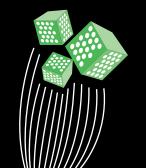
UNIVERSITY OF TWENTE.

Markovian Queues and Stochastic Networks

Lecture 3



Open network of M|M|1 queues

- ► Evolution number of customers in the queues recorded by Markov chain $\{N(t) = (N_1(t), ..., N_J(t)), t \in \mathbb{R}\}$
- ▶ State space $S \subseteq \mathbb{N}_0^J$, states $\mathbf{n} = (n_1, \dots, n_J)$.
- ▶ If $\{N(t)\}$ is in state **n** and a customer routes from queue i to queue j then the next state is $\mathbf{n} e_i + e_j$, $i, j = 0, \dots, J$.
- ► Queue 0 is introduced to represent the outside.
- ► If a customer routes from queue i to queue 0 then this customer leaves the network
- ▶ and if a customer routes from queue 0 to queue j then this customers enters the network at queue j, j = 1, ..., J.
- ▶ State space $S = \mathbb{N}_0^J$.
- ► The transition rates of $\{N(t)\}$ for an open network are, for $\mathbf{n} \neq \mathbf{n}', \mathbf{n}, \mathbf{n}' \in S$,

$$q(\mathbf{n},\mathbf{n}') = \left\{ egin{array}{ll} \mu_i p_{ij}, & ext{if } \mathbf{n}' = \mathbf{n} - e_i + e_j, \ i,j = 0,\dots,J, \\ 0, & ext{otherwise}. \end{array}
ight.$$

Open network of M|M|1 queues

Theorem (3.1.4 Equilibrium distribution)

Consider the Markov chain $\{N(t)\}$ at state space $S = \mathbb{N}_0^J$ for the open network of M|M|1 queues. Assume the routing matrix $P = (p_{ij})$ is irreducible and let $\{\lambda_j\}$ be the unique solution of the traffic equations. If $\rho_j := \lambda_j/\mu_j < 1$, $j = 1, \ldots, J$, then $\{N(t)\}$ has unique product-form equilibrium distribution

$$\pi(\mathbf{n}) = \prod_{j=1}^J (1-\rho_j) \rho_j^{n_j} = \prod_{j=1}^J \pi_j(n_j), \quad \mathbf{n} \in \mathcal{S}.$$

Moreover, the equilibrium distribution satisfies partial balance, for all $\mathbf{n} \in S$, i = 0, ..., J,

$$\sum_{i=0}^J \left\{ \pi(\mathbf{n}) q(\mathbf{n}, \mathbf{n} - \mathbf{e}_i + \mathbf{e}_j) - \pi(\mathbf{n} - \mathbf{e}_i + \mathbf{e}_j) q(\mathbf{n} - \mathbf{e}_i + \mathbf{e}_j, \mathbf{n})
ight\} = 0.$$

Proof of Theorem 3.1.4

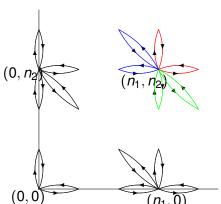
$$\begin{split} &\sum_{j=0}^{J} \left\{ m(\mathbf{n}) q(\mathbf{n}, \mathbf{n} - \mathbf{e}_i + \mathbf{e}_j) - m(\mathbf{n} - \mathbf{e}_i + \mathbf{e}_j) q(\mathbf{n} - \mathbf{e}_i + \mathbf{e}_j, \mathbf{n}) \right\} \\ &= \sum_{j=0}^{J} \left\{ \prod_{k=1}^{J} \rho_k^{n_k} \mu_i \rho_{ij} \mathbb{1}(\mathbf{n} - \mathbf{e}_i \in \mathbb{N}_0^J) - \prod_{k=1}^{J} \rho_k^{n_k - \delta_{ki} + \delta_{kj}} \mu_j \rho_{ji} \mathbb{1}(\mathbf{n} - \mathbf{e}_i \in \mathbb{N}_0^J) \right\} \\ &\sum_{j=0}^{J} \left\{ m(\mathbf{n}) q(\mathbf{n}, \mathbf{n} - \mathbf{e}_i + \mathbf{e}_j) - m(\mathbf{n} - \mathbf{e}_i + \mathbf{e}_j) q(\mathbf{n} - \mathbf{e}_i + \mathbf{e}_j, \mathbf{n}) \right\} \mathbb{1}(i = 0) \\ &= \left\{ \mu_0 - \sum_{j=1}^{J} \lambda_j \rho_{j0} \right\} \prod_{k=1}^{J} \rho_k^{n_k} \mathbb{1}(\mathbf{n} \in \mathbb{N}_0^J) = 0, \\ &\sum_{j=0}^{J} \left\{ m(\mathbf{n}) q(\mathbf{n}, \mathbf{n} - \mathbf{e}_i + \mathbf{e}_j) - m(\mathbf{n} - \mathbf{e}_i + \mathbf{e}_j) q(\mathbf{n} - \mathbf{e}_i + \mathbf{e}_j, \mathbf{n}) \right\} \mathbb{1}(i \neq 0) \end{split}$$

