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there from other nodes of the component. It is natural to term such components
‘non-progressive’.

The components for the statistical-mechanical models of Chapters 5 and 6 were
non-progressive in that all their transitions, both internal and external, were
reversible. The archetype of a progressive component is a linear system of depots.
That is, units arriving at node 1 pass independently and successively through
nodes 1, 2, . . . ,mat the rates indicated in Fig. 9.6.1. The equilibrium distribution

is easily found to be
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Fig. 9.6.1 A one-way linear sysiem; the archetype of a progressive component.

The pair (N,n,,) is thus a sufficient statistic for the coupling parameters, but N
itself is not.

Exercises and comments

1. Generalize the last example by considering a composite component with a
single input node (j = 1, say) and a single and distinct output node (j = m, say)
which is such that the output node cannot feed back into the component, but only
to the outside. Show then that the coupling parameters appear in 7 (1) only
through a factor v¥u =", so that N and n,, are sufficient.
2. We shall see in the next chapter that a ‘Jackson component’ seems not to be
able to represent a first-come first-served queue. The linear progressive system of
Fig. 9.6.1 does represent an approximation to such a queue, however. While one
unit can certainly overtake another in the system, the order of emission will be close
to the order of arrival, the more so as the number of stages increase for a given
expected transit time. If the transition n — n — e; + e+ 1 is given rate A;n;/N rather
than A;n; (cf. Exercise (4.4)) then expression (7) is multiplied by N ! and the
distribution of total number in the queue is geometric. However, the distribution
of waiting time is not that of the single-server first-come first-served queue, and
individuals are indeed sharing service at all stages.

7. THE OPTIMAL DESIGN OF A JACKSON NETWORK

Sections 7-9 are concerned with optimization and constitute something of a
diversion from the main theme. However, it may be of some interest that the very
features which give a Jackson network a particular character in equilibrium also

et
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give its optimization rules a special structure. This fact may strengthen the hope,
earlier expressed, that the Jackson network is the first in a natural sequence of
progressively more ‘intelligent’ networks.

We shall consider the choice of routing rules for an open Jackson network
which will induce it to clear the given input traffic, specified by the v;, as efficiently
as possible. Specifically, we shall suppose that a network in state n incurs a cost
a(n) per unit time, and that a cost by, is also incurred whenever there is a direct
Jj — k migration. One might, for example, assume a(n) to have the form

a(n) =) a;n; (1)
J

if waiting time at node j is costed at a; per unit time. However, there is no need to
specialize as yet. The bj; component of cost reflects the cost of a j — k routing. For
example, bjop = + co would imply that the system cannot be left directly from
node j. We are assuming units of a single type, but one can choose the bj to
constrain the path of a unit to ensure, if desired, that it follows some processing
sequence in an acceptable order.

Appealing to the expressions for equilibrium distribution and flow rates derived
in Theorems 3.1 and 3.3 we deduce that the expected rate of cost for a given
network in equilibrium is
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Certain aspects of the problem are prescribed; we assume these to be the set of
nodes (but see Exercise 1), the input rates v; = 44;and the ‘configuration’ function
® (n). We shall also assume that capacity constraints are placed on exit routing at
nodes:

Ai=YAax<4; (j=12,...,m) 4)
k
Here the bounds 4; are prescribed. We regard the design problem as the task of
minimizing expression (2) for C with respect to the routing matrix A = (i)
subject to the constraints listed and, of course, that of non-negativity: i = 0.
Let us rather regard it as the task of minimizing C with respect to the 4; and
w; (j # 0) subject to the constraints (4) and the determining constraints

wMUo, AEL.E,IEK.QL =0 (J=12...,m) (5)

plus non-negativity.
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The values wo = 1 and Aox = Vi are of course prescribed. We apply constraints

(4), (5) only for j # 0; there is no constraint (4) forj = 0 and the constraint (5) for
j = 0 is redundant. We have then the Lagrangian form

L=C+ X% &Widy—wikp)+ M SAM»; = \ﬁ.v (6)
7 K

where ¢&;,n; are Lagrangian multipliers associated with the constraints (5), (4). If
we adopt the convention o = 1o = Othen all summations in (6) can be taken over

the range (0,1, ..., M) These multipliers have the interpretations
oC
m o Mcls
: oC
w v | —— ’
J m M.u

(7)
where C is the minimal constrained value of C (see Appendix 3). That is, &; is the
marginal cost of additional input at node jand ; the marginal benefit of increased
capacity at node j.

