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Preface

The aim of this thesis was to develop a model of the effect of operators on the sojourn times
in a manufacturing system, especially in a Multi-Class Generalized Kanban Controlled Sys-
tem (MC GKCS) by extending a current model. It was carried out as the final project of
my masters program in applied mathematics, and done with Add-Smart BV in Almelo.

The old model for a MC GKCS was already implemented into a software package. The
second part of the project was to implement the new model in this software.
When looking at the implementation of the actual algorithm, it became clear that it was
not easy to implement new aspects in the programming code. This code was absolutely not
flexible. In the current implementation, this code was already treated as a black box, and
thus it was not guaranteed bug-free. This also became clear in using it, the black box was
not tested well enough. In some situations it returned a division by zero-error, which is not
allowed to happen in well-tested code.
Because of all this problems, we have decided that it was best to do the implementation
again. Then it could be fit in more in the used object structure, and the total program
code could be optimized. This was not possible in the current version, because the black
box needed very specific data, which is not useful for more efficient implementations. But
this change would also affect the Graphical User Interface, therefore it was a lot of work,
but it was the only option. Because of this amount of work, there was no time to perform
exhaustive tests with the new model. For large models, the results of the algorithm can
only be validated with simulation results. Because these were not available in short time,
the algorithm is tested only for very small networks.

I would like to thank all the people at Add-Smart BV for providing a nice place to work and
support with all Delphi problems during the first part of the project. I would like to thank
all the people from the SOR-group for providing a place to work (very close to the coffee
machine) during the second part of the project and for the nice interruptions during coffee
moments. Especially I would like to thank Jan Kees van Ommeren who was my supervisor.
Furthermore I would like to thank Ellen for her moral support during the project, and Ruud
for his support during the last few weeks. Finally, I would like to thank everybody of TW
and Abacus for the nice time during this project.
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Summary

In many manufacturing systems, products do not only need a machine for their different
operations, but they also need the care of an operator during (the beginning of) the ser-
vice time of each operation. Because these operators are not always available, they form
a restriction for the capacity and thus for the performance of a manufacturing system. In
this thesis, an iterative method is developed to analyze manufacturing systems with oper-
ators, especially for manufacturing systems operating under a kanban policy, a Multi-Class
Generalized Kanban Controlled System.
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Chapter 1

Introduction

1.1 Modeling manufacturing systems

Numerous studies have been conducted on the modeling of manufacturing systems with the
help of queueing networks. In 1983, Whitt [Whi83] presented the Queueing Network Ana-
lyzer (QNA), which provided an approximate method for general open networks. Since then
also other commercial PC-based software packages have been released such as ManuPlan
[SDD86] and MPX [SdT91]. Such software packages have facilitated the step of queueing
network analysis out of the academic (= research) environment and into the mainstream
of manufacturing systems analysis. However, the disadvantage of systems like MPX is that
only single stage open systems can be analyzed. These systems are push-systems, in which
it is difficult to control the workload. For this workload control, pull systems are better
because the maximum number of products in the system can be set.

Buzacott and Shanthikumar [BS93] introduced a system for coordinating and controlling
the material and part flow within a multi-stage system, called the PAC (Production Autho-
rization Card) system. It was then demonstrated how, through the appropriate choice of
parameters, the PAC system can be specialized into a wide variety of classical coordination
approaches. The PAC system is a general system that includes batching of parts and time-
delays to deal with advanced information on the demand. A PAC system with unit batch
sizes and zero time-delays reduces to the Generalized Kanban Control System (GKCS). As
with the classic kanban system a workload control rule is imposed on each manufacturing
stage by limiting the amount of work-in-process to a certain number of kanbans, i.e. a
work-package is only allowed to enter a group when a kanban is available. At the end of
each manufacturing stage an order-up-to, or base stock level can be defined for the output
buffer of that stage. The system will then try to reach that level of stock.

There has been a variety of attempts to analyze multi-stage single class kanban systems
using stochastic models. Numerous papers report on kanban based systems with stages
in series using a discrete time stochastic model, which would be appropriate when kan-
bans are collected, and buffers are checked at periodic time intervals; see for instance
[DHMO89, GY94, PC99].
Other models, however, use a continuous time control mechanism. The behavior of the
system is then described by a continuous time Markov chain (CTMC) from which exact or
approximate solutions can be obtained. Karmarkar and Kekre [KK89] study single and two
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stage kanban systems where the CTMC’s are solved using numerical techniques.
Legato et al. [LBR89] analyze a kanban system with a number of Z stages in series. Each
stage consists of a single station with exponential service times and the system is saturated
with demands. The CTMC is analyzed using numerical techniques. The same system is
studied by Mitra and Mitrani [MM90], but they use an approximate method where the
system is decomposed into its stages. Each stage is then solved exactly and an iterative
algorithm is used to determine the unknown parameters of the stage. Mitra and Mitrani
[MM91] have extended this method to the case of stochastic external demand.
Di Mascolo et al. [MFBD93] view a GKCS as a multi-class closed queueing network by
considering the Kanbans of each stage as one class of customers. Subsequently, a product-
form approximation technique is used to solve the obtained CQN. For a single-class classic
Kanban system with stages in series, Di Mascolo et al. [MFD96] used an extension of the
method of Marie [Mar79] to analyze each stage in isolation where complex manufacturing
cells are allowed in each stage.
More recently, Baynat et al. [BDMF01] presented a new way of deriving the analytical
method presented in [MFD96]. Their new approach is to view the queueing network of the
kanban control system as a multi-class queuing network in which each kanban loop is repre-
sented by a class of customers. This allows them to use the general technique proposed in
[BD96] for analyzing multi-class queuing network using product-form approximation meth-
ods. In terms of equations, the new method is equivalent to the one presented in [MFD96].
However, the computational algorithm is much more efficient since it avoids the two levels of
iterations involved in the original algorithm. Another major advantage of the new method
over that originally proposed in [MFD96] is that it provides a general framework for the
analysis of more general kanban systems. Indeed, the authors show in their paper how the
approach can easily be extended in order to handle kanban systems with multiple consumers
and multiple suppliers, kanban controlled assembly systems and generalized kanban systems.

Only a few attempts have been made to analyze a kanban system with multiple part types.
So [So89] used a bulk queue model to obtain the average proportion of backordered de-
mands, which can then be used to approximate the number of kanbans needed to attain a
certain performance level. This model, however, is limited to a single exponential server
per stage.
A method that is able to handle multiple classes is developed by Wormgoor [Wor01] and
follows the same lines of the method of [MFD96]. Again the system is decomposed into
its stages. The key to the analysis is the fact that each stage can be seen as an Open
Queueing Network with Population Constraints (OQN-PC), i.e. a network with a workload
control rule (the population constraint) where production requests and finished parts of the
previous stage wait in an external queue until they are allowed to enter the network. These
OQNs-PC can be analyzed as a closed queueing network with flow equivalent servers, see
e.g. [Dal90, BS93, Bui98]. Extensions to multi-class systems, i.e. where different part types
are produced in the same resource group, are presented by Baynat and Dallery [BD96], and
Buitenhek et al. [BvHZ99, BvHZ00]. The latter distinguishes between general and class-
dependent workload norms. Based on the work of Buitenhek [Bui98], Wormgoor [Wor01]
uses an iterative algorithm to obtain the unknown parameters of each stage.

Van ’t Klooster [Klo03] developed a prototype Decision Support System (DSS), called
SmartSCManager, which overcomes the disadvantages of the existing software packages
by using a model of a Multi-Class Generalized Kanban Controlled System (MC GKCS).
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This DSS helps decision makers to make good decisions about the design of a manufactur-
ing system. For the analysis of this model, he has adopted the algorithms of Wormgoor
[Wor01], because they seem to be the most general.

1.2 Multi-Class Generalized Kanban Controlled System

A Generalized Kanban Controlled System is basically a base stock system with a workload
control rule for each stage. The workload control rule is imposed on each stage by limiting
the number of products in each stage by a fixed number of kanbans. A production request
can only be taken into production when a kanban is available.

Figure 1.1: Example of a manufacturing system.

The GKCS will be described by means of an example. Consider a manufacturing system
with nine stations as in figure 1.1, which produces a single part type. The manufacturing
system is divided into Z = 3 stages. Each stage-i consists of a production process, an output
buffer for finished parts and a kanban box where kanbans not currently in production are
stored, see figure 1.2. Each stage-i, i = 1, ..., Z, has a fixed number of kanbans, Ni. Note
that when Ni = ∞, i = 1, ..., Z the GKCS reduces to the classic Base Stock system, since
the workload control rule is released. To explain the system control let us first follow the
flow of parts and kanbans in stage-i.

Figure 1.2: Example of a 3 stage Generalized Kanban Controlled System.

When a demand for a stage-i finished part arrives, represented by a stage-(i + 1) kanban
or an external demand, and there is a finished part available, the kanban is attached to the
part and enters the stage-(i + 1) production process or the part is sent to the customer.
When no finished parts are available, the demand is backordered until a stage-i finished
part becomes available. On arrival of a demand at stage-i a production request for a stage-i
part is generated to replenish the (future) consumption of the stage-i finished part by the
demand. When there are no stage-i kanbans available in the kanban box, the production
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requests are backordered. When a stage-i kanban is available, the production request is at-
tached to the kanban. Together they travel upstream and form a demand for a stage-(i−1)
finished part. When a stage-(i− 1) part is available the kanban and production request are
attached to the part which then is taken into production. The part is then processed in the
production process according to its routing. Upon completion of the production process
at stage-i the part travels to the output buffer and the kanban is detached and is placed
in the kanban box. The production request is rendered obsolete since this concludes the
replenishment cycle of a stage-i part.

