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Overview MQSN

v

Background on Markov chains

Reversibility, output theorem, tandem networks,
feedforward networks

Partial balance, Markovian routing, Kelly-Whittle networks

v

v

v

Kelly’s lemma, time-reversed process, networks with fixed
routes

Advanced topics

v
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» F.P. Kelly, Reversibility and stochastic networks, 1979,
chapters 1—4
www.statslab.cam.ac.uk/~frank/BOOKS/kelly _book.html
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Networks - A Fundamental Approach, International Series
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154, Springer, 2011

» Reader: R.J. Boucherie, Markovian queueing networks,
2018 (work in progress)
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Internet of Things: optimal route in Jackson
network

» Jobs arrive at outside nodes with
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Internet of Things: optimal route in Jackson
network

» Tandem of M|M|1 queues

» Sojourn time
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Internet of Things: optimal route in Jackson
network

» For fixed routes via set of queues
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Challenge

» Grid N x N

» On each side k flows arrive from sources at randomly
selected (but fixed) nodes with destination a randomly
selected (but fixed) node on one of the 4 sides

» At each gridpoint a single server queue handles and
forwards packets

» Packets select their route from source to destination to
minimize their travelling time (no travelling time on link)

» Packets may communicate with neighbours to avoid
congestions and change their route accordingly

» Poisson arrivals of packets; general processing time at
nodes; one destination on each side

» Develop decentralized routing algorithm to minimize mean
travelling times and demonstrate that it outperforms
shortest (and fixed) route selection
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Continuous-time Markov chain

» Stochastic process {N(t), t € T} records evolution of
random variable, T = R

» State space S C N, state s = (n4,...,ny)

» Stationary process if (N(t1), N(&2), ..., N()) has the
same distribution as (N(t +7), N(t2 +7), ..., N(tx + 7))
forall k € N, t,b,....l € T,7eT

» Markov proces satisfies the Markov property: for every
k>1,0<t <--- <lx <ty1,and any sq,...,Sgqin S,
the joint distribution of (N(t), ..., N(t.1)) is such that

P{N(tx11) = Sk+1IN(t) = s1,..., N(t) = sk}
=P {N(t11) = Sk1|N(t) = sk},
whenever the conditioning event
(N(t) = s1,...,N(t) = sk) has positive probability.
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Continuous-time Markov chain — 2

» A Markov process is time-homogeneous if the conditional
probability P {N(s + t) = §'|N(s) = s} is independent of ¢
foralls,t >0,s,8' € S.

» For a time-homogeneous Markov process the transition
probability from state s to state s’ in time t is defined as

P(s,s’;t) =P{N(s+1t) =s'|N(s) =s}, t>0.
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Continuous-time Markov chain — 3

» The transition matrix P(t) = (P(s,s’; t), s,8’ € S) has
non-negative entries (1) and row sums equal to one (2).

» The Markov property implies that the transition
probabilities satisfy the Chapman-Kolmogorov
equations (3). Assume that the transition matrix is
standard (4). For all s, s’ € S, s,t € T, a standard
transition matrix satisfies:

P(s,s’;t) > 0;

Y P(s;sit)=1;

s’eS

P(s,s";t+5)=> P(s, s t)P(s's";s);

s’'eS
lim P(s,8; 1) = ds g
im ( ) =Jss
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Continuous-time Markov chain — 4

v

For a standard transition matrix the transition rate from

state s to state s’ can be defined as

q(s,s’) = lim

vy

P(S, S/, h) — 5575/
hl0 h '

For all s, s’ € S this limit exists.
Markov process is called continuous-time Markov chain if

for all s, 8’ € S the limit exists and is finite (5).

v

Assume that the rate matrix Q = (q(s,s’), s,8' € S) is

stable (6), and conservative (7)

UNIVERSITY OF TWENTE.

0<q(s,8)<oo, §'#s; (5)
0 <q(s) :=—q(s,s) < x; (6)
3 q(s,8) =0. (7)
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Continuous-time Markov chain — 5

» If the rate matrix is stable the transition probabilities can
be expressed in the transition rates: for s, s’ € S,

P(s,s’;h) =éss +q(s,s')h+o(h) forh|0, (8)
where o(h) denotes a function g(h) with the property that

g(h)/h—0as h— 0.

» For small positive values of h, for s’ # s, q(s,s’)h may be
interpreted as the conditional probability that the Markov
chain {N(t)} makes a transition to state s’ during (¢, t + h)
given that the process is in state s at time t.
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Continuous-time Markov chain — 6

» For every initial state N(0) =s, {N(t), te T}isa
pure-jump process: the process jumps from state to state
and remains in each state a strictly positive sojourn-time
with probability 1.

» Markov chain remains in state s for an exponential
sojourn-time with mean g(s) .