Now, the full formalism of convex programming described in Appendix 3 is not
available, because the function A (w) defined by (3) is not necessarily convex and
the constraints (5) are not linear in (4,w). One can nevertheless appeal to the
Kuhn-Tucker optimality conditions (see Appendix 3) to deduce the necessary
conditions asserted in the following theorem.

Theorem 7.1 4
(i) The marginal costs of input &; satisfy So = 0 and
mH.MnH.+EM= bp+&) (G#0 ®)
with equality for those nodes j which are used in the optimal design. Here
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given j and the minimum in the right-hand member is attained at the given k.

(iii) Ifnodejisnot used in the optimal design thenw; = 0. If it is used but at less than
full capacity then ¢; = 0.

Proof Applying the Kuhn-Tucker conditions in the region (4,w) = 0 we deduce
that

3&+M\.§,3&I&@+M A =0 (10)
X k
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with equality if w; > 0, and

wy(bj— &+ &) +n; =0 (11)
with equality if 15 > 0. We deduce from (11) that by, + &, will have the same value
for all k such that A; > 0; the value minimizing this expression over k. The second
part of assertion (ii) is thus demonstrated. The remainder of assertions (i) and (ii)
then follow by appeal to this and the condition associated with (10). The
evaluation &, = 0 is a consistent convention, associated with the fact that there is
no term for j = 0 in the first summation of expression (6). Finally, certainly w; = 0
if node jis not used,and 7, =0 if node jis used at less than full capacity. If the node
is used but at less than full capacity then we deduce from (11) that

min :u;lﬁ+mlno (12)
k

equality following from the fact that A > O for some k. Comparing (11) and the
equality version of (8) we deduce that ¢;=0 &

If we reduce the set of nodes to those which are actually used in the optimal
design then inequality (8) takes the equality form

mg.”halTawD:u‘..rITﬂ(r' AﬂWv

with boundary condition &, = 0. We recognize in (13) a dynamic programming

equation of the type that turns up in time- and path-optimization problems (see,
e.g. Whittle, 1982c). The reason for this is clear, once one thinks about it. Recall the

interpretation of ¢;as the marginal cost of accepting new additional input at node
j, for the optimal design. Equation (3) represents this cost as the sum of the
marginal cost c; of passing this input through node j, the transit cost bj, of passing
it to node k and the marginal cost &, of accepting it at node k. The only following
nodes k which are employed are those for which the sum of these cost components
is minimal.

If the c; were prescribed, as are the by, then it would be exceptional for the
minimum in (13) to be attained at more than one value of k, and so for the output
from node j to be split. However, ¢;isa function of w. The fact that some nodes can
handle traffic only at a limited rate (if they are queue-like) will mean that traffic
from a given node will often have to be split. That is, w,and so the ¢;, will adjust so
that the minimum is attained in (13) at several values of k. These multiple
equalities give extra equations which determine the actual 4. To fully determine
the solution one must couple the w-determining relations (3) with the network-
determining relations (4), (8) and (9).

The solution is plainly far from complete, but one can deduce a number of
features already.

