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Norton’s theorem
2

State n=(n1,…,nN)
Clusters C1,…,CR
Stations i ε Cr
State of cluster n(r)=(ni,i ε Cr)
Global state Nr=Σi ε Crni
N=(N1,…,NR)
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3Recap: Network of quasi reversible nodes
• Construct network by multiplying rates for individual queues
• Transition rates
• Arrival of type i causes queue k=r(i,1) to change at

• Departure type i from queue j = r(i,S(i)) 

• Routing

• Internal
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Norton’s theorem (2) 
25 

Stationary distributions:  
 
 
 
Quasi-reversibility of clusters 
 
 
Partial balance global process 
 
Theorem: 
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Norton’s theorem (3) 26 

Global process: 
 
 
 
First order equivalent:  
 
 
 
 
 
Theorem: global process is first 

order equivalent, and 
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General distribution

• Erlang(k, ν)

• mean EL = k/ ν          CV=1/ √k < 1

• Hyperexponential

• mean

• CV > 1
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General distribution: phase type distribution

• With probability Erlang(k, ν)

• phase type distribution

• mean
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10
General distribution: phase type distribution

• With probability Erlang(k, ν)

phase 1

phase 2     phase 1

• phase type distribution

• dense in class of distributions with non-negative support
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General distribution: phase type distribution

• Markov chain that records the remaining number of phases and that 
restarts in phase k wp       each time phase 1 is completed

• state k records number of remaining phases of renewal process
• state space S={1,2,…}
• transition rates   q(k,k-1) = ν

q(1,k) = ν

• Let H(k) denote equilibrium distribution, then H(k) satisfies global 
balance:

H(k) ν = H(1) ν       + H(k+1) ν,     k=1,2,…

• or discrete renewal equation (TK VII-6)

H(k)  = H(1)        + H(k+1),     k=1,2,…

• solution                                         where i
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General distribution: phase type distribution

• is distribution that satisfies

• discrete renewal equation

H(k)  = H(1)        + H(k+1),     k=1,2,…

• Proof
• insert H(k) into equation: 

• show that H(k) is distribution:
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Processor sharing queue

• Poisson arrivals                  rate     λ
• Service request  L mean   τ=1/μ

• State                                   n = # customers in queue
• State space                        S = {0,1,…}
• Markov chain                      X = {X(t), t≥0}
• birth rate q(n,n+1)= λ
• death rate q(n,n-1)= μ

• Equilibrium distribution
,...2,1,0))(1( =-= nn

n ltltp
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Proof: (exponential case)

equilibrium distribution
solution global balance

rate out of state n  = rate into state n

detailed balance

n
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π n[q(n,n+1)+ q(n,n−1)]= π n−1q(n−1,n)+π n+1q(n+1,n)
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Processor sharing queue: phase type service times

• Poisson arrivals         rate     λ
• service length  L mean   τ=1/μ
• State                          customer i has       remaining phases; 
• State space
• Markov chain             X = {X(t), t≥0}
• Transition rates

• Equilibrium distribution

• H(k) is distribution of the remaining number of phases = remaining service time      
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Erlang loss queue: phase type service length

• Equilibrium distribution

• Proof
• global balance
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Processor sharing queue: phase type service

• Theorem 1
Equilibrium distribution

• where

• moreover, equilibrium distribution of number of customers depends
on service time distribution only through its mean (insensitivity
property): 

• Proof
• sum distribution over all possible configurations of phases
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• PASTA: 
The distribution of the number of customers in the system seen by a 
a customer arriving to a system according to a Poisson process (i.e., 
at an arrival epoch) equals the distribution of the number of 
customers at an arbitrary epoch. 

• Arrival theorem (open Jackson network):
In an open network in equilibrium, a customer arriving to queue j
observes the equilibrium distribution.

• Arrival theorem (closed Jackson network):
In a closed networkin equilibrium, a customer arriving to queue j
observes the equilibrium distribution of the network containing one 
customer less.

