

Markovian Queues and Stochastic Networks

Time-reversed process and Kelly's Lemma – 2

Theorem (4.1.3 Kelly's lemma)

Let $\{N(t), t \in \mathbb{R}\}$ be a stationary Markov chain with transition rates $q(\mathbf{n}, \mathbf{n}')$, $\mathbf{n}, \mathbf{n}' \in S$. If we can find a collection of numbers $q'(\mathbf{n}, \mathbf{n}')$, $\mathbf{n}, \mathbf{n}' \in S$, such that

$$\sum_{\boldsymbol{n}'\neq\boldsymbol{n}}q(\boldsymbol{n},\boldsymbol{n}')=\sum_{\boldsymbol{n}'\neq\boldsymbol{n}}q'(\boldsymbol{n},\boldsymbol{n}'),\quad \boldsymbol{n}\in\mathcal{S},$$

and a distribution $\pi = (\pi(\mathbf{n}), \ \mathbf{n} \in S)$ such that

$$\pi(\mathbf{n})q^r(\mathbf{n},\mathbf{n}') = \pi(\mathbf{n}')q(\mathbf{n}',\mathbf{n}), \quad \mathbf{n},\mathbf{n}' \in \mathcal{S},$$

then $q^r(\mathbf{n}, \mathbf{n}')$, $\mathbf{n}, \mathbf{n}' \in S$, are the transition rates of the time-reversed Markov chain $\{N(\tau - t), t \in \mathbb{R}\}$ and $\pi(\mathbf{n})$, $\mathbf{n} \in S$, is the equilibrium distribution of both Markov chains.

Markovian Queues and Stochastic Networks

- ► Network of *J* queues.
- ► Customers of types u = 1, ..., U, arrive to a according to a Poisson process with rate $\mu_0(u)$, u = 1, ..., U.
- Customer type uniquely determines route through the network along the sequence of queues

$$r(u, 1), r(u, 2), \ldots, r(u, L(u)).$$

- ► Customer may visit the same queue at multiple stages.
- ▶ Queue *j* operates according to the $(\kappa_i, \gamma_i, \delta_i)$ -protocol.
- ▶ Let $c_j(\ell) = (u_j(\ell), s_j(\ell))$, with $u_j(\ell)$ the type and $s_j(\ell)$ the stage of the customer in position ℓ in queue j.
- ► State of queue j is $\mathbf{c}_i = (c_i(1), \dots, c_i(n_i))$.
- ▶ State of the network is $\mathbf{c} = (\mathbf{c}_1, \dots, \mathbf{c}_J)$.

- ▶ Let $\{N(t)\}$ record state of Markov chain at state space $S = \{\mathbf{c} = (\mathbf{c}_1, \dots, \mathbf{c}_J)\}.$
- For $\mathbf{c} = (\mathbf{c}_1, \dots, \mathbf{c}_J)$, let
 - $C_{(\ell,j),(\ell',k)}^{(u,s)}$ **c** denote state **c**' obtained from state **c** by removing customer of type u in stage s in position ℓ from queue j and adding that customer in position ℓ' to queue k.
- ► Transition rates (more precise in reader)

$$q(\mathbf{c}, \mathbf{c}') = \begin{cases} \mu_0(u)\delta_k(\overline{\ell}', n_k + 1), & \text{if } \mathbf{c}' = C_{(0,0),(\ell',k)}^{(u,0)}\mathbf{c}, \\ \mu_j(u)\kappa_j(n_j)\gamma_j(\overline{\ell}, n_j)\delta_k(\overline{\ell}'_k, n_k + 1), & \text{if } \mathbf{c}' = C_{(\ell,j),(\ell',k)}^{(u,s)}\mathbf{c}, \\ \mu_j(u)\kappa_j(n_j)\gamma_j(\overline{\ell}, n_j), & \text{if } \mathbf{c}' = C_{(\ell,j),(0,0)}^{(u,L(u))}\mathbf{c}. \end{cases}$$

Theorem (4.3.1 Network with fixed routes)

Let queue j operate according to the $(\kappa_j, \gamma_j, \delta_j)$ -protocol. Negative-exponential(1) service requirements for all customers at all queues. Let

$$\pi_j(\mathbf{c}_j) = G_j \prod_{\ell=1}^n \frac{\rho_j(c_j(\ell))}{\kappa_j(\ell)}, \quad G_j = \left[\sum_{n=0}^\infty \prod_{\ell=1}^n \frac{\rho_j}{\kappa_j(\ell)}\right]^{-1} < \infty,$$