Next consider the arrival of an external demand at the manufacturing system in figure
1.2. The parts that are in the output buffer of stage-3 are the finished products of the man-
ufacturing system and are used to fulfill the external demand. When the demand cannot be
met immediately (i.e. the buffer is empty) the demand is backordered until a stage-3 part
becomes available. As mentioned above, upon the arrival of an external demand a produc-
tion request for a stage-3 part is generated. When a stage-3 kanban is available, it travels
upstream and becomes a demand for a stage-2 finished part. Consequently a production
request for a stage-2 part is generated. In the same way a demand and a request for a
stage-1 part will be generated. We assume that there is a sufficient supply of raw material
for stage-1. Thus when a stage-1 kanban is available to match with a stage-1 production
request it can be taken into production immediately. In this way information of an exter-
nal demand is transferred upstream from a downstream stage as long as there are kanbans
available to match with a production request.
The behavior of a GKCS also depends on the base stock level of each stage, denoted by Si,
i = 1, ..., Z. The base stock level is based on the start-up conditions of the system, that is
when all kanbans are in the kanban box. The number of parts present in the output buffer
at that moment is the base stock level. Since a production request is generated for each
demand of a part in an output buffer to replenish the (future) consumption of that part the
system always tries to have Si parts in the output buffer of stage-i.

A special case of a GKCS is when Si = Ni, for i = 1, ..., Z. Then a GKCS reduces to
the classic kanban system. The advantage of a GKCS over a classic kanban system is that
information about demands can be faster transferred upstream. Consider the arrival of
a demand at stage i when the output buffer is just empty, i.e. there are no backordered
demands. In the case of the classic kanban system the production request would also have
to wait since all kanbans would be in production (or waiting for a stage-i−1 finished part).
However if the number of kanbans is larger than the base stock level the production request
can already be transferred upstream. Thus, when the number of kanbans exceeds the base
stock level, information is transferred upstream faster.
The GKCS can be modeled as a queueing network with synchronization mechanisms. For
a multi-class GKCS with R job classes and Z stages, each job class has an individual base
stock level and workload control rule, i.e. number of kanbans, in each stage. Thus each job
class has its own synchronization stations, and the synchronization stations are single class
stations. The queueing network model of a multi-class GKCS is given in figure 1.3. To each
variable an index r, r = 1, ..., R is added, denoting its job class.
To analyze this queueing model, it is decomposed into its stages. The stages, with the syn-
chronization stations, can be analyzed in isolation if the external arrival rates are known.
From this analysis, the service rates of all synchronization stations of the stage are deter-
mined, and these new values are used in the analysis of the next stage. When the last stage
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Figure 1.3: Queueing network model of a multi-class GKCS.

is analyzed, this process is continued backwards until the first stage is analyzed again. This
process is repeated until convergence of the service rates of all synchronization stations of
all stages.
To obtain the service rates of the synchronization stations in one stage, also an iterative
algorithm is used. The service rates of one synchronization station can be obtained by an-
alyzing the complement network of this synchronization station. This complement network
is the whole network of the stage, without the synchronization station. It is analyzed with
an AMVA-algortihm. This process is repeated for every synchronization station in the stage
until convergence of all service rates. Both this iterations are given in appendix B.

From the analysis of the last synchronization station Jk,Z of every product, the market
service levels can be obtained. These market service levels are a measure for the general
performance of the manufacturing system. For every product type these market service
levels are:

Fill rate

Percentage of demands that can be fulfilled without delay.

Number of finished products

Number of products that leave the system.

10



Stockout probability

Percentage of time that there is at least one backordered demand waiting to be fulfilled.

Number of backordered demands

Number of demands that could not be fulfilled directly.

Customer order response time

Waiting time before a customer order is fulfilled.

Waiting time of a backordered demand

Waiting time before a backordered demand is fulfilled.

These market service levels can be computed with the equations given in appendix C.

1.3 Outline of this thesis

Van ’t Klooster [Klo03] proposed some aspects that will make it possible to upgrade the
SmartSCManager to a better and more useful system. Most of these proposals are just
ways to make the Graphical User Interface better understandable for the user. However,
in many manufacturing systems, products do not only need a machine for their different
operations, but they also need the care of an operator during (a part of) the service time
of each operation. Because these operators are not always available, they form a restriction
for the capacity and thus for the performance of a manufacturing system. In this thesis, a
method is developed to analyze manufacturing systems with operators, especially for man-
ufacturing systems operating under a kanban policy.

The outline of this thesis is as follows. Chapter 2 will give a formal formulation of the
problem. Also existing models are given. Because the existing models do not solve all
problems, a new algorithm for analyzing a manufacturing system with operators is given in
chapter 3, first for a simple network, and extended to a Multi-Class Generalized Kanban
Controlled System. The algorithm developed in chapter 3 can be tested and compared with
analytical results, which is done in chapter 4 for some simple cases.
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Chapter 2

Operators

Suppose a factory where two products, A and B, are manufactured on two machines.
Product A needs machine 1 and product B needs machine 2. The products arrive at their
machine according to some process, which is assumed to be stochastic. Before an operation
on a machine can start, it first needs the attention of a operator, who has to setup the
product to the machine. When a product arrives at a machine, two situations can occur.
First, it is possible that the machine is free, but that the operator is busy on the other
machine. In that case, the product has to wait longer before it can be operated. Second,
it is also possible that the operator is finished at a machine, and that no product can start
on the other machine. Thus the operator can be idle.
This is a small example of the problem described in this thesis. This chapter gives the
general formulation of the problem and an overview of existing models describing such a
system in the literature.

2.1 Problem formulation

A manufacturing cell is assumed to consist of m machine groups. Every machine group
contains cm identical machines. These machine groups are used to produce r different
products. Each product requires operations on several machine groups, according to a
(stochastic) route over these machine groups. The service time of these operations is gener-
ally distributed, described by the mean rate and the squared coefficient of variation (SCV).
During every operation, the attention of an operator is needed. This can be for the whole
operation time, or only during the setup time, for example to set a product on a machine.
There are p operator groups, each containing several identical operators.
The question is what the performance of this system is, and especially what the effect is of
the waiting time of a product at an operator group.

2.2 Literature overview

Because of the complexity and the denial of the importance of this problem, only a few
researchers have looked at this problem. However, for some specific situations an approxi-
mation exists.
A model that can be used for this problem also is the model for machine interference.
This problem originates from the problem of several machines with breakdowns were one or
more repairmen are available to repair these broken machines. The operator problem can
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be modeled as a special case of the machine interference problem sketched above.
The classical machine interference problem considers a set of machines that need a repair-
man if they break down. Machines can be in two states, up or down. When it goes down,
it waits for a repairman to be available. The result of the model is the availability of a
machine, which can be used to determine the effective service time on that machine.
The machine-operator problem and the machine interference problem are identical:

1. A machine is up if it is idle in the machine-operator problem.

2. A machine is down if it is occupied by a customer.

3. The waiting time for an available repairman is the waiting time for an operator. With
this waiting time, the effective service time of an operation can be set.

In computer science, there is a similar problem where a process needs multiple processors or
other hardware to be completed. Due to technical constraints this can cause waiting times,
for instance if a hard-disk cannot deliver information to a processor at the same speed the
processor processes the data. This problem is know as simultaneous resource possession. In
special situations this can lead to a problem with the same characteristics as the operator
problem. Further, some very different models exists, which will be discussed at the end of
this section.

2.2.1 Machine interference

Stecke and Anderson [SA85] give a review of models for the machine interference problem
that have been developed up to 1985. Sztrik [Szt01] provides a list of articles with theo-
retical and practical developments up to 2001. This recent developments mainly focuses on
extensions which are not used in modeling the machine-operator problem, like the availabil-
ity of spare parts or machines that cannot be repaired.
The classical machine interference problem assumes exponentially distributed processing
times and operator service times. This can be modeled as a finite source multiple server
exponential queueing system, where the operators are the servers and the machines are
the customers. Since the number of machines (K) is finite this can be modeled as a
M/M/m/K queueing system. Sztrik and Bundy [SB93] analyze this with one repairman.
Ching [Chi01] considers multiple operators and a repair process being l-phase Erlang dis-
tributed. Chakravarthy and Agarwal [CA03] analyze a model with multiple machines, a
single operator, exponential distributed arrival times and phase type service times and re-
pair times. Eben-Chaime [Ebe98] developed a simple recursion for the model with a single
product, multiple machines and repairmen, exponentially distributed arrival and service
times and general distributed repair times.

