Random Walks in
 Dependent Random Environments

Werner Scheinhardt Dirk Kroese

Workshop on Stochastic Processes at the occasion of retirement Erik van Doorn September 26, 2014

Outline

- Introduction
- General behavior
- Evaluating the drift for "swap model"
- iid environment: trapping phenomenon
- Markov environment
- 2-dependent environment
- Moving average environment
- Conclusions

Introduction

(1-dimensional) Random Walk in Random Environment (RWRE):

1. "Underlying" environment \mathbf{U} is random but fixed (Assume \mathbf{U} stationary and ergodic w.r.t. location)
2. Random walk $\left\{X_{n}, n=0,1, \ldots\right\}$ with conditional transition probabilities, determined by the environment:

$$
\begin{aligned}
& \mathbb{P}\left(X_{n+1}=i+1 \mid X_{n}=i, \mathbf{U}=\mathbf{u}\right)=\alpha_{i}(\mathbf{u}) \\
& \mathbb{P}\left(X_{n+1}=i-1 \mid X_{n}=i, \mathbf{U}=\mathbf{u}\right)=\beta_{i}(\mathbf{u})=1-\alpha_{i}(\mathbf{u})
\end{aligned}
$$

RWREs exhibit interesting and unusual behavior, not seen in ordinary random walks.

Introduction-Motivation

RWREs (d-dimensional) used in physics to model motion through disorganized (random) media.

Introduction-Goal

Theoretical behavior of drift in 1-dimensional RWRE well understood, but

- numerical evaluation?
- influence of dependent environments?
- d-dimensional case??

Our goal: develop theory and methods to compute the drift of the random walk for dependent environments.

Current results: for 1-dimensional case

General behavior

Drift behavior of $\left\{X_{n}\right\}$ follows, in principle, from
Solomon 1975, Alili 1999
Key quantities:

$$
\begin{gathered}
\sigma_{i}=\sigma_{i}(\mathbf{u})=\frac{\beta_{i}(\mathbf{u})}{\alpha_{i}(\mathbf{u})} \\
S=1+\sigma_{1}+\sigma_{1} \sigma_{2}+\sigma_{1} \sigma_{2} \sigma_{3}+\cdots
\end{gathered}
$$

and

$$
F=1+\frac{1}{\sigma_{-1}}+\frac{1}{\sigma_{-1} \sigma_{-2}}+\frac{1}{\sigma_{-1} \sigma_{-2} \sigma_{-3}}+\cdots
$$

General behavior-Transience/Recurrence

Will $\left\{X_{n}\right\}$ ultimately move to $+\infty$ or $-\infty$, or not?
Theorem 1 (Solomon-Alili)

1. If $\mathbb{E}\left[\ln \sigma_{0}\right]<0$, then almost surely $\lim _{n \rightarrow \infty} X_{n}=\infty$.
2. If $\mathbb{E}\left[\ln \sigma_{0}\right]>0$, then almost surely $\lim _{n \rightarrow \infty} X_{n}=-\infty$.
3. If $\mathbb{E}\left[\ln \sigma_{0}\right]=0$, then almost surely $\liminf _{n \rightarrow \infty} X_{n}=-\infty$ and $\limsup X_{n}=\infty$.
$n \rightarrow \infty$

General behavior—Law of Large Numbers

If $\left\{X_{n}\right\}$ ultimately moves to $+\infty$ or $-\infty$, how fast?
Theorem 2 (Solomon-Alili)

1. If $\mathbb{E}[S]<\infty$, then almost surely $\lim _{n \rightarrow \infty} \frac{X_{n}}{n}=\frac{1}{2 \mathbb{E}[S]-1}$.
2. If $\mathbb{E}[F]<\infty$, then almost surely $\lim _{n \rightarrow \infty} \frac{X_{n}}{n}=\frac{-1}{2 \mathbb{E}[F]-1}$.
3. If $\mathbb{E}[S]=\infty$ and $\mathbb{E}[F]=\infty$, then almost surely $\lim _{n \rightarrow \infty} \frac{X_{n}}{n}=0$.
$\lim _{n \rightarrow \infty} X_{n} / n$ is the drift of the process $\left\{X_{n}\right\}$, denote by V.

Swap model

- Simple but versatile model with rich behavior
- $\alpha_{i}(\mathbf{u})$ and $\beta_{i}(\mathbf{u})$ only depend on \mathbf{u} via u_{i}
- Each U_{i} can only take value -1 (swap) or +1 (no swap).
- For some fixed value p in $(0,1)$, let $\beta_{i}(\mathbf{u})=1-\alpha_{i}(\mathbf{u})$ and

$$
\alpha_{i}(\mathbf{u})= \begin{cases}p & \text { if } u_{i}=1 \\ 1-p & \text { if } u_{i}=-1\end{cases}
$$

- As a result we have

$$
\sigma_{i}=\frac{p}{1-p} \mathbb{P}\left(U_{i}=-1\right)+\frac{1-p}{p} \mathbb{P}\left(U_{i}=1\right)=\left(\frac{1-p}{p}\right)^{U_{i}}
$$

