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Introduction

(1-dimensional) Random Walk in Random Environment (RWRE):

1. �Underlying� environment U is random but �xed

(Assume U stationary and ergodic w.r.t. location)

2. Random walk fXn; n = 0; 1; : : :g with conditional transition

probabilities, determined by the environment:

P(Xn+1 = i + 1 jXn = i ;U = u) = �i(u)

P(Xn+1 = i � 1 jXn = i ;U = u) = �i(u) = 1� �i(u):

RWREs exhibit interesting and unusual behavior, not seen in

ordinary random walks.
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Introduction�Motivation

RWREs (d-dimensional) used in physics to model motion through

disorganized (random) media.
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Introduction�Goal

Theoretical behavior of drift in 1-dimensional RWRE well

understood, but

I numerical evaluation?

I in�uence of dependent environments?

I d-dimensional case??

Our goal: develop theory and methods to compute the drift of

the random walk for dependent environments.

Current results: for 1-dimensional case
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General behavior

Drift behavior of fXng follows, in principle, from

Solomon 1975, Alili 1999

Key quantities:

�i = �i(u) =
�i(u)

�i(u)

S = 1+ �1 + �1 �2 + �1 �2 �3 + � � �

and

F = 1+
1

��1
+

1

��1 ��2
+

1

��1 ��2 ��3
+ � � �
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General behavior�Transience/Recurrence

Will fXng ultimately move to +1 or �1, or not?

Theorem 1 (Solomon�Alili)

1. If E[ln�0] < 0, then almost surely lim
n!1

Xn =1 :

2. If E[ln�0] > 0, then almost surely lim
n!1

Xn = �1 :

3. If E[ln�0] = 0, then almost surely lim inf
n!1

Xn = �1 and

lim sup
n!1

Xn =1 :
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General behavior�Law of Large Numbers

If fXng ultimately moves to +1 or �1, how fast?

Theorem 2 (Solomon�Alili)

1. If E[S ] <1, then almost surely lim
n!1

Xn

n
=

1

2E[S ]� 1
:

2. If E[F ] <1, then almost surely lim
n!1

Xn

n
=

�1

2E[F ]� 1
:

3. If E[S ] =1 and E[F ] =1, then almost surely lim
n!1

Xn

n
= 0.

limn!1 Xn=n is the drift of the process fXng, denote by V .
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Swap model
I Simple but versatile model with rich behavior
I �i(u) and �i(u) only depend on u via ui
I Each Ui can only take value �1 (swap) or +1 (no swap).
I For some �xed value p in (0; 1), let �i(u) = 1� �i(u) and

�i(u) =

{
p if ui = 1

1� p if ui = �1

I As a result we have

�i =
p

1� p
P(Ui = �1) +

1� p

p
P(Ui = 1) =

(
1� p

p

)Ui

RW:

RWRE:
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Dependency structure

Standard iid case (Sinai 1983):

I Assumes the fUig are iid with, for some 0 < � < 1,

P(Ui = 1) = �; P(Ui = �1) = 1� �:

Other possibilities for the environment states fUig:

I Markov environment

I k-dependent process

I Moving average of an iid environment:
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Iid case
Parameters � and p.

E[ln�0] = (1� 2�) ln
(
1�p
p

)
Hence Xn ! +1 a.s. if and only if

either � > 1=2 and p > 1=2, or � < 1=2 and p < 1=2.

E[S ] =

1∑
n=0

E [�1 � � ��n] =

1∑
n=0

(
E

[(
1�p
p

)U1
])n

=
1

1� E

[(
1�p
p

)U1
]

i� E

[(
1�p
p

)U1
]
= p

1�p (1� �) + 1�p
p
� < 1:

Hence when � > 1=2 and p 2 (1=2; �), or � < 1=2 and

p 2 (�; 1=2), the drift is

V =
1

2E[S ]� 1
= (2p � 1)

�� p

�(1� p) + (1� �)p
> 0 :
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Iid case

1

10

V = 0
X → −∞

V = 0
X → ∞

V > 0
X → ∞

V > 0
X → −∞

V = 0
X → −∞

V = 0
X → ∞

V < 0
X → ∞

V < 0
X → −∞

↑
p

α →1
2

1
2

Figure 1: Drift regimes as a function of p and �.

Grey areas: process transient, but drift is zero!
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Iid case�Trapping phenomenon

How can both Xn !1 and V = 0 be true?