2.2.2 Simultaneous resource possession

Kurasugi and Kino [KK99] use a two-layer queueing model to approximate the performance
measures of queueing models with simultaneous resource possession. They consider a queue-
ing network consisting an upper and a lower layer. The upper layer consists of a number
of stations and the lower layer consists of a number of nodes. Every station and node have
several servers. When a customer arrives at a station, it waits for an available server at that
station. When a server becomes available, the customer is routed directly to the lower layer.
In the lower layer, the customer will travel through the nodes as routed by a routing matrix
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associated with a station. When the customer is finished in the lower layer, it is routed to
the upper layer according to a routing matrix. The service discipline at a station is FIFO
(First In First Out), the service discipline at a node is assumed to be FIFO, PS (Processor
Sharing) or LIFO-PR (Last In First Out with Preemptive Resume). The service time at a
node for customers of a station is assumed to be exponentially distributed. Further, it is
assumed that there are no limitations on the queue lengths in the network.
First, Kurasugi and Kino [KK99] show that the equilibrium distribution of the occupancy
has a product form if the capacity (number of servers) for any station in the upper level is
not limited. However, this is not the case if the capacity is limited. To approximate the
performance measures in this case, they split the two layers. Using the lower layer they
approximate the service rate at station r as

µ∗
r(n) = vr

G(y − er)

G(y)
(2.1)

where n the number of customers in the upper layer, y the number of customers traveling
through the lower layer, vr the relative frequency at which a customer visits station r and
G(n) the normalization constant which can be calculated using standard techniques. With
these service rates the equilibrium distribution of n can be approximated, and thus the
performance measures.
For this equilibrium distribution, they use a product form approximation

P (n) = Φ(n)vn (2.2)

where vn is defined as vn1
1 vn2

2 . . . vnk

k and Φ(n) is determined by the recursion

Φ(m) =

∑R
i=1 Φ(m− ei)
∑R

i=1 µ∗
i (m)

∀m ≤ n (2.3)

With this model, the machine-operator problem can be seen as follows:

1. The upper layer is the machine network.

2. The lower layer is the operator queue.

The waiting time for an operator of a product on machine m can be computed from the
service times of station m approximated with (2.1) by subtracting the given service times
of the operation.

Wormgoor [Wor01] proposes the same splitting method as [KK99] but with the lower layer
modeled as a Semi Open Queueing Network (SOQN) as proposed in [Bui98]. A SOQN is a
queueing network with a fixed number of pallets circling through the inner network. Cus-
tomers arrive at the the network and wait for a pallet to be available. With this pallet, they
travel through the inner network until the customer is ready to leave the network again.
The pallet then picks up a new customer, if one is waiting. This SOQN is modeled in detail
in [Bui98] for the most general situation. Buitenhek models the SOQN as a closed queueing
network and gives an aggregation method to finding approximate solutions.
Another approximation is given in [SH02], which is based on the work of Buitenhek. For
the case with a single product, they give an approximation for the inner network with one
or two stations. With more servers they approximate the inner network by two stations,

14



one being the bottleneck station, and one being the aggregation of the other stations. This
method is extended for multiple products in [CHSZ02].
Wormgoor takes an inner network consisting of two stations, one with an ample server
(server with no waiting time, thus an infinite number of servers) for products that do not
need an operator, and one server representing the operators. Products can have a arbitrary
routing through this network. The number of pallets circling around equals the total num-
ber of machines, which is the maximum number of jobs that will enter the network. This
inner network is a generalization of the one given in [Bui95], where it is assumed that the
operation always needs an operator during its whole service time.
The cycle time through this SOQN contains the waiting time for an operator and can be
used to set new service times. With these new service times, the whole manufacturing
network can be analyzed. Because nothing can be said about the arrival process at a single
machine, Wormgoor proposes to approximate this with a Poisson distribution.
Desruelle and Streudel [DS96] consider a system with identical stations and several prod-
ucts that need service on every machine in line. They assume one operator needed for the
loading and unloading a product on a machine. They also split the system into the same
two networks as above, the part-machine network (upper layer) and a machine-operator
network (lower layer). They model the part-machine network as an open queueing network,
and the machine-operator network as a closed queueing network. To analyze the first they
use a MVA-technique. For the machine-operator network, they develop an iterative method
to find the coefficient of variation of the interdeparture time of this network. Then the well
known approximation for the waiting time in a G/G/1 queue is used to find the waiting
time for an operator. The results of this method are good if the utilization is not too high.
Adan and others [AVW98] uses Multi Server and Concurrent Classes of Customers (MSCCC)
queues as a special class of queueing models with simultaneous resource possession. This
model uses multiple customer classes, multiple machines and an operator pool with several
operators. Customers arrive according to a Poisson process and are served with FCFS dis-
cipline and the serving times are exponentially distributed with different rates for different
customer classes. It is know that the equilibrium distribution of an MSCCC queue has a
product form if the service times are independent of the job type.
For job dependent service times, two special cases are analyzed: only one operator and as
many operators as machines. They use this property to find this distribution by dividing
the state space into two sets, the interior equations and the boundary equations, and sub-
stitute a product form distribution in these equations. Then these equations can be solved
to obtain the equilibrium distribution. For models with less operators as machines, the
solution will not be a product form. This makes them harder to analyze. By looking at the
solutions of the two special models, [AVW98] gives a suggestion for further research.

2.2.3 Other models

A very different approach is the method of Gold [Gol01]. He considers r products arriving at
m machines and p operators. All the arrival and service rates are assumed to be generally
distributed. He aggregates all machines and all the operators to one machine and one
operator. The arrival and service rates are just the sum of all the different arrival and
service rates. In this new model, when a customer arrives, he joins two queues, one for the
machine and one for the operator. Let X be the number of customers in the machine queue
and Y the number of customers in the operator queue. Under the assumption that the load
of the machine and the operator are equal (ρ), Gold derives the following expression for the
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expected maximum of X and Y :

E[max(X,Y )] =
1

ρ − 1

(

3

2
− 1

8ρ

)

(2.4)

With this he derived the Flow factor (FF ), which is the factor with which the service time
increases:

FF = c2

(

1

2ρ
+

7

8

)

ρ

1 − ρ
+ 1 (2.5)

where c2 is the variability of the aggregated system. Unfortunally he does not say how
to approximate this variability. The comparison with simulation results shows that under
medium and high load, the results are too optimistic if the squared coëfficient of variation
of the service time is > 1 and too pessimistic if the squared coëfficient of variation of the
service time is < 1.
Gold also states that experience shows that the factor with which the lead time increases
is between 1.3 and 1.5 if operators are incorporated, depending on the load. This is in line
with the above Flow Factor.

Mittler and Kern [MK97] model the problem as an closed polling model and use a dis-
crete time approximation to find the performance measures. In a polling model, a server
cycles through several queues and serves all customers in that queue. When the queue is
empty, the server moves to the next queue on the cycle. Mittler and Kern consider a model
with multiple machines with one server, one repairman and generally distributed failure
times and repair times. The repairman serves the machines in a cyclic manner. Every
machine contains one customer. After being served, the customer is routed directly back
to his machine and wait again for service. The repairman moves to the next machine in
the cycle. The walking times of the repairmen are considered to be generally distributed.
The result is an iterative algorithm to compute the steady-state probability of the number
of jobs in the system and the steady-state probability of the waiting time distribution for
a customer. This algorithm works well for large symmetric systems. When a system is
asymmetric, the computational complexity increases.

2.3 Conclusion

The modeling of operators does not get very much attention in the literature. Only a few
articles exist in which this problem is analyzed. None of the methods found works for a
general manufacturing system. They all have restrictions which make them not very useful
in practice. These models have the same basic ideas:

1. Assumption: Jobs (customers) first arrive at a machine. When a machine is available,
the job occupies this machine and together they wait for an operator to become
available.

2. The waiting time for an operator is approximated by solving a queueing system.

3. This waiting time is used to set new service times on a machine.

4. With this new service times, the performance measures of the whole manufacturing
system can be approximated.
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The difference between the existing models is the method for approximating the perfor-
mance measures of the two queueing systems given the structure of a specific case. For
different queueing systems many approximations exist.

For practical situations the basic idea is not useful, because of complexity issues. Thus
another approximation has to be found. In the next chapter, such an approximation is
developed, which does not use the ideas given above.
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Chapter 3

Modeling operators

The basics found in the previous chapter for the analysis of the operator problem seems
to give good approximations. But for practical problems (with a large number of products
and machines) it is not a good option, because two or more networks have to be analyzed,
in stead of one. For a MC GKCS, this means that the steps in algorithm B.2 are doubled.
This is done for every iteration step in algorithm B.1, thus the calculation time will increase
severely. And even without operators, analyzing a MC GKCS already has a large calcula-
tion time. To try to solve this problem, another method to approximate the influence of
the operators is presented, which is applicable in larger networks.

This chapter starts with the analysis of the problem for an Open Queueing Network in
section 3.1. After this, a new iterative algorithm for this network is presented in section
3.2.1. In section 3.3, this algorithm is extended to a MC GKCS. Finally, some remarks
about the new algorithm are given in section 3.4.

3.1 Open Queueing Network with operators

First consider an Open Queueing Network (OQN). This is the most simple queueing net-
work, and therefore used to start the analysis. In the analysis, the following assumptions
are done:

• An arriving product first occupies a machine server, and together they wait for an
operator. This because an operator will be more expensive then a machine server.
Therefore an operator must be able to work as efficiently as possible.

• There is only one operator group with p identical operators.

With the first assumption, the machines change to synchronization stations. The arrival
of products at the machines consists of two streams, external arrival and internal arrival.
External arrival is the arrival of products from outside the network. Internal arrival is the
arrival of products from other machines in the network.
When a product is waiting at a machine and a machine server is free, they move together
to the queue for the operator group. When an operator is free, the product is served. After
being served by the operator, it moves, together with the machine server, to an ample server.
This is a server without a queue, thus arrival products are served directly without waiting.
The service time here is the part of the total service time where no operator attention is
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needed.
When the total service of a product on a machine is finished, the machine server is routed
back to the synchronization station of that machine, and the product is routed to its next
machine where it has to be served according to its route, or it leaves the system if it is
finished. Figure 3.1 shows a diagram of this process.
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Figure 3.1: Queueing network with operator group

When looking at figure 3.1, we notice that, without the routing back of the products, the
network is a multi-class semi open queueing network with pallets dedicated to a subset of
the products, and with two stations. With the routing of the products, the network can
be seen as a multi-class classic kanban system with one cell and stochastic routing through
this cell.

