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Time-reversed process and Kelly’s Lemma – 1
I Stationary Markov chain {N(t)}
I Time-reversed process {N r (t)} = {N(τ − t)}.

P(N(t) = n|N(t+h) = n′) =
P(N(t) = n)

P(N(t + h) = n′)
P(N(t+h) = n′|N(t) = n).

Theorem (4.1.2)
Let {N(t), t ∈ R} be stationary Markov chain with transition
rates q(n,n′), n,n′ ∈ S, and equilibrium distribution π(n),
n ∈ S. The time-reversed process {N(τ − t), t ∈ R} is a
conservative, stable, regular, irreducible continuous-time
stationary Markov chain with transition rates qr (n,n′), n,n′ ∈ S
given by

qr (n,n′) =
π(n′)
π(n)

q(n′,n),

and the same equilibrium distribution π(n), n ∈ S.
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Time-reversed process and Kelly’s Lemma – 2

Theorem (4.1.3 Kelly’s lemma)
Let {N(t), t ∈ R} be a stationary Markov chain with transition
rates q(n,n′), n,n′ ∈ S. If we can find a collection of numbers
qr (n,n′), n,n′ ∈ S, such that∑

n′ 6=n

q(n,n′) =
∑
n′ 6=n

qr (n,n′), n ∈ S,

and a distribution π = (π(n), n ∈ S) such that

π(n)qr (n,n′) = π(n′)q(n′,n), n,n′ ∈ S,

then qr (n,n′), n,n′ ∈ S, are the transition rates of the
time-reversed Markov chain {N(τ − t), t ∈ R} and π(n), n ∈ S,
is the equilibrium distribution of both Markov chains.
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Example: M|M|1 queue

I Poisson arrival rate λ and service rate µ, ρ = λ/µ < 1.
I Departure rate λ.
I Guess for arrival rate time-reversed process:

qr (n,n + 1) = λ.
I Further guess could then be qr (n,n− 1) = µ

I Educated guess for the equilibrium distribution is
π(n) = (1− ρ)ρn,

I Kelly’s lemma 2 is satisfied.
I Time-reversed process is an M|M|1 queue with Poisson

arrivals at rate λ and service rate µ.
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Example: Kelly-Whittle network – 1
I Transition rates Kelly-Whittle network:

q(n,n′) =


ψ(n− ei)

φ(n)
µipij , if n′ = n− ei + ej , i , j = 0, . . . , J,

0, otherwise.
I Kelly’s lemma: the time-reversed routing process is the

Markov chain with transition probabilities

pr
ij :=

λj

λi
pji , i , j = 0, . . . , J.

I Natural guess for the transition rates of the time-reversed
process {N r (t)} is, for n 6= n′,

qr (n,n′) =


ψ(n− ei)

φ(n)
µipr

ij , if n′ = n− ei + ej , i , j = 0, . . . , J,

0, otherwise.
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Example: Kelly-Whittle network – 2
I Observe that∑

n′ 6=n

q(n,n′) =
J∑

i,j=0

ψ(n− ei)

φ(n)
µipij =

J∑
i=0

ψ(n− ei)

φ(n)
µi ,

∑
n′ 6=n

qr (n,n′) =
J∑

i,j=0

ψ(n− ei)

φ(n)
µipr

ij =
J∑

i,j=0

ψ(n− ei)

φ(n)
µi
λj

λi
pji =

J∑
i=0

ψ(n− ei)

φ(n)
µi ,

I Educated guess: π(n) = GKWφ(n)
∏J

j=1 ρ
nj
j , n ∈ S,

I Then

π(n)qr (n,n′) = GKWφ(n)
J∏

k=1

ρ
nk
k
ψ(n− ei)

φ(n)
µi
λj

λi
pji

= GKWφ(n− ei + ej)
J∏

k=1

ρ
nk−δki+δkj
k

ψ(n− ei)

φ(n− ei + ej)
µjpji

= π(n− ei + ej)q(n− ei + ej ,n).
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Queue disciplines – 1
Definition (4.2.1 (κ, γ, δ)-protocol)
Customers ordered: if queue contains n customers then
customers in positions 1, . . . ,n, n ∈ N. Queue operation:

I a customer of class c requires a negative-exponentially
distributed amount of service with rate µ(c);

I if n > 0 customers present service at rate κ(n) > 0;
I fraction γ(`,n) of service to customer in position `; if

customer in position ` completes service then customers
in positions `+ 1, `+ 2, . . . ,n move to `, `+ 1, . . . ,n − 1;

I arriving customer into position ` with probability δ(`,n + 1);
customers in positions `, `+ 1, . . . ,n move to positions
`+ 1, `+ 2, . . . ,n + 1.

