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Intensive Care Unit, Ward, ...

Patients with different medical condition require different nurse to patient ratio
Ranging from 2:1 (2 nurses for 1 patient — ICU) to 1:6 (medical ward)

Mixing of patient classes may be possible in some wards, and (in future) we may use flexible
assignment of nurses to wards

Patient requires b nurses 1/6s b < 2

Patient accepted iff minimum requirement b is met: loss system
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GSM /HSCSD: High Speed Circuit Switched Data

4 142 FEITEE
CATA ELESTHEAME

CATA STHEAM

Figure 2.1 ey /Ha0eD network architecture: the illustration shows an example data call
at an information bit rate of 4 = 14.4 kbits /s, maintained between an H5C2D terminal and a

remote Server.
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HSCSD characteristics

Multiple types (speech, video, data)
circuit switched: each call gets number of channels

GSM SpeeCh: 1 Channel Figure 2.1 asu/ns0sn network architecture: the illustration shows an example data eall
data: 1 channel (CS, data rate 9.6 kbpS) e e e b e el v

GSM/HSCSD speech: 1 channel
data: 1< b,...,B < 8 channels (technical requirements, data rate 14.4 kbps)

Call accepted iff minimum channel requirement b is met: loss system

Up / downgrading:
data calls may use more channels (up to B) when other services are not using these channels

video: better picture quality, but same video length
data: faster transmission rate, thus smaller transmission time
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Generalised stochastic knapsack: model M=N+e

number of resource units C

number of object classes K nN=n-e —~N'=n+eg

class k arrival rate A

class k mean holding time (exp) 1/ 1,

class k size b,

state (number of objects) n=(n,...,N.) nN'=n-e,

state of process at time t X (t) = (X (1),..., X (1))

stationary Markov process {X(t),t >0}

transition rates q(n,n') = {ﬂk n:: R
Hy Ny nN=n-e
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stochastic knapsack: model

number of resource units
number of object classes

class k arrival rate

class k mean holding time (exp)
class k size

state (number of objects)

state space

object of class k accepted only if
state of process at time t

stationary Markov process

transition rates

nN'=n+e,

C

K nN=n-e —~N'=n+g
;i’k

1/

b,

n=(n,...,N.) N'=n-—e,
S={neN} :b-n<C}

b, <C-b-n

X () = (Xy 0,y X, (1))

{X (1)t >0}

A, (N)1(b, <C—-b-n) n'=n+e,
Hi Ny nN'=n-e,

g(n,n’) ={
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Generalised stochastic knapsack: model

number of resource units C

number of object classes K nN=n-e N'=n+eg

class k arrival rate Ay ()

class k mean holding time (exp) 1/ p, ()

class k size b,

state (number of objects) n=(n,...,N.) nN'=n-e,

state space S={neN{ :b-n<C}

object of class k accepted only if b, <C-Db-n

state of process at time t X () = (X (),..., X, (1))

stationary Markov process {X(t),t >0}

transition rates g(n,n') = {ﬂk (Wb, <C=b-n) m=n-+e
i (N) nN'=n-e,
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Generalised stochastic knapsack: equilibrium distribution

Theorem 1;

For the generalised stochastic knapsack, a necessary and sufficient condition for

reversibility of X (t) = (xl(t),___, X (1)) IS that

n Y(n+
A () — (n+e) forall neS\T,, k=1,...,K

u(n+e) ¥(n)

for some function ¢¥:§ [0, 00). Moreover, when such a function  exists, the

equilibrium distribution for the generalised stochastic knapsack is given by

z(n) = nesS
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Generalised stochastic knapsack: equilibrium distribution

Proof:

We have to verify detailed balance:  z(n)q(n,n+e ) =x(n+e)q(n+e,n)
=
z(N)A(n) =z(n+e ) (N+e)
=
A ) _z(n+e)
t(n+e) B z(n)

If 7T exists that satisfies the last expression, then ;i satisfies detailed balance. As
the right hand side of this expression is independent of the index k it must be that the
condition of the theorem involving ¢ -§ _ [O,oo)iS satisfied. Conversely, assume

that the condition involving ' : S — [0, 00) IS satisfied. Then

NneS isthe equilibrium distribution.

29
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Generalised stochastic knapsack: examples

Stochastic knapsack
A (N)=241b, <C—-b-n) n'=n+eg,
H(N) =N N'=n—eg,

Finite source input
A4, (n) =M, —n)A4Un, <M,) n'=n+e

p(N) =N, N'=n—g

Y(n)=

K
k=

1

n
Px
n,!

1(b-n<C)

vo) [T [ o

State space constraints
A (M) =41Db, <C-b-n;n <C,) n'=n+e,

p(N) =Ny N'=n—g,

Y(n) =

K
k=

1

n
P
n,!