$$= \left\{ \lambda_i - \mu_0 \rho_{0i} - \sum_{i=1}^J \lambda_j \rho_{ji} \right\} \prod_{k=1}^J \rho_k^{n_k - \delta_{ki}} \mathbb{1}(\mathbf{n} - \mathbf{e}_i \in \mathbb{N}_0^J) \mathbb{1}(i \neq 0) = 0.$$

Partial balance

Moreover, the equilibrium distribution satisfies partial balance, for all $\mathbf{n} \in \mathcal{S}$, $i = 0, \dots, J$,

$$\sum_{i=0}^{J} \left\{ \pi(\mathbf{n}) q(\mathbf{n}, \mathbf{n} - \mathbf{e}_i + \mathbf{e}_j) - \pi(\mathbf{n} - \mathbf{e}_i + \mathbf{e}_j) q(\mathbf{n} - \mathbf{e}_i + \mathbf{e}_j, \mathbf{n}) \right\} = 0.$$



Closed network of M|M|1 queues

Theorem (3.1.5 Equilibrium distribution)

Consider Markov chain $\{N(t)\}$ at state space $S = S_M = \{\mathbf{n} : \sum_{j=1}^J n_j = M\}$ for the closed network of M|M|1 queues containing M customers. Assume $P = (p_{ij})$ is irreducible and let $\{\lambda_j\}$ be the unique solution of the traffic equations such that $\sum_{j=1}^J \lambda_j = 1$. Let $\rho_j := \lambda_j/\mu_j$. Then $\{N(t)\}$ has unique product-form equilibrium distribution

$$\pi(\mathbf{n}) = G_M \prod_{j=1}^J \rho_j^{n_j}, \quad \mathbf{n} \in \mathcal{S}, \quad G_M = \left[\sum_{\mathbf{n} \in \mathcal{S}} \prod_{j=1}^J \rho_i^{n_j}\right]^{-1}.$$

Moreover, the equilibrium distribution satisfies partial balance, for all $\mathbf{n} \in \mathcal{S}$, i = 1, ..., J,

$$\sum_{i=1}^{J} \left\{ \pi(\mathbf{n}) q(\mathbf{n}, \mathbf{n} - \mathbf{e}_i + \mathbf{e}_j) - \pi(\mathbf{n} - \mathbf{e}_i + \mathbf{e}_j) q(\mathbf{n} - \mathbf{e}_i + \mathbf{e}_j, \mathbf{n}) \right\} = 0.$$

Closed network of M|M|1 queues

Algorithm (3.1.8 Buzen's Algorithm)

Define
$$G(m,j)$$
, $m = 0, ..., M$, $j = 1, ..., J$. Set $G(0,j) = 1, j = 1, ..., J$, $G(m,1) = \rho_1^m, m = 0, ..., M$.

For
$$j = 2, ..., J$$
, $m = 1, ..., M$, do

$$G(m, j) = G(m, j - 1) + \rho_j G(m - 1, j).$$

Then $G_M = G(M, J)^{-1}$.

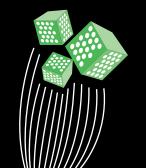
▶ Buzen's algorithm yields G_m , m = 1, ..., M, and marginals and means:

$$\pi_{j}(n_{j}) = G_{M} \rho_{j}^{n_{j}} [G_{M-n_{j}}^{-1} - \rho_{j} G_{M-n_{j}-1}^{-1}], \quad n_{j} = 0, \dots, M-1,
\pi_{j}(M) = G_{M} \rho_{j}^{n_{j}},
\mathbb{E}[N_{j}] = \sum_{m=1}^{M} \rho_{j}^{m} \frac{G_{M}}{G_{M}}.$$

UNIVERSITY OF TWENTE.

