UNIVERSITY OF TWENTE.

Markovian Queues and Stochastic Networks

Lecture 4

Richard J. Boucherie
Stochastic Operations Research

Time-reversed process and Kelly's Lemma - 1

- Stationary Markov chain $\{N(t)\}$
- Time-reversed process $\left\{N^{r}(t)\right\}=\{N(\tau-t)\}$.
$\mathbb{P}\left(N(t)=\mathbf{n} \mid N(t+h)=\mathbf{n}^{\prime}\right)=\frac{\mathbb{P}(N(t)=\mathbf{n})}{\mathbb{P}\left(N(t+h)=\mathbf{n}^{\prime}\right)} \mathbb{P}\left(N(t+h)=\mathbf{n}^{\prime} \mid N(t)=\mathbf{n}\right)$.
Theorem (4.1.2)
Let $\{N(t), t \in \mathbb{R}\}$ be stationary Markov chain with transition rates $q\left(\mathbf{n}, \mathbf{n}^{\prime}\right), \mathbf{n}, \mathbf{n}^{\prime} \in S$, and equilibrium distribution $\pi(\mathbf{n})$, $\mathbf{n} \in S$. The time-reversed process $\{N(\tau-t), t \in \mathbb{R}\}$ is a conservative, stable, regular, irreducible continuous-time stationary Markov chain with transition rates $q^{r}\left(\mathbf{n}, \mathbf{n}^{\prime}\right), \mathbf{n}, \mathbf{n}^{\prime} \in S$ given by

$$
q^{r}\left(\mathbf{n}, \mathbf{n}^{\prime}\right)=\frac{\pi\left(\mathbf{n}^{\prime}\right)}{\pi(\mathbf{n})} q\left(\mathbf{n}^{\prime}, \mathbf{n}\right)
$$

and the same equilibrium distribution $\pi(\mathbf{n}), \mathbf{n} \in S$.
UNIVERSITY OF TWENTE.

Time-reversed process and Kelly's Lemma - 2

Theorem (4.1.3 Kelly's lemma)
Let $\{N(t), t \in \mathbb{R}\}$ be a stationary Markov chain with transition rates $q\left(\mathbf{n}, \mathbf{n}^{\prime}\right), \mathbf{n}, \mathbf{n}^{\prime} \in S$. If we can find a collection of numbers $q^{r}\left(\mathbf{n}, \mathbf{n}^{\prime}\right), \mathbf{n}, \mathbf{n}^{\prime} \in S$, such that

$$
\sum_{\mathbf{n}^{\prime} \neq \mathbf{n}} q\left(\mathbf{n}, \mathbf{n}^{\prime}\right)=\sum_{\mathbf{n}^{\prime} \neq \mathbf{n}} q^{r}\left(\mathbf{n}, \mathbf{n}^{\prime}\right), \quad \mathbf{n} \in S,
$$

and a distribution $\pi=(\pi(\mathbf{n}), \mathbf{n} \in S)$ such that

$$
\pi(\mathbf{n}) q^{r}\left(\mathbf{n}, \mathbf{n}^{\prime}\right)=\pi\left(\mathbf{n}^{\prime}\right) q\left(\mathbf{n}^{\prime}, \mathbf{n}\right), \quad \mathbf{n}, \mathbf{n}^{\prime} \in S,
$$

then $q^{r}\left(\mathbf{n}, \mathbf{n}^{\prime}\right), \mathbf{n}, \mathbf{n}^{\prime} \in S$, are the transition rates of the time-reversed Markov chain $\{N(\tau-t), t \in \mathbb{R}\}$ and $\pi(\mathbf{n}), \mathbf{n} \in S$, is the equilibrium distribution of both Markov chains.

Example: $M|M| 1$ queue

- Poisson arrival rate λ and service rate $\mu, \rho=\lambda / \mu<1$.
- Departure rate λ.
- Guess for arrival rate time-reversed process: $q^{r}(\mathbf{n}, \mathbf{n}+1)=\lambda$.
- Further guess could then be $q^{r}(\mathbf{n}, \mathbf{n}-1)=\mu$
- Educated guess for the equilibrium distribution is $\pi(\mathbf{n})=(1-\rho) \rho^{\mathbf{n}}$,
- Kelly's lemma 2 is satisfied.
- Time-reversed process is an $M|M| 1$ queue with Poisson arrivals at rate λ and service rate μ.

