## Networks of queues

Lectures 6--9:

- Norton's theorem
- Insensitivity
- Arrival theorem
- Optimal design of a Kelly Whittle network

Richard J. Boucherie
Stochastic Operations Research department of Applied Mathematics

University of Twente

Norton's theorem
State $\mathrm{n}=\left(\mathrm{n}_{1}, \ldots, \mathrm{n}_{\mathrm{N}}\right)$
Clusters $\mathrm{C}_{1}, \ldots, \mathrm{C}_{\mathrm{R}}$ Stations i \& $\mathrm{C}_{\mathrm{r}}$
State of cluster $n^{(r)}=\left(n_{i}, i \varepsilon C_{r}\right)$ Global state $\mathrm{N}_{\mathrm{r}}=\sum_{\mathrm{i} \varepsilon \mathrm{Cr}} \mathrm{n}_{\mathrm{i}}$ $\mathrm{N}=\left(\mathrm{N}_{1}, \ldots, \mathrm{~N}_{\mathrm{R}}\right)$


$$
\sum_{j \in C_{r}} q_{0 j}^{(r)}\left(\mathbf{n}^{(r)}\right)=1
$$

$$
q\left(\mathbf{n}, \mathbf{n}-e_{i}+e_{j}\right)= \begin{cases}q_{i 0}^{(r)}\left(\mathbf{n}^{(r)}\right) q_{R}^{r s}(\overline{\mathrm{~N}}) q_{0 j}^{(s)}\left(\mathbf{n}^{(s)}\right), & i \in C_{r}, j \in C_{s} \\ q_{i j}^{(r)}\left(\mathbf{n}^{(r)}\right) \mu^{(r)}(\overline{\mathrm{N}})+q_{i 0}^{(r)}\left(\mathbf{n}^{(r)}\right) q_{R}^{r r}(\overline{\mathrm{~N}}) q_{0 j}^{(r)}\left(\mathbf{n}^{(r)}-e_{i}^{(r)}\right), & i, j \in C_{r} \\ q_{i 0}^{(r)}\left(\mathbf{n}^{(r)}\right) q_{R}^{r 0}(\overline{\mathrm{~N}}), & i \in C_{r}, j \in C_{0} \\ q_{R}^{0 s}(\overline{\mathrm{~N}}) q_{0 j}^{(s)}\left(\mathbf{n}^{(s)}\right), & i \in C_{0}, j \in C_{s}\end{cases}
$$

$$
\begin{equation*}
q_{R}^{r s}(\overline{\mathrm{~N}})=\mu^{(r)}(\overline{\mathrm{N}}) p^{r s}(\overline{\mathrm{~N}}) \tag{2.2}
\end{equation*}
$$

## Recap: Network of quasi reversible nodes

- Construct network by multiplying rates for individual queues
- Transition rates
- Arrival of type $i$ causes queue $k=r(i, 1)$ to change at

$$
q_{k}\left(x_{k}, x_{k}{ }^{\prime}\right) \quad x_{k}^{\prime} \in S_{k}\left(i, 1, x_{k}\right)
$$

- Departure type $i$ from queue $j=r(i, S(i))$

$$
q_{j}\left(x_{j}, x_{j}^{\prime}\right) \quad x_{j} \in S_{j}\left(i, S(i), x_{j}^{\prime}\right)
$$

- Routing

$$
\begin{aligned}
& q_{j}\left(x_{j}, x_{j}^{\prime}\right) \frac{q_{k}\left(x_{k}, x_{k}^{\prime}\right)}{\sum_{x^{\prime} \in S_{k}\left(i, s+1, x_{k}\right)} q_{k}\left(x_{k}, x^{\prime}\right)}=q_{j}\left(x_{j}, x_{j}^{\prime}\right) \frac{q_{k}\left(x_{k}, x_{k}^{\prime}\right)}{\alpha_{k}(i, s+1)} \\
& x_{k}^{\prime} \in S_{k}\left(i, s+1, x_{k}\right) \quad x_{j} \in S_{j}\left(i, s, x_{j}^{\prime}\right)
\end{aligned}
$$

- Internal $q_{j}\left(x_{j}, x_{j}{ }^{\prime}\right)$


## Norton's theorem

State $\mathrm{n}=\left(\mathrm{n}_{1}, \ldots, \mathrm{n}_{\mathrm{N}}\right)$
Clusters $\mathrm{C}_{1}, \ldots, \mathrm{C}_{\mathrm{R}}$ Stations i $\varepsilon \mathrm{C}_{\mathrm{r}}$
State of cluster $\mathrm{n}^{(\mathrm{r})}=\left(\mathrm{n}_{\mathrm{i}}, \mathrm{i} \varepsilon \mathrm{C}_{\mathrm{r}}\right)$ Global state $\mathrm{N}_{\mathrm{r}}=\sum_{\mathrm{i} \varepsilon \mathrm{Cr}} \mathrm{n}_{\mathrm{i}}$ $\mathrm{N}=\left(\mathrm{N}_{1}, \ldots, \mathrm{~N}_{\mathrm{R}}\right)$


$$
\sum_{j \in C_{r}} q_{0 j}^{(r)}\left(\mathbf{n}^{(r)}\right)=1
$$

$$
q\left(\mathbf{n}, \mathbf{n}-e_{i}+e_{j}\right)= \begin{cases}q_{i 0}^{(r)}\left(\mathbf{n}^{(r)}\right) q_{R}^{r s}(\overline{\mathrm{~N}}) q_{0 j}^{(s)}\left(\mathbf{n}^{(s)}\right), & i \in C_{r}, j \in C_{s} \\ q_{i j}^{(r)}\left(\mathbf{n}^{(r)}\right) \mu^{(r)}(\overline{\mathrm{N}})+q_{i 0}^{(r)}\left(\mathbf{n}^{(r)}\right) q_{R}^{r r}(\overline{\mathrm{~N}}) q_{0 j}^{(r)}\left(\mathbf{n}^{(r)}-e_{i}^{(r)}\right), & i, j \in C_{r} \\ q_{i 0}^{(r)}\left(\mathbf{n}^{(r)}\right) q_{R}^{r 0}(\overline{\mathrm{~N}}), & i \in C_{r}, j \in C_{0}\end{cases}
$$

$$
\begin{equation*}
q_{R}^{r s}(\overline{\mathrm{~N}})=\mu^{(r)}(\overline{\mathrm{N}}) p^{r s}(\overline{\mathrm{~N}}) \tag{2.2}
\end{equation*}
$$

