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Time-reversed process and Kelly’s Lemma – 2

Theorem (4.1.3 Kelly’s lemma)
Let {N(t), t ∈ R} be a stationary Markov chain with transition
rates q(n,n′), n,n′ ∈ S. If we can find a collection of numbers
qr (n,n′), n,n′ ∈ S, such that∑

n′ 6=n

q(n,n′) =
∑
n′ 6=n

qr (n,n′), n ∈ S,

and a distribution π = (π(n), n ∈ S) such that

π(n)qr (n,n′) = π(n′)q(n′,n), n,n′ ∈ S,

then qr (n,n′), n,n′ ∈ S, are the transition rates of the
time-reversed Markov chain {N(τ − t), t ∈ R} and π(n), n ∈ S,
is the equilibrium distribution of both Markov chains.
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Networks: customer types and fixed routes – 1

I Network of J queues.
I Customers of types u = 1, . . . ,U, arrive to a according to

a Poisson process with rate µ0(u), u = 1, . . . ,U.
I Customer type uniquely determines route through the

network along the sequence of queues

r(u,1), r(u,2), . . . , r(u,L(u)).

I Customer may visit the same queue at multiple stages.
I Queue j operates according to the (κj , γj , δj)-protocol.
I Let cj(`) = (uj(`), sj(`)), with uj(`) the type and sj(`) the

stage of the customer in position ` in queue j .
I State of queue j is cj = (cj(1), . . . , cj(nj)).
I State of the network is c = (c1, . . . ,cJ).
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Networks: customer types and fixed routes – 2
I Let {N(t)} record state of Markov chain at state space

S = {c = (c1, . . . ,cJ)}.
I For c = (c1, . . . ,cJ), let

C(u,s)
(`,j),(`′,k)c denote state c′ obtained from state c by

removing customer of type u in stage s
in position ` from queue j and adding
that customer in position `′ to queue k .

I Transition rates (more precise in reader)

q(c,c′) =
µ0(u)δk (`

′
,nk + 1), if c′ = C(u,0)

(0,0),(`′,k)c,

µj(u)κj(nj)γj(`,nj)δk (`
′
k ,nk + 1), if c′ = C(u,s)

(`,j),(`′,k)c,

µj(u)κj(nj)γj(`,nj), if c′ = C(u,L(u))
(`,j),(0,0)c.
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Networks: customer types and fixed routes – 4

Theorem (4.3.1 Network with fixed routes)
Let queue j operate according to the (κj , γj , δj)-protocol.
Negative-exponential(1) service requirements for all customers
at all queues. Let

πj(cj) = Gj

n∏
`=1

ρj(cj(`))

κj(`)
, Gj =

[ ∞∑
n=0

n∏
`=1

ρj

κj(`)

]−1

<∞,

Then

π(c) =
J∏

j=1

πj(cj), c ∈ S.
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Networks: customer types and fixed routes – 5

Proof. Natural guess for the reversed process:
I customers of type u arrive according to a Poisson process

with rate µ0(u) to queue L(u)
I and follow the reversed route r(u,L(u)), . . . , r(u,1),
I and that the transition rates have the role of γ and δ

reversed:

qr (c′,c) =
κk (nk + 1)δk (`

′
,nk + 1), if c′ = C(u,0)

(0,0),(`′,k)c,

κk (nk + 1)δk (`
′
k ,nk + 1)γj(`,nj), if c′ = C(u,s)

(`,j),(`′,k)c,

µ0(u)γj(`,nj), if c′ = C(u,L(u))
(`,j),(0,0)c.
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Burke’s theorem and feedforward networks –1,2
Theorem (2.5.1 Burke’s theorem)
Let {N(t)} record the number of customers in the M|M|1
queue with arrival rate λ and service rate µ, λ < µ. Let {D(t)}
record the customers’ departure process from the queue. In
equilibrium the departure process {D(t)} is a Poisson process
with rate λ, and N(t) is independent of {D(s), s < t}.

