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Overview MQSN

» Background on Markov chains

» Reversibility, output theorem, tandem networks,
feedforward networks

» Partial balance, Markovian routing, Kelly-Whittle networks

» Kelly’s lemma, time-reversed process, networks with fixed
routes

» Advanced topics
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Literature

» R.D. Nelson, Probability, Stochastic Processes, and
Queueing Theory, 1995, chapter 10

» F.P. Kelly, Reversibility and stochastic networks, 1979,
chapters 1—4
www.statslab.cam.ac.uk/~frank/BOOKS/kelly _book.html

» R.W. Wolff, Stochastic Modeling and the Theory of
Queues, Prentice Hall, 1989

» R.J. Boucherie, N.M. van Dijk (editors), Queueing
Networks - A Fundamental Approach, International Series
in Operations Research and Management Science Vol
154, Springer, 2011

» Reader: R.J. Boucherie, Markovian queueing networks,
2018 (work in progress)
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Internet of Things: optimal route in Jackson
network

» Jobs arrive at outside nodes with
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Internet of Things: optimal route in Jackson
network

» Tandem of M|M|1 queues

» Sojourn time
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Internet of Things: optimal route in Jackson
network

» For fixed routes via set of queues

meeo¢oeoeoeoo0emn
Deepooeeocoeoem
ceedooocoooeec » Onrouter
Deepoeoeoecoeeem —1 .
LeepooeoeoeooeLU ES":ZI(Hi—)‘i) :H'(Ionr)
Deepooeoooeeel
Ooe e @ o0 o9 e e
Deedpoooooeaecmn
[l e e s e B M W N

—_

UNIVERSITY OF TWENTE. Markovian Queues and Stochastic Networks 6/34



Challenge

>
>

Grid N x N

On each side k flows arrive from sources at randomly
selected (but fixed) nodes with destination a randomly
selected (but fixed) node on one of the 4 sides

At each gridpoint a single server queue handles and
forwards packets

Packets select their route from source to destination to
minimize their travelling time (no travelling time on link)
Packets may communicate with neighbours to avoid
congestions and change their route accordingly
Poisson arrivals of packets; general processing time at
nodes; one destination on each side

Develop decentralized routing algorithm to minimize mean

travelling times and demonstrate that it outperforms
shortest (and fixed) route selection
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Today:

» Recap Markov chains (chapter 1)
» Birth-death process, Detailed balance (Sec 2.1, 2.2)
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Continuous-time Markov chain

» Stochastic process {N(t), t € T} records evolution of
random variable, T = R

» State space S C NY, state s = (ny,..., ny)

» Stationary process if (N(t1), N(t), ..., N(t)) has the
same distribution as (N(t + 7), N(f2 + 7),..., N(tx + 7))
forall k e N, t,b,....l € T,7eT

» Markov proces satisfies the Markov property: for every
k>1,0<t <---<Ilx<ty1,and any sq,...,Sgqin S,
the joint distribution of (N(t;), ..., N(t41)) is such that

P{N(tx+1) = Sk11IN(t1) = s1,..., N(t) = sk}
= P{N(tx41) = Sk+1|N(t) = sk} ,

whenever the conditioning event
(N(t) = s1,...,N(t) = sk) has positive probability.
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Continuous-time Markov chain — 2

» A Markov process is time-homogeneous if the conditional
probability P {N(s + t) = §'|N(s) = s} is independent of ¢
foralls,t >0,s,8 € S.

» For a time-homogeneous Markov process the transition
probability from state s to state s’ in time t is defined as

P(s,s’;t)=P{N(s+t)=8'|N(s)=s}, t>0.
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Continuous-time Markov chain — 3

» The transition matrix P(t) = (P(s,s’;t), s,s' € S) has
non-negative entries (1) and row sums equal to one (2).

