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Summary

Like many other developed countries, there is a sophisticated ambulance
service management system in the Netherlands currently. People who dial
112 can get serviced within a extremely short time, in most of the cases the
requests can be answered immediately. The well trained centralists will or-
ganize an effective triage when the phone gets through. The work procedure
for a centralist in general consists of making a decision whether an ambu-
lance is needed after the triage and giving an order to the ambulance station
if an ambulance is needed. The main route of the ambulance is leaving the
ambulance station, picking up the patients, transferring the patient to the
hospital and coming back to the ambulance station. The limited budget
for the ambulance service resources and the increasing request for the more
efficient ambulance service calls for an improvement in the design of the
schedules for the ambulance resources.

By using several queuing models, critical factors influencing the waiting
time and staff workload in call centers are identified. Among these critical
factors are the number of available centralists, the triage skills of centralists
and occasionally unexpected events. The probability of delay in a call center
can be deduced from these models if the incoming rate of the requests and
the service rate of the centralists are known, based on the empirical data.
The applications of the models have already been done for several regions
in 2008. More investigations can be explored with these queuing models, an
optimal centralist staffing level is decided when combination of several call
centers is considered. The outcomes of these queueing models indicate there
is a considerable decrease for the demanding of centralist if the combination
was applied.

Several different research methods are introduced to determine an optimal
scheduling for the ambulances. Continuous time Markov chain, M/M/c
model, M/G/c/c models are applied to develop the suitable models. The
result shows that the shortage of ambulances happens rarely, both theoret-
ically and realistically, with the current scheduling level. With the mathe-
matical model, the optimal scheduling levels of ambulances can be known
with a prefixed satisfactory criterion that the probability a shortage occurs
is less than a constant α. In most of the cases, new optimal schedules are
just close to the current schedules.





Abbreviations and Terminology

Urgency A1

• threat to the life or permanent disability of the patient (e.g. chest
pains, breathing difficulties or cardiac arrest)

• with flashing light and siren (the ambulance has priority, road users
move to the right or the left to let the ambulance through)

• within 15 minutes.

Urgency A2

• no direct threat to life, but help is needed quickly (e.g. serious inflam-
mations, such as appendicitis, or accidents with minor injuries)

• possibly with flashing light and siren

• within 30 minutes.

Urgency B

• miscellaneous (e.g. transport of people to hospital for examinations or
treatment).

Centralist The well trained worker who works in call center. Their main
work includes two parts: to get information from the call maker and to give
the order to the ambulance team.

Delay In the call centers, the delay means the arriving requests can not be
served immediately. In the ambulance stations, the delay means the arriving
requests can not get free ambulances immediately.

Light Traffic In queueing system, light traffic means that the occupation
rate is small.

LST Laplace-Stieltjes transform, the Laplace-Stieltjes transform of a real-
valued function g is given by a Lebesgue-Stieltjes integral of the form:∫
e−sx dg(x).

Occupation Rate The probability that a server(centralist/ambulance) is
busy.



PASTA Poisson arrivals see time averages. PASTA states that the fraction
of customers finding on arrival n customers in the system is equal to the
fraction of time there are n customers in the system if the Poisson arrivals
are satisfied.

Response Time The time needed from the call gets through until the
ambulance arrives at the scene. This time period includes service time in
the cal center, possible waiting time for an ambulance becoming available,
preparation time in the ambulance station and driving time to the scene.

Triage In the call center, the word triage is used to describe a quick inter-
view between the centralist and the call maker. The centralist should get
the following information after the triage: what type of urgency it is and
whether an ambulance is needed.



List of Symbols

c: Number of servers(centralists/ambulances) in a queueing system

λ1: Arriving rate of A1 customer

λ2: Arriving rate of A2 customer

λB: Arriving rate of B customer

µ1: Service rate of A1 customer 1

µ2: Service rate of A2 customer

µB: Service rate of B customer

P cdelay: Delay probability in call center

P adelay: Delay probability in ambulance station

SACC : Sample space of service time in the call center

SAPR: Sample space of preparation time in the ambulance station

SA1ij,Pk: Sample space of phase k for A1 during time period j on day type
i.

SA2ij,Pk: Sample space of phase k for A2 during time period j on day type
i.

SBij,Pk: Sample space of phase k for B during time period j on day type
i.

i: day types: 1, weekday; 2, Saturday; 3, Sunday.

j: time periods: 1, 0:00-8:00; 2, 8:00-16:00; 3, 16:00-24:00.

k: phases of the service time: 1, phase 1; 2, phase 2.

1µ1, µ2, µB denote the service rate in call center and ambulance trip in different models.





Preface

The main goal of the project described in the proceeding chapters of this
report is to determine the optimal capacity of the ambulance service system
in the Netherlands. For me, finishing this project is the last step involved in
obtaining a Master’s Degree in Applied Mathematics. The last ten months
provided me with a positive experiences. Therefore I would like to thank
Geertjan Kommer and Richard Boucherie for providing me the opportunity
to carry out this project.

I would like to thank all of the supervisors for their useful comments, hon-
esty and interest in my project. I would like to thank Werner Scheinhardt,
Geertjan Kommer and Jan-Kees van Ommeren for reviewing my report.
Also I would like to thank all the colleges in RIVM and UT.

Of course all of my friends in and out of the Netherlands deserve my thanks.
And last but not least, I would like to thank my parents for supporting me
in almost everything I would like to do.

Yanting Chen
Enschede, July 2010





Contents

1 Introduction 14
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.1.1 Centre for Public Health Forecasting . . . . . . . . . . 14
1.1.2 RIVM . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.2 Introduction of The Ambulance Service System . . . . . . . . 15
1.2.1 An Overview of The Ambulance Service in the Nether-

lands(Facts & Figures ) . . . . . . . . . . . . . . . . . 15
1.2.2 Ambulance Service System in the Netherlands . . . . 16

1.3 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . 17
1.4 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2 Data Overview 18
2.1 Overview of the Dataset . . . . . . . . . . . . . . . . . . . . . 18
2.2 Overview and Structure of the Dataset . . . . . . . . . . . . . 18
2.3 Service Criterions and General Assumptions . . . . . . . . . . 19

2.3.1 Service Criterions . . . . . . . . . . . . . . . . . . . . . 19
2.3.2 General Assumptions . . . . . . . . . . . . . . . . . . . 20

3 Literature Study 21
3.1 Staffing Centralist in Call Centers . . . . . . . . . . . . . . . 21

3.1.1 Theoretical Investigations . . . . . . . . . . . . . . . . 21
3.1.2 Practical Research in Commercial Call Centers . . . . 26
3.1.3 Practical Research in Ambulance Call Centers . . . . 27
3.1.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2 Scheduling Ambulances in Stations . . . . . . . . . . . . . . . 28
3.2.1 Theoretical Investigations(Optimal Location) . . . . . 28
3.2.2 Practical Research in Ambulance Stations . . . . . . . 29
3.2.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . 30

4 Modeling Capacity in Call Centers 31
4.1 Erlang C Model . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.2 M/G/∞ Model . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.3 M/G/c/c Loss Model . . . . . . . . . . . . . . . . . . . . . . . 35

10



4.4 Test of Hypothesis and Parameter Estimation . . . . . . . . . 37
4.4.1 Test of Hypothesis . . . . . . . . . . . . . . . . . . . . 38
4.4.2 Parameter Estimation . . . . . . . . . . . . . . . . . . 39
4.4.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . 41

4.5 Applications of the Theoretical Models and Results . . . . . . 41
4.5.1 Model Result of Region Groningen(Example) . . . . . 41
4.5.2 Model Results . . . . . . . . . . . . . . . . . . . . . . 43

4.6 Economical Scales of the Call Centers . . . . . . . . . . . . . 45

5 Modeling Capacity of Scheduling Ambulances in Stations 46
5.1 M/M/c+CTMC/Multinomial Model . . . . . . . . . . . . . . 46

5.1.1 Mathematical Models When All Ambulances Are Oc-
cupied . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.1.2 Mathematical Model without Considering Number of
Ambulances in Use . . . . . . . . . . . . . . . . . . . . 50

5.1.3 Combined Mathematical Model . . . . . . . . . . . . . 51
5.1.4 Problem Encountered . . . . . . . . . . . . . . . . . . 51

5.2 4-d CTMC Model . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.3 M/G/c/c Loss Model . . . . . . . . . . . . . . . . . . . . . . . 58

5.3.1 M/G/c/c Model with Preference . . . . . . . . . . . . 60
5.4 The Model to Calculate Capacity for B customers . . . . . . 61
5.5 Applications of the Theoretical Models and Results . . . . . . 61

5.5.1 Model Result of Region Groningen . . . . . . . . . . . 61
5.5.2 Model Results of Region Drenthe . . . . . . . . . . . . 62
5.5.3 More Results . . . . . . . . . . . . . . . . . . . . . . . 63

6 Simulation 65
6.1 Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
6.2 Descriptions of Simulations . . . . . . . . . . . . . . . . . . . 65

6.2.1 Desctiption of Simulation in Call Center . . . . . . . . 65
6.2.2 Description of Simulation in Ambulance Station . . . 66

6.3 Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
6.4 Simulation in Call Center . . . . . . . . . . . . . . . . . . . . 68

6.4.1 Pseudocode of Simulation in Call Center . . . . . . . . 68
6.4.2 Result of Simulation in Call Center . . . . . . . . . . . 69

6.5 Simulation in Ambulance Station . . . . . . . . . . . . . . . . 71
6.5.1 Pseudocode of Simulation in Ambulance Station . . . 72
6.5.2 Results of Simulation in Ambulance Station . . . . . . 74

6.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

7 Conclusions and Recommendations 77
7.1 Conclusions and Recommendations in Centralists Staffing . . 77
7.2 Conclusions and Recommendations in Ambulance Scheduling 78
7.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

11



Bibliography 79

12



13



Chapter 1

Introduction

This chapter provides the background information about this project and an
overview of the report. Section 1.1 introduces the research institute where
this project is carried out. Then, an overview of the ambulance service
system in the Netherlands is introduced in section 1.2. Finally, the problem
definition and outline of the report are presented in section 1.3 and 1.4
respectively.

1.1 Background

The purpose of this study is to develop a capacity model for the centralists
and the ambulances, in other words, an optimal schedule of centralists and
ambulances should be generated. The project is carried out in the VTV
department of RIVM.

1.1.1 Centre for Public Health Forecasting

This department(Dutch: Centrum Volksgezondheid Toekomst Verkennin-
gen) collects, evaluates, integrates and disseminates knowledge about health
care and also explores the consequences for the health care system to give
more support to the policy maker. The research result will support the
RIVM, Ministry of Health, Welfare and Sport in policy making. The main
tasks of this department are:

• Publish integrative research to assist policy modification;

• Present information on the official internet websites;

• Provide international research result in collaboration with EU, WHO
and OECD.
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1.1.2 RIVM

The Netherlands National Institute for Public Health and the Environment
(Dutch: Rijksinstituut voor Volksgezondheid en Milieu or simply RIVM),
is a Dutch research institute which is an independent agency of the Dutch
Ministry of Health, Welfare and Sport.

RIVM performs tasks to promote public health and a safe living environment
by conducting research and collecting knowledge worldwide. The results are
used to support the Dutch government in formulating its policy. RIVM is
located in Bilthoven and employs over 1400 people, many of whom work in
multidisciplinary fields.

1.2 Introduction of The Ambulance Service Sys-
tem

An overview of the ambulance industry in the Netherlands is shown first.
Then a short description of the working procedure for an ambulance trip is
presented.

1.2.1 An Overview of The Ambulance Service in the Nether-
lands(Facts & Figures )

An overview of the ambulance service system in the Netherlands is intro-
duced here. All the data used here is from [42].

There is 1003,050 ambulance trips in 2008 including A1, A2 and B trips.
There is 439,725 A1 trips in 2008 and the average response time is 9:47 min-
utes, besides, the percentage of the A1 trips of which the response time is
less than 15 minutes is 92.1% 1. Similarly, there is 223,813 A2 trips in 2008
and the average response time is 15:53 minutes, the percentage of the A2
trips of which the response time is less than 30 minutes is 96.2%. Apart from
A1 and A2 trips, the total number of B trips in 2008 is 339,512. Among all
the ambulance trips in 2008, there are 786,667 billable trips, 169,977 EHGV
trips and 46053 free trips.

The total number of workers in the ambulance service industry in the Nether-
lands in 2008 is 4865 and 4267 of them are working in the core functional
departments. In 2008, there are 24 RAV regions in the Netherlands, 676 am-
bulances. The budget in 2008 for the ambulance service in the Netherlands
is 363 million Euros.

1The calculation is based on a specific filter, see the appendix of [42].
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1.2.2 Ambulance Service System in the Netherlands

In this section, more information about the ambulance system in the Nether-
lands will be shown. There is a standard working procedure for offering the
ambulance service in the Netherlands. A telephone call should be made
first and after the triage the centralist will decide whether an ambulance
is needed. Large waiting time is not allowed because it may leads people’s
death, so the most important feature of the ambulance call center is that
abundant centralists are needed compared with other commercial call cen-
ters. Another point that deserve to mention is that the call centers in the
Netherlands are working with other departments such as police, firefighters.
This management collaborations can decrease the triage time because more
resident information is available simultaneously.

If an ambulance is needed, the standard route for an ambulance trip is
leaving the station, picking up the patients, transferring the patients to the
hospital and coming back to the ambulance station, the flowchart in Figure
1.2 shows the procedure graphically.