## Norton's theorem (' ${ }^{\prime}$ ) <br> Norton's theorem (2)



$$
i \in C_{r}, j \in C_{s}
$$

$$
q\left(\mathbf{n}, \mathbf{n}-e_{i}+e_{j}\right)= \begin{cases}q_{i j}^{(r)}\left(\mathbf{n}^{(r)}\right) \mu^{(r)}(\overline{\mathrm{N}})+q_{i 0}^{(r)}\left(\mathbf{n}^{(r)}\right) q_{R}^{r r}(\overline{\mathrm{~N}}) q_{0 j}^{(r)}\left(\mathbf{n}^{(r)}-e_{i}^{(r)}\right), & i, j \in C_{r},  \tag{2.2}\\ q_{i 0}^{(r)}\left(\mathbf{n}^{(r)}\right) q_{R}^{r 0}(\overline{\mathrm{~N}}), & i \in C_{r}, j \in C_{0} \\ q_{R}^{0 s}(\overline{\mathrm{~N}}) q_{0 j}^{(s)}\left(\mathbf{n}^{(s)}\right), & i \in C_{0}, j \in C_{s}\end{cases}
$$

Stationary distributions: $\sum_{i, j \in C r u\{0\}}\left\{\pi_{R}^{(r)}\left(\mathbf{n}^{(r)} q_{i j}^{(r)}\left(\mathbf{n}^{(r)}\right)-\pi^{(r)}\left(\mathbf{n}^{(r)}-e_{i}^{(r)}+e_{j}^{(r)}\right) q_{j i}^{(r)}\left(\mathbf{n}^{(r)}-e_{i}^{(r)}+e_{j}^{(r)}\right)\right\}=0\right.$

$$
\sum_{s, r=0}^{R}\left\{\pi_{R}(\overline{\mathrm{~N}}) q_{R}^{r s}(\overline{\mathrm{~N}})-\pi_{R}\left(\overline{\mathrm{~N}}-\overline{\mathrm{E}}_{r}+\overline{\mathrm{E}}_{s}\right) q_{R}^{s r}\left(\overline{\mathrm{~N}}-\overline{\mathrm{E}}_{r}+\overline{\mathrm{E}}_{s}\right)\right\}=0
$$

Quasi-reversibility of clusters

$$
\sum_{i \in \zeta_{\ldots}}\left\{\pi^{(r)}\left(\mathbf{n}^{(r)}\right) q_{0 j}^{(r)}\left(\mathbf{n}^{(r)}\right)-\pi^{(r)}\left(\mathbf{n}^{(r)}+e_{j}^{(r)}\right) q_{j 0}^{(r)}\left(\mathbf{n}^{(r)}+e_{j}^{(r)}\right)\right\}=0
$$

Partial balance global process

$$
\sum_{s=0}^{R}\left\{\pi_{R}(\overline{\mathrm{~N}}) q_{R}^{r s}(\overline{\mathrm{~N}})-\pi_{R}\left(\overline{\mathrm{~N}}-\overline{\mathrm{E}}_{r}+\overline{\mathrm{E}}_{s}\right) q_{R}^{s r}\left(\overline{\mathrm{~N}}-\overline{\mathrm{E}}_{r}+\overline{\mathrm{E}}_{s}\right)\right\}=0
$$

Theorem:

$$
\pi(\mathbf{n})=B \pi_{R}(\overline{\mathrm{~N}}) \prod^{R} \pi^{(r)}\left(\mathbf{n}^{(r)}\right)
$$



$$
q\left(\mathbf{n}, \mathbf{n}-e_{i}+e_{j}\right)= \begin{cases}q_{i 0}^{(r)}\left(\mathbf{n}^{(r)}\right) q_{R}^{r s}(\overline{\mathrm{~N}}) q_{0 j}^{(s)}\left(\mathbf{n}^{(s)}\right), & i \in C_{r}, j \in C_{s}  \tag{2.2}\\ q_{i j}^{(r)}\left(\mathbf{n}^{(r)}\right) \mu^{(r)}(\overline{\mathrm{N}})+q_{i 0}^{(r)}\left(\mathbf{n}^{(r)}\right) q_{R}^{r r}(\overline{\mathrm{~N}}) q_{0 j}^{(r)}\left(\mathbf{n}^{(r)}-e_{i}^{(r)}\right), & i, j \in C_{r}, \\ q_{i 0}^{(r)}\left(\mathbf{n}^{(r)}\right) q_{R}^{r 0}(\overline{\mathrm{~N}}), & i \in C_{r}, j \in C_{0} \\ q_{R}^{0 s}(\overline{\mathrm{~N}}) q_{0 j}^{(s)}\left(\mathbf{n}^{(s)}\right), & i \in C_{0}, j \in C_{s}\end{cases}
$$

Global process:

$$
\begin{gathered}
M^{(r)}(\overline{\mathrm{N}})=\mu^{(r)}(\overline{\mathrm{N}}) \frac{\pi^{(r)}\left(\mathrm{N}_{r}-1\right)}{\pi^{(r)}\left(\mathrm{N}_{r}\right)}, \quad r=0, \ldots, R \\
Q\left(\overline{\mathrm{~N}}, \overline{\mathrm{~N}}-\overline{\mathrm{E}}_{r}+\overline{\mathrm{E}}_{s}\right)=M^{(r)}(\overline{\mathrm{N}}) p^{r s}(\overline{\mathrm{~N}})
\end{gathered}
$$