Example: Kelly-Whittle network - 1

- Transition rates Kelly-Whittle network:
$q\left(\mathbf{n}, \mathbf{n}^{\prime}\right)= \begin{cases}\frac{\psi\left(\mathbf{n}-\mathbf{e}_{i}\right)}{\phi(\mathbf{n})} \mu_{i} p_{i j}, & \text { if } \mathbf{n}^{\prime}=\mathbf{n}-\mathbf{e}_{i}+\mathbf{e}_{j}, i, j=0, \ldots, J, \\ 0, & \text { otherwise } .\end{cases}$
- Kelly's lemma: the time-reversed routing process is the Markov chain with transition probabilities

$$
p_{i j}^{r}:=\frac{\lambda_{j}}{\lambda_{i}} p_{j i}, \quad i, j=0, \ldots, J .
$$

- Natural guess for the transition rates of the time-reversed process $\left\{N^{r}(t)\right\}$ is, for $\mathbf{n} \neq \mathbf{n}^{\prime}$,
$q^{r}\left(\mathbf{n}, \mathbf{n}^{\prime}\right)= \begin{cases}\frac{\psi\left(\mathbf{n}-\mathbf{e}_{i}\right)}{\phi(\mathbf{n})} \mu_{i} p_{i j}^{r}, & \text { if } \mathbf{n}^{\prime}=\mathbf{n}-\mathbf{e}_{i}+\mathbf{e}_{j}, i, j=0, \ldots, J, \\ 0, & \text { otherwise } .\end{cases}$

Example: Kelly-Whittle network - 2

- Observe that

$$
\begin{aligned}
& \sum_{\mathbf{n}^{\prime} \neq \mathbf{n}} q\left(\mathbf{n}, \mathbf{n}^{\prime}\right)=\sum_{i, j=0}^{J} \frac{\psi\left(\mathbf{n}-\mathbf{e}_{i}\right)}{\phi(\mathbf{n})} \mu_{i} p_{i j}=\sum_{i=0}^{J} \frac{\psi\left(\mathbf{n}-\mathbf{e}_{i}\right)}{\phi(\mathbf{n})} \mu_{i}, \\
& \sum_{\mathbf{n}^{\prime} \neq \mathbf{n}} q^{r}\left(\mathbf{n}, \mathbf{n}^{\prime}\right)=\sum_{i, j=0}^{J} \frac{\psi\left(\mathbf{n}-\mathbf{e}_{i}\right)}{\phi(\mathbf{n})} \mu_{i} p_{i j}^{r}=\sum_{i, j=0}^{J} \frac{\psi\left(\mathbf{n}-\mathbf{e}_{i}\right)}{\phi(\mathbf{n})} \mu_{i} \frac{\lambda_{j}}{\lambda_{i}} p_{j i}=\sum_{i=0}^{J} \frac{\psi\left(\mathbf{n}-\mathbf{e}_{i}\right)}{\phi(\mathbf{n})} \mu_{i},
\end{aligned}
$$

- Educated guess: $\pi(\mathbf{n})=G_{K W} \phi(\mathbf{n}) \prod_{j=1}^{J} \rho_{j}^{n_{j}}, \mathbf{n} \in S$,
- Then

$$
\begin{aligned}
\pi(\mathbf{n}) q^{r}\left(\mathbf{n}, \mathbf{n}^{\prime}\right) & =G_{K W} \phi(\mathbf{n}) \prod_{k=1}^{J} \rho_{k}^{n_{k}} \frac{\psi\left(\mathbf{n}-\mathbf{e}_{i}\right)}{\phi(\mathbf{n})} \mu_{i} \frac{\lambda_{j}}{\lambda_{i}} p_{j i} \\
& =G_{K W} \phi\left(\mathbf{n}-\mathbf{e}_{i}+\mathbf{e}_{j}\right) \prod_{k=1}^{J} \rho_{k}^{n_{k}-\delta_{k i}+\delta_{k j}} \frac{\psi\left(\mathbf{n}-\mathbf{e}_{i}\right)}{\phi\left(\mathbf{n}-\mathbf{e}_{i}+\mathbf{e}_{j}\right)} \mu_{j} p_{j i} \\
& =\pi\left(\mathbf{n}-\mathbf{e}_{i}+\mathbf{e}_{j}\right) q\left(\mathbf{n}-\mathbf{e}_{i}+\mathbf{e}_{j}, \mathbf{n}\right)
\end{aligned}
$$

UNIVERSITY OF TWENTE.