Then

$$\pi(\mathbf{c}) = \prod_{i=1}^J \pi_j(\mathbf{c}_j), \quad \mathbf{c} \in \mathcal{S}.$$

Proof. Natural guess for the reversed process:

- customers of type u arrive according to a Poisson process with rate $\mu_0(u)$ to queue L(u)
- ▶ and follow the reversed route $r(u, L(u)), \dots, r(u, 1)$,
- and that the transition rates have the role of γ and δ reversed:

$$q'(\mathbf{c}', \mathbf{c}) =$$

$$\begin{cases}
\kappa_k(n_k + 1)\delta_k(\overline{\ell}', n_k + 1), & \text{if } \mathbf{c}' = C_{(0,0),(\ell',k)}^{(u,0)}\mathbf{c}, \\
\kappa_k(n_k + 1)\delta_k(\overline{\ell}'_k, n_k + 1)\gamma_j(\overline{\ell}, n_j), & \text{if } \mathbf{c}' = C_{(\ell,j),(\ell',k)}^{(u,s)}\mathbf{c}, \\
\mu_0(u)\gamma_j(\overline{\ell}, n_j), & \text{if } \mathbf{c}' = C_{(\ell,j),(0,0)}^{(u,l(u))}\mathbf{c}.
\end{cases}$$

Markovian Queues and Stochastic Networks

Burke's theorem and feedforward networks -1,2

Theorem (2.5.1 Burke's theorem)

Let $\{N(t)\}$ record the number of customers in the M|M|1 queue with arrival rate λ and service rate μ , $\lambda < \mu$. Let $\{D(t)\}$ record the customers' departure process from the queue. In equilibrium the departure process $\{D(t)\}$ is a Poisson process with rate λ , and N(t) is independent of $\{D(s), s < t\}$.

- ► Tandem network of two M|M|1 queues
- ▶ Poisson λ arrival process to queue 1, service rates μ_i .
- ▶ Provided $\rho_i = \lambda/\mu_i < 1$, $\pi_i(n_i) = (1 \rho_i)\rho_i^{n_i}$, $n_i \in \mathbb{N}_0$.
- ▶ Burke's theorem: departure process from queue 1 before t* and N₁(t*), are independent.
- ► Hence, in equilibrium, the at time t^* the random variables $N_1(t^*)$ and $N_2(t^*)$ are independent:

$$\pi(\mathbf{n}) = \prod_{i=1}^2 \pi_i(n_i), \quad \mathbf{n} \in S = \mathbb{N}_0^2.$$

Markovian Queues and Stochastic Networks

Quasi-reversibility – 1

- Burke's theorem: output process from a reversible queue before t, the input process after t and the state at t independent.
- Quasi-reversibility formalises this independence property.
- ▶ $\{N(t), t \in \mathbb{R}\}$ Markov process, state space S, states $\mathbf{n} \in S$, transition rates $q(\mathbf{n}, \mathbf{n}')$, equilibrium distribution $\pi(\mathbf{n})$.
- ▶ Let $S(c, \mathbf{n}) \subset S$ denote the set of states that may be obtained from state \mathbf{n} when a customer of class c arrives to the queue.
- ▶ Let $\{A_c(t), t \in \mathbb{R}\}$ and $\{D_c(t), t \in \mathbb{R}\}$ record the arrival and departure processes of customers of class c.

Quasi-reversibility – 2

Definition (4.4.1 Quasi-reversibility)

The stationary Markov chain $\{N(t)\}$ is quasi-reversible if for all $t \in \mathbb{R}$ the state at time t, N(t), is independent of $\{A_c(s), s > t\}$, the arrival process of class c customers after time t, and independent of $\{D_c(s), s < t\}$, the departure process of class c customers prior to time t, $c = 1, \ldots, C$.

Theorem (4.4.2)

If $\{N(t)\}$ is a quasi-reversible Markov chain, then

- (i) the arrival processes $\{A_c(t), t \in \mathbb{R}\}, c = 1, ..., C$, form independent Poisson processes;
- (ii) the departure processes $\{D_c(t), t \in \mathbb{R}\}, c = 1, \dots, C$, form independent Poisson processes.

Quasi-reversibility - 3

Algebraic characterisation of quasi-reversibility:

$$egin{array}{lll} \lambda(oldsymbol{c}) &=& \displaystyle\sum_{\mathbf{n}' \in S(oldsymbol{c},\mathbf{n})} q(\mathbf{n},\mathbf{n}'), \ & \lambda(oldsymbol{c}) &=& \displaystyle\sum_{\mathbf{n}' \in S(oldsymbol{c},\mathbf{n})} q^r(\mathbf{n},\mathbf{n}'), \end{array}$$

so that

$$\sum_{\mathbf{n}' \in S(c,\mathbf{n})} \pi(\mathbf{n}) q(\mathbf{n},\mathbf{n}') = \sum_{\mathbf{n}' \in S(c,\mathbf{n})} \pi(\mathbf{n}') q(\mathbf{n}',\mathbf{n}).$$

► In equilibrium the flow out of state n due to a customer of type c arriving to the queue balances with the probability flow into state n due to a customer of type c departing from the queue.