First order equivalent:

$$
\Pi(\overline{\mathrm{N}}) Q\left(\overline{\mathrm{~N}}, \overline{\mathrm{~N}}-\overline{\mathrm{E}}_{r}+\overline{\mathrm{E}}_{s}\right)=\sum_{\left.\mathbf{n}: \sum_{i \in C_{r}} \sum_{n_{i}=\mathrm{N}_{r}, r=1, \ldots, R} \sum_{i \in C_{r}, j \in C_{s}} \pi(\mathbf{n}) q\left(\mathbf{n}, \mathbf{n}-e_{i}+e_{j}\right) . .{ }^{2}\right)}
$$

Theorem: global process is first order equivalent, and

$$
\Pi(\overline{\mathrm{N}})=B_{R} \pi_{R}(\overline{\mathrm{~N}}) \prod^{R} \pi^{(r)}\left(\mathrm{N}_{r}\right) \quad \pi(\mathbf{n} \mid \overline{\mathrm{N}})=\prod^{R} \pi^{(r)}\left(\mathbf{n}^{(r)} \mid N_{r}\right)
$$

## Networks of queues

Lecture 5:

- Insensitivity
- Arrival theorem
- Norton's theorem
- Optimal design of a Kelly Whittle network

Richard J. Boucherie
Stochastic Operations Research department of Applied Mathematics

University of Twente

## General distribution

- Erlang $(k, v)$ $\operatorname{Erl}(k, v)(x)=1-\sum_{j=0}^{k-1} \frac{(v x)^{j}}{j!} e^{-x x}$
- mean $E L=k / v \quad \mathrm{CV}=1 / \sqrt{ } k<1$
- Hyperexponential

$$
\operatorname{Hyp}\left(p_{i}, v_{i}, i=1, . ., n\right)=p_{1} \operatorname{Exp}\left(v_{1}\right)+\ldots+p_{n} \operatorname{Exp}\left(v_{n}\right)
$$

- mean
- $C V>1$

$$
E L=\frac{p_{1}}{v_{1}}+\ldots+\frac{p_{n}}{v_{n}}
$$



## General distribution: phase type distribution

- With probability $p_{k} \operatorname{Erlang}(k, v)$

$$
\sum_{k=1}^{\infty} p_{k}=1
$$

- phase type distribution
- mean $E L=\sum_{k=1}^{\infty} \frac{k p_{k}}{v}$

$$
F_{L}(x)=\sum_{k=1}^{\infty} p_{k} E r l(k, v)(x)
$$

General distribution: phase type distribution

- With probability $p_{k} \operatorname{Erlang}(k, v)$

- dense in class of distributions with non-negative support

$$
F_{L}(x)=\sum_{k=1}^{\infty} p_{k} \operatorname{Erl}(k, v)(x)
$$

## General distribution: phase type distribution

- Markov chain that records the remaining number of phases and that restarts in phase $k$ wp $p_{k}$ each time phase 1 is completed
- state $k$ records number of remaining phases of renewal process
- state space $S=\{1,2, \ldots\}$
- transition rates $q(k, k-1)=v$

$$
q(1, k)=v p_{k}
$$

- Let $H(k)$ denote equilibrium distribution, then $H(k)$ satisfies global balance:

$$
H(k) v=H(1) v \quad p_{k}+H(k+1) v, \quad k=1,2, \ldots
$$

- or discrete renewal equation (TK VII-6)

$$
H(k)=H(1) \quad p_{k}+H(k+1), \quad k=1,2, \ldots
$$

- solution

$$
H(k)=\frac{\mu}{v} \sum_{i=k}^{\infty} p_{i} \quad \text { where } \frac{1}{\mu}=\sum_{k=1}^{\infty} \frac{k p_{k}}{v}
$$

## General distribution: phase type distribution

- $H(k)=\frac{\mu}{v} \sum_{i=k}^{\infty} p_{i} \quad$ is distribution that satisfies
- discrete renewal equation

$$
H(k)=H(1) \quad p_{k}+H(k+1), \quad k=1,2, \ldots
$$

- Proof
- insert $H(k)$ into equation:

$$
\sum_{i=k}^{\infty} p_{i}=p_{k} \sum_{i=1}^{\infty} p_{i}+\sum_{i=k+1}^{\infty} p_{i}
$$

- show that $H(k)$ is distribution:

$$
\sum_{k=1}^{\infty} H(k)=\frac{\mu}{v} \sum_{k=1}^{\infty} \sum_{i=k}^{\infty} p_{i}=\frac{\mu}{v} \sum_{i=1}^{\infty} \sum_{k=1}^{i} p_{i}=\frac{\mu}{v} \sum_{i=1}^{\infty} i p_{i}=1
$$

## Processor sharing queue

- Poisson arrivals
- Service request L
- State
- State space
- Markov chain
- birth rate
- death rate
rate $\lambda$
mean $\tau=1 / \mu$
$n=\#$ customers in queue

$$
\begin{aligned}
& S=\{0,1, \ldots\} \\
& X=\{X(t), t \geq 0\} \\
& q(n, n+1)=\lambda \\
& q(n, n-1)=\mu
\end{aligned}
$$