Markovian Queues and Stochastic Networks

Lecture 4

Richard J. Boucherie
Stochastic Operations Research

Queue disciplines - 1

Definition (4.2.1 ($\kappa, \gamma, \delta)$-protocol)

Customers ordered: if queue contains n customers then customers in positions $1, \ldots, n, n \in \mathbb{N}$. Queue operation:

- a customer of class c requires a negative-exponentially distributed amount of service with rate $\mu(c)$;
- if $n>0$ customers present service at rate $\kappa(n)>0$;
- fraction $\gamma(\ell, n)$ of service to customer in position ℓ; if customer in position ℓ completes service then customers in positions $\ell+1, \ell+2, \ldots, n$ move to $\ell, \ell+1, \ldots, n-1$;
- arriving customer into position ℓ with probability $\delta(\ell, n+1)$; customers in positions $\ell, \ell+1, \ldots, n$ move to positions $\ell+1, \ell+2, \ldots, n+1$.

Queue disciplines - 2

	$\kappa(n)$	$\gamma(\ell, n)$	$\delta(\ell, n)$
FIFO	$\mathbb{1}(n>0)$	$\mathbb{1}(\ell=1)$	$\mathbb{1}(\ell=n)$
LIFO-PR	$\mathbb{1}(n>0)$	$\mathbb{1}(\ell=n)$	$\mathbb{1}(\ell=n)$
PS	$\mathbb{1}(n>0)$	$1 / n$	$1 / n$
INF	n	$1 / n$	$1 / n$

Multi-class LIFO-PR queue - 1

- Customers of class c arrive according to a Poisson process with rate $\lambda(c), \rho(c)=\lambda(c) / \mu(c)<1$,
- Let $\mathbf{c}=(c(1), \ldots, c(n))$ record the class of the customers in position $i, i=1, \ldots, n$,
- Let $\{N(t)\}$ record the state of the Markov chain at

$$
S=\{\mathbf{c}: \mathbf{c}=(c(1), \ldots, c(n)), c(i) \in\{1, \ldots, C\}\}
$$

- Transition rates

$$
q\left(\mathbf{c}, \mathbf{c}^{\prime}\right)= \begin{cases}\lambda(c), & \text { if } \mathbf{c}^{\prime}=(c(1), \ldots, c(n), c), \\ \mu(c(n)), & \text { if } \mathbf{c}^{\prime}=(c(1), \ldots, c(n-1))\end{cases}
$$

- Natural guess for time-reversed queue is the queue multi-class LIFO-PR queue with the same rates:

$$
q^{r}\left(\mathbf{c}, \mathbf{c}^{\prime}\right)= \begin{cases}\lambda(c), & \text { if } \mathbf{c}^{\prime}=(c(1), \ldots, c(n), c), \\ \mu(c(n)), & \text { if } \mathbf{c}^{\prime}=((c(1), \ldots, c(n-1))\end{cases}
$$

Multi-class LIFO-PR queue - 2

- Guess equilibrium distribution:

$$
\pi(\mathbf{c})=G \prod_{i=1}^{n} \rho(c(i)), \quad \mathbf{c}=(c(1), \ldots, c(n)) \in S
$$

- Check conditions Kelly's lemma:

$$
\sum_{\mathbf{c}^{\prime} \neq \mathbf{c}} q\left(\mathbf{c}, \mathbf{c}^{\prime}\right)=\sum_{c=1}^{c} \lambda(c)+\mu(c(n))=\sum_{\mathbf{c}^{\prime} \neq \mathbf{c}} q^{r}\left(\mathbf{c}, \mathbf{c}^{\prime}\right) .
$$

- For $\mathbf{c}=(c(1), \ldots, c(n)), \mathbf{c}^{\prime}=(c(1), \ldots, c(n), c)$,

$$
\mathbf{c}^{\prime \prime}=(c(1), \ldots, c(n-1)),
$$

$$
\begin{aligned}
\pi(\mathbf{c}) q^{\prime}\left(\mathbf{c}, \mathbf{c}^{\prime}\right)=\pi\left(\mathbf{c}^{\prime}\right) q\left(\mathbf{c}^{\prime}, \mathbf{c}\right) & \Leftrightarrow \lambda(c)=\rho(c) \mu(c), \\
\pi(\mathbf{c}) q^{\prime}\left(\mathbf{c}, \mathbf{c}^{\prime \prime}\right)=\pi\left(\mathbf{c}^{\prime \prime}\right) q\left(\mathbf{c}^{\prime \prime}, \mathbf{c}\right) & \Leftrightarrow \rho(c(n)) \mu(c(n))=\lambda(c(n)),
\end{aligned}
$$

UNIVERSITY OF TWENTE.