1I(b-n<C;n <C))
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Admission control

Admission class k whenever sufficient room b, <C—b-n Complete sharing
Simple, but
may be unfair (some classes monopolize the knapsack resources)
may lead to poor long-run average revenue (admitted objects may not contribute to revenue)
admission policies: restrict access even when sufficient room available
calculate performance under policy
determine optimal policy
Coordinate convex policies

In general: Markov decision theory

27
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Stochastic knapsack under admission control

Admission policy

Transition rates

Recurrent states

Examples: complete sharing

trunk reservation

f=(f,.,f,) f.:S—>{01}

£ (n) = 1 class k accepted in state n
“*7 10 class k rejected in state n

A f.(N)1(b, £<C—-b-n) n'=n+eg,
Ny £ nN'=n-e,

q(n,n’) ={

S(f)cS={n:b-n<C}

1 b-n<C-—b,

O otherwise

1 b-n<C-Db, -t
0 otherwise

26
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Stochastic knapsack under trunk reservation

trunk reservation admits class k object iff after admittance at least t, resource units

remain available C=4
n?_A K=2
; 4 b,=b,=1

t,=0
3 T ¢ t, =2

¢ ; 1 b-n<C-Db, —t

fk (n) — . ‘ ‘

0 otherwise

o ( 2 3 <

Not reversible: so that equilibrium distribution usually not available in closed form
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Stochastic knapsack coordinate convex policies

Coordinate convexset QcS : neQ, n >0=n-¢ €Q
Coordinate convex policy: admit object iff state process remains in 2

oA f.(nN)=1 iff n+e O
. 4
s 0 2 Theorem:
Under the coordinate convex policy f
4 < . the state process
g b X () = O, () X (O)
' ‘(‘ " is reversible, and
K Ny

o Y V\’ ﬂ-f(n)_iH '0 ne%

o ( 3 & Gf =1
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Coordinate convex policies: examples

Note: Not all policies are coordinate convex, e.g. trunk reservation

Complete sharing: always admit if room available Q=39S

Complete partitioning: accept class k iff
b (n, +1) <C,

C, X ... X C—K
Q={O,...,Lle} {O,...,i‘bK J}

C,

C +..+C, <C
Q _Cl 3 TRRAET R S

Threshold policies: accept class k iff

b.(n, +1) <C,
b-n+b <C

Q={n:b-n<C,n, S{E‘(J,k =1,...,K}

k

23
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Coordinate convex policies: revenue optimization

K

revenue in state n r(n) = z N Ny
k=1
long run average revenue W(f)= Z r(n)z; (n)
ne)
example: long run average utilization r. =b,
long run average throughput e = 4,

Intuition:optimal policy in special cases
A 0 vk blocking obsolete —, complete sharing

A, — oo VK complete partitioning with C, =b, s,

where (Sf,---, S;) Is the optimal solution of the knapsack problem

K K
max > rs, subjectto > bs, <C s, eN,

k=1 k=1

x « |r /b
If C/b,. integer, where kK maximizes per unit revenue Iy /by then s ={ o

0

22

for k=k~
otherwise
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Coordinate convex policies: optimal policies

number of coordinate convex policies is finite
thus for each coordinate convex policy f compute W(f)
and select f with highest W(f)
infeasible as number of policies grows as O(C,...C,)

show that optimal policy is in certain class

often threshold policies

b-n+b <C

Q={n:b-n<C,n, s“ij,k =1,...,K}

k

then problem reduces to finding optimal thresholds

in full generality: Markov decision theory
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| 0SS networks

So far: stochastic knapsack
equilibrium distribution
blocking probabilities
throughput
admission control
coordinate convex policy -- complex state space

model for multi service single link

multi service multiple links / networks

20
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PSTN /ISDN

/A/

Link: connection between switches

Route: number of links

Capacity Ci of link i

Call class: route, bandwidth requirement per link

or in medical setting: patient simultaneously requires various resources

Stochastic knapsack: special case = model for single link
But: is special case of generalised stochastic knapsack

18
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Loss network : notation

number of links

capacity (bandwidth units) link j
number of object classes

class k arrival rate

class k mean holding time (exp)
bandwidth req. class k on link |

Route

Class k admitted iff b, bandwidth units free in each link jeR, nN=n-—e,
Otherwise call is blocked and cleared

Admitted call occupies bjk bandwidth units in each linkj € R, for duration of its
holding time

17
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Loss network : notation

Set of classes K={1..,K}

set of classes that uses link j K,={keK:JeR}

state n=(n,...,N.)