n∑
`=1

γ(`,n) = 1,
n∑

`=1

δ(`,n) = 1.
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Queue disciplines – 2

κ(n) γ(`,n) δ(`,n)
FIFO 1(n > 0) 1(` = 1) 1(` = n)
LIFO-PR 1(n > 0) 1(` = n) 1(` = n)
PS 1(n > 0) 1/n 1/n
INF n 1/n 1/n
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Multi-class LIFO-PR queue – 1
I Customers of class c arrive according to a Poisson

process with rate λ(c), ρ(c) = λ(c)/µ(c) < 1,
I Let c = (c(1), . . . , c(n)) record the class of the customers

in position i , i = 1, . . . ,n,
I Let {N(t)} record the state of the Markov chain at

S = {c : c = (c(1), . . . , c(n)), c(i) ∈ {1, . . . ,C}}.
I Transition rates

q(c,c′) =
{
λ(c), if c′ = (c(1), . . . , c(n), c),
µ(c(n)), if c′ = (c(1), . . . , c(n − 1)).

I Natural guess for time-reversed queue is the queue
multi-class LIFO-PR queue with the same rates:

qr (c,c′) =
{
λ(c), if c′ = (c(1), . . . , c(n), c),
µ(c(n)), if c′ = ((c(1), . . . , c(n − 1)).
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Multi-class LIFO-PR queue – 2

I Guess equilibrium distribution:

π(c) = G
n∏

i=1

ρ(c(i)), c = (c(1), . . . , c(n)) ∈ S.

I Check conditions Kelly’s lemma:

∑
c′ 6=c

q(c,c′) =
C∑

c=1

λ(c) + µ(c(n)) =
∑
c′ 6=c

qr (c,c′).

I For c = (c(1), . . . , c(n)), c′ = (c(1), . . . , c(n), c),
c′′ = (c(1), . . . , c(n − 1)),

π(c)qr (c, c′) = π(c′)q(c′, c) ⇔ λ(c) = ρ(c)µ(c),

π(c)qr (c, c′′) = π(c′′)q(c′′, c) ⇔ ρ(c(n))µ(c(n)) = λ(c(n)),
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Networks: customer types and fixed routes – 1

I Network of J queues.
I Customers of types u = 1, . . . ,U, arrive to a according to

a Poisson process with rate µ0(u), u = 1, . . . ,U.
I Customer type uniquely determines route through the

network along the sequence of queues

r(u,1), r(u,2), . . . , r(u,L(u)).

I Customer may visit the same queue at multiple stages.
I Queue j operates according to the (κj , γj , δj)-protocol.
I Let cj(`) = (uj(`), sj(`)), with uj(`) the type and sj(`) the

stage of the customer in position ` in queue j .
I State of queue j is cj = (cj(1), . . . , cj(nj)).
I State of the network is c = (c1, . . . ,cJ).
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Networks: customer types and fixed routes – 2
I Let {N(t)} record state of Markov chain at state space

S = {c = (c1, . . . ,cJ)}.
I For c = (c1, . . . ,cJ), let

C(u,s)
(`,j),(`′,k)c denote state c′ obtained from state c by

removing customer of type u in stage s
in position ` from queue j and adding
that customer in position `′ to queue k .

I Transition rates (more precise in reader)

q(c,c′) =
µ0(u)δk (`

′
,nk + 1), if c′ = C(u,0)

(0,0),(`′,k)c,

µj(u)κj(nj)γj(`,nj)δk (`
′
k ,nk + 1), if c′ = C(u,s)

(`,j),(`′,k)c,

µj(u)κj(nj)γj(`,nj), if c′ = C(u,L(u))
(`,j),(0,0)c.

Markovian Queues and Stochastic Networks 14 / 32



Networks: customer types and fixed routes – 3

I λj(u, s): arrival rate of type u to queue j = r(u, s). Then

λj(u, s) =
{
µ0(u), if j = r(u, s),
0, otherwise.

I Mean amount of work arriving to queue j per unit time:

ρj =
U∑

u=1

L(u)∑
s=1

λj(u, s)
µj(u)

, j = 1, . . . , J.