Markovian Queues and Stochastic Networks

Lecture 3



$$\begin{split} \sum_{j=0}^{J} \left\{ m(\mathbf{n}) q(\mathbf{n}, \mathbf{n} - \mathbf{e}_i + \mathbf{e}_j) - m(\mathbf{n} - \mathbf{e}_i + \mathbf{e}_j) q(\mathbf{n} - \mathbf{e}_i + \mathbf{e}_j, \mathbf{n}) \right\} \\ &= \sum_{j=0}^{J} \left\{ \prod_{k=1}^{J} \rho_k^{n_k} \mu_i p_{ij} \mathbb{1}(\mathbf{n} - \mathbf{e}_i \in \mathbb{N}_0^J) - \prod_{k=1}^{J} \rho_k^{n_k - \delta_{ki} + \delta_{kj}} \mu_j p_{ji} \mathbb{1}(\mathbf{n} - \mathbf{e}_i \in \mathbb{N}_0^J) \right\} \\ &\sum_{j=0}^{J} \left\{ m(\mathbf{n}) q(\mathbf{n}, \mathbf{n} - \mathbf{e}_i + \mathbf{e}_j) - m(\mathbf{n} - \mathbf{e}_i + \mathbf{e}_j) q(\mathbf{n} - \mathbf{e}_i + \mathbf{e}_j, \mathbf{n}) \right\} \mathbb{1}(i \neq 0) \\ &= \left\{ \sum_{j=0}^{J} \lambda_i p_{ij} - \mu_0 p_{0i} - \sum_{j=1}^{J} \lambda_j p_{jj} \right\} \prod_{k=1}^{J} \rho_k^{n_k - \delta_{ki}} \mathbb{1}(\mathbf{n} - \mathbf{e}_i \in \mathbb{N}_0^J) \mathbb{1}(i \neq 0) = 0. \end{split}$$

$$\begin{split} \sum_{j=0}^{J} \left\{ m(\mathbf{n}) q(\mathbf{n}, \mathbf{n} - \mathbf{e}_i + \mathbf{e}_j) - m(\mathbf{n} - \mathbf{e}_i + \mathbf{e}_j) q(\mathbf{n} - \mathbf{e}_i + \mathbf{e}_j, \mathbf{n}) \right\} \\ \text{state dependent sojourn time in state } \mathbf{n} \colon q(\mathbf{n}) \to \frac{q(\mathbf{n})}{\phi(\mathbf{n})} \\ \neq & \sum_{i=0}^{J} \left\{ m(\mathbf{n}) \frac{q(\mathbf{n}, \mathbf{n} - \mathbf{e}_i + \mathbf{e}_j)}{\phi(\mathbf{n})} - m(\mathbf{n} - \mathbf{e}_i + \mathbf{e}_j) \frac{q(\mathbf{n} - \mathbf{e}_i + \mathbf{e}_j, \mathbf{n})}{\phi(\mathbf{n} - \mathbf{e}_i + \mathbf{e}_j)} \right\} \end{split}$$

$$\sum_{j=0}^{J} \left\{ m(\mathbf{n}) q(\mathbf{n}, \mathbf{n} - \mathbf{e}_i + \mathbf{e}_j) - m(\mathbf{n} - \mathbf{e}_i + \mathbf{e}_j) q(\mathbf{n} - \mathbf{e}_i + \mathbf{e}_j, \mathbf{n}) \right\}$$

$$\text{state dependent sojourn time in state } \mathbf{n} \colon q(\mathbf{n}) \to \frac{q(\mathbf{n})}{\phi(\mathbf{n})}$$

$$\text{also scale } m(\mathbf{n}) \colon \text{fraction of time spent in state } \mathbf{n}$$

$$= \sum_{j=0}^{J} \left\{ \phi(\mathbf{n}) m(\mathbf{n}) \frac{q(\mathbf{n}, \mathbf{n} - \mathbf{e}_i + \mathbf{e}_j)}{\phi(\mathbf{n})} - \phi(\mathbf{n} - \mathbf{e}_i + \mathbf{e}_j) m(\mathbf{n} - \mathbf{e}_i + \mathbf{e}_j) \frac{q(\mathbf{n} - \mathbf{e}_i + \mathbf{e}_j, \mathbf{n})}{\phi(\mathbf{n} - \mathbf{e}_i + \mathbf{e}_j)} \right\}$$