- Equilibrium distribution

$$
\pi_{n}=(1-\lambda \tau)(\lambda \tau)^{n} \quad n=0,1,2, \ldots
$$

## Proof: (exponential case)

equilibrium distribution

$$
\pi_{n}=(1-\lambda \tau)(\lambda \tau)^{n}
$$

solution global balance

$$
\pi_{n}[q(n, n+1)+q(n, n-1)]=\pi_{n-1} q(n-1, n)+\pi_{n+1} q(n+1, n)
$$

rate out of state $n=$ rate into state $n$

$$
\pi_{n}[\lambda+\mu]=\pi_{n-1} \lambda 1(n>0)+\pi_{n+1} \mu \quad 0 \leq n
$$

detailed balance

$$
\pi_{n} \lambda=\pi_{n+1} \mu \quad 0 \leq n
$$

## Processor sharing queue: phase type service times

- Poisson arrivals rate $\lambda$
- service length $L$ mean $\tau=1 / \mu$

$$
F_{L}(x)=\sum_{k=1}^{\infty} p_{k} \operatorname{Erl}(k, v)(x)
$$

- State $\left(r_{1}, \ldots, r_{n}\right)$ customer $i$ has $r_{i}$ remaining phases;
- State space
- Markov chain
- Transition rates

$$
X=\{X(t), t \geq 0\}
$$

- Equilibrium distribution

$$
\begin{aligned}
& q\left(\left(r_{1}, \ldots, r_{n}\right),\left(r_{1}, . ., r_{i}-1, . ., r_{n}\right)\right)=\frac{v}{n} 1\left(r_{i}>1\right) \\
& q\left(\left(r_{1}, \ldots, r_{n}\right),\left(r_{1}, . ., r_{i-1}, r_{i+1}, \ldots, r_{n}\right)\right)=\frac{v}{n} 1\left(r_{i}=1\right) \\
& q\left(\left(r_{1}, \ldots, r_{n}\right),\left(r_{1}, . ., r_{i}, r, r_{i+1}, . . ., r_{n}\right)\right)=\frac{\lambda}{n+1} p_{r}
\end{aligned}
$$

$$
\pi\left(r_{1}, \ldots, r_{n}\right)=G^{-1}(\lambda \tau)^{n} \prod_{i=1}^{n} H\left(r_{i}\right) \quad H(k)=\frac{\mu}{v} \sum_{i=k}^{\infty} p_{i}
$$

- $H(k)$ is distribution of $\begin{aligned} & i=1 \\ & \text { the remaining number of phases }=\text { remaining service time }\end{aligned}$


## Erlang loss queue: phase type service length

- Equilibrium distribution

$$
\pi\left(r_{1}, \ldots, r_{n}\right)=G^{-1}(\lambda \tau)^{n} \prod_{i=1}^{n} H\left(r_{i}\right) \quad H(k)=\frac{\mu}{v} \sum_{i=k}^{\infty} p_{i}
$$

- Proof
- global balance

$$
\pi_{n}[\lambda+\mu]=\pi_{n-1} \lambda 1(n>0)+\pi_{n+1} \mu \quad 0 \leq n
$$

$$
\begin{aligned}
\pi\left(r_{1}, \ldots, r_{n}\right)[\lambda & +v]=\sum_{i=1}^{n} \pi\left(r_{1}, \ldots, r_{i-1}, r_{i+1}, \ldots, r_{n}\right) \frac{\lambda}{n} p_{r_{i}} 1(n>0) \\
& +\sum_{i=1}^{n} \pi\left(r_{1}, \ldots, r_{i-1}, r_{i}+1, r_{i+1}, \ldots, r_{n}\right) \frac{v}{n}+\sum_{i=0}^{n} \pi\left(r_{1}, \ldots, r_{i}, 1, r_{i+1}, \ldots, r_{n}\right) \frac{v}{n+1} \\
{[\lambda+v]=} & \sum_{i=1}^{n}\left\{\lambda \tau H\left(r_{i}\right)\right\}^{-1} \frac{\lambda}{n} p_{r_{i}} 1(n>0) \\
& +\sum_{i=1}^{n}\left\{H\left(r_{i}+1\right) / H\left(r_{i}\right)\right\} \frac{v}{n}+\sum_{i=0}^{n}\{\lambda \tau H(1)\} \frac{v}{n+1}
\end{aligned}
$$

$H(1)=\mu / v \quad$ and use discrete renewal equation $\quad H\left(r_{i}\right)=H(1) p_{k}+H\left(r_{i}+1\right), \quad r_{i}=1,2, \ldots$

## Processor sharing queue: phase type service

- Theorem 1

Equilibrium distribution

- $\quad \pi\left(r_{1}, \ldots, r_{n}\right)=G^{-1}(\lambda \tau)^{n} \prod_{i=1}^{n} H\left(r_{i}\right) \quad$ where $\quad H(k)=\frac{\mu}{v} \sum_{i=k}^{\infty} p_{i}$
- moreover, equilibrium distribution of number of customers depends on service time distribution only through its mean (insensitivity property):

$$
\pi_{n}=(1-\lambda \tau)(\lambda \tau)^{n}
$$

- Proof
- sum distribution over all possible configurations of phases

$$
\pi_{n}=\sum_{\substack{r_{i} \geq 1 \\ i=1, \ldots, n}} \pi\left(r_{1}, \ldots, r_{n}\right)=\sum_{\substack{r_{i} \geq 1 \\ i=1, \ldots, n}} G^{-1}(\lambda \tau)^{n} \prod_{i=1}^{n} H\left(r_{i}\right)=G^{-1}(\lambda \tau)^{n} \prod_{i=1}^{n} \sum_{r_{i} \geq 1}^{n} H\left(r_{i}\right)=G^{-1}(\lambda \tau)^{n}
$$

## Networks of queues

Lecture 5:

- Insensitivity
- Arrival theorem
- Norton's theorem
- Optimal design of a Kelly Whittle network

Richard J. Boucherie
Stochastic Operations Research department of Applied Mathematics

University of Twente

## Arrival theorem

- PASTA:

The distribution of the number of customers in the system seen by a a customer arriving to a system according to a Poisson process (i.e., at an arrival epoch) equals the distribution of the number of customers at an arbitrary epoch.

- Arrival theorem (open Jackson network): In an open network in equilibrium, a customer arriving to queue $j$ observes the equilibrium distribution.
- Arrival theorem (closed Jackson network): In a closed networkin equilibrium, a customer arriving to queue $j$ observes the equilibrium distribution of the network containing one customer less.


