UNIVERSITY OF TWENTE.

Markovian Queues and Stochastic Networks

Lecture 1
Richard J. Boucherie

Stochastic Operations Research

Overview MQSN

- ► Background on Markov chains
- Reversibility, output theorem, tandem networks, feedforward networks
- ► Partial balance, Markovian routing, Kelly-Whittle networks
- Kelly's lemma, time-reversed process, networks with fixed routes
- ► Advanced topics

Literature

- ► R.D. Nelson, Probability, Stochastic Processes, and Queueing Theory, 1995, chapter 10
- ► F.P. Kelly, Reversibility and stochastic networks, 1979, chapters 1–4 www.statslab.cam.ac.uk/~frank/BOOKS/kelly_book.html
- R.W. Wolff, Stochastic Modeling and the Theory of Queues, Prentice Hall, 1989
- R.J. Boucherie, N.M. van Dijk (editors), Queueing Networks - A Fundamental Approach, International Series in Operations Research and Management Science Vol 154, Springer, 2011
- ► Reader: R.J. Boucherie, Markovian queueing networks, 2018 (work in progress)

Internet of Things: optimal route in Jackson network

- Jobs arrive at outside nodes with given destination
- ► Each node single server queue minimize sojourn time
- ► Optimal route selection
- ► Inform jobs in neighbouring node
- alternative route

Internet of Things: optimal route in Jackson network

- ► Tandem of M|M|1 queues
- Sojourn time
- ► Average sojourn time queue *i*:

$$\mathbb{E}S_i = (\mu_i - \lambda_i)^{-1}$$

► On route

$$\mathbb{E}S = \sum_{i} (\mu_{i} - \lambda_{i})^{-1}$$

Internet of Things: optimal route in Jackson network

- ► For fixed routes via set of queues
- ► On route r $\mathbb{E}S_r = \sum_i (\mu_i - \lambda_i)^{-1} \mathbb{1}(i \text{ on } r)$

Challenge

- ► Grid *N* × *N*
- ► On each side *k* flows arrive from sources at randomly selected (but fixed) nodes with destination a randomly selected (but fixed) node on one of the 4 sides
- At each gridpoint a single server queue handles and forwards packets
- Packets select their route from source to destination to minimize their travelling time (no travelling time on link)
- Packets may communicate with neighbours to avoid congestions and change their route accordingly
- ► Poisson arrivals of packets; general processing time at nodes; one destination on each side
- ► Develop decentralized routing algorithm to minimize mean travelling times and demonstrate that it outperforms shortest (and fixed) route selection

- ► Stochastic process $\{N(t), t \in T\}$ records evolution of random variable, $T = \mathbb{R}$
- ▶ State space $S \subseteq \mathbb{N}_0^J$, state $\mathbf{s} = (n_1, \dots, n_J)$
- ▶ Stationary process if $(N(t_1), N(t_2), ..., N(t_k))$ has the same distribution as $(N(t_1 + \tau), N(t_2 + \tau), ..., N(t_k + \tau))$ for all $k \in \mathbb{N}$, $t_1, t_2, ..., t_k \in T$, $\tau \in T$
- Markov proces satisfies the Markov property: for every $k \ge 1$, $0 \le t_1 < \cdots < t_k < t_{k+1}$, and any $\mathbf{s}_1, \ldots, \mathbf{s}_{k+1}$ in S, the joint distribution of $(N(t_1), \ldots, N(t_{k+1}))$ is such that

$$\mathbb{P}\left\{N(t_{k+1}) = \mathbf{s}_{k+1} | N(t_1) = \mathbf{s}_1, \dots, N(t_k) = \mathbf{s}_k\right\} \\
= \mathbb{P}\left\{N(t_{k+1}) = \mathbf{s}_{k+1} | N(t_k) = \mathbf{s}_k\right\},$$

whenever the conditioning event $(N(t_1) = \mathbf{s}_1, \dots, N(t_k) = \mathbf{s}_k)$ has positive probability.