Symmetric queue – 1

Definition (4.2.6 Symmetric queue)

A queue that operates under the $(\kappa,\gamma,\delta)\text{-protocol}$ is called symmetric if

$$\gamma(\ell, n) = \delta(\ell, n), \quad \ell = 1, \ldots, n, \ n \in \mathbb{N}.$$

Theorem (4.4.6)

Let $\{N(t)\}$ record the state of a symmetric queue to which customers of class c arrive according to independent Poisson processes with rate $\lambda(c)$, $c=1,\ldots,C$. Then $\{N(t)\}$ is quasi-reversible.

Symmetric queue – 2

Proof.

▶ Transition rates, for $\mathbf{c} = (c(1), \dots, c(n)), \mathbf{c}' \neq \mathbf{c}$,

$$q(\mathbf{c},\mathbf{c}') = \left\{ \begin{array}{ll} \lambda(c)\gamma(\ell,n+1), & \text{if } \mathbf{c}' = (c(1),\ldots,c(\ell),c,c(\ell+1),\ldots,c(n)), \\ \mu_{c(\ell)}\kappa(n)\gamma(\ell,n), & \text{if } \mathbf{c}' = c(1),\ldots,c(\ell-1),c(\ell+1),\ldots,c(n)). \end{array} \right.$$

- ► Arrivals of class c customers independent Poisson processes $\Rightarrow N(t)$ independent of $\{A_c(s), s > t\}$.
- ► Transition rates of time-reversed queue: $q^r = q$.
- Arrival process to the time-reversed queue is Poisson process.
- ▶ Arrivals in the time-reversed process coincide with departures of $\{N(t)\} \Rightarrow N(t)$ is independent of $\{D_c(s), s < t\}$.

Markovian Queues and Stochastic Networks

- ▶ Network of J quasi-reversible queues.
- ► Customers of types u = 1, ..., U, arrive to a according to a Poisson process with rate $\mu_0(u)$, u = 1, ..., U.
- ► Customer type uniquely determines route along the sequence of queues $r(u, 1), r(u, 2), \ldots, r(u, L(u))$.
- State of queue j: {N_j(t)}, state space S_j, transition rates q_j(c_j, c'_j), customers of class (u, s) arrive according to Poisson process with rate

$$\lambda_j(u,s) \sum_{\mathbf{c}_i' \in S_j((u,s),\mathbf{c}_i)} q_j(\mathbf{c}_j,\mathbf{c}_j'),$$

▶ Equilibrium distribution $\pi_i = (\pi_i(\mathbf{c}_i), \mathbf{c}_i \in S_i)$ satisfies

$$\sum_{\mathbf{c}_i' \in S_j(c,\mathbf{c}_j)} \pi_j(\mathbf{c}_j) q_j(\mathbf{c}_j,\mathbf{c}_j') = \sum_{\mathbf{c}_i' \in S_j(c,\mathbf{c}_j)} \pi_j(\mathbf{c}_j') q_j(\mathbf{c}_j',\mathbf{c}_j).$$

► For $\mathbf{c} = (\mathbf{c}_1, \dots, \mathbf{c}_J)$, and $j, k = 0, \dots, J$, let

denote the set of states \mathbf{c}' obtained from state \mathbf{c} by removing the customer of type u in stage s from queue j and adding that customer in stage s+1 to queue k:

$$(C_{j,k}^{(u,s)}\mathbf{c})_i = \begin{cases} \{\mathbf{c}_i\}, & \text{if } i \neq j, k, \\ S_k((u,s+1),\mathbf{c}_k), & \text{if } i = k, \\ \{\mathbf{c}_j' \text{ s.t. } \mathbf{c}_j \in S_j((u,s),\mathbf{c}_j')\}, & \text{if } i = j, \end{cases}$$

