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Introduction
(1-dimensional) Random Walk in Random Environment (RWRE):

“Underlying" environment U is random but fixed
(Assume U stationary and ergodic w.r.t. location)

2. Random walk {X,,n=0,1,...} with conditional transition
probabilities, determined by the environment:

]P’(Xn+1:i+1|Xn:/,U:u):oc,-(u)
P(Xpt1=1i—1|Xy,=1i,U=u)=LBi(u) =1—-qa(u).

L e e e

RWREs exhibit interesting and unusual behavior, not seen in
ordinary random walks.



Introduction—Motivation

RWREs (d-dimensional) used in physics to model motion through
disorganized (random) media.
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Introduction—Goal

Theoretical behavior of drift in 1-dimensional RWRE well
understood, but

» numerical evaluation?
» influence of dependent environments?

» d-dimensional case??

Our goal: develop theory and methods to compute the drift of
the random walk for dependent environments.

Current results: for 1-dimensional case



General behavior

Drift behavior of {X,} follows, in principle, from
Solomon 1975, Alili 1999

Key quantities:
oj = oi(u) = Ailu)
aj(u)

S=14014+0100+010203+ -

and
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General behavior—Transience/Recurrence

Will {X,} ultimately move to +oo or —oo, or not?

Theorem 1 (Solomon-—Alili)

1. IfE[lnoo] < 0, then almost surely ILm Xp=00.
n—oo

2. IfE[Inog] > 0, then almost surely lim X, = —oc .
n—oo

3. IfE[lnog] = 0, then almost surely liminf X, = —oo and
n—oo

limsup X, = o0 .
n—oo



General behavior—Law of Large Numbers

If {X,} ultimately moves to +o00 or —oo, how fast?

Theorem 2 (Solomon—Alili)

X 1
1. IfE[S] < oo, then almost surely nli_>moo 7” = 2E[S] -1

X —1
2. IFE[F] < oo, then almost surely lim =% = sz -
n—00 B

X
3. IfE[S] = oo and E[F] = oo, then almost surely lim =" = 0.

n—oo 1

limy— 00 Xn/n is the drift of the process {X,}, denote by V.



Swap model

» Simple but versatile model with rich behavior

» a;j(u) and B;(u) only depend on u via y;

» Each U, can only take value —1 (swap) or +1 (no swap).
» For some fixed value pin (0,1), let Bi(u) = 1 — (u) and

a‘(u): P ifU,':]_
' 1—-p ifu=-1

» As a result we have

1— 1-p\Y
o = 7P(U,' = —1) + TPP(U,' = 1) = <pp>
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Dependency structure

Standard iid case (Sinai 1983):

» Assumes the {U;} are iid with, for some 0 < a < 1,

P(U/:].):OC, P(U,:—l):]_—a

Other possibilities for the environment states {U;}:
» Markov environment
» k-dependent process

» Moving average of an iid environment:
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lid case
Parameters o and p.

Ellnog] = (1 —2a)In (177;;)

Hence X, — 400 a.s. if and only if
eitheraa > 1/2and p > 1/2, ora < 1/2 and p < 1/2.

E[S]:iE[Ul'“U”]:i(E[(lpp)ul])n: - 1

n=0

i E[(lp”> }:lﬂ)(l—a)Jrlppa <1

Hence when o > 1/2 and p € (1/2, &), or a < 1/2 and
p € (a,1/2), the drift is

a—-p

v a(l—p)+(1—a)p

(2p—1) >0.

T OE[S] -1
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lid case
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Figure 1. Drift regimes as a function of p and a.
Grey areas: process transient, but drift is zero!




lid case—Trapping phenomenon

How can both X, — oo and V = 0 be true?
(e.g. when p>a >1/2)



lid case—Trapping phenomenon

How can both X, — oo and V = 0 be true?
(e.g. when p>a >1/2)

» Consider a = 3/4, i.e. 25% of locations are black (swapped)
» When 1/2 < p < 3/4, drift to the right is "obvious’

» When 3/4 < p <1,

» still (strong) push to the right in majority of locations
(hence X, = o)
» but in remaining 25% of locations strong (!) push to the left



lid case—Trapping phenomenon

How can both X, — oo and V = 0 be true?
(e.g. when p>a >1/2)

» Consider a = 3/4, i.e. 25% of locations are black (swapped)