Figure 1.1: Flowchart of Ambulance Service System

As mentioned previously, the optimal schedules of the centralists and the
ambulances should be developed. The research conducted to propose a new
schedule is guided by the research question stated next.

16



1.3 Problem Definition

The purpose of this study is to develop a capacity model for centralists and
ambulances. The possibility of different types of jobs should be taken into
consideration, such as A1, A2 and B. Besides, the efficiency of the model
results should also be tested.

Research Question: How to determine the optimal capacities and sched-
ules for the centralists in the call centers and the ambulances in the stations?

1.4 Outline

The research executed to improve the capacity and scheduling of the ambu-
lance resources in the Netherlands is presented in the proceeding chapters
of this report and organized as follows. An overview of the dataset for this
project is presented in Chapter 2. In Chapter 3 an overview of the literature
studies is given. The construction of the mathematical model, corresponding
process of data calibration and calculation results for staffing the centralists
are described in Chapter 4. A similar procedure for scheduling ambulances
has been done in Chapter 5. In Chapter 6, two simulations are set up to
evaluate the performance of the model results from Chapter 4 and Chapter
5. The report finishes with conclusions and recommendations in Chapter 7,
followed by reference list and appendices.
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Chapter 2

Data Overview

This chapter presents a data overview of this project. There is a short
description of the dataset in section 2.1. Then, section 2.1 explains the
structure of the dataset for this project. Finally, section 2.3 introduces the
service criterions of this project and some general assumptions we will use
in the following chapters.

2.1 Overview of the Dataset

The informations of the ambulance trips for region Groningen, Friesland,
Drenthe are known in the dataset from year 2006 until 2008. We will give
focus to the data in 2008. In 2008, there is 43478 ambulance trips in Gronin-
gen, 36823 ambulance trips in Friesland and 24601 ambulance trips in Dren-
the.

2.2 Overview and Structure of the Dataset

The dataset we have in the project is for region Groningen, Friesland and
Drenthe. For the applications of the theoretical models, only the dataset of
Groningen and Drenthe are used because Friesland does not have a central-
ized system, which means, they have sub call centers and sub ambulance
stations. So for Friesland, if we want to do the data experiment on it, we
need to know more information about this trip such as which sub call center
and which sub ambulance station are dealing with it instead of only knowing
it occurs within Friesland.

Due to the reason that the dataset available in this project gives restrictions
to the model construction, an introduction of the dataset available here is
needed. There are 8 time moments recorded in the dataset, namely t1, ..., t8,

• t1: time the phone call gets through;

18



• t2: time the centralist in call center orders an ambulance 1;

• t3: time the ambulance departs;

• t4: time the ambulance arrives at the scene;

• t5: time the ambulance departs from the scene;

• t6: time the ambulance arrives at the hospital;

• t7: time the ambulance leaves the hospital;

• t8: time the ambulance comes back to the station.

So it is important to bear in mind that all the parameters needed for the
proceeding models can only be estimated from the above time moments.

2.3 Service Criterions and General Assumptions

The criterions for the service quality in the call center and the ambulance
stations are introduced first, then, two general assumptions used in the
following chapters are also presented.

2.3.1 Service Criterions

The criterions for the service quality in the call center is that the delay prob-
ability in call center should be less then α, α can be chosen at random(For
example, 1%, 3%, 5%).

The criterions for the service quality in the ambulance station is that the
response time should be short. The response time for at least 95% of the
A1 customers should be less than 15 minutes. Similarly, the response time
for at least 95% of the A2 customers should be less than 30 minutes.

• A1: P (T < 15min) > 95%

• A2: P (T < 30min) > 95%

Here is an explanation about the response time: response time(T ): T =
T1 + T2 + T3 + T4

• T1: service time in call center;

• T2: possible waiting time for an ambulance becoming available;

• T3: preparation time for an ambulance to leave the station;

• T4: driving time to the scene.
1In calculation, this time moment is used as an approximation of the time moment

that an call finishes for A1, A2 urgencies
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2.3.2 General Assumptions

In the proceeding chapters, there are 2 general assumptions which will be
used all the time,

Assumption 1 In the centralists staffing, Only A1 customers and A2 cus-
tomers will be considered, the number of the centralists needed for the B
services can be determined by the elementary calculation.

Because the B services can be interrupted at any time when a call comes in,
which means, the A1 and A2 services are preemptive to the B service. So it
is reasonable to assume that only A1 and A2 will be considered in the model
construction. If the rest of the capacity besides A1 and A2 is enough for
the B services, then there is no need to add more centralists. If not, more
centralists will be scheduled.

Assumption 2 In the ambulance scheduling, Only A1 customers and A2
customers will be considered, the number of the ambulances needed for the
B services can be determined by the elementary calculation.

There are three reasons why this assumption is set up. The first is that the
requests for A1 and A2 service are stochastic but the B services are scheduled
at least one day in advance, so the calculation for the ambulances needed by
the B type of customers is trivial. The second reason explained below gives
us more support to treat them separately. There are 2 types of ambulances
in the station, the fully equipped ambulances are providing services for the
A1 customers and the A2 customers, the other group of ambulances with
lower standard of the equipments will serve B type of customers. Normally,
this two groups will deal with their own requests independently. If a shortage
happens, the B customers can borrow the ambulances from another group
sometimes. The last reason is that the service criterions only give restrictions
to the A1 and A2 services instead of all the services. So it is reasonable to
assume that only A1 and A2 need to be taken in to account in the model
constructions.
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Chapter 3

Literature Study

This chapter discusses the literature studied for this project. The first part
covers the topic of models about the optimal capacity in call centers. The
second part reviews articles involved with optimal scheduling of the ambu-
lances. Section 3.1 gives introduction about the papers in staffing central-
ists, this introduction is composed by theoretical research, practical research
in commercial and ambulance call centers and a conclusion is drawn from
them. Similarly, section 3.2 presents the papers in scheduling ambulances,
including theoretical and practical research, again, a conclusion is displayed
at the end.

3.1 Staffing Centralist in Call Centers

Starting from 1950s, there is a long history in the research about central-
ist staffing in call centers, a large number of papers can be found about
this topic. The following papers are discussing topics including heavy traffic
limit, time varying control, resource sharing system, abandonments/retrials,
statistical forecasting of calls, automated call distribution system and con-
gestions.

3.1.1 Theoretical Investigations

The first paper investigating optimal distribution of resources in call centers
is Erlang [19] in 1948. In the following two decades after this paper, more
mathematician and engineer start to do research in this area. In 1974, Lar-
son [34] use hypercube queuing model the first time to solve this problem.
In general, the hypercube queueing model is a computer program, more de-
tails about this can be found in Larson’s report. After this, many papers
based on hypercube queuing models are published. This paper set up a
hypercube queuing model to tackle the problems of facility locations and re-
districting in urban emergency services, computationally efficient algorithms
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are constructed for studying the analytical behavior of a multi-server queu-
ing system with distinguishable servers. This model is aimed for analyzing
the problems of vehicle location and response district design in urban emer-
gency services. Apart from this, computation of several point-specific as well
as area-specific performance measures for the call center are also allowed.
In 1977, Segal and Weinberger [45] discuss both the analytical methods and
some implementation considerations. The settings in the model assume that
the operators should take full responsibility for all jobs within their own re-
gions. They use a highly interactive software system which is a heuristic
algorithm combining shortest 3 path, minimum cost flow, and enumerative
techniques to tackle the problem. They also discuss a stochastic model of
the work backlog in a region, based on the variability of the demand for
service.

With the development of telecommunications, more and more commercial
call centers show up in the 1980s. Compared with normal strategy of sales in
shops, there is no doubt that selling online saves a lot of resources and earns
more money. Although it is better to set up requirement for the service level
in this situation, the fundamental goal for the businessman is still to use the
least resources to satisfy the requirement. Due to this new situation, a new
concept of heavy traffic shows up. In 1981, Shlomo and Whitt. [22] for the
first time investigate this theoretically in the staffing research in call centers.
Two different types of heavy-traffic limit theorems have been proved for s-
server queues. Although heavy traffic is the last property we want to have in
ambulance service centers, it is still interesting to take a look at this. Ward
Whitt is a remarkable researcher in staffing problem in call center. After
1980, he wrote a lot of interesting papers about many aspects of call centers.
In 1984, Whitt [49] investigates heavy traffic again. In this paper, approx-
imations are discussed for the blocking probability and related congestion
measures in service systems with s servers, r extra waiting spaces, blocked
customers lost, and independent and identically distributed service times
that are independent of a general stationary arrival process (the G/GI/s/r
model).

In 1986, Sze [48] talks about a queuing model for telephone operator staffing.
The goal of this research is to ensure that the customers receive good levels
of service during normal load times and to protect them against very poor
service during peak load periods. Several other features based on the Erlang-
C Model are considered here: 1. very large number of servers involved at
the same time; 2. bimodal service time distributions; 3. non-stationarity
of customer arrivals, 4. customer abandonment and reattempts for service,
and 5. nonpreemptive priority rules for service. Therefore, a new queuing
model was developed to generate staffing tables for each operating system.
This model is quite interesting because it contains several features of our
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research questions. In the 1980s, the use of computers becomes more and
more popular, so simulation methods start to play an important role then. In
1988, Kwan, Davis and Greenwood [32] use simulation to tackle the staffing
level with time varying demand. Since the explicit formulae of time varying
arrivals is not available, simulation is a good way to solve this problem. Es-
pecially in the service operation where the number of centralists has to be
determined for short scheduling time periods with non stationary customer
demand, the assumptions necessary for using steady-state solutions to el-
ementary queueing models are usually violated. So this paper describes a
simulation study of the behavior of such a service type. Finally, the results
are compared with the steady-state solutions to queueing models. It is found
that if the system utilization is below a derived maximum value (based on
a service level criterion), then the steady-state solutions are robust enough
to explain the behavior of the system and can be used to schedule worker
requirements. This is a useful conclusion for our research because in ambu-
lance car centers light traffic is a very important feature. More and more
research about commercial call centers with large number of centralists and
heavy load are investigated at this time period.

There are more and more papers discussing staffing in call center during
1990, the innovation of these papers lies not in the great changes in the
mathematical models, but in slight modifications which can solve different
aspects of real problems. In 1991, Levy and Arian[35] develop a dynamic
algorithm for distributed queues with abandonments. They separates the
distributing traffic to several parallell queues. The most important contri-
butions in this paper are: First, a revenue-driven, Markovian decision model
is set up. The model captures the essential elements of the problem; Sec-
ond, the authors demonstrate a superior performance when implementing
dynamic policies. In 1992, Falin and Yang[29] investigate the congestions
in the research of call centers. The authors study the congestions and the
recovering process of behavior in call center. The interesting system here
under inspecting is still a heavy traffic system. The authors use queueing
model to deal with subscriber retrials and investigate some of its properties.
In addition, the authors derive the explicit formulas for the performance
measure of the system and the limit theorems for systems under heavy traf-
fic. In 1993, Bruce and Parsons [5] aim to use least money to find a staffing
level to meet the requirement for the grade of service. The authors propose
and implement an economic-optimization model for telephone-agent staffing
at L.L. Bean. A cost objective function is set up based on queuing theory
to determine the optimal staffing level. Apart from this, a regression model
is used to count for retrials and potential caller abandonments. In 1994,
Gordon and Fowler [21] try to find more accurate force to set up with more
help from computer. In the real practice, the service providers constantly
strive to cut costs for the resources while maintaining customer satisfaction.
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Queueing theory gives them more possibility to make it come true. Con-
sistency algorithms based on three models, Erlang C, M/G/c, and M/G/c
with abandonments, are set up. More data tests have also been done after
model exploration.

Jennings, Mandelbaum, Massey and Whitt [27] discuss mainly about the
server staffing while the demand is time varying in 1996. A muti-server ser-
vice system with general non-stationary arrival and service-time processes
is considered. S(t), the number of servers as a function of time, needs to be
determined to meet required efficiency. The criterion of choosing S(t) is that
the probability of delay should below a target probability at all times. Fi-
nally the author demonstrate that this approximation is effective by making
comparisons with the numerical solution of the Markovian Mt/M/St model.
In 1997, Duffield and Whitt [16] investigate the control and recovery from
rare congestion events in a large multi-server system. Deterministic fluid
models are set up to describe the recovery from rare congestion events in
a large multi-server system in which customer holding times have a general
distribution. To do the approximation, large multi-server system can be pre-
sented as an M/G/∞ model. It has been proved in the paper that, under
regularity conditions, the fluid approximations are asymptotically correct
when the arrival rate increases. Numerical examples are shown to test the
efficiency of these approximation models. In 1998, Mandelbaum and Pats
[39] try to use a state-dependent stochastic networks to model the problem.
In addition, Mandelbaum, Massey and Reiman [37]shows a strong approx-
imation property for Markovian service network in 1998, they have proved
the centre-limit theory in a weaker assumption compared with the previous
papers. kolesar and Green [30] deduce the approximated Erlang’s Delay for-
mulae for normal distribution, staffing level based on this formulae has been
identified. Mandelbaum and Pats [39] use a state-dependent queueing net-
work to model the arrival and service rates, as well as routing probabilities.
The state-dependent model captures the real situation better. For example,
when the queue length is long, the service rate will increase. In 1999, Whitt
[50] shows how to use dynamic model to staff in a call center which is aimed
for immediately answering all calls . This paper develops practical models
and analytical methods to dynamically determine the number of centralists
with the objective of immediately answering all calls. Infinite server system
is considered as an approximation model. However, another essential ele-
ment influencing the efficiency of the model is the forecasting of what will
happen in the near future.