► Transition rates, for u = 1, ..., U, $\mathbf{c} \neq \mathbf{c}'$, \mathbf{c} , $\mathbf{c}' \in S$,

$$q(\mathbf{c}, \mathbf{c}') =$$

$$\begin{cases} q_k(\mathbf{c}_k, \mathbf{c}_k'), & \text{if } \mathbf{c}' \in C_{0,k}^{(u,1)}\mathbf{c}, & \text{(arrival)} \\ q_j(\mathbf{c}_j, \mathbf{c}_j') \frac{q_k(\mathbf{c}_k, \mathbf{c}_k')}{\sum_{\mathbf{c}_k' \in S_k((u,s+1),\mathbf{c}_k)} q_k(\mathbf{c}_k, \mathbf{c}_k')}, & \text{if } \mathbf{c}' \in C_{j,k}^{(u,s)}\mathbf{c}, & \text{(routing)} \\ q_j(\mathbf{c}_j, \mathbf{c}_j'), & \text{if } \mathbf{c}' \in C_{j,0}^{(u,L(u))}\mathbf{c}, & \text{(departure)} \\ q_j(\mathbf{c}_j, \mathbf{c}_j'), & \text{if } \mathbf{c}_j, \mathbf{c}_j' \in S_j, \mathbf{c}_i' = \mathbf{c}_i, i \neq j, & \text{(internal)} \end{cases}$$

Quasi-reversibility implies that

$$\frac{q_k(\mathbf{c}_k,\mathbf{c}_k')}{\sum_{\mathbf{c}_k' \in S_k((u,s+1),\mathbf{c}_k)} q_k(\mathbf{c}_k,\mathbf{c}_k')} = \frac{q_k(\mathbf{c}_k,\mathbf{c}_k')}{\lambda_k(u,s+1)}.$$

Theorem (4.5.1)

Let $\{N(t)\} = \{(N_1(t), \dots, N_J(t))\}$ record the state of a network of J quasi-reversible queues to which customers of types $u=1,\dots,U$ arrive according to independent Poisson processes with rates $\mu_0(u)$ to follow a fixed route $r(u,1), r(u,2),\dots, r(u,L(u)), u=1,\dots,U$. Let $S_j, q_j,$ and π_j denote the state space, transition rates and equilibrium distribution of queue $j, j=1,\dots,J$. Then $\{N(t)\}$ has equilibrium distribution

$$\pi(\mathbf{c}_1,\ldots,\mathbf{c}_J)=\prod_{i=1}^J\pi_j(\mathbf{c}_j),\quad (\mathbf{c}_1,\ldots,\mathbf{c}_J)\in S=S_1 imes\cdots imes S_J.$$

Proof. Natural guess for time-reversed process:

- ▶ customers of types u = 1, ..., U arrive according to a Poisson process with rate $\mu_0(u)$,
- ► route through the network along the sequence of queues in reversed order $r(u, L(u)), \ldots, r(u, 1)$
- each queue operates according to its time-reversed transition rates: for $u = 1, ..., U, \mathbf{c} \neq \mathbf{c}', \mathbf{c}, \mathbf{c}' \in S$,

$$q^{r}(\mathbf{c}',\mathbf{c}) =$$

$$\begin{cases} q_k^r(\mathbf{c}_k',\mathbf{c}_k), & \text{if } \mathbf{c}' \in C_{0,k}^{(u,1)}\mathbf{c}, \\ q_k^r(\mathbf{c}_k',\mathbf{c}_k) \frac{q_j^r(\mathbf{c}_j',\mathbf{c}_j)}{\lambda_j(u,s)}, & \text{if } \mathbf{c}' \in C_{j,k}^{(u,s)}\mathbf{c}, \\ q_j^r(\mathbf{c}_j',\mathbf{c}_j), & \text{if } \mathbf{c}' \in C_{j,0}^{(u,L(u))}\mathbf{c}, \\ q_j^r(\mathbf{c}_j',\mathbf{c}_j), & \text{if } \mathbf{c}_j' \in S_j, \ \mathbf{c}_i' = \mathbf{c}_i, \ i \neq j. \end{cases}$$
 (departure)

For a routing transition from queue j = r(u, s) to queue k = r(u, s + 1) it must be that $\lambda_j(u, s) = \lambda_k(u, s + 1)$, which implies that

$$\pi_j(\mathbf{c}_j)\pi_k(\mathbf{c}_k)q_j(\mathbf{c}_j,\mathbf{c}_j')\frac{q_k(\mathbf{c}_k,\mathbf{c}_k')}{\lambda_k(u,s+1)}=\pi^r(\mathbf{c}_j')\pi_k^r(\mathbf{c}_k')q_k^r(\mathbf{c}_k',\mathbf{c}_k)\frac{q_j^r(\mathbf{c}_j',\mathbf{c}_j)}{\lambda_j(u,s)}.$$

Markovian Queues and Stochastic Networks

