TO BE ANNOUNCED

Erik A. van Doorn Department of Applied Mathematics University of Twente Enschede, The Netherlands

REMINISCENSES AND AFTERTHOUGHTS

Erik A. van Doorn Department of Applied Mathematics University of Twente Enschede, The Netherlands

Springer Series in Statistics

Probability and its Applications

William J. Anderson

Continuous-Time Markov Chains

An Applications-Oriented Approach

Springer-Verlag

An Introduction to Orthogonal Polynomials

Theodore S. Chihara

Purdue University, Calumet Campus

MATHEMATICS AND ITS APPLICATIONS A Series of Monographs and Texts VOLUME 13

REMINISCENSES AND AFTERTHOUGHTS

Erik A. van Doorn Department of Applied Mathematics University of Twente Enschede, The Netherlands

A REVIEW OF BEAUTIFUL FORMULAS

Erik A. van Doorn Department of Applied Mathematics University of Twente Enschede, The Netherlands

$$P_{ij}(t) = \pi_j \int_{0}^{\infty} e^{-xt} Q_i(x) Q_j(x) \psi(dx)$$

$$\pi_j \int_{0}^{\infty} Q_i(x) Q_j(x) \psi(dx) = \delta_{ij}$$

AE Stochastic Processes and Their Applications:

... The paper is difficult to read because hardly anybody knows orthogonal polynomials anymore.

but

... I do not feel it is appropriate to complain about proofs just because they use tools that we lack.

definition: { $P_n(x)$, n = 0, 1, ...} (monic, deg(P_n) = n) is *orthogonal polynomial sequence (OPS)* if there exists (Borel) measure ψ (of total mass 1) such that

$$\int_{-\infty}^{\infty} P_n(x) P_m(x) \psi(dx) = k_n \delta_{nm}$$

with $k_n > 0$ (ψ is not necessarily unique)

Favard's theorem:

 $\{P_n(x), n = 0, 1, ...\}$ is OPS \iff there exist $c_n \in \mathbb{R}, \lambda_n > 0$

such that

$$P_n(x) = (x - c_n)P_{n-1}(x) - \lambda_n P_{n-2}(x)$$

$$P_0(x) = 1, \quad P_1(x) = x - c_1$$

OPS {
$$P_n(x)$$
, $n = 0, 1, ...$ } satisfies
 $P_n(x) = (x - c_n)P_{n-1}(x) - \lambda_n P_{n-2}(x)$
 $P_0(x) = 1$, $P_1(x) = x - c_1$

theorem: the following are equivalent:

(i) $\operatorname{supp}(\psi) \subset [0,\infty)$

(ii) there exist numbers $\alpha_n > 0$, $\beta_{n+1} > 0$ and $\gamma_n \ge 0$ such that $c_1 = \alpha_1 + \gamma_1$ and for n > 1,

$$c_n = \alpha_n + \beta_n + \gamma_n$$
$$\lambda_n = \alpha_{n-1}\beta_n$$

An Introduction to Orthogonal Polynomials

Theodore S. Chihara

Purdue University, Calumet Campus

MATHEMATICS AND ITS APPLICATIONS A Series of Monographs and Texts VOLUME 13

$$\xi_1 = \inf \operatorname{supp}\{\psi\}$$

questions:

$$\xi_1 = ?$$

$$\sum_{n=1}^{\infty} \pi_n Q_n(\xi_1) < \infty?$$

 $\lim_{n\to\infty}Q_n(\xi_1)<\infty?$

z = 1 + M' - M

$$z = 1 + M' - M$$

 $GI/GI/\infty$ with F = H and mean 1

$$z = M' = 2 \int_{0}^{\infty} H(t)(1 - H(t))dt$$

$$z = 2 \operatorname{Gini}(H) = \int_{0}^{\infty} \int_{0}^{\infty} |t_1 - t_2| dH(t_1) dH(t_2)$$

A REVIEW OF BEAUTIFUL FORMULAS

Erik A. van Doorn Department of Applied Mathematics University of Twente Enschede, The Netherlands

A RETROSPECT AND A LOOK FORWARD

Erik A. van Doorn Department of Applied Mathematics University of Twente Enschede, The Netherlands

TO BE ANNOUNCED

Erik A. van Doorn Department of Applied Mathematics University of Twente Enschede, The Netherlands