Markovian Queues and Stochastic Networks

Lecture 4

Richard J. Boucherie
Stochastic Operations Research

Networks: customer types and fixed routes - 1

- Network of J queues.
- Customers of types $u=1, \ldots, U$, arrive to a according to a Poisson process with rate $\mu_{0}(u), u=1, \ldots, U$.
- Customer type uniquely determines route through the network along the sequence of queues

$$
r(u, 1), r(u, 2), \ldots, r(u, L(u)) .
$$

- Customer may visit the same queue at multiple stages.
- Queue j operates according to the ($\kappa_{j}, \gamma_{j}, \delta_{j}$)-protocol.
- Let $c_{j}(\ell)=\left(u_{j}(\ell), s_{j}(\ell)\right)$, with $u_{j}(\ell)$ the type and $s_{j}(\ell)$ the stage of the customer in position ℓ in queue j.
- State of queue j is $\mathbf{c}_{j}=\left(c_{j}(1), \ldots, c_{j}\left(n_{j}\right)\right)$.
- State of the network is $\mathbf{c}=\left(\mathbf{c}_{1}, \ldots, \mathbf{c}_{J}\right)$.

Networks: customer types and fixed routes - 2

- Let $\{N(t)\}$ record state of Markov chain at state space $S=\left\{\mathbf{c}=\left(\mathbf{c}_{1}, \ldots, \mathbf{c}_{J}\right)\right\}$.
- For $\mathbf{c}=\left(\mathbf{c}_{1}, \ldots, \mathbf{c}_{J}\right)$, let
$C_{(\ell, j),\left(\ell^{\prime}, k\right)}^{(u, s)} \quad$ denote state \mathbf{c}^{\prime} obtained from state \mathbf{c} by removing customer of type u in stage s in position ℓ from queue j and adding that customer in position ℓ^{\prime} to queue k.
- Transition rates (more precise in reader)

$$
\begin{aligned}
& q\left(\mathbf{c}, \mathbf{c}^{\prime}\right)= \\
& \begin{cases}\mu_{0}(u) \delta_{k}\left(\bar{\ell}^{\prime}, n_{k}+1\right), & \text { if } \mathbf{c}^{\prime}=C_{(0,0),\left(\ell^{\prime}, k\right)}^{(u, 0)} \mathbf{c}, \\
\mu_{j}(u) \kappa_{j}\left(n_{j}\right) \gamma_{j}\left(\bar{\ell}, n_{j}\right) \delta_{k}\left(\bar{\ell}_{k}^{\prime}, n_{k}+1\right), & \text { if } \mathbf{c}^{\prime}=C_{(\ell, j),\left(\ell^{\prime}, k\right)}^{(u, c} \mathbf{c} \\
\mu_{j}(u) \kappa_{j}\left(n_{j}\right) \gamma_{j}\left(\bar{\ell}, n_{j}\right), & \text { if } \mathbf{c}^{\prime}=C_{(\ell, j),(0,0)}^{(u, L u)} \mathbf{c} .\end{cases}
\end{aligned}
$$

Networks: customer types and fixed routes - 3

- $\lambda_{j}(u, s)$: arrival rate of type u to queue $j=r(u, s)$. Then

$$
\lambda_{j}(u, s)= \begin{cases}\mu_{0}(u), & \text { if } j=r(u, s) \\ 0, & \text { otherwise }\end{cases}
$$

- Mean amount of work arriving to queue j per unit time:

$$
\rho_{j}=\sum_{u=1}^{U} \sum_{s=1}^{L(u)} \frac{\lambda_{j}(u, s)}{\mu_{j}(u)}, \quad j=1, \ldots, J .
$$

- Let $\rho_{j}\left(c_{j}(\ell)\right)=\lambda_{j}\left(u_{j}(\ell), s_{j}(\ell)\right) / \mu_{j}\left(u_{j}(\ell)\right)$.

Networks: customer types and fixed routes - 4

Theorem (4.3.1 Network with fixed routes)
Let queue j operate according to the $\left(\kappa_{j}, \gamma_{j}, \delta_{j}\right)$-protocol. Negative-exponential(1) service requirements for all customers at all queues. Let

$$
\pi_{j}\left(\mathbf{c}_{j}\right)=G_{j} \prod_{\ell=1}^{n} \frac{\rho_{j}\left(c_{j}(\ell)\right)}{\kappa_{j}(\ell)}, \quad G_{j}=\left[\sum_{n=0}^{\infty} \prod_{\ell=1}^{n} \frac{\rho_{j}}{\kappa_{j}(\ell)}\right]^{-1}<\infty
$$

Then

$$
\pi(\mathbf{c})=\prod_{j=1}^{J} \pi_{j}\left(\mathbf{c}_{j}\right), \quad \mathbf{c} \in S
$$