$$\sum_{j=0}^{J} \{m(\mathbf{n})q(\mathbf{n},\mathbf{n}-\mathbf{e}_i+\mathbf{e}_j)-m(\mathbf{n}-\mathbf{e}_i+\mathbf{e}_j)q(\mathbf{n}-\mathbf{e}_i+\mathbf{e}_j,\mathbf{n})\}$$
 state dependent sojourn time in state $\mathbf{n}: q(\mathbf{n}) \to \frac{q(\mathbf{n})}{\phi(\mathbf{n})}$ also scale $m(\mathbf{n})$: fraction of time spent in state \mathbf{n} and add a function $\psi(\mathbf{n}-\mathbf{e}_i)$ to the rates
$$q(\mathbf{n},\mathbf{n}-\mathbf{e}_i+\mathbf{e}_i)$$

$$\begin{split} &= \sum_{j=0}^{J} \left\{ \phi(\mathbf{n}) m(\mathbf{n}) \psi(\mathbf{n} - \mathbf{e}_i) \frac{q(\mathbf{n}, \mathbf{n} - \mathbf{e}_i + \mathbf{e}_j)}{\phi(\mathbf{n})} \right. \\ &\left. - \phi(\mathbf{n} - \mathbf{e}_i + \mathbf{e}_j) m(\mathbf{n} - \mathbf{e}_i + \mathbf{e}_j) \psi(\mathbf{n} - \mathbf{e}_i) \frac{q(\mathbf{n} - \mathbf{e}_i + \mathbf{e}_j, \mathbf{n})}{\phi(\mathbf{n} - \mathbf{e}_i + \mathbf{e}_j)} \right\} \end{split}$$

Markov chain $\{N(t)\}$ at state space $S \subseteq \mathbb{N}_0^J$ with transition rates, for $\mathbf{n}' \neq \mathbf{n}$,

$$q(\mathbf{n}, \mathbf{n}') = \begin{cases} \frac{\psi(\mathbf{n} - \mathbf{e}_i)}{\phi(\mathbf{n})} \mu_i p_{ij}, & \text{if } \mathbf{n}' = \mathbf{n} - \mathbf{e}_i + \mathbf{e}_j, \ i, j = 0, \dots, J, \\ 0, & \text{otherwise,} \end{cases}$$

where $\psi: \mathbb{N}_0^J \to [0, \infty)$ and $\phi: \mathbb{N}_0^J \to (0, \infty)$.

We will consider closed networks as special case of open networks with $\mu_0 = 0$ and $p_{i0} = 0$, i = 1, ..., J.

Theorem (Equilibrium distribution: Kelly-Whittle network) Consider the Kelly-Whittle network $\{N(t)\}$ at state space $S \subseteq \mathbb{N}_0^J$. Assume the routing matrix $P = (p_{ij})$ is irreducible and let $\{\lambda_j\}$ be solution of traffic equations. Let $\rho_j = \lambda_j/\mu_j$. Assume

$$G_{KW}^{-1} = \sum_{\mathbf{n} \in \mathcal{S}} \phi(\mathbf{n}) \prod_{j=1}^{\sigma} \rho_j^{n_j} < \infty,$$

and that $\{N(t)\}$ is irreducible. Then

$$\pi(\mathbf{n}) = G_{\mathcal{KW}}\phi(\mathbf{n})\prod_{i=1}^{\sigma} \rho_j^{n_j}, \quad \mathbf{n} \in \mathcal{S}.$$

Moreover, π satisfies partial balance, for all $\mathbf{n} \in S$, i = 0, ..., J, $\sum_{j=1}^{J} \{ \pi(\mathbf{n}) q(\mathbf{n}, \mathbf{n} - \mathbf{e}_i + \mathbf{e}_j) - \pi(\mathbf{n} - \mathbf{e}_i + \mathbf{e}_j) q(\mathbf{n} - \mathbf{e}_i + \mathbf{e}_j, \mathbf{n}) \} = 0.$

