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Detailed balance – 1
Definition (2.2.1 Detailed balance)
A Markov chain {N(t)} at state space S with transition rates
q(n,n′), n,n′ ∈ S, satisfies detailed balance if a distribution
π = (π(n), n ∈ S) exists that satisfies for all n,n′ ∈ S the
detailed balance equations:

π(n)q(n,n′)− π(n′)q(n′,n) = 0.

Theorem (2.2.2)
If the distribution π satisfies the detailed balance equations
then π is the equilibrium distribution.

I The detailed balance equations state that the probability
flow between each pair of states is balanced.
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Detailed balance – 2
Lemma (2.2.3, 2.2.4 Kolmogorov’s criterion)
{N(t)} satisfies detailed balance if and only if for all r ∈ N and
any finite sequence of states n1,n2, . . . ,nr ∈ S, nr = n1,

r−1∏
i=1

q(ni ,ni+1) =
r−1∏
i=1

q(nr−i+1,nr−i).

If {N(t)} satisfies detailed balance, then

π(n) = π(n′)
q(n1,n2)q(n2,n3)

q(n2,n1)q(n3,n2)
· · · q(nr−1,nr )

q(nr ,nr−1)
,

for arbitrary n′ ∈ S for all r ∈ N and any path n1,n2, . . . ,nr ∈ S
such that n1 = n′, nr = n for which the denominator is positive.

I Direct generalisation of the result for birth-death process.
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Reversibility – 1

Definition (Stationary process)
A stochastic process {N(t), t ∈ R} is stationary if
(N(t1),N(t2), . . . ,N(tk )) has the same distribution as
(N(t1 + τ),N(t2 + τ), . . . ,N(tk + τ)) for all k ∈ N,
t1, t2, . . . , tk ∈ T , τ ∈ T

Definition (2.4.1 Reversibility)
A stochastic process {N(t), t ∈ R} is reversible if
(N(t1),N(t2), . . . ,N(tk )) has the same distribution as
(N(τ − t1),N(τ − t2), . . . ,N(τ − tk )) for all k ∈ N,
t1, t2, . . . , tk ∈ R, τ ∈ R.

Theorem (2.4.2)
If {N(t)} is reversible then {N(t)} is stationary.
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Reversibility – 2

Theorem (2.4.3 Reversibility and detailed balance)
Let {N(t), t ∈ R} be a stationary Markov chain with transition
rates q(n,n′), n,n′ ∈ S. {N(t)} is reversible if and only if there
exists a distribution π = (π(n), n ∈ S) that satisfies the
detailed balance equations. When there exists such a
distribution π, then π is the equilibrium distribution of {N(t)}.
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Example: Departures from the M|M|1 queue
I Arrival process to the M|M|1 queue is a Poisson process

with rate λ.
I If λ < µ departure process from M|M|1 queue has rate λ.

I {N(t)} recording the number of customers in M|M|1 with
arrival rate λ and service rate µ satisfies detailed balance.

I Markov chain {N r (t)} in reversed time has Poisson
arrivals at rate λ and service rate µ.

I Therefore {N r (t)} is the Markov chain of an M|M|1 queue
with Poisson arrivals at rate λ and negative-exponential
service at rate µ.

I Epochs of the arrival process for the reversed queue
coincide with the epochs of the arrival process for the
original queue, it must be that the departure process from
the M|M|1 queue is a Poisson process with rate λ.
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Reversibility – 3

Theorem (2.4.3 Reversibility and detailed balance)
Let {N(t), t ∈ R} be a stationary Markov chain with transition
rates q(n,n′), n,n′ ∈ S. {N(t)} is reversible if and only if there
exists a distribution π = (π(n), n ∈ S) that satisfies the
detailed balance equations. When there exists such a
distribution π, then π is the equilibrium distribution of {N(t)}.

Proof. If {N(t)} is reversible, then for all t ,h ∈ R, n,n′ ∈ S:

P(N(t + h) = n′, N(t) = n) = P(N(t) = n′, N(t + h) = n).