For multi-class classic kanban systems, no solution exists in literature. The MC GKCS-
algorithm, given in section 1.2, can be used, with N = S. But this assumes exponential
arrivals to the synchronization stations, which will not be the case in general. But using
this model as an approximation does not solve the problem of time complexity for larger
networks.
For semi open queueing networks, solutions exist for multi-class networks [Bui98, SH02,
CHSZ02]. Srinivasan and Heragu [SH02] approximate all interarrival processes in the net-
work and used the obtained SCV’s of these. With these processes, the average queue length
can be determined.

Inspired by the work of Srinivasan and Heragu [SH02], we suggest to approximate all the
departure processes, and thus all arrival processes, in the network. When these processes
are known, performance measures can be estimated. This means that for every queue in the
network the departure process have to be obtained. To do so, start by setting the arrival of
the first machines to the external demand. Then the departure processes of these machines
can be computed and used as the arrival process to the operator queue. The departure
process of the operator queue is the arrival of the ample server. Together with the routing
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through the machines, the departure of the ample server resets the arrival processes at the
machines. This process can be repeated until the departure processes, and thus the arrival
processes at the machines, do not change anymore. With all this arrival processes, the
average waiting time in every queue can be obtained, and thus the expected sojourn time
in the network.

The rest of this section will give a more detailed description of this iteration, and how
to obtain the different processes and performance measures. But first, for the sake of com-
pleteness, some important parameters of a queue are given.

3.1.1 Queue basics

Three stochastic processes are used for the analysis of a queue: the arrival process, the
service process and the departure process. These stochastic processes are characterized by
a mean rate (µ) and a squared coefficient of variation (SCV). This SCV (C2) is defined as

C2 =
σ2

(ES)2
(3.1)

where ES = 1
µ and σ2 the variance.

The utilization ρ of a queue is defined as

ρ = µaESs (3.2)

where µa is the mean arrival rate and ESs the mean service time.

The queue is called stable if ρ < 1. In the rest of the analysis, every queue is assumed
to be stable.

The queue contains a number of servers c.

3.1.2 Departure process

An important question is how to obtain the departure process of a queue. This departure
process can be approximated from the arrival process and the service process.
The mean departure rate of the queue is easy to obtain. If the queue is stable, this is equal
to the mean arrival rate, because what goes in, must go out.
The SCV’s are more complex to obtain. Several researchers have given approximations for
the SCV of the departure process. The most commonly used is the one given by Whitt
[Whi83]:

CD = 1 +
ρ2

√
c
(CS − 1) + (1 − ρ2)(CA − 1) (3.3)

CD, CS and CA are the SCV of respectively the departure, service and arrival processes.

This approximation for the departure process assumes a single arrival and single service
process. For the network in figure 3.1, this will not be the case, in general. There will be
multiple arrival processes with different service processes. This can be solved by aggregating
these processes into a single process. Then, equation (3.3) can be used to approximate the
SCV of the departure process. After this, the departure process have to be split into the
different departure processes.

20



3.1.3 Aggregation

Suppose N arrival streams where every stream n is characterized by a rate λn and a SCV
CA

n . Every stream also has a service process, with mean time ESn and SCV CS
n . The

aggregated processes can be approximated with the following equations [Whi83]:

λ =

N
∑

n=1

λn (3.4)

CA =
1

λ

N
∑

i=1

λnCA
n (3.5)

ES =
1

λ

N
∑

i=0

λnESn (3.6)

CS =

(

1

λ(ES)2

N
∑

i=0

λn(ESn)2
(

CS
n + 1

)

)

− 1 (3.7)

Where λ is the mean arrival rate, CA the SCV of the arrival process, ES the mean service
time, CS the SCV of the service process.

After the departure process is approximated from the aggregated processes, it can be split
into the N original processes. The mean departure rate EDn is equal to the mean arrival
rate of every stream n. For the SCV’s CD

n , the following approximation given by Whitt
[Whi83] is used.

EDn = λn (3.8)

CD
n =

λn

λ
CD + 1 +

λn

λ
(3.9)

where CD is the SCV of the departure process of the aggregated stream.

3.1.4 Waiting time

With the arrival and service process of a queue the average waiting time (EW ) can be
calculated. For a M/M/1-queue the average waiting time is given by

EWM/M/1 =
ρ

1 − ρ
ES (3.10)

where ES is the mean service time of the queue.

For a M/M/c-queue the average waiting time is given by

EWM/M/c =
(cρ)c

c!G

ρ

(1 − ρ)2
ES

c
(3.11)

where G is a normalization constant, which can be obtained from the stationary distribution
of the queue. Because of the computationally effort needed to obtain this G, equation 3.11
is not useful in the proposed iteration. [FWZ00] give an approximation for EWM/M/c which
is easier to use:

EWM/M/c =
ρ
√

2(c+1)−1

c(1 − ρ)
ES (3.12)
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For queues with more general arrival and service time distributions the mean waiting time
is given by

EWGI/G/c =
CA + CS

2
EWM/M/c (3.13)

where CS and CA are the SCV of the service and arrival processes.

Another useful queue is a M/M/c/K-queue. This is an M/M/c-queue, where arrivals
occur from a finite population. The Markov chain of this queue is given in figure 3.2
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µc

λ
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Figure 3.2: Markov chain of a M/M/c/K-queue

To obtain the stationary distribution π of this Markov chain, the following relation follows
from the Markov chain:

min(n, c)µπn = (K − n + 1)λπn−1 (3.14)

This results in the following expression for πn:

πn =
(K − n + 1)λ

min(n, c)µ
πn−1

=











(K
n

)

ρnπ0 if n ≤ c

K!
c!cn−c(K−n)!

ρnπ0 if n > c
(3.15)

where ρ = λ
µ and π0 =

(

∑K
n=1 πn

)−1
.

From this stationary distribution, the average number of jobs in the queue EL can be
obtained.

EL =

K
∑

n=c+1

(n − c)πn

=

K
∑

n=c+1

K!(n − c)ρn

c!cn−c(K − n)!
π0 (3.16)

The average waiting time EW now follows from Little’s law

EW =
EL

λ
(3.17)

For the average waiting time in a queue with more general processes the same approximation
as for a GI/G/c-queue is used

EWGI/G/c/K =
CA + CS

2
EWM/M/c/K (3.18)

where CS and CA are the SCV of the service and arrival processes.
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3.2 Operator queueing network

The network in figure 3.1 consists of three parts (queues): the machines, the operator
queue and an ample server. For every part the departure process can be determined in the
following way:

Machines This part consists of a synchronization station for every machine. In this
synchronization station, arriving products to the machine have to be attached to a
machine server. This combination product-machine is called an operation.
The two arrival processes at this queue are the arrival process of the products and the
arrival process of free machine servers. The arrival processes of the different products
can be aggregated to one arrival stream with equations (3.4) and (3.5). The arrival
process of free machine servers is a single process. The average time between arrivals
of this process is the total time the machine server is occupied. This is not only the
total service time of the operation, it also includes the waiting time at the operator
group.
In literature, nothing can be found about the departure process of a synchronization
station. It can be stated that the arrival products are being served with the rate of the
arrival of free machine servers. Therefore, we suggest to approximate the departure
process of this synchronization station with the formulas given in 3.1.2, where the
arrival process is the arrival process of the products, and the service process is the
arrival process of the free machine servers.
In the same way, the mean waiting time of products can be obtained using equation
(3.13). The SCV of this process is the aggregated SCV of the service time with the
operator and the service time at the ample server. This holds for every operation on
the machine and these service processes can be aggregated to one service process with
equations (3.6) and (3.7).

The mean departure rate is equal to the mean arrival rate of products, and equa-
tion (3.3) can be used to approximate the SCV of the departure process of this queue.

Operator queue This is a G/G/p-queue where every operation is a different class.
These different classes arrive from a finite population (the total number of machines is
finite) and are aggregated per machine. These can be aggregated to one input stream
using equations (3.4) and (3.5).
The service time of a product class in this station is the time an operator is needed.
This is know for every operation. The aggregated service process can be obtained
using equations (3.6) and (3.7).

The mean departure rate equals the mean arrival rate of operations. Using the aggre-
gated arrival and service process, equation (3.3) gives an approximation of the SCV
of the departure process. This SCV can be split into an SCV for every operation with
equation (3.9).

Ample server This is a queue with no waiting time. Here also every operation is a
different class, and again the arrive from a finite population. A queue with no waiting
time can be obtained when taking as many servers as the size of the total population,
which is the total number of machine servers for all the machines (K). Then this
queue becomes a GI/G/K/K-queue.
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In the same way as for the operator queue, the departure process can be obtained.
Only for the service time of an operation, the time where no operator is necessary has
to be used.

