospitals. We have done this for a several number of regional beds
that are jointly reserved for regional emergency patients arriving at any hospital.
By means of the ERM we have obtained the total blocking probability for all
regional emergency patients. Using the simulation model, we have obtained the
total proportion of refused regional emergency patients, as well as the proportion
of refused regional emergency patients for each hospital separately. Table 5.4
and 5.5 show these results.

We will now illustrate the advantage of cooperation within the region by means
of an example, using the simulation results given in this and the previous sec-
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Number of
reserved
beds

ERM blocking
probability

Proportion refused re-
gionals in simulation

0 0.207 0.182± 0.004
1 0.168 0.148± 0.003
2 0.133 0.119± 0.003
3 0.102 0.093± 0.004
4 0.077 0.070± 0.004
5 0.056 0.053± 0.003
6 0.039 0.039± 0.003
7 0.026 0.026± 0.001
8 0.017 0.019± 0.003
9 0.011 0.012± 0.002
10 0.006 0.009± 0.002
11 0.004 0.005± 0.001
12 0.002 0.003± 0.001
13 0.001 0.002± 0.001
14 0.001 0.001± 0.000
15 0.000 0.001± 0.000
16 0.000 0.000± 0.000

Table 5.3: Blocking probability regional emergency patients at the Erasmus MC
without cooperation

Number of
regional beds

ERM blocking
probability

Proportion refused re-
gionals in simulation

0 0.255 0.232± 0.006
1 0.215 0.195± 0.003
2 0.177 0.162± 0.006
3 0.142 0.134± 0.005
4 0.112 0.107± 0.004
5 0.085 0.083± 0.004
6 0.063 0.065± 0.002
7 0.045 0.049± 0.001
8 0.030 0.036± 0.001
9 0.020 0.026± 0.002
10 0.013 0.018± 0.001
11 0.008 0.011± 0.001
12 0.004 0.007± 0.000
13 0.002 0.005± 0.000
14 0.001 0.003± 0.000
15 0.001 0.002± 0.000
16 0.000

Table 5.4: Blocking probability regional emergency patients in the region with
cooperation
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Nr of
regional
beds

Erasmus MC Albert Schweizer Dirksland Sint Franciscus

0 0.182± 0.004 0.698± 0.016 0.001± 0.001 0.705± 0.016
1 0.161± 0.004 0.543± 0.012 0.001± 0.001 0.540± 0.009
2 0.134± 0.003 0.401± 0.012 0.001± 0.001 0.417± 0.007
3 0.118± 0.004 0.302± 0.018 0.318± 0.008
4 0.096± 0.002 0.222± 0.015 0.224± 0.007
5 0.074± 0.002 0.154± 0.011 0.168± 0.007
6 0.060± 0.002 0.115± 0.008 0.121± 0.005
7 0.046± 0.001 0.085± 0.008 0.085± 0.005
8 0.034± 0.002 0.059± 0.005 0.061± 0.005
9 0.025± 0.002 0.039± 0.005 0.038± 0.003
10 0.018± 0.002 0.024± 0.004 0.026± 0.003
11 0.011± 0.001 0.015± 0.004 0.017± 0.002
12 0.007± 0.001 0.010± 0.001 0.012± 0.002
13 0.005± 0.004 0.006± 0.003 0.006± 0.002
14 0.003± 0.000 0.004± 0.001 0.004± 0.001
15 0.002± 0.000
Table 5.5: Blocking probability regional emergency patients for each hospital
with cooperation

tion. The reason we do not use the ERM in this example is that currently
the ERM only gives the blocking probabilities for the whole region and not per
ICU. Suppose the management of the ICUs in the region decides to accept a
probability of 0.01 that a regional patient is refused and needs to be transferred
to an ICU outside the region. From Table 5.4 it can be seen that 11 regional
beds are required to obtain a probability of 0.011. If we now look in Table 5.5
in the row with 11 beds, we see that this results in a blocking probability of
approximately 0.01 for regional patients arriving at the Erasmus MC, approxi-
mately 0.02 for regional patients arriving at the Albert Schweizer Hospital and
the Sint Franciscus Gasthuis and approximately 0 for regional patients arriv-
ing at the Dirksland Hospital. We now use Tables 5.3, H.1, H.2 and H.3 to
determine how many regional beds were required to obtain these same results
without cooperation. For the Erasmus MC 9 regional beds would be required,
for the Albert Schweizer hospital 3 beds would be required and for the Sint
Franciscus Gasthuis 4 beds would be required, resulting in 16 beds in total. Ac-
cordingly, cooperation between the hospitals, in this case, results in a saving of
5 beds (31%). The reservation of regional beds does not influence the blocking
of elective patients or the use of over beds.

5.5 Discussion
In Section 1.3 we have shortly discussed the differences between simulation
models and analytic models. Because of these differences, the combination of
using an analytic model with a simulation model gives a good understanding
of the overflow of IC patients. Moreover, we think that a combination of these
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two can be a good tool for the management of the ICUs in the region to make
decisions concerning the reservation of regional beds. When the necessary data
has been obtained, the ERM can easily be used to approximate the number
regional beds required. If preferred, this Method can be adjusted such that
the blocking probabilities for each ICU separately can be determined. The
simulation model can then be used to demonstrate the flow of patients through
the hospitals. The analytic model has the advantage of giving a concrete answer
in a short amount of time. The simulation model demonstrates the behaviour
of the system but requires more time to obtained results.



Chapter 6

Conclusions and
recommendations

In this chapter we give the conclusions and recommendations that result from
the research.