» The Markov property implies that the transition
probabilities satisfy the Chapman-Kolmogorov
equations (3). Assume that the transition matrix is
standard (4). Forall s,s’ € S, s,t € T, a standard
transition matrix satisfies:

P(s,s’;t) > 0;

> P(s,sit)y=1;

s’eS

P(s,s";t+s)=> P(s, s t)P(ss";s);
s’eS

. [. o ,

ltlﬂ)] P(s,s';t) = s
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Continuous-time Markov chain — 4

» For a standard transition matrix the transition rate from
state s to state s’ can be defined as
P(S S" h) — (55 s/
N =1li = 2
q(s,s’) = lim "
» Forall s, s’ € S this limit exists.
» Markov process is called continuous-time Markov chain if
for all s, 8’ € S the limit exists and is finite (5).
» Assume that the rate matrix Q = (q(s, s’), s,8' € S) is
stable (6), and conservative (7)

0<q(s,s')<oo, §'+#s; (5)
0 < qg(s) := —q(s,s) < oc; (6)
> q(s.s’)=0. (7)
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Continuous-time Markov chain — 5

» If the rate matrix is stable the transition probabilities can
be expressed in the transition rates: for s, s’ € S,

P(s,s’;h) =éss + q(s,s')h+o(h) forh| 0, (8)
where o(h) denotes a function g(h) with the property that

g(h)/h— 0as h— 0.

» For small positive values of h, for 8’ # s, g(s,s’)h may be
interpreted as the conditional probability that the Markov
chain {N(t)} makes a transition to state s’ during (t, t + h)
given that the process is in state s at time ¢.
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Continuous-time Markov chain — 6

» For every initial state N(0) =s, {N(t), te T}isa
pure-jump process: the process jumps from state to state
and remains in each state a strictly positive sojourn-time
with probability 1.

» Markov chain remains in state s for an exponential
sojourn-time with mean g(s)~".

» Conditional on the process departing from state s it jumps
to state s’ with probability p(s,s’) = q(s, s’)/q(s).

» The Markov chain represented via the holding times g(s)
and transition probabilities p(s, s’), s,s’ € S, is referred to
as the Markov jump chain.

» The Markov chain with transition rates g(s, s’) is obtained
from the Markov jump chain with holding times with mean
q(s)~" and transition probabilities p(s, s') as
q(s,s’) = q(s)p(s,s’),s,s’ € S.
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Continuous-time Markov chain — 7
» From the Chapman-Kolmogorov equations

P(s,s";t+s)=> P(s, s t)P(s's";s)
s’eS
two systems of differential equations for the transition
probabilities can be obtained:

» Conditioning on the first jump of the Markov chain in (0, {]
yields the so-called Kolmogorov backward equations (9),
whereas conditioning on the last jump in (0, t] gives the
Kolmogorov forward equations (10), for s,s’ € S, t > 0,

/.
PED _ S gss)PE s, ©
s’eS
/.
dP(SC;ts't) — Y P(s,s";0)q(s".8).  (10)
s’eS
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Continuous-time Markov chain — 8

» Derivation Kolmogorov forward equations (regular)

P(s,s’;t+h) = ZP(s,s”;t)P(s”,s’;h) [condition on last step]
s/l
P(s,s’;t+ h) — P(s,s’;t) = Z P(s,s";t)P(s",s'; h) + P(s,s’; )[P(s',s'; h) — 1]
s//#s/
= Z {P(s,s";t)P(s",s'; h) — P(s,s’; t)P(s',s"; h)}

sl/#sl

daP s,sl;t 7" "o ’ o

% = > {P(s,s";t)q(s",s') - P(s,s';1)q(s',s")}
e Y
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Explosion in a pure birth process

» Consider the Markov chain at state space S = Ny with
transition rates
q(s), ifs'=s+1,
q(s,s’) = ¢ —q(s), ifs' =s,
0, otherwise,
with initial distribution P(N(0) = s) = 4(s, 0).
> Let £(s) denote the time spent in state s; £ = > o7, £(8)
> Let g(s) = 2%, then