Networks: customer types and fixed routes - 5

Proof. Natural guess for the reversed process:

- customers of type u arrive according to a Poisson process with rate $\mu_{0}(u)$ to queue $L(u)$
- and follow the reversed route $r(u, L(u)), \ldots, r(u, 1)$,
- and that the transition rates have the role of γ and δ reversed:

$$
\begin{aligned}
& q^{r}\left(\mathbf{c}^{\prime}, \mathbf{c}\right)= \\
& \begin{cases}\kappa_{k}\left(n_{k}+1\right) \delta_{k}\left(\bar{\ell}^{\prime}, n_{k}+1\right), & \text { if } \mathbf{c}^{\prime}=C_{(0,0),\left(\ell^{\prime}, k\right)}^{(u, 0)} \mathbf{c}, \\
\kappa_{k}\left(n_{k}+1\right) \delta_{k}\left(\bar{\ell}_{k}^{\prime}, n_{k}+1\right) \gamma_{j}\left(\bar{\ell}, n_{j}\right), & \text { if } \mathbf{c}^{\prime}=C_{(\ell, j),\left(,\left(\ell^{\prime}, k\right)\right.}^{(u,} \mathbf{c} \\
\mu_{0}(u) \gamma_{j}\left(\bar{\ell}, n_{j}\right), & \text { if } \mathbf{c}^{\prime}=C_{(\ell, j),(0,0))}^{(u,(u))} \mathbf{c} .\end{cases}
\end{aligned}
$$

Networks: customer types and fixed routes - 6

$$
\begin{aligned}
\sum_{\mathbf{c}^{\prime}} q\left(\mathbf{c}, \mathbf{c}^{\prime}\right) & =\sum_{u=1}^{U} \mu_{0}(u)+\sum_{j=1}^{J} \sum_{\ell_{j}=1}^{n_{j}} \kappa_{j}\left(n_{j}\right) \gamma_{j}\left(\ell_{j}, n_{j}\right) \\
\sum_{\mathbf{c}^{\prime}} q^{r}\left(\mathbf{c}, \mathbf{c}^{\prime}\right) & =\sum_{u=1}^{U} \mu_{0}(u)+\sum_{k=1}^{J} \sum_{\ell_{k}=1}^{n_{k}} \kappa_{k}\left(n_{k}\right) \delta_{k}\left(\ell_{k}, n_{k}\right)
\end{aligned}
$$

For $\mathbf{c}^{\prime}=C_{(\ell, j),\left(\ell^{\prime}, k\right)}^{(u, s)} \mathbf{c}$, with $j, k \neq 0$, we have

$$
\begin{aligned}
& \pi(\mathbf{c}) q\left(\mathbf{c}, \mathbf{c}^{\prime}\right)=\pi(\mathbf{c}) \kappa_{j}\left(n_{j}\right) \gamma_{j}\left(\bar{\ell}, n_{j}\right) \delta_{k}\left(\bar{\ell}_{k}^{\prime}, n_{k}+1\right), \\
& \pi\left(\mathbf{c}^{\prime}\right) q^{r}\left(\mathbf{c}^{\prime}, \mathbf{c}\right) \\
& \quad=\pi(\mathbf{c}) \frac{\rho_{k}\left(c_{k}\left(\ell_{k}^{\prime}\right)\right)}{\rho_{j}\left(c_{j}\left(\ell_{j}\right)\right)} \frac{\kappa_{j}\left(n_{j}\right)}{\kappa_{k}\left(n_{k}+1\right)} \kappa_{k}\left(n_{k}+1\right) \delta_{k}\left(\bar{\ell}_{k}^{\prime}, n_{k}+1\right) \gamma_{j}\left(\bar{\ell}, n_{j}\right) .
\end{aligned}
$$

UNIVERSITY OF TWENTE.

Markovian Queues and Stochastic Networks

Lecture 4

Richard J. Boucherie
Stochastic Operations Research

Quasi-reversibility - 1

- Burke's theorem: output process from a reversible queue before t, the input process after t and the state at t independent.
- Quasi-reversibility formalises this independence property.
- $\{N(t), t \in \mathbb{R}\}$ Markov process, state space S, states $\mathbf{n} \in S$, transition rates $q\left(\mathbf{n}, \mathbf{n}^{\prime}\right)$, equilibrium distribution $\pi(\mathbf{n})$.
- Let $S(c, \mathbf{n}) \subset S$ denote the set of states that may be obtained from state \mathbf{n} when a customer of class c arrives to the queue.
- Let $\left\{A_{c}(t), t \in \mathbb{R}\right\}$ and $\left\{D_{c}(t), t \in \mathbb{R}\right\}$ record the arrival and departure processes of customers of class c.