I Tandem network of two M|M|1 queues
I Poisson λ arrival process to queue 1, service rates µi .
I Provided ρi = λ/µi < 1, πi(ni) = (1− ρi)ρ

ni
i , ni ∈ N0.

I Burke’s theorem: departure process from queue 1 before
t∗ and N1(t∗), are independent.

I Hence, in equilibrium, the at time t∗ the random variables
N1(t∗) and N2(t∗) are independent:
π(n) =

∏2
i=1 πi(ni), n ∈ S = N2

0.
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Quasi-reversibility – 1

I Burke’s theorem: output process from a reversible queue
before t , the input process after t and the state at t
independent.

I Quasi-reversibility formalises this independence property.
I {N(t), t ∈ R} Markov process, state space S, states

n ∈ S, transition rates q(n,n′), equilibrium distribution
π(n).

I Let S(c,n) ⊂ S denote the set of states that may be
obtained from state n when a customer of class c arrives
to the queue.

I Let {Ac(t), t ∈ R} and {Dc(t), t ∈ R} record the arrival
and departure processes of customers of class c.
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Quasi-reversibility – 2

Definition (4.4.1 Quasi-reversibility)
The stationary Markov chain {N(t)} is quasi-reversible if for all
t ∈ R the state at time t , N(t), is independent of
{Ac(s), s > t}, the arrival process of class c customers after
time t , and independent of {Dc(s), s < t}, the departure
process of class c customers prior to time t , c = 1, . . . ,C.

Theorem (4.4.2)
If {N(t)} is a quasi-reversible Markov chain, then

(i) the arrival processes {Ac(t), t ∈ R}, c = 1, . . . ,C, form
independent Poisson processes;

(ii) the departure processes {Dc(t), t ∈ R}, c = 1, . . . ,C,
form independent Poisson processes.
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Quasi-reversibility – 3
Algebraic characterisation of quasi-reversibility:

λ(c) =
∑

n′∈S(c,n)

q(n,n′),

λ(c) =
∑

n′∈S(c,n)

qr (n,n′),

so that ∑
n′∈S(c,n)

π(n)q(n,n′) =
∑

n′∈S(c,n)

π(n′)q(n′,n).

I In equilibrium the flow out of state n due to a customer of
type c arriving to the queue balances with the probability
flow into state n due to a customer of type c departing
from the queue.
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Symmetric queue – 1

Definition (4.2.6 Symmetric queue)
A queue that operates under the (κ, γ, δ)-protocol is called
symmetric if

γ(`,n) = δ(`,n), ` = 1, . . . ,n, n ∈ N.

Theorem (4.4.6)
Let {N(t)} record the state of a symmetric queue to which
customers of class c arrive according to independent Poisson
processes with rate λ(c), c = 1, . . . ,C. Then {N(t)} is
quasi-reversible.
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Symmetric queue – 2

Proof.
I Transition rates, for c = (c(1), . . . , c(n)), c′ 6= c,

q(c, c′) =

{
λ(c)γ(`, n + 1), if c′ = (c(1), . . . , c(`), c, c(`+ 1), . . . , c(n)),
µc(`)κ(n)γ(`, n), if c′ = c(1), . . . , c(`− 1), c(`+ 1), . . . , c(n)).

I Arrivals of class c customers independent Poisson
processes⇒ N(t) independent of {Ac(s), s > t}.

I Transition rates of time-reversed queue: qr = q.
I Arrival process to the time-reversed queue is Poisson

process.
I Arrivals in the time-reversed process coincide with

departures of {N(t)} ⇒ N(t) is independent of
{Dc(s), s < t}.
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Quasi-reversible queues and fixed routes – 1
I Network of J quasi-reversible queues.
I Customers of types u = 1, . . . ,U, arrive to a according to

a Poisson process with rate µ0(u), u = 1, . . . ,U.
I Customer type uniquely determines route along the

sequence of queues r(u,1), r(u,2), . . . , r(u,L(u)).
I State of queue j : {Nj(t)}, state space Sj , transition rates

qj(cj ,c′j), customers of class (u, s) arrive according to
Poisson process with rate

