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Patients with different medical condition require different nurse to patient ratio

Ranging from 2:1 (2 nurses for 1 patient – ICU) to 1:6 (medical ward)

Mixing of patient classes may be possible in some wards, and (in future) we may use flexible 

assignment of nurses to wards  

Patient requires b nurses 1/6≤ b ≤ 2 

Patient accepted iff minimum requirement b is met: loss system

Intensive Care Unit, Ward, …
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GSM /HSCSD: High Speed Circuit Switched Data



Multiple types (speech, video, data)

circuit switched: each call gets number of channels

GSM speech: 1 channel

         data: 1 channel (CS, data rate 9.6 kbps)

GSM/HSCSD speech: 1 channel 

                       data: 1≤ b,...,B ≤ 8 channels (technical requirements, data rate 14.4 kbps)

 

Call accepted iff minimum channel requirement b is met: loss system

Up / downgrading: 

data calls may use more channels (up to B) when other services are not using these channels

video: better picture quality, but same video length

data: faster transmission rate, thus smaller transmission time 

HSCSD characteristics
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Theorem 1:

For the generalised stochastic knapsack, a necessary and sufficient condition for 

reversibility of                                               is that

                                                   

                                                         for all 

for some function                         . Moreover, when such a function         exists, the 

equilibrium distribution for the generalised stochastic knapsack is given by

               

Generalised stochastic knapsack: equilibrium distribution
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Proof:

We have to verify detailed balance:

If      exists that satisfies the last expression, then      satisfies detailed balance. As 

the right hand side of this expression is independent of the index k it must be that the 

condition of the theorem involving                          is satisfied. Conversely, assume 

that the condition involving                            is satisfied. Then  

                                                    is the equilibrium distribution.

Generalised stochastic knapsack: equilibrium distribution

University of Twente - Stochastic Operations Research 29 

)(

)(

)(

)(

)()()()(

),()(),()(

n

en

en

n

enennn

nenqenennqn

k

kk

k

kkkk

kkk













+
=

+



++=



++=+

),0[: → S

Sn
n

n
n

Sn





=



,
)(

)(
)(

 

),0[: → S



Stochastic knapsack

Finite source input

State space constraints

Generalised stochastic knapsack: examples
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Admission control
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Admission class k whenever sufficient room                               Complete sharing                 

Simple, but

     may be unfair (some classes monopolize the knapsack resources)

     may lead to poor long-run average revenue (admitted objects may not contribute to revenue)

admission policies: restrict access even when sufficient room available

     calculate performance under policy

     determine optimal policy

Coordinate convex policies

In general: Markov decision theory

nbCbk −



Admission policy

Transition rates

Recurrent states

Examples: complete sharing

                  trunk reservation

Stochastic knapsack under admission control
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trunk reservation admits class k object iff after admittance at least     resource units 

remain available

Stochastic knapsack under trunk reservation
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Not reversible: so that equilibrium distribution usually not available in closed form



Coordinate convex set 

Coordinate convex policy: admit object iff state process remains in 

Stochastic knapsack coordinate convex policies
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Note: Not all policies are coordinate convex, e.g. trunk reservation

Complete sharing: always admit if room available

Complete partitioning: accept class k iff

Threshold policies: accept class k iff

Coordinate convex policies: examples 
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revenue in state n 

long run average revenue 

example: long run average utilization

                long run average throughput

Intuition:optimal policy in special cases

                                blocking obsolete        complete sharing

                                complete partitioning with

where                     is the  optimal solution of the knapsack problem       

                  If             integer, where     maximizes per unit revenue           then 

Coordinate convex policies: revenue optimization 
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number of coordinate convex policies is finite

           thus         for each coordinate convex policy f compute W(f)

                           and select f with highest W(f)

            infeasible as number of policies grows as  

show that optimal policy is in certain class

           often threshold policies

then problem reduces to finding optimal thresholds

in full generality: Markov decision theory 

Coordinate convex policies: optimal policies 
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Loss networks

University of Twente - Stochastic Operations Research 20 

So far: stochastic knapsack

                           equilibrium distribution

                           blocking probabilities

                           throughput

                           admission control
                                    coordinate convex policy -- complex state space

model for multi service single link 

                
                multi service multiple links / networks



PSTN / ISDN

University of Twente - Stochastic Operations Research 18 

Link: connection between switches

Route: number of links

Capacity Ci of link i

Call class: route, bandwidth requirement per link

or in medical setting: patient simultaneously requires various resources

Stochastic knapsack: special case = model for single link

But: is special case of generalised stochastic knapsack

C3
C1

C7

C5

C4

C6C2
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number of links                                   J

capacity (bandwidth units) link j

number of object classes                    K 

class k arrival rate                                   

class k mean holding time (exp)                  

bandwidth req. class k on link j

Route

Class k admitted iff      bandwidth units free in each link

Otherwise call is blocked and cleared

Admitted call occupies       bandwidth units in each link              for duration of its 

holding time 

Loss network : notation
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Set of classes

set of classes that uses link j

state

state space

class k blocked

Loss network : notation
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state of process at time t

stationary Markov process

                    aperiodic,irreducible

equilibrium state

utilization of link j

long run fraction of blocked calls

long run throughput

unconstrained cousin (∞ capacity)