When products (operations) leave the ample server, they leave the system or they move to
the next machine according their stochastic routing through the network. Therefore, the
arrival process of products at the machine queues depends on the departure process of the
ample server. The mean arrival rate of every product to a machine (operation) is now the
external arrival plus the fraction of products that move to the machine from other machines.
In a formula this will be

λrm = λE
rm +

M
∑

i=1

T r
imλri (3.19)

where λrm is the mean arrival rate of product r to machine m, λE
rm the external arrival rate

of product r to machine m and T r the routing matrix of product r. Writing this equation
down for every product r and machine m gives equations (3.20) for every product r.

~λr = ~λE
r + T r~λr (3.20)

The solution of this matrix equation gives all the arrival rates of products at the machines.

Based on [BS93], an expression for the SCV of the arrival process is given by

CA
rm =

λE
rm

λrm
+

1

λrm

M
∑

j=1;j 6=m

λrjT
r
jm

(

T r
jmCD

rj + (1 − T r
jm)
)

(3.21)

where CA
rm is the SCV of the arrival process of product r to machine m and CD

rm the SCV
of the departure process of operation rm of the ample server.

When all the departure processes are known, the total waiting time of every operation
EWrm can be computed. This is the sum of the average waiting time at the machine queue
(EWm) and the average waiting time at the operator queue (EWopp). The machine queue
is a GI/G/cm-queue, thus (3.13) can be used to find the average waiting time.
The operator queue is a GI/G/p/K-queue, with K =

∑M
i=1 ci. The average waiting time

can be found with (3.18). For large values of p and K, this expression for the average
waiting of a GI/G/p/K-queue can be complex to calculate. Then an approximation has to
be used. Because no approximation is know by the author, and it will only be a problem
for very large values of c and K, (3.18) will be used in the new algorithm.
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This leads to the following formula for the total average waiting time of operation rm

EWrm = EWm + EWopp

= EWGI/G/cm
+ EWGI/G/p/K

=
CA

m + CS
m

2
EWM/M/cm

+
CpA + CpS

2
EWM/M/p/K

=
CA

m + CS
m

2

(λmESm)
√

2(cm+1)−1

cm(1 − λmES)
ESm +

CpA + CpS

2λ

K
∑

n=p+1

K!(n − p) (λpESp)
n

p!pn−p(K − n)!
π0

=
CA

m + CS
m

2

(λmESm)
√

2(cm+1)−1

cm(1 − λmES)
ESm +

1

G

CpA + CpS

2λ

K
∑

n=p+1

K!(n − p) (λpESp)
n

p!pn−p(K − n)!
(3.22)

where

G =

p
∑

n=0

(

K

n

)

(λpESp)
n +

K
∑

n=p+1

K! (λpESp)
n

p!pn−p(K − n)!
‘ (3.23)

and where CA
m and CpA are the SCV’s of the arrival processes at machine m and the

arrival process at the operator queue, CS
m and CpS are the SCV’s of the service processes at

machine m and the service process at the operator group. K is the total number of machine
servers in the network, which is the maximum size of the population from which operations
arrive at the operator queue. With these waiting times, the average queue lengths, and the
sojourn time of a product in the network can be obtained.

3.2.1 Iteration

Now all parts of the iteration are specified, a formal algorithm to find departure processes
and waiting times in a OQN can be made.
Because not every operation will visit the operator group and the ample server, some equa-
tions do not have to be computed for every operation. To formalize this, the variables arm

and brm are introduced. If operation rm visits the operator group then arm = 1 and arm = 0
if does not visit the operator group. If operation rm visits the ample server then brm = 1
and brm = 0 if it does not. These variables are included in the appropriate equations.

All this leads to algorithm 1. An explanation of the used variables can be found in ap-
pendix A
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Algorithm 1

Algorithm to find departure processes and waiting times in a OQN with a single operator
group and exponential external arrivals.

1. (Initialize) Set EWopp = 0. For m = 1 . . . M , CS
m = 1.

For r = 1 . . . R and m = 1 . . . M set CA
rm = 1 and let

arm =







0 if ESopp
rm = 0

1 if ESopp
rm > 0

brm =







0 if ESamp
rm = 0

1 if ESamp
rm > 0

2. For r = 1 . . . R compute the arrival rate of products at the machines λrm from

~λr = ~λE
r + T r~λr

3. Set the aggregated arrival rates and service times for the parts of the network
For m = 1 . . . M

λm =

R
∑

r=1

λrm

and

λp =

R
∑

r=1

M
∑

m=1

armλrm

ESp =
R
∑

r=1

M
∑

m=1

arm
λrm

λp
ESOpp

rm

λamp =

R
∑

r=1

M
∑

m=1

brmλrm

ESamp =
R
∑

r=1

M
∑

m=1

brm
λrm

λp
ESamp

rm

4. repeat

(a) Set the service process of the products at the machines.
For r = 1 . . . R and m = 1 . . . M

ESrm = armEWopp + ESopp
rm + ESamp

rm

CS
rm =

armESopp
rm Csopp

rm + brmESamp
rm Csamp

rm

armESopp
rm + brmESamp

rm
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(b) Set the aggregated arrival and service processes for the machines.
For m = 1 . . . M

CA
m =

R
∑

r=1

λrm

λm
CA

rm

ESm =

R
∑

r=1

λrm

λm
ESrm

CS
m =

R
∑

r=1

λrm

λm
CS

rm

(c) Get the SCV of the departure process of the machines.
For m = 1 . . . M

CD
m = 1 +

(λmESm)2√
cm

(

CS
m − 1

)

+
(

1 − (λmESm)2
)

(CA
m − 1)

(d) Split the SCV of the departure process of the machines.
For r = 1 . . . R and m = 1 . . . M

CD
rm =

λrm

λm
CD

m + 1 +
λrm

λm

(e) Get the departure processes of the operator group.
For r = 1 . . . R and m = 1 . . . M , if arm = 1

i. Set the SCV’s of the aggregated arrival and service processes.

CpA =

R
∑

r=1

M
∑

m=1

arm
λrm

λp
CD

rm

CpS =

(

1

λp(ESp)2

R
∑

r=1

M
∑

m=1

armλrm(ESOpp
rm )2

(

CsOpp
rm + 1

)

)

− 1

ii. Get the SCV of the aggregated departure process.

CpD = 1 +
(λpESp)

2

√
p

(

CpS − 1
)

+
(

1 − (λpESp)
2
)

(CpA − 1)

iii. Split the SCV of the aggregated departure process.
For r = 1 . . . R and m = 1 . . . M

CD
rm =

λrm

λp
CpD + 1 +

λrm

λp

(f) Get the departure processes of the ample server.
For r = 1 . . . R and m = 1 . . . M , if brm = 1

i. Set the SCV’s of the aggregated arrival and service processes.

CaA =

R
∑

r=1

M
∑

m=1

brm
λrm

λamp
CD

rm

CaS =

(

1

λamp(ESamp)2

R
∑

r=1

M
∑

m=1

brmλrm(ESamp
rm )2 (Csamp

rm + 1)

)

− 1
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ii. Get the SCV of the aggregated departure process.

CaD =
(

1 − (λampESamp)
2
)

CaA + (λampESamp)
2 CaS

iii. Split the SCV of the aggregated departure process.
For r = 1 . . . R and m = 1 . . . M

CD
rm =

λrm

λamp
CaD + 1 +

λrm

λamp

(g) Set the waiting time at the operator queue.

G =

p
∑

n=0

(

K

n

)

(λpESp)
n +

K
∑

n=p+1

K! (λpESp)
n

p!pn−p(K − n)!

EWopp =
1

G

CpA + CpS

2λ

K
∑

n=p+1

K!(n − p) (λpESp)
n

p!pn−p(K − n)!

(h) Reset the SCV’s of the arrival process of products at the machines.
For r = 1 . . . R and m = 1 . . . M

CA
rm =

λE
rm

λrm
+

1

λrm

M
∑

j=1;j 6=m

λrjT
r
jm

(

T r
jmCD

rj + (1 − T r
jm)
)

until convergence of all CD
rm

5. Obtain the waiting time of the operations.
For r = 1 . . . R and m = 1 . . . M

EWrm = EWopp +
CA

m + CS
m

2

(λmESm)
√

2(cm+1)−1

cm(1 − λmESm)
ESm

3.3 Operators in a MC GKCS

The algorithm developed in the previous sections can easily be extended to other types
of networks. Four types of networks are considered: an OQN, a closed queueing network
(CQN), a semi open queueing network (SOQN) and a kanban system.
The difference between an OQN and a CQN or a SOQN is that in the last two, the capac-
ity of the network is restricted by a fixed number of pallets circling through the network.
Products arriving to the network are attached to a pallet before they enter it. The product
stays attached to this pallet until it leaves the network. If no pallet is available, the product
has to wait. When the product leaves the network, the pallet becomes available for a next
product.
The difference between a CQN and a SOQN is the arrival process at the pallet queue. In
a CQN there is an infinite amount of products waiting, thus a pallet directly can pick a
new product when its empty. In a SOQN products arrive at this queue according to some
stochastic process, and thus an empty pallet might have to wait before it can pick a new
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product. Note that when the number of pallets is set to ∞ we have the previous network
for an OQN.

Algorithm 1 can easily be extended to analyze a CQN or a SOQN. An extra synchro-
nization station is added for every product. The external arrival process of products is
replaced by the departure process of the new synchronization station. The service process
of the new synchronization station is the total service process of the corresponding product
in the network, which is the sum of all service times of every operation plus the correspond-
ing waiting times.
The arrival process at the new synchronization stations equals the external arrival process.
For a CQN this is set to infinity.
All these extra synchronization stations can be analyzed with the same equations as used
in the previous section.