## PASTA: Poisson Arrivals See Time Averages

- $P_{n^{\prime}, n}(t)$ fraction of time system in state $n$
- probability outside observer sees $n$ customers at time $t$
- $P_{n^{\prime}, n}^{0}(t)$ probability that arriving customer sees $n$ customers at time $t$
(just before arrival at time $t$ there are $n$ customers in the system)
- in general $P_{n^{\prime}, n}(t) \neq P_{n^{\prime}, n}^{0}(t)$


## PASTA: Poisson Arrivals See Time Averages ${ }^{21}$

- For birth-death process:
- Let $C(t, t+h)$ event customer arrives in $(t, t+h)$

$$
\begin{aligned}
& P_{n, n}^{0}(t)=\lim _{h \downarrow 0} \operatorname{Pr}\left\{X(t)=n \mid C(t, t+h), X(0)=n^{\prime}\right\} \\
& =\lim _{h \downarrow 0} \frac{\operatorname{Pr}\left\{C(t, t+h) \mid X(t)=n, X(0)=n^{\prime}\right\} \operatorname{Pr}\left\{X(t)=n \mid X(0)=n^{\prime}\right\}}{\sum_{k=0}^{\infty} \operatorname{Pr}\left\{C(t, t+h) \mid X(t)=k, X(0)=n^{\prime}\right\} \operatorname{Pr}\left\{X(t)=k \mid X(0)=n^{\prime}\right\}} \\
& =\lim _{h \downarrow 0} \frac{[q(n, n+1) h+o(h)] P_{n^{\prime}, n}(t)}{\sum_{k=0}^{\infty}[q(k, k+1) h+o(h)] P_{n^{\prime}, k}(t)}=\frac{q(n, n+1) P_{n, n}(t)}{\sum_{k=0}^{\infty} q(k, k+1) P_{n^{\prime}, k}(t)}
\end{aligned}
$$

- For Poisson arrivals $q(n, n+1)=\lambda$ so that $\quad P_{n, n}(t)=P_{n, n}^{0}(t)$
- Alternative explanation; PASTA holds in general!


## PASTA: Poisson Arrivals See Time Averages ${ }^{22}$

- Transient

$$
\begin{aligned}
& P_{n^{\prime}, n}^{0}(t)=\frac{q(n, n+1) P_{n^{\prime}, n}(t)}{\sum_{k=0}^{\infty} q(k, k+1) P_{n^{\prime}, k}(t)} \\
& P_{n}^{0}=\frac{q(n, n+1) P_{n}}{\sum_{k=0}^{\infty} q(k, k+1) P_{k}}
\end{aligned}
$$

- Ratio of flows


## MUSTA: Moving Units See Time Averages

- Palm probabilities:

Each type of transition $n \rightarrow n$ 'for Markov chain associated with subset $H$ of $S x S \backslash d i a g(S x S)$

- Example:transition in which customer queue $i \rightarrow$ queue $j$

$$
H_{i j}=\bigcup_{m}\left\{\left(m+e_{i}, m+e_{j}\right), m+e_{i}, m+e_{j} \in S\right\}
$$

- Transition in which customer leaves queue $i$

$$
H_{i}^{o u t}=\bigcup_{j} H_{i j}
$$

- Transition in which customer enters queue $j$

$$
H_{j}^{i n}=\bigcup_{i} H_{i j}
$$

## MUSTA: Moving Units See Time Averages

- $\quad N_{H}$ process counting the $H$-transitions
- Palm probability $P_{H}(C)$ of event $C$ given that $H$ occurs:

$$
P_{H}(C)=\frac{\sum_{\left(n, n^{\prime}\right) \in C} \pi(n) q\left(n, n^{\prime}\right)}{\sum_{\left(n, n^{\prime}\right) \in H} \pi(n) q\left(n, n^{\prime}\right)}, \quad C \subseteq H
$$

- Probability customer queue $i \rightarrow$ queue $j$ sees state $m$

$$
P_{i j}(m)=P_{H_{i j}}\left(\left(m+e_{i}, m+e_{j}\right)\right)=\frac{\pi\left(m+e_{i}\right) q\left(m+e_{i}, m+e_{j}\right)}{\sum_{\left(n, n^{\prime}\right) \in H_{i j}} \pi(n) q\left(n, n^{\prime}\right)}
$$

- Probability customer arriving to queue $j$ sees state $m$

$$
P_{j}(m)=P_{H_{j}^{i n}}\left(\bigcup_{i}\left(m+e_{i}, m+e_{j}\right)\right)=\frac{\sum_{i} \pi\left(m+e_{i}\right) q\left(m+e_{i}, m+e_{j}\right)}{\sum_{i} \sum_{\left(n, n^{\prime}\right) \in H_{i j}} \pi(n) q\left(n, n^{\prime}\right)}
$$

## Kelly Whittle network

$$
\begin{aligned}
& q\left(n, n-e_{j}+e_{k}\right)=\frac{\psi\left(n-e_{j}\right)}{\phi(n)} \mu_{j} p_{j k}^{2} \\
& q\left(n, n-e_{j}\right)=\frac{\psi\left(n-e_{j}\right)}{\phi(n)} \mu_{j} p_{j 0} \\
& q\left(n, n+e_{k}\right)=\frac{\psi(n)}{\phi(n)} \lambda_{k}
\end{aligned}
$$

Theorem: The equilibrium distribution for the Kelly Whittle network is

$$
\pi(n)=B \phi(n) \prod^{J} \rho_{j}^{n_{j}} \quad \rho_{j}=\gamma_{j} / \mu_{j} \quad n \in S
$$

where

$$
\gamma_{j}=\lambda_{j}+\sum \gamma_{k} p_{k j}
$$

and $\Pi$ satisfies partial bă lance

$$
\sum_{k=0}^{J} \pi(n) q\left(n, n-e_{j}+e_{k}\right)=\sum_{k=0}^{J} \pi\left(n-e_{j}+e_{k}\right) q\left(n-e_{j}+e_{k}, n\right)
$$

