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Time-reversed process and Kelly’'s Lemma — 2

Theorem (4.1.3 Kelly’s lemma)

Let {N(t), t € R} be a stationary Markov chain with transition
rates g(n,n’), n,n’ € S. If we can find a collection of numbers
g'(n,n’),n,n" € S, such that

Y gnn)=)> g (nn), nes,
n’n n’#n

and a distribution = = (w(n), n € S) such that
7(n)g"(n,n’) = n(n')g(n’,n), n,n €S,

then g'(n,n’), n,n’ € S, are the transition rates of the
time-reversed Markov chain {N(r — t), t € R} andw(n),n € S,
is the equilibrium distribution of both Markov chains.

UNIVERSITY OF TWENTE. Markovian Queues and Stochastic Networks 2/23



‘5 "’b

UNIVERSITY OF TWENTE. \_/%
:;; ‘(

Markovian Queues and Stochastic Networks

Lecture 5
Richard J. Boucherie
Stochastic Operations Research

®
)




Networks: customer types and fixed routes — 1

» Network of J queues.

» Customers of types u=1,..., U, arrive to a according to
a Poisson process with rate po(u), u=1,...,U.

» Customer type uniquely determines route through the
network along the sequence of queues

r(u,1),r(u,2),...,r(u, L(u)).

» Customer may visit the same queue at multiple stages.

» Queue j operates according to the (s, v;, J;)-protocol.

» Let ¢i(£) = (y;(£), sj(£)), with u;(¢) the type and s;(¢) the
stage of the customer in position ¢ in queue j.

» State of queue jis ¢; = (¢;(1),...,¢i(n)).

» State of the network is ¢ = (¢4,...,¢y).
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Networks: customer types and fixed routes — 2

» Let {N(t)} record state of Markov chain at state space
S={c=(cy,...,cy)}.
» Forc =(cq,...,cy), let

C((lf’}.f)( # € denote state ¢’ obtained from state ¢ by

removing customer of type u in stage s
in position ¢ from queue j and adding
that customer in position ¢’ to queue k.

» Transition rates (more precise in reader)

q(c,c’) =
— . ,0
po(U)dk(€ it 1), 3 if ¢’ = C(EOZ,QS)}(E',k)C’
piU)i () (2, y), it ¢" = C(,}).0.0)C
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Networks: customer types and fixed routes — 4

Theorem (4.3.1 Network with fixed routes)

Let queue j operate according to the (x;,;, 6;)-protocol.

Negative-exponential(1) service requirements for all customers
at all queues. Let

1
T pi(gi(0)) i op
7r~(c-):G-||pj D, [E || j] < 00,
i jg:1 rj(€) n=0 ¢=1 rj(£)
Then

J
C) = H 71-j'(cj)v
j=1
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Networks: customer types and fixed routes — 5

Proof. Natural guess for the reversed process:

» customers of type u arrive according to a Poisson process
with rate po(u) to queue L(u)

» and follow the reversed route r(u, L(u)), ..., r(u,1),
» and that the transition rates have the role of v and §

reversed:
ql’(c/’ C) -
1)d Z/ 1 if _ C(U O)
kk(ng +1)0k (€, ng + 1), if o/ %00 S
H'k(nk + 1)6/((2;(7 Nk + 1)’}?(?, nj)a if e/ = Cﬁzj‘;)(él7 )C,
po(u)y;(4, ny), it o — oluLw) ‘o

(¢.1),(0,0)
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Burke’s theorem and feedforward networks —1,2

Theorem (2.5.1 Burke’s theorem)

Let {N(t)} record the number of customers in the M|M|1
queue with arrival rate X\ and service rate u, A < p. Let {D(t)}
record the customers’ departure process from the queue. In
equilibrium the departure process {D(t)} is a Poisson process
with rate A\, and N(t) is independent of {D(s), s < t}.

Tandem network of two M|M|1 queues

Poisson X arrival process to queue 1, service rates ;.
Provided pi = )\/M,‘ <1, 7T,'(I7,') = (1 — p/)pfi, n; € Np.
Burke’s theorem: departure process from queue 1 before
t* and N;(t*), are independent.

» Hence, in equilibrium, the at time t* the random variables
N;(t*) and No(t*) are independent:

m(n) =12 m(n;), neS=N2

vV vyVvVvyy
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Quasi-reversibility — 1

» Burke’s theorem: output process from a reversible queue
before t, the input process after t and the state at ¢
independent.

» Quasi-reversibility formalises this independence property.

» {N(t), t € R} Markov process, state space S, states
n € S, transition rates g(n, n’), equilibrium distribution
w(n).

» Let S(c,n) C S denote the set of states that may be
obtained from state n when a customer of class c arrives
to the queue.

» Let {Ac(t), t € R} and {D.(t), t € R} record the arrival
and departure processes of customers of class c.
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Quasi-reversibility — 2

Definition (4.4.1 Quasi-reversibility)

The stationary Markov chain {N(t)} is quasi-reversible if for all
t € R the state at time £, N(t), is independent of

{Ac(8), s > t}, the arrival process of class ¢ customers after
time t, and independent of {D.(s), s < t}, the departure
process of class ¢ customers priortotime t,c=1,...,C.