In a kanban system, one cell can be described with the network given in figure 3.1. For every
product, two synchronization stations are added for every cell. One to combine external
demand for the network and an item from base stock, and one to combine a production
request and a kanban. The departure process of the first new synchronization station is the
external arrival at the cell. The departure process of products from the cell is the service
process of the first synchronization station. The arrival process of the first synchronization
station is the external arrival process of products to the network, if the cell is the last visit
of the product. If the cell is not the last visit, the arrival process of the first synchronization
station is the departure process of the second synchronization station of the next cell the
product visits.
The arrival process to the second synchronization station is the same as the service process
of the first synchronization station. The service process of the second synchronization sta-
tionequals the arrival process of the first synchronization station.

The market service levels are interesting performance measures in a kanban system. These
can still be obtained from the analysis of the last synchronization station of a visit, using
the equations in appendix C.

3.4 Remarks

Some remarks can be made about algorithm 1:

• Algorithm 1 should also work if there are no operators. The operator queue then
becomes a GI/G/∞/K = GI/G/K/K queue, there is no waiting time at this queue.

• Algorithm 1 can easily be extended for multiple operator groups.

• The need for an operator is assumed to be only at the beginning of the operation
time. This can be changed into other combinations very easy.

• In general, the external arrival to the network is assumed to be exponential distributed.
Because algorithm 1 also uses the SCV of the external arrival process, other situations
can be handled.
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Chapter 4

Test results

To see if the approximation of the new algorithm works well, two simple examples are
analyzed analytical and with the new algorithm and the results are compared.

Example 1

Suppose the queuing network given in figure 4.1. This network consists of one machine with
two servers, one product and one operator. Products arrive at the queue with rate λ. When
a product arrives at the machine, it occupies a server, if one is free. In that case, they wait
together for the operator to become available. When this operator is free, the product is
served. For the whole serving time ES, the operator care is needed. After this, the product
leaves the system, and the operator and the machine become available again. In figure 4.2
this network is given with the machine changed into a synchronization station.

2SHUDWRU
JURXS0λ

$ %

Figure 4.1: Queuing network 1

2SHUDWRU
JURXS

λ

Figure 4.2: Queuing network 1 with machine synchronization station

For the Markov chain of this system, as depicted in figure 4.3, the states are given by the
number of products in the first queue (A) and the number of products in the second queue
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Figure 4.3: Markov chain for network 1

(B). When looking at this Markov chain, the network is a simple M/M/1-queue. For a
M/M/1-queue, the average waiting time equals the following formula:

EW =
ρ

1 − ρ
ES (4.1)

Let λ = 2 and µ = 1
3 . Then, the average waiting time of the product in the network equals

2
3 .
Algorithm 1 results in a average waiting time of 0, 4571 at the operator queue, and an
average waiting time of 0, 2776 in the machine queue. These results are obtained after two
iteration steps. This gives a total average waiting time of 0, 7347.

Because there is no routing back of products, the arrival process of products at the ma-
chine queue does not change after the first step of the iteration. Therefore, the results do
not change in the second step of the iteration, and thus the total number of steps before
convergence is only two.
The total average waiting time obtained with algorithm 1 has an error of 9.3% compared
with the analytical solution.

Example 2

Suppose the same system as in example 1, but now the operator is only needed to setup the
product on the machine. Thus when the operator is finished, the product is being served
for the rest of the time and the operator picks a new product/server from its queue (figure
4.4). The rate of which the operator sets up the products is called µOpp and the rate at
which products are served at the ample server is called µM .

This problem is more difficult to analyze. There are three places where products can stay:
the queue for the machine (A), the (queue for the) operator group (B) and the machine
during service (C). Call the number of products in A, B and C respectively a, b, c.
b and c can only have the values 0, 1, 2. Also the sum of this can not exceed two, because to
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Figure 4.4: Queuing network 2

all products in these queues, a machine server is attached, and there are only two machine
servers. The states of the Markov chain consists of the number of products in every part
(a, b and c). This Markov chain is given in figure 4.5.
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Figure 4.5: Markov chain for network 2

The stationary distribution π of a Markov process is characterized as the unique solution
of πQ = 0 and πe = 1, where Q is the generator matrix consisting of the transition rates
and e denotes the column vector with appropriate size of which all elements are equal to
one. The analytical solution for the stationary distribution of this Markov chain is given
by Buitenhek [Bui98]. He obtained a Markov chain with the same structure for a different
problem and solved it with the matrix-geometric method described by Neuts [Neu81].

The state space of the Markov process consists of levels, l = 0, 1, 2, . . ., where each level l is
defined as the set of states with a = l. For l > 0 the states are ordered as (l, 0, 2), (l, 1, 1), (l, 2, 0).
For l = 0 the states are ordered as (0, 0, 0), (0, 0, 1), (0, 1, 0), (0, 0, 2), (0, 1, 1), (0, 2, 0). Now
the different parts of Q can be written down.
For l > 0, let A0 be the matrix with transition rates from level l to level l + 1, A1 the
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transition rates inside level l and A2 the transition rates from level l to level l − 1. Then

A0 =





λ 0 0
0 λ 0
0 0 λ





A1 =





−(λ + µOpp) µOpp 0
0 −(λ + µOpp + 2µM ) µOpp

0 0 −(λ + µM )





A2 =





0 0 0
2µM 0 0

0 µM 0





Let B0 be the matrix with transition rates from level 0 to level 1, B1 the transition rates
inside level 0, and B2 the transition rates from level 1 to level 0. Then

B0 =

















0 0 0
0 0 0
0 0 0
λ 0 0
0 λ 0
0 0 λ

















B1 =

















−λ 0 λ 0 0 0
µM −(λ + µM ) 0 0 λ 0
0 µOpp −(λ + µOpp) 0 0 λ
0 2µM 0 −(λ + 2µM ) 0 0
0 0 µM µOpp −(λ + µM + µOpp) 0
0 0 0 0 µOpp −(λ + µOpp)

















B2 =





0 0 0 0 0 0
0 0 0 2µM 0 0
0 0 0 0 µM 0





De generator matrix can now be written as

Q =















B1 B0 0 0 0
B2 A1 A0 0 0 . . .
0 A2 A1 A0 0
0 0 A2 A1 A0

...
. . .















(4.2)

For l > 0, let ~πl the stationary distribution vector of the states in level l, and let ~π0 =
(π(0,0,2), π(0,1,1), π(0,2,0)). It can be shown [Neu81] that a non-negative matrix R ∈ R

3×3

exists for which
~πl = ~π0R

l (4.3)

and R is the solution of the quadratic matrix equation

R = A0 + R A1 + R2A2 (4.4)
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The solution of this equation can be found with repeated substitution, starting with R = 0.

The average number of jobs in the queue (EL) is given by

EL =

∞
∑

l=1

l ~π0R
le

= ~π0 R(I − R)−2e (4.5)

The values for the unknown stationary probabilities ~π0 can be found by solving the balance
equations for the states in level 0 and using the normalization condition

5
∑

n=0

π0,n +

∞
∑

l=1

2
∑

n=0

πl,n = 1 (4.6)

The average waiting time (EW ) is given by

EW =
EL

λ
(4.7)

Now take λ = 2, µopp = 9 and µM = 4, 5. Filling in these values, and evaluating equation
(4.4) results in

R =





0, 5067 0, 05851 0, 006501
0, 03020 0, 5164 0, 05738
0, 006694 0, 05851 0, 5065



 (4.8)

Solving the balance equations of the states in level 0 results in

~π0 =
(

0, 2202 0, 1742 0, 2202 0, 1426 0, 08233 0, 02744
)

(4.9)

Filling in the formula for EW results in an average waiting time of 0, 4252.
Algorithm 1 results in a average waiting time of 0, 0637 at the operator queue, and an
average waiting time of 0, 2778 in the machine queue. This gives a total average waiting
time of 0, 3414. This has an error of 25.0% compared with the analytical solution.
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Chapter 5

Conclusion

5.1 Conclusions

An iterative algorithm is developed to analyze different types of networks with operators:
OQN, SOQN, CQN and kanban systems. This new algorithm is tested in two small net-
works. For these networks, the markov chains could be solved analytically. With this
analytical solution, the new algorithm could be validated.
The relative error of the new method is quite large, but with small numbers, the absolute
error is more important, because even a small error is a large fraction of the analytical
solution. This absolute error is not so big, and the results show that the new method might
be useful for larger networks.

5.2 Further research

The method given in this report has to be validated for larger networks, especially kanban
systems. For this, simulation models have to be made and the results of the new method
have to be compared with the simulation results.
Many authors have given approximations for the aggregation of processes or obtaining the
departure process. The new method can possibly be improved by taking better approxima-
tions for these processes. But in general: the better the approximation, the more complex
it is to obtain. Thus better approximations will increase the runtime of the algorithm.
A problem for larger networks can be the currently used formula for the average waiting
time in the operator queue. For a large number of operators and machines, it can be difficult
to compute the normalization constant in this formula. It is best to find an approximation
for the average waiting time in a GI/G/c/K-queue. Also an approximation for the binomial
coefficient in the summation will solve the problem, because this part is the most complex
to compute for large numbers.

