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Detailed balance — 1

Definition (2.2.1 Detailed balance)

A Markov chain {N(t)} at state space S with transition rates
g(n,n’), n,n" € S, satisfies detailed balance if a distribution
m = (w(n), n € S) exists that satisfies for all n,n’ € S the
detailed balance equations:

7(n)g(n,n’) — r(n")g(n’,n) = 0.

Theorem (2.2.2)
If the distribution w satisfies the detailed balance equations
then = is the equilibrium distribution.

» The detailed balance equations state that the probability
flow between each pair of states is balanced.

UNIVERSITY OF TWENTE. Markovian Queues and Stochastic Networks



Detailed balance — 2

Lemma (2.2.3, 2.2.4 Kolmogorov’s criterion)

{N(t)} satisfies detailed balance if and only if for all r € N and
any finite sequence of statesny,ny,...,n, € S, n, = ny,

r—1 r—1

[T aminies) =TT a(nr—ir,n—p).

i=1 i=1
If{N(t)} satisfies detailed balance, then

(n) = 7T(n/)fl("hnz)q(nz, ng) gq(n—1,n)

q(n23n1 )q(n37n2) Q(nr,n,,1)’

for arbitraryn’ € S for allr € N and any pathny{,ns,....n, € S
such that ny = n’, n, = n for which the denominator is positive.

» Direct generalisation of the result for birth-death process.
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Reversibility — 1 : w
Definition (Stationary process)

A stochastic process {N(t), t € R} is stationary if
(N(t), N(t2), ..., N(t)) has the same distribution as
(N(t; + 1), N(t2+7) . N(tx + 7)) forall k € N,
H,bo,.... l € T, 7€ T

Definition (2.4.1 Reversibility)

A stochastic process {N(t), t € R} is reversible if
(N(t), N(t2), ..., N(t)) has the same distribution as
(N(T —t),N(T — t),...,N(r — t)) forall k € N,
,b,....ls e R, 7 € R.

Theorem (2.4.2)
If{N(t)} is reversible then {N(t)} is stationary.
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Reversibility — 2

Theorem (2.4.3 Reversibility and detailed balance)

Let {N(t), t € R} be a stationary Markov chain with transition
rates q(n,n’), n,n’ € S. {N(t)} is reversible if and only if there
exists a distribution T = (w(n), n € S) that satisfies the
detailed balance equations. When there exists such a
distribution m, then r is the equilibrium distribution of {N(t)}.
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Example: Departures from the M|M|1 queue

>

Arrival process to the M|M|1 queue is a Poisson process
with rate \.
If A < p departure process from M|M|1 queue has rate \.

{N(t)} recording the number of customers in M|M|1 with
arrival rate \ and service rate p satisfies detailed balance.
Markov chain {N'(t)} in reversed time has Poisson
arrivals at rate A and service rate p.

Therefore {N'(t)} is the Markov chain of an M|M|1 queue
with Poisson arrivals at rate A and negative-exponential
service at rate .

Epochs of the arrival process for the reversed queue
coincide with the epochs of the arrival process for the
original queue, it must be that the departure process from
the M|M|1 queue is a Poisson process with rate A.
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Reversibility — 3

Theorem (2.4.3 Reversibility and detailed balance)

Let {N(t), t € R} be a stationary Markov chain with transition
rates q(n,n’), n,n" € S. {N(t)} is reversible if and only if there
exists a distribution = = (w(n), n € S) that satisfies the
detailed balance equations. When there exists such a
distribution m, then = is the equilibrium distribution of {N(t)}.

Proof. If {N(t)} is reversible, then forall t, he R, n,n’ € S:
P(N(t+ h) =n’, N(t) =n) =P(N(t) =n’, N(t+ h) =n).
{N(t), t € R} is stationary. Let 7(n) = P(N(t) = n), t € R.

P(N(t+ h) = n’|N(t) = n) _ P(N(t+h)=n|N(t) =n")
i m(n) = b m(n’)

Letting h — 0 yields the detailed balance equations.
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Proof continued

Assume 7 = (w(n), n € S) satisfies detailed balance.
Consider {N(t)} for t € [-H, H]. Suppose {N(t)} moves along
the sequence of states nq, ..., n, and has sojourn time h; in n;,
i=1,...,k—1,and remains in ny for at least hy until time H.
With probability 7(n1) = P(N(—H) = nq) {N(t)} starts in ny.
Probability density with respect to hy, .. ., hx for this sequence

ny)h

71'(“1 )q(n1 )e*q( ,O(n1 ’ n2) . q(nk,1)e’q("k*)hk*‘p(nkq , nk)e*Q(nk)hk’

Kolmogorov’s criterion implies that

m(n1)q(n1,N2) - - - q(Nk_1,Nk) = m(Nk)q(Nk, Nk_1) - - - q(N2, Ny),

probability density equals the probability density for the
reversed path that starts in nj at time H.