- Poisson arrivals
- ► Independent queues:

$$q(\mathbf{n},\mathbf{n}-\mathbf{e}_i+\mathbf{e}_j) = \left\{ egin{array}{ll} \kappa_i(n_i)\mu_ip_{ij}, & i,j=1,\ldots,J, \ \kappa_i(n_i)\mu_ip_{i0}, & i=1,\ldots,J, \ \mu_0p_{0j}, & j=1,\ldots,J, \end{array}
ight.$$

for
$$\kappa_i: \mathbb{N}_0: \to (0, \infty), i=1,\ldots,J.$$
 Typical examples are, for $n \in \mathbb{N}, i=1,\ldots,J$,

$$\kappa_i(n) = 1,$$
 single server queue, $\kappa_i(n) = \min(n, s),$ s server queue, $\kappa_i(n) = n,$ infinite server queue.

- ► Poisson arrivals
- ► Independent queues:

$$q(\mathbf{n}, \mathbf{n} - \mathbf{e}_i + \mathbf{e}_j) = \begin{cases} \kappa_i(n_i)\mu_i p_{ij}, & i, j = 1, \dots, J, \\ \kappa_i(n_i)\mu_i p_{i0}, & i = 1, \dots, J, \\ \mu_0 p_{0j}, & j = 1, \dots, J, \end{cases}$$

for
$$\kappa_i : \mathbb{N}_0 : \rightarrow (0, \infty)$$
, $i = 1, \dots, J$.
Let $\eta_i : \mathbb{N}_0 \rightarrow (0, \infty)$, $i = 1, \dots, J$,

$$\eta_i(n)^{-1} = \prod_{i=1}^n \kappa_i(r), \quad n \in \mathbb{N}_0, \ i = 1, \ldots, J.$$

Then

$$\kappa_i(n) = \frac{\eta_i(n-1)}{\eta_i(n)}, \quad n \in \mathbb{N}, \ i=1,\ldots,J,$$

Partial balance - 2

Transition balance:

$$q(\mathbf{n}, \mathbf{n} - \mathbf{e}_i + \mathbf{e}_i) = q(\mathbf{n} - \mathbf{e}_i + \mathbf{e}_i, \mathbf{n}), \quad i, j = 0, \dots, J,$$

Detailed balance:

$$\pi(\boldsymbol{n})q(\boldsymbol{n},\boldsymbol{n}-\boldsymbol{e}_{i}+\boldsymbol{e}_{j}) \quad = \quad \pi(\boldsymbol{n}-\boldsymbol{e}_{i}+\boldsymbol{e}_{j})q(\boldsymbol{n}-\boldsymbol{e}_{i}+\boldsymbol{e}_{j},\boldsymbol{n}), \quad i,j=0,\ldots,J,$$

Partial balance:

$$\sum_{i=0}^{J} \pi(\mathbf{n}) q(\mathbf{n}, \mathbf{n} - \mathbf{e}_i + \mathbf{e}_j) = \sum_{i=0}^{J} \pi(\mathbf{n} - \mathbf{e}_i + \mathbf{e}_j) q(\mathbf{n} - \mathbf{e}_i + \mathbf{e}_j, \mathbf{n}), i = 0, \dots, J,$$

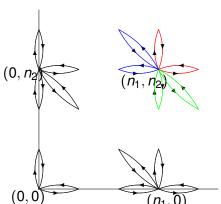
Global balance:

$$\sum_{i,j=0}^J \pi(\mathbf{n}) q(\mathbf{n},\mathbf{n}-\mathbf{e}_i+\mathbf{e}_j) \quad = \quad \sum_{i,j=0}^J \pi(\mathbf{n}-\mathbf{e}_i+\mathbf{e}_j) q(\mathbf{n}-\mathbf{e}_i+\mathbf{e}_j,\mathbf{n}).$$

Partial balance -1

Moreover, the equilibrium distribution satisfies partial balance, for all $\mathbf{n} \in \mathcal{S}$, $i = 0, \dots, J$,

$$\sum_{i=0}^{J} \left\{ \pi(\mathbf{n}) q(\mathbf{n}, \mathbf{n} - \mathbf{e}_i + \mathbf{e}_j) - \pi(\mathbf{n} - \mathbf{e}_i + \mathbf{e}_j) q(\mathbf{n} - \mathbf{e}_i + \mathbf{e}_j, \mathbf{n}) \right\} = 0.$$