E{¢} =) E{¢(s)}=) 2°=2
s=0 s=0
As E{¢} < oo it must be that P({ < co) = 1 and therefore

{N(t)} is explosive (diverges to infinity in finite time).
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Continuous-time Markov chain — 9

Theorem (1.1.2)

For a conservative, stable, regular, continuous-time Markov
chain the forward equations (10) and the backward

equations (9) have the same unique solution

{P(s,s’;t), s,8' € S, t > 0}. Moreover, this unique solution is
the transition matrix of the Markov chain.

» The transient distribution p(s, t) = P{N(t) = s} can be
obtained from the Kolmogorov forward equations for
seS, t>0,

dp S, t) Z {p(s l‘ p(s, t)q(S,S’)},

s'#s
p(s, 0) = p(o)(s)-
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Continuous-time Markov chain — 10

» A measure m= (m(s), s € S)suchthat0 < m(s) < o
foralls € Sand m(s) > 0 for some s € S'is called a
stationary measure ifforalls € S, t > 0,

m(s) =Y _ m(s')P(s',s;1),
s'eS

and is called an invariant measure if for all s € S,

" {m(s)a(s.s') ~ m(s')q(s'.s)} = 0.

s'#£s

» {N(t)} is ergodic if it is positive-recurrent with stationary
measure having finite mass

» Global balance; interpretation
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Continuous-time Markov chain — 11

Theorem (1.1.4 Equilibrium distribution)
Let {N(t), t > 0} be a conservative, stable, regular, irreducible
continuous-time Markov chain.

(i) If a positive finite mass invariant measure m exists then
the Markov chain is positive-recurrent (ergodic). In this
case m(s) = m(s) [Ygcs M(s )]*1, s € S, is the unique
stationary distribution and r is the equilibrium distribution,
ie. foralls,s’ €S,

lim P(s,s’;t) = n(s').

t—o0

(if) If a positive finite mass invariant measure does not exist
then for all s, s’ € S,

lim P(s,s’;t) =0.
t—o0
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The birth-death process — 1

» A birth-death process is a Markov chain {N(t), t € T},
T =10,00), or T =R, with state space S C Ny and
transition rates for A\, : S — [0, o0)

A(n) ifn"=n+1, (birth rate)
n)i(n>0), ifn"=n-1, (death rate)
gy — MWL >0). T’ =
—A(n) —p(n), ifn"=n,n>0,
—A(n), ifn=0.
» Kolmogorov forward equations
POD -~ P(n—1,0Mn 1)~ P, OIAM) + ()] + P(A+1, Da(n +1),
n>0,
dPS;’ f) = —P(n,H)A(n)+P(n+1,Hu(n+1), n=0.
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The birth-death process — 2

» Global balance equations

= w(n—1)A(n—-1)—a(n)A(n) + x(n)] +x(n+ 1)p(n+1),

0
0 = —7w(0)A0) + m(1)u(1).
» 7 satisfies the detailed balance equations

m(MA(N)=7n(n+1)u(n+1), neS.

Theorem (2.1.1)

n>0,

Let {N(t)} be a birth-death process with state space S = Ny,

birth rates A(n) and death rates p(n). If
—1
(0) - [Zn OHr 0 u(r+1 } > 0’

then the equilibrium distribution is

n—1

qrr+1) A(r)
H g(r+1,r) (O)gu(wﬂ)’
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Example: The M|M|1 queue

» Customers arrive to a queue according to a Poisson
process (the arrival process) with rate \.

» A single server serves the customers in order of arrival.

» Customers’ service times have an exponential distribution
with mean ~' and are independent of each other and of
the arrival process.