                Poisson r.v. with mean

unconstrained cousin of utilization

Loss network : notation
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Equilibrium distribution
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Theorem: Product form equilibrium distribution  

Blocking probability of class k call

The Markov chain is reversible, PASTA holds, and the equilibrium distribution (and the 
blocking probabilities) are insensitive.

PROOF: special case of generalised stochastic knapsack!
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Computing blocking probabilities
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Direct summation is possible, but complexity

Recursion is possible (KR), but complexity 

Bounds for single service loss networks (                    )

For link j in loss network: probability that call on link j is blocked

                                                                                                         load offered to link j

            facility bound 

Call of class k blocked if not accepted at all links

            product bound
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Computing blocking probabilities: single service networks

Reduced load approximation

University of Twente - Stochastic Operations Research 12 

Facility bound 

Part of offered load             blocked on other links :

             probability at least one unit of bandwidth available in each link in 

             reduced load

approximation: blocking independent from link to link

reduced load approximation

existence, uniqueness fixed point

repeated substitution

accuracy   
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kÎK j

å rk
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Reduced load approximation: existence and uniqueness
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Notation:

Theorem There exists a unique solution        to the fixed point equation

Proof The mapping                             is continuous, so existence from Brouwer’s theorem

        is not a contraction! 
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Reduced load approximation: uniqueness
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Notation:

                inverse of Er for capacity        : value of      such that

                is strictly increasing function of B 

Therefore                        is strictly convex function of B for  

Proof of uniqueness:

consider fixed point                  and apply            :    

Define 

which is strictly convex.

Thus, if                    is solution of 

Then         is unique minimum of        over     

writing out the partial derivatives yields (*) 
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Reduced load approximation: repeated substitution
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Repeat

Theorem Let

              Then

 Thus

Proof 

    is decreasing operator:
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Reduced load approximation: accuracy
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Corollary

so that

Proof 

Indeed      from reduced load approximation does not violate the upper bound  
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Monte Carlo summation
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For performance measures: compute equilibrium distribution  

for blocking probability of class k call

In general: evaluate

difficult due to size of the state space :  use Monte Carlo summation                             
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Monte Carlo summation

University of Twente - Stochastic Operations Research 6 

Example: evaluate integral

Monte Carlo summation:

draw points at random in box abcd

# points under curve / # points is measure for surface ////  = value integral

Method

Let

draw n indep. Samples

Then                           unbiased estimator of

with 95% confidence interval         

Powerful method: as accurate as desired

a b


b

a

dxxf )(

cd

))((1let   and   indep,),0(),( XfYZcUYbaUX
dd

===

nZZ ,...,1

n

ZZ
Z n++
=

...1 −

b

a

dxxf
abc

)(
)(

1

   

Z ±1.96 S2(n) /n[ ]
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For blocking probabilities  

ratio of multidimensional Poisson( ρ) distributed r.v. 

Let                            then

Estimate enumerator and denominator via Monte Carlo summation:

                                                                                for

              confidence interval?

  

   

Bk =
nÎTk

å
ℓ=1

K

Õ
rℓ

nℓ

nℓ!

nÎS

å
ℓ=1

K

Õ
rℓ

nℓ

nℓ!









−

−

e

e

) Poisson( 
d

X =
})(Pr{

})(Pr{

SX

TX
B k

k



=





  

   

draw    Vi     from    Poisson( r),  i =1,...,n    iid

Let  g(Vi) =1(Vi ÎU)

Eg(V ) = Pr{X(r) ÎU} =
nÎU

å
ℓ=1

K

Õ
rℓ

nℓ

nℓ!
e-rℓ

SUTU k ==      and    
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For blocking probabilities  

Estimate enumerator and denominator via Monte Carlo summation:

confidence interval? Harvey-Hills method (acceptance rejection method HH)

                                                                                    unbiased estimator!

  

   

Bk =
nÎTk

å
ℓ=1

K

Õ
rℓ

nℓ

nℓ!

nÎS

å
ℓ=1

K

Õ
rℓ

nℓ

nℓ!









−

−

e

e

succes    ascount            also    sample if           

count       sample if

ignore       sample if

iid    ,...,1  ), Poisson(    from         draw

k

i

T

S

S

niV







=

})(|)(Pr{
})(Pr{

})(Pr{
SXTX

SX

TX
B k

k
k =




= 





k

ikii

BVEg

SVTVVg

=

=

)(

)|(1)( 
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