{N(t), t ∈ R} is stationary. Let π(n) = P(N(t) = n), t ∈ R.

P(N(t + h) = n′|N(t) = n)
h

π(n) =
P(N(t + h) = n|N(t) = n′)

h
π(n′).

Letting h→ 0 yields the detailed balance equations.

Markovian Queues and Stochastic Networks 8 / 1



Proof continued
Assume π = (π(n), n ∈ S) satisfies detailed balance.
Consider {N(t)} for t ∈ [−H,H]. Suppose {N(t)} moves along
the sequence of states n1, . . . ,nk and has sojourn time hi in ni ,
i = 1, . . . , k − 1, and remains in nk for at least hk until time H.
With probability π(n1) = P(N(−H) = n1) {N(t)} starts in n1.
Probability density with respect to h1, . . . ,hk for this sequence

π(n1)q(n1)e−q(n1)h1 p(n1,n2) · · · q(nk−1)e−q(nk−1)hk−1 p(nk−1,nk )e−q(nk )hk ,

Kolmogorov’s criterion implies that

π(n1)q(n1,n2) · · · q(nk−1,nk ) = π(nk )q(nk ,nk−1) · · · q(n2,n1),

probability density equals the probability density for the
reversed path that starts in nk at time H.
Thus (N(t1),N(t2), . . . ,N(tk )) ∼ (N(−t1),N(t2), . . . ,N(−tk ))
Stationarity completes the proof,.
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Burke’s theorem and feedforward networks – 1
Theorem (2.5.1 Burke’s theorem)
Let {N(t)} record the number of customers in the M|M|1
queue with arrival rate λ and service rate µ, λ < µ. Let {D(t)}
record the customers’ departure process from the queue. In
equilibrium the departure process {D(t)} is a Poisson process
with rate λ, and N(t) is independent of {D(s), s < t}.
Proof. M|M|1 reversible: epochs at which {N(−t)} jumps up
form Poisson process with rate λ.
If {N(−t)} jumps up at time t∗ then {N(t)} jumps down at t∗.
Departure process forms a Poisson process with rate λ.
{N(t)} reversible: departure process up to t∗ and N(t∗) have
same distribution as arrival process after −t∗ and N(−t∗).
Arrival process is Poisson process: arrival process after −t∗

independent of N(−t∗).
Hence, the departure process up to t∗ independent of N(t∗).
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Burke’s theorem and feedforward networks – 2

I Tandem network of two M|M|1 queues
I Poisson λ arrival process to queue 1, service rates µi .
I Provided ρi = λ/µi < 1, marginal distributions
πi(ni) = (1− ρi)ρ

ni
i , ni ∈ N0.

I Burke’s theorem: departure process from queue 1 before
t∗ and N1(t∗), are independent.

I Hence, in equilibrium, the at time t∗ the random variables
N1(t∗) and N2(t∗) are independent:

π(n) =
2∏

i=1

πi(ni), n ∈ S = N2
0.
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Burke’s theorem and feedforward networks – 3
I Customer leaving queue j can route to any of the queues

j + 1, . . . , J, or may leave the network.
I pij fraction of customers from queue i to queue j > i ,

pi0 fraction leaving the network.
I Arrival process is Poisson process with rate µ0.
I Fraction p0j of these customers is routed to queue j .
I The service rate at queue j is µj .
I Burke’s theorem implies that all flows of customers among

the queues are Poisson flows.
I Arrival rate λj of customers to queue j is obtained from

superposition and random splitting of Poisson processes:

λj = µ0p0j +

j−1∑
i=1

λipij , j = 1, . . . , J,

I traffic equations: the mean flow of customers.
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Burke’s theorem and feedforward networks – 4

Theorem (2.5.4 Equilibrium distribution)
Let {N(t) = (N1(t), . . . ,NJ(t))} at state space S = NJ

0, where
n = (n1, . . . ,nJ) and nj the number of customers in queue j,
j = 1, . . . , J, record the number of customers in the
feedforward network of J M|M|1 queues described above. If
ρj = λj/µj < 1, with λj the solution of the traffic equations,
j = 1, . . . , J, then the equilibrium distribution is the product of
the marginal distributions of the queues:

π(n) =
J∏

j=1

(1− ρj)ρ
nj
j , nj ∈ N0, j = 1, . . . , J. (1)

I Next: networks of M|M|1 queues.
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Open network of M|M|1 queues – 1

I Customer leaving queue j can route to any of the queues
1, . . . , J, or may leave the network.