In 2000, Aksin and Harker [3] investigate the performance measures in a
multi-class multi-resource processor-shared loss system. This paper details
a method to calculate performance measures in a specific type of loss system
with multiple classes of customers with processor sharing property. Several
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performance measures can be tested in this system such as delay proba-
bility. The author make some modifications to simplify the computation.
In 2001, Jongbloed and Ger [28] model a call center as a queueing model,
however, the Poisson arrivals have an unknown and varying arrival rates
so prediction of arriving has to be done first, then Erlang formula is used
to calculate waiting time and delay probability. The statistical estimation
plays an important role in the efficiency. In 2001, Pinker and Shumsky [43]
explore the efficiency-quality tradeoff of cross-trained workers. The authors
use a stochastic service system to address this research. The outcome of the
questions shows that which strategy will be used is depend on the situation
met in different call center. From the point of queueing theory: Flexible
or cross-trained servers provide more throughput with fewer workers than
specialized servers. However, the quality of the service may decrease if only
the economy of scales is considered. The general conclusion is as follow:
for the small systems, the mixed schedule can be considered more optimal;
for the large systems, the model leans to specialized models. Finally a case
study is done to demonstrate the conclusion. In 2001, Cezik, Oktay and
Hanan [15]. use integer programming model to determine a weekly schedule
for the call center. Five working days and two days off are considered in this
model. The objective is to determine a weekly staffing schedule to satisfy
the demand for service grade, while minimizing the total labor cost of the
centralists. An integer programming model is used to determine the weekly
tour. The model is quite flexible then it can accommodate different daily
models with varying requirements. This model can handle different days-off
rules, the computational results are also demonstrated at the end.

In 2004, Atlason, Marina and Shane [7] use a method that combines sim-
ulation and cutting plane methods in service systems. At first the authors
solve a relaxed linear (integer) program iteratively and transfer the original
problem to a simulation, then, use the results of the simulation to generate
constraints in the linear system. The conditions under which the solutions
of the linear (integer) program converges to an optimal solution of the unre-
laxed problem is derived. The concavity of the underlying service level func-
tion is critical for the method and a numerical test is presented. In 2005,
Mandelbaum, Massey, Reiman and Rider. [38] investigate queue lengths
and waiting times for multi-server queues with abandonments and retrials.
Markovian multi-server queues with time dependent parameters are consid-
ered. Simple fluid and diffusion approximations are used to estimate the
mean, variance, and density for both the queue length and possible waiting
time. These approximations are solved by ordinary differential equations.
The comparison with the simulation results shows the performance of the
models are good.
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3.1.2 Practical Research in Commercial Call Centers

In 1954 Edie [17] investigates the optimal number of vehicular tolls needed
at the Port Authority tunnels and bridges, which is in principle a staffing
problem. Similar to our research question, the Port Authority tries to han-
dle traffic with a minimum number of toll collectors but at the same time
keep good service to the public need. This objects requires that the staffing
level gives a very good compromise between economical resource and ser-
vice. Quantitative probability theory is used here to determine the relations
between several critical elements. Again in 1959, Edie [18] shows more mod-
ifications to the previous model.

In 1974, Segal [44] gives more insight to the real problem. The number of
telephone operators required on duty at switchboards fluctuates widely dur-
ing the day, so this paper constructs a method for determining the number
of operators needed in each hour based on network flow formulations. A
real case application is done in 1976 by Buffa, Cosgrove and Luce [13]. An
integrated working shift scheduling system is developed and applied in a
very large call center in the General Telephone Company of California. The
system can use the forecasted calls to determine the number of operators
needed on a prefixed short time basis. In 1976, Henderson and Berry[24]
propose a heuristic methods for staffing operators. Two types of heuristic
methods are proposed for staffing operators to meet the varying demand over
the whole day: The first method is to determine the work shift types when
the operator shift schedule is known. The second method is to construct an
operator shift schedule from a given set of work shift types. These heuristics
are evaluated by solution quality and computational efficiency, using actual
data.

More and more investigation is put in this area because telecommunication
become much more important and developed after 1990. A new system
shows up at this time: automated call distribution(ACD) system. In 1991,
Agnihothri and Patricia [2] study the problem in staffing a centralized ap-
pointment scheduling department in Lourdes Hospital. Lourdes Hospital
in Binghampton, New York, uses a telephone system to schedule appoint-
ments for outpatients, inpatients, and other ambulatory services. Queueing
theory is used to plan optimal staffing levels to satisfy the estimated de-
mand. Based on the results of this queueing model, staffing schedules were
modified to meet the different demand in the whole day(including peak
time and normal time). It was revealed that the current staffing level is
enough to deal with all the requests. The author also shows that low server
utilization(occupation rate) is quite important to provide a high level of
service. Mason and Panton [41] use more simulation skills to do the staff
scheduling in 1998. This authors describe a new simulation and optimal
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based system for human resource scheduling in Auckland International Air-
port, New Zealand. A combination model refers to simulation and integer
programming has been developed to determine near-optimal staffing levels.
The application of these modeling result shows a significantly lower staffing
levels, however, at the same time has a good performance.

3.1.3 Practical Research in Ambulance Call Centers

When it comes to 1970s, the rapid development in telecommunications calls
for more sophisticated and customized models to deal with the real problems.
In 1972, Larson [33] contributes a chapter about Improving the effectiveness
of New York Citys 911. This chapter can be considered as the first case
study about call center research. The results of a one month operational
study of police emergency telephone operations in the central communica-
tions room of the New York City Police Department are displayed. This
study serves as an example of elementary quantitative modeling to improve
an ongoing operation.

As it is stated previously, there is a large amount of papers about call centers
after 1980s, so here, we will focus on the research specially considering the
ambulance calls service. In 1985, Mabert [36] pays more attention to the
statistical area of the ambulance calls In 1987, Kuhn and Hoey [31] study
how to improve police 911 operations in Washington, D.C.. In order to solve
the increasing number of complaints from officials in the city and residents at
the same time in recent years, new methods are set up to enhanced 911 which
includes: 1. matching staff deployment with call demand, 2. improving call-
handling performance, and 3. improving civilian pay equity. All of these
ideas can be used besides only considering the capacity of the centralists.

3.1.4 Conclusion

With the prevalence of telephones, the research about staffing centralists in
call center has a remarkable development since 1950s. During 1950-1980,
the pioneer scientists start their exploration in this field. With the help of
developing knowledge of queueing theory at the same time, at the end of
1970s, some of the most important properties of this research topic have
already been characterized. Such as the relationship between the capacity
and the performance measure can be identified. During 1980 and 2000, some
mathematicians try to find more analytical model to tackle the questions
raised in call center and the others try to apply the theory to the real
problem and check how the models actually work. After 2000, there is few
breakthrough improvements on the theoretical research of this topic. The
papers are mainly coupling with the problems coming from different real
situations.

27



3.2 Scheduling Ambulances in Stations

Compared with so much paper dealing with staffing problem in call centers,
there is much less paper discussing exactly scheduling problem in ambulance
stations. In most of the papers, the optimal locations of ambulance stations
are discussed simultaneously.

3.2.1 Theoretical Investigations(Optimal Location)

In 1985, Jarvis [26] point out Erlang loss system is a good approximation
for urban service systems. Later in 1989, Batta and Nirup [10] investi-
gate maximal expected coverage location problem(MEXCLP). The model
is required to maximize the expected coverage of demand with optimally
locating servers while at the same time taking into account the possibility
of servers being unavailable sometimes. The highlights of this paper is to
relax the poisson arrivals and exponential service time requirements based
on hypercube queueing models. In 1993, Ball and Lin [9] the first time
use linear programming(LP) method to tackle this problem. After their re-
search, plenty of paper get published based on the research of them. In this
paper, the authors present an optimization model to determine the location
of stations and the number of vehicles to place at each stations. To solve
this, they propose the use of valid inequalities as a preprocessing technique
to set up the integer programming(IP) and solve IP using a branch and
bound procedure. The computational result shows that this techniques are
quite effective. The objection is to minimize the number of facility stations
needed with the constraints that every demanding point should be covered
by at least one chosen stations within a target response time.

In 1996, Marianov and Revelle [40] investigat the maximal availability loca-
tion problem for the siting of emergency vehicles based on queueing models.
This paper formulates the probabilistic version of the maximal covering lo-
cation problem, the author use queueing theory to obtain a more realistic
model. With the limited number of ambulances, the distribution of am-
bulances maximize the reliability α that an ambulance become available
within a time or distance standard by using a queueing theory model. In
1998, Serra and Marianov [46] use a very theoretical view to deal with this
problem. The method is to locate P points on a graph in order to keep the
predefined performance measure, such as, the probability that an ambulance
is nearby is less than a coefficient. Graph theory is used here.

In 2001, Gendreau and Semet [20] investigate the redeployment problem for
the ambulance groups. The real time management of emergency medial ser-
vices is encountered in this research. This paper use dynamic model to pro-
pose a parallel tabu search to determine the optimal location and capacity
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for the resources. Simulation based on real data shows the high efficiency
of this approach. The highlight of this research is that a lot of practical
constraints are considered in the algorithm: such as, limited number of am-
bulances are located in a station; only a small portion of ambulances are
flexible; repeated trips are not allowed, etc. In 2002, Aytug and Saydam [8]
propose to use genetic algorithms(GA) to find the optimal locations for the
limited resources. The authors focus their attention on a particular formu-
lation model in which a nonlinear objective function is used to optimize the
locations over a convex set. The advantage of GA method is that a near
optimal solutions can always be found within a reasonable amount of time.
However, there is some difficulties in how to get the proper parameters for
the GA method, such as the percentile of the mutations, because the result
of calculation is quite sensitive respect to it. In 2002, Borras and Pastor [11]
start to consider the randomness in server availability when investigating
the probabilistic siting models, for example, the nearest facility may not
always be available at the time a call come in. Then the problem become
not deterministic anymore and the author seek to locate the least number of
facilities needed to cover all points of demand within a maximin time S. The
objective function is to minimize the number of required facilities with the
following constraints: the probability that at least one server is available to
each demand mode when a new emergency situation arise should be greater
than or equal to some reliability level α, then a programming is constructed
based on this. In 2003, Brotcorne and Semet [12] use a mixed model in-
cluding deterministic model and probabilistic model to plan a schedule for
ambulances.

In 2005, Snyder and Daskin [47] consider the dual problem of the original
research questions, to minimize the expected failure cost is used here instead
to maximize the successful achievement. A heuristic way to solve the prob-
lem is mentioned in 2006 because with non zero probability, some extreme
case can happen. In 2006, Atkinson, Kovalenko, Kuznetsov and Mikhale-
vich [6] are dealing with this situation. In 2008, Ingolfsson, Budge and Erkut
[25] describe an optimization model to solve the optimal ambulance location
with random delays and travel times. The fraction of calls reached within a
given response time is used as a performance measure. The response time
is composed by a random delay plus a random travel time. The advantage
of this model is that the randomness of the models has been increased.

3.2.2 Practical Research in Ambulance Stations

In 1999, Henderson and Manson [23] investigate the ambulance requirement
problem in Auckland, New Zealand. As the city grows, roads become con-
gests and the population demographics changes, some new problems show
up: how many ambulances are needed and where should the ambulances
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be placed to meet the targets efficiency if the economy of scale is consid-
ered. The questions are answered by 2 steps: first, a queueing model is set
up to calculate how many ambulances are needed and the optimal places;
Meanwhile, a modification has been done to refine the queueing model re-
sults. The result is calculated by a software BartSim. In 2004, Andersson,
Petersson and Varbrand [4] investigate one real problem in the deployment
of ambulance source. Similar to our project, the emergency scale is also
divided by: life threatening, not life threatening and non-urgent.

3.2.3 Conclusions

Compared with the research of staffing centralists in call center, there is
fewer research dealing with the deployment of ambulances. Apart from this,
instead only consider the capacity problem, to consider the optimal location
of these ambulances at the same time are discussed in nearly all the related
papers. This phenomena indicates that the geographical distribution of the
ambulances should also be an important aspect of this research.
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Chapter 4

Modeling Capacity in Call
Centers

The main goal in this chapter is to find and develop mathematical models
that can be used to to determine the optimal number of centralists in an
ambulance call center. A theoretical, insightful framework has to be found
that models the working process as it currently occurs in the call center.
Implicitly this means that a reliable calculation method must be constructed
that does not solely give a model result, but also an explanation how it can
be applied in real workforce for scheduling. Due to its corresponding nature
of the process, it is plausible that the queueing models can be used here.
In section 4.1-section 4.3, three mathematical models are set up. Tests of
Hypothesis and parameter estimation are presented in section 4.4. Finally,
model results are displayed in section 4.5.

4.1 Erlang C Model

The most commonly used model for commercial call centers is the Erlang
C model, also called the M/M/c model [1]. M/M/c queue is a model with
exponential interarrival times with mean 1

λ , exponential service times with
mean 1

µ and c parallel identical servers. Customers are served in order of
arrival. The occupation rate per server can be defined as,

ρ =
λ

cµ
< 1 (4.1)

Under the assumptions of (3.1), the equilibrium distribution exists. The
states of the system can be characterized by the number of customers in
the system. Let pn denote the equilibrium probability that there are n
customers in the system. We can derive the equilibrium equations for the
the probabilities pn by using a flow diagram. Instead of equating the flow
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into and out of a single state n, we get simpler equations by equating the
flow between the two neighboring states n− 1 and n yielding

λpn−1 = min(n, c)µpn, n = 1, 2, ... (4.2)

Iteration gives

pn =
(cρ)n

n!
p0, n = 0, ..., c (4.3)

and

pc+n = ρn
(cρ)c

c!
p0, n = 0, 1, 2, ... (4.4)

The probability p0 can be derived from normalization, yielding

p0 = (
c−1∑
n=0

(cρ)n

n!
+

(cρ)c

c!
× 1

1− ρ
)−1 (4.5)

An important quantity is the probability that a job has to wait. Denote
this probability by ΠW . It is usually referred to as the delay probability. By
PASTA it follows that

ΠW = pc + pc+1 + pc+2 + ...

