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Overview MQSN

▶ Background on Markov chains
▶ Reversibility, output theorem, tandem networks,

feedforward networks
▶ Partial balance, Markovian routing, Kelly-Whittle networks
▶ Kelly’s lemma, time-reversed process, networks with fixed

routes
▶ Advanced topics
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Internet of Things: optimal route in Jackson
network

▶ Jobs arrive at outside nodes with
given destination

▶ Each node single server queue
minimize sojourn time

▶ Optimal route selection
▶ Inform jobs in neighbouring node
▶ alternative route
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Internet of Things: optimal route in Jackson
network

▶ Tandem of M|M|1 queues
▶ Sojourn time
▶ Average sojourn time queue i :

ESi = (µi − λi)
−1

▶ On route
ES =

∑
i(µi − λi)

−1
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Internet of Things: optimal route in Jackson
network

▶ For fixed routes via set of queues
▶ On route r

ESr =
∑

i(µi − λi)
−1
1(i on r)
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Challenge
▶ Grid N × N
▶ On each side k flows arrive from sources at randomly

selected (but fixed) nodes with destination a randomly
selected (but fixed) node on one of the 4 sides

▶ At each gridpoint a single server queue handles and
forwards packets

▶ Packets select their route from source to destination to
minimize their travelling time (no travelling time on link)

▶ Packets may communicate with neighbours to avoid
congestions and change their route accordingly

▶ Poisson arrivals of packets; general processing time at
nodes; one destination on each side

▶ Develop decentralized routing algorithm to minimize mean
travelling times and demonstrate that it outperforms
shortest (and fixed) route selection
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Today:

▶ Recap Markov chains (chapter 1)
▶ Birth-death process, Detailed balance (Sec 2.1, 2.2)
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Continuous-time Markov chain

▶ Stochastic process {N(t), t ∈ T} records evolution of
random variable, T = R

▶ State space S ⊆ NJ
0, state s = (n1, . . . ,nJ)

▶ Stationary process if (N(t1),N(t2), . . . ,N(tk )) has the
same distribution as (N(t1 + τ),N(t2 + τ), . . . ,N(tk + τ))
for all k ∈ N, t1, t2, . . . , tk ∈ T , τ ∈ T

▶ Markov proces satisfies the Markov property: for every
k ≥ 1, 0 ≤ t1 < · · · < tk < tk+1, and any s1, . . . ,sk+1 in S,
the joint distribution of (N(t1), . . . ,N(tk+1)) is such that

P {N(tk+1) = sk+1|N(t1) = s1, . . . ,N(tk ) = sk}
= P {N(tk+1) = sk+1|N(tk ) = sk} ,

whenever the conditioning event
(N(t1) = s1, . . . ,N(tk ) = sk ) has positive probability.
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Continuous-time Markov chain – 2

▶ A Markov process is time-homogeneous if the conditional
probability P {N(s + t) = s′|N(s) = s} is independent of t
for all s, t > 0, s,s′ ∈ S.

▶ For a time-homogeneous Markov process the transition
probability from state s to state s′ in time t is defined as

P(s,s′; t) = P
{

N(s + t) = s′|N(s) = s
}
, t > 0.
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Continuous-time Markov chain – 3
▶ The transition matrix P(t) = (P(s,s′; t), s,s′ ∈ S) has

non-negative entries (1) and row sums equal to one (2).
▶ The Markov property implies that the transition

probabilities satisfy the Chapman-Kolmogorov
equations (3). Assume that the transition matrix is
standard (4). For all s,s′ ∈ S, s, t ∈ T , a standard
transition matrix satisfies:

P(s,s′; t) ≥ 0; (1)

∑
s′∈S

P(s,s′; t) = 1; (2)

P(s,s′′; t + s) =
∑
s′∈S

P(s,s′; t)P(s′,s′′; s); (3)

lim
t↓0

P(s,s′; t) = δs,s′ . (4)
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Continuous-time Markov chain – 4
▶ For a standard transition matrix the transition rate from

state s to state s′ can be defined as

q(s,s′) = lim
h↓0

P(s,s′;h)− δs,s′

h
.