- ▶ A Markov process is time-homogeneous if the conditional probability $\mathbb{P}\{N(s+t) = \mathbf{s}' | N(s) = \mathbf{s}\}$ is independent of t for all s, t > 0, $\mathbf{s}, \mathbf{s}' \in S$.
- ► For a time-homogeneous Markov process the transition probability from state **s** to state **s**′ in time *t* is defined as

$$P(\mathbf{s}, \mathbf{s}'; t) = \mathbb{P}\left\{N(\mathbf{s} + t) = \mathbf{s}' | N(\mathbf{s}) = \mathbf{s}\right\}, \quad t > 0.$$

- ► The transition matrix $P(t) = (P(s, s'; t), s, s' \in S)$ has non-negative entries (1) and row sums equal to one (2).
- The Markov property implies that the transition probabilities satisfy the Chapman-Kolmogorov equations (3). Assume that the transition matrix is standard (4). For all s, s' ∈ S, s, t ∈ T, a standard transition matrix satisfies:

$$P(\mathbf{s}, \mathbf{s}'; t) \ge 0; \tag{1}$$

$$\sum_{\mathbf{s}' \in S} P(\mathbf{s}, \mathbf{s}'; t) = 1; \tag{2}$$

$$P(\mathbf{s},\mathbf{s}'';t+s) = \sum_{t=0}^{\infty} P(\mathbf{s},\mathbf{s}';t) P(\mathbf{s}',\mathbf{s}'';s); \qquad (3)$$

$$\lim_{t\downarrow 0} P(\mathbf{s}, \mathbf{s}'; t) = \delta_{\mathbf{s}, \mathbf{s}'}. \tag{4}$$

► For a standard transition matrix the transition rate from state **s** to state **s**′ can be defined as

$$q(\mathbf{s}, \mathbf{s}') = \lim_{h\downarrow 0} \frac{P(\mathbf{s}, \mathbf{s}'; h) - \delta_{\mathbf{s}, \mathbf{s}'}}{h}.$$

- ▶ For all $\mathbf{s}, \mathbf{s}' \in S$ this limit exists.
- Markov process is called continuous-time Markov chain if for all s, s' ∈ S the limit exists and is finite (5).
- Assume that the rate matrix Q = (q(s, s'), s, s' ∈ S) is stable (6), and conservative (7)

$$0 \le q(\mathbf{s}, \mathbf{s}') < \infty, \quad \mathbf{s}' \ne \mathbf{s};$$
 (5)

$$0 \le q(\mathbf{s}) := -q(\mathbf{s}, \mathbf{s}) < \infty; \tag{6}$$

$$\sum q(\mathbf{s}, \mathbf{s}') = 0. \tag{7}$$

► If the rate matrix is stable the transition probabilities can be expressed in the transition rates: for s, s' ∈ S,

$$P(\mathbf{s}, \mathbf{s}'; h) = \delta_{\mathbf{s}, \mathbf{s}'} + q(\mathbf{s}, \mathbf{s}')h + o(h)$$
 for $h \downarrow 0$, (8)

where o(h) denotes a function g(h) with the property that $g(h)/h \to 0$ as $h \to 0$.

For small positive values of h, for $\mathbf{s}' \neq \mathbf{s}$, $q(\mathbf{s}, \mathbf{s}')h$ may be interpreted as the conditional probability that the Markov chain $\{N(t)\}$ makes a transition to state \mathbf{s}' during (t, t+h) given that the process is in state \mathbf{s} at time t.

- ► For every initial state $N(0) = \mathbf{s}$, $\{N(t), t \in T\}$ is a pure-jump process: the process jumps from state to state and remains in each state a *strictly positive* sojourn-time with probability 1.
- ► Markov chain remains in state **s** for an exponential sojourn-time with mean $q(\mathbf{s})^{-1}$.
- ► Conditional on the process departing from state **s** it jumps to state **s**' with probability $p(\mathbf{s}, \mathbf{s}') = q(\mathbf{s}, \mathbf{s}')/q(\mathbf{s})$.
- ► The Markov chain represented via the holding times q(s) and transition probabilities p(s, s'), $s, s' \in S$, is referred to as the Markov jump chain.
- ► The Markov chain with transition rates $q(\mathbf{s}, \mathbf{s}')$ is obtained from the Markov jump chain with holding times with mean $q(\mathbf{s})^{-1}$ and transition probabilities $p(\mathbf{s}, \mathbf{s}')$ as $q(\mathbf{s}, \mathbf{s}') = q(\mathbf{s})p(\mathbf{s}, \mathbf{s}')$, $\mathbf{s}, \mathbf{s}' \in \mathcal{S}$.