## MUSTA : Kelly Whittle network

$$
\pi(n)=B \phi(n) \prod_{j=1}^{J} \rho_{j}^{n_{j}} \quad \rho_{j}=\gamma_{j} / \mu_{j} \quad n \in S \quad \begin{aligned}
& q\left(n, n-e_{j}+e_{k}\right)=\frac{\psi\left(n-e_{j}\right)}{\phi(n)} \mu_{j} p_{j k} \\
& q\left(n, n-e_{j}\right)=\frac{\psi\left(n-e_{j}\right)}{\phi(n)} \mu_{j} p_{j 0} \\
& q\left(n, n+e_{k}\right)=\frac{\psi(n)}{\phi(n)} \lambda_{k}
\end{aligned}
$$

Theorem: The distribution seen by a customer moving from queue $i$ to queue $j$ is

$$
P_{i j}(m)=B_{i j} \psi(m) p_{i j} \prod_{k=1}^{J} \rho_{k}^{m_{k}}, m \in S^{d}
$$

Entering queue $j$ is

$$
P_{j}(m)=B_{j} \psi(m) \prod_{k=1}^{J} \rho_{k}^{m_{k}}, m \in S^{d}
$$

where

$$
S^{d}=\left\{m: \exists i, j: m+e_{i}, m+e_{j} \in S\right\}
$$

$$
\begin{aligned}
P_{j}(m) & =\frac{\sum_{i} \pi\left(m+e_{i}\right) q\left(m+e_{i}, m+e_{j}\right)}{\sum_{i} \sum_{\left(n, n^{\prime}\right) \in H_{i j}} \pi(n) q\left(n, n^{\prime}\right)}, \\
& =\frac{\sum_{i} \pi\left(m+e_{i}\right) q\left(m+e_{i}, m+e_{j}\right)}{\sum_{i} \sum_{m} \pi\left(m+e_{i}\right) q\left(m+e_{i}, m+e_{j}\right)} \\
& =\frac{\sum_{i} \pi\left(m+e_{j}\right) q\left(m+e_{j}, m+e_{i}\right)}{\sum_{i} \sum_{m} \pi\left(m+e_{j}\right) q\left(m+e_{j}, m+e_{i}\right)} \\
& =\frac{\psi(m) \prod_{k=1}^{J} \rho_{k}^{m_{k}} \sum_{i} \rho_{j} p_{j i}}{\sum_{m} \psi(m) \prod_{k=1}^{J} \rho_{k}^{m_{k}} \sum_{i} \rho_{j} p_{j i}} \\
& =\frac{\psi(m) \prod_{k=1}^{J} \rho_{k}^{m_{k}}}{\sum_{m} \psi(m) \prod_{k=1}^{J} \rho_{k}^{m_{k}}}
\end{aligned}
$$

## Closed networks: MVA

## Average queue length, average sojourn times?

$\lambda_{m}(i)$ arrival intensity queue $i$,
$F_{m}(i)$ expeceted sojourn time $i$,
$L_{m}(i)$ expected queue length queue $i$, when $m$ cust in system

$$
\begin{array}{ll}
F_{m}(j)=\frac{1}{\mu_{j}}+L_{m-1}(j) \frac{1}{\mu_{j}} & \text { Arrival theorem, FCFS } \\
L_{m}(j)=\lambda_{m}(j) F_{m}(j) & \text { Little's formula }
\end{array}
$$

## Closed networks: MVA

$\lambda_{m}(i)$ arrival intensity queue $i$,
$F_{m}(i)$ expeceted sojourn time $i$,
$L_{m}(i)$ expected queue length queue $i$, when $m$ cust in system

$$
\begin{aligned}
& F_{m}(j)=\frac{1}{\mu_{j}}+L_{m-1}(j) \frac{1}{\mu_{j}}, \quad L_{m}(j)=\lambda_{m}(j) F_{m}(j) \\
& \lambda_{m}(i)=\sum_{j=1}^{N} \lambda_{m}(j) \cdot r_{j i} \quad \pi_{i}=\sum_{j=1}^{N} \pi_{j} \cdot r_{j i} \quad, \quad \sum_{i=1}^{N} \pi_{i}=1 \\
& \lambda_{m}(i)=\lambda_{m} \cdot \pi_{i}, \quad \lambda_{m}=\sum_{i=1}^{N} \lambda_{m}(i)
\end{aligned}
$$

- Little

$$
m=\sum_{i=1}^{N} L_{m}(i)=\sum_{i=1}^{N} \lambda_{m}(i) \cdot F_{m}(i)=\lambda_{m} \cdot \sum_{i=1}^{N} \pi_{i} \cdot F_{m}(i)
$$

- thus

$$
\lambda_{m}=m \cdot\left\{\sum_{i=1}^{N} \pi_{i} \cdot F_{m}(i)\right\}^{-1}
$$

- Mean Value Analysis evaluates $\lambda_{m}(i), F_{m}(i)$ en $L_{m}(i)$ for all $m, i$ recursively
- Find solution $\pi$ of traffic equations
- for $m=1: F_{1}(i)=1 / \mu_{i}$ for all $i$


## recursion

- let $F_{m}(i)$ known for all $i$
- Determine number of cust served per time unit at queue $i$ :

$$
\lambda_{m}(i)=\lambda_{m} \cdot \pi_{i}=m \cdot\left\{\sum_{j=1}^{N} \pi_{j} \cdot F_{m}(j)\right\}^{-1} \cdot \pi_{i}
$$

- Determine average number of customers at queue $i$ using Little

$$
L_{m}(i)=\lambda_{m}(i) \cdot F_{m}(i)
$$

- Determine average sojourn time at queue $i$ for system containing $m+1$ customers using arrival theorem

$$
F_{m+1}(i)=\frac{1+L_{m}(i)}{\mu_{i}}
$$

## Networks of queues

Lecture 5:

- Insensitivity
- Arrival theorem
- Norton's theorem
- Optimal design of a Kelly Whittle network

Richard J. Boucherie
Stochastic Operations Research department of Applied Mathematics