Interpretation of the traffic equations

► Average number of customers moving from queue *i* to queue *j* is (see reader for proper definition)

$$\lambda_{ij} = \mathbb{E}q(N, N - \mathbf{e}_i + \mathbf{e}_j) = \sum_{\mathbf{n} \in S} \pi(\mathbf{n})q(\mathbf{n}, \mathbf{n} - \mathbf{e}_i + \mathbf{e}_j).$$

- ► For network with Poisson arrivals $\psi(\mathbf{n}) = \phi(\mathbf{n}), \mathbf{n} \in \mathbb{N}_0^J$
- ▶ Then, with $\lambda_0 = \mu_0$,

$$\lambda_{ij} = \sum_{\mathbf{n} \in \mathcal{S}} G_{KW} \phi(\mathbf{n}) \prod_{j=1}^{J} \rho_j^{n_j} \frac{\phi(\mathbf{n} - \mathbf{e}_i)}{\phi(\mathbf{n})} \mu_i \rho_{ij}$$

$$= \lambda_i \rho_{ij} \sum_{\mathbf{n} \in \mathcal{S}, n_i > 0} G_{KW} \phi(\mathbf{n} - \mathbf{e}_i) \prod_{j=1}^J \rho_j^{n_j - \delta_{ij}} = \lambda_i \rho_{ij}.$$

▶ We may interpret the solution λ_j , j = 1, ..., J, of traffic equations as the arrival rate of customers.

UNIVERSITY OF TWENTE.

Markovian Queues and Stochastic Networks

Lecture 3
Richard J. Boucherie
Stochastic Operations Research



State-dependent routing; blocking protocols – 1

A Kelly-Whittle network with state-dependent routing is a Markov chain $\{N(t)\}$ at state space $S \subseteq \mathbb{N}_0^J$ with transition rates, for $\mathbf{n}' \neq \mathbf{n}$,

$$q(\mathbf{n},\mathbf{n}') = \left\{ \begin{array}{ll} \frac{\psi(\mathbf{n}-\mathbf{e}_i)\theta_i(\mathbf{n}-\mathbf{e}_i)}{\phi(\mathbf{n})}\mu_ib_{ij}(\mathbf{n}-\mathbf{e}_i), & \mathbf{n}'=\mathbf{n}-\mathbf{e}_i+\mathbf{e}_j, \\ 0, & \text{otherwise,} \end{array} \right.$$

where $\phi: S \to (0, \infty)$ and $\psi, \theta_i, b_{ij}: S^b \to [0, \infty)$, and S^b is the set of base states:

$$\mathcal{S}^b = \{\mathbf{m} \in \mathbb{N}_0^J : \exists i, j \in \{0, \dots, J\}, \ i \neq j \text{ s.t. } \mathbf{m} + \mathbf{e}_i \text{ and } \mathbf{m} + \mathbf{e}_j \in \mathcal{S}\}.$$

Without loss of generality $\sum_{i=0}^{J} b_{ij}(\mathbf{m}) = 1$.

State-dependent routing; blocking protocols – 2

Theorem (3.4.1 Equilibrium distribution)

Consider the Kelly-Whittle network with state-dependent routing $\{N(t)\}$ at state space $S \subseteq \mathbb{N}_0^J$. Assume a solution $H: S \to [0,\infty)$ exists of the state-dependent traffic equations, for $\mathbf{n} \in S$, $i=0,\ldots,J$:

$$\sum_{j=0}^{J} H(\mathbf{n})\theta_{i}(\mathbf{n} - \mathbf{e}_{i})b_{ij}(\mathbf{n} - \mathbf{e}_{i}) = H(\mathbf{n} - \mathbf{e}_{i})\theta_{0}(\mathbf{n} - \mathbf{e}_{i})\mu_{0}b_{0i}(\mathbf{n} - \mathbf{e}_{i})$$

$$+ \sum_{i=1}^{J} H(\mathbf{n} - \mathbf{e}_{i} + \mathbf{e}_{j})\theta_{j}(\mathbf{n} - \mathbf{e}_{i})b_{ji}(\mathbf{n} - \mathbf{e}_{i}).$$