► From the Chapman-Kolmogorov equations

$$P(\mathbf{s}, \mathbf{s}''; t + s) = \sum_{\mathbf{s}' \in S} P(\mathbf{s}, \mathbf{s}'; t) P(\mathbf{s}', \mathbf{s}''; s)$$

two systems of differential equations for the transition probabilities can be obtained:

► Conditioning on the first jump of the Markov chain in (0, t] yields the so-called Kolmogorov backward equations (9), whereas conditioning on the last jump in (0, t] gives the Kolmogorov forward equations (10), for $\mathbf{s}, \mathbf{s}' \in S$, $t \ge 0$,

$$\frac{dP(\mathbf{s}, \mathbf{s}'; t)}{dt} = \sum_{\mathbf{s}'' \in S} q(\mathbf{s}, \mathbf{s}'') P(\mathbf{s}'', \mathbf{s}'; t), \tag{9}$$

$$\frac{dP(\mathbf{s},\mathbf{s}';t)}{dt} = \sum_{\mathbf{s},\mathbf{s}'';t} P(\mathbf{s},\mathbf{s}'';t) q(\mathbf{s}'',\mathbf{s}'). \tag{10}$$

► Derivation Kolmogorov forward equations (regular)

$$P(\mathbf{s}, \mathbf{s}'; t+h) = \sum_{\mathbf{s}''} P(\mathbf{s}, \mathbf{s}''; t) P(\mathbf{s}'', \mathbf{s}'; h)$$

$$P(\mathbf{s}, \mathbf{s}'; t+h) - P(\mathbf{s}, \mathbf{s}'; t) = \sum_{\mathbf{s}'' \neq \mathbf{s}'} P(\mathbf{s}, \mathbf{s}''; t) P(\mathbf{s}'', \mathbf{s}'; h) + P(\mathbf{s}, \mathbf{s}'; t) [P(\mathbf{s}', \mathbf{s}'; h) - 1]$$

$$= \sum_{\mathbf{s}'' \neq \mathbf{s}'} \left\{ P(\mathbf{s}, \mathbf{s}''; t) P(\mathbf{s}'', \mathbf{s}'; h) - P(\mathbf{s}, \mathbf{s}'; t) P(\mathbf{s}', \mathbf{s}''; h) \right\}$$

$$\frac{dP(\mathbf{s}, \mathbf{s}'; t)}{dt} = \sum_{\mathbf{s}'' \neq \mathbf{s}'} \left\{ P(\mathbf{s}, \mathbf{s}''; t) q(\mathbf{s}'', \mathbf{s}') - P(\mathbf{s}, \mathbf{s}'; t) q(\mathbf{s}', \mathbf{s}'') \right\}$$

Explosion in a pure birth process

▶ Consider the Markov chain at state space $S = \mathbb{N}_0$ with transition rates

$$q(\mathbf{s},\mathbf{s}') = egin{cases} q(\mathbf{s}), & ext{if } \mathbf{s}' = \mathbf{s}+1, \ -q(\mathbf{s}), & ext{if } \mathbf{s}' = \mathbf{s}, \ 0, & ext{otherwise,} \end{cases}$$

with initial distribution $\mathbb{P}(N(0) = \mathbf{s}) = \delta(\mathbf{s}, 0)$.

- ▶ Let $\xi(\mathbf{s})$ denote the time spent in state \mathbf{s} ; $\xi = \sum_{\mathbf{s}=0}^{\infty} \xi(\mathbf{s})$
- ▶ Let $q(s) = 2^s$, then

$$\mathbb{E}\{\xi\} = \sum_{\mathbf{s}=0}^{\infty} \mathbb{E}\{\xi(\mathbf{s})\} = \sum_{\mathbf{s}=0}^{\infty} 2^{-\mathbf{s}} = 2$$

As $\mathbb{E}\{\xi\} < \infty$ it must be that $\mathbb{P}(\xi < \infty) = 1$ and therefore $\{N(t)\}$ is explosive (diverges to infinity in finite time).

Theorem (1.1.2)

For a conservative, stable, regular, continuous-time Markov chain the forward equations (10) and the backward equations (9) have the same unique solution $\{P(\mathbf{s},\mathbf{s}';t),\ \mathbf{s},\mathbf{s}'\in S,\ t\geq 0\}$. Moreover, this unique solution is the transition matrix of the Markov chain.