=
pc

1− ρ

=
(cρ)c

c!
((1− ρ)

c−1∑
n=0

(cρ)n

n!
+

(cρ)c

c!
)−1

(4.6)

It will be clear that the computation of ΠW by the above formulae leads to
numerical problems when c is large. However, this problem can be neglected
because of the small scale of the ambulance systems in the Netherlands. To
apply this model, there are 3 key requirements that should be satisfied,
namely,

• Poisson arrivals

• exponential service times

• Limited number of servers

The delay probability in a call center can be approximated by the delay
probability from the M/M/c model, which is the summation of the equilib-
rium probabilities which indicate the number of customers in the system is
equal to or greater than that of available servers in the system,

P cdelay ≈ ΠW =
∞∑
i=c

Pi (4.7)
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where Pi in the formulae is the equilibrium probability that there are i cus-
tomers in the system.

Whether this approximated Pdelay will be optimistic or pessimistic compared
with real delay probability is the main concern of our interest. Due to the
reason that the officers of other department such police and firefights will
come to help sometimes when a shortage happens, we can predict that model
result P cdelay will be larger than the probability a real delay happen.

Algorithm 4.1.1 is used to determine the optimal number of the centralists
needed based on the M/M/c model. α is the upper bound of the delay
probability.

Algorithm 4.1.1 Algorithm for The Erlang C Model
c=1, Calculate ΠW

while ΠW > α do
c=c+1;

end while
Print ΠW , c

The result of the algorithm indicates the minimum number of centralists
needed to satisfy that at least 100× (1−α)% percent of calls requesting an
ambulance service can get through immediately. It will be shown later that
unfortunately the exponential service time assumption is violated. A rea-
sonable explanation about this is as follow: for the commercial call centers,
most of the tasks have very short service time, so the exponential distri-
bution may hold. However, in the ambulance car center circumstance, the
service time can not be so short like this because a standard triage and
dispatch procedure are needed for each customers, which makes the expo-
nential service time impossible. Although the Erlang C model is not suited,
there are still some directions we can try, such as

• insensitive systems which have no requirement to the distribution of
service time at all, and the performance measure only depends on the
first moment of the service time,

• simulation

Simulation is a general but slow method to solve this problem. Besides, not
enough insights can be shown in simulation. So we still hope to find the
analytical models to tackle this problem, several insensitive systems will be
tried before simulations are done.
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4.2 M/G/∞ Model

The probabilities of different queue length in the insensitive systems only
depend on the mean of the service time. M/G/∞ queue is one of the ex-
amples. In the M/G/∞ queueing model, the customers arrive according to
a Poisson process with the rate λ. Their service times are independent and
identically distributed with some general distribution function. The number
of servers is infinite, in another words, there is always a server available for
each arriving customer. Hence, the waiting time of each customer is zero
and the sojourn time is equal to the service time. Thus by Little’ s law we
immediately obtain that

E(L) = ρ (4.8)

where ρ = λE(B) denotes the mean amount of work that arrives per unit
time, L is the queue length and B is the length of the service time. The
probabilities pn that there are n customers in the system can be obtained
by the similar procedure as for the M/M/c queue. We obtain this formulae
by equating the flow from state n− 1 to n and the flow from n to n− 1 that

pn−1λ = pnnµ (4.9)

Where λ is the arriving rate and µ is the service rate. Thus

pn =
ρn

n!
p0 (4.10)

Since the probabilities pn have to add up to one, it follows that

p−1
0 =

∞∑
n=0

ρn

n!
= eρ (4.11)

Finally, we obtain:

pn =
ρn

n!
e−ρ (4.12)

Since one of the features in call center that captures our interest, is that
ambulance service groups are not the only group work in the call center,
besides this, firefighters, polices are also working with them together. When
a shortage of centralists occurs, people from other departments can come to
help. So the M/G/∞ model can be considered as a reasonable model.

It seems strange to use this model to determine the delay probability in the
system because there is actually no delay in the system. So an equivalent
”delay probability” is formulated here to estimate the probability that a
delay may happen.
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Use Pi to denote the probability that there are i customers in use,

Pi =
ρi

i!
× e−ρ (4.13)

If we assume the number of the centralists available there is c, the equivalent
delay probability can be calculated by the formulae:

P cdelay ≈
∞∑
i=c

Pi (4.14)

Algorithm 4.2.1 is used to determine the staffing level by M/G/∞ model.

Algorithm 4.2.1 Algorithm of M/G/∞ Model
c=1, Calculate P cdelay
while P cdelay < α do

c=c+1;
end while
Print P cdelay, c

4.3 M/G/c/c Loss Model

It is easy to see that M/G/c queue is a good model to describe the real
situation. In this model, the arrivals follow the Poisson distribution, service
time follow a general distribution which is unknown and there is limited
number of servers. Although this model can describe the situation in call
center well, no explicit formulae is available to calculate the performance
measure of M/G/c queuing system. The intuitive explanation of this lies in
the huge variation from service time distribution.

Another important feature of this queuing system is that the probability
that a centralist is busy with a A1 or A2 case is really small, only this
low utility property can guarantee the customers can get serviced in a re-
ally short time, which is important for the emergency service system. More
standard mathematical theory can be formulated here based on the previous
description. The arriving process is again a Poisson process with rate λ. The
service time of the customer is independent and identically distributed with
some general distribution function. The number of servers available there
is c. Each newly arriving customer immediately goes into service if there is
a server available, and the customer is lost if all servers are occupied. This
system is therefore called a M/G/c loss system. Like the techniques we used
in the previous model, we start to find the equilibrium probabilities pn of

35



n customers in the system. Of special interest is the probability pc, which,
according to the PASTA property, describes the fraction of customers that
are lost. It is obviously not the situation in the problem that we are inves-
tigating in, because the people who call 112 can never be lost. However,
as we mentioned before, the low occupation rate makes this approximation
plausible.

Before introducing the new model, it is important to notice again in a emer-
gency call center, ρ is small, which is the most important difference compared
with other commercial call centers. This is called light traffic in queuing the-
ory, light traffic theory is introduce by David and Donald in 1983 [14]. They
describe a method for approximating the stationary distribution π(k) for
the number of customers in an M/G/c queuing system as the traffic goes to
zero. Intuitively, when the traffic is light it is very unlikely that an arriving
customer would see more than c customers in the system and hence the
system might be well approximated by the M/G/c/c (Erlang Loss)model.
Furthermore, most arriving customers who are delayed, arrive when the sys-
tem contains exactly c customers. One might expect that the nonzero delay
approaches the minimum of the c random variables. In fact, it has been
proved in the paper

π(k)
p(k) → 1 as λ→ 0

where, for k ≤ c, p(k) is the stationary probability of having k customers in
an M/G/c/c system and, for k > c, p(k) is ρk/c!(k − c)! times the (k-c)th
moment of the minimum of c independent equilibrium-excess service-time
variable. Even further, it is reasonable to extend this proof when ρ → 0
instead of λ→ 0.

Theorem 1. π(k)
p(k) → 1 as ρ→ 0

Proof. ρ = λ
µ

If µ <∞, then ρ→ 0 indicates λ→ 0
If µ→∞, when ρ→ 0, ∃ n ∈ N large enough, so that
µ
2n = C(constant)
λ = o(µ)
Mean while, λ

2n = o(µ)
2n = o(µ)

µ × C → 0

So π(k)
p(k) → 1 as ρ→ 0

So far, a conclusion can be draw is that: the waiting probability in the
M/G/c queue can be well approximated by the blocking probability in
M/G/c/c queue if the traffic is light. The blocking probability B(c, ρ) is
given by
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B(c, ρ) = pc = ρc/c!Pc
n=0 ρ

n/n!

The name of this formula is Erlang’s loss formula. Here is a summary that
why M/G/c/c model is a good choice here.

• Light traffic in M/G/c queuing system, which means the delay prob-
ability is quite small;

• M/G/c/c is an insensitive system, which means the delay probability
is insensitive to the distribution of the service time, but only depends
on its mean.

Apart from M/G/∞ model, M/G/c/c loss system is still been taken into
consideration because in real situation, the number of centralists can never
be infinite There is also an other very important reason which inspires us to
think about this model - light traffic. With the property of light traffic, it is
intuitive that the probability of a congestion in the system happens really
rare. Again it is also an insensitive system which asks no requirement for the
distribution of service time. This two features give us the first impression
that M/G/c/c loss model will be a good one to describe the situation.

P cdelay ≈ B(c, ρ) = pc =
ρc/c!∑c
n=0 ρ

n/n!
(4.15)

The algorithm 4.3.1 is used to determine the staffing level based on M/G/c/c
model.

Algorithm 4.3.1 Algorithm of M/G/c/c Model
c=1, Calculate P cdelay
while P cdelay < α do

c=c+1;
end while
Print P cdelay

4.4 Test of Hypothesis and Parameter Estimation

Tests of hypothesis and parameter estimation are needed before the final
result can be displayed. The tests of hypothesis can indicate whether the
models constructed are suitable ones and the parameter estimation will pro-
vide required parameters to get the results from the calculation. Section
3.4.1 covers the relevant tests of hypothesis, section 3.4.2 presents the useful
parameters for the model calculation. A conclusion is drawn in section 3.4.3.
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4.4.1 Test of Hypothesis

There are mainly two hypothesis tested here: Poisson arrivals and exponen-
tial service time. The data experiments of all these tests are catalogued into
weekday, Saturday and Sunday by hours.

Poisson Arrivals
The first test is that whether the arrivals follow Poisson distribution in each
hour. Of course other time segments can also be chosen.

The statistical descriptions for the tests of hypothesis are,

H0: The arrivals follow poisson distribution in each hour;
H1: The arrivals do not follow poisson process in each hour;

Pearson’s chi-square statistical test is used here, the value of the test statistic
is:

X2 =
∑n

i=1
(Oi−Ei)

2

Ei
,

where

• X2=the test statistic that asymptotically approaches a χ2 distribution;

• Oi=an observed frequency;

• Ei=an expected(theoretical) frequency, asserted by the null hypothe-
sis;

• n=the number of possible outcomes of each event.

The intuition of Pearson’s chi square test is that if data under test follow
theoretical distribution, the empirical frequency should be close to the the-
oretical frequency on each intervals.

Data from 2008 are applied to this test. The test result indicates null hy-
pothesis can not be rejected. So the conclusion is that Poisson arrivals are
satisfied. Actually the result is reasonable because the requests for the am-
bulance service come at random.

Exponential Service Time
Similar statistical tests can be constructed to test the distributions of the
service time in the call center and the ambulance stations. Unfortunately,
the conclusions here are that service times do not follow the exponential
distribution. Figure 4.1 display the histogram of the service time which is
less than 600 seconds(10 min) for Groningen in 2008. From this histogram,
an obvious contradiction is shown. Due to the standard triage procedures in
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ambulance call center, most of the calls can only be finished after a certain
amount of time. Therefore, it is not difficult to understand why exponential
service time can not be true in ambulance call center.

Figure 4.1: Histogram of The Service Time(2008,Groningen)

4.4.2 Parameter Estimation

Before calculation, parameter estimation is needed for the required param-
eters in the models. Maximal likelihood estimation(MLE) method is used
here. Here is a short introduction about maximum likelihood estimation.
The idea behind maximum likelihood parameter estimation is to determine
the parameters that maximize the probability (likelihood) of the sample
data. From a statistical point of view, the method of maximum likelihood
is considered to be more robust (with some exceptions) and yields estima-
tors with good statistical properties. In other words, MLE methods are
versatile and apply to most models and to different types of data. In ad-
dition, they provide efficient methods for quantifying uncertainty through
confidence bounds. Although the methodology for maximum likelihood es-
timation is simple, the implementation is mathematically intense. Using
today’s computer power, however, mathematical complexity is not a big ob-
stacle.

Arriving Rates

The maximal likelihood for the Poisson distribution is:

λ̂MLE =
1
n

n∑
i=1

ti
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ti is the observation.

The parameter estimation can be done base on this formulae, the applica-
tions for the arriving rate(λ) during weekday in 2008 are done. Here are the
examples in region Groningen.

Table 4.1: The Arriving Rate for Weeday, Region Groningen,2008

Time Period λ Time Period λ

0-1 2.0916 12-13 5.2137
1-2 1.8321 13-14 4.7977
2-3 1.5344 14-15 4.6183
3-4 1.3397 15-16 4.5076
4-5 1.2519 16-17 4.6412
5-6 1.2634 17-18 4.2023
6-7 1.4733 18-19 3.2901
7-8 2.1908 19-20 3.1565
8-9 4.0573 20-21 3.3397
9-10 4.3168 21-22 3.2977
10-11 4.5840 22-23 2.8550
11-12 5.4695 23-24 2.4351

Similarly, the arriving rate for the ambulance services on weekday in Fries-
land and Drenthen, 2008 can also be estimated. The requests for the ambu-
lance services have a peak at daytime but there is an obvious decrease during
the early morning and midnight. The outcomes are reasonable. First, there
is hardly dangerous things happening during early morning or midnight
when people are sleeping or relaxing at home; Second, during the daytime,
the probability that an accident occurs increase because of the potential
damage to human activities.