▶ For all s,s′ ∈ S this limit exists.
▶ Markov process is called continuous-time Markov chain if

for all s,s′ ∈ S the limit exists and is finite (5).
▶ Assume that the rate matrix Q = (q(s,s′), s,s′ ∈ S) is

stable (6), and conservative (7)

0 ≤ q(s,s′) < ∞, s′ ̸= s; (5)

0 ≤ q(s) := −q(s,s) < ∞; (6)

∑
s′∈S

q(s,s′) = 0. (7)
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Continuous-time Markov chain – 5

▶ If the rate matrix is stable the transition probabilities can
be expressed in the transition rates: for s,s′ ∈ S,

P(s,s′;h) = δs,s′ + q(s,s′)h + o(h) for h ↓ 0, (8)

where o(h) denotes a function g(h) with the property that
g(h)/h → 0 as h → 0.

▶ For small positive values of h, for s′ ̸= s, q(s,s′)h may be
interpreted as the conditional probability that the Markov
chain {N(t)} makes a transition to state s′ during (t , t + h)
given that the process is in state s at time t .
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Continuous-time Markov chain – 6
▶ For every initial state N(0) = s, {N(t), t ∈ T} is a

pure-jump process: the process jumps from state to state
and remains in each state a strictly positive sojourn-time
with probability 1.

▶ Markov chain remains in state s for an exponential
sojourn-time with mean q(s)−1.

▶ Conditional on the process departing from state s it jumps
to state s′ with probability p(s,s′) = q(s,s′)/q(s).

▶ The Markov chain represented via the holding times q(s)
and transition probabilities p(s,s′), s,s′ ∈ S, is referred to
as the Markov jump chain.

▶ The Markov chain with transition rates q(s,s′) is obtained
from the Markov jump chain with holding times with mean
q(s)−1 and transition probabilities p(s,s′) as
q(s,s′) = q(s)p(s,s′), s,s′ ∈ S.
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Continuous-time Markov chain – 7
▶ From the Chapman-Kolmogorov equations

P(s,s′′; t + s) =
∑
s′∈S

P(s,s′; t)P(s′,s′′; s)

two systems of differential equations for the transition
probabilities can be obtained:

▶ Conditioning on the first jump of the Markov chain in (0, t ]
yields the so-called Kolmogorov backward equations (9),
whereas conditioning on the last jump in (0, t ] gives the
Kolmogorov forward equations (10), for s,s′ ∈ S, t ≥ 0,

dP(s,s′; t)
dt

=
∑

s′′∈S

q(s,s′′)P(s′′,s′; t), (9)

dP(s,s′; t)
dt

=
∑

s′′∈S

P(s,s′′; t)q(s′′,s′). (10)
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Continuous-time Markov chain – 8

▶ Derivation Kolmogorov forward equations (regular)

P(s, s′; t + h) =
∑
s′′

P(s, s′′; t)P(s′′, s′; h) [condition on last step]

P(s, s′; t + h)− P(s, s′; t) =
∑

s′′ ̸=s′
P(s, s′′; t)P(s′′, s′; h) + P(s, s′; t)[P(s′, s′; h)− 1]

=
∑

s′′ ̸=s′

{
P(s, s′′; t)P(s′′, s′; h)− P(s, s′; t)P(s′, s′′; h)

}
dP(s, s′; t)

dt
=

∑
s′′ ̸=s′

{P(s, s′′; t)q(s′′, s′)− P(s, s′; t)q(s′, s′′)}
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Explosion in a pure birth process

▶ Consider the Markov chain at state space S = N0 with
transition rates

q(s,s′) =


q(s), if s′ = s + 1,
−q(s), if s′ = s,
0, otherwise,

with initial distribution P(N(0) = s) = δ(s,0).
▶ Let ξ(s) denote the time spent in state s; ξ =

∑∞
s=0 ξ(s)

▶ Let q(s) = 2s, then

E{ξ} =
∞∑

s=0

E{ξ(s)} =
∞∑

s=0

2−s = 2

As E{ξ} < ∞ it must be that P(ξ < ∞) = 1 and therefore
{N(t)} is explosive (diverges to infinity in finite time).

Markovian Queues and Stochastic Networks 18 / 34



Continuous-time Markov chain – 9
Theorem (1.1.2)
For a conservative, stable, regular, continuous-time Markov
chain the forward equations (10) and the backward
equations (9) have the same unique solution
{P(s,s′; t), s,s′ ∈ S, t ≥ 0}. Moreover, this unique solution is
the transition matrix of the Markov chain.