Theorem (4.4.2)
If{N(t)} is a quasi-reversible Markov chain, then

(i) the arrival processes {A¢(t), te R}, c=1,...,C, form
independent Poisson processes;

(i) the departure processes {D.(t), te R}, c=1,...,C,
form independent Poisson processes.
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Quasi-reversibility — 3
Algebraic characterisation of quasi-reversibility:

Ao = Y qnm),

n’eS(c,n)

so that

Y. w(ngnn)= 3 =(n)g(n’,n).

n’eS(c,n) n’eS(c,n)

» In equilibrium the flow out of state n due to a customer of
type c arriving to the queue balances with the probability
flow into state n due to a customer of type ¢ departing
from the queue.
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Symmetric queue — 1

Definition (4.2.6 Symmetric queue)
A queue that operates under the (x, v, 0)-protocol is called
symmetric if

~(,n)=46(¢,n), £=1,....n, neN.

Theorem (4.4.6)

Let {N(t)} record the state of a symmetric queue to which
customers of class ¢ arrive according to independent Poisson
processes with rate A\(c), c=1,...,C. Then {N(t)} is
quasi-reversible.
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Symmetric queue — 2

Proof.
» Transition rates, forc = (¢(1),...,¢(n)), ¢

): -
q(m,):{ Ay (e,n+1), z g), so(f),c.e(b+1),...,c(n),

(c(1
tie(ey(n)y(£, n), lf o(1)....e(t — 1),0(¢ +1),.....c(m).

» Arrivals of class ¢ customers independent Poisson
processes = N(t) independent of {Aq(s), s > t}.
» Transition rates of time-reversed queue: 9" = q.

» Arrival process to the time-reversed queue is Poisson
process.

» Arrivals in the time-reversed process coincide with
departures of {N(t)} = N(t) is independent of

{D¢(s), s < t}.

UNIVERSITY OF TWENTE. Markovian Queues and Stochastic Networks 15/23



‘5 "’b

UNIVERSITY OF TWENTE. \_/%
:;; ‘(

Markovian Queues and Stochastic Networks

Lecture 5
Richard J. Boucherie
Stochastic Operations Research

®
)




Quasi-reversible queues and fixed routes — 1

» Network of J quasi-reversible queues.

» Customers of types u=1,..., U, arrive to a according to
a Poisson process with rate po(u), u=1,...,U.

» Customer type uniquely determines route along the
sequence of queues r(u,1),r(u,2),...,r(u, L(u)).

» State of queue j: {N;(t)}, state space S, transition rates
gj(c), ¢;), customers of class (u, s) arrive according to
Poisson process with rate

N(u,s) > glec)),

C;ES]'((U,S),C}')

» Equilibrium distribution 7; = (;(c;), ¢; € S;) satisfies

> mlepgleie) = > mlchgc)cp).

C;ESI'(C,CI‘) C//-GS/'(C,C/')
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Quasi-reversible queues and fixed routes — 2

» Forc=(cq,...,cy),and j,k=0,...,J, let

Cﬁ‘,fs)c denote the set of states ¢’ obtained from
state ¢ by removing the customer of type u
in stage s from queue j and adding that
customer in stage s + 1 to queue k:

{ci}, it i #J, K,
(C%e)i =1 Sk((u,s+1),¢ex), ifi =k,
{cjst cje Si((u,s),¢))}, ifi=]
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Quasi-reversible queues and fixed routes — 3

» Transition rates, foru=1,...,U,c#¢/,¢c,c’ € S,

q(c,c’) =
aqk(ck, €}, it¢’ e ci4 e, (arrival)
gx(Ck, Ck) g AWS) -
gi(c;, c;) , ifc’ € G\ ¢, (routing)
e Zc;(esk((u,s-m),ck) k(Ck, C) rk
gi(cj, c)), ifc’ € C].(,‘(’)’L(“))c, (departure)
g(cj, ¢)), ifej,cj€ S, ¢i=cj, i #j, (internal)
» Quasi-reversibility implies that
ak(Ck, C}) _ gk(ck, c)

Zc’esk( (us+1).¢¢) k(Ck C) - M(uys+1)

UNIVERSITY OF TWENTE. Markovian Queues and Stochastic Networks 19/23



Quasi-reversible queues and fixed routes — 3

Theorem (4.5.1)

Let {N(t)} = {(N4(t),...,Ny(t))} record the state of a network
of J quasi-reversible queues to which customers of types
u=1,..., U arrive according to independent Poisson
processes with rates o (u) to follow a fixed route
r(u,1),r(u,2),...,r(u,L(u)), u=1,...,U. Let S}, q;, and ;
denote the state space, transition rates and equilibrium
distribution of queue j, j=1,...,J. Then {N(t)} has
equilibrium distribution

J
(.:1,...7 H C1,...,CJ)ES=S1><~-><SJ.
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Quasi-reversible queues and fixed routes — 4

Proof. Natural guess for time-reversed process:
» customers of types u =1, ..., U arrive according to a
Poisson process with rate po(u),
» route through the network along the sequence of queues

in reversed order r(u, L(u)),...,r(u,1)
» each queue operates according to its time-reversed

transition rates: foru=1,...,U,c #¢/,¢,¢’ € S,
qr(c/7 c) —
qi(ch, ck), ife’ e C§3e, (departure)
g(ej.c) . ,
r(ch, ck) 2 i el e cWde, routin
qk( k> k) )\j(U7 S) | € i,k ( g)
q/(cj,c;), ifc’ € Cj(y‘(’)’L(“))c, (arrival)
qi(cj,c), ifcj,ci €S, ¢i=ci, i#j. (internal)
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Quasi-reversible queues and fixed routes — 5

» For a routing transition from queue j = r(u, s) to queue
k = r(u,s+ 1) it must be that \;(u, s) = Ak(u,s + 1),
which implies that

q/(c).c)
)\j(U, S) .

gk(ck, C,
e R CI R (AL
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