Service Time in Call Center

The distribution of the service time is unknown, so the MLE can not be de-
duced here. Therefore, we just simply calculate the average service time( 1

µ)
in the call centers.

1
µ

=
∑n

i=1 ti
n

(4.16)

the average service time for A1 and A2 services in call center(region Gronin-
gen, workday, 2008) is 3.40 minutes, the average service time in Friesland is
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2.41 min. Similarly, the average service time in call center(region Drenthe,
workday, 2008) is 3.29 minutes.

4.4.3 Conclusion

The tests of hypothesis indicates that the assumption of Poisson arrivals
holds but that of exponential service time fails to be true. The possible
reasons of these results are that the requests come at random and several
standard questions should be asked before a decision of dispatching an am-
bulance can be made. Since the poisson arrival holds, the MLE can be
applied to get the arriving rates. However, only the average service time is
calculated because the distribution of this service time is unknown.

4.5 Applications of the Theoretical Models and
Results

The model results of all the regions are displayed in this section. First, the
model results for A1 and A2 customers are displayed. Second, the method
of calculating the capacity for dealing with B customers are introduced. At
the end of the section, an exploration about the combination of the call
centers has been done.

4.5.1 Model Result of Region Groningen(Example)

Model Result(A1/A2)

The conclusion has been drawn previously is that Poisson arrival holds but
not exponential service time. Then it is easy to find out that M/M/c model
is not suitable anymore. However, because of the insensitivity of M/G/∞
model and M/G/c/c model, these two models still can be considered as good
models to determine optimal number of centralists needed in the ambulance
call center. When α = 0.01, Table 4.2 displays the optimal number of
centralists needed in each hour on weekday in Groningen based on M/G/∞
model. Similarly, Table 4.3 shows the optimal number of centralists needed
in each hour on weekday in Groningen based on M/G/c/c model.
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Table 4.2: The Staffing Level for Weekday, Region Groningen (M/G/∞)

Time Period Staffing Level Time Period Staffing Level
0-1 2 12-13 3
1-2 2 13-14 3
2-3 2 14-15 3
3-4 2 15-16 3
4-5 2 16-17 3
5-6 2 17-18 3
6-7 2 18-19 3
7-8 2 19-20 3
8-9 3 20-21 3
9-10 3 21-22 3
10-11 3 22-23 3
11-12 3 23-24 2

Table 4.3: The Staffing Level for Weekday, Region Groningen (M/G/c/c)

Time Period Staffing Level Time Period Staffing Level
0-1 2 12-13 3
1-2 2 13-14 3
2-3 2 14-15 3
3-4 2 15-16 3
4-5 2 16-17 3
5-6 2 17-18 3
6-7 2 18-19 3
7-8 2 19-20 3
8-9 3 20-21 3
9-10 3 21-22 3
10-11 3 22-23 3
11-12 3 23-24 2

However, the real staffing in call center have 3 shifts in one day, 8 hours per
each, then the final staffing table can be determined in table 4.4. The general
probability of delay in this table is calculated by the weighted average of
P cdelay in each hour,

P cdelay =
24∑
i=1

wi(P cdelay) (4.17)

Where wi is the weight.
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Table 4.4: The Staffing Level of Weekday, Region Groningen
Model Type 0-8 8-16 16-24 P cdelay
M/G/∞ 2 3 3 0.0028
M/G/C/C 2 3 3 0.0026
Real Staffing Level 2 3 3 Unknown

Elementary Calculation for B Type of Customers

Most of the B type of customers are coming between 8:00 and 16:00 during
the weekday. Now we are going to calculate the total busy time for the A1
and A2 service which we shall call BT1 during 8:00-16:00 and the total busy
time for the B services BT2 during this time period.

• If BT1 +BT2 ≤ 8 ∗ c, then there is no need to add more centralists.

• If BT1 +BT2 > 8 ∗ c, then more centralists are needed.

It is a pity that in the dataset, we only know t1(time a call comes through)
and t2(time an ambulance is ordered) instead of the time a call finishes. For
most of the B services, the time that the ambulances are ordered happens
several hours later after the call finishes. So we are lack of the accurate data
to calculate this although the method is easy.

4.5.2 Model Results

More results for the staffing level on weekday, Saturday and Sunday for all
the regions are displayed here:(α = 0.01)

Groningen

Table 4.5: The Staffing Level in Groningen(M/G/∞, α = 0.01)
Time Period 0-8 8-16 16-24

Weekday 2 3 3
Saturday 2 3 3
Sunday 3 3 3
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Table 4.6: The Staffing Level in Groningen (M/G/c/c, α = 0.01)
Time Period 0-8 8-16 16-24

Weekday 2 3 3
Saturday 2 3 3
Sunday 3 3 3

Friesland

Table 4.7: The Staffing Level in Friesland (M/G/∞, α = 0.01)
Time Period 0-8 8-16 16-24

Weekday 2 3 2
Saturday 2 3 2
Sunday 2 3 2

Table 4.8: The Staffing Level in Friesland (M/G/c/c, α = 0.01)
Time Period 0-8 8-16 16-24

Weekday 2 3 2
Saturday 2 3 2
Sunday 2 2 2

Drenthe

Table 4.9: The Staffing Level in Drenthe (M/G/∞, α = 0.01)
Time Period 0-8 8-16 16-24

Weekday 2 3 3
Saturday 2 3 2
Sunday 2 3 2

Table 4.10: The Staffing Level in Drenthe (M/G/c/c, α = 0.01)
Time Period 0-8 8-16 16-24

Weekday 2 3 3
Saturday 2 3 2
Sunday 2 3 2
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4.6 Economical Scales of the Call Centers

One practical question raised in call center is that whether it is more effi-
cient to combine the call center. Intuitively, a centralized system means less
blocking because when all the centralists are occupied in one call center,
the free centralist in another call center can come to help if combination
is applied. The following figure shows the staffing level needed for the un-
combined and combined call centers. M/G/c/c model is applied on region
Groningen, Friesland and Drenthe during 8:00 and 16:00 on weekday when
α = 0.01. The blue bar shows the number of centralists needed without
combination and the red bar indicates the number of centralists needed
with combination.

Figure 4.2: Comparison of Combined and Uncombined Call Centers

During the investigation, only A1 and A2 are considered. However, due to
the lack of the data for the time that a call finishes, the accurate busy time
for the B customers can not be calculated. Perhaps more centralists are
needed after combination because of the large amount of B services.

45



Chapter 5

Modeling Capacity of
Scheduling Ambulances in
Stations

In this chapter, three models aimed for optimal scheduling of ambulances are
discussed. The first model is set up to meet the criterion 1 (response time
should be short), and the following 2 models are built up to meet criterion 2
(delay probability should be small). The calculations have been done apart
from model construction. In section 5.1-5.3, three models are presented
to determine the optimal schedules for the ambulances. The method to
determine the capacity needed for B type of customers is displayed in section
5.4. Finally, the model results are shown in section 5.5.

5.1 M/M/c+CTMC/Multinomial Model

From chapter 2, we can know the original criterion for the scheduling of
ambulances is,

• A1: P (T < 15min) > 95%

• A2: P (T < 30min) > 95%

Response Time(T ): T = T1 + T2 + T3 + T4

• T1: service time in call center;

• T2: possible waiting time for ambulance becoming available;

• T3: preparation time for ambulance to leave the station;

• T4: driving time to the scene.
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We notice that for all these time intervals, only T2 can be influenced by the
number of ambulances, which means, the number of ambulances can not
influence the service time in call center, the preparation time for ambulance
to leave the station and driving time at all. However, compared with other
time period, T2 is extremely short because the probability that T2 is zero
is high, which makes it risky to use the distribution of T to determine the
number of ambulances needed because the distribution of T is not sensitive
when the number of ambulances changes. Although we are puzzled slightly
here, we still need to explore whether this criterion can be satisfied. So our
main objective is to find the distribution of response time (T ) if the sched-
ules of ambulances are known.

The mathematical model set up here can only serve as an approximate model
because exponential service times are not realistic. But this model can still
give some insight what will happen in the real world. First, M/M/c model
is used to calculate the equilibrium distribution of the numbers of customers
in the system. When the number of the customers in the system exceeds the
number of servers in the system, the newly arriving customers have to wait.
Then how long should be wait (T2) is our main focus. The distribution
of T2 depends on how many A1 and A2 customers are in the system and
which phase they are in, it is obviously that the ambulance evolved in A1 on
the way back to the station will become available soon but the ambulance
evolved in A2 which is still on the way to the scene will take more time
to come back. Then based on the distribution of T2, an convolution can
be applied to T1, T2, T3 and T4 to get the distribution of response time
(T ). We want to solve the problem by 2 steps, first we use M/M/C model
to calculate the delay probability and then we can make use of the tool
(CTMC) or a direct method(Mutinomial distribution) to get the LST of the
distribution of response time T .

5.1.1 Mathematical Models When All Ambulances Are Oc-
cupied

The main mathematical theory used to model the situation when all the
ambulances are busy is continuous time Markov chain(CTMC) and multi-
nomial distribution. The method based on continuous time Markov chain is
introduced first.

Continuous Time Markov Chain Model
Now we start to construct a continuous time Markov Chain. The concepts
of phase 1 and phase 2 are used in this Markov Chain, which are defined as
follows:

• phase 1 (t4 − t2): the time period from ordering an ambulance until
the ambulance arrives at the scene;
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• phase 2 (t8− t4): the time period from when the ambulance arrives at
the scene until coming back to the station.

It is obvious that this continuous time Markov chain is only considered under
the case that when all the ambulances are occupied. We now describe the
4-dimential CTMC as (N1(t), N2(t), N3(t), N4(t)),

• N1(t): number of ambulances used by A1 in phase 1 at time t;

• N2(t): number of ambulances used by A1 in phase 2 at time t;

• N3(t): number of ambulances used by A2 in phase 1 at time t;

• N4(t): number of ambulances used by A2 in phase 2 at time t;

The graphical description of these 4 states is in Figure 5.1:

Figure 5.1: States in Continuous Time Markov Chain

At the end of the state description, the whole state space can also been
known. If the number of the available ambulances is c, the number of the
different states in this Markov Chain is

(
c+3
3

)
, which can be considered as a

partition of the ambulances groups into 4 parts.

We are interested in the invariant measures when the Markov chain achieves
the equilibrium state, so we only focus on the state ~n, where ~n = (n1, n2, n3, n4).
Then we need to construct the transition rates for this 4-dimensional Markov
chain, the following list is an explanation for the notations, all the variables
are assumed to be exponentially distributed. The explanations are also
available in the section of notations before the report starts.

• λ1: The arriving rate for A1;

• λ2: The arriving rate for A2;

• γ11: The service rate for the phase 1 of A1;
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• γ12: The service rate for the phase 2 of A1;

• γ21: The service rate for the phase 1 of A2;

• γ22: The service rate for the phase 2 of A2;

The transition rates are as follow:

• (n1, n2, n3, n4)→ (n1 − 1, n2 + 1, n3, n4) = γ11

• (n1, n2, n3, n4)→ (n1 + 1, n2 − 1, n3, n4) = λ1
λ1+λ2

γ12

• (n1, n2, n3, n4)→ (n1, n2 − 1, n3 + 1, n4) = λ2
λ1+λ2

γ12

• (n1, n2, n3, n4)→ (n1, n2, n3 − 1, n4 + 1) = γ21

• (n1, n2, n3, n4)→ (n1 + 1, n2, n3, n4 − 1) = λ1
λ1+λ2

γ22

• (n1, n2, n3, n4)→ (n1, n2, n3 + 1, n4 − 1) = λ2
λ1+λ2

γ22

What we need from this Markov chain is to get the invariant measures of
the different states in the state space. Then we can know that when a delay
happens, how long you have to wait. We denote the probability that the
equilibrium system is in state ~n = (n1, n2, n3, n4) by p(n1, n2, n3, n4).

Multinomial Distribution Model
Although the CTMC model can give us the probabilities p(n1, n2, n3, n4) as
we want, there is one shortage of this method, that is, it always takes quite
a long time to achieve an equilibrium state which means the delay should
happen for quite a long time, this is different from the real situation. So
another direct method, multinomial distribution method, is also considered
here to determine probability p(n1, n2, n3, n4).

p(n1, n2, n3, n4) = Pr(N1 = n1, N2 = n2, N3 = n3, N4 = n4)

=
(n1 + n2 + n3 + n4)!

n1!n2!n3!n4!
×

(
λ1

λ1 + λ2

(γ11)−1

(γ11)−1 + (γ12)−1
)n1×

(
λ1

λ1 + λ2

(γ12)−1

(γ11)−1 + (γ12)−1
)n2×

(
λ2

λ1 + λ2

(γ21)−1
(γ21)−1 + (γ22)−1

)n3×

(
λ2

λ1 + λ2

(γ22)−1

(γ21)−1 + (γ22)−1
)n4

(5.1)

The parameters in this formulae are explained here: when a customer comes,
with probability λ1

λ1+λ2
, it is an A1 customer, and for an A1 customer, with
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probability (γ11)−1

(γ11)−1+(γ12)−1 , it is in phase 1. So the probability that this

ambulance is used by an A1 customer in phase 1 is λ1
λ1+λ2

(γ11)−1

(γ11)−1+(γ12)−1 .
Similarly, the probabilities that the ambulances are used by A1 customer
in phase 2, A2 customer in phase 1 and A2 customers in phase 2 can be
deduced respectively.