▶ The transient distribution p(s, t) = P {N(t) = s} can be
obtained from the Kolmogorov forward equations for
s ∈ S, t ≥ 0,

dp(s, t)
dt

=
∑
s′ ̸=s

{
p(s′, t)q(s′,s)− p(s, t)q(s,s′)

}
,

p(s,0) = p(0)(s).
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Continuous-time Markov chain – 10
▶ A measure m = (m(s), s ∈ S) such that 0 ≤ m(s) < ∞

for all s ∈ S and m(s) > 0 for some s ∈ S is called a
stationary measure if for all s ∈ S, t ≥ 0,

m(s) =
∑
s′∈S

m(s′)P(s′,s; t),

and is called an invariant measure if for all s ∈ S,∑
s′ ̸=s

{
m(s)q(s,s′)− m(s′)q(s′,s)

}
= 0.

▶ {N(t)} is ergodic if it is positive-recurrent with stationary
measure having finite mass

▶ Global balance; interpretation
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Continuous-time Markov chain – 11
Theorem (1.1.4 Equilibrium distribution)
Let {N(t), t ≥ 0} be a conservative, stable, regular, irreducible
continuous-time Markov chain.

(i) If a positive finite mass invariant measure m exists then
the Markov chain is positive-recurrent (ergodic). In this
case π(s) = m(s)

[∑
s∈S m(s)

]−1, s ∈ S, is the unique
stationary distribution and π is the equilibrium distribution,
i.e., for all s,s′ ∈ S,

lim
t→∞

P(s,s′; t) = π(s′).

(ii) If a positive finite mass invariant measure does not exist
then for all s,s′ ∈ S,

lim
t→∞

P(s,s′; t) = 0.
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The birth-death process – 1
▶ A birth-death process is a Markov chain {N(t), t ∈ T},

T = [0,∞), or T = R, with state space S ⊆ N0 and
transition rates for λ, µ : S → [0,∞)

q(n,n′) =


λ(n) if n′ = n + 1, (birth rate)
µ(n)1(n > 0), if n′ = n − 1, (death rate)
−λ(n)− µ(n), if n′ = n, n > 0,
−λ(n), if n = 0.

▶ Kolmogorov forward equations
dP(n, t)

dt
= P(n − 1, t)λ(n − 1)− P(n, t)[λ(n) + µ(n)] + P(n + 1, t)µ(n + 1),

n > 0,
dP(n, t)

dt
= −P(n, t)λ(n) + P(n + 1, t)µ(n + 1), n = 0.
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The birth-death process – 2
▶ Global balance equations

0 = π(n − 1)λ(n − 1)− π(n)[λ(n) + µ(n)] + π(n + 1)µ(n + 1), n > 0,

0 = −π(0)λ(0) + π(1)µ(1).

▶ π satisfies the detailed balance equations

π(n)λ(n) = π(n + 1)µ(n + 1), n ∈ S.

Theorem (2.1.1)
Let {N(t)} be a birth-death process with state space S = N0,
birth rates λ(n) and death rates µ(n). If

π(0) :=
[∑∞

n=0
∏n−1

r=0
λ(r)

µ(r+1)

]−1
> 0,

then the equilibrium distribution is

π(n) = π(0)
n−1∏
r=0

q(r, r + 1)
q(r + 1, r)

= π(0)
n−1∏
r=0

λ(r)
µ(r + 1)

, n ∈ S.

Markovian Queues and Stochastic Networks 24 / 34



Example: The M|M|1 queue
▶ Customers arrive to a queue according to a Poisson

process (the arrival process) with rate λ.
▶ A single server serves the customers in order of arrival.
▶ Customers’ service times have an exponential distribution

with mean µ−1 and are independent of each other and of
the arrival process.

▶ {N(t), t ∈ T}, T = [0,∞) recording number of customers
in the queue is a birth-death process at S = N0 with

q(n,n′) =

{
λ(n) = λ if n′ = n + 1, (birth rate)
µ(n) = µ1(n > 0), if n′ = n − 1, (death rate)

and equilibrium distribution

π(n) = (1 − ρ)ρn, n ∈ S,

provided that the queue is stable: ρ :=
λ

µ
< 1.
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Example: The M|M|1|c queue
▶ M|M|1 queue, but now with finite waiting room that may

contain at most c − 1 customers.
▶ {N(t), t ∈ T}, T = [0,∞) recording the number of

customers in the queue is a birth-death process at
S = {0,1,2, . . . , c} with

q(n,n′) =

{
λ(n) = λ1(n < c) if n′ = n + 1, (birth rate)
µ(n) = µ1(n > 0), if n′ = n − 1, (death rate).