» When 1/2 < p < 3/4, drift to the right is "obvious’

» When 3/4 < p <1,

» still (strong) push to the right in majority of locations
(hence X, = o)
» but in remaining 25% of locations strong (!) push to the left

Hence V =0 in latter case:
difficult to cross barrier of many adjacent black locations !

v

v

Apparently the “cut-off” value for p is equal to o ...
. in the iid case!

v



Markov environment

Let {U;} be a stationary discrete-time Markov chain on {—1, 1},
with one-step transition matrix P given by

1—a a
=57 1)
Parameters a, b and p

a—b 1-—p
E[l = —I
[in o] atb p
so transience/recurrence behaviour is same as for iid case
(with a/(a + b) playing the role of ).

Again the drift is determined by:

E[S] = ZE[( )Z”U’].

Let, with o = (1 — p)/p.
GL(:n)(U) - F [027:1 Ui | Uy = u} . ue{=11}.



Markov environment (cont’d)
Conditioning on Uy we have,
G,SnH)(a) =E {UZ}’;I Ul Up = u} =E {O’ZEQI VigUr | Uy = u]
= 3 PLo"G"0).

ve{—1,1}
In matrix notation, with column vector G("(o),
G")(0) = PDG")(0),
where D = diag(c~1!, o) so

(1-a)ot ac

FD = bo~l  (1—b)o



Markov environment (cont’d)
Also using GSO)(J) =1, we find
G (o) = (PD)"G)(0) = (PD)"1,

where 1 = (1,1)T, and hence

E[S]:iﬂG(”)(a) = wi(PD)”l,
n=0 n=0

where 7 is stationary distribution vector of {U;}.
Hence,

0 else.

V— {1/ [2m(/ — PD)~'1—1] if Sp(PD) < 1




Markov environment (cont’d)

Working out details:

> lim X, =00 a.s. if either
n—oo

> a>bandp€(%.m)'or

—b
> a<bandpe(m,%)

» and
(1-b)(1-p)—(1—-a)p

<b+§+g>(1_p)+(a_2+g>p>o_

V=02p-1)



Comparison with iid case

To study impact of the (Markovian) dependence, reparameterize

a and b via
a=P(Uy=1)=a/(a+b)
and Cov(Up, Ui)
ov(Ug, Ui
=——F——+-=1—a-b>
Var(Up) b
yielding
— 1—o —
V= (2p- a—-p+o(l—a-p)

1)(a(1 —p)+(1-a)p)(l+o)—0

(Taking ¢ = 0 gives iid case)



Figure 2: Drift for ¢ = 0 (blue, dashed), ¢ = 0.3 (red,solid), and

¢ = —0.3 (green,dotdashed) as a function of p. From highest to lowest
curves fora =1,0.95, ..., 0.55 (for o = 0 and o = 0.3), and for

a =0.75,0.70, ..., 0.55 (for p = —0.3).
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Other types of dependence model

Setup:

» Let {Y],i € Z} be auxiliary Markov chain on {1,..., m} for
some m (stationary and ergodic)

» Let U; = g(Y;) for some given function
g:{0,..., m} — {-1,1}

Covers (a.0.):

» Markov environment (U; and Y; coincide)

» 2-dependent environment (4 x 4 transition matrix)

» Moving average environment (8 x 8 transition matrix)
Markov analysis easily extended, but now need to study larger
matrix PD.

Using Perron—Frobenius theory and the implicit function theorem
we identify where drift is O



Moving average environment
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Figure 3: Cutoff values for the moving average process as function of a
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Moving average environment
v
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Figure 4. Red: Drift for the moving average environment as a function
of pfora=1,0095,..., 0.55 (from highest to lowest curves). Blue:
comparison with the independent case.
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Conclusions

» RWREs are interesting (trapping phenomenon)

» Construction of swap models with (a.0.) k-dependent and
moving average environments, using auxilliary Markov chain

» Dependent environments affect the drift

» Cut-off values for p where drift becomes zero are determined
via Perron—Frobenius theory
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» RWREs are interesting (trapping phenomenon)

» Construction of swap models with (a.0.) k-dependent and
moving average environments, using auxilliary Markov chain

» Dependent environments affect the drift

» Cut-off values for p where drift becomes zero are determined
via Perron—Frobenius theory

Thanks for your attention!