I pij fraction of customers from queue i to queue j ,
pi0 fraction leaving the network.

I Arrival process is Poisson process with rate µ0.
I Fraction p0j of these customers is routed to queue j .
I The service rate at queue j is µj .
I Arrival rate λj of customers to queue j is obtained from the

traffic equations

λj = µ0p0j +
J∑

i=1

λipij , j = 1, . . . , J,
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Open network of M|M|1 queues – 2
I Evolution number of customers in the queues recorded by

Markov chain {N(t) = (N1(t), . . . ,NJ(t)), t ∈ R}
I State space S ⊆ NJ

0, states n = (n1, . . . ,nJ).
I If {N(t)} is in state n and a customer routes from queue i

to queue j then the next state is n− ei + ej , i , j = 0, . . . , J.
I Queue 0 is introduced to represent the outside.
I If a customer routes from queue i to queue 0 then this

customer leaves the network
I and if a customer routes from queue 0 to queue j then this

customers enters the network at queue j , j = 1, . . . , J.
I State space S = NJ

0.
I The transition rates of {N(t)} for an open network are, for

n 6= n′, n,n′ ∈ S,

q(n,n′) =
{
µipij , if n′ = n− ei + ej , i , j = 0, . . . , J,
0, otherwise.
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Closed network of M|M|1 queues – 1

I Queueing network is closed if arrivals to the network and
departures from the network are not possible.

I Closed network by setting µ0 = 0 and pj0 = 0, j = 1, . . . , J.
I Number of customers in a closed network is constant:

S = SM = {n :
∑J

j=1 nj = M} for some M, the number of
customers in the network.

I The transition rates of {N(t)} for a closed network are, for
n 6= n′, n,n′ ∈ S,

q(n,n′) =
{
µipij , if n′ = n− ei + ej , i , j = 1, . . . , J,
0, otherwise.
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Open network of M|M|1 queues – 3

Lemma (3.1.1 Traffic equations: open network)
Consider an open network. Assume that the routing matrix
P = (pij , i , j = 0, . . . , J) is irreducible. The traffic equations

λj = µ0p0j +
J∑

i=1

λipij , j = 1, . . . , J,

have a unique non-negative solution {λj , j = 1, . . . , J}.
Proof. Let λ0 = µ0. Observe that the traffic equations also
imply a traffic equation for queue 0: µ0 =

∑J
j=1 λjpj0. Then the

traffic equations for the open network read
J∑

i=0

λjpji =
J∑

i=0

λipij , j = 0, . . . , J.
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Open network of M|M|1 queues – 4

Theorem (3.1.4 Equilibrium distribution)
Consider the Markov chain {N(t)} at state space S = NJ

0 for
the open network of M|M|1 queues. Assume the routing matrix
P = (pij) is irreducible and let {λj} be the unique solution of
the traffic equations. If ρj := λj/µj < 1, j = 1, . . . , J, then
{N(t)} has unique product-form equilibrium distribution

π(n) =
J∏

j=1

(1− ρj)ρ
nj
j =

J∏
j=1

πj(nj), n ∈ S.