▶ Detailed balance equations are truncated at state c
▶ The equilibrium distribution is truncated to S:

π(n) = π(0)ρn, n ∈ {0,1, . . . , c},
with

π(0) =

[
c∑

n=0

ρn

]−1

=
1 − ρ

1 − ρc+1 .
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Detailed balance – 1

Definition (2.2.1 Detailed balance)
A Markov chain {N(t)} at state space S with transition rates
q(s,s′), s,s′ ∈ S, satisfies detailed balance if a distribution
π = (π(s), s ∈ S) exists that satisfies for all s,s′ ∈ S the
detailed balance equations:

π(s)q(s,s′)− π(s′)q(s′,s) = 0.

Theorem (2.2.2)
If the distribution π satisfies the detailed balance equations
then π is the equilibrium distribution.

▶ The detailed balance equations state that the probability
flow between each pair of states is balanced.
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Detailed balance – 2
Theorem (2.2.5 Truncation)
Consider {N(t)} at state space S with transition rates q(s,s′),
s,s′ ∈ S, and equilibrium distribution π. Let V ⊂ S.
Let r > 0. If the transition rates are altered from q(s,s′) to
rq(s,s′) for s ∈ V, s′ ∈ S \ V, then the resulting Markov chain
{Nr (t)} satisfies detailed balance and has equilibrium
distribution (G is the normalizing constant)

πr (s) =

{
Gπ(s), s ∈ V ,

Grπ(s), s ∈ S \ V ,

If r = 0 then the Markov chain is truncated to V and

π0(s) = π(s)

[∑
s∈V

π(s)

]−1

, s ∈ V .

▶ Direct generalisation of the result for M|M|1|c from M|M|1.
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Example: Network of parallel M|M|1 queues – 1
▶ Network of two M|M|1 queues in parallel.
▶ Queue j has arrival rate λj and service rate µj , j = 1,2.
▶ {Nj(t)}, j = 1,2, are assumed independent.
▶ {N(t) = (N1(t),N2(t))}, state space S = N2

0, n = (n1,n2),
▶ Transition rates, for n,n′ ∈ S, n′ ̸= n,

q(n,n′) =

{
λj if n′ = n + ej , j = 1,2,
µj , if n′ = n − ej , j = 1,2.

▶ Random variables Nj := Nj(∞) recording the equilibrium
number of customers in queue j are independent.

π(n) =
2∏

j=1

πj(nj), n ∈ S,

πj(nj) = (1 − ρj)ρ
nj
j , nj ∈ N0, provided ρj :=

λj
µj

< 1.
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Example: Network of parallel M|M|1 queues – 2
▶ Common capacity restriction n1 + n2 ≤ c.
▶ Customers arriving to the network with c customers

present are discarded.
▶ The Markov chain {N(t) = (N1(t),N2(t))} has state space

Sc = {(n1,n2) : nj ≥ 0, j = 1,2, n1 + n2 ≤ c} and
transition rates truncated to Sc .

▶ Invoking Truncation Theorem:

π(n) = G
2∏

j=1

ρ
nj
j , n ∈ Sc ,

with normalising constant

G =

 c∑
n1=0

c−n1∑
n2=0

2∏
i=1

ρni
i

−1

.
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Tandem network

▶ Tandem network of two M|M|1 queues
▶ Poisson λ arrival process to queue 1, service rates µi .
▶ Provided ρi = λ/µi < 1, marginal distributions

πi(ni) = (1 − ρi)ρ
ni
i , ni ∈ N0.

▶ In equilibrium:

π(n) =
2∏

i=1

πi(ni), n ∈ S = N2
0.
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But that has to wait until Sept 23 ...

▶ Exercise set 1: ex 1
▶ Deadline: October 7, 2024, 11:00

Hand in via email
Only emails received before 11:00 will be considered

▶ Next time: Chapter 2, and Section 3.1 (read those
sections)
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