Quasi-reversibility - 2

Definition (4.4.1 Quasi-reversibility)

The stationary Markov chain $\{N(t)\}$ is quasi-reversible if for all $t \in \mathbb{R}$ the state at time $t, N(t)$, is independent of
$\left\{A_{c}(s), s>t\right\}$, the arrival process of class c customers after time t, and independent of $\left\{D_{c}(s), s<t\right\}$, the departure process of class c customers prior to time $t, c=1, \ldots, C$.

Theorem (4.4.2)
If $\{N(t)\}$ is a quasi-reversible Markov chain, then
(i) the arrival processes $\left\{A_{c}(t), t \in \mathbb{R}\right\}, c=1, \ldots, C$, form independent Poisson processes;
(ii) the departure processes $\left\{D_{c}(t), t \in \mathbb{R}\right\}, c=1, \ldots, C$, form independent Poisson processes.

Quasi-reversibility - 3

Algebraic characterisation of quasi-reversibility:

$$
\begin{aligned}
& \lambda(c)=\sum_{\mathbf{n}^{\prime} \in S(c, \mathbf{n})} q\left(\mathbf{n}, \mathbf{n}^{\prime}\right), \\
& \lambda(c)=\sum_{\mathbf{n}^{\prime} \in S(c, \mathbf{n})} q^{r}\left(\mathbf{n}, \mathbf{n}^{\prime}\right),
\end{aligned}
$$

so that

$$
\sum_{\mathbf{n}^{\prime} \in S(c, \mathbf{n})} \pi(\mathbf{n}) q\left(\mathbf{n}, \mathbf{n}^{\prime}\right)=\sum_{\mathbf{n}^{\prime} \in S(c, \mathbf{n})} \pi\left(\mathbf{n}^{\prime}\right) q\left(\mathbf{n}^{\prime}, \mathbf{n}\right) .
$$

- In equilibrium the flow out of state \mathbf{n} due to a customer of type c arriving to the queue balances with the probability flow into state \mathbf{n} due to a customer of type c departing from the queue.

Symmetric queue - 1

Definition (4.2.6 Symmetric queue)

A queue that operates under the (κ, γ, δ)-protocol is called symmetric if

$$
\gamma(\ell, n)=\delta(\ell, n), \quad \ell=1, \ldots, n, n \in \mathbb{N} .
$$

Theorem (4.4.6)
Let $\{N(t)\}$ record the state of a symmetric queue to which customers of class c arrive according to independent Poisson processes with rate $\lambda(c), c=1, \ldots, C$. Then $\{N(t)\}$ is quasi-reversible.

Symmetric queue - 2

Proof.

- Transition rates, for $\mathbf{c}=(c(1), \ldots, c(n)), \mathbf{c}^{\prime} \neq \mathbf{c}$, $q\left(\mathbf{c}, \mathbf{c}^{\prime}\right)= \begin{cases}\lambda(c) \gamma(\ell, n+1), & \text { if } \mathbf{c}^{\prime}=(c(1), \ldots, c(\ell), c, c(\ell+1), \ldots, c(n)), \\ \mu_{c(\ell)} \kappa(n) \gamma(\ell, n), & \left.\text { if } \mathbf{c}^{\prime}=c(1), \ldots, c(\ell-1), c(\ell+1), \ldots, c(n)\right) .\end{cases}$
- Arrivals of class c customers independent Poisson processes $\Rightarrow N(t)$ independent of $\left\{A_{c}(s), s>t\right\}$.
- Transition rates of time-reversed queue: $q^{r}=q$.
- Arrival process to the time-reversed queue is Poisson process.
- Arrivals in the time-reversed process coincide with departures of $\{N(t)\} \Rightarrow N(t)$ is independent of $\left\{D_{c}(s), s<t\right\}$.

UNIVERSITY OF TWENTE.