Assume that $G^{-1} = \sum_{\mathbf{n} \in \mathcal{S}} \phi(\mathbf{n}) \prod_{j=1}^{J} \left(\frac{1}{\mu_j}\right)^{n_j} H(\mathbf{n}) < \infty$, and that $\{N(t)\}$ is irreducible. Then

$$\pi(\mathbf{n}) = G\phi(\mathbf{n})\prod_{i=1}^J \left(rac{1}{\mu_i}
ight)^{n_j} H(\mathbf{n}), \quad \mathbf{n} \in \mathcal{S}.$$

UNIVERSITY OF TWENTE

State-dependent routing; blocking protocols – 3

► Product-form

$$\pi(\mathbf{n}) = G\phi(\mathbf{n}) \prod_{i=1}^{J} \left(\frac{1}{\mu_j}\right)^{n_j} H(\mathbf{n}), \quad \mathbf{n} \in \mathcal{S}.$$

- State-dependent traffic equations just as difficult to solve as the partial balance equations.
- In applications, often Markov routing probabilities p_{ij}, i, j = 0,..., J, and a function of the base state:

$$b_{ij}(\mathbf{m}) = p_{ij}f(\mathbf{m}), \quad \mathbf{m} \in \mathcal{S}^b,$$

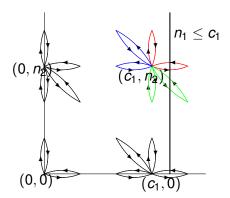
for some $f: S^b \to [0, \infty)$.

▶ With λ_j , j = 1, ..., J, solution of the traffic equations, solution of the state-dependent traffic equations:

$$H(\mathbf{n}) = \prod_{j=1}^{J} \lambda_j^{n_j}, \quad \mathbf{n} \in \mathcal{S}.$$

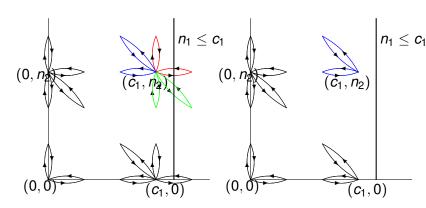
Product-form?

- ▶ Why product-form useful?
- ► Capacity constraints: no product-form
 Tandem of 2 queues. Queue 1 has capacity restriction c₁.
 If n₁ = c₁ customers arriving customer discarded.



Blocking protocols: Stop-protocol – 1

▶ If queue i in a Kelly-Whittle network with finite capacity constraints becomes saturated $(n_i = c_i)$ then stop service at all other queues $j = 1, ..., J, j \neq i$, and stop the arrival process to the network.



Blocking protocols: Stop-protocol – 2

If queue i in a Kelly-Whittle network with finite capacity constraints becomes saturated ($n_i = c_i$) then stop service at all other queues, and stop the arrival process to the network. For the open network the state space is

$$S_{\mathbf{c},o} = \{ \mathbf{n} \in \mathbb{N}_0^J : n_j \le c_j, \ n_i + n_j < c_i + c_j, \ i \ne j, \ i, j = 1, \dots, J \}.$$

Transition rates

$$q(\mathbf{n}, \mathbf{n}') = \begin{cases} \frac{\psi(\mathbf{n} - \mathbf{e}_i)\theta_i(\mathbf{n} - \mathbf{e}_i)}{\phi(\mathbf{n})}\mu_i b_{ij}(\mathbf{n} - \mathbf{e}_i), & \mathbf{n}' = \mathbf{n} - \mathbf{e}_i + \mathbf{e}_j, \\ 0, & \text{otherwise,} \end{cases}$$

with
$$\theta_i(\mathbf{m}) = 1$$
, $i = 0, \dots, J$, $\mathbf{m} \in \mathcal{S}^b_{\mathbf{c},o}$, $f(\mathbf{m}) = \mathbbm{1}(m_j < c_j, j = 1, \dots, J)$, $\mathbf{m} \in \mathcal{S}^b_{\mathbf{c},o}$, $b_{ij}(\mathbf{m}) = p_{ij}f(\mathbf{m})$, $i,j = 0, \dots, J$, $\mathbf{m} \in \mathcal{S}^b_{\mathbf{c},o}$, and $\mathcal{S}^b_{\mathbf{c},o} = \{\mathbf{m} \in \mathbb{N}_0^J : 0 \leq m_i \leq c_i - 1\}$.

