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Open network of M|M|1 queues

>

Evolution number of customers in the queues recorded by
Markov chain {N(t) = (N1(t), ..., Ny(t)), t € R}

State space S C Ny, states n = (ny,...,ny).

If {N(t)} is in state n and a customer routes from queue i
to queue j then the next stateisn —e; + €, i,j=0,...,J.
Queue 0 is introduced to represent the outside.

» If a customer routes from queue i to queue 0 then this

customer leaves the network

and if a customer routes from queue 0 to queue j then this
customers enters the network at queue j, j=1,...,J.
State space S = Ny.

The transition rates of {N(t)} for an open network are, for
n#n’,nn S,

n_ | wipj, fn=n—e+e;,ij=0,...,J,
g(n.m) = { 0, otherwise.
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Open network of M|M|1 queues

Theorem (3.1.4 Equilibrium distribution)

Consider the Markov chain {N(t)} at state space S = Ng for
the open network of M|M|1 queues. Assume the routing matrix
P = (pj) is irreducible and let { \;} be the unique solution of
the traffic equations. If p; == \j/p; <1,j=1,...,d, then
{N(t)} has unique product-form equi/ibrium distribution

J
m(n) = H (1 —p/ H’rl nj
j=1

Moreover, the equilibrium distribution satisfies partial balance,
foralne S,i=0,...,J,

J
Y {n(n)g(n,n—e;+e)—n(n—e;+e)qg(n—e +e,n)}=0.
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Proof of Theorem 3.1.4

J
> {m(n)g(n,n —e; + ;) — m(n —e; + e))qg(n —e; + &;,n)}
j=0
J J J Sts
Ng—0i+
> {szkufpijﬂ(n —eeNy)—[[n M ypii(n—e; € Né)}
J=0 \k=1 k=1

J
Z {m(n)g(n,n —e;+e;) —m(n—e;+e;)qg(n—e; +e;,n)} 1(i =0)
j=0

= {NO_Z)‘JPIO}Hpk neNo =0,

J
> {m(n)g(n,n —e; +e;) — m(n — e +e;)q(n — e; +e;,n)} 1(i # 0)

j=1 k=1

J J
) {)\i — poPoi — Y /\/P/} [Pk 1(n —ei € N3)1(i # 0) = 0.
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Partial balance

Moreover, the equilibrium distribution satisfies partial balance,
foraIIn €S,i=0,...,J,

Z{ﬂ' (I’l n— e,-+e,-)—7r(n—e,-+e,-)q(n—e,-+e/-,n)}:O.

(0,0
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Closed network of M|M|1 queues

Theorem (3.1.5 Equilibrium distribution)

Consider Markov cha/n {N(t)} at state space

S=Sy={n: Z/ 1 Ny = M} for the closed network of M|M|1

queues containing M customers. Assume P = (pj) is

irreducible and let {\;} be the unique solution of the traffic

equations such that Y A; = 1. Let pj := X;/p;. Then {N(1)}

has unique product form equilibrium distribution B
il

neS j=1

Moreover, the equ:l/br/um distribution satisfies partial balance,

foralne S,i=1,...,J,

J

> {x(n)g(n,n—e;+e)—7(n—e;+e)g(n—e;+e,n)}=0.

GMHpj, neS, Gu=

j=
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Closed network of M|M|1 queues

Algorithm (3.1.8 Buzen’s Algorithm)
Define G(m,j), m=0,...,M,j=1,...,J. Set
G(0,)) = 1, j=1,...,J,
G(m1) = p", m=0,...,M.
Forj=2,...,d,m=1....M, do
G(m,j) = G(m,j —1) + p;G(m —1,)).
Then Gy = G(M, J)™

» Buzen’s algorithm yields G,,, m=1,..., M, and marginals
and means:
mi(n) = GMP?[GA_/,L,,]. —piGy, il M=0, M1,
m(M) = Gup},
EN] = Yhoi gt
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Kelly-Whittle networks — 1

> _{m(n)g(n,n —e;+e;) — m(n —e; +e;)q(n —e; +e;,n)}

k=1

J
Skt
Z{Hpk ipyL(n —e; € Ng) — H o k’ujpﬂl(“—eieNé)}
J

J
> {m(n)g(n,n —e; + ;) — m(n —e; +e))q(n —e; +e;,n)} 1(i # 0)
j=0

J J J
) {Z/\fpﬁ—uopo/—ZA/PJI}H PI(n — e € Np)1(i # 0) = 0.
j=0 P
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Kelly-Whittle networks — 2

J
> {m(n)g(n,n —e; +e) — m(n —e; +e;)q(n — e + &;,n)}
=0

state dependent sojourn time in state n: g(n) — qg:g
(0]
-e+e) . . 9n—e +e;n)
’ Z{ o mn et ) e+ e)
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Kelly-Whittle networks — 3