I Let ρj(cj(`)) = λj(uj(`), sj(`))/µj(uj(`)).
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Networks: customer types and fixed routes – 4

Theorem (4.3.1 Network with fixed routes)
Let queue j operate according to the (κj , γj , δj)-protocol.
Negative-exponential(1) service requirements for all customers
at all queues. Let

πj(cj) = Gj

n∏
`=1

ρj(cj(`))

κj(`)
, Gj =

[ ∞∑
n=0

n∏
`=1

ρj

κj(`)

]−1

<∞,

Then

π(c) =
J∏

j=1

πj(cj), c ∈ S.
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Networks: customer types and fixed routes – 5

Proof. Natural guess for the reversed process:
I customers of type u arrive according to a Poisson process

with rate µ0(u) to queue L(u)
I and follow the reversed route r(u,L(u)), . . . , r(u,1),
I and that the transition rates have the role of γ and δ

reversed:

qr (c′,c) =
κk (nk + 1)δk (`

′
,nk + 1), if c′ = C(u,0)

(0,0),(`′,k)c,

κk (nk + 1)δk (`
′
k ,nk + 1)γj(`,nj), if c′ = C(u,s)

(`,j),(`′,k)c,

µ0(u)γj(`,nj), if c′ = C(u,L(u))
(`,j),(0,0)c.
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Networks: customer types and fixed routes – 6

∑
c′

q(c,c′) =
U∑

u=1

µ0(u) +
J∑

j=1

nj∑
`j=1

κj(nj)γj(`j ,nj),

∑
c′

qr (c,c′) =
U∑

u=1

µ0(u) +
J∑

k=1

nk∑
`k=1

κk (nk )δk (`k ,nk ),

For c′ = C(u,s)
(`,j),(`′,k)c, with j , k 6= 0, we have

π(c)q(c,c′) = π(c)κj(nj)γj(`,nj)δk (`
′
k ,nk + 1),

π(c′)qr (c′,c)

= π(c)
ρk (ck (`

′
k ))

ρj(cj(`j))

κj(nj)

κk (nk + 1)
κk (nk + 1)δk (`

′
k ,nk + 1)γj(`,nj).
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Quasi-reversibility – 1

I Burke’s theorem: output process from a reversible queue
before t , the input process after t and the state at t
independent.

I Quasi-reversibility formalises this independence property.
I {N(t), t ∈ R} Markov process, state space S, states

n ∈ S, transition rates q(n,n′), equilibrium distribution
π(n).

I Let S(c,n) ⊂ S denote the set of states that may be
obtained from state n when a customer of class c arrives
to the queue.

I Let {Ac(t), t ∈ R} and {Dc(t), t ∈ R} record the arrival
and departure processes of customers of class c.
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Quasi-reversibility – 2

Definition (4.4.1 Quasi-reversibility)
The stationary Markov chain {N(t)} is quasi-reversible if for all
t ∈ R the state at time t , N(t), is independent of
{Ac(s), s > t}, the arrival process of class c customers after
time t , and independent of {Dc(s), s < t}, the departure
process of class c customers prior to time t , c = 1, . . . ,C.

Theorem (4.4.2)
If {N(t)} is a quasi-reversible Markov chain, then

(i) the arrival processes {Ac(t), t ∈ R}, c = 1, . . . ,C, form
independent Poisson processes;

(ii) the departure processes {Dc(t), t ∈ R}, c = 1, . . . ,C,
form independent Poisson processes.
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Quasi-reversibility – 3
Algebraic characterisation of quasi-reversibility:

λ(c) =
∑

n′∈S(c,n)

q(n,n′),

λ(c) =
∑

n′∈S(c,n)

qr (n,n′),

so that ∑
n′∈S(c,n)

π(n)q(n,n′) =
∑

n′∈S(c,n)

π(n′)q(n′,n).

I In equilibrium the flow out of state n due to a customer of
type c arriving to the queue balances with the probability
flow into state n due to a customer of type c departing
from the queue.
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Symmetric queue – 1

Definition (4.2.6 Symmetric queue)
A queue that operates under the (κ, γ, δ)-protocol is called
symmetric if

γ(`,n) = δ(`,n), ` = 1, . . . ,n, n ∈ N.

Theorem (4.4.6)
Let {N(t)} record the state of a symmetric queue to which
customers of class c arrive according to independent Poisson
processes with rate λ(c), c = 1, . . . ,C. Then {N(t)} is
quasi-reversible.
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Symmetric queue – 2

Proof.
I Transition rates, for c = (c(1), . . . , c(n)), c′ 6= c,

q(c, c′) =
{
λ(c)γ(`, n + 1), if c′ = (c(1), . . . , c(`), c, c(`+ 1), . . . , c(n)),
µc(`)κ(n)γ(`, n), if c′ = c(1), . . . , c(`− 1), c(`+ 1), . . . , c(n)).

I Arrivals of class c customers independent Poisson
processes⇒ N(t) independent of {Ac(s), s > t}.

