Random Walks in Dependent Random Environments

Werner Scheinhardt Dirk Kroese

Workshop on Stochastic Processes at the occasion of retirement Erik van Doorn September 26, 2014

イロト イヨト イヨト イヨト 三日

Outline

- Introduction
- General behavior
- Evaluating the drift for "swap model"
 - iid environment: trapping phenomenon
 - Markov environment
 - 2-dependent environment
 - Moving average environment
- Conclusions

Introduction

(1-dimensional) Random Walk in Random Environment (RWRE):

- "Underlying" environment U is random but fixed (Assume U stationary and ergodic w.r.t. location)
- 2. Random walk $\{X_n, n = 0, 1, ...\}$ with conditional transition probabilities, determined by the environment:

$$\mathbb{P}(X_{n+1} = i+1 \mid X_n = i, \mathbf{U} = \mathbf{u}) = \alpha_i(\mathbf{u})$$

$$\mathbb{P}(X_{n+1} = i-1 \mid X_n = i, \mathbf{U} = \mathbf{u}) = \beta_i(\mathbf{u}) = 1 - \alpha_i(\mathbf{u}).$$

RWREs exhibit interesting and unusual behavior, not seen in ordinary random walks.

Introduction—Motivation

RWREs (*d*-dimensional) used in physics to model motion through disorganized (random) media.

Introduction—Goal

Theoretical behavior of *drift* in 1-dimensional RWRE well understood, but

- numerical evaluation?
- influence of dependent environments?
- d-dimensional case??

Our goal: develop theory and methods to compute the drift of the random walk for *dependent* environments.

Current results: for 1-dimensional case

General behavior

Drift behavior of $\{X_n\}$ follows, in principle, from Solomon 1975, Alili 1999

Key quantities:

$$\sigma_i = \sigma_i(\mathbf{u}) = \frac{\beta_i(\mathbf{u})}{\alpha_i(\mathbf{u})}$$
$$S = 1 + \sigma_1 + \sigma_1 \sigma_2 + \sigma_1 \sigma_2 \sigma_3 + \cdots$$

and

$$F = 1 + \frac{1}{\sigma_{-1}} + \frac{1}{\sigma_{-1}\sigma_{-2}} + \frac{1}{\sigma_{-1}\sigma_{-2}\sigma_{-3}} + \cdots$$

General behavior—Transience/Recurrence

Will $\{X_n\}$ ultimately move to $+\infty$ or $-\infty$, or not? Theorem 1 (Solomon-Alili)

1. If $\mathbb{E}[\ln \sigma_0] < 0$, then almost surely $\lim_{n \to \infty} X_n = \infty$.

2. If $\mathbb{E}[\ln \sigma_0] > 0$, then almost surely $\lim_{n \to \infty} X_n = -\infty$.

3. If $\mathbb{E}[\ln \sigma_0] = 0$, then almost surely $\liminf_{n \to \infty} X_n = -\infty$ and $\limsup_{n \to \infty} X_n = \infty$.

7 / 23

General behavior—Law of Large Numbers

If $\{X_n\}$ ultimately moves to $+\infty$ or $-\infty$, how fast? Theorem 2 (Solomon-Alili)

1. If
$$\mathbb{E}[S] < \infty$$
, then almost surely $\lim_{n \to \infty} \frac{X_n}{n} = \frac{1}{2\mathbb{E}[S] - 1}$.
2. If $\mathbb{E}[F] < \infty$, then almost surely $\lim_{n \to \infty} \frac{X_n}{n} = \frac{-1}{2\mathbb{E}[F] - 1}$.
3. If $\mathbb{E}[S] = \infty$ and $\mathbb{E}[F] = \infty$, then almost surely $\lim_{n \to \infty} \frac{X_n}{n} = 0$.

 $\lim_{n\to\infty} X_n/n$ is the **drift** of the process $\{X_n\}$, denote by V.

< □ ▶ < □ ▶ < 亘 ▶ < 亘 ▶ < 亘 ▶ < 亘 かへ (? 8 / 23

Swap model

- Simple but versatile model with rich behavior
- $\alpha_i(\mathbf{u})$ and $\beta_i(\mathbf{u})$ only depend on \mathbf{u} via u_i
- ► Each U_i can only take value −1 (swap) or +1 (no swap).
- For some fixed value p in (0, 1), let $\beta_i(\mathbf{u}) = 1 \alpha_i(\mathbf{u})$ and

$$\alpha_i(\mathbf{u}) = \begin{cases} p & \text{if } u_i = 1\\ 1 - p & \text{if } u_i = -1 \end{cases}$$

As a result we have

Dependency structure

Standard iid case (Sinai 1983):

• Assumes the $\{U_i\}$ are iid with, for some $0 < \alpha < 1$,

$$\mathbb{P}(U_i = 1) = \alpha$$
, $\mathbb{P}(U_i = -1) = 1 - \alpha$.