► The transient distribution $p(\mathbf{s}, t) = \mathbb{P}\{N(t) = \mathbf{s}\}$ can be obtained from the Kolmogorov forward equations for $\mathbf{s} \in S$, t > 0,

$$\begin{cases} \frac{dp(\mathbf{s},t)}{dt} = \sum_{\mathbf{s}'\neq\mathbf{s}} \left\{ p(\mathbf{s}',t)q(\mathbf{s}',\mathbf{s}) - p(\mathbf{s},t)q(\mathbf{s},\mathbf{s}') \right\}, \\ p(\mathbf{s},0) = p_{(0)}(\mathbf{s}). \end{cases}$$

▶ A measure $m = (m(\mathbf{s}), \ \mathbf{s} \in S)$ such that $0 \le m(\mathbf{s}) < \infty$ for all $\mathbf{s} \in S$ and $m(\mathbf{s}) > 0$ for some $\mathbf{s} \in S$ is called a stationary measure if for all $\mathbf{s} \in S$, $t \ge 0$,

$$m(\mathbf{s}) = \sum_{\mathbf{s}' \in S} m(\mathbf{s}') P(\mathbf{s}', \mathbf{s}; t),$$

and is called an invariant measure if for all $s \in S$,

$$\sum_{\mathbf{s}'\neq\mathbf{s}} \big\{ \textit{m}(\mathbf{s})\textit{q}(\mathbf{s},\mathbf{s}') - \textit{m}(\mathbf{s}')\textit{q}(\mathbf{s}',\mathbf{s}) \big\} = 0.$$

- ► {*N*(*t*)} is ergodic if it is positive-recurrent with stationary measure having finite mass
- ► Global balance; interpretation

Theorem (1.1.4 Equilibrium distribution)

Let $\{N(t), t \ge 0\}$ be a conservative, stable, regular, irreducible continuous-time Markov chain.

(i) If a positive finite mass invariant measure m exists then the Markov chain is positive-recurrent (ergodic). In this case $\pi(\mathbf{s}) = m(\mathbf{s}) \left[\sum_{\mathbf{s} \in S} m(\mathbf{s}) \right]^{-1}$, $\mathbf{s} \in S$, is the unique stationary distribution and π is the equilibrium distribution, i.e., for all $\mathbf{s}, \mathbf{s}' \in S$,

$$\lim_{t\to\infty} P(\mathbf{s},\mathbf{s}';t) = \pi(\mathbf{s}').$$

(ii) If a positive finite mass invariant measure does not exist then for all $\mathbf{s}, \mathbf{s}' \in S$.

$$\lim_{t\to\infty}P(\mathbf{s},\mathbf{s}';t)=0.$$

UNIVERSITY OF TWENTE.

Markovian Queues and Stochastic Networks

Lecture 1 Richard J. Boucherie

Stochastic Operations Research

The birth-death process – 1

▶ A birth-death process is a Markov chain $\{N(t), t \in T\}$, $T = [0, \infty)$, or $T = \mathbb{R}$, with state space $S \subseteq \mathbb{N}_0$ and transition rates for $\lambda, \mu : S \to [0, \infty)$

$$q(\mathbf{s},\mathbf{s}') = \begin{cases} \lambda(\mathbf{s}) & \text{if } \mathbf{s}' = \mathbf{s}+1, \quad \text{(birth rate)} \\ \mu(\mathbf{s})\mathbbm{1}(\mathbf{s}>0), & \text{if } \mathbf{s}' = \mathbf{s}-1, \quad \text{(death rate)} \\ -\lambda(\mathbf{s})-\mu(\mathbf{s}), & \text{if } \mathbf{s}' = \mathbf{s}, \ \mathbf{s}>0, \\ -\lambda(\mathbf{s}), & \text{if } \mathbf{s}=0. \end{cases}$$

Kolmogorov forward equations

$$\frac{dP(\mathbf{s},t)}{dt} = P(\mathbf{s}-1,t)\lambda(\mathbf{s}-1) - P(\mathbf{s},t)[\lambda(\mathbf{s}) + \mu(\mathbf{s})] + P(\mathbf{s}+1,t)\mu(\mathbf{s}+1),$$

$$\mathbf{s} > 0,$$

$$\frac{dP(\mathbf{s},t)}{dt} = -P(\mathbf{s},t)\lambda(\mathbf{s}) + P(\mathbf{s}+1,t)\mu(\mathbf{s}+1), \quad \mathbf{s}=0.$$

The birth-death process – 2

Global balance equations

0 =
$$\pi(\mathbf{s} - 1)\lambda(\mathbf{s} - 1) - \pi(\mathbf{s})[\lambda(\mathbf{s}) + \mu(\mathbf{s})] + \pi(\mathbf{s} + 1)\mu(\mathbf{s} + 1), \quad \mathbf{s} > 0,$$

