‘5 "’b

UNIVERSITY OF TWENTE. \_/%
:;; ‘(

Markovian Queues and Stochastic Networks

Lecture 4
Richard J. Boucherie
Stochastic Operations Research

®
)




Time-reversed process and Kelly’s Lemma — 1

» Stationary Markov chain {N(t)}
» Time-reversed process {N"(t)} = {N(7 —t)}.
P(N(t) = n)
P(N(t+ h) =n’)

P(N(t) = n|N(t+h) =n’) =

P(N(t+h) = n'|N(t) = n).

Theorem (4.1.2)

Let {N(t), t € R} be stationary Markov chain with transition
rates g(n,n’), n,n’ € S, and equilibrium distribution =(n),

n € S. The time-reversed process {N(t —t), tc R} isa
conservative, stable, regular, irreducible continuous-time
stationary Markov chain with transition rates q"(n,n’), n,.n’ € S

given by
m(n’)

() q(n’,n),

q'(n,n’) =

and the same equilibrium distribution w(n), n € S.
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Time-reversed process and Kelly’'s Lemma — 2

Theorem (4.1.3 Kelly’s lemma)

Let {N(t), t € R} be a stationary Markov chain with transition
rates g(n,n’), n,n’ € S. If we can find a collection of numbers
g'(n,n’),n,n" € S, such that

Y gnn)=)> g (nn), nes,
n’n n’#n

and a distribution = = (w(n), n € S) such that
7(n)g"(n,n’) = n(n')g(n’,n), n,n €S,

then g'(n,n’), n,n’ € S, are the transition rates of the
time-reversed Markov chain {N(r — t), t € R} andw(n),n € S,
is the equilibrium distribution of both Markov chains.
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Example: M|M|1 queue

» Poisson arrival rate A\ and service rate u, p = \/p < 1.

» Departure rate .

» Guess for arrival rate time-reversed process:
g(nn+1)=AX\

» Further guess could then be ¢'(n,n — 1) =

» Educated guess for the equilibrium distribution is
m(n) = (1—p)p",

» Kelly’s lemma 2 is satisfied.

» Time-reversed process is an M|M|1 queue with Poisson
arrivals at rate A and service rate p.
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Example: Kelly-Whittle network — 1

» Transition rates Kelly-Whittle network:

¢(n)

n-—e; . ..
g(n,n’) = Ll)ﬂipfb ifn"=n-e;+e;,ij=0,....J,
0, otherwise.

» Kelly’s lemma: the time-reversed routing process is the
Markov chain with transition probabilities

Aj .
P = )Tj,-pji’ i,j=0,...,d.

» Natural guess for the transition rates of the time-reversed
process {N'(t)} is, for n # n’,

n—e; . .
qr(n n,): Muip”]"7 Ifn/:n_ei+ej7 I,j=0,...,J,
0, otherwise.
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Example: Kelly-Whittle network — 2

» Observe that

Sanm) - 3 e Z vin—e),

n’#n i,j=0 ¢(n

> q'(nn) = Z 1/1 i,Of/ = z 0 - ei)ui)\*{Pji => U
n’#n i,j=0 i,j=0 ¢(n) Ai i=0

» Educated guess: 7(n) = Gkw¢(n) H/‘-’:1 p/'-7f, nes,
» Then

(n — e,—)

") (1) = Guawo(n) Hp"”” o)

Aj
x’ Piji

J
—Opi+0ki n—e;
Grkwo(n — e; + €)) H pzk a k’ﬁﬂ/ﬁﬁ
k=1 ! /

= n(n—ei+e)g(n—e +e;,n).
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Queue disciplines — 1

Definition (4.2.1 (k, v, 0)-protocol)

Customers ordered: if queue contains n customers then
customers in positions 1,...,n, n € N. Queue operation:

» a customer of class ¢ requires a negative-exponentially
distributed amount of service with rate u(c);

» if n > 0 customers present service at rate «(n) > 0;

» fraction ~(¢, n) of service to customer in position /; if
customer in position £ completes service then customers
in positions ¢/ +1,/+2,....,nmoveto /,/+1,....,n—1;