5.1.2 Mathematical Model without Considering Number of
Ambulances in Use

Apart from the exploration of a delay happen, the probability that there is
no delay in the system is also important because the previous two methods
can only help us to derive the conditional distribution of T2 when T2 is not
zero. The M/M/c model is used here to determine the probabilities that
there are no delay. Before model descriptions, the notations used here will
be introduced, which can also be found in the ”Notation” section.

• λ1: the arriving rate for A1;

• λ2: the arriving rate for A2;

• µ1: the service rate for A1;

• µ2: the service rate for A2.

Arriving Rate
The arriving rate for the M/M/c system is λ1 +λ2 because this nothing but
a combination of two Poisson process.

Service Rate
The service rate is determined as follow,

1
µ

=
λ1

λ1 + λ2
× 1
µ1

+
λ2

λ1 + λ2
× 1
µ2

(5.2)

The probability that a newly arrival is A1 customer is λ1
λ1+λ2

, similarly, the
probability that a newly arrival is A2 customer is λ2

λ1+λ2
. So in general, the

mean service time is the weighted sum of the mean service times of A1 and
A2 customers.

By using M/M/c model, we can get the distribution of the number of cus-
tomers in the system:

pi =
(cρ)i

i!
p0, i = 0, ..., c (5.3)

and
pc+i = ρi

(cρ)c

c!
p0, i = 0, 1, 2, ... (5.4)
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where occupation rate ρ is,

ρ =
λ

cµ
(5.5)

c is number of servers(ambulances), p0 is the probability that the system is
idle, which means all the ambulances are waiting in the station.

So the probabilities that T2 are zero and non-zero can be got as follow:

• q1:
∑c−1

i=0 pi, probability that T2 is zero;

• q2: 1− q1, probability that T2 is non-zero.

5.1.3 Combined Mathematical Model

Denote the LST of T2 by ST2(s̃). If the number of available ambulances is
c, then the number of combination of the states when all the ambulances
are occupied is

(
c+3
3

)
. Let P~n denote the probability that the system is in

state ~n, and
∑

~n P~n = 1. When the system is in state ~n = (n1, n2, n3, n4) ,
we use r~n to denote the rate that one ambulance becomes available: r~n =
n1 × µ1 + n2 × γ12 + n3 × µ2 + n4 × γ22. Then the LST of T2 is:

ST2(s̃) = q1 +
∞∑
i=c

pi × (
∑
~n

P~n
r~n

r~n + s
)i−c+1 (5.6)

where c is the number of ambulances, pi is the probability that there are i
customers in the system, P~n is the probability that the system is in state
~n. So far, the distribution of T2 can be derived theoretically. Then the
distribution of response time T can be got by the convolution of T1, T2, T3
and T4 when the number of the ambulances c is known.

5.1.4 Problem Encountered

The first data exploration starts to show some problems: again, we use the
data from 2008, weekday, region Goningen. The real data shows the per-
centage of A1 can be achieved within 15 min is 92.64% and the percentile of
A2 can be achieved within 30 min is 88.93% without knowing any informa-
tion about whether there is a delay and when a delay happens. For region
Drenthe, 93.31% of A1 and 93.14% of A2 can be achieved in time. The rea-
sons why these result are different from the introduction in Chapter 1 are:
1, these investigations are done in specific regions, maybe the other regions
have a better performances then the overall performance is still good. 2,
It can be found in the appendix of [42] that the data are filtered by some
criterion before the calculation but my calculations are based on the raw
datasets. However, the discussion with manager in ambulance station in-
dicates a delay happens really rare. This strange phenomena drive us to
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think about which is the essential reason for the prolonged response time,
shortage of ambulance or long driving time? Then an rough calculation is
done to investigate this problem.

First we are checking about the data on weekday, region Groningen, 2008.
The Figure 5.2 shows the average number of ambulances in use, staffing
level and 2 stairs functions depicted based on Poisson cumulative density
function with parameter 0.95 and 0.99.

Figure 5.2: Ambulance in Use and Real Schedule, 2008, region Groningen

A more precise explanation of the elements in this figure is as follow:

• Average number of ambulances in use during weekday per day;

• Staffing Levels of Ambulances;

• Efficiencies Achieved by Poisson Assumptions.

If we consider the whole year as time series, year 2008 can be interpreted
by the interval [0, 8784] (hour) because there are 366× 24 = 8784 hours for
year 2008. Denote the total number of ambulance trips by M (M=43478),
then we can investigate how many ambulances are in use at different time
epochs every 0.1 hour(0.1, 0.2, 0.3, ..., 8784). The total number of time
epochs is N , N = 8784× 10 = 87840 and the ordring time and release time
for all M trips are known from the dataset. The pseudocode to detect how
many ambulances are in use at each time epoch is in algorithm 5.1.1:
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Algorithm 5.1.1 The Algorithm to Detect Number of Ambulances in Use
M; N; Z=zeros(1,N);
for i=1 to N do

for j=1 to M do
if t2(j) ≤ 0.1*N ≤ t8(j) then

Z(i)=Z(i)+1;
end if

end for
end for

Then Z(i) is the number of ambulances in use at time epoch 0.1*i. Then
we need to use more algorithms to determine whether a delay occurs for
each time epoch. Assume there are c ambulances in the station.(c is varying
during different time periods). Algorithm 5.1.2 gives the first step:

Algorithm 5.1.2 The Algorithm to Detect Delay(1)
for i=1 to N do

if Z(i) > c then
D(i)=2; {If the number of the ambulances in use is greater than
the number of the ambulances they have, we declaim that there is a
delay}

end if
if Z(i) == c then

D(i)=1; {If the number of the ambulances in use is the same as the
number of the ambulances they have, we need to check the prepara-
tion time before getting the final conclusion}

end if
if Z(i) < c then

D(i)=0; {If the number of the ambulances in use is less than the
number of the ambulances they have, we declaim that there is no
delay}

end if
end for

Based on the previous 2 algorithms, it is possible to check whether a delay
occurs in each ambulance trip. There is one more thing needed to be men-
tioned here: although the ambulance management is different from region
to region, the average time needed for the preparation of an ambulance is
less than 2 minutes in general, so we assume that when t3 − t2 < 5min, we
claim that there is no delay.
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Algorithm 5.1.3 The Algorithm to Detect Delay(2)
R=zeros(1, M);
for i=1 to N do

for j= 1 to M do
if t2(j) < 0.1*i <t3(j) & D(i)==2 then

R(j)=1;
end if
if t2(j) < 0.1*i <t3(j) & D(i)==1 & t3(j)-t2(j) > 5 min then

R(j)=1;
end if

end for
end for

Based on this algorithm, we can find when a delay occurs and in which trip
there is a delay. For all the time epochs, Z(i) is the number of the ambu-
lances used at time 0.1 ∗ i, D(i) is an indicator to show whether the number
of the ambulances in use exceeds the number of the available ambulances
at time 0.1 ∗ i. Based on these two vectors, the new indicator R(j) can be
determined. When R(j) is 1, there is a delay in the jth ambulance trip,
otherwise there is no delay.

Probability of Delay

The specific day and time when a delay occurs is detected. The probability
of delay can be calculated by calculating the fraction of the number of trips
met a delay and the total number of the trips. In Table 5.1, the numbers of
the trips met a delay are displayed. In stead of pointing out in which trip
a delay occurs, this table gives more insight such as when a delay occurs.
From the table, we can see that number of the trips met a delay is only
17, the total number of the trips is 43478, then the probability of delay is
3.91× 10−4.

Table 5.1: Number of Delay Trips

Time 16:06 16:12 16:18 16:24 16:30 16:36 16:42 16:48 16:54
Number 3 2 3 2 2 2 1 1 1

So far, the problem has become more clear: the shortage of ambulances
happens really rare but the criterion from the government still can not be
met. We suggest that the failure of satisfying criterion 1 is not due to the
shortage of ambulances but the long driving time eventually. In order to
make this conclusion more concrete, several investigations have been done:
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• Leave these 17 trips out, there is still a failure to meet the criterion;

• If the preparation time(t3 − t2) for a delay trip is larger than 5 min,
substitute it by 5 min, then calculate how often A1 and A2 can meet
the criterion 1, the result still shows a failure;

• regardless whether there is a delay or not, if t3 − t2 > 5min, then
substitute it by 5 min, the result still shows a failure to meet criterion
1.

So far, there are following reasons to convince us that criterion 1 is not a
good criterion to determine the optimal number of ambulances:

• T2 is very small compared to the response time T , then it is not clear
whether the change for the number of ambulances has great effect on
the distribution of T (response time);

• Data explorations have been done to show that a delay happens really
rare, but criterion 1 still can not be achieved;

• Discussion with managers in ambulance stations shows most of the
time the ambulances are waiting in the station which means the short-
age happens really rare, but the criterion still can not be satisfied.

However, the optimal capacities of ambulances still need to be dermined,
then another criterion is needed to determine the optimal number of am-
bulances. So we set up a new criterion here which we shall call criterion 2:
P (T2 > 0) should be small, more specifically, we need to get the minimum
number of ambulances which satisfies P (T2 > 0) < ε (ε is a predefined pa-
rameter). We denote P (T2 > 0) by P adelay which the probability that the
patients can not get the ambulances immediately. So the following models
are constructed to calculate the minimum number of ambulances needed
such that P adelay is small.

5.2 4-d CTMC Model

Now we move to Criterion 2: P adelay < ε. When we start to use Markov
chain model, we have already taken it for granted that all the service times
follow the exponential distribution, but this requirement is almost impossible
to satisfy, so this model again can only be considered as an approximation
model. Since we know from real observations that a delay occurs really rare,
it is reasonable to assume at most only 1 customer per type (A1 or A2) will
wait for an ambulance. This seems also true from the practical experience,
that is, if there was more than 1 or 2 customers waiting for an ambulance,
the manager in the ambulance station will start to arrange a request by
asking help from nearby regions. Then we have constructed the following 4
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dimensional continuous time Markov chain to tackle this problem. Denote
the number of available ambulances by c. The states description are as
follow:

• N1(t): number of A1 in service at time t; (n1 = 0, 1, 2, ..., c)

• N2(t): number of A1 in queue at time t; (n2 = 0, 1)

• N3(t): number of A2 in service at time t; (n1 = 0, 1, 2, ..., c)

• N4(t): number of A2 in queue at time t; (n2 = 0, 1)

Because we are interested in the equilibrium state of this Markov chain
instead of time independent behavior, vector ~n = (n1, n2, n3, n4) is used
to denote the state that the number of A1 customers in service is n1, the
number of A1 customers in queue is n2, the number of A2 customers in
service is n3 and the number of A2 customers in queue is n4. Denote the
state space of this Markov chain by S, We will explain the state space by
introducing four subsets of S, namely S1, S2,S3 and S4.

• S1: ~n satisfy ||~n||1 < c 1 and n2 = 0, n4 = 0. The elements can be
denoted by (n1, 0, n3, 0); The explanation for these states are not all
the ambulances are in use, the number of the states in space S1 is(
0+1
1

)
+
(
1+1
1

)
+
(
2+1
1

)
+ ...+

(
c
1

)
.

• S2: ~n satisfy ||~n||1 = c and n2 = 0, n4 = 0. The elements can be
denoted by (n1, 0, n3, 0); The explanation for these states are that all
the ambulances are in use but there is no waiting customers in the
queue. The number of the states in space S2 is

(
c+1
1

)
.

• S3: ~n satisfy ||~n||1=c+1, the elements can be denoted by (n1, 1, n3, 0)
and (n1, 0, n3, 1); The number of the states in S3 is 2× (c+ 1).

• S4: the states with delay, there is one A1 customer and one A2 cus-
tomer in the queue, which means both n2 and n4 are 1, so the number
of the state in space S4 is c+ 1.

So the total number of states of S is: (c+2)(c+1)
2 +3× (c+1) = (4+ c

2)(c+1).

In the following list, the notations used for this Markov chain are explained,

• λ1: arriving rate for A1 customers;

• µ1: service rate for A1 customers;

• λ2: arriving rate for A2 customers;
1||~n||1 is the L1 norm of the vector ~n
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• µ2: service rate for A2 customers.

If the total number of ambulances is c. The transition rates of this contin-
uous time Markov chain are displayed by 4 group respectively,

For the states of S1, the number of the customers in service can either be
increased or decreased.
S1

• (n1, 0, n3, 0)→ (n1 + 1, 0, n3, 0) : λ1

• (n1, 0, n3, 0)→ (n1 − 1, 0, n3, 0) : n1 ∗ µ1

• (n1, 0, n3, 0)→ (n1, 0, n3 + 1, 0) : λ2

• (n1, 0, n3, 0)→ (n1, 0, n3 − 1, 0) : n3 ∗ µ2

For the states of S2, the newly arriving customers can only wait in the queue.
S2

• (n1, 0, n3, 0)→ (n1, 1, n3, 0) : λ1

• (n1, 0, n3, 0)→ (n1 − 1, 0, n3, 0) : n1 ∗ µ1

• (n1, 0, n3, 0)→ (n1, 0, n3, 1) : λ2

• (n1, 0, n3, 0)→ (n1, 0, n3 − 1, 0) : n3 ∗ µ2

For the states of S3, the customers in queue can come into the service and
a newly arriving customer of another type is allowed to join in the queue.
S3

• (n1, 1, n3, 0)→ (n1, 0, n3, 0) : n1 ∗ µ1

• (n1, 1, n3, 0)→ (n1 + 1, 0, n3 − 1, 0) : n3 ∗ µ2

• (n1, 1, n3, 0)→ (n1, 1, n3, 1) : λ2

• (n1, 0, n3, 1)→ (n1, 0, n3, 0) : n3 ∗ µ2

• (n1, 0, n3, 1)→ (n1 − 1, 0, n3 + 1, 0) : n1 ∗ µ1

• (n1, 0, n3, 1)→ (n1, 1, n3, 1) : λ1

For the states of S4, the customers in queue can get serviced when an am-
bulance becomes available.
S4

• (n1, 1, n3, 1)→ (n1, 0, n3, 1) : n1 ∗ µ1

• (n1, 1, n3, 1)→ (n1 + 1, 0, n3 − 1, 1) : n3 ∗ µ2
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• (n1, 1, n3, 1)→ (n1, 1, n3, 0) : n3 ∗ µ2

• (n1, 1, n3, 1)→ (n1 − 1, 1, n3 + 1, 0) : n1 ∗ µ1

Based on this 4 dimensional continuous time Markov chain, P adelay can be
determined by the following formula, which means at least one of the queues
is not empty, then we claim that a delay occurs:

P adelay = 1− Pr(N2 = 0, N4 = 0) (5.7)

We expect that the model result will be more optimistic compared with the
real situation because the ambulances circumstance is quite different from
the call center case. There is much more possibility that unexpected case
happen which may lead to a failure to meet the 15 min or 30 min criterion,
such as bad whether, bad road condition, unexpected failure of an ambu-
lance or an ambulance is under maintenance during the daytime.