RW:

RWRE:

Dependency structure

Standard iid case (Sinai 1983):

- Assumes the $\left\{U_{i}\right\}$ are iid with, for some $0<\alpha<1$,

$$
\mathbb{P}\left(U_{i}=1\right)=\alpha, \quad \mathbb{P}\left(U_{i}=-1\right)=1-\alpha
$$

Other possibilities for the environment states $\left\{U_{i}\right\}$:

- Markov environment
- k-dependent process
- Moving average of an iid environment:

lid case

Parameters α and p.

$$
\mathbb{E}\left[\ln \sigma_{0}\right]=(1-2 \alpha) \ln \left(\frac{1-p}{p}\right)
$$

Hence $X_{n} \rightarrow+\infty$ a.s. if and only if
either $\alpha>1 / 2$ and $p>1 / 2$, or $\alpha<1 / 2$ and $p<1 / 2$.
$\mathbb{E}[S]=\sum_{n=0}^{\infty} \mathbb{E}\left[\sigma_{1} \cdots \sigma_{n}\right]=\sum_{n=0}^{\infty}\left(\mathbb{E}\left[\left(\frac{1-p}{p}\right)^{U_{1}}\right]\right)^{n}=\frac{1}{1-\mathbb{E}\left[\left(\frac{1-p}{p}\right)^{U_{1}}\right]}$

$$
\text { iff } \quad \mathbb{E}\left[\left(\frac{1-p}{p}\right)^{U_{1}}\right]=\frac{p}{1-p}(1-\alpha)+\frac{1-p}{p} \alpha<1 .
$$

Hence when $\alpha>1 / 2$ and $p \in(1 / 2, \alpha)$, or $\alpha<1 / 2$ and $p \in(\alpha, 1 / 2)$, the drift is

$$
V=\frac{1}{2 \mathbb{E}[S]-1}=(2 p-1) \frac{\alpha-p}{\alpha(1-p)+(1-\alpha) p}>0
$$

lid case

Figure 1: Drift regimes as a function of p and α.
Grey areas: process transient, but drift is zero!

lid case-Trapping phenomenon

How can both $X_{n} \rightarrow \infty$ and $V=0$ be true?
(e.g. when $p>\alpha>1 / 2$)

lid case-Trapping phenomenon

How can both $X_{n} \rightarrow \infty$ and $V=0$ be true?
(e.g. when $p>\alpha>1 / 2$)

- Consider $\alpha=3 / 4$, i.e. 25% of locations are black (swapped)
- When $1 / 2<p<3 / 4$, drift to the right is 'obvious'
- When $3 / 4<p<1$,
- still (strong) push to the right in majority of locations (hence $X_{n} \rightarrow \infty$)
- but in remaining 25% of locations strong (!) push to the left

lid case-Trapping phenomenon

How can both $X_{n} \rightarrow \infty$ and $V=0$ be true?
(e.g. when $p>\alpha>1 / 2$)

- Consider $\alpha=3 / 4$, i.e. 25% of locations are black (swapped)
- When $1 / 2<p<3 / 4$, drift to the right is 'obvious'
- When $3 / 4<p<1$,
- still (strong) push to the right in majority of locations (hence $X_{n} \rightarrow \infty$)
- but in remaining 25% of locations strong (!) push to the left
- Hence $V=0$ in latter case: difficult to cross barrier of many adjacent black locations !
- Apparently the "cut-off" value for p is equal to $\alpha \ldots$
- ... in the iid case!

Markov environment

Let $\left\{\mathbf{U}_{i}\right\}$ be a stationary discrete-time Markov chain on $\{-1,1\}$, with one-step transition matrix P given by

$$
P=\left[\begin{array}{cc}
1-a & a \\
b & 1-b
\end{array}\right]
$$

Parameters a, b and p

$$
\mathbb{E}\left[\ln \sigma_{0}\right]=\frac{a-b}{a+b} \ln \frac{1-p}{p} .
$$

so transience/recurrence behaviour is same as for iid case (with $a /(a+b)$ playing the role of α).
Again the drift is determined by:

$$
\mathbb{E}[S]=\sum_{n=0}^{\infty} \mathbb{E}\left[\left(\frac{1-p}{p}\right)^{\sum_{i=1}^{n} u_{i}}\right]
$$

Let, with $\sigma=(1-p) / p$,

$$
G_{u}^{(n)}(\sigma)=\mathbb{E}\left[\sigma^{\sum_{i=1}^{n} U_{i}} \mid U_{0}=u\right], \quad u \in\{-1,1\}
$$

Markov environment (cont'd)

Conditioning on U_{0} we have,

$$
\begin{aligned}
G_{u}^{(n+1)}(\sigma) & =\mathbb{E}\left[\sigma^{\sum_{i=1}^{n+1} U_{i}} \mid U_{0}=u\right]=\mathbb{E}\left[\sigma^{\sum_{i=2}^{n+1} U_{i}} \sigma^{U_{1}} \mid U_{0}=u\right] \\
& =\sum_{v \in\{-1,1\}} P_{u, v} \sigma^{v} G_{v}^{(n)}(\sigma)
\end{aligned}
$$