» arriving customer into position ¢ with probability §(¢, n+ 1);
customers in positions ¢,¢ 4+ 1, ..., n move to positions
C+1,0+2,...,n+1.

iw(&n):L ia(z,n)zm
=1

/=1 =
UNIVERSITY OF TWENTE. Markovian Queues and Stochastic Networks 8/32




Queue disciplines — 2

k(n) y(¢,n) | 4(¢,n)
FIFO I(n>0)|1(¢=1) | 1(¢=n)
LIFO-PR | 1(n>0) | 1(¢{ =n) | 1(£ = n)
PS I(n>0)|1/n 1/n
INF n 1/n 1/n
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Multi-class LIFO-PR queue — 1

>

Customers of class ¢ arrive according to a Poisson
process with rate \(c), p(c) = A(c)/u(c) < 1,
Letc = (¢(1),...,c(n)) record the class of the customers
in position i, i=1,...,n,
Let {N(t)} record the state of the Markov chain at
S={c:c=(c(1),...,c(n), c(i) e {1,...,C}}.
Transition rates
n_ § Ae), ife’ = (c(1),...,c(n), c),
€)= { Lel. e (1) et
Natural guess for time-reversed queue is the queue
multi-class LIFO-PR queue with the same rates:

’ ~n_ | Ae), ife’=(c(1),...,c(n),c),
q (°’°)—{ u(e(n)), ife’ = ((c(1),....c(n—1)).
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Multi-class LIFO-PR queue — 2

» Guess equilibrium distribution:

» Check conditions Kelly’s lemma:

Cc

" a(e.¢) = YA +ulen) = Y q'(e. ).

c/#c c=1 c'#c

» Forc = (c(1),...,¢c(n)), ¢ = (c(1),...,c(n),c),
¢’ =(c(1),...,c(n—1)),

m(e)q'(e.¢’) = (c)g(c’.e) < A(c) = p(c)u(0),
m(e)q'(e,c”) = n(c")q(c”,¢) <« p(c(n))u(c(n) = A(c(n)),
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Networks: customer types and fixed routes — 1

» Network of J queues.

» Customers of types u=1,..., U, arrive to a according to
a Poisson process with rate po(u), u=1,...,U.

» Customer type uniquely determines route through the
network along the sequence of queues

r(u,1),r(u,2),...,r(u, L(u)).

» Customer may visit the same queue at multiple stages.

» Queue j operates according to the (s, v;, J;)-protocol.

» Let ¢i(£) = (y;(£), sj(£)), with u;(¢) the type and s;(¢) the
stage of the customer in position ¢ in queue j.

» State of queue jis ¢; = (¢;(1),...,¢i(n)).

» State of the network is ¢ = (¢4,...,¢y).
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Networks: customer types and fixed routes — 2

» Let {N(t)} record state of Markov chain at state space
S={c=(cy,...,cy)}.
» Forc =(cq,...,cy), let

C((lf’}.f)( # € denote state ¢’ obtained from state ¢ by

removing customer of type u in stage s
in position ¢ from queue j and adding
that customer in position ¢’ to queue k.

» Transition rates (more precise in reader)

q(c,c’) =
— . ,0
po(U)dk(€ it 1), 3 if ¢’ = C(EOZ,QS)}(E',k)C’
piU)i () (2, y), it ¢" = C(,}).0.0)C
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Networks: customer types and fixed routes — 3

» \i(u, s): arrival rate of type u to queue j = r(u, s). Then

_ | po(u), ifj=r(u,s),
AU, 8) = { 0, otherwise.

» Mean amount of work arriving to queue j per unit time:

U L)
Z Z 1
=1 s=1
> Let pj(¢i(£)) = Ni(y;(€), si(£))/i(u;(£)).
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Networks: customer types and fixed routes — 4

Theorem (4.3.1 Network with fixed routes)

Let queue j operate according to the (x;,;, 6;)-protocol.