This model can be used to evaluate a given schedule or determine a schedule.
Algorithm 5.2.1 is set up to determine a new schedule: Although this model

Algorithm 5.2.1 The Algorithm to Determine New Schedule(4-d CTMC)
N=C;(current number of ambulances)
Calculate P adelay
if P adelay > ε then

while P adelay > ε do
N=N+1;

end while
end if
if P adelay < ε then

while P adelay < ε do
N=N-1;

end while
N=N+1;

end if

seems to be a plausible model to determine the number of ambulances in
the system, the exponential service time distribution is still away from the
real world, so, seeking for other models which can escape from exponential
service requirement is still our main focus. Again, insensitive systems seems
to be a good direction to explore.

5.3 M/G/c/c Loss Model

A standard M/G/c queue is set up here again because the arrivals follow
a Poisson distribution and the exponential service time is not available.
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Although the traffic here is not as light as that in the case of call centers,
the traffic is still moderate. The most important thing we notice is that: ρc

is very small, that means the probability that all the servers are occupied is
really small, where ρ is the probability that an ambulance is busy and c is
the number of the ambulances available in the station. Then the probability
that the a delay happens is almost 0. Due to this intuition, an M/G/c/c
model may be again a good approximation of this system. So the following
are the reasons why we move from CTMC model to M/G/c/c model,

• Several data explorations show the exponential service time assump-
tion is not satisfied, but the Poisson arrivals still hold, then an insen-
sitive system is a good direction;

• M/G/c/c queue have the formulae to evaluate the delay probability
and it is also a good approximation for M/G/c queue when the traffic
is light.

Here again we only consider about A1 and A2 case, the explanation of the
notation is explained here again:

• λ1: the arriving rate for A1;

• λ2: the arriving rate for A2;

• µ1: the service rate for A1;

• µ2: the service rate for A2.

Then for the M/G/c/c model, the parameters can be determined in the fol-
lowing way:

• arriving rate: λ = λ1 + λ2;

• service rate: 1
µ = λ1

λ1+λ2

1
µ1

+ λ2
λ1+λ2

1
µ2

.

The probability that a delay happens in an ambulance station can now be
found by the following formula:

P adelay ≈ B(c, ρ) = pc =
ρc/c!∑c
n=0 ρ

n/n!
(5.8)

where B(c, ρ) denotes the Blocking Probability of the system, in another
words, pc, the probability that all the ambulances in the system are busy.
Again, occupation rate ρ is the probability that an ambulance is busy and
c is the number of available ambulances.

The algorithm to determine the staffing level is as follow:
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Algorithm 5.3.1 Algorithm to determine staffing level by M/G/c/c Model
c=1;
Calculate P cdelay
while P adelay > ε do

c=c+1;
end while
Print P adelay

5.3.1 M/G/c/c Model with Preference

Because in the previous models, the ambulances for A1/A2 and B are sep-
arated absolutely which is not exactly the same as the real case, so in this
model, a preference is considered instead of totally separating these 2 groups.
Jarvis [26], develop a fast convergent algorithm to calculate performance
measure of this kind of ambulance systems.

Advantage of the Model:

• The idea of separating ambulances for A1/A2 and B is considered here,
but absolute separation is avoided.

• The different service times for A1, A2 and B can be considered simul-
taneously in one model;

• A loss System is a good approximation for the ambulance service sys-
tem because the waiting occurs really rare, which means the probabil-
ity that the number of the customers in the system is more than the
number of the servers is extremely small.

Disadvantage of the Model:

• In the model, there is an extra preference within the group of the am-
bulances for A1/A2 and B. But in the real case, the ambulances used
in each group are chosen at random(there is no preferences within the
group). More modifications should be considered here: such as, ev-
ery time assign the preferred ambulances within each group randomly,
then repeat this procedure several times to get the average occupation
rate for each of the ambulancess;

• An ambulance car is assigned to the B customers immediately after a
request coming up. However, in real case, B customer can wait or be
scheduled to do the tasks later.

• In [26], no analytical bounds on the accuracy or convergence properties
of the approximation procedure have been developed, only simulation
results are used as a comparison;
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5.4 The Model to Calculate Capacity for B cus-
tomers

It can be noticed from real dataset that nearly all the B services are done
between 8:00 and 16:00. A discussion with the manager in the ambulance
station indicates the ambulances used for B type customers should be used
as much as possible. In another words, for efficiency reasons, the ambulances
must be scheduled such that they have a high occupation rate. Normally
the service for B customer should be scheduled at least one day in advance.
It is also mentioned by the manager in ambulance stations that in order to
use least resource to solve the problem, it is preferred to use the number of
ambulances which has a little bit shortage comparing with the real request,
because sometimes they can borrow ambulances from group A1 and A2.
So it is reasonable to assume there is no stochastic process for scheduling
B customers. Then there is an easy formulae to determine the number of
ambulances needed for B type customers. Denote the average number of
requests per hour from B customers by λB and let λB round up to the next
integer. Let the average service time for 1 trip be 1

µB
(hours). Then the

number of ambulances needed for B type customers is:

CB =
λB
µB

5.5 Applications of the Theoretical Models and
Results

The model results of the 4-d Markov Chain and the M/G/c/c model are
displayed here. Again, the examples of region Groningen and region Drenthe
in 2008 are displayed here. The reason why the results of Friesland are not
implemented is that the ambulances system in Friesland is not centralized.
In addition, we do not know the data for each of the sub regions in Friesland.

5.5.1 Model Result of Region Groningen

• M/M/C+CTMC/Multinomial Model: As we stated earlier, this model
is considered to be not a proper model to solve the problem because the
failure to meet the government criterion is not because of the shortage
of ambulances. Therefore we do not implement this model. Therefore,
we did not apply this.

• 4 dimensional CTMC Model: There are 3 shifts in one day and a dif-
ferent numbers of ambulances are needed in each shift. As an example
we chose to apply this model to the data between 8:00 and 16:00, re-
gion Groningen, 2008. The delay probability based on 4 dimensional
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CTMC is:
P adelay = 1.6768× 10−5

and the ”real delay” can be determined by the algorithm stated in
section 5.1.4. The number of delay trips in 17, and the total number
of trips between 8:00 and 16:00 is 24202, so

Preal = 7.0242× 10−4

Just as expected in the earlier sections, this probability is higher than
the theoretical result.

• M/G/c/c Model Because Preal is around 10−4, it is reasonable to
choose ε to be 10−4. With P adelay < 1 × 10−4, the schedule of am-
bulances based on M/G/c/c model are displayed in Table 5.2.

Table 5.2: The Schedule of A1/A2 Ambulances
Time Interval 0-8 8-16 16-24
# Ambulances Needed For P adelay < 10−4 12 20 18

• With Mathematical model described in section 5.4, we can calculate
the schedules of the ambulances for B type customers:

Table 5.3: The Schedule of B Ambulances
Time Interval 0-8 8-16 16-24

# Ambulances Needed For B Customers 1 8 1

Then now we can calculate the new schedule for ambulances needed by
summing up the result of these two tables in Table 5.4:

Table 5.4: The Schedule of Ambulances(Total of A1/A2 and B)
Time Interval 0-8 8-16 16-24

# Ambulances Needed For P adelay < 10−4 13 28 19

5.5.2 Model Results of Region Drenthe

The model results of region Drenthe are listed here,

• M/M/C+CTMC/Multinomial Model: With the same reason stated
previously, we did not implement this model.
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• 4 dimensional CTMC Model: Similar to the procedure in calculating
model results in region Groningen, the P adelay during 8:00 and 16:00
during weekday can be got as follow,

P adelay = 1.2832× 10−7

and the ”real delay” determined by the algorithm stated earlier is:

Preal = 4.9568× 10−5

Just as expected in the earlier sections, this probability is higher than
the theoretical result.

• M/G/c/c Model: Because the Preal is around 10−5, it is reasonable
to choose ε to be 10−5. With P adelay < 1 × 10−5, the schedule of
ambulances based on M/G/c/c model are displayed in Table 5.5.

Table 5.5: The Schedule of A1/A2 Ambulances
Time Interval 0-8 8-16 16-24

# Ambulances Needed For P adelay < 10−5 10 16 13

• Similarly, the model in section 5.4 is used to determine the number of
ambulances needed for the B type customers.

Table 5.6: The Schedule of B Ambulances
Time Interval 0-8 8-16 16-24

# Ambulances Needed For B Customers 1 3 1

Then now we can calculate the new schedule for ambulances needed by
summing up the result of these two tables in Table 5.7:

Table 5.7: The Schedule of Ambulances(Total of A1/A2 and B)
Time Interval 0-8 8-16 16-24

# Ambulances Needed For P adelay < 10−5 11 19 14

5.5.3 More Results

More results based on M/G/c/c model for region Groningen and Drenthe
on weekday, Saturday and Sunday are displayed here,
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Groningen

Table 5.8: The Schedule of Ambulances in Groningen (M/G/c/c, ε = 10−4)
Time Period 0-8 8-16 16-24

Weekday 13 28 19
Saturday 14 19 18
Sunday 15 19 17

Drenthe

Table 5.9: The Schedule of Ambulances in Drenthe (M/G/c/c, ε = 10−5)
Time Period 0-8 8-16 16-24

Weekday 11 19 14
Saturday 12 17 15
Sunday 13 16 14

Conclusion
The models set up in the previous section have been used to determine the
optimal schedules of ambulances for region Groningen and Drenthe. The
4-d CTMC model can give an approximation of the P adelay in the ambulance
station. In addition, the optimal schedules of ambulances can be generated
by the M/G/c/c model. The P adelay of these new schedules can be under
control by some given parameters, such as, 10−4, 10−5.... From a theoretical
point of view, these schedules are quite useful. In order to make sure the
performance of these schedules is still good in practice, the relevant simula-
tions will be introduced in the next chapter. There is also another conclusion
can be drawn from the model results: the current schedules of ambulances
are near optimal, only slightly adjustment is needed if more efficiency is
required.
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Chapter 6

Simulation

Due to the lack of data, the probabilities of delay in call center and ambu-
lance stations are still unknown. So apart from all the deterministic models
defined in chapter 4 and 5, we also performed a stochastic simulation to ex-
plore P adelay and P cdelay. This chapter contains the goals of the simulations,
the parameter estimation before the simulations and the pseudocode of the
simulations followed by the simulation results.

6.1 Goals

The general goals of the simulations are to get the performance measures for
call centers and ambulance stations when the staffing levels and schedules
of ambulances are given. The details are:

• P cdelay when staffing levels are known;

• P adelay when ambulance schedules are known.

6.2 Descriptions of Simulations

The general descriptions of simulations are introduced here:

6.2.1 Desctiption of Simulation in Call Center

The procedure of simulation in call center is to generate a matrix which has
3 columns, the details of them are:

• Column 1: the arriving time for a call;

• Column 2: the time that the call comes through;

• Column 3: the time that the call finishes.
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6.2.2 Description of Simulation in Ambulance Station

The method of simulation in ambulance station is to continue to generate
the matrix which has 5 columns, the details of them are:

• Column 1: the time that an ambulance is ordered;

• Column 2: the time that an ambulance becomes available;

• Column 3: the time that the ambulance leaves the station;

• Column 4: the time that the ambulance arrives at the scene;

• Column 5: the time that the ambulance comes back to the station.

6.3 Parameters

The parameters used in the simulations are explained here:

1. The staffing level in call center: there are 3 shifts a day and the sched-
ules are different for weekday and weekend. See Table 6.1. For the
staffing levels, we can choose them at random. In the following simu-
lation, the model results from chapter 4 will be used here.

Table 6.1: The Staffing Level
Time 0-8 8-16 16-24

Weekday C11 C12 C13

Saturday C21 C22 C23

Sunday C31 C32 C33

2. The schedule of ambulances: see Table 6.2. For the schedules, we can
choose them at random too. In the following simulation, the model
results from chapter 5 will be used here.

Table 6.2: The Ambulance Schedule
Time 0-8 8-16 16-24

Weekday A11 A12 A13

Saturday A21 A22 A23

Sunday A31 A32 A33

3. The arriving rate: we divide the whole day into 24 different time slots
by hour, so we need to estimate them by hours. See Table 6.3, Again,
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in fact, these parameters can also be chosen at random. A stochastic
Poisson arrivals can be generated based on these parameters.