» {N(t), t€ T}, T =]0,00) recording number of customers
in the queue is a birth-death process at S = Ny with

g(n,n) = A(n) =\ ifn”=n+1, (birth rate)
7 Y u(n) = pl(n>0), ifn"=n—1, (death rate)

and equilibrium distribution
a(n)=1-p)p", nes,

: . A
provided that the queue is stable: p .= — < 1.
7!
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Example: The M|M|1|c queue

» M|M|1 queue, but now with finite waiting room that may
contain at most ¢ — 1 customers.

» {N(t), te T}, T =]0,00) recording the number of
customers in the queue is a birth-death process at
S={0,1,2,...,c} with

, A(n)=Al(n<c) ifn=n+1, (birthrate)
qln.m) = {u(n) =upl(n>0), ifn=n-1, (deathrate).
» Detailed balance equations are truncated at state ¢
» The equilibrium distribution is truncated to S:
m(n) =7w(0)p", ne{0,1,...,c},

with
(o] -1 1
—p
m(0) = [Z Pn] =
n=0
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Detailed balance — 1

Definition (2.2.1 Detailed balance)

A Markov chain {N(t)} at state space S with transition rates
q(s,s’), s, s’ € S, satisfies detailed balance if a distribution
m = (7(s), s € S) exists that satisfies for all s, 8’ € S the
detailed balance equations:

m(s)q(s,s") — m(s')q(s’,s) = 0.

Theorem (2.2.2)
If the distribution © satisfies the detailed balance equations
then = is the equilibrium distribution.

» The detailed balance equations state that the probability
flow between each pair of states is balanced.
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Detailed balance — 2

Theorem (2.2.5 Truncation)

Consider {N(t)} at state space S with transition rates q(s,s'),
s,s’ € S, and equilibrium distribution . Let V C S.

Letr > 0. If the transition rates are altered from q(s, s’) to
rq(s,s’) fors € V, s’ € S\ V, then the resulting Markov chain
{N;(t)} satisfies detailed balance and has equilibrium
distribution (G is the normalizing constant)

(s) = Gr(s), seV,
T Grr(s), se S\ vV,

If r = 0 then the Markov chain is truncated to V and

-1

mo(s) = 7(s) [Z w(s)] , seV.
seV
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Example: Network of parallel M|M|1 queues — 1

» Network of two M|M|1 queues in parallel.

» Queue j has arrival rate )\; and service rate pj, j = 1,2.

> {Ni(t)},j=1,2, are assumed independent.

> {N(t) = (N;(t), Nao(1))}, state space S = N2, n = (ny, o),
» Transition rates, for n,n’ € S, n’ #n,

q(n, I"I/) = {

» Random variables N; := Nj(oco) recording the equilibrium
number of customers in queue j are independent.

A ifn=n+e;, j=1.2
pj, ifn=n—e; j=12

2
TF(n) = H?T/‘(nj), nc S,
j=1

. . by
mi(n) = (1= p)pj", nj € No, provided p; := a<
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Example: Network of parallel M|M|1 queues — 2

» Common capacity restriction ny + n, < c.

» Customers arriving to the network with ¢ customers
present are discarded.

» The Markov chain {N(t) = (N;(t), N2(t))} has state space
Sc={(n,n2):n;>0,j=1,2, ny +np < c}and
transition rates truncated to S;.

» Invoking Truncation Theorem:

2
n) = GHp;’f, nes,,
j=1
with normalising constant
4

c—ny
ZZHp
=0 np=0 j=1
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Tandem network

—_—

» Tandem network of two M|M|1 queues
» Poisson A arrival process to queue 1, service rates p;.

» Provided p; = A\/u; < 1, marginal distributions
mi(n) = (1 = pi)p;’, nj € No.
» In equilibrium:

2
a(n) =[[m(m), neS=N;
i=1
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But that has to wait until Sept 23 ...

» Exercise set 1: ex 1

» Deadline: October 7, 2024, 11:00
Hand in via email
Only emails received before 11:00 will be considered

» Next time: Chapter 2, and Section 3.1 (read those
sections)
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