6.1 Conclusions

The joint reservation of regional IC beds for the overflow of regional emergency
patients is a good solution to the problem that regional emergency patients
needing intensive care can not always be treated within the region. The coop-
eration between the ICUs in the region, by means of reserving regional beds,
leads to a saving of beds compared to the solution where each ICU tries to solve
this problem single-handedly. Given a satisfying probability of having to refuse
a regional emergency patient, the adjusted Equivalent Random Method can be
used to give an approximation of the total number of regional beds needed.
Subsequently, the management of the ICUs in the region will need to determine
how to distribute this number of beds among the ICUs, taking into account
the size of the ICUs and the type and level of care provided at each ICU. The
current available data is not correct and sufficient, as a result of which we can
not give a concrete answer to the question how many regional beds are needed
in the region Rijnmond.

For computations with the analytic method and the simulation model we have
made the assumption that the mean LOS is the same for each ICU. This as-
sumption appears to be incorrect. For a better approximation of the number of
beds required, data concerning the mean LOS of each ICU need to be collected.
The simulation model will need minor adjustments to use a different mean LOS
for each ICU.

For the analytic method we have made the questionable assumption that the
LOS is exponentially distributed. The model of the ICU, however, appears to
be insensitive to the choice between the exponential and the (more presum-
able) lognormal distribution for the LOS. Therefore we may use the exponential
distribution even though this does not correspond to reality.
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For the analytic method we have made the (unrealistic) assumption of an un-
limited possible number of over beds. For the implementation of this method
we needed to limit the possible number of over beds. Apart from the fact that
this is more realistic, the expectation and variance of the number of regional
patients overflowing the ICU as a function of the maximum possible number
of over beds turn out to converge fast. Consequently the assumption of an
unlimited possible number if over beds does not influence the outcomes of the
computations, as long as the number of constructional beds is reasonably large.

6.2 Recommendations

General
Although we conclude that the reservations of IC beds for the overflow of re-
gional emergency patients is a good solution to the problem of regional emer-
gency patients overflowing the region, we recommend to do further research
before actually introducing the regional beds.

• We have not taken the costs of having more operational beds into account.
Therefore we advise to first determine how many extra beds are needed in
the region for the reservation of regional beds and consequently consider
the costs of these extra beds.

• We did not consider the fact that different hospitals offer different services.
When distributing the regional beds over the different ICUs in the region,
it is possible that this severely complicates the introduction of regional
beds. We recommend examining the implications of the different ICUs
offering different care.

• We have only considered one solution to the problem of the regional over-
flow. Although we believe it is a good solution we do not know if it is
the best solution. We recommend investigating other options of solving
the overflow problem and comparing the different options. An example of
another option is the reservation of regional beds not only for the overflow
of regional emergency patients, but for all regional emergency patients. In
such a case there would be separate beds for the internal emergency and
elective patients and separate beds for the regional emergency patients.
An advantage of this compared to the reservation just for the overflow of
regional emergency patients is that it is more orderly and therefore more
likely to succeed in implementing. A disadvantage is that by separating
beds for different patients, the use of the bed capacity is less flexible.

The adjusted ERM
The adjusted Equivalent Random Method is an appropriate tool to assist the
management of a region on the number of regional beds needed. However, some
adjustments are advised to improve the method.

• The assumption that the LOS is exponentially distributed is supported by
our results, but not proven. Therefore we recommend examining whether
the results are insensitive to the type of distribution chosen. If this is the
fact, only the mean LOS is of importance.
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• The assumption that all patient types have the same mean LOS is in-
correct. We advise examining the implications of this assumption on the
outcomes of the ERM. If it turns out that the assumption of having dif-
ferent mean LOS for the different types of patients has a bad implication,
we advise to adjust the analytic method. We expect that the work of
Fredericks [13] can be used for this purpose.

• We advise to work out the more complex version of the analytic method,
in which the equivalent ICU receives three patient streams. This version
is more realistic and therefore might give better approximations of the
number of regional beds needed. Comparing the outcomes of the two
versions with each other and with results of the simulation model will give
an answer.

The simulation model
In the simulation model we have not gone in too much detail, as we do not
think that more detail will make the simulation model better. We do however
recommend considering one thing.

• We recommend considering the predischarging of patients. For this pur-
pose the predischarging of patients as it currently happens should be stud-
ied before the simulation model can be adjusted. Adjusting the simulation
will not be difficult.

Data
Correct and sufficient data is important in order to advise a region on the
number of regional emergency beds needed. The following recommendations
are given concerning the data.

• The Length of Stay (LOS) registered at cluster 17 of the Erasmus MC
does not equal the actual LOS. We recommend examining if the actual
LOS can be determined from the existing data. If this is not possible we
recommend starting the registering of the actual LOS. The correct LOS is
needed as input for the method to calculate the number of regional beds
required.

• We recommend collecting the required data from all the ICUs in the re-
gion. This data is necessary to give an approximation of the number of
regional beds needed. Required is the average number of regional patients
arriving per day, the average number of elective patients arriving per day,
the average number of internal emergency patients arriving per day, the
number of operational beds, the number of constructional beds and the
mean LOS. To use a different mean LOS for each ICU, the simulation
model needs minor adjustment.

• We have made the assumption that elective patients arrive according to
a Poisson process. This assumption is questionable and therefore we ad-
vise to examine if there exists a distribution that better fits the arrivals
of elective patients than the Poisson distribution. If it is necessary and
possible, we advise to adjust the model to this.
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• In the introduction we mentioned that the number of trauma patients
offered to the IC department of cluster 17 of the Erasmus MC is most
likely to further increase. We recommend investigating this increase and
the implications it might have on the average number of patients arriving
and on the mean LOS.

• Currently the IC department of cluster 17 of the Erasmus MC is being
reorganised. We recommend investigating whether this change has im-
plications on the average number of patients arriving and on the mean
LOS.

Introduction of the regional beds
This document reports a mathematical study and therefore does not discuss
the management side of introducing regional beds. However, we do recognise
this is an import and complicated process. Therefore we highly recommend to
carefully consider the following:

• Carefully consider what probability of refusing a regional patient is satis-
fying. The costs of having more beds should be weighed against the costs
of transporting patients. With costs we do not only aim at money, but
also at e.g. low bed occupations (thus more staff than work) and possible
deteriorating of a patients health because of transportation.