(e.g. when p > � > 1=2)

I Consider � = 3=4, i.e. 25% of locations are black (swapped)

I When 1=2 < p < 3=4, drift to the right is 'obvious'

I When 3=4 < p < 1,
I still (strong) push to the right in majority of locations

(hence Xn !1)
I but in remaining 25% of locations strong (!) push to the left

I Hence V = 0 in latter case:

di�cult to cross barrier of many adjacent black locations !

I Apparently the �cut-o�� value for p is equal to � ...

I ... in the iid case!
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Markov environment
Let fUig be a stationary discrete-time Markov chain on f�1; 1g,

with one-step transition matrix P given by

P =

[
1� a a

b 1� b

]
Parameters a; b and p

E[ln�0] =
a � b

a + b
ln
1� p

p
:

so transience/recurrence behaviour is same as for iid case

(with a=(a + b) playing the role of �).

Again the drift is determined by:

E[S ] =

1∑
n=0

E

[(
1�p
p

)∑n

i=1 Ui

]
:

Let, with � = (1� p)=p,

G
(n)
u (�) = E

[
�
∑

n

i=1 Ui jU0 = u
]
; u 2 f�1; 1g:
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Markov environment (cont'd)

Conditioning on U0 we have,

G
(n+1)
u (�) = E

[
�
∑

n+1
i=1 Ui jU0 = u

]
= E

[
�
∑

n+1
i=2 Ui�U1 jU0 = u

]
=

∑
v2f�1;1g

Pu;v�
vG

(n)
v (�) :

In matrix notation, with column vector G(n)(�),

G
(n+1)(�) = PDG

(n)(�);

where D = diag(��1; �) so

PD =

[
(1� a)��1 a�

b��1 (1� b)�

]

15 / 23



Markov environment (cont'd)

Also using G
(0)
u (�) = 1, we �nd

G
(n)(�) = (PD)nG(0)(�) = (PD)n1;

where 1 = (1; 1)>, and hence

E[S ] =

1∑
n=0

�G
(n)(�) = �

1∑
n=0

(PD)n1;

where � is stationary distribution vector of fUig.

Hence,

V =

{
1=
[
2�(I � PD)�11� 1

]
if Sp(PD) < 1

0 else.

16 / 23



Markov environment (cont'd)

Working out details:

I lim
n!1

Xn =1 a:s: if either

I a > b and p 2
(
1

2
;

1�b

(1�a)+(1�b)

)
, or

I a < b and p 2
(

1�b

(1�a)+(1�b) ;
1

2

)
.

I and

V = (2p � 1)
(1� b)(1� p)� (1� a)p(

b + a�b
a+b

)
(1� p) +

(
a � a�b

a+b

)
p
> 0 :
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Comparison with iid case

To study impact of the (Markovian) dependence, reparameterize

a and b via

� = P(U0 = 1) = a=(a + b)

and

% =
Cov(U0;U1)

Var(U0)
= 1� a � b;

yielding

V = (2p � 1)
�� p + %(1� �� p)(

�(1� p) + (1� �)p
)
(1+ %)� %

:

(Taking % = 0 gives iid case)
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Figure 2: Drift for % = 0 (blue, dashed), % = 0:3 (red,solid), and

% = �0:3 (green,dotdashed) as a function of p. From highest to lowest

curves for � = 1; 0:95; : : : ; 0:55 (for % = 0 and % = 0:3), and for

� = 0:75; 0:70; : : : ; 0:55 (for % = �0:3).
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Other types of dependence model

Setup:

I Let fYi ; i 2 Zg be auxiliary Markov chain on f1; : : : ;mg for

some m (stationary and ergodic)

I Let Ui = g(Yi) for some given function

g : f0; : : : ;mg ! f�1; 1g

Covers (a.o.):

I Markov environment (Ui and Yi coincide)

I 2-dependent environment (4� 4 transition matrix)

I Moving average environment (8� 8 transition matrix)

Markov analysis easily extended, but now need to study larger

matrix PD.

Using Perron�Frobenius theory and the implicit function theorem

we identify where drift is 0
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Moving average environment

Figure 3: Cuto� values for the moving average process as function of �
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Moving average environment

Figure 4: Red: Drift for the moving average environment as a function

of p for � = 1; 0:95; : : : ; 0:55 (from highest to lowest curves). Blue:

comparison with the independent case.
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Conclusions

I RWREs are interesting (trapping phenomenon)

I Construction of swap models with (a.o.) k-dependent and

moving average environments, using auxilliary Markov chain

I Dependent environments a�ect the drift

I Cut-o� values for p where drift becomes zero are determined

via Perron�Frobenius theory

Thanks for your attention!
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