Arrival theorem
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PASTA: Poisson Arrivals See Time Averages

• fraction of time system in state n

• probability outside observer sees n customers at time t

• probability that arriving customer sees n customers at time t

(just before arrival at time t there are n customers in the system)

• in general 
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21PASTA: Poisson Arrivals See Time Averages
• For birth-death process:

• Let C(t,t+h) event customer arrives in (t,t+h)

• For Poisson arrivals q(n,n+1)=λ so that

• Alternative explanation; PASTA holds in general!      
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22PASTA: Poisson Arrivals See Time Averages

• Transient

• In equilibrium

• Ratio of flows
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MUSTA: Moving Units See Time Averages
• Palm probabilities: 

Each type of transition nàn’ for Markov chain associated with subset H of SxS \diag(SxS)

• Example:transition in which customer queue ià queue j

• Transition in which customer leaves queue i

• Transition in which customer enters queue j

  

€ 

Hij =
m
 (m + ei,m + e j ),m + ei,m + e j ∈ S{ }

H
i

out =
j
 Hij

H
j

in =
i
 Hij
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MUSTA: Moving Units See Time Averages
• NH process counting the H-transitions 

• Palm probability PH (C) of event C given that H occurs: 

• Probability customer queue ià queue j sees state m

• Probability customer arriving to queue j sees state m

  

€ 

PH (C) = (n,n ' )∈C∑ π (n)q(n,n')

(n,n ' )∈H∑ π (n)q(n,n')
, C ⊆ H

Pij (m) = PHij
((m + ei,m + e j )) =

π (m + ei)q(m + ei,m + e j )

(n,n ' )∈Hij
∑ π (n)q(n,n')

,

Pj (m) = P
H j

in (
i
 (m + ei,m + e j )) = i

∑ π (m + ei)q(m + ei,m + e j )

i∑ (n,n' )∈Hij
∑ π (n)q(n,n')

,



25Kelly Whittle network
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Theorem: The equilibrium distribution for the Kelly Whittle
network is 

where 

and π satisfies partial balance
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26MUSTA : Kelly Whittle network
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Theorem: The distribution seen by a customer 
moving from queue i to queue j is

Entering queue j is

where
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27MUSTA
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Closed networks: MVA 
Average queue length, average sojourn times?
lm(i) arrival intensity queue i, 
Fm(i) expeceted sojourn time i, 
Lm(i) expected queue length queue i, when m cust in system

Arrival theorem, FCFS

Little’s formula)()()(
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Closed networks: MVA 
lm(i) arrival intensity queue i, 
Fm(i) expeceted sojourn time i, 
Lm(i) expected queue length queue i, when m cust in system
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• Mean Value Analysis
evaluates lm(i), Fm(i) en Lm(i) for all m,i recursively
– Find solution p of traffic equations
– for m=1 : F1(i)=1/µi for all i

recursion
– let Fm(i) known for all i
– Determine number of cust served per time unit at queue i :

€ 

λm (i) = λm ⋅ π i = m ⋅
j=1

N
∑ π j ⋅ Fm ( j){ }

−1

⋅ π i

– Determine average number of customers at queue i 
using Little

– Determine average sojourn time at queue i for system 
containing m+1 customers using arrival theorem

€ 

Lm (i) = λm (i) ⋅ Fm (i)

€ 

Fm+1(i) =
1+ Lm (i)

µi
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Interpretation traffic equations q(n,n− ej + ek ) =
φ(n− ej )
φ(n)

µ j pjk

q(n,n− ej ) =
φ(n− ej )
φ(n)

µ j pj0

q(n,n+ ek ) =
φ(n)
φ(n)

µ0p0k

Theorem: The equilibrium distribution for the Kelly Whittle
network is 

where 

and
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Εq(n,n+ ek ) = λk
Εq(n,n− ej + ek ) = γ j pjk       j =1,..., J



Intermezzo: mathematical programming  
• Optimisation problem

• Lagrangian

• Lagrangian optimization problem

• Theorem : Under regularity conditions: any point

that satisfies Lagrangian optimization problem yields optimal solution

of Optimisation problem
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Intermezzo: mathematical programming (2)  
• Optimisation problem

• Introduce slack variables

• Kuhn-Tucker conditions:

• Theorem : Under regularity conditions: any point                            that satisfies