• We recommend to strictly watch over the beds reserved for regional pa-
tients. If these beds are used for elective patients or internal emergency
patients, the probability of refusing a regional emergency patient will be
higher than agreed on by the management of the ICUs in the region. The
costs of having the extra beds are then consequently paid for other patients
than intended.

Other research
During the research documented in this report, we have run into matters that
can be interesting to investigate, but were not of direct relevance for this re-
search. For more research, however, we give some recommendations.

• In the region Rijnmond, information on the available IC capacity is not
shared among hospitals or with the ambulance service. We recommend
investigating possibilities to better share information in order to minimise
the transportation of patients. To this end we refer to the national data-
base for the registration of available IC capacity [14]. We recommend
investigating the options of exploiting this service.

• Currently, elective patients, although planned, arrive unexpectedly at the
ICU. We have the impression that by planning the operations, after which
an IC bed is needed, in cooperation with the intensivists, will result in a
better utilisation of the IC beds. We recommend investigating the options
to improve the planning, and subsequently the arrival of the elective IC
patients.
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• Only assumptions have been made on the available IC bed capacity in
the region Rijnmond. We advise to explore the capacity and the use of
it. If some ICUs turn out to have a very low bed occupation it might be
possible to use some of these beds for the regional emergency patients.



Bibliography

[1] Albert Schweizer ziekenhuis, http://www.asz.nl, retreived January 2005.

[2] Artalejo J.R. and Pozo, M., Numerical calculation of the stationary distrib-
ution of the main multiserver retrial queue, Annals of Operations Research,
vol. 116 (2002), p. 41-56.

[3] Bakker, J., Criteria voor opname en ontslag van Intensive Care afdelingen
in Nederland, Nederlandse Vereniging voor Intensive Care, 2001.

[4] Borst, S.C., Boucherie, R.J. and Boxma, O.J., ERMR: A generalised Equiv-
alent Random Method for overflow systems with Repacking, Teletraffic En-
gineering in a Competitive World, Proceedings of the International Teletraf-
fic Congress - ITC-16 (1999), p. 313-323.

[5] College Bouw Ziekenhuisvoorzieningen, Onderzoek Intensive Care; uitvoer-
ingstoets, deel 1: aanbod en gebruik in de huidige situatie, Utrecht, 2002.

[6] College Bouw Ziekenhuisvoorzieningen, Onderzoek Intensive Care; uitvoer-
ingstoets, deel 2: behoefte en spreiding, Utrecht, 2002.

[7] Bretschneider, G., Die berechnung von leitungsgruppen für überfließen-
den Verkehr in Fernsprechwählanlagen, Nachrichtentechnische Zeitschrift
9, (1956), p. 533-540.

[8] Cooper, R.B., Introduction to queueing theory, second edition, Elsevier
North Holland, New York, 1981.

[9] Dirksland ziekenhuis, http://www.zhsdirksland.nl, retreived January 2005.

[10] Erasmus Medisch Centrum, http://www.erasmusmc.nl, retreived January
2005.

[11] Falin G.I. and Templeton J.G.C., Retrial queues, Monographs on statistics
and applied probability 75, London, Chapman & Hall, 1997.

[12] M.J. Fischer, D.A. Garbin, G.W. Swinsky, An enhanced extension to
Wilkinson’s equivalent random technique with applications to traffic en-
gineering, IEEE transactions on communications, vol. 32 (1984) no.1, p.
2—4.

[13] Fredericks, A.A., Impact of holding time distributions on parcel blocking
in multi-class networks with application to Internet traffic on PSTNs, Tele-
traffic Engineering in a Competitive World. Proceedings of the International
Teletraffic Congress - ITC-16. Vol.3b (1999), p. 877-886.



58 BIBLIOGRAPHY

[14] IC capaciteit, http://www.intensivist.nl/ic-capac.htm, the Dutch society of
intensivists, retreived january 2005.

[15] Jagerman, D.L., Methods in traffic calculations, AT&T Bell Laboratories
Technical Journal, vol. 63 (1984), no. 7, p. 1283-1309.

[16] Jagers, A.A. and van Doorn, E.A., On the continued Erlang loss function,
Operations research letters, vol. 5 (1986), no. 1, p. 43-46.

[17] J. Labetoulle, Mixing of traffics on a trunk group: calculations of blocking
probabilities using an extension of the ERT method, ITC 11, Session 5.2B
(1985), Paper 1.

[18] Law, A.M. and Kelton, W.D., Simulation Modeling and Analysis, McGraw-
Hill Higher Education, Third edition, 2000.

[19] Lesscher, R., Meutstege, E. and Rouhof, J., Data Analyse van de Intensive
Care, Universiteit Twente, 2004.

[20] Machihara, F., An infinitely-many server queue having Markov renewal
arrivals and hyperexponential service times, Journal of the Operations Re-
search Society of Japan., vol. 29 (1986), p. 338—350.

[21] Machihara, F., An extended equivalent random method for engineering
networks with heterogeneous inputs, Operational research - Proceedings of
the Eleventh International Conference held in Buenos Aires’87, p. 759–
771.

[22] Marazzi, a. et. al, Fitting the distributions of length of stay by parametric
models, Medical Care, vol. 36 (1998), no. 6, p. 915-927.

[23] Rijksinstituut voor Volksgezondheid en Milieu, Nationale Atlas Volks-
gezondheid, http://www.rivm.nl/vtv/generate/objv2atl_atlas_0.htm, re-
treived january 2005.

[24] Rapp, Y., Planning of Junction Network in a multiexchange area, Ericsson
Technics, vol. 20 (1964), no. 1, p. 77-130.

[25] Schehrer, R.G., A two moment method for overflow systems with different
mean holding times, Proceedings ITCC-15, 1997, p. 1303-1314.

[26] Schrijvers, A.J.P. and Jörg, F., Plaatstekort Intensive Care afdelingen in
Nederland in 1996, een vooronderzoek, Julius Centrum voor Patiëntebon-
den Onderzoek, 1997.