>_{m(n)g(n.n —e; +e) — m(n—e; +e)q(n e +e;,n)}
j=0

state dependent sojourn time in state n: g(n) — %
also scale m(n): fraction of time spent in state n

J i + € . —e 18,
jz:{ W_@(nfef+ej)m(“_ef+ef)%m}
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Kelly-Whittle networks — 4

J
> _{m(n)q(n,n —e;+e;) — m(n —e; +e;)q(n —e; +e;,n)}
j=0
: e : q(n)
state dependent sojourn time in state n: g(n) — ()

also scale m(n): fraction of time spent in state n
and add a function ¥ (n — e;) to the rates

- {@(n)mm)w(n —e)

J g(n,n—e;+e))
Jj=0

¢(n)

—¢p(n—e;+e)mn —e;+e;)yP(n— e;)w}

¢(n—e;+e)
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Kelly-Whittle networks — 5

Markov chain {N(t)} at state space S C NJ with transition
rates, forn’ # n,

n—e; H P
g(n n/){ M“ipijv lfn’zn—e,-+ej, i,j=0,...,d,

0, otherwise,
where ¢ : Ng — [0, 00) and ¢ : N — (0, 00).

We will consider closed networks as special case of open
networks with o =0and pjp=0,i=1,...,J.
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Kelly-Whittle networks — 6

Theorem (Equilibrium distribution: Kelly-Whittle network)

Consider the Kelly-Whittle network {N(t)} at state space

S C Ng. Assume the routing matrix P = (pj) is irreducible and

let {\;} be solution of traffic equations. Let p; = \;/j1;. Assume
J

G = _o(n Hp7j<oo’
=1

nes

and that {N(t)} is irreducible. Then
m(n) = Gkwa(n Hpn’7 nes

Moreover, © satisfies partial balance, forallne S,i=0,...,J,
J
> {r(n)g(n,n—e;+e)—n(n—e;+e)g(n—e +e;,n)}=0.
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Kelly-Whittle networks — 7

» Poisson arrivals
» Independent queues:

wi(Mp)piPj, 1,j=1,...,J,

q(n.n—e;+e) =1 ri(nuipio, i=1,....J,
HoPoj, /:11"'7‘/7
for ki : Ny :— (0,00),i=1,...,J.
Typical examples are, forne N, i=1,...,J,
ki(n) = 1, single server queue,
ki(n) = min(n,s), S server queue,
ki(n) = n, infinite server queue.
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Kelly-Whittle networks — 8

» Poisson arrivals
» Independent queues:

ri(M)mipg,  j=1,...
q(n,n —e;+e) =1 wi(Mmuipio, 1=1,...
HoPoj; j=1,...

fOI’H,‘SNo — (0,00),i:1,...,J.
Letn,-:No—>(0,oo),i:1,...,J,

n

ni(n)~ Hm, neNg, i=1,...,

Then
ni(n—1)
ni(n)
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neN,i=1 ...

7J7
’J7
J

) Y

J,
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Partial balance — 2

Transition balance:
q(n,n—e +e)
Detailed balance:

m(n)g(n,n—e; +¢))

Partial balance:
J

r(n)g(n,n e +e))
j=0

Global balance:

J
Sa(mann-e te) =
i,j=0
UNIVERSITY OF TWENTE.

gin—e;+e,n), i,j=0,...,J,

m(n—e; +e;)g(n —e; + e;,n),
J
=0

J

J
> m(n—ei+e)g(n—ei+e;,n).
i,j=0

Markovian Queues and Stochastic Networks

ij=0,...

m(n—e;+e)g(n—e;+e;,n), i=0,...
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Partial balance -1

Moreover, the equilibrium distribution satisfies partial balance,
foraIIn €S,i=0,...,J,

Z{ﬂ' (I’l n— e,-+e,-)—7r(n—e,-+e,-)q(n—e,-+e/-,n)}:O.

(0,0
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Interpretation of the traffic equations

» Average number of customers moving from queue i to
queue j is (see reader for proper definition)

Nj=Eq(N,N—e;+e)=> n(n)g(n.n—e;+e)).
nes

» For network with Poisson arrivals y(n) = ¢(n), n € Ny
» Then, with \g = ug,

n-—e;
neS
J
= \pj Y, Gkwo(n—e; H = AiPjj-
nesS,n;>0 j=1
» We may interpret the solution \;, j =1,...,J, of traffic

equations as the arrival rate of customers.
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State-dependent routing; blocking protocols — 1

A Kelly-Whittle network with state-dependent routing is a
Markov chain {N(t)} at state space S C Ng with transition
rates, forn’ # n,

¢(n)

¥(n —e)di(n—e))
Q(n,n,) = n : /'Libij(n—e,‘), n/:n—e,-—i—ej,
0, otherwise,

where ¢ : S — (0,00) and ¢, 0;, bj : SP — [0, 00), and SP is the
set of base states:

SP={meNy:3i,je{0,...,J}, i #jst mte and mte; € S}.

