TO BE ANNOUNCED

Erik A. van Doorn
Department of Applied Mathematics
University of Twente Enschede, The Netherlands

Symposium on Stochastic Processes
Enschede, 26 September 2014

REMINISCENSES AND AFTERTHOUGHTS

Erik A. van Doorn
Department of Applied Mathematics
University of Twente Enschede, The Netherlands

Symposium on Stochastic Processes
Enschede, 26 September 2014

REMINISCENSES AND AFTERTHOUGHTS

Erik A. van Doorn
Department of Applied Mathematics
University of Twente Enschede, The Netherlands

Symposium on Stochastic Processes
Enschede, 26 September 2014

A REVIEW OF BEAUTIFUL FORMULAS

Erik A. van Doorn
Department of Applied Mathematics
University of Twente Enschede, The Netherlands

Symposium on Stochastic Processes
Enschede, 26 September 2014

$$
P_{i j}(t)=\pi_{j} \int_{0}^{\infty} e^{-x t} Q_{i}(x) Q_{j}(x) \psi(d x)
$$

$$
\pi_{j} \int_{0}^{\infty} Q_{i}(x) Q_{j}(x) \psi(d x)=\delta_{i j}
$$

AE Stochastic Processes and Their Applications:
... The paper is difficult to read because hardly anybody knows orthogonal polynomials anymore.
but
... I do not feel it is appropriate to complain about proofs just because they use tools that we lack.
definition: $\quad\left\{P_{n}(x), n=0,1, \ldots\right\}$ (monic, $\operatorname{deg}\left(P_{n}\right)=$ n) is orthogonal polynomial sequence (OPS) if there exists (Borel) measure ψ (of total mass 1) such that

$$
\int_{-\infty}^{\infty} P_{n}(x) P_{m}(x) \psi(d x)=k_{n} \delta_{n m}
$$

with $k_{n}>0$ (ψ is not necessarily unique)

Favard's theorem:

$\left\{P_{n}(x), n=0,1, \ldots\right\}$ is OPS \Longleftrightarrow there exist $c_{n} \in$ $\mathbb{R}, \lambda_{n}>0$
such that

$$
\begin{aligned}
& P_{n}(x)=\left(x-c_{n}\right) P_{n-1}(x)-\lambda_{n} P_{n-2}(x) \\
& P_{0}(x)=1, \quad P_{1}(x)=x-c_{1}
\end{aligned}
$$

OPS $\left\{P_{n}(x), n=0,1, \ldots\right\}$ satisfies

$$
\begin{aligned}
& P_{n}(x)=\left(x-c_{n}\right) P_{n-1}(x)-\lambda_{n} P_{n-2}(x) \\
& P_{0}(x)=1, \quad P_{1}(x)=x-c_{1}
\end{aligned}
$$

theorem: the following are equivalent:
(i) $\operatorname{supp}(\psi) \subset[0, \infty)$
(ii) there exist numbers $\alpha_{n}>0, \beta_{n+1}>0$ and $\gamma_{n} \geq 0$ such that $c_{1}=\alpha_{1}+\gamma_{1}$ and for $n>1$,

$$
\begin{aligned}
& c_{n}=\alpha_{n}+\beta_{n}+\gamma_{n} \\
& \lambda_{n}=\alpha_{n-1} \beta_{n}
\end{aligned}
$$

$$
\xi_{1}=\inf \operatorname{supp}\{\psi\}
$$

questions:

$$
\begin{gathered}
\xi_{1}=? \\
\sum_{n=1}^{\infty} \pi_{n} Q_{n}\left(\xi_{1}\right)<\infty ? \\
\lim _{n \rightarrow \infty} Q_{n}\left(\xi_{1}\right)<\infty ?
\end{gathered}
$$

$$
z=1+M^{\prime}-M
$$

$$
z=1+M^{\prime}-M
$$

$G I / G I / \infty$ with $F=H$ and mean 1

$$
\begin{gathered}
z=M^{\prime}=2 \int_{0}^{\infty} H(t)(1-H(t)) d t \\
z=2 \operatorname{Gini}(H)=\int_{0}^{\infty} \int_{0}^{\infty}\left|t_{1}-t_{2}\right| d H\left(t_{1}\right) d H\left(t_{2}\right)
\end{gathered}
$$

A REVIEW OF BEAUTIFUL FORMULAS

Erik A. van Doorn
Department of Applied Mathematics
University of Twente Enschede, The Netherlands

Symposium on Stochastic Processes
Enschede, 26 September 2014

A RETROSPECT AND A LOOK FORWARD

Erik A. van Doorn
Department of Applied Mathematics
University of Twente Enschede, The Netherlands

Symposium on Stochastic Processes
Enschede, 26 September 2014

TO BE ANNOUNCED

Erik A. van Doorn
Department of Applied Mathematics
University of Twente Enschede, The Netherlands

Symposium on Stochastic Processes
Enschede, 26 September 2014