[27] Schrijvers, A.J.P. et al., Plaats in de herberg, een studie naar determinanten
van opname- en ontslagproblemen op IC-afdelingen in Nederland, Utrecht,
2001.

[28] Sint Franciscus Gasthuis, http://www.sfg.nl, retreived January 2005.

[29] Shortle, J.F., An Equivalent Random Method with hyper-exponential ser-
vice, Performance evaluation, vol. 57 (2004), no. 3, p. 409-422.

[30] Schakels in een keten, Strategische visie 2004-2008 van Cluster 17.



BIBLIOGRAPHY 59

[31] Stuurgroep Intensive Care, Programma Intensive Care: Aanpak van de
problemen in de Intensive Care in Nederland, Den Haag, 2002.

[32] TechnoMatrix, Tutorial version 5.5, eM-Plant, 2002.

[33] TechnoMatrix GmbH & C0.KG, emPlant Help, 2003.

[34] Wilkinson, R.I., Theories for toll traffic engineering in the USA, The bell
system technical journal, vol. 35 (1956), p. 421-514.

[35] Wolff, R.W., Stochastic modeling and the theory of queues, Prentice Hall
Inc, New Jersey, 1989.



Appendix A

Definitions, abreviations
and symbols

A.1 List with abbreviations
Erasmus MC Erasmus Medical Centre

ERM Equivalent Random Method

IC Intensive Care

ICU Intensive Care Unit

LOS Length Of Stay

A.2 List with definitions

Bed occupation The proportion of beds that is occupied.

Capacity of the ICU The number of equiped beds and the quantity
of staff.

Constructional bed Bed that is not staffed and can therefore offi-
cially not be occupied.

Critical Care See Intensive Care

Elective Operation Operation that is planned.

Elective patient Patient that is planned. An elective IC pa-
tient comes from the Operation Theatre and
the arrival can be postponed if necessary.

Emergency patient Patient that requires immediate treatment.

High care Guarding, nursing and treatment of patients
with a threatening or existing disorder at one
of the vital organ functions.

Inpatient Patient that needs a hospital bed for at least
one night
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Intensive care Guarding, nursing and treatment of patients
with a threatening or existing disorder at more
than one of the vital organ functions.

Intensive Care bed Bed that is equipped to provide intensive care.

Intensive Care department Department that consists of one or more In-
tensive Care Units.

Intensive Care Unit Hospital ward staffed and equipped to provide
intensive care.

Intensive Care Patient Patient requiring Intensive Care treatment.

Intensivist Physician who is specialised in the care of crit-
ically ill patients.

Internal Emergency Patient Emergency patient admitted to the hospital
before the emergency.

Length of Stay The number of days the patient has spent at
the unit.

Medium Care Guarding, nursing and treatment of critically
ill patients of whom the vital organs are func-
tioning on themselves.

Operational bed Staffed bed that is occupied or can be occu-
pied by a patient.

Over bed Constructional bed that is not staffed. The
bed is used when all staffed beds are occupied
and an emergency patient arrives from within
the hospital.

Overflow (Fictitious) Intensive Care Unit that takes
care of Intensive Care Patients refused at an
Intensive Care Unit due to the unavailability
of operational beds.

Post Operation Care Unit Hospital ward staffed and equipped to pro-
vide monitoring of the vital organ functions
of patients who need intensive monitoring for
at most 24 hours after an operation

Recovery Room Hospital ward where the vital organ func-
tions of the patient are strictly guarded after
surgery.

Region A region in which the ICUs cooperate.

Regional bed Intensive Care bed reserved for the treatment
of regional emergency patients.

Regional emergency patient Emergency patient in the region not admitted
to a hospital before the emergency.

Special Care Care that is provided to patients who at ar-
rival at the IC department require medium
care or high care.
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Step down patient Patient who steps down from intensive care to
medium care or high care.

Step up patient Patient who needs Medium Care or High Care
at arrival on the IC.

Trauma Centre Integral care facility for patients from severe
accidents.

Unit Recognizable part of a medical department.
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A.3 List with symbols

λ Mean arrival rate at equivalent ICU.

λi Mean arrival rate at ICU i.

µ−1 Mean LOS of equivalent ICU.

µ−1i Mean LOS of ICU i.

ρ Load of equivalent ICU: λ/µ.

ρi Load of ICU i: λi/µi.

B(c, ρ) Erlang loss blocking probability with capacity c and load ρ.

c Capacity of equivalent ICU.

ci Capacity if ICU i.

E Expected number of patients in the overflow of the equivalent
ICU.

E Expected number of patients that overflow the region (that are
refused in the ICUs and the regional beds).

Ei Expected number of patients in the overflow of ICU i.

E
(i)
j Expected number of patients in the overflow of ICU i,with j

patients in ICU i (first derivative of G(i)j (z) with respect to z).

E
0(i)
j Second derivative of G(i)j (z) with respect to z.

Ej,l Expected number of patients in the overflow with j patients in
the equivalent ICU and l patients in the regional beds.

G
(i)
j (z) Marginal generating function of the probabiltiy Pi (j, k).

Gj,l (z) Marginal generating function of the probability P (j, l, k).

j Number of patients in the ICU, j = 0, 1, 2, ....

k Number of patients in the overflow, k = 0, 1, 2, ....

l Number of patients in the regional beds, l = 0, 1, 2, ..., r.

n Number of ICUs.

pt Probability patient arriving at equivalent ICU is of type t,
t = 1, 2, 3.

pt,i Probability patient arriving at ICU i is of type t, t = 1, 2, 3.

Pi(j) Probability of having j patients in ICU i.

Pi(j, k) Probability of having j patients in ICU i and k patients in the
overflow.

P (j, l, k) Probability of having j patients in the equivalent ICU, l pa-
tients in the regional beds and k patients in the overflow.

r Number of regional beds.