Table 6.3: Parameter Estimation of Arriving Rates
Type Parameters
A1 λ1,1, ... , λ1,24

A2 λ2,1, ... , λ2,24

4. The service times: sample them from empirical datasets, the reason
why we do not estimate the probability density function of the service
time distribution is that the distribution is really wired and it is hardly
to find any theoretical distribution to fit it.

• Call centers: the service times for A1and A2 are not distinguish-
able, so there is only one sample set SACC , which denotes the
sample space.

• Ambulance stations:
There is no obvious difference in the preparation time in ambu-
lance stations, this sample space is called SAPR. Because the dif-
ferences of emergency scales and road conditions, the whole driv-
ing time sample sets can be divided into following sub-samples in
Table 6.4, 6.5, 6.6:

Table 6.4: The Samples of Driving Time for A1

Time Period 0-8 8-16 16-24
Weekday SA111,P1, SA111,P2 SA112,P1, SA112,P2 SA113,P1, SA113,P2

Saturday SA121,P1, SA121,P2 SA122,P1, SA122,P2 SA123,P1, SA123,P2

Sunday SA131,P1, SA131,P2 SA132,P1, SA132,P2 SA133,P1, SA133,P2

Table 6.5: The Samples of Driving Time for A2

Time Period 0-8 8-16 16-24
Weekday SA211,P1, SA211,P2 SA212,P1, SA212,P2 SA213,P1, SA213,P2

Saturday SA221,P1, SA221,P2 SA222,P1, SA222,P2 SA223,P1, SA223,P2

Sunday SA231,P1, SA231,P2 SA232,P1, SA232,P2 SA233,P1, SA233,P2
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Table 6.6: The Samples of Driving Time for B
Time Period 0-8 8-16 16-24

Weekday SB11,P1, SB11,P2 SB12,P1, SB12,P2 SB13,P1, SB13,P2

Saturday SB21,P1, SB21,P2 SB22,P1, SB22,P2 SB23,P1, SB23,P2

Sunday SB31,P1, SB31,P2 SB32,P1, SB32,P2 SB33,P1, SB33,P2

6.4 Simulation in Call Center

This section contains the pseudocode of the simulation of the call center and
simulation result. Only A1 and A2 are considered in this simulation. The
comparison of model results and simulation result is also displayed.

6.4.1 Pseudocode of Simulation in Call Center

Here is one small part of pseudocode of simulation in call center during
weekday, 0:00-8:00. The reason why not all the pseudocode is presented
here is that for the other time period and day type, the procedure is similar.
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Algorithm 6.4.1 Pseudocode of Simulation in Call Center
Matrix S is used to record all the time point in this simulation;
Generate arriving times for A1 and A2 (1 year), these times are put in
the first column of S;
{Denote the total number of ambulance trips by R}
for j=1:365 do

for i=1:R do
if j is Weekday then

if The arriving time lies in (0, 8] then
T11=zeros(C11, 2); {T11 is used to record start time and finish
time of the current jobs for centralists}
(mint, indt)=min(T11(:,2)); {mint is the minimal finish time and
indt is the corresponding centralist}
if S(i,1)> mint then

S(i,2)=S(i,1); {If there is at least one centralist free before a
request comes in, then he/she can get serviced immediately}
T11(indt,1)=S(i,1); {the record for the centralist changes to
the current task}

end if
if S(i,1)<= mint then

S(i,2)=mint; {If all the centralists are busy when a call comes
in, then the call maker has to wait until one centralist finishes
his/her work}
T11(indt,1)=T(indt,2) {The record for the centralist changes
to the current one}

end if
S(i,3)=S(i,2)+rand(SACC);
T11(indt,2)=T(indt,1)+(S(i,3)-S(i,2)); {The records for current
centralist are complete}

end if
end if

end for
end for

6.4.2 Result of Simulation in Call Center

The dataset of 2008 region Groningen is again used here. This simulation
has been run for 100 times, the probability of delay is calculated as follows:

P cdelay =
∑R

i=1 1(S(i, 1)! = S(i, 2))
R

(6.1)

R is the total number of the ambulance trips in one year.
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If the arriving time for a call is different from the time a call comes through,
we claim there is delay, this probability is calculated by the total number of
delay trips divided by the total number of trips. For region Groningen, the
model result in Chapter 4 is used here,

Table 6.7: The Staffing Level in Groningen (M/G/c/c, α = 0.01)
Time Period 0-8 8-16 16-24

Weekday 2 3 3
Saturday 2 3 3
Sunday 3 3 3

The result is shown in Figure 6.1.

Figure 6.1: P cdelay in Simulation(Groningen)

The results of P cdelay can be seem in the graph, all of them lie between 0.0010
and 0.0015, the variation is quite small and the average of them is 0.00124.
The simulation indicates the performances of the model results got in Chap-
ter 4 are quite good.

The simulation result for region Drenthe is in figure 6.2 if the staffing level
in Chapter 4 is used here,
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Table 6.8: The Staffing Level in Drenthe (M/G/c/c, α = 0.01)
Time Period 0-8 8-16 16-24

Weekday 2 3 3
Saturday 2 3 2
Sunday 2 3 2

Figure 6.2: P cdelay in Simulation(Drenthe)

The results of P cdelay can be seem in the graph, all of them lie between 0.0001
and 0.0045, the variation is quite small and the average of them is 0.0008.
The simulation indicates the performances of the model results got in Chap-
ter 4 are quite good.

6.5 Simulation in Ambulance Station

This section contains the pseudocode of simulation in ambulance station
and the result of simulations. Again, a comparison between model result
and simulation result is also displayed here. The simulation is dealing with
A1, A2 and B all together.
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6.5.1 Pseudocode of Simulation in Ambulance Station

Here is one small part of the pseudocode for the simulation in the ambulance
station during weekday, 0:00-8:00. The pseudocode of other time intervals
and other day types is similar.
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Algorithm 6.5.1 Pseudocode of Simulation in Ambulance Station
Matrix W is used to record all the time point in this simulation;
Use the times that the ambulances are ordered from the dataset of region
Groningen, 2008;
{Denote the total number of task by R}
for j=1:365 do

for i=1:R do
if j is Weekday then

if The arriving time lies in (0, 8] then
T11=zeros(A11, 2); {T11 is used to record start time and finish
time of the current jobs for ambulances}
(mint, indt)=min(A11(:,2)); {mint is the minimal finishes time
and indt is the corresponding ambulance}
if W(i,1)> mint then

W(i,2)=W(i,1); {If there is at least one ambulance is free be-
fore a request come in, then he/she can get serviced immedi-
ately}
T11(indt,1)=W(i,1); {the record for the ambulance changes to
the current task}

end if
if W(i,1)<= mint then

W(i,2)=mint; {If all the ambulances are busy when a call
come in, then the request have to wait until one ambulance
finish its work}
T11(indt,1)=T(indt,2) {The record for the ambulance change
to the current one}

end if
W(i,3)=W(i,2)+rand(SAPR); {The preparation time can be got
from the sample}
if Customer is type A1 then

W(i,4)=W(i,3)+rand(SA1P1
11 );

W(i,5)=W(i,4)+rand(SA1P2
11 );

T11(indt,2)=T(indt,1)+(W(i,5)-W(i,2));
end if
if Customer is type A2 then

W(i,4)=W(i,3)+rand(SA2P1
11 );

W(i,5)=W(i,4)+rand(SA2P2
11 );

T11(indt,2)=T(indt,1)+(W(i,5)-W(i,2));
end if
if Customer is type B then

W(i,4)=W(i,3)+rand(SBP1
11 );

W(i,5)=W(i,4)+rand(SBP2
11 );

T11(indt,2)=T(indt,1)+(W(i,5)-W(i,2));
end if
{The records for the current ambulance and task are complete}

end if
end if

end for
end for
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6.5.2 Results of Simulation in Ambulance Station

The probability of delay is calculated as follow:

P adelay =
∑R

i=1 1(W (i, 1)! = W (i, 2))
R

(6.2)

where R is the number of the trips. If the time of ordering an ambulance is
different from the the time an ambulance become available, we claim there
is delay, this probability is calculated by the total number of delay divided
by the total number of cases. The model result for region Groningen in
Chapter 5 is use here,

Groningen

Table 6.9: The Schedule of Ambulances in Groningen (M/G/c/c, ε = 10−4)
Time Period 0-8 8-16 16-24

Weekday 13 28 19
Saturday 14 19 18
Sunday 15 19 17

Figure 6.3: P adelay in Ambulance Station(Groningen)

It can be shown that P adelay for 100 runs, the variation is quite small and all
the results lies in 4.01 ∗ 10−5 and 3.66 ∗ 10−4, and the average is 9.27 ∗ 10−5.
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Compared to the model result of this schedule in Chapter 5, which is less
than 1×10−4, this probability is larger. Although the P adelay in simulation is
larger, the simulation still indicates a good performance of the model results
in Chapter 5.

The similar result for Drenthe is in Figure 6.4, again, the model result from
Chapter 5 is used here,

Drenthe

Table 6.10: The Schedule of Ambulances in Drenthe (M/G/c/c, ε = 10−5)
Time Period 0-8 8-16 16-24

Weekday 11 19 14
Saturday 12 17 15
Sunday 13 16 14

Figure 6.4: P adelay in Ambulance Station(Drenthe)

It can be shown that P adelay for 100 runs, the variation is quite small and
all the results lies in 4 ∗ 10−5 and 4 ∗ 10−4, and the average is 9.03 ∗ 10−5.
Compared to the model result of this schedule in Chapter 5, which is less
than 1 × 10−5, this probability is not far away. The simulation indicates a
good performance of the model results in Chapter 5.
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6.6 Conclusion

The simulations are set up to evaluate the performance of the systems in
practice if the model results are used. Although there are differences between
model results and simulation results, the efficiency of the new schedules is
still kept. So the most important conclusion we can draw from this chapter
is the simulations also guarantee the good performances of the schedules got
from the mathematical models in Chapter 4 and Chapter 5.
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Chapter 7

Conclusions and
Recommendations

This chapter summarizes the conclusions that can be drawn from the study
described in this report. As a model for future tools to determine optimal
capacity of ambulance resources, the queueing models are shown to be quite
useful. Therefore a lot of research has been done to find models that can give
insight in the advantages and limitations of queueing models. In this thesis,
the mathematical models used to determine the optimal staffing levels in
call centers and the optimal schedules in ambulance stations are presented
followed by the applications of these models. The conclusions and recom-
mendations for centralists staffing and ambulances scheduling are displayed
in section 7.1 and 7.2 respectively. Finally, the thoughts of future research
are listed in section 7.3.

7.1 Conclusions and Recommendations in Central-
ists Staffing

Since there are many different types of queueing models, the most related
ones are presented. The Erlang C model serves as a start because this is the
most commonly used queuing model in call centers currently. In this model
many characteristic properties of ambulance service system in the project
have been included, like the Poisson arrivals and limited number of cen-
tralists. Nevertheless there also are properties that have not been included,
like non-exponential service times. The later exploration of the M/G/∞
and M/G/c/c models gives more freedom to investigate systems with non-
exponential service times.

Considering the performance measure of these systems, it was shown that
light traffic is important in satisfying rare delay when a centralist is needed.
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The delay here means the requests can be answered immediately. When
the number of centralists becomes larger, the probability of delay becomes
smaller. A simulation has been set up later to evaluate the performance of
the staffing level got in mathematical models. The result reveals the current
staffing level is quite effective. Due to the small scale of call centers in the
Netherlands, a decrease of the number of centralists will have considerable
effect on the probability of delay. So a recommendation is to keep the cur-
rent staffing level. Another practical question asked from the experts in
ambulance system is whether it is a wise idea to combine several call cen-
ter. The mathematical model results show the system will be much more
efficiency if combinations are applied.

Finally, we can see that the mathematical models can also used to predict
the optimal staffing level is the prediction of the incoming rates and service
rates are done.

7.2 Conclusions and Recommendations in Ambu-
lance Scheduling

Apart from research for the staffing centralists, it is also investigated that
how to generate an optimal schedule for ambulances. Several mathemati-
cal models are constructed to solve this problem. The probability of delay
for ambulances depends on many factors, but mostly on the driving time
of an ambulance trip, which indicates that the geographical aspect should
be included in future research after this project. The optimal schedules of
ambulances should satisfy that the percentage of the cases that the response
time is less than 15 min and 30 min for A1 and A2 respectively should be at
least 95%. The model construction starts with a queueing model again. Un-
fortunately, more data investigation indicates this constraint is hard to meet
if only the capacities are discussed, therefore, a more efficient performance
measure, delay probability is used to determine whether this system can
provide effective service to all the requests. Based on this new constraint,
continuous time Markov chain model and queueing models are constructed
to determine the optimal number of ambulances. The calculation based on
these models reveals that the current schedules are almost optimal, only
slightly adjustment is needed to make it more economical. The calculation
also indicates other rules of thumb: it is not wise to schedule too many B
trips during 16:00-17:00 because this is the most busy time for possible A
trips.

Again, we can see that the mathematical models can also used to predict
the optimal staffing level is the prediction of the incoming rates and service
rates are done.
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7.3 Future Work

It can never be concluded that the research on this topic is complete. How-
ever, we are always allowed to give more insight to what can be approved
in the future both in practice and in theory. From a practical point of view,
more time points which can give more support to the performance measure,
such as, the time that a phone call gets through and an ambulance becomes
available, can be recorded. There results can used to proceed the research
much more efficiently. From a theoretical point of view, the theory of light
traffic and the optimal locations of ambulances resources can be considered
in the future research.
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