University of Twente

Interpretation traffic equations $q\left(n, n-e_{j}+e_{k}\right)=\frac{\phi\left(n-e_{j}\right)}{\phi(n)} \mu_{j} p_{j k}^{32}$

$$
\begin{aligned}
& q\left(n, n-e_{j}\right)=\frac{\phi\left(n-e_{j}\right)}{\phi(n)} \mu_{j} p_{j 0} \\
& q\left(n, n+e_{k}\right)=\frac{\phi(n)}{\phi(n)} \mu_{0} p_{0 k}
\end{aligned}
$$

Theorem: The equilibrium distribution for the Kelly Whittle network is
where
and

$$
\pi(n)=B \phi(n) \prod^{J} \rho_{j}^{n_{j}} \quad \rho_{j}=\gamma_{j} / \mu_{j} \quad n \in S
$$

$$
\gamma_{j}=\lambda_{j}+\sum_{k} \gamma_{k} p_{k j}
$$

$\mathrm{E} q\left(n, n+e_{k}\right)=\lambda_{k}$
$\mathrm{E} q\left(n, n-e_{j}+e_{k}\right)=\gamma_{j} p_{j k} \quad j=1, \ldots, J$

## Intermezzo: mathematical programming

- Optimisation problem $\min f\left(x_{1}, \ldots, x_{n}\right)$

$$
\text { s.t. } \quad g_{i}\left(x_{1}, \ldots, x_{n}\right)=b_{i} \quad i=1, \ldots, m
$$

Lagrangian

$$
\begin{aligned}
& L=f\left(x_{1}, \ldots, x_{n}\right)+\sum_{i=1}^{m} \lambda_{i}\left(b_{i}-g_{i}\left(x_{1}, \ldots, x_{n}\right)\right) \\
& \frac{\partial L}{\partial \lambda_{i}}=b_{i}-g_{i}\left(x_{1}, \ldots, x_{n}\right)=0 \\
& \frac{\partial L}{\partial x_{j}}=\frac{\partial f}{\partial x_{j}}+\sum_{i=1}^{m} \lambda_{i} \frac{\partial g_{i}}{\partial x_{j}}
\end{aligned}
$$

- Lagrangian optimization problem $\min L\left(x_{1}, \ldots, x_{n}, \lambda_{1}, \ldots, \lambda_{m}\right)$
- Theorem : Under regularity conditions: any point $\left(x_{1}, \ldots, x_{n}, \lambda_{1}, \ldots, \lambda_{m}\right)$
that satisfies Lagrangian optimization problem yields optimal solution $\left(x_{1}, \ldots, x_{n}\right)$ of Optimisation problem


## Intermezzo: mathematical programming (2)

- Optimisation problem

$$
\begin{array}{ll}
\min & f\left(x_{1}, \ldots, x_{n}\right) \\
\text { s.t. } & g_{i}\left(x_{1}, \ldots, x_{n}\right) \leq b_{i} \quad i=1, \ldots, m
\end{array}
$$

- Introduce slack variables
- Kuhn-Tucker conditions:

$$
\begin{aligned}
& \frac{\partial f}{\partial x_{j}}+\sum_{i=1}^{m} \bar{\lambda}_{i} \frac{\partial g_{i}}{\partial x_{j}}=0, \quad j=1, \ldots, n \\
& \bar{\lambda}_{i}\left(b_{i}-g_{i}\left(x_{1}, \ldots, x_{n}\right)\right)=0, \quad i=1, \ldots, m \\
& \bar{\lambda}_{i} \geq 0, \quad i=1, \ldots, m
\end{aligned}
$$

- Theorem : Under regularity conditions: any point $\left(x_{1}, \ldots, x_{n}\right)$ that satisfies

Lagrangian optimization problem yields optimal solution of Optimisation problem

- Interpretation multipliers: shadow price for constraint.


## Networks of queues

Lecture 5:

- Insensitivity
- Arrival theorem
- Norton's theorem
- Optimal design of a Kelly Whittle network

Richard J. Boucherie
Stochastic Operations Research department of Applied Mathematics

University of Twente

- Source

- How to route jobs, and
- how to allocate capacity over the nodes
sink

Optimal design of Kelly / Whittle network (1)

- Transition rates

$$
\begin{aligned}
& q\left(n, n-e_{j}+e_{k}\right)=\frac{\phi\left(n-e_{j}\right)}{\phi(n)} \lambda_{j k} \\
& q\left(n, n-e_{j}\right)=\frac{\phi\left(n-e_{j}\right)}{\phi(n)} \lambda_{j 0} \\
& q\left(n, n+e_{k}\right)=\frac{\phi(n)}{\phi(n)} \lambda_{0 k}
\end{aligned}
$$

$$
\lambda_{j k}=\mu_{j} p_{j k}
$$

- Routing rules for open network to clear input traffic as efficiently as possible

Cost per time unit in state $\mathrm{n}: \mathrm{a}(\mathrm{n})$
Cost for routing $j \rightarrow k$ :

$$
b_{j k}
$$

- Design : b_j0=+> : cannot leave from j; sequence of queues

Expected cost rate

$$
C=A(\alpha)+\sum_{j, k} b_{j k} \rho_{j} \lambda_{j k}
$$

$$
A(\rho)=\frac{\sum_{n \in S} a(n) \phi(n) \prod_{j=1}^{J} \rho_{j}^{n_{j}}}{\sum_{n \in S} \phi(n) \prod_{j=1}^{J} \rho_{j}^{n_{j}}}
$$

## Optimal design of Kelly / Whittle network (2)

Transition rates
Given: input traffic

$$
q\left(n, n-e_{j}+e_{k}\right)=\frac{\phi\left(n-e_{j}\right)}{\phi(n)} \lambda_{j k}
$$

$$
\mu_{0} p_{0 k}
$$

Maximal service rate

$$
\mu_{j}=\sum_{k} \lambda_{j k} \leq \bar{\mu}_{j}
$$

$$
A(\rho)=\frac{\sum_{n \in S} a(n) \phi(n) \prod_{j=1} \rho^{\prime}}{\sum_{n \in S} \phi(n) \prod_{j=1}^{J} \rho_{j}^{n_{j}}}
$$