V Variance of the number of patients in the overflow of the equiv-
alent ICU.

Vi Variance of the number of patients in the overflow of ICU i.
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Organisational charts

B.1 Organisational chart of the Erasmus MC
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B.2 Organisational chart of cluster 17
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Appendix C

Data from several hospitals
in the region

We have obtained estimated values for data concerning the arrivals at the IC
department from three hospitals in the region: Albert Schweizer hospital, Dirk-
sland hospital and Sint Franciscus Gasthuis. Albert Schweizer hospital [1] is a
general hospital with four locations. Two locations are situated in Dordrecht,
one is situated in Zwijndrecht and one is situated in Sliedrecht. The Albert
Schweizer hospital has 1045 beds of which 13 IC beds, 180 medical specialists
and 3755 employees. Dirksland hospital [9] is a protestant-christian hospital
situated in Dirksland. Dirksland hospital has 140 beds of which 5 IC beds, 35
medical specialists and 420 employees. Sint Franciscus Gasthuis [28] is a general
hospital situated in Rotterdam. They have 613 beds of which 11 IC beds, 96
medical specialists and 2000 employees. Table C.1 shows the estimated data as
given by these hospitals

Hospital Number of IC
beds

Mean number of
regional emer-
gency arrivals
per day

Mean number of
elective arrivals
per day

Mean number of
internal emer-
gency arrivals
per day

Albert Schweizer 13 0.09 0.95 1.66
Dirksland 5 0.07 0.06 0.02
Sint Franciscus 11 0.18 0.96 1.37

Table C.1: Data of several hospitals in the region Rijnmond



Appendix D

Maple code for the adjusted
ERM

Expected number of patients in the overflow
> restart:

The input
> n := 4:

lambda[1,1] := 1/.46:
lambda[2,1] := 1/.58:
lambda[3,1] := 1/.62:
lambda[1,2] := 0.18:
lambda[2,2] := 0.96:
lambda[3,2] := 1.37:
lambda[1,3] := 0.07:
lambda[2,3] := 0.06:
lambda[3,3] := 0.02:
lambda[1,4] := 0.09:
lambda[2,4] := 0.95:
lambda[3,4] := 1.66:

mu[1] := 1/6.93:
c[1] := 36:
cmax[1] := 52:
mu[2] := 1/6.93:
c[2] := 11:
cmax[2] := 25:
mu[3] := 1/6.93:
c[3] := 5:
cmax[3] := 25:
mu[4] := 1/6.93:
c[4] := 13:
cmax[4] := 25:

for i from 1 to n do
lambda[i] := lambda[1,i] + lambda[2,i] + lambda[3,i]:
p[1,i] := lambda[1,i] / lambda[i];
p[2,i] := lambda[2,i] / lambda[i];
p[3,i] := lambda[3,i] / lambda[i];
rho[i] := lambda[i] /mu;
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end:

The expected number of patients in the overflow
> for i from 1 to n do

t:=cmax[i]:
P[0,i] := 1 / (sum(’1 / j! * rho[i]^j’, ’j’ = 0..c[i])

+ sum(’p[3,i]^(j - c[i]) * rho[i]^j / j!’,
’j’ = c[i] + 1..t))

EK[i] := p[1,i] * rho[i] * (1 - sum(’1 / j! *rho[i]^j’,’
j’=0..c[i]-1) * P[0,i]):

end:

for i from 1 to n do
EK[i] := EK[i]:

end:

The variance of the number of patients in the overflow
> for i from 1 to n do

t:=cmax[i]:
E[0,i]:=0:
unassign(’E[0,i]’):
E[-1,i] := 0:

for j from 1 to c[i] do
E[j,i] := E[j-1,i] + rho[i]^j / j! * E[0,i];

end:

E1[i] := E[0,i]-(p[1,i] + p[2,i]) * c[i]!
* rho[i]^(-c[i]) *E[c[i],i]:

for j from c[i]+1 to t do
E[j,i] := E[j-1,i] + p[3,i]^(j-(c[i]+1)) * rho[i]^(j)

/ j! *(E1[i]- p[1,i] * P[0,i] * (j - c[i]) ):
end:

E[0,i] := solve(sum(’E[j,i]’,’j’ = 0..t) = EK[i],E[0,i]):

Var[i] := p[1,i] * rho[i] * sum(’E[j,i]’,’j’ = c[i]..t)
+ EK[i] - (EK[i])^2:

end:

for i from 1 to n do
Var[i]:=Var[i];

end:

The Equivalent Random Method 1
> EK[ERM] := sum(’EK[i]’,’i’=1..n):

Var[ERM] := sum(’Var[i]’,’i’=1..n):

rho[ERM] := Var[ERM] + 3 * Var[ERM] / EK[ERM]
* (Var[ERM] / EK[ERM] - 1):

c[ERM] := rho[ERM] * (EK[ERM] + Var[ERM] / EK[ERM])
/ (EK[ERM] + Var[ERM] / EK[ERM] - 1) - EK[ERM] - 1:
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rho[ERM] := (floor(c[ERM]) + EK[ERM] + 1) * (EK[ERM] + Var[ERM]
/ EK[ERM] - 1) / (EK[ERM] + Var[ERM] / EK[ERM]):

for r from 0 to 30 do
EK[regional,r] := rho[ERM] * rho[ERM] ^(floor(c[ERM]) + r)

/(floor(c[ERM]) + r)!/sum(rho[ERM]^k/k!,
k = 0 ..floor(c[ERM])+r);

end:

for r from 0 to 30 do
P[blocking,r] := EK[regional,r]/sum(’p[1,i]*rho[i]’,

’i’ = 1..n);
end:

E:={}:
Pr:={}:
for r from 0 to 30 do
E := E union {[r,EK[regional,r]]}:
Pr := Pr union {[r,P[blocking,r]]}:

end:
plot(E,style=point,labels=[’r’,’expectation’],color=black):
plot(Pr,style=point,labels=[’r’,’Blockingprobability’],color=black):



Appendix E

Graphs of the expectation
and variance of the overflow

The Graphs in this section represent the expectation or the variance of the
number of patients in the overflow of several hospitals (without regional beds)
as function of the possible number of over beds.