0 = $-\pi(0)\lambda(0) + \pi(1)\mu(1).$

 \blacktriangleright π satisfies the detailed balance equations

$$\pi(\mathbf{s})\lambda(\mathbf{s}) = \pi(\mathbf{s}+1)\mu(\mathbf{s}+1), \quad \mathbf{s} \in S.$$

Theorem (2.1.1)

Let $\{N(t)\}$ be a birth-death process with state space $S = \mathbb{N}_0$, birth rates $\lambda(\mathbf{s})$ and death rates $\mu(\mathbf{s})$. If

$$\pi(0) := \left[\sum_{\mathbf{s}=0}^{\infty} \prod_{\mathbf{r}=0}^{\mathbf{s}-1} \frac{\lambda(\mathbf{r})}{\mu(\mathbf{r}+1)} \right]^{-1} > 0,$$
 then the equilibrium distribution is

$$\pi(\mathbf{s}) = \pi(0) \prod_{\mathbf{r}=0}^{\mathbf{s}-1} \frac{q(\mathbf{r}, \mathbf{r}+1)}{q(\mathbf{r}+1, \mathbf{r})} = \pi(0) \prod_{\mathbf{r}=0}^{\mathbf{s}-1} \frac{\lambda(\mathbf{r})}{\mu(\mathbf{r}+1)}, \quad \mathbf{s} \in \mathcal{S}.$$

Example: The M|M|1 queue

- ▶ Customers arrive to a queue according to a Poisson process (the arrival process) with rate λ .
- ▶ A single server serves the customers in order of arrival.
- ▶ Customers' service times have an exponential distribution with mean μ^{-1} and are independent of each other and of the arrival process.
- ▶ $\{N(t), t \in T\}, T = [0, \infty)$ recording number of customers in the queue is a birth-death process at $S = \mathbb{N}_0$ with

$$q(\mathbf{s},\mathbf{s}') = \begin{cases} \lambda(\mathbf{s}) = \lambda & \text{if } \mathbf{s}' = \mathbf{s} + 1, & \text{(birth rate)} \\ \mu(\mathbf{s}) = \mu \mathbb{1}(\mathbf{s} > 0), & \text{if } \mathbf{s}' = \mathbf{s} - 1, & \text{(death rate)} \end{cases}$$

and equilibrium distribution

$$\pi(\mathbf{s}) = (1 - \rho)\rho^{\mathbf{s}}, \quad \mathbf{s} \in S,$$

provided that the queue is *stable*: $\rho := \frac{\lambda}{\mu} < 1$.

Example: The M|M|1|c queue

- ▶ M|M|1 queue, but now with finite waiting room that may contain at most c-1 customers.
- ▶ $\{N(t), t \in T\}, T = [0, \infty)$ recording the number of customers in the queue is a birth-death process at $S = \{0, 1, 2, ..., c\}$ with

$$q(\mathbf{s}, \mathbf{s}') = \begin{cases} \lambda(\mathbf{s}) = \lambda \mathbb{1}(\mathbf{s} < c) & \text{if } \mathbf{s}' = \mathbf{s} + 1, & \text{(birth rate)} \\ \mu(\mathbf{s}) = \mu \mathbb{1}(\mathbf{s} > 0), & \text{if } \mathbf{s}' = \mathbf{s} - 1, & \text{(death rate)}. \end{cases}$$

- Detailed balance equations are truncated at state c
- ▶ The equilibrium distribution is truncated to *S*:

$$\pi(\mathbf{s}) = \pi(\mathbf{0})\rho^{\mathbf{s}}, \quad \mathbf{s} \in \{0, 1, \dots, c\},$$

with

$$\pi(0) = \left[\sum_{s=0}^{c} \rho^{s}\right]^{-1} = \frac{1-\rho}{1-\rho^{c+1}}.$$

Detailed balance – 1

Definition (2.2.1 Detailed balance)

A Markov chain $\{N(t)\}$ at state space S with transition rates $q(\mathbf{s},\mathbf{s}')$, $\mathbf{s},\mathbf{s}'\in S$, satisfies detailed balance if a distribution $\pi=(\pi(\mathbf{s}),\ \mathbf{s}\in S)$ exists that satisfies for all $\mathbf{s},\mathbf{s}'\in S$ the detailed balance equations:

$$\pi(\mathbf{s})q(\mathbf{s},\mathbf{s}')-\pi(\mathbf{s}')q(\mathbf{s}',\mathbf{s})=0.$$

Theorem (2.2.2)

If the distribution π satisfies the detailed balance equations then π is the equilibrium distribution.