Another important issue to investigate is the time complexity of the new method. If the
new model gives good approximations of the performance measures, and it is faster then
currently used models (for networks without operators), it can be used in optimization of
larger networks. This optimization, or parameter setting is an important aspect of the
modeling of manufacturing systems. The best combination of several parameters has to be
found. But when is a combination the best, and what parameters can be controlled in an
existing manufacturing system?
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The best combination is the cheapest. For all controllable parameters holds: the higher a
parameter, the higher the cost. The base stock level uses capacity, an extra operator have
to be payed. Thus these parameters have to be minimized, but still some performance level
has to be reached, for instance a fill rate of 95%.
There are several parameters that can be controlled and for wich it is not obvious what the
value must be. An example of a parameter with an obvious value is the variability of the
service time. This have to be reduced as much as possible. The most important control-
lable parameters are the number of kanbans N , the base stock level S and the number of
operators P in every operator group.
At the moment this optimization is only possible with running an algorithm for a lot of
situations and pick the one with best results. For real manufacturing systems one run of MC
GKCS needs a lot of time. Therefore optimization will take years, which is not a suitable
solution.

Not much can be said about the change of the performance measures when one of the
three parameters changes. Earlier work [Wor01] showed that this is quite unpredictable.
He computed the performance measures for lot of cases, and found no relations with the
parameters, not even a direction. A question arising from this: Is this a property of the
model, or a property of the manufacturing system? This can only be checked with simula-
tion results. With this simulation, it can be found if there will be a global trend or not. In
that case, this global trend can be used to eliminate parts of the state space of parameter
values.
Another way to decrease the possible solutions is to find upper and lower bounds for the
parameters using other models (i.e. find optimal solutions for N or S using optimizing
models for classic kanban system and base stock models). The relations between N and S
can then be used to obtain better bounds.
For the operators an upper bound is the total number of machines. With this number of
operators an arriving machine never has to wait. Having more operators does not decrease
the sojourn time in the system. A lower bound can be found from the stability condition
and the total arrival rate at the operator queue.

An interesting question is if the new model is faster in optimization methods. In an op-
timization method, performance measures of a network have to be computed for different
situations, to find the best parameter set. The AMVA procedure used in the MC GKCS-
algorithm of Wormgoor [Wor01] has to start with zero in every run. The new model can
start with the results obtained with a previous parameter set. Therefore every run after
the first will be much faster, and reduce the total time the optimization method needs.
Even if the approximation is not very accurate, maybe some parts of the state space of
the parameters can be eliminated, which also reduces the time needed by the optimization
method.
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Appendix A

List of symbols

M Number of machines in the network

R Number of products in the network

cm Number of machine servers of machine m

T r Route matrix of product r

~λr Vector with arrivals per machine for a product

~λE
r Vector with external arrivals per machine for a product

λrm Arrival rate of product r at machine m

λm Total arrival rate of products at machine m

λp Total arrival rate of operations at the operator queue

λamp Total arrival rate of operations at the ample server

ESrm Total service time of operation rm

ESOpp
rm Service time of operation rm during which an operator is needed

ESAmp
rm Service time of operation rm during which no operator is needed

ESm Total service time of machine m

ESp Total service time for the operator group

ESamp Total service time for the ample server

CS
rm Total SCV of the service process of operation rm

CS
m SCV of the service process of free machine servers at synchronization station m

CA
rm SCV of the arrival process of operation rm

CA
m SCV of the arrival process of machine m

CD
m SCV of the departure process of machine m
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CD
rm SCV of the departure process of operation rm

CpA SCV of the arrival process at the operator queue

CpS SCV of the service process at the operator queue

CpD SCV of the departure process of the operator queue

CaA SCV of the arrival process at the ample server

CaS SCV of the service process at the ample server

CaD SCV of the departure process of the ample server

EWopp Average waiting time in the operator queue

EWrm Average waiting time in the network of operation rm
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Appendix B

MC GKCS algorithm

For the analysis of a MC GKCS the first two iterative algorithms in this appendix are used,
the fist to analyze a stage and the second for the whole network. The last algorithm is the
AMVA-algorithm used to analyze the complement network of a synchronization station.
All these algorithms are found in [Wor01].

Algorithm B.1 Analysis of a multi-class GKCS

1. Set TH
C

(r)
b

i to λ
(r)
E for i = 1, ..., Z − 1, r = 1, ..., R

2. Repeat steps (a) and (b) until convergence of the service rates of all synchronization
stations

(a) Upstream walk: For stages i = Z, ..., 2 do

i. Use Algorithm B.2 to obtain the service rates of the synchronization stations

J
(r)
k,i−1 and J

(r)
b,i , r = 1, ..., R

ii. Obtain TH
C

(r)
k

i , r = 1, ..., R, from the last iteration of Algorithm B.2

(b) Downstream walk: For stages i = 1, ..., Z − 1 do

i. Use Algorithm B.2 to obtain the service rates of the synchronization stations

J
(r)
k,i−1 and J

(r)
b,i , r = 1, ..., R

ii. Obtain TH
C

(r)
b

i , r = 1, ..., R, from the last iteration of Algorithm B.2

3. Analyze stage i, i = 1, ..., Z, in isolation to obtain its relevant performance measures

4. Analyze synchronization station J
(r)
k,Z , r = 1, ..., R, in isolation to obtain the market

service levels
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Algorithm B.2 Iteration to obtain the service rates µ
(r)
Jk,i−1

(1) and µ
(r)
Jb,i

(1) in stage i

1. Set the service rates µ
(r)
Jk,i−1

(1) and µ
(r)
Jb,i

(1) , r = 1, ..., R, to some initial value

2. Repeat steps (a) and (b) until convergence of the service rates

(a) Analyze the complement network of each single synchronization station J
(r)
k,i−1 and

J
(r)
b,i , r = 1, ..., R, and obtain its throughput, TH

C
(r)
k

i and TH
C

(r)
b

i using algorithm
B.3

(b) Reset the service rates µ
(r)
Jk,i−1

(1) and µ
(r)
Jb,i

(1) of all synchronization stations

J
(r)
k,i−1 and J

(r)
b,i , r = 1, ..., R, based on its external arrival process and the TH

C
(r)
k

i

and TH
C

(r)
b

i obtained in step (a)
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Algorithm B.3 Multi Class Approximate Mean Value Analysis with synchronization sta-
tions

1. (Initialization) For j = 0, . . . ,M

ESj(
−→
0 ) =

R
∑

r=1

ES
(r)
j

ES2
j (
−→
0 ) =

R
∑

r=1

E
(

S
(r)
j

)2

if cj > 1

pj(0|
−→
0 ) = 1

Q(
−→
0 ) = 0

ELQ,j(
−→
0 ) = 0

if cj = 1

ELj(
−→
0 ) = 0

THj(
−→
0 ) = 0

For r = 1, . . . , R

TH
(r)
j (

−→
0 ) = 0

2. For n = 1 to N , for all states −→n for which
∑R

r=1 nr = n and 0 ≤ nr ≤ N r

(a) For r = 1, . . . , R and j = 0, . . . ,M , if cj > 1

ES
(r)
rem,j(

−→n ) =
cj − 1

cj + 1

ESj(
−→n −−→er )

cj
+

2

cj + 1

1

cj

ES2
i (−→n −−→er )

2ESj(
−→n −−→er )

EW
(r)
j (−→n ) = Qj(

−→n −−→er )ES
(r)
rem,j(

−→n ) +

ELQ,j(
−→n −−→er )

ESj(
−→n −−→er )

cj
+ ES

(r)
j

if cj = 1

EW
(r)
j (−→n ) =

R
∑

s=1

[

EL
(s)
j (−→n −−→er ) − TH

(s)
j (−→n −−→er )ES

(s)
j

]

ES
(s)
j +

THj(
−→n −−→er )ESj(

−→n −−→er )
ES2

j (−→n −−→er )

2ESj(
−→n −−→er )

+ ES
(r)
j

45



(b) For r = 1, . . . , R

TH
(r)
0 (−→n ) =

nr

∑M
i=0 V

(r)
i EW

(r)
i (−→n )

For j = 0, . . . M

TH
(r)
j (−→n ) = V

(r)
j TH

(r)
0 (−→n )

(c) For j = 0, . . . ,M

THj(
−→n ) =

R
∑

r=1

TH
(r)
j (−→n )

if THj(
−→n ) > 0

ESj(
−→n ) =

R
∑

r=1

TH
(r)
j (−→n )

THj(
−→n )

ES
(r)
j

ES2
j (−→n ) =

R
∑

r=1

TH
(r)
j (−→n )

THj(
−→n )

E
(

S
(r)
j

)2

(d) For j = 0, . . . ,M , if cj > 1 and n < cj

Qj(
−→n ) = 0

if cj > 1 and n ≥ cj

Qj(
−→n ) =

ESj(
−→n )

cj

R
∑

r=1

TH
(r)
j (−→n ) [Qj(

−→n −−→er ) + pj(cj − 1|−→n −−→er )]

(e) For j = 0, . . . ,M and k = 1, . . . , cj − 1, if cj > 1

k

ESj(
−→n )

pj(k|−→n ) =
R
∑

r=1

TH
(r)
j (−→n )pj(k|−→n −−→er )

pj(0|−→n ) = 1 − Qj(
−→n ) −

cj−1
∑

l=1

pj(l|−→n )

(f) For j = 0, . . . ,M , if cj > 1

ELQ,j(
−→n ) =

ESj(
−→n )

cj

R
∑

r=1

TH
(r)
j (−→n ) [ELQ,j(

−→n −−→er ) + Qj(
−→n −−→er )]