λj(u, s)
∑

c′
j∈Sj ((u,s),cj )

qj(cj ,c′j),

I Equilibrium distribution πj = (πj(cj), cj ∈ Sj) satisfies∑
c′

j∈Sj (c,cj )

πj(cj)qj(cj ,c′j) =
∑

c′
j∈Sj (c,cj )

πj(c′j)qj(c′j ,cj).
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Quasi-reversible queues and fixed routes – 2

I For c = (c1, . . . ,cJ), and j , k = 0, . . . , J, let

C(u,s)
j,k c denote the set of states c′ obtained from

state c by removing the customer of type u
in stage s from queue j and adding that
customer in stage s + 1 to queue k :

(C(u,s)
j,k c)i =


{ci}, if i 6= j , k ,

Sk ((u, s + 1),ck ), if i = k ,

{c′j s.t. cj ∈ Sj((u, s),c′j)}, if i = j ,
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Quasi-reversible queues and fixed routes – 3

I Transition rates, for u = 1, . . . ,U, c 6= c′, c,c′ ∈ S,

q(c, c′) =



qk (ck , c′
k ), if c′ ∈ C(u,1)

0,k c, (arrival)

qj(cj , c′
j )

qk (ck , c′
k )∑

c′k∈Sk ((u,s+1),ck )
qk (ck , c′

k )
, if c′ ∈ C(u,s)

j,k c, (routing)

qj(cj , c′
j ), if c′ ∈ C(u,L(u))

j,0 c, (departure)

qj(cj , c′
j ), if cj , c′

j ∈ Sj , c′
i = ci , i 6= j , (internal)

I Quasi-reversibility implies that

qk (ck ,c′k )∑
c′

k∈Sk ((u,s+1),ck )
qk (ck ,c′k )

=
qk (ck ,c′k )
λk (u, s + 1)

.
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Quasi-reversible queues and fixed routes – 3

Theorem (4.5.1)
Let {N(t)} = {(N1(t), . . . ,NJ(t))} record the state of a network
of J quasi-reversible queues to which customers of types
u = 1, . . . ,U arrive according to independent Poisson
processes with rates µ0(u) to follow a fixed route
r(u,1), r(u,2), . . . , r(u,L(u)), u = 1, . . . ,U. Let Sj , qj , and πj
denote the state space, transition rates and equilibrium
distribution of queue j, j = 1, . . . , J. Then {N(t)} has
equilibrium distribution

π(c1, . . . ,cJ) =
J∏

j=1

πj(cj), (c1, . . . ,cJ) ∈ S = S1 × · · · × SJ .
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Quasi-reversible queues and fixed routes – 4
Proof. Natural guess for time-reversed process:

I customers of types u = 1, . . . ,U arrive according to a
Poisson process with rate µ0(u),

I route through the network along the sequence of queues
in reversed order r(u,L(u)), . . . , r(u,1)

I each queue operates according to its time-reversed
transition rates: for u = 1, . . . ,U, c 6= c′, c,c′ ∈ S,

qr (c′, c) =



qr
k (c

′
k , ck ), if c′ ∈ C(u,1)

0,k c, (departure)

qr
k (c

′
k , ck )

qr
j (c

′
j , cj)

λj(u, s)
, if c′ ∈ C(u,s)

j,k c, (routing)

qr
j (c

′
j , cj), if c′ ∈ C(u,L(u))

j,0 c, (arrival)

qr
j (c

′
j , cj), if cj , c′

j ∈ Sj , c′
i = ci , i 6= j . (internal)

Markovian Queues and Stochastic Networks 21 / 23



Quasi-reversible queues and fixed routes – 5

I For a routing transition from queue j = r(u, s) to queue
k = r(u, s + 1) it must be that λj(u, s) = λk (u, s + 1),
which implies that

πj(cj)πk (ck )qj(cj ,c′j)
qk (ck ,c′k )
λk (u, s + 1)

= πr (c′j)π
r
k (c
′
k )q

r
k (c
′
k ,ck )

qr
j (c
′
j ,cj)

λj(u, s)
.
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