Markovian Queues and Stochastic Networks

Lecture 4

Richard J. Boucherie
Stochastic Operations Research

Quasi-reversible queues and fixed routes - 1

- Network of J quasi-reversible queues.
- Customers of types $u=1, \ldots, U$, arrive to a according to a Poisson process with rate $\mu_{0}(u), u=1, \ldots, U$.
- Customer type uniquely determines route along the sequence of queues $r(u, 1), r(u, 2), \ldots, r(u, L(u))$.
- State of queue $j:\left\{N_{j}(t)\right\}$, state space S_{j}, transition rates $q_{j}\left(\mathbf{c}_{j}, \mathbf{c}_{j}^{\prime}\right)$, customers of class (u, s) arrive according to Poisson process with rate

$$
\lambda_{j}(u, s) \sum_{\mathbf{c}_{j}^{\prime} \in S_{j}\left((u, s), \mathbf{c}_{j}\right)} q_{j}\left(\mathbf{c}_{j}, \mathbf{c}_{j}^{\prime}\right),
$$

- Equilibrium distribution $\pi_{j}=\left(\pi_{j}\left(\mathbf{c}_{j}\right), \mathbf{c}_{j} \in S_{j}\right)$ satisfies

$$
\sum_{\mathbf{c}_{j}^{\prime} \in S_{j}\left(c, \mathbf{c}_{j}\right)} \pi_{j}\left(\mathbf{c}_{j}\right) q_{j}\left(\mathbf{c}_{j}, \mathbf{c}_{j}^{\prime}\right)=\sum_{\mathbf{c}_{j}^{\prime} \in S_{j}\left(c, \mathbf{c}_{j}\right)} \pi_{j}\left(\mathbf{c}_{j}^{\prime}\right) q_{j}\left(\mathbf{c}_{j}^{\prime}, \mathbf{c}_{j}\right) .
$$

Quasi-reversible queues and fixed routes - 2

- For $\mathbf{c}=\left(\mathbf{c}_{1}, \ldots, \mathbf{c}_{J}\right)$, and $j, k=0, \ldots, J$, let
$C_{j, k}^{(u, s)} \mathbf{c} \quad$ denote the set of states \mathbf{c}^{\prime} obtained from state \mathbf{c} by removing the customer of type u in stage s from queue j and adding that customer in stage $s+1$ to queue k :

$$
\left(C_{j, k}^{(u, s)} \mathbf{c}\right)_{i}= \begin{cases}\left\{\mathbf{c}_{i}\right\}, & \text { if } i \neq j, k \\ S_{k}\left((u, s+1), \mathbf{c}_{k}\right), & \text { if } i=k, \\ \left\{\mathbf{c}_{j}^{\prime} \text { s.t. } \mathbf{c}_{j} \in S_{j}\left((u, s), \mathbf{c}_{j}^{\prime}\right)\right\}, & \text { if } i=j,\end{cases}
$$

Quasi-reversible queues and fixed routes - 3

- Transition rates, for $u=1, \ldots, U, \mathbf{c} \neq \mathbf{c}^{\prime}, \mathbf{c}, \mathbf{c}^{\prime} \in S$,
$q\left(\mathbf{c}, \mathbf{c}^{\prime}\right)=$

$$
\left\{\begin{array}{lll}
q_{k}\left(\mathbf{c}_{k}, \mathbf{c}_{k}^{\prime}\right), & \text { if } \mathbf{c}^{\prime} \in C_{0, k}^{(u, 1)} \mathbf{c}, & \text { (arrival) } \\
q_{j}\left(\mathbf{c}_{j}, \mathbf{c}_{j}^{\prime}\right) \frac{q_{k}\left(\mathbf{c}_{k}, \mathbf{c}_{k}^{\prime}\right)}{\sum_{\mathbf{c}_{k}^{\prime} \in S_{k}\left((u, s+1), \mathbf{c}_{k}\right)} q_{k}\left(\mathbf{c}_{k}, \mathbf{c}_{k}^{\prime}\right)}, & \text { if } \mathbf{c}^{\prime} \in C_{j, k}^{(u, s)} \mathbf{c}, & \text { (routing) } \\
q_{j}\left(\mathbf{c}_{j}, \mathbf{c}_{j}^{\prime}\right), & \text { if } \mathbf{c}^{\prime} \in C_{j, 0}^{(u, L(u)} \mathbf{c}, & \text { (departur } \\
q_{j}\left(\mathbf{c}_{j}, \mathbf{c}_{j}^{\prime}\right), & \text { if } \mathbf{c}_{j}, \mathbf{c}_{j}^{\prime} \in S_{j}, \mathbf{c}_{i}^{\prime}=\mathbf{c}_{i}, i \neq j, & \text { (internal) }
\end{array}\right.
$$

- Quasi-reversibility implies that

$$
\frac{q_{k}\left(\mathbf{c}_{k}, \mathbf{c}_{k}^{\prime}\right)}{\sum_{\mathbf{c}_{k}^{\prime} \in S_{k}\left((u, s+1), \mathbf{c}_{k}\right)} q_{k}\left(\mathbf{c}_{k}, \mathbf{c}_{k}^{\prime}\right)}=\frac{q_{k}\left(\mathbf{c}_{k}, \mathbf{c}_{k}^{\prime}\right)}{\lambda_{k}(u, s+1)} .
$$