► The detailed balance equations state that the probability flow between each pair of states is balanced.

Detailed balance – 2

Theorem (2.2.5 Truncation)

Consider $\{N(t)\}$ at state space S with transition rates $q(\mathbf{s}, \mathbf{s}')$, $\mathbf{s}, \mathbf{s}' \in S$, and equilibrium distribution π . Let $V \subset S$. Let r > 0. If the transition rates are altered from $q(\mathbf{s}, \mathbf{s}')$ to $rq(\mathbf{s}, \mathbf{s}')$ for $\mathbf{s} \in V$, $\mathbf{s}' \in S \setminus V$, then the resulting Markov chain $\{N_r(t)\}$ satisfies detailed balance and has equilibrium distribution (G is the normalizing constant)

$$\pi_r(\mathbf{s}) = egin{cases} G\pi(\mathbf{s}), & \mathbf{s} \in V, \ Gr\pi(\mathbf{s}), & \mathbf{s} \in S \setminus V, \end{cases}$$

If r = 0 then the Markov chain is truncated to V and

$$\pi_0(\mathbf{s}) = \pi(\mathbf{s}) \left[\sum_{\mathbf{s} \in V} \pi(\mathbf{s}) \right]^{-1}, \quad \mathbf{s} \in V.$$

Example: Network of parallel M|M|1 queues – 1

- ► Network of two *M*|*M*|1 queues in parallel.
- ▶ Queue *j* has arrival rate λ_i and service rate μ_i , j = 1, 2.
- $\{N_i(t)\}, j = 1, 2$, are assumed independent.
- $\{N(t) = (N_1(t), N_2(t))\}$, state space $S = \mathbb{N}_0^2$, $\mathbf{s} = (n_1, n_2)$,
- ▶ Transition rates, for $\mathbf{s}, \mathbf{s}' \in S, \mathbf{s}' \neq \mathbf{s},$

$$q(\mathbf{s},\mathbf{s}') = egin{cases} \lambda_j & ext{if } \mathbf{s}' = \mathbf{s} + \mathbf{e}_j, & j = 1,2, \ \mu_j, & ext{if } \mathbf{s}' = \mathbf{s} - \mathbf{e}_j, & j = 1,2. \end{cases}$$

▶ Random variables $N_j := N_j(\infty)$ recording the equilibrium number of customers in queue j are independent.

$$\pi(\mathbf{s}) = \prod_{i=1}^2 \pi_j(n_j), \quad \mathbf{s} \in \mathcal{S},$$

$$\pi_i(n_i) = (1 - \rho_i)\rho_i^{n_i}, \ n_i \in \mathbb{N}_0, \text{ provided } \rho_i := \frac{\lambda_i}{\mu_i} < 1.$$

Example: Network of parallel M|M|1 queues – 2

- ▶ Common capacity restriction $n_1 + n_2 \le c$.
- ► Customers arriving to the network with *c* customers present are discarded.
- ► The Markov chain $\{N(t) = (N_1(t), N_2(t))\}$ has state space $S_c = \{(n_1, n_2) : n_j \ge 0, j = 1, 2, n_1 + n_2 \le c\}$ and transition rates truncated to S_c .
- Invoking Truncation Theorem:

$$\pi(\mathbf{s}) = G \prod_{i=1}^2
ho_j^{n_j}, \quad \mathbf{s} \in \mathcal{S}_c,$$

with normalising constant

$$G = \left[\sum_{n_1=0}^{c} \sum_{n_2=0}^{c-n_1} \prod_{i=1}^{2} \rho_i^{n_i} \right]^{-1}.$$

UNIVERSITY OF TWENTE.

Markovian Queues and Stochastic Networks

Lecture 1
Richard J. Boucherie

Stochastic Operations Research

Tandem network

- ► Tandem network of two M|M|1 queues
- ▶ Poisson λ arrival process to queue 1, service rates μ_i .
- ▶ Provided $\rho_i = \lambda/\mu_i < 1$, marginal distributions $\pi_i(n_i) = (1 \rho_i)\rho_i^{n_i}, n_i \in \mathbb{N}_0.$
- ► In equilibrium:

$$\pi(\mathbf{s}) = \prod_{i=1}^2 \pi_i(n_i), \quad \mathbf{s} \in S = \mathbb{N}_0^2.$$

UNIVERSITY OF TWENTE.

Markovian Queues and Stochastic Networks

Lecture 1
Richard J. Boucherie

Stochastic Operations Research