Moreover, the equilibrium distribution satisfies partial balance,
for all n ∈ S, i = 0, . . . , J,

J∑
j=0

{
π(n)q(n,n− ei + ej)− π(n− ei + ej)q(n− ei + ej ,n)

}
= 0.
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Proof of Theorem 3.1.4
J∑

j=0

{m(n)q(n,n− ei + ej)−m(n− ei + ej)q(n− ei + ej ,n)}

=
J∑

j=0

{
J∏

k=1

ρ
nk
k µipij1(n− ei ∈ NJ

0)−
J∏

k=1

ρ
nk−δki+δkj
k µjpji1(n− ei ∈ NJ

0)

}
J∑

j=0

{m(n)q(n,n− ei + ej)−m(n− ei + ej)q(n− ei + ej ,n)}1(i = 0)

=

µ0 −
J∑

j=1

λjpj0


J∏

k=1

ρ
nk
k 1(n ∈ NJ

0) = 0,

J∑
j=0

{m(n)q(n,n− ei + ej)−m(n− ei + ej)q(n− ei + ej ,n)}1(i 6= 0)

=


J∑

j=0

λipij − µ0p0i −
J∑

j=1

λjpji


J∏

k=1

ρ
nk−δki
k 1(n− ei ∈ NJ

0)1(i 6= 0) = 0.
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Traffic equations
J∑

j=0

{m(n)q(n,n− ei + ej)−m(n− ei + ej)q(n− ei + ej ,n)}

=
J∑

j=0

{
J∏

k=1

ρ
nk
k µipij1(n− ei ∈ NJ

0)−
J∏

k=1

ρ
nk−δki+δkj
k µjpji1(n− ei ∈ NJ

0)

}
J∑

j=0

{m(n)q(n,n− ei + ej)−m(n− ei + ej)q(n− ei + ej ,n)}1(i = 0)

=

µ0 −
J∑

j=1

λjpj0


J∏

k=1

ρ
nk
k 1(n ∈ NJ

0) = 0,

J∑
j=0

{m(n)q(n,n− ei + ej)−m(n− ei + ej)q(n− ei + ej ,n)}1(i 6= 0)

=

λi − µ0p0i −
J∑

j=1

λjpji


J∏

k=1

ρ
nk−δki
k 1(n− ei ∈ NJ

0)1(i 6= 0) = 0.
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Partial balance -1

Moreover, the equilibrium distribution satisfies partial balance,
for all n ∈ S, i = 0, . . . , J,

J∑
j=0

{
π(n)q(n,n− ei + ej)− π(n− ei + ej)q(n− ei + ej ,n)

}
= 0.
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Figure: Open network of two M|M|1 queues.
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Closed network of M|M|1 queues – 2

Theorem (3.1.5 Equilibrium distribution)
Consider Markov chain {N(t)} at state space
S = SM = {n :

∑J
j=1 nj = M} for the closed network of M|M|1

queues containing M customers. Assume P = (pij) is
irreducible and let {λj} be the unique solution of the traffic
equations such that

∑J
j=1 λj = 1. Let ρj := λj/µj . Then {N(t)}

has unique product-form equilibrium distribution

π(n) = GM

J∏
j=1

ρ
nj
j , n ∈ S, GM =

∑
n∈S

J∏
j=1

ρ
nj
i

−1

.

Moreover, the equilibrium distribution satisfies partial balance,
for all n ∈ S, i = 1, . . . , J,

J∑
j=1

{
π(n)q(n,n− ei + ej)− π(n− ei + ej)q(n− ei + ej ,n)

}
= 0.
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Closed network of M|M|1 queues – 3

Algorithm (3.1.8 Buzen’s Algorithm)
Define G(m, j), m = 0, . . . ,M, j = 1, . . . , J. Set

G(0, j) = 1, j = 1, . . . , J,
G(m,1) = ρm

1 , m = 0, . . . ,M.

For j = 2, . . . , J, m = 1, . . . ,M, do
G(m, j) = G(m, j − 1) + ρjG(m − 1, j).

Then GM = G(M, J)−1.
I Buzen’s algorithm yields Gm, m = 1, . . . ,M, and marginals

and means:

πj(nj) = GMρ
nj
j [G

−1
M−nj

− ρjG−1
M−nj−1], nj = 0, . . . ,M − 1,

πj(M) = GMρ
nj
j ,

E[Nj ] =
∑M

m=1 ρ
m
j

GM
GM−m

.
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