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A “quasi-stationary” distribution

Think of an observer who at some time t is aware of the
occupancy of some patches, yet cannot tell exactly which
of n patches are occupied.
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What is the chance of there being precisely i patches
occupied?

If we were equipped with the full set of state probabilities

pi (t) = P(X (t) = i ); i 2 f 0; 1; : : : ; ng;

we would evaluate the conditional probability

ui (t) = P(X (t) = i jX (t) 6= 0) =
pi (t)

1 � p0(t)
;

for i in the set S = f 1; : : : ; ng of transient states.
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Quasi-stationary distributions

We seek a distribution u = ( ui ; i 2 S) over S such that if
ui (t) = ui for a particular t > 0, then ui (s) = ui for all s > t .

Such a distribution u is called a stationary conditional
distribution or quasi-stationary distribution (QSD).



Quasi-stationary distributions

We seek a distribution u = ( ui ; i 2 S) over S such that if
ui (t) = ui for a particular t > 0, then ui (s) = ui for all s > t .

Such a distribution u is called a stationary conditional
distribution or quasi-stationary distribution (QSD).

Key message : u can usually be determined from the
transition rates of the process and u might then also be a
limiting conditional distribution (LCD) in that ui (t) ! ui as
t ! 1 , and thus be of use in modelling the long-term
behaviour of the process.
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processes and birth-death chains. For example:

� Van Doorn, E.A. (1991) Quasi-stationary distributions and convergence to quasi-
stationarity of birth-death processes. Adv. Appl. Probab. 23 683–700.
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Domain of attraction problem

Let T = inf f t � 0 : X (t) = 0 g be the absorption time (or
survival time), and recall that a distribution u is a QSD if, for
all t, Pu (X (t) = j j T > t ) = uj , j 2 S.

Let u = ( ui ; i 2 S) be a given QSD. If u is a LCD for some
initial distribution w = ( wi ; i 2 S), that is

lim
t !1

Pw (X (t) = j j T > t ) = uj ; j 2 S;

we say that w is in the domain of attraction of u .

Problem : Identify the domains of attraction.
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The Yaglom limit

Yaglom� was the �rst to identify explicitly a LCD,
establishing the existence of such for the subcritical
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The Yaglom limit

Yaglom� was the �rst to identify explicitly a LCD,
establishing the existence of such for the subcritical
Bienaymé-Galton-Watson branching process.

� Yaglom, A.M. (1947) Certain limit theorems of the theory of branching
processes. Dokl. Acad. Nauk SSSR 56, 795–798 (in Russian).

If the expected number � of offspring is less than 1, then

ui = lim
n!1

P(X n = i jX n 6= 0; X 0 = 1) ; i 2 S;

exists and de�nes a proper probability distribution
u = ( ui ; i 2 S) over S.



Subcritical - quasi stationarity?
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The Yaglom limit
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The quasi-stationary distribution
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Origins of the idea

The idea of a limiting conditional distribution goes back
much further than Yaglom, at least to Wright� in his
discussion of gene frequencies in �nite populations:

“As time goes on, divergences in the frequencies of fac-

tors may be expected to increase more and more until

at last some are either completely �xed or completely

lost from the population. The distribution curve of gene

frequencies should, however, approach a de�nite form if

the genes which have been wholly �xed or lost are left

out of consideration.”

� Wright, S. (1931) Evolution in Mendelian populations. Genetics 16, 97–159.



Origins of the idea

The idea of “quasi stationarity” was crystallized by Bartlett� :

“While presumably on the above model [for the interactions

between active and passive forms of �our beetle] extinction

of the population will occur after a long enough time, this

may (for a deterministic `ceiling' population not too small,

but �uctuations relatively small) be so long delayed as to

be negligible and an effective or quasi-stationarity be es-

tablished.”

� Bartlett, M.S. (1957) On theoretical models for competitive and predatory bio-
logical systems. Biometrika 44, 27–42.



Origins of the idea

Bartlett� later coined the term “quasi-stationary
distribution”:

“It still may happen that the time to extinction is so long

that it is still of more relevance to consider the effectively

ultimate distribution (called a `quasi-stationary' distribution)

of [the process] N .”

� Bartlett, M.S. (1960) Stochastic Population Models in Ecology and Epidemiol-
ogy. Methuen, London.



The setting of our most recent work

We consider a time-homogeneous �nite-state Markov
process (X (t); t � 0) taking values in f 0g [ S, where 0, the
sole absorbing state, is reached with probability 1.

Note: S is not necessarily irreducible.

� Van Doorn, E.A. and Pollett, P.K. (2009) Quasi-stationary distributions
for reducible absorbing Markov chains in discrete time. Markov Process.
Related Fields 15, 191–204.

� Van Doorn, E.A. and Pollett, P.K. (2008) Survival in a quasi-death pro-
cess. Linear Alg. Appl. 429, 776–791.
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Communicating classes: S comprises S1; S2; : : : ; SL .

Partial ordering: Si � Sj means Si is accessible from Sj .

Assume: Si � Sj ) i � j , so that

Q =

0

B
B
B
B
B
B
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Decay parameters

Eigenvalues. Clearly Sp(Q) = [ i Sp(Qi ). Also, we know
(Theorem 2.6 of Seneta's book� ) that the eigenvalue � � k of
Qk with maximal real part is unique, simple (multiplicity 1),
and strictly negative.

� Seneta, E. (1981) Non-negative Matrices and Markov Chains. Revised
Edition. Springer, New York.

Hence, � � , where � = min k � k > 0; is the (possibly
degenerate) eigenvalue of Q with maximal real part.

Note that the � k and � are decay parameters:

Pij (t) � Cij e� � k t � Cij e� �t ; i; j 2 Sk :
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Example: two competing species

Two species A and B affect one another's ability to survive
on a habitat patch. Which has survived given that the patch
has been inhabited for a long time?

State at time t : X (t) = ( XA (t); XB (t)) , where XA (t) and XB (t)
are the numbers of A and B .

Extinction state: 0 = (0 ; 0).

S is not irreducible: Let SAB , SA and SB be the
communicating classes corresponding to the presence of
both species, just A, and just B , respectively.

Partial ordering: f 0g � SA � SAB and f 0g � SB � SAB .



Example: two competing species

Transition rates:
0
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