Corollary 7.1 Suppose ¢;+ by > 0 forj # 0 and all k. Then the optimal network
has no cycles.
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Proof The assumption and relation (13) imply that ¢; aoo_.r.mmnw, v.:.mo:w m.,:.
follows a possible path through the optimal network to the termination point

j = 0. Cycles are thus excluded. ®

Note also

Theorem 7.2 The marginal cost ¢; of passage through node j has the interpretation

¢;= A7 ' cov(a(n)ny) (14)

where the covariance is calculated under the equilibrium statistics of the network,
whether optimal or not. If a(n) and ®(n) are such that these covariances are
necessarily strictly positive then all nodes which are used in the optimal design are

used at full capacity.

Proof Relation (14) follows immediately from (3), (9). The conclusion ¢; > 0
would imply the second assertion, by Theorem 7.1(iii). &

Exercises and comments

1. The set of nodes is supposed given. However, nodes can be dropped from the
optimal design, so if one begins with a dense set of nodes then there is virtually no
constraint on the set of nodes actually to be employed. Suppose, for example, that
any point in R? could be a node, with the functions a, ® and b all appropriately
defined. Then, depending upon the convexity/concavity properties of these
functions, the nodes of the optimal network will form either a continuous or a
discrete set.

8. SOCIAL, INDIVIDUAL AND BUREAUCRATIC OPTIMA

We could well describe the optimization of the last section as a social
optimization, since it is understood as the attempt of a planner to minimize
collective costs. Let us assume in this section, for simplicity of argument, that all
nodes are used and at full capacity in the optimal design.

Suppose now that

om=[]nYH"" (1)
i

so that all units move independently through the network. Suppose also that a (n)
takes the linear form (7.1). Then one finds that ¢;, defined by (7.9), has the simple

evaluation,
h_g, = Q‘..\\A\. ANV

independent of w. The dynamic programming equation (7.13) will then yield an
evaluation of the marginal input costs £; and of the optimal routing which are also
independent of w, i.e. independent of expected traffic conditions.

§9.9 ADAPTIVE ROUTING RULES

These costs are just those which would apply to an individual unit if it were
understood that the individual himself bore a cost a; per unit time while waiting at
node j (when (2) would give the expected total waiting cost at node j) and himself
bore the cost b of passage between nodes. The route recommended by the
minimizing option in (7.13) (with ¢ given by (2)) is then exactly the route that an
individual should take on leaving node j, in order to minimize his individual costs,
and the w-independent solution &; = F; of (7.13) is then exactly the minimal future
cost faced by an individual entering node j.

Let us refer to this optimization as an individual optimization. Our conclusion
may then be expressed.

Theorem 8.1 Suppose that units move independently and that the cost function
a(n) has the linear form (7.1). Then social and individual optimizations agree, in that
the optimal routing is the same in both cases, and the marginal costs &; of the social
case are exactly the minimal individual costs F;.

Suppose now one allows ®(n) to be general and chooses

a(n) =Y a;®(n—e;)/®(n) (3)
i

Then we see by appeal to Theorem 3.3 that A (w) = Y. a;jw;and evaluation (2) still

holds. The optimal social routing will then again _mo that recommended by the
individual optimization. This may seem strange, because individuals now interact
in general, and nodes may congest.

The optimization with choice (3) might be termed a bureaucratic optimization.
The ratio ® (n — e;)/® (n) is proportional to the rate of exit (i.e. of ‘service’) at node
j. If cost (3) plus the transit costs b, are regarded as costs borne by the operators of
the system then one can say that the operators are trying to choose a routing which
gives them least work, consistent with full capacity (4; = ;) working. That is, the
routing is one that suits the bureaucracy best, a bureaucracy concerned by its own
work-rate rather than by customer waiting times, etc.

With this understanding we have established

Theorem 8.2 The bureaucratic optimal routing is that determined by the
individual optimization rule, whatever @ (n).

9. ADAPTIVE ROUTING RULES

It was said in section 2 that a Jackson network is the least intelligent of all
networks. To bring it to a higher level one must make the routing responsive to the
general state n of the system. In other words, one must use a routing rule which is
adaptive, in that it depends upon n.
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