Without loss of generality 3~ by(m) = 1.
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State-dependent routing; blocking protocols — 2

Theorem (3.4.1 Equilibrium distribution)

Consider the Kelly-Whittle network with state-dependent
routing {N(t)} at state space S C Ng . Assume a solution

H: S — [0, 00) exists of the state-dependent traffic equations,
forne S,i=0,...,J:

Z H(n)oi(n — e;)b;(n — e;) = H(n — e;)6o(n — ;) 10boi(N — ;)

J
+> H(n —e;+e)6;(n —e;)b;(n —e;).
j=1
—q J 1\
Assume that G~ = 3", s &) [T (ﬁ) H(n) < oo, and
that {N(t)} is irreducible. Then
J 1 nj
m(n) = Go(n) [ | <M> H(n), neS.
1 \H
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State-dependent routing; blocking protocols — 3

» Product-form

J n;

1\

m(n) = Go(n) || </1) H(n), ncS.

=t~

» State-dependent traffic equations just as difficult to solve
as the partial balance equations.

» In applications, often Markov routing probabilities pj;,
i,j=0,...,dJ,and a function of the base state:

bj(m) = p;f(m), me S°,

for some f : S — [0, c0).
» With \;, j=1,...,J, solution of the traffic equations,
solution of the state-dependent traffic equations:

J
Hin) =]\, nes.
j=1
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Product-form?

» Why product-form useful?

» Capacity constraints: no product-form
Tandem of 2 queues. Queue 1 has capacity restriction c;.
If ny = ¢y customers arriving customer discarded.

(0,n

(O’ (C1>
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Blocking protocols: Stop-protocol — 1

» If queue i in a Kelly-Whittle network with finite capacity
constraints becomes saturated (n; = ¢;) then stop service
at all other queues j =1,...,J, j # i, and stop the arrival
process to the network.

ny < ¢

(0,n

(07 (C1,0)
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Blocking protocols: Stop-protocol —

If queue 7 in a Kelly-Whittle network with finite capacity
constraints becomes saturated (n; = ¢;) then stop service at all
other queues, and stop the arrival process to the network.

For the open network the state space is

Sco={neNg:m<c, m+n<ci+c,i#j ij=1,...,J}

Transition rates
Y(n —e)di(n—e))
q(n,n’) = { o “puibj(n—e;), n'=n-—e;+e,,

¢(n)

0, otherwise,

with  gm) = 1, i=0,...,J, me SZ,,

fm) = 1(mj<g,j=1,....J), meSY,,
bj(m) = p;f(m), ij=0,..,J meS,
and S2,={meNj:0<m<c—1}.
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Blocking protocols: Stop-protocol — 3

The state-dependent traffic equations now reduce to the traffic
equations, and

J
H(n) == H )\n], nec 8070,
j=1

satisfies the state-dependent traffic equations Assume that

G;, Z Hpj < 00,

neSe o

and that {N(t)} is irreducible. Then {N(t)} has unique
equilibrium distribution

m(n) = Ge,od(n Hp,, n e Sco
j=1
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Blocking protocols: Jump-over-protocol — 1

» Jump-over-blocking If queue i in a Kelly-Whittle network
with finite capacity constraints becomes saturated (n; = ¢;)
then a customer arriving to queue i will immediately select
a new station j with probability p;, j = 0,...,J,
i=1,...,J.

» Generalised jump-over-blocking A customer arriving at
station i when n; customers are present will be accepted
with probability a;(n;), and will jump over the station with
probability 1 — a;(n;). A rejected customer selects a new
station j with probability p;, j =0,...,J,i=1,...,J.
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Blocking protocols: Jump-over-protocol —

>

Generalised jump-over-blocking A customer arriving at

station i when n; customers are present will be accepted

with probability a;(n;), and will jump over the station with

probability 1 — a;(n;). A rejected customer selects a new

station j with probability p;, j =0,...,J,i=1,...,J.

Let¢; =inf{k:aj(k) =0, k=0,1,2,...},j=1,...,J.

For the open network the state space is
Spc={neN§:0<n<g,i=1,...,J}

Let  P(m) = (pai(my), i,j = Q, o d),

and P.(m) = (p;(1 — ai(m;)), i,j=0,...,J).

Transition rates, m € S2,

bj(m) = pyay(m;) + (P.(m)P(m)); + (P2(m)P(m)); + - -
= > _(P¥(m)P(m));.

k=0
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Blocking protocols: Jump-over-protocol — 3

For a;(m;) = 1(m; < ¢;)
J .
— ]I)\r-"j7 ne Sjo}c,
j=1
satisfies the state-dependent traffic equations Assume that

- ¥ il <~

neSpc

and that {N(t)} is irreducible. Then {N(t)} has unique
equilibrium distribution

m(n) = joc¢ Hpja nGS/oc
j=1
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