Figure E.1: Expectation and Variance of the number of patients in the overflow
of the Erasmus MC as a function of the possible number of over beds
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Figure E.2: Expectation and Variance of the number of patients in the overflow
of the Albert Schweizer Hospital as a function of the possible number of over
beds

Figure E.3: Expectation and Variance of the number of patients in the overflow
of the Dirksland Hospital as a function of the possible number of over beds

Figure E.4: Expectation and Variance of the number of patients in the overflow
of the Sint Franciscus Gasthuis as a function of the possible number of over beds
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Basic elements of eM-Plant

EM-Plant is software for object oriented graphical modelling for simulating and
visualising systems and business processes. In this Chapter we shall give a
short description of the basic eM-Plant elements used in the simulation model
discussed in Chapter 4. Table F.1 gives an overview of these elements. For more
information see the eM-Plant tutorial [32].

Each new model in eM-Plant starts with a Frame. A Frame serves for grouping
objects and building hierarchically structured features. For example, the Region
and the ICU in the simulation model are both built in a frame. The Region is
in this case in top of the hierarchy and the ICU is one frame below the region.

An entity is a moving object. In the simulation model the patients are repre-
sented by entities. Each entity (patient) can be given special attributes (char-
acteristics), e.g. the creation time of the entity (the patients time of arrival).

A Single Processing Unit (SingleProc) receives and processes moving objects,
one at a time. In the simulation model the SingleProc is used to model a bed,
that ’processes’ patients. A Parallel Processing Unit (ParallelProc) has more
than one station to process moving objects. A Drain is a single processing
station that destroys moving objects after processing them. In the simulation
model, a Drain is used to delete patients from the system.

A Method can be used to program user-defined models, extending the function-
ality of the basic material flow objects. In the simulation model, for example,
the program code in a Method regulates what to do with arriving patients. A
Generator is used to activate Methods at specified times. In the simulation
generators are, for example, used to create patients with exponential intervals.

The object Variable is a global variable that, during a simulation run, can
be accessed by other Objects and Methods during. In the simulation model
Variables are, for example, used for the number of ICUs and the number of
beds. CardFiles and TableFiles are lists in which, during a simulation run, the
individual cells can be accessed by other Objects and Methods. A CardFile
has one column and a TableFile has several columns. In the simulation model
CardFiles and TableFiles are, for example, used to access the bed objects.
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The EventController coordinates and synchronizes the different events taken
place during a simulation run. It can be used to start, stop and reset the
simulation.

Element Description
CardFile The CardFile is a list with one column providing random

access to the contents of the individual cells using their row
number.

Drain The drain consists of a single processing station and de-
stroys the Moving Unit after processing it.

Entity The Entity is a moving material flow object without loading
capacity.

EventController The EventController coordinates and synchronizes the dif-
ferent events taking place during a simulation run.

Generator The Generator activates Method objects at specified times.
Method The Method can be used to program user-defined models,

extending the functionality of the basic material flow ob-
jects.

ParellelProc The ParellelProc has several stations for processing Moving
Units in parallel at the same time.

SingleProc The SingleProc has a single station for processing a Moving
Unit.

TableFile The TableFile is a list with several columns, from which the
individual cells can be accessed by using their index.

Variable The variable is a global variable that other objects and
methods can access during a simulation run.

Table F.1: Basic elements of eM-Plant



Appendix G

Methods of simulation
model

G.1 Method Create Region

This method creates the number of ICUs as chosen, and the number of region-
albeds as chosen.

is
i, x, y : integer;
IC, rb : object;
ICstring : string;

do

The existing ICUs are deleted.
y := TableofICs.yDim;
For i := 1 to y loop

IC := TableofICs[1,i];
ICstring := (to_str(TableofICs[1,i]));
if existsObject(ICstring) then

IC.deleteobject;
end;

next;

The existing ward with regional beds is deleted.
if existsObject("Regionalbeds") then

Regionalbeds.deleteobject;
end;

The existing table containing the ICUs is deleted.
if existsObject("TableofICs") then

TableofICs.deleteobject;
end;

The existing list containing the regional beds is deleted.
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if existsObject("ListofRegionalbeds") then
ListofRegionalbeds.deleteObject;

end;

A new table for the ICUs and a new list for the regional beds are created.
InformationFlow.TableofICs.createobject(current, 200, 35);
InformationFlow.ListofRegionalbeds.createObject(current,260,35);

The ICUs are created.
i := 0; — The loopnumber
x := 30; — The x-coordinate
y := 130; — The y-coordinate

while i <= NumberOfICs loop

IC := .Models.IC.createObject(current,x,y);

TableofICs.writeRow(1,i + 1,IC);
TableofICs.writeRow(2,i + 1,36);
TableofICs.writeRow(3,i + 1,2.4);
TableofICs.writeRow(4,i + 1,53568);
TableofICs.writeRow(5,i + 1,39744);

x := 30 + (i - 10 * floor(i / 10)) * 80;
y := 130 + floor(i / 10) * 80;
i := i + 1;

end;

The ‘unnumbered’ ICU is deleted.
Models.Region.IC.deleteobject;
TableofICs.cutrow(1);

A ward for the regional beds is created:
Objects.Regionalbeds.createobject(current,80,220);

i := 0; — Loopnumber
x := 30; — x-coordinate
y := 50; — y-coordinate
while i <= NumberofRegionalbeds loop

rb := .Objects.regionalbed.createObject(Regionalbeds,x,y);

ListofRegionalbeds.insert(i + 1, rb);

x := 30 + (i - 10 * floor(i / 10)) * 80;
y := 50 + floor(i / 10) * 80;
i := i + 1;

end;
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The ’unnumbered’ bed is deleted:
Regionalbeds.regionalbed.deleteObject;
ListofRegionalbeds.cutRow(1);

end;