» Conditional on the process departing from state s it jumps
to state s’ with probability p(s,s’) = q(s, s’)/q(s).

» The Markov chain represented via the holding times g(s)
and transition probabilities p(s, s’), s,s’ € S, is referred to
as the Markov jump chain.

» The Markov chain with transition rates g(s, s’) is obtained
from the Markov jump chain with holding times with mean
q(s)~' and transition probabilities p(s, s’) as
q(s,s’) = q(s)p(s,s’), s,s' € S.
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Continuous-time Markov chain — 7
» From the Chapman-Kolmogorov equations

P(s,s";t+s)= > P(s,s;t)P(s',s";s)
s'eS
two systems of differential equations for the transition
probabilities can be obtained:

» Conditioning on the first jump of the Markov chain in (0, {]
yields the so-called Kolmogorov backward equations (9),
whereas conditioning on the last jump in (0, t] gives the
Kolmogorov forward equations (10), fors,s’ € S, t > 0,

/.
CiF)(sd,ts,t) — Z q(s’ s//)P(s//7 s/, t), (9)
s//es
/.
P — S Pssinals’s). (10)
s//es
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Continuous-time Markov chain — 8

» Derivation Kolmogorov forward equations (regular)

P(s;s'it+h) = 3 Pls,s"iP(s"s'ih)
s//
P(s.s/it+ )~ Pls.sit) = Y P(s.s":0P(s".sih) + P(s,s [P(s'.8/ih) 1]
s//#s[
= > {P(s,;s"i)P(s",s"; h) — P(s,s":)P(s',s"; h)}
s/ s’
w = Y {P(s;s";t)q(s".s') — P(s,s";1)q(s',s")}

s/ s’
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Explosion in a pure birth process

» Consider the Markov chain at state space S = Ny with
transition rates
q(s), ifs'=s+1,
q(s,s') =< —q(s), ifs' =s,
0, otherwise,
with initial distribution P(N(0) = s) = (s, 0).
» Let £(s) denote the time spent in state s; £ = Y o, £(S)
» Let g(s) = 2%, then

E{¢} =) E{g(s)} =) 27%=2
s=0 s=0
As E{¢} < oo it must be that P(§ < co0) = 1 and therefore

{N(t)} is explosive (diverges to infinity in finite time).
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Continuous-time Markov chain — 9

Theorem (1.1.2)

For a conservative, stable, regular, continuous-time Markov
chain the forward equations (10) and the backward

equations (9) have the same unique solution

{P(s,s’;t), s,s' € S, t > 0}. Moreover, this unique solution is
the transition matrix of the Markov chain.

» The transient distribution p(s, t) = P{N(t) = s} can be
obtained from the Kolmogorov forward equations for
seS, t>0,

dp (s, f) =Y {p(s',1)q(s’,s) — p(s. 1)q(s. s},
=

p(s,0) = p)(s).
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Continuous-time Markov chain — 10

» A measure m= (m(s), s € S) such that 0 < m(s) < oo
foralls € Sand m(s) > 0 for some s € S'is called a
stationary measure if foralls € S, t > 0,

m(s) =Y _ m(s')P(s',s;1),
s’'eS

and is called an invariant measure if foralls € S,

> {m(s)q(s,s) — m(s')q(s',s)} = 0.
s'#s

» {N(t)} is ergodic if it is positive-recurrent with stationary
measure having finite mass

» Global balance; interpretation

UNIVERSITY OF TWENTE. Markovian Queues and Stochastic Networks 18/31



Continuous-time Markov chain — 11

Theorem (1.1.4 Equilibrium distribution)
Let {N(t), t > 0} be a conservative, stable, regular, irreducible
continuous-time Markov chain.

(i) If a positive finite mass invariant measure m exists then
the Markov chain is positive-recurrent (ergodic). In this
case w(s) = m(s) [Ygcs M(s )]*1, s € S, is the unique
stationary distribution and r is the equilibrium distribution,
ie. foralls,s’ €S,

lim P(s,s’;t) = n(s).

t—o0

(if) If a positive finite mass invariant measure does not exist
then for all s, s’ € S,

lim P(s,s’;t) =0.
t—o0
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The birth-death process — 1

» A birth-death process is a Markov chain {N(t), t € T},
T =10,00), or T =R, with state space S C Ny and
transition rates for A, : S — [0, 00)

A(Ss) ifs'=s+1, (birth rate)
s)l(s >0), ifs’=s—1, (deathrate)
d(s.s) — | ML >0), ifs' =
—A(s) —u(s), ifs'=s,8>0,
—A(s), ifs =0.
» Kolmogorov forward equations
w = P(s—1,0)A\s—1) — P(s, )[\(S) + u(s)] + P(s + 1,t)u(s + 1),
s> 0,
PED — Ps,Ns) + (s +1,0u(s 1), $=0.
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The birth-death process — 2
» Global balance equations

0 = nw(s—1As—1)—n(s)[\(S)+ u(s)]+n(s+1)u(s+1), s>0,
0 = —7w(0)A(0)+ w(1)u(1).