I Transition rates of time-reversed queue: qr = q.
I Arrival process to the time-reversed queue is Poisson

process.
I Arrivals in the time-reversed process coincide with

departures of {N(t)} ⇒ N(t) is independent of
{Dc(s), s < t}.
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Quasi-reversible queues and fixed routes – 1
I Network of J quasi-reversible queues.
I Customers of types u = 1, . . . ,U, arrive to a according to

a Poisson process with rate µ0(u), u = 1, . . . ,U.
I Customer type uniquely determines route along the

sequence of queues r(u,1), r(u,2), . . . , r(u,L(u)).
I State of queue j : {Nj(t)}, state space Sj , transition rates

qj(cj ,c′j), customers of class (u, s) arrive according to
Poisson process with rate

λj(u, s)
∑

c′j∈Sj ((u,s),cj )

qj(cj ,c′j),

I Equilibrium distribution πj = (πj(cj), cj ∈ Sj) satisfies∑
c′j∈Sj (c,cj )

πj(cj)qj(cj ,c′j) =
∑

c′j∈Sj (c,cj )

πj(c′j)qj(c′j ,cj).
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Quasi-reversible queues and fixed routes – 2

I For c = (c1, . . . ,cJ), and j , k = 0, . . . , J, let

C(u,s)
j,k c denote the set of states c′ obtained from

state c by removing the customer of type u
in stage s from queue j and adding that
customer in stage s + 1 to queue k :

(C(u,s)
j,k c)i =


{ci}, if i 6= j , k ,

Sk ((u, s + 1),ck ), if i = k ,

{c′j s.t. cj ∈ Sj((u, s),c′j)}, if i = j ,
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Quasi-reversible queues and fixed routes – 3

I Transition rates, for u = 1, . . . ,U, c 6= c′, c,c′ ∈ S,

q(c, c′) =



qk (ck , c′k ), if c′ ∈ C(u,1)
0,k c, (arrival)

qj(cj , c′j )
qk (ck , c′k )∑

c′k∈Sk ((u,s+1),ck )
qk (ck , c′k )

, if c′ ∈ C(u,s)
j,k c, (routing)

qj(cj , c′j ), if c′ ∈ C(u,L(u))
j,0 c, (departure)

qj(cj , c′j ), if cj , c′j ∈ Sj , c′i = ci , i 6= j , (internal)

I Quasi-reversibility implies that

qk (ck ,c′k )∑
c′k∈Sk ((u,s+1),ck )

qk (ck ,c′k )
=

qk (ck ,c′k )
λk (u, s + 1)

.
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Quasi-reversible queues and fixed routes – 3

Theorem (4.5.1)
Let {N(t)} = {(N1(t), . . . ,NJ(t))} record the state of a network
of J quasi-reversible queues to which customers of types
u = 1, . . . ,U arrive according to independent Poisson
processes with rates µ0(u) to follow a fixed route
r(u,1), r(u,2), . . . , r(u,L(u)), u = 1, . . . ,U. Let Sj , qj , and πj
denote the state space, transition rates and equilibrium
distribution of queue j, j = 1, . . . , J. Then {N(t)} has
equilibrium distribution

π(c1, . . . ,cJ) =
J∏

j=1

πj(cj), (c1, . . . ,cJ) ∈ S = S1 × · · · × SJ .

Markovian Queues and Stochastic Networks 29 / 32



Quasi-reversible queues and fixed routes – 4
Proof. Natural guess for time-reversed process:

I customers of types u = 1, . . . ,U arrive according to a
Poisson process with rate µ0(u),

I route through the network along the sequence of queues
in reversed order r(u,L(u)), . . . , r(u,1)

I each queue operates according to its time-reversed
transition rates: for u = 1, . . . ,U, c 6= c′, c,c′ ∈ S,

qr (c′, c) =



qr
k (c
′
k , ck ), if c′ ∈ C(u,1)

0,k c, (departure)

qr
k (c
′
k , ck )

qr
j (c
′
j , cj)

λj(u, s)
, if c′ ∈ C(u,s)

j,k c, (routing)

qr
j (c
′
j , cj), if c′ ∈ C(u,L(u))

j,0 c, (arrival)

qr
j (c
′
j , cj), if cj , c′j ∈ Sj , c′i = ci , i 6= j . (internal)
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Quasi-reversible queues and fixed routes – 5

I For a routing transition from queue j = r(u, s) to queue
k = r(u, s + 1) it must be that λj(u, s) = λk (u, s + 1),
which implies that

πj(cj)πk (ck )qj(cj ,c′j)
qk (ck ,c′k )
λk (u, s + 1)

= πr (c′j)π
r
k (c
′
k )q

r
k (c
′
k ,ck )

qr
j (c
′
j ,cj)

λj(u, s)
.
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