(g) For r = 1, . . . , R and j = 0, . . . ,M

EL
(r)
j (−→n ) = TH

(r)
j (−→n )EW

(r)
j (−→n )

46



Appendix C

Market service levels

Fill rate

FR = P (mZ > 0)

=

SZ
∑

mZ=1

π(mZ)

= π(0)

SZ
∑

mZ=1

∏mZ−1
j=0 THCb

Z (SZ − j)

(λE)mZ
. (C.1)

Expected number of finished products

ELm,Z =

SZ
∑

mZ=0

mZpi (mZ)

= π(0)

SZ
∑

mZ=1

mZ

∏mZ−1
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(C.2)

Stockout probability If NZ = SZ

SP = P (kZ > 0)

= π (0)




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THCb
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and if NZ > SZ

SP = P (kZ > 0)
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Expected number of backordered demands If NZ = SZ
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∞
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and if NZ > SZ
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Expected customer order response time

ECORT =
ELk,Z

λE
(C.7)

Expected waiting time of a backordered demand
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(C.8)

In these equations, π (0) is:
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If NZ > SZ
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Appendix D

Application extensions

The Decision Support System developed by van ’t Klooster [Klo03] can be used for ana-
lyzing a manufacturing system. It deals with many disadvantages of existing applications.
First, the application implements a better and more realistic model. Secondly, users can
insert data, perform the analysis and view the results in a very intuitive way.
In this chapter, the implementation of some extensions to the model and the application is
described. These extensions upgrade the DSS so it becomes a better support to decision
makers in making more and more complex decisions.

The first extension is the modeling of operators. For that, the algorithm developed in
the previous chapter is used. But this new algorithm has to be tested first and compared
with the current used algorithm1. Therefore it must be possible to run several algorithms,
and compare their results. This is the second extension.

D.1 Current application

First, in the new implementation all practical aspects given in [Klo03] can be included in
the algorithm.
Secondly, the algorithm is optimized. The current algorithm contains an upstream and
downstream walk. But these can only be defined properly when the system is a line system
and all products visit the cells according to this line. This upstream and downstream walks
are not necessary for convergence. Any order of analyzing the cells will work. However, an
efficient order can be a big reduction of the computational effort. But this efficient order
depends on the routing of the products, and it is difficult to give a general procedure for
it. Therefore we choose the most easy implementation: analyze every cell once in the order
the cells are created. This can be repeated until convergence.

Also a different strategy in Algorithm B.2 is possible. In Algorithm B.2 the service rates are
reset only after analyzing the complement network of each synchronization station. Instead
the service rates can be reset after only analyzing its own complement network (yielding
new values for the arrival rate of Kanbans at the station). This strategy can lead to a faster
convergence of the algorithm and thus reduce its computational effort.

1Algorithm 1 can also be used when no operators are modeled
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D.2 Implementation of extensions

To test any new algorithm, it is best to use the input possibilities of the current application.
This will speed up the testing procedure, because one does not have to worry about speci-
fying the input and obtaining the output in a nice way. Only the actual algorithm has to
be programmed. The idea is that it will be very easy to add a new algorithm and view the
results of it. To do so, a layout for an algorithm is defined. In this layout, the reading and
writing of data is defined, the new algorithm only have to be implemented in a specified
procedure. Only code has to be written which uses this layout to compute performance
measures.
There are already several algorithms present in new application. Of course the current
algorithm for a MC GKCS with an AMVA procedure with or without partial reduction.
These two AMVA procedures can also be used for a CQN, and thus appear in the list with
existing algorithms. Also the new algorithm developed in chapter 3 is already implemented.

The adding of operators is very straightforward. Only an extra object, with some fields, has
to be added to the object structure. The most important fields are the number of operators,
and the cell which contains the operator group.
Also, some existing objects need a field to hold a reference to an operator group.

Because the new algorithm for the operators is used for an open queueing network first,
the current object structure of a manufacturing system has to be extended, such it can
handle other network types, not only kanban systems. There are four types of networks
defined: kanban systems, Closed Queueing Network (CQN), Semi Open Queueing Network
(SOQN) and Open Queueing Network (OQN). A parameter is added which stores the type
of network. This is a property of the factory, and has to be given by the user (via factory
properties). Because of generality and official purposes of the application, the default value
is set to kanban.
Based on this field, some options and possibilities can be disabled or invisible in the appli-
cation, because they are not relevant for the chosen network type. For instance, the kanban
system is the only one that can handle multiple stages in a network. Therefore, when the
type is one of the others, only one cell can be defined.

The difference for the CQN, SOQN and the OQN is the role of the synchronization stations.
For all of this types, there is no arrival of demands (no base stock) at the last synchroniza-
tion station. This can be obtained by setting the arrival rate of demands to infinity. For
a CQN, there is no arrival of products at the beginning of the network. This means the
arrival rate at the first synchronization station have to be set to infinity. An OQN does not
have any pallets circulating around. This can be obtained by setting the service rate of the
first synchronization station to infinity.

To make it possible to show the results for different algorithms at the same time, sce-
narios are implemented. Before the algorithm started, first one or more scenarios have to
be chosen. The results of all these scenarios are shown in the results.
A scenario contains the algorithm it uses. But it can also be used to show result from
another database. This is useful when the results for one algorithm or situation are known,
and these have to be compared with the results of another scenario. In this way, they are
shown in the same figure, but the first situation does not have to be ran anymore.
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Another use of scenarios is to see the effect on the performance measures when some input
parameters change. The possibility to define these changes is not implemented fully, so this
option is not possible yet.

Finally, some things change in the checks that are performed at the data before the calcu-
lation starts. The data error Incomplete flow over cells cannot occur anymore. Thus this
does not have to be checked anymore.
An extra error is added when the selected algorithm does not fit the selected network type.
For instance, AMVA cannot be used when the network is a kanban system.

The next table gives the extra fields in the current object structure of the application,
due to all the aspects mentioned in this chapter.

Object Fields Store?

Factory Type of network (OQN, SOQN, CQN, Kanban) Y
Are operators present? Y
List with all existing operator groups NO
List with all existing scenarios NO

Cell List with all the operator groups in the cell NO
Type of network (OQN, SOQN, CQN, Kanban) NC

Operator group Unique ID Y
Name Y
Number of operators in the group Y
Cell which contains the operator group Y
List with every operation which need this operator group NO

Operation When the operator is needed Y
Operator group which is used Y

Scenario Unique ID Y
Name Y
Used algorithm Y
Database name Y
Changes in the data Y

Not all of these fields have to be stored in the database, some can be computed when their
value is necessary. To store them is just a waste of memory. Which fields have to be stored
is also given in the last column of the table. Y means that the field returns in the table
of the corresponding object, NO means that the data is stored, but not as a field of the
corresponding object. Mostly, these are lists which are stored in another table. NC means
that the value can be computed from values of other fields. Thus this field is not stored in
the database.
For the operator group, a table is added to the database, to store its fields.

D.3 Graphical User Interface

All these extensions also have their effect on the Graphical User Interface. Windows and
menu options have been added or changed.
The first thing that have to be done now for a new factory is setting its properties (View
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→ Factory Properties) This screen is shown in figure D.1

Figure D.1: Factory Properties Window

The most important are the network type and if operators are used in the factory. The val-
ues of these properties will affect the look and possibilities of other windows. The Company
Name is used as a header when reports are printed.

Adding an operator group to a cell works exactly the same as adding a resource to a
cell. For every cell a list with operator group can be opened, in which operator groups can
be added, edited and deleted.

When all the factory data is inserted, scenarios can be made (View → Scenarios). This
window is shown in figure D.2.

Figure D.2: Existing Scenarios Window

There always exists one scenario, Base Scenario. This is the standard scenario used in
calculation. Initially it uses the default algorithm, but this can be changed.

The details of a scenarios can be edited in a seperate window (figure D.3).
When a list with available scenarios is shown somewhere in the application, the description
of a scenario consists of three part: the name of the scenario, the number of changes in the
data between brackets and the algorithm that is used in the scenario.

When also scenarios are defined, the algorithm can be run. This process consists of several
steps, which are put into a wizard (Run → Calculate), to help the user.
In the first step of the running (figure D.4), one has to select one or more scenarios. In the
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Figure D.3: Edit Scenarios Window

next step, the data is checked. When errors or warnings are found, these are shown (figure
D.5). when there are errors the running is stopped. With only warnings, one can continue.
When no errors or warnings are found, this window is skipped.
Next a warning is shown, that the running can take a long time when a lot of data is present.
Finally, when the running is finished, this is given in the last screen (figure D.6), together
with the time the run took. This is for algorithm-testing purposes. Here is also shown if
parts of the system are unstable, non-converging or if an unexpected error has occurred.

Figure D.4: First step of the wizard
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Figure D.5: Second step of the wizard

Figure D.6: Last step of the wizard

D.4 Further improvements

Several things need to be done in the application. These are not fully implemented parts.
An important one is to make it possible to run different scenarios with changes in the factory
data.
When this running of scenarios is fully implemented, optimization methods are easy to
implement. An optimization method only is analyzing the network for several parameter
sets, and pick the best set. When scenarios are used, an optimization method only has
to define several scenarios, and these can be used to analyze the network. Then the best
solution can be picked by the user, or by the optimization method itself, if the best parameter
set is well-enough defined.
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