» 7 satisfies the detailed balance equations
w(s)A(s) =m(s+1)u(s+1), seS.
Theorem (2.1.1)

Let {N(t)} be a birth-death process with state space S = Ny,
birth rates \(s) and death rates p(s). If

i
A
(0) _[Zs OHr O,ur(+r1} >07
then the equilibrium distribution is

q(r,r+1) SO
H r+1r) (O)H)u(rJﬂ)’ seS.
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Example: The M|M|1 queue

» Customers arrive to a queue according to a Poisson
process (the arrival process) with rate \.

» A single server serves the customers in order of arrival.

» Customers’ service times have an exponential distribution
with mean p~' and are independent of each other and of

the arrival process.
» {N(t), te T}, T =10, 00) recording number of customers
in the queue is a birth-death process at S = Ny with

, A(s) = A ifs’=s+1, (birth rate)
qs.s) = {u(s) = pl(s >0), ifs’=s—1, (death rate)
and equilibrium distribution

m(s)=(1-p)p%, s€S,

. . A
provided that the queue is stable: p .= — < 1.
1%
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Example: The M|M|1|c queue

» M|M|1 queue, but now with finite waiting room that may
contain at most ¢ — 1 customers.

» {N(t), te T}, T =]0,00) recording the number of
customers in the queue is a birth-death process at
S=1{0,1,2,...,c} with

(s.8)) = As)=Ml(s<c) ifs’=s+1, (birthrate)
as.s)= u(s) = pl(s > 0), ifs’=s—1, (deathrate).
» Detailed balance equations are truncated at state ¢
» The equilibrium distribution is truncated to S:
n(s) =n(0)p®, se€{0,1,...,c},
with
c —1 1
—p
m(0) = [Z Ps] =T e
s=0
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Detailed balance — 1

Definition (2.2.1 Detailed balance)

A Markov chain {N(t)} at state space S with transition rates
q(s,s’), s,s’ € S, satisfies detailed balance if a distribution
m = (n(s), s € S) exists that satisfies for all 5,8’ € S the
detailed balance equations:

7(s)q(s,s’) — n(s')q(s’,s) = 0.

Theorem (2.2.2)
If the distribution w satisfies the detailed balance equations
then = is the equilibrium distribution.

» The detailed balance equations state that the probability
flow between each pair of states is balanced.
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Detailed balance — 2

Theorem (2.2.5 Truncation)

Consider {N(t)} at state space S with transition rates q(s,s'),
s,s’ € S, and equilibrium distribution . Let V C S.

Letr > 0. If the transition rates are altered from q(s, s’) to
rq(s,s’) fors € V, s’ € S\ V, then the resulting Markov chain
{N;(t)} satisfies detailed balance and has equilibrium
distribution (G is the normalizing constant)

(s) = Gr(s), seV,
T Grr(s), se S\ vV,

If r = 0 then the Markov chain is truncated to V and

-1

mo(s) = 7(s) [Z w(s)] , seV.
seV
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Example: Network of parallel M|M|1 queues — 1

» Network of two M|M|1 queues in parallel.

» Queue j has arrival rate A\; and service rate p, j = 1,2.

» {N(t)},j = 1,2, are assumed independent.

» {N(t) = (N{(t), Nao(t))}, state space S = N2, s = (ny, o),
» Transition rates, fors,s’ € S, s’ # s,

q(S,S/) = {

» Random variables N; := N;(oo) recording the equilibrium
number of customers in queue j are independent.

A ifs'=s+e, j=1,2
pj, ifs'=s—e;, j=12

2
n(s) =[] =), seS
j=1

. . A;
mi(n) = (1= p)pj’, nj € No, provided p; := L
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Example: Network of parallel M|M|1 queues — 2

» Common capacity restriction ny + no < c.

» Customers arriving to the network with ¢ customers
present are discarded.

» The Markov chain {N(t) = (N;(t), N2(t))} has state space
Sc={(Mm,n2):n;>0,j=1,2, ny+n <c}and
transition rates truncated to S..

» Invoking Truncation Theorem:

2
w(s)=G[][r], se€Se
j=1
with normalising constant
—1

c c—ny
= ZZHp
=0no=0i=1
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Tandem network

—_—

» Tandem network of two M|M|1 queues
» Poisson )\ arrival process to queue 1, service rates ;.

» Provided p; = A/u; < 1, marginal distributions
7T,'(I7,') = (1 — p,‘)p,m, n; € Np.
» In equilibrium:

2
n(s)=[[mi(n), se€S=N.
i=1
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