Other possibilities for the environment states $\{U_i\}$:

- Markov environment
- k-dependent process
- Moving average of an iid environment:

lid case

Parameters α and p.

$$\mathbb{E}[\ln \sigma_0] = (1 - 2\alpha) \ln \left(\frac{1-p}{p}\right)$$

Hence $X_n \to +\infty$ a.s. if and only if either $\alpha > 1/2$ and p > 1/2, or $\alpha < 1/2$ and p < 1/2.

$$\mathbb{E}[S] = \sum_{n=0}^{\infty} \mathbb{E}\left[\sigma_1 \cdots \sigma_n\right] = \sum_{n=0}^{\infty} \left(\mathbb{E}\left[\left(\frac{1-p}{p}\right)^{U_1}\right]\right)^n = \frac{1}{1 - \mathbb{E}\left[\left(\frac{1-p}{p}\right)^{U_1}\right]}$$

iff
$$\mathbb{E}\left[\left(\frac{1-p}{p}\right)^{U_1}\right] = \frac{p}{1-p}(1-\alpha) + \frac{1-p}{p}\alpha < 1.$$

Hence when $\alpha > 1/2$ and $p \in (1/2, \alpha)$, or $\alpha < 1/2$ and $p \in (\alpha, 1/2)$, the drift is

$$V = \frac{1}{2\mathbb{E}[S] - 1} = (2p - 1)\frac{\alpha - p}{\alpha(1 - p) + (1 - \alpha)p} > 0$$

lid case

Figure 1: Drift regimes as a function of p and α . Grey areas: process transient, but drift is zero!

12/23

lid case—Trapping phenomenon

How can both $X_n \to \infty$ and V = 0 be true? (e.g. when $p > \alpha > 1/2$)

lid case—Trapping phenomenon

How can both $X_n \to \infty$ and V = 0 be true? (e.g. when $p > \alpha > 1/2$)

- Consider $\alpha = 3/4$, i.e. 25% of locations are black (swapped)
- When 1/2 , drift to the right is 'obvious'
- ▶ When 3/4 < p < 1,
 - ▶ still (strong) push to the right in majority of locations (hence $X_n \to \infty$)
 - ▶ but in remaining 25% of locations strong (!) push to the left

lid case—Trapping phenomenon

How can both $X_n \to \infty$ and V = 0 be true? (e.g. when $p > \alpha > 1/2$)

- Consider $\alpha = 3/4$, i.e. 25% of locations are black (swapped)
- When 1/2 , drift to the right is 'obvious'
- ▶ When 3/4
 - still (strong) push to the right in majority of locations (hence X_n → ∞)
 - but in remaining 25% of locations strong (!) push to the left
- Hence V = 0 in latter case: difficult to cross barrier of many adjacent black locations !
- Apparently the "cut-off" value for p is equal to α ...
- in the iid case!

Markov environment

Let $\{\mathbf{U}_i\}$ be a stationary discrete-time Markov chain on $\{-1, 1\}$, with one-step transition matrix P given by

$$P = \left[\begin{array}{rrr} 1-a & a \\ b & 1-b \end{array} \right]$$

Parameters a, b and p

$$\mathbb{E}[\ln \sigma_0] = \frac{a-b}{a+b} \ln \frac{1-p}{p}.$$

so transience/recurrence behaviour is same as for iid case (with a/(a + b) playing the role of α). Again the drift is determined by:

$$\mathbb{E}[S] = \sum_{n=0}^{\infty} \mathbb{E}\left[\left(\frac{1-p}{p}\right)^{\sum_{i=1}^{n} U_i}\right].$$

Let, with $\sigma = (1-p)/p$,

$$G_u^{(n)}(\sigma) = \mathbb{E}\left[\sigma^{\sum_{i=1}^n U_i} \mid U_0 = u\right], \quad u \in \{\text{-1, 1}\}, \quad \text{in } \sigma \in \{\text{-1, 1, 1\}, \quad \text{in } \sigma \in \{\text{-1, 1,$$

Markov environment (cont'd)

Conditioning on U_0 we have,

$$G_{u}^{(n+1)}(\sigma) = \mathbb{E}\left[\sigma^{\sum_{i=1}^{n+1} U_{i}} \mid U_{0} = u\right] = \mathbb{E}\left[\sigma^{\sum_{i=2}^{n+1} U_{i}} \sigma^{U_{1}} \mid U_{0} = u\right]$$
$$= \sum_{v \in \{-1,1\}} P_{u,v} \sigma^{v} G_{v}^{(n)}(\sigma) .$$