Lagrangian optimization problem yields optimal solution of Optimisation problem

• Interpretation multipliers: shadow price for constraint. 
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• Source

• How to route jobs, and
• how to allocate capacity over the nodes

• sink



Optimal design of Kelly / Whittle network (1)  

• Transition rates

• Routing rules for open network to clear input traffic as efficiently as possible

• Cost per time unit in state n : a(n)

• Cost for routing jàk : 

• Design : b_j0=+∞ : cannot leave from j; sequence of queues

• Expected cost rate
A(ρ) = n∈S

∑ a(n)φ(n)
j=1

J

∏ ρ j
n j

n∈S
∑ φ(n)

j=1

J

∏ ρ j
n jC = A(α)+

j,k
∑ bjkρ jλ jk

jkb

q(n,n− ej + ek ) =
φ(n− ej )
φ(n)

λ jk

q(n,n− ej ) =
φ(n− ej )
φ(n)

λ j0

q(n,n+ ek ) =
φ(n)
φ(n)

λ0k

λ jk = µ j pjk



Optimal design of Kelly / Whittle network (2)  

• Transition rates

• Given: input traffic 

• Maximal service rate 

• Optimization problem : minimize costs

• Under constraints  

µ j = k∑ λ jk ≤ µ j

k=0
∑ ρ jλ jk =

k=0
∑ ρkλkj, j =1,..., J

k=0
∑ λ jk ≤ µ j, j =1,..., J

ρ j ≥ 0, j =1,..., J
ρ0 =1
λ jk ≥ 0, j =1,..., J,k = 0,..., J
λ0k  fixed

q(n,n− ej + ek ) =
φ(n− ej )
φ(n)

λ jk

µ0p0k A(ρ) = n∈S
∑ a(n)φ(n)

j=1

J

∏ ρ j
n j

n∈S
∑ φ(n)

j=1

J

∏ ρ j
n j

C = A(α)+
j,k
∑ bjkρ jλ jk



Optimal design of Kelly / Whittle network (3)  
• Optimisation problem

• s.t.

• Lagrangian form
L =C +

j=0
∑

k=0
∑ ξ j (ρkλkj − ρ jλ jk )

  +
j=0
∑ η j (

k=0
∑ λ jk −µ j )−

j=0
∑ κ jρ j −

j,k=0
∑ ϑ jkλ jk

ξ0 =η0 =κ0 =ϑ 00 = 0

min C({ρ j, pjk}) = A(ρ)+
j,k
∑ bjkρ jλ jk

k=0
∑ ρ jλ jk =

k=0
∑ ρkλkj, j =1,..., J

k=0
∑ λ jk ≤ µ j, j =1,..., J

ρ j ≥ 0, j =1,..., J
ρ0 =1
λ jk ≥ 0, j =1,..., J,k = 0,..., J
λ0k  fixed



• KT-conditions

• Computing derivatives:
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)(1

∂L
∂ρ j

= 0,    j =1,..., J

∂L
∂λ jk

= 0,    j,k = 0,..., J

k=0
∑ ξ j (ρkλkj − ρ jλ jk ) = 0,    j =1,..., J

η j (
k=0
∑ λ jk −µ j ) = 0,    j =1,..., J

κ jρ j = 0,    j =1,..., J
ϑ jkλ jk = 0,    j =1,..., J
ξ j,η j,κ j,ϑ jk ≥ 0



Optimal design of Kelly / Whittle network (5)  
• Theorem : (i) the marginal costs of input satisfy 

• with equality for those nodes j which are used in the optimal design. 

• (ii) If the routing jàk is used in the optimal design the equality holds in (i) and the 

minimum in the rhs is attained at given k.

• (iii) If node j is not used in the optimal design then  αj =0. If it is used but at less that 

full capacity then cj =0. 

• Dynamic programming equations for nodes that are used
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Optimal design of Kelly / Whittle network (6)  
• PROOF: Kuhn-Tucker conditions : 
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43Networks of queues

Lecture 5:

• Insensitivity

• Arrival theorem

• Norton’s theorem

• Optimal design of a Kelly Whittle network
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