Quasi-reversible queues and fixed routes - 3

Theorem (4.5.1)
Let $\{N(t)\}=\left\{\left(N_{1}(t), \ldots, N_{J}(t)\right)\right\}$ record the state of a network of J quasi-reversible queues to which customers of types $u=1, \ldots, U$ arrive according to independent Poisson processes with rates $\mu_{0}(u)$ to follow a fixed route $r(u, 1), r(u, 2), \ldots, r(u, L(u)), u=1, \ldots, U$. Let S_{j}, q_{j}, and π_{j} denote the state space, transition rates and equilibrium distribution of queue $j, j=1, \ldots, J$. Then $\{N(t)\}$ has equilibrium distribution

$$
\pi\left(\mathbf{c}_{1}, \ldots, \mathbf{c}_{J}\right)=\prod_{j=1}^{J} \pi_{j}\left(\mathbf{c}_{j}\right), \quad\left(\mathbf{c}_{1}, \ldots, \mathbf{c}_{J}\right) \in S=S_{1} \times \cdots \times S_{J}
$$

Quasi-reversible queues and fixed routes - 4

Proof. Natural guess for time-reversed process:

- customers of types $u=1, \ldots, U$ arrive according to a Poisson process with rate $\mu_{0}(u)$,
- route through the network along the sequence of queues in reversed order $r(u, L(u)), \ldots, r(u, 1)$
- each queue operates according to its time-reversed transition rates: for $u=1, \ldots, U, \mathbf{c} \neq \mathbf{c}^{\prime}, \mathbf{c}, \mathbf{c}^{\prime} \in S$,
$q^{r}\left(\mathbf{c}^{\prime}, \mathbf{c}\right)=$
$\left\{\begin{array}{lll}q_{k}^{r}\left(\mathbf{c}_{k}^{\prime}, \mathbf{c}_{k}\right), & \text { if } \mathbf{c}^{\prime} \in C_{0, k}^{(u, 1)} \mathbf{c}, & \text { (departure) } \\ q_{k}^{r}\left(\mathbf{c}_{k}^{\prime}, \mathbf{c}_{k}\right) \frac{q_{j}^{r}\left(\mathbf{c}_{j}^{\prime}, \mathbf{c}_{j}\right)}{\lambda_{j}(u, s)}, & \text { if } \mathbf{c}^{\prime} \in C_{j, k}^{(u, s)} \mathbf{c}, & \text { (routing) } \\ q_{j}^{r}\left(\mathbf{c}_{j}^{\prime}, \mathbf{c}_{j}\right), & \text { if } \mathbf{c}^{\prime} \in C_{j, 0}^{(u, L(u))} \mathbf{c}, & \text { (arrival) } \\ q_{j}^{r}\left(\mathbf{c}_{j}^{\prime}, \mathbf{c}_{j}\right), & \text { if } \mathbf{c}_{j}, \mathbf{c}_{j}^{\prime} \in S_{j}, \mathbf{c}_{i}^{\prime}=\mathbf{c}_{i}, i \neq j, & \text { (internal) }\end{array}\right.$

Quasi-reversible queues and fixed routes - 5

- For a routing transition from queue $j=r(u, s)$ to queue $k=r(u, s+1)$ it must be that $\lambda_{j}(u, s)=\lambda_{k}(u, s+1)$, which implies that
$\pi_{j}\left(\mathbf{c}_{j}\right) \pi_{k}\left(\mathbf{c}_{k}\right) q_{j}\left(\mathbf{c}_{j}, \mathbf{c}_{j}^{\prime}\right) \frac{q_{k}\left(\mathbf{c}_{k}, \mathbf{c}_{k}^{\prime}\right)}{\lambda_{k}(u, s+1)}=\pi^{r}\left(\mathbf{c}_{j}^{\prime}\right) \pi_{k}^{r}\left(\mathbf{c}_{k}^{\prime}\right) q_{k}^{r}\left(\mathbf{c}_{k}^{\prime}, \mathbf{c}_{k}\right) \frac{q_{j}^{r}\left(\mathbf{c}_{j}^{\prime}, \mathbf{c}_{j}\right)}{\lambda_{j}(u, s)}$.

UNIVERSITY OF TWENTE.

Markovian Queues and Stochastic Networks

Lecture 4

Richard J. Boucherie
Stochastic Operations Research