UNIVERSITY OF TWENTE.

Blocking protocols: Stop-protocol – 3

The state-dependent traffic equations now reduce to the traffic equations, and

$$egin{aligned} H(\mathbf{n}) &= \prod_{i=1}^J \lambda_j^{n_j}, \quad \mathbf{n} \in \mathcal{S}_{\mathbf{c},o}, \end{aligned}$$

satisfies the state-dependent traffic equations. Assume that

$$G_{\mathbf{c},o}^{-1} = \sum_{\mathbf{n} \in S_{\mathbf{c},o}} \phi(\mathbf{n}) \prod_{j=1}^{J} \rho_j^{n_j} < \infty,$$

and that $\{N(t)\}$ is irreducible. Then $\{N(t)\}$ has unique equilibrium distribution

$$\pi(\mathbf{n}) = G_{\mathbf{c},o}\phi(\mathbf{n})\prod_{j=1}^J
ho_j^{n_j}, \quad \mathbf{n} \in S_{\mathbf{c},o}.$$

Blocking protocols: Jump-over-protocol – 1

- ▶ **Jump-over-blocking** If queue i in a Kelly-Whittle network with finite capacity constraints becomes saturated $(n_i = c_i)$ then a customer arriving to queue i will immediately select a new station j with probability p_{ij} , $j = 0, \ldots, J$, $i = 1, \ldots, J$.
- ▶ **Generalised jump-over-blocking** A customer arriving at station i when n_i customers are present will be accepted with probability $a_i(n_i)$, and will jump over the station with probability $1 a_i(n_i)$. A rejected customer selects a new station j with probability p_{ij} , j = 0, ..., J, i = 1, ..., J.

Blocking protocols: Jump-over-protocol – 2

- ▶ **Generalised jump-over-blocking** A customer arriving at station i when n_i customers are present will be accepted with probability $a_i(n_i)$, and will jump over the station with probability $1 a_i(n_i)$. A rejected customer selects a new station j with probability p_{ii} , j = 0, ..., J, i = 1, ..., J.
- ▶ Let $c_i = \inf\{k : a_i(k) = 0, k = 0, 1, 2, ...\}, j = 1, ..., J$.
- ► For the open network the state space is

$$S_{jo,c} = \{ \mathbf{n} \in \mathbb{N}_0^J : 0 \le n_j \le c_j, \ i = 1, \dots, J \}$$

- ► Let $P(\mathbf{m}) = (p_{ij}a_j(m_j), i, j = 0, ..., J),$ and $P_*(\mathbf{m}) = (p_{ij}(1 - a_i(m_i)), i, j = 0, ..., J).$
- ► Transition rates, $\mathbf{m} \in \mathcal{S}_{\mathbf{c}}^{b}$,

$$b_{ij}(\mathbf{m}) = p_{ij}a_{j}(m_{j}) + (P_{*}(\mathbf{m})P(\mathbf{m}))_{ij} + (P_{*}^{2}(\mathbf{m})P(\mathbf{m}))_{ij} + \cdots$$
$$= \sum_{k=0}^{\infty} (P_{*}^{k}(\mathbf{m})P(\mathbf{m}))_{ij}.$$

Blocking protocols: Jump-over-protocol – 3

For $a_j(m_j) = \mathbb{1}(m_j \leq c_j)$

$$H(\mathbf{n}) = \prod_{i=1}^J \lambda_j^{n_j}, \quad \mathbf{n} \in \mathcal{S}_{jo,\mathbf{c}},$$

satisfies the state-dependent traffic equations. Assume that

$$G_{jo,\mathbf{c}}^{-1} = \sum_{\mathbf{n} \in \mathcal{S}_{jo,\mathbf{c}}} \phi(\mathbf{n}) \prod_{j=1}^J \rho_j^{n_j} < \infty,$$

and that $\{N(t)\}$ is irreducible. Then $\{N(t)\}$ has unique equilibrium distribution

$$\pi(\mathbf{n}) = G_{jo,\mathbf{c}}\phi(\mathbf{n})\prod_{i=1}^J
ho_j^{n_j}, \quad \mathbf{n} \in \mathcal{S}_{jo,\mathbf{c}}.$$

UNIVERSITY OF TWENTE.

Markovian Queues and Stochastic Networks

Lecture 3