Negative-exponential(1) service requirements for all customers
at all queues. Let

1
T pi(gi(0)) i op
7r~(c-):G-||pj D, [E || j] < 00,
i jg:1 rj(€) n=0 ¢=1 rj(£)
Then

J
C) = H 71-j'(cj)v
j=1
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Networks: customer types and fixed routes — 5

Proof. Natural guess for the reversed process:

» customers of type u arrive according to a Poisson process
with rate po(u) to queue L(u)

» and follow the reversed route r(u, L(u)), ..., r(u,1),
» and that the transition rates have the role of v and §

reversed:
ql’(c/’ C) -
1)d Z/ 1 if _ C(U O)
kk(ng +1)0k (€, ng + 1), if o/ %00 S
H'k(nk + 1)6/((2;(7 Nk + 1)’}?(?, nj)a if e/ = Cﬁzj‘;)(él7 )C,
po(u)y;(4, ny), it o — oluLw) ‘o

(¢.1),(0,0)
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Networks: customer types and fixed routes — 6

U J 0
> gle,¢) = > po(u) Z Z (), ny),
c/ u=1 j=1 =1
U J o ng
doa'(ec) = D po(w)+> Z (Mk) 3k (Lk, M),
¢ u—1 k=1 (=1

Forc¢' = C(lf’j))(z, )C With j, k # 0, we have
(e)q(e.¢) = n(€)ri(m) (L, n)dk(C, n + 1),
m(c')q'(c’,c)

= n(c)”

pr(ck(ty))  ri(ny)
pi(Ci(£)) rk(nk +1)

kk(Nk + 1)5k(z;<7 Nk + 1)’7]@7 nj)‘
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Quasi-reversibility — 1

» Burke’s theorem: output process from a reversible queue
before t, the input process after t and the state at ¢
independent.

» Quasi-reversibility formalises this independence property.

» {N(t), t € R} Markov process, state space S, states
n € S, transition rates g(n, n’), equilibrium distribution
w(n).

» Let S(c,n) C S denote the set of states that may be
obtained from state n when a customer of class c arrives
to the queue.

» Let {Ac(t), t € R} and {D.(t), t € R} record the arrival
and departure processes of customers of class c.
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Quasi-reversibility — 2

Definition (4.4.1 Quasi-reversibility)

The stationary Markov chain {N(t)} is quasi-reversible if for all
t € R the state at time £, N(t), is independent of

{Ac(8), s > t}, the arrival process of class ¢ customers after
time t, and independent of {D.(s), s < t}, the departure
process of class ¢ customers priortotime t,c=1,...,C.

Theorem (4.4.2)
If{N(t)} is a quasi-reversible Markov chain, then

(i) the arrival processes {A¢(t), te R}, c=1,...,C, form
independent Poisson processes;

(i) the departure processes {D.(t), te R}, c=1,...,C,
form independent Poisson processes.
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Quasi-reversibility — 3
Algebraic characterisation of quasi-reversibility:

Ao = Y qnm),

n’eS(c,n)

so that

Y. w(ngnn)= 3 =(n)g(n’,n).

n’eS(c,n) n’eS(c,n)

» In equilibrium the flow out of state n due to a customer of
type c arriving to the queue balances with the probability
flow into state n due to a customer of type ¢ departing
from the queue.
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Symmetric queue — 1

Definition (4.2.6 Symmetric queue)
A queue that operates under the (x, v, 0)-protocol is called
symmetric if

~(,n)=46(¢,n), £=1,....n, neN.

Theorem (4.4.6)

Let {N(t)} record the state of a symmetric queue to which
customers of class ¢ arrive according to independent Poisson
processes with rate A\(c), c=1,...,C. Then {N(t)} is
quasi-reversible.
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Symmetric queue — 2

Proof.
» Transition rates, forc = (¢(1),...,¢(n)), ¢

): -
q(m,):{ Ay (e,n+1), z g), so(f),c.e(b+1),...,c(n),

(c(1
tie(ey(n)y(£, n), lf o(1)....e(t — 1),0(¢ +1),.....c(m).