G.2 Method createICs

This method creates the number of beds and the arrival rates as chosen per ICU
in the table containing the ICUs.

is
y, i : integer;
IC : object;

do

i := 1; — The loopnumber
y := TableofICs.yDim; — The number of units

while i <= y loop

The beds are created:
IC := TableofICs[1,i];
IC.Numberbeds := TableofICs[2,i];
IC.CreateBeds;

The arrival rates are set:
IC.Entrance.ElAR := TableofICs[3,i];
IC.Entrance.IEAR := TableofICs[4,i];
IC.Entrance.EEAR := TableofICs[5,i];
IC.SetArrivalRates;

The parameter is updated:
i := i + 1;

end;

end;

G.3 Method CreateBeds

This method creates the unit with the number of beds as chosen with the variables
numberbeds and numberofRegionalbeds.

is
x, y, i : integer;
a : object;
do
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The existing unit is deleted:
if existsObject("Unit") then

Unit.deleteObject;
end;

The existing list of beds is deleted:
if existsObject("ListofBeds") then

ListofBeds.deleteObject;
end;

The existing list of over beds is deleted:
if existsObject("ListofOverbeds") then

ListofOverbeds.deleteObject;
end;

New lists are created:
InformationFlow.ListofBeds.createObject(current,120,50);
InformationFlow.ListofOverbeds.createObject(current,200,50);

A new unit is created:
Objects.Unit.createObject(current,150,140);

i := 0;
x := 30;
y := 50;

while i <= NumberBeds loop

a := .Objects.bed.createObject(Unit,x,y);

ListofBeds.append(a);

x := 30 + (i - 9 * floor(i / 9)) * 80;
y := 50 + floor(i / 9) * 80;
i := i + 1;

end;

The ‘unnumbered’ bed is deleted:
Unit.bed.deleteObject;
ListofBeds.cutRow(1);

end;
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G.4 Method BeginDay
This method creates the elective patients on weekdays at 9 a.m.

is
ne, r, i, j, nco, nae, n : integer;
patient, obj, COKD, dcic : object;

do

The method that changes the day to the next day is activated.
newday;

if it is a weekday an certain number of elective patients is created. If a bed
is available they are give a bed, otherwise the patient is deleted.

if dayname = "monday" or
dayname = "tuesday" or
dayname = "wednesday" or
dayname = "thirsday" or
dayname = "friday" then

n := location.NumberBeds;
dcic := location.DataCollection;
r := location.location.run;

The number of elective patients to be created is Poisson distributed.
ne := z_poisson(r,ElAR);

for i := 1 to ne loop

patient := .MUs.ElectivePatient.create(ElectivesWaiting);

if dcic.NumberofOccupiedbeds < n then

j := 1; — loopnumber
while not ElectivesWaiting.empty and j <= n loop

The beds are checked for their availability
obj := location.ListofBeds.read(j).bed;
if not obj.full then

If the bed is available, the processing time is set
obj.procTime.setParam("lognorm", 3*(r-1) +

patient.stream, patient.meanLOS, patient.sdLOS);

The number of admitted patients is increased
dcic.Numberadmittedpatients :=

dcic.Numberadmittedpatients + 1;

The number of occupied beds is increased by one.
dcic.NumberofOccupiedBeds :=

dcic.NumberofOccupiedbeds + 1;



G.5 Method MovingArrivals 79

Data for this patient type is collected through the
method DataCollection.
patient.DataCollection.execute;

The entering time of the patient is set.
patient.EnteringTime := EventController.SimTime;

The patient is placed on the bed
patient.move(obj);

end;

j := j + 1;
end;

end;

if not ElectivesWaiting.empty then

If nog bed is available the patient is deleted.
patient.delete;

The number of cancelled operations is increased by one.
dcic.NumbercancelledOperations :=

dcic.NumbercancelledOperations + 1;

The proportion of cancelled operations is calculated
nco := dcic.NumbercancelledOperations;
nae := dcic.NumberAdmittedElectives;
if nco + nae > 0 then

dcic.ProbabilityOperationCanceled :=
nco /(nco + nae);

end;
COKD := dcic.CanceledOKData;
COKD.writerow(r,nco + nae,dcic.ProbabilityOperationCanceled);

end;
next;

end;
end;

G.5 Method MovingArrivals

This method deals with arriving emergency patients.
is

n, i , r :integer;
obj :object;
locpat : string;
patmoved : boolean;

do
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patmoved := false;
n := location.NumberBeds;

An available bed is sought
if location.DataCollection.NumberofOccupiedbeds < n then

i := 1;
while not patmoved and i <= n loop

The next operational bed in the list is found:
obj := location.ListofBeds.read(i).bed;

if not obj.full then
The processing time of the available bed is set:
r := location.location.Run;
obj.procTime.setParam("lognorm", 3*(r-1)

+ @.stream, @.meanLOS,@.sdLOS);

The number of patients admitted to this ICU is increased:
location.DataCollection.Numberadmittedpatients :=

location.DataCollection.Numberadmittedpatients + 1;

The number of occupied beds is increased by one:
location.DataCollection.NumberofOccupiedBeds :=

location.DataCollection.NumberofOccupiedbeds + 1;

Data for this patient type is collected:
@.DataCollection.execute;

The entering time of the patient is noted:
@.EnteringTime := EventController.SimTime;

The patient is moved to the available bed:
@.move(obj);
patmoved := true;

end;

i := i + 1;

end;

end;

If all operational beds are occupied, the method handling the overflow
of this patient type is executed.
if not patmoved then

@.Method.Execute;
end;

end;
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G.6 Method CreateOverbed

This Method deals with the internal emergency patients when no operational bed
is available.