In matrix notation, with column vector $\mathbf{G}^{(n)}(\sigma)$,

$$
\mathbf{G}^{(n+1)}(\sigma)=P D \mathbf{G}^{(n)}(\sigma)
$$

where $D=\operatorname{diag}\left(\sigma^{-1}, \sigma\right)$ so

$$
P D=\left[\begin{array}{cc}
(1-a) \sigma^{-1} & a \sigma \\
b \sigma^{-1} & (1-b) \sigma
\end{array}\right]
$$

Markov environment (cont'd)

Also using $G_{u}^{(0)}(\sigma)=1$, we find

$$
\mathbf{G}^{(n)}(\sigma)=(P D)^{n} \mathbf{G}^{(0)}(\sigma)=(P D)^{n} \mathbf{1}
$$

where $\mathbf{1}=(1,1)^{\top}$, and hence

$$
\mathbb{E}[S]=\sum_{n=0}^{\infty} \boldsymbol{\pi} \mathbf{G}^{(n)}(\sigma)=\boldsymbol{\pi} \sum_{n=0}^{\infty}(P D)^{n} \mathbf{1}
$$

where $\boldsymbol{\pi}$ is stationary distribution vector of $\left\{U_{i}\right\}$. Hence,

$$
V= \begin{cases}1 /\left[2 \pi(I-P D)^{-1} \mathbf{1}-1\right] & \text { if } \operatorname{Sp}(P D)<1 \\ 0 & \text { else. }\end{cases}
$$

Markov environment (cont'd)

Working out details:

- $\lim _{n \rightarrow \infty} X_{n}=\infty \quad$ a.s. if either
- $a>b$ and $p \in\left(\frac{1}{2}, \frac{1-b}{(1-a)+(1-b)}\right)$, or
- $a<b$ and $p \in\left(\frac{1-b}{(1-a)+(1-b)}, \frac{1}{2}\right)$.
- and

$$
V=(2 p-1) \frac{(1-b)(1-p)-(1-a) p}{\left(b+\frac{a-b}{a+b}\right)(1-p)+\left(a-\frac{a-b}{a+b}\right) p}>0 .
$$

Comparison with iid case

To study impact of the (Markovian) dependence, reparameterize a and b via

$$
\alpha=\mathbb{P}\left(U_{0}=1\right)=a /(a+b)
$$

and

$$
\varrho=\frac{\operatorname{Cov}\left(U_{0}, U_{1}\right)}{\operatorname{Var}\left(U_{0}\right)}=1-a-b
$$

yielding

$$
V=(2 p-1) \frac{\alpha-p+\varrho(1-\alpha-p)}{(\alpha(1-p)+(1-\alpha) p)(1+\varrho)-\varrho}
$$

(Taking $\varrho=0$ gives iid case)

Figure 2: Drift for $\varrho=0$ (blue, dashed), $\varrho=0.3$ (red,solid), and $\varrho=-0.3$ (green, dotdashed) as a function of p. From highest to lowest curves for $\alpha=1,0.95, \ldots, 0.55$ (for $\varrho=0$ and $\varrho=0.3$), and for $\alpha=0.75,0.70, \ldots, 0.55$ (for $\varrho=-0.3$).

Other types of dependence model

Setup:

- Let $\left\{Y_{i}, i \in \mathbb{Z}\right\}$ be auxiliary Markov chain on $\{1, \ldots, m\}$ for some m (stationary and ergodic)
- Let $U_{i}=g\left(Y_{i}\right)$ for some given function

$$
g:\{0, \ldots, m\} \rightarrow\{-1,1\}
$$

Covers (a.o.):

- Markov environment (U_{i} and Y_{i} coincide)
- 2-dependent environment (4×4 transition matrix)
- Moving average environment (8×8 transition matrix)

Markov analysis easily extended, but now need to study larger matrix $P D$.

Using Perron-Frobenius theory and the implicit function theorem we identify where drift is 0

Moving average environment

Figure 3: Cutoff values for the moving average process as function of α

Moving average environment

Figure 4: Red: Drift for the moving average environment as a function of p for $\alpha=1,0.95, \ldots, 0.55$ (from highest to lowest curves). Blue: comparison with the independent case.

Conclusions

- RWREs are interesting (trapping phenomenon)
- Construction of swap models with (a.o.) k-dependent and moving average environments, using auxilliary Markov chain
- Dependent environments affect the drift
- Cut-off values for p where drift becomes zero are determined via Perron-Frobenius theory

Conclusions

- RWREs are interesting (trapping phenomenon)
- Construction of swap models with (a.o.) k-dependent and moving average environments, using auxilliary Markov chain
- Dependent environments affect the drift
- Cut-off values for p where drift becomes zero are determined via Perron-Frobenius theory

Thanks for your attention!