» Arrivals of class ¢ customers independent Poisson
processes = N(t) independent of {Aq(s), s > t}.
» Transition rates of time-reversed queue: 9" = q.

» Arrival process to the time-reversed queue is Poisson
process.

» Arrivals in the time-reversed process coincide with
departures of {N(t)} = N(t) is independent of

{D¢(s), s < t}.
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Quasi-reversible queues and fixed routes — 1

» Network of J quasi-reversible queues.

» Customers of types u=1,..., U, arrive to a according to
a Poisson process with rate po(u), u=1,...,U.

» Customer type uniquely determines route along the
sequence of queues r(u,1),r(u,2),...,r(u, L(u)).

» State of queue j: {N;(t)}, state space S, transition rates
gj(c), ¢;), customers of class (u, s) arrive according to
Poisson process with rate

N(u,s) > glec)),

C;ES]'((U,S),C}')

» Equilibrium distribution 7; = (;(c;), ¢; € S;) satisfies

> mlepgleie) = > mlchgc)cp).

C;ESI'(C,CI‘) C//-GS/'(C,C/')
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Quasi-reversible queues and fixed routes — 2

» Forc=(cq,...,cy),and j,k=0,...,J, let

Cﬁ‘,fs)c denote the set of states ¢’ obtained from
state ¢ by removing the customer of type u
in stage s from queue j and adding that
customer in stage s + 1 to queue k:

{ci}, it i #J, K,
(C%e)i =1 Sk((u,s+1),¢ex), ifi =k,
{cjst cje Si((u,s),¢))}, ifi=]
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Quasi-reversible queues and fixed routes — 3

» Transition rates, foru=1,...,U,c#¢/,¢c,c’ € S,

q(c,c’) =
aqk(ck, €}, it¢’ e ci4 e, (arrival)
gx(Ck, Ck) g AWS) -
gi(c;, c;) , ifc’ € G\ ¢, (routing)
e Zc;(esk((u,s-m),ck) k(Ck, C) rk
gi(cj, c)), ifc’ € C].(,‘(’)’L(“))c, (departure)
g(cj, ¢)), ifej,cj€ S, ¢i=cj, i #j, (internal)
» Quasi-reversibility implies that
ak(Ck, C}) _ gk(ck, c)

Zc’esk( (us+1).¢¢) k(Ck C) - M(uys+1)
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Quasi-reversible queues and fixed routes — 3

Theorem (4.5.1)

Let {N(t)} = {(N4(t),...,Ny(t))} record the state of a network
of J quasi-reversible queues to which customers of types
u=1,..., U arrive according to independent Poisson
processes with rates o (u) to follow a fixed route
r(u,1),r(u,2),...,r(u,L(u)), u=1,...,U. Let S}, q;, and ;
denote the state space, transition rates and equilibrium
distribution of queue j, j=1,...,J. Then {N(t)} has
equilibrium distribution

J
(.:1,...7 H C1,...,CJ)ES=S1><~-><SJ.
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Quasi-reversible queues and fixed routes — 4

Proof. Natural guess for time-reversed process:
» customers of types u =1, ..., U arrive according to a
Poisson process with rate po(u),
» route through the network along the sequence of queues

in reversed order r(u, L(u)),...,r(u,1)
» each queue operates according to its time-reversed

transition rates: foru=1,...,U,c #¢/,¢,¢’ € S,
qr(c/7 c) —
qi(ch, ck), ife’ e C§3e, (departure)
g(ej.c) . ,
r(ch, ck) 2 i el e cWde, routin
qk( k> k) )\j(U7 S) | € i,k ( g)
q/(cj,c;), ifc’ € Cj(y‘(’)’L(“))c, (arrival)
qi(cj,c), ifcj,ci €S, ¢i=ci, i#j. (internal)
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Quasi-reversible queues and fixed routes — 5

» For a routing transition from queue j = r(u, s) to queue
k = r(u,s+ 1) it must be that \;(u, s) = Ak(u,s + 1),
which implies that

q/(c).c)
)\j(U, S) .

gk(ck, C,
e R CI R (AL
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