Thus (N(t), N(t2), ..., N(t)) ~ (N(=t),N(t2), ..., N(—t))
Stationarity completes the proof,.
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Burke’s theorem and feedforward networks — 1

Theorem (2.5.1 Burke’s theorem)

Let {N(t)} record the number of customers in the M|M|1
queue with arrival rate \ and service rate p, A < p. Let {D(t)}
record the customers’ departure process from the queue. In
equilibrium the departure process {D(t)} is a Poisson process
with rate A\, and N(t) is independent of { D(s), s < t}.

Proof. M|M|1 reversible: epochs at which {N(—t)} jumps up
form Poisson process with rate .

If {N(—1t)} jumps up at time t* then {N(t)} jumps down at t*.
Departure process forms a Poisson process with rate .
{N(t)} reversible: departure process up to t* and N(t*) have
same distribution as arrival process after —t* and N(—t*).
Arrival process is Poisson process: arrival process after —t*
independent of N(—t*).

Hence, the departure process up to t* independent of N(t*).
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Burke’s theorem and feedforward networks — 2

» Tandem network of two M|M|1 queues

» Poisson A arrival process to queue 1, service rates ;.

» Provided p; = A\/u; < 1, marginal distributions
7T,'(I’7,') = (1 - p;)p?i, n; € Np.

» Burke’s theorem: departure process from queue 1 before
t* and Ny (t*), are independent.

» Hence, in equilibrium, the at time t* the random variables
N; () and No(t*) are independent:

2
a(n) =[[m(m), neS=N;
i=1
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Burke’s theorem and feedforward networks — 3

» Customer leaving queue j can route to any of the queues
j+1,...,d, or may leave the network.
» pj fraction of customers from queue 7 to queue j > i,
pio fraction leaving the network.
Arrival process is Poisson process with rate pg.
Fraction po, of these customers is routed to queue ;.
The service rate at queue j is ;.
Burke’s theorem implies that all flows of customers among
the queues are Poisson flows.
» Arrival rate \; of customers to queue j is obtained from
superposition and random splitting of Poisson processes:
j—1
Aj :uopo,-+z}\,-p,-j, f=1,...,J,
i=1

v vyyVyyewy

» traffic equations: the mean flow of customers.
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Burke’s theorem and feedforward networks — 4

Theorem (2.5.4 Equilibrium distribution)

Let {N(t) = (Ny(t),...,Ny(t))} at state space S = N, where
n=(ny,...,ny) and n; the number of customers in queue j,
f=1,...,d, record the number of customers in the
feedforward network of J M|M|1 queues described above. If
pj = N/ < 1, with )\; the solution of the traffic equations,
j=1,...,d, then the equilibrium distribution is the product of
the marginal distributions of the queues:

J
an)=[[(1=p)p], meNo, j=1,....d. (1)
J=1

» Next: networks of M|M|1 queues.
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Open network of M|M|1 queues — 1

» Customer leaving queue j can route to any of the queues
1,...,d, or may leave the network.

pj fraction of customers from queue / to queue /,
pio fraction leaving the network.

v

v

Arrival process is Poisson process with rate pg.

v

Fraction po, of these customers is routed to queue ;.

v

The service rate at queue j is y;.

Arrival rate \; of customers to queue j is obtained from the
traffic equations

v

J
)\/:MOPOJ‘FZ)\IP//, j:17"'7J7
i=1
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Open network of M|M|1 queues — 2

>

Evolution number of customers in the queues recorded by
Markov chain {N(t) = (N1(t), ..., Ny(t)), t € R}

State space S C Ny, states n = (ny,...,ny).

If {N(t)} is in state n and a customer routes from queue i
to queue j then the next stateisn —e; + €, i,j=0,...,J.
Queue 0 is introduced to represent the outside.

» If a customer routes from queue i to queue 0 then this

customer leaves the network

and if a customer routes from queue 0 to queue j then this
customers enters the network at queue j, j=1,...,J.
State space S = Ny.

The transition rates of {N(t)} for an open network are, for
n#n’,nn S,

n_ | wipj, fn=n—e+e;,ij=0,...,J,
g(n.m) = { 0, otherwise.
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Closed network of M|M|1 queues — 1

» Queueing network is closed if arrivals to the network and
departures from the network are not possible.

» Closed network by setting 1o =0and pjp =0,/ =1,...,J.

» Number of customers in a closed network is constant:
S=Sy={n: Z/-J:1 n; = M} for some M, the number of
customers in the network.