is
ob, b : object;
naie, r, y, i : integer;

do

An over bed is created and added to the list with over beds.
ob := .Objects.Overbed.createObject(location.Unit,750,30);
location.ListofOverbeds.append(ob);

The processing time is set to equal the length of stay of the patient
r := location.location.Run;
ob.bed.procTime.setParam("lognorm", 3*(r-1) + @.stream,@.meanLOS,

@.sdLOS);

The entering time of the patient is set.
@.EnteringTime := EventController.SimTime;

The number of admitted internal emergency patients is increased by one.
location.Datacollection.NumberAdmittedIntEmerg :=

location.DataCollection.NumberAdmittedIntEmerg +1;

It is noted in which over bed the patient is placed.
@.overbed := ob;

The patient is placed in the over bed.
@.move(ob.bed);

The number of admitted patients is increased by one.
location.DataCollection.NumberAdmittedPatients :=

location.DataCollection.NumberAdmittedPatients + 1;

The number of over beds created is increased by one.
location.DataCollection.NumberOverbedsCreated :=

location.DataCollection.NumberOverbedsCreated + 1;

The number of existing over beds is increased by one.
location.DataCollection.NumberofOverbeds :=

location.DataCollection.NumberofOverbeds + 1;

end;
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G.7 Method TranspExtEmerg
This Method deals with the regional emergency patients when no operational bed
is available at the ICU.

is
n, i , arp, trp, ntp, naee, r : integer;
obj, dcr, dcic, RD, PPTD : object;
locpat : string;
patmoved : boolean;

do

patmoved := false;
If a regional bed is available, the patient is placed in this bed.
n := location.location.NumberofRegionalBeds;
r := location.location.Run;
dcr := location.location.Regionalbeds.DataCollection;
dcic := location.DataCollection;
locpat := to_str(@);

i := 1; — Loopnumber
while not patmoved and i <= n loop

obj := location.location.ListofRegionalBeds.read(i);
if not obj.bed.full then

The processing time is set according to the length of stay.
obj.bed.procTime.setParam("lognorm",3*(r-1) +
@.stream,@.meanLOS, @.sdLOS);

The entering time of the patient is noted.
@.EnteringTime := EventController.Simtime;

The number of admitted patients is increased by one.
dcic.NumberadmittedPatients :=

dcic.NumberadmittedPatients + 1;

The number of admitted regional patients at the ICU is increased.
dcic.NumberadmittedExtEmerg :=
dcic.NumberAdmittedExtEmerg + 1;

The number of admitted regional patients in the region is
increased by one.
dcr.AdmittedRegionalPatients :=

dcr.AdmittedRegionalPatients + 1;

The proportion of transferred regional patients is calculated for
the region.
trp := dcr.TransportedRegionalPatients;
arp := dcr.AdmittedRegionalPatients;
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dcr.ProbabilityPatientTransported := trp / (trp + arp);

The proportion of transferred regional patients is calculated for
the ICU.
ntp := dcic.NumbertransferedPatients;
naee := dcic.NumberadmittedExtEmerg;
if ntp + naee > 0 then

dcic.ProbabilityPatienttransfered := ntp /(ntp + naee);
end;

The patient is placed in the over bed.
@.move(obj.bed);
patmoved := true;

end;
i:=i+1;

end;

If the regional beds are all occupied, an IC bed in another hospital has to be
found (the patient is deleted from the system).
if not patmoved then

@.delete;

The number of transferred patients is increased by one for the ICU.
dcic.NumberTransportedPatients :=

dcic.NumberTransportedPatients + 1;

The number of transferred patients is increased by one for the region.
dcr.TransportedRegionalPatients :=

dcr.TransportedRegionalPatients + 1;

The proportion of transferred regional patients is calculated
for the region.
arp := dcr.AdmittedRegionalPatients;
trp := dcr.TransportedRegionalPatients;
dcr.ProbabilityPatientTransported := trp / (trp + arp);

The proportion of transferred regional patient is calculated for the ICU.
ntp := dcic.NumberTransportedPatients;
naee := dcic.NumberAdmittedExtEmerg;
if ntp + naee > 0 then

dcic.ProbabilityPatientTransported := ntp /(ntp + naee);
end;

end;

Data concerning the proportion of transferred regional patients is written
to a file.
RD := location.location.RegionalData;
RD.writerow(r,arp + trp,dcr.ProbabilityPatientTransported);
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PPTD := dcic.ProbPatientTransData;
PPTD.writerow(r,ntp + naee,dcic.ProbabilityPatientTransported);

end;
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Tables and graphs
containing results

H.1 Tables with blocking probabilities

Number of
reserved
beds

ERM blocking
probability

Proportion refused re-
gionals in simulation

0 0.732 0.698± 0.016
1 0.230 0.251± 0.008
2 0.049 0.070± 0.004
3 0.007. 0.013± 0.002
4 0.001 0.001± 0.000
5 0.001 0.000± 0.000
6 0.000

Table H.1: Blocking probability regional emergency patients at the Albert
Schweizer Hospital, without cooperation

Number of
reserved
beds

ERM blocking
probability

Proportion refused re-
gionals in simulation

0 0.016 0.001± 0.001
1 0.001 0.000± 0.000
2 0.000

Table H.2: Blocking probability regional emergency patients at the Dirksland
Hospital, without cooperation
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Number of
reserved
beds

ERM blocking
probability

Proportion refused re-
gionals in simulation

0 0.742 0.705± 0.016
1 0.357 0.367± 0.014
2 0.135 0.158± 0.008
3 0.039 0.058± 0.005
4 0.009 0.018± 0.004
5 0.002 0.004± 0.002
6 0.000 0.001± 0.000

Table H.3: Blocking probability regional emergency patients at the Sint Fran-
ciscus Gasthuis, without cooperation

H.2 Graphs of blocking probabilies

ERM blocking probability Erasmus MC
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ERM blocking probability Albert Schweizer hospital

ERM blocking probability Dirksland hospital
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ERM Blocking probability Sint Franciscus Gasthuis