In matrix notation, with column vector $\mathbf{G}^{(n)}(\sigma)$,

$$\mathbf{G}^{(n+1)}(\sigma) = PD\mathbf{G}^{(n)}(\sigma),$$

where $D = \operatorname{diag}(\sigma^{-1}, \sigma)$ so

$$PD = \left[egin{array}{ccc} (1-a)\sigma^{-1} & a\sigma \ b\sigma^{-1} & (1-b)\sigma \end{array}
ight]$$

< □ > < 部 > < 書 > < 書 > 書 の Q (~ 15 / 23 Markov environment (cont'd)

Also using
$$G_u^{(0)}(\sigma) = 1$$
, we find
 $\mathbf{G}^{(n)}(\sigma) = (PD)^n \mathbf{G}^{(0)}(\sigma) = (PD)^n \mathbf{1}$,

where $\mathbf{1} = (1, 1)^{\top}$, and hence

$$\mathbb{E}[S] = \sum_{n=0}^{\infty} \boldsymbol{\pi} \mathbf{G}^{(n)}(\sigma) = \boldsymbol{\pi} \sum_{n=0}^{\infty} (PD)^n \mathbf{1},$$

where $\boldsymbol{\pi}$ is stationary distribution vector of $\{U_i\}$. Hence,

$$V = \begin{cases} 1/\left[2\pi(I-PD)^{-1}\mathbf{1}-1\right] & \text{if } \operatorname{Sp}(PD) < 1\\ 0 & \text{else.} \end{cases}$$

< □ > < @ > < 클 > < 클 > · 클 · 의익은 16/23

Markov environment (cont'd)

Working out details: • $\lim_{n \to \infty} X_n = \infty$ a.s. if either • a > b and $p \in \left(\frac{1}{2}, \frac{1-b}{(1-a)+(1-b)}\right)$, or • a < b and $p \in \left(\frac{1-b}{(1-a)+(1-b)}, \frac{1}{2}\right)$. • and

$$V = (2p-1)\frac{(1-b)(1-p) - (1-a)p}{\left(b + \frac{a-b}{a+b}\right)(1-p) + \left(a - \frac{a-b}{a+b}\right)p} > 0$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Comparison with iid case

To study impact of the (Markovian) dependence, reparameterize a and b via

$$\alpha = \mathbb{P}(U_0 = 1) = a/(a+b)$$

and

$$\varrho = \frac{\operatorname{Cov}(U_0, U_1)}{\operatorname{Var}(U_0)} = 1 - a - b,$$

yielding

$$V = (2p-1)\frac{\alpha - p + \varrho(1-\alpha - p)}{(\alpha(1-p) + (1-\alpha)p)(1+\varrho) - \varrho}$$

(Taking $\rho = 0$ gives iid case)

< □ > < @ > < 클 > < 클 > · 클 · 의익 (~ 18/23

Figure 2: Drift for $\rho = 0$ (blue, dashed), $\rho = 0.3$ (red,solid), and $\rho = -0.3$ (green,dotdashed) as a function of ρ . From highest to lowest curves for $\alpha = 1, 0.95, \ldots, 0.55$ (for $\rho = 0$ and $\rho = 0.3$), and for $\alpha = 0.75, 0.70, \ldots, 0.55$ (for $\rho = -0.3$).

Other types of dependence model

Setup:

- Let {Y_i, i ∈ ℤ} be auxiliary Markov chain on {1,..., m} for some m (stationary and ergodic)
- ▶ Let $U_i = g(Y_i)$ for some given function $g: \{0, ..., m\} \rightarrow \{-1, 1\}$

Covers (a.o.):

- ▶ Markov environment (*U_i* and *Y_i* coincide)
- 2-dependent environment (4 × 4 transition matrix)
- ► Moving average environment (8 × 8 transition matrix)

Markov analysis easily extended, but now need to study larger matrix *PD*.

Using Perron–Frobenius theory and the implicit function theorem we identify where drift is 0

Moving average environment

Figure 3: Cutoff values for the moving average process as function of α

Moving average environment

Figure 4: Red: Drift for the moving average environment as a function of p for $\alpha = 1, 0.95, \ldots, 0.55$ (from highest to lowest curves). Blue: comparison with the independent case.

Conclusions

- RWREs are interesting (trapping phenomenon)
- Construction of swap models with (a.o.) k-dependent and moving average environments, using auxilliary Markov chain
- Dependent environments affect the drift
- Cut-off values for p where drift becomes zero are determined via Perron–Frobenius theory

Conclusions

- RWREs are interesting (trapping phenomenon)
- Construction of swap models with (a.o.) k-dependent and moving average environments, using auxilliary Markov chain
- Dependent environments affect the drift
- Cut-off values for p where drift becomes zero are determined via Perron–Frobenius theory

Thanks for your attention!