Under constraints

$$
C=A(\alpha)+\sum_{j, k} b_{j k} \rho_{j} \lambda_{j k}
$$

$$
\begin{aligned}
& \sum_{k=0} \rho_{j} \lambda_{j k}=\sum_{k=0} \rho_{k} \lambda_{k j}, j=1, \ldots, J \\
& \sum_{k=0} \lambda_{j k} \leq \bar{\mu}_{j}, j=1, \ldots, J \\
& \rho_{j} \geq 0, j=1, \ldots, J \\
& \rho_{0}=1 \\
& \lambda_{j k} \geq 0, j=1, \ldots, J, k=0, \ldots, J \\
& \lambda_{0 k} \text { fixed }
\end{aligned}
$$

Optimal design of Kelly / Whittle network (3)
Optimisation problem
S.t.

$$
\begin{aligned}
& \min C\left(\left\{\rho_{j}, p_{j k}\right\}\right)=A(\rho)+\sum_{j, k} b_{j k} \rho_{j} \lambda_{j k} \\
& \sum_{k=0} \rho_{j} \lambda_{j k}=\sum_{k=0} \rho_{k} \lambda_{k j}, j=1, \ldots, J \\
& \sum_{k=0} \lambda_{j k} \leq \bar{\mu}_{j}, j=1, \ldots, J \\
& \rho_{j} \geq 0, j=1, \ldots, J \\
& \rho_{0}=1 \\
& \lambda_{j k} \geq 0, j=1, \ldots, J, k=0, \ldots, J \\
& \lambda_{0 k} \text { fixed }
\end{aligned}
$$

Lagrangian form

$$
\begin{aligned}
L & =C+\sum_{j=0} \sum_{k=0} \xi_{j}\left(\rho_{k} \lambda_{k j}-\rho_{j} \lambda_{j k}\right) \\
& +\sum_{j=0} \eta_{j}\left(\sum_{k=0} \lambda_{j k}-\bar{\mu}_{j}\right)-\sum_{j=0} \kappa_{j} \rho_{j}-\sum_{j, k=0} \vartheta_{j k} \lambda_{j k} \\
\xi_{0} & =\eta_{0}=\kappa_{0}=\vartheta_{00}=0
\end{aligned}
$$

KT-conditions

$$
\frac{\partial L}{\partial \rho_{j}}=0, \quad j=1, \ldots, J
$$

$$
\frac{\partial L}{\partial \lambda_{j k}}=0, \quad j, k=0, \ldots, J
$$

$$
\sum_{k=0} \xi_{j}\left(\rho_{k} \lambda_{k j}-\rho_{j} \lambda_{j k}\right)=0, \quad j=1, \ldots, J
$$

$$
\eta_{j}\left(\sum_{k=0} \lambda_{j k}-\bar{\mu}_{j}\right)=0, \quad j=1, \ldots, J
$$

$$
\kappa_{j} \rho_{j}=0, \quad j=1, \ldots, J
$$

$$
\vartheta_{j k} \lambda_{j k}=0, \quad j=1, \ldots, J
$$

Computing derivatives: $\quad \xi_{j}, \boldsymbol{\eta}_{j}, \boldsymbol{\kappa}_{j}, \boldsymbol{\vartheta}_{j k} \geq 0$

$$
\begin{aligned}
& \frac{\partial L}{\partial \alpha_{j}}=c_{j} \lambda_{j}+\sum_{k} b_{j k} \lambda_{j k}-\lambda_{j} \xi_{j}+\sum_{k} \xi_{k} \lambda_{j k}-\kappa_{j} \\
& \frac{\partial L}{\partial \lambda_{j k}}=b_{j k} \alpha_{j}-\xi_{j} \alpha_{j}+\xi_{k} \alpha_{j}+\eta_{j}-\vartheta_{j k} \\
& c_{j}=\frac{1}{\lambda_{j}} \frac{\partial A(\alpha)}{\partial \alpha_{j}}
\end{aligned}
$$

## Optimal design of Kelly / Whittle network (5)

- Theorem : (i) the marginal costs of input satisfy

$$
\begin{aligned}
& \xi_{j} \leq c_{j}+\min _{k}\left(b_{j k}+\xi_{k}\right), j=1, \ldots, J \\
& \xi_{0}=0
\end{aligned}
$$

- with equality for those nodes j which are used in the optimal design.
(ii) If the routing $j \rightarrow k$ is used in the optimal design the equality holds in (i) and the minimum in the rhs is attained at given k .
- (iii) If node $j$ is not used in the optimal design then $a_{j}=0$. If it is used but at less that full capacity then $\mathrm{c}_{\mathrm{j}}=0$.
- Dynamic programming equations for nodes that are used

$$
\begin{aligned}
& \xi_{j}=c_{j}+\min _{k}\left(b_{j k}+\xi_{k}\right) \\
& \xi_{0}=0
\end{aligned}
$$

Optimal design of Kelly / Whittle network (6)

- PROOF: Kuhn-Tucker conditions :

$$
\begin{align*}
& c_{j} \lambda_{j}+\sum_{k} b_{j k} \lambda_{j k}-\lambda_{j} \xi_{j}+\sum_{k} \xi_{k} \lambda_{j k} \geq 0  \tag{*}\\
& \text { and }=0 \text { if } \alpha_{j}>0 \\
& b_{j k} \alpha_{j}-\xi_{j} \alpha_{j}+\xi_{k} \alpha_{j}+\eta_{j} \geq 0 \\
& \text { and }=0 \text { if } \lambda_{j k}>0
\end{align*}
$$

## Networks of queues

Lecture 5:

- Insensitivity
- Arrival theorem
- Norton's theorem
- Optimal design of a Kelly Whittle network

Richard J. Boucherie
Stochastic Operations Research department of Applied Mathematics

University of Twente