» The transition rates of {N(t)} for a closed network are, for
n#n’,nn €S,

n_ J wipj, fn=n—e+e, i, j=1,...,J,
q(n.m) = { 0, otherwise.
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Open network of M|M|1 queues — 3

Lemma (3.1.1 Traffic equations: open network)

Consider an open network. Assume that the routing matrix
P = (pj, i,j=0,...,J) is irreducible. The traffic equations

J
)‘j::quO]_‘_Z)\lpljv j:1>"'7‘j7

i=1

have a unique non-negative solution {)\;, j=1,...,J}.

Proof. Let \g = po. Observe that the traffic equations also
imply a traffic equation for queue 0: pp = Z/L'I:1 AiPjo- Then the
traffic equations for the open network read

J J
ZA/'P/‘/ = Z)\ipija J=0,...,d.
i=0 i—0
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Open network of M|M|1 queues — 4

Theorem (3.1.4 Equilibrium distribution)

Consider the Markov chain {N(t)} at state space S = Ng for
the open network of M|M|1 queues. Assume the routing matrix
P = (pj) is irreducible and let { \;} be the unique solution of
the traffic equations. If p; == \j/p; <1,j=1,...,d, then
{N(t)} has unique product-form equi/ibrium distribution

J
m(n) = H (1 —p/ H’rl nj
j=1

Moreover, the equilibrium distribution satisfies partial balance,
foralne S,i=0,...,J,

J
Y {n(n)g(n,n—e;+e)—n(n—e;+e)qg(n—e +e,n)}=0.
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Proof of Theorem 3.1.4

J

> _{m(n)q(n,n —ei+e;) — m(n —e; +e;)q(n —e; +e;,n)}
j=0

>

J
j=0

J J
—8yi+3
{szkuipfﬂl(n —e eNg) — P:k T pil(n - e € Né)}
k=1 k=1

J

Z {m(n)g(n,n—e;+e)—mn—e;+e)g(n—e;+e;,n)}1(i=0)
j=0

J J
= {Mo - ZA/P/'O} Hkal(n €Np) =0,
j=1 k=1

J

> {m(n)g(n,n —e; + ) — m(n —e; +e)q(n —e; +e;,n)} 1(i # 0)
=0

J J J
- {Z APy — poPoi — Y )‘ini} [Tk 1(n— e € N3)1(i # 0) = 0.

j=0 j=1 k=1
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Traffic equations

> {m(n)g(n,n —e; +e;) — m(n —e; +e;)q(n — e +e;,n)}
j=0

j=0

J
S {m(n)g(n,n — e+ ) — m(n —e; +e;)q(n — e; +e;,n)} 1(i = 0)
j=0

= {/LO Z)\]plo} Hpk n S No =0,

J
S {m(n)g(n.n —e; +e) — m(n — e +e)g(n —e;+e;.n)} 1(i # 0)
j=0

J J
- {Af o =3 Am/} [T /p™1(n - e € N)L(i # 0) = 0.

j=1 k=1

UNIVERSITY OF TWENTE. Markovian Queues and Stochastic Networks

J J J
—84i+6k
> {szw,-pf,-ﬂ(n —e e M)~ [T Mipia(n — e € Né)}

21/1



Partial balance -1

Moreover, the equilibrium distribution satisfies partial balance,
foraIIn €S,i=0,...,J,

Z{ﬂ' (I’l n— e,-+e,-)—7r(n—e,-+e,-)q(n—e,-+e/-,n)}:O.

(0,0
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Closed network of M|M|1 queues — 2

Theorem (3.1.5 Equilibrium distribution)

Consider Markov cha/n {N(t)} at state space

S=Sy={n: Z/ 1 Ny = M} for the closed network of M|M|1

queues containing M customers. Assume P = (pj) is

irreducible and let {\;} be the unique solution of the traffic

equations such that Y A; = 1. Let pj := X;/p;. Then {N(1)}

has unique product form equilibrium distribution B
il

neS j=1

Moreover, the equ:l/br/um distribution satisfies partial balance,

foralne S,i=1,...,J,

J

> {x(n)g(n,n—e;+e)—7(n—e;+e)g(n—e;+e,n)}=0.

GMHpj, neS, Gy=

j=
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Closed network of M|M|1 queues — 3

Algorithm (3.1.8 Buzen’s Algorithm)
Define G(m,j), m=0,...,M,j=1,...,J. Set
G(0,)) = 1, j=1,...,J,
G(m1) = p", m=0,...,M.
Forj=2,...,d,m=1....M, do
G(m,j) = G(m,j —1) + p;G(m —1,)).
Then Gy = G(M, J)™

» Buzen’s algorithm yields G,,, m=1,..., M, and marginals
and means:
mi(n) = GMP?[GA_/,L,,]. —piGy, il M=0, M1,
m(M) = Gup},
EN] = Yhoi gt
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