state space S={neN; : Z b,n <C;, ]=1..,J}

keKJ-

S={neNy:An<C} A=(b,)

class k blocked Tk :{n S S . Z bjgng +bjk >CJ1 some J}

EeKJ-

T, ={neNf:An<C, A(n+e)£C}
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Loss network : notation

state of process at time t X (t) = (X, (1),..., X (1))
stationary Markov process {X(),t=0}

aperiodic,irreducible

equilibrium state X :(xl,___,xK)

utilization of link j U, = kZK: b X,

long run fraction of blocked calls B, :1€—jPr{Uj <C;-by,JeR} pasTa
long run throughput TH, =4, (1-B,) = E[X,] Little

unconstrained cousin (< capacity) X = (X" 1,..., X “k)
Poisson rv. with mean P« = A ! 44

unconstrained cousin of utilization U ™ = z b, X "k
keK;
J

15
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Equilibrium distribution

Theorem: Product form equilibrium distribution

15 p Pr{X”=n} K p
Pr{X =n}== k= ,  neS G= K nes
t ! le:! n! P{U”<C} Z H _ S

Blocking probability of class k call

K

> Pr{X=n} > P

1_ nES\Tk 1_ nES\Tk (=1 né! V, C Vectors

B, = - n
> Pr{X=n} 3 S

neS

neS /=1 nfl

The Markov chain is reversible, PASTA holds, and the equilibrium distribution (and the
blocking probabilities) are insensitive.

PROOF: special case of generalised stochastic knapsack!
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Computing blocking probabilities

Direct summation is possible, but complexity  O(KC.,...C,)

Recursion is possible (KR), but complexity O(KC,..C,)

Bounds for single service loss networks (b, {0,1})

For link j in loss network: probability that call on link j is blocked

—
— /C] —
L <Er(p;,C;)= cI[,.)J —, Pj= Z Px =Z b, o, load offered to link j
/_).k / k! ek, keK facility bound
i 1K

k=0
Call of class k blocked if not accepted at all links

B <1-T] (-Er(p,.C,)

sy product bound

13
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Computing blocking probabilities: single service networks
Reduced load approximation

Facility bound L, <Er(>’ p,,C))

kEKJ

Part of offered load Y, A blocked on other links : L, =Er(> t(i)p.C;)

keKj keKj
t,(J) probability at least one unit of bandwidth available in each link in R, \{j}
ot (]) reduced load

approximation: blocking independent from link to link t.())= H 1-L)
iR i}

reduced load approximation L, = Era r, C) L-L).C) j=L..J

KTK; (TR}
existence, unigueness fixed point _ ~ _
repeated substitution B,=1- O L-L) k=Ll.K

accuracy JTRy
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Reduced load approximation: existence and unigueness

Notation: L:=(L,...,L;)
Tj(L):: EI’(Z Pk H (1_Li)’Cj)

keK; iR \j}

T(L) =(T(L),... T,(L)

Theorem There exists a unique solution L to the fixed point equation L=T(L)

Proof The mapping T:[01]’ —»[01]’ is continuous, so existence from Brouwer’s theorem

T IS not a contraction!
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Reduced load approximation: unigueness

Notation:
Er(B) inverse of Er for capacity C, :valueof p suchthat B=Er(p,C,)

IS strictly increasing function of B
B

Therefore J. Er™j(z)dz is strictly convex function of B for B e[0/]]
0

Proof of uniqueness: o N
consider fixed point L=T(L) andapply Er’; : E-5(L)=a r, O (-L) (¥
KTK; TR}

Define VL e[01]’

L

~.

viy=8 rO a-1)+a& | B @)

KTK; TRy j=1

o O~

which is strictly convex.

Thus, if L €[01]’ is solution of a"y—(l'):O, i=1..,J

is unique minimum of y over [0,1]’

*

Then |

writing out the partial derivatives yields (*)

10
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Reduced load approximation: repeated substitution

Start L e [O,l]J T;(L) = EI"( é rk O (1_ L,‘)le)

KTK; TR \{j}

Repeat |°-—
" =T(L""), m=12,.

Theorem Let  [°=(1,...)

Then (O,,O) _ Ll < L2n+1 < L2n+3 < L* < L2n+2 < L2n < LO — (1”1)

Thus "> L, "™ >L, L<L<l
Proof

T is decreasing operator:  T(L)<T(L") if L'< L componentwise
Thus T*(L)<T* (L") and
T*"HL)> T (L") if L'< L componentwise
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Reduced load approximation: accuracy

ry=e(ar. O (-1)C,)

Corollary L].*£Er(é, I’k,Cj)

KTK; TR \{j}
kTK
so that B, =1- O (1—Lj*)£l— O Er(é rk,Cj), k=1..K
JTR, JTR, KTK,

Proof  T*(L.1)=T(0..0)= Ef( @ r..C,)

kTK
0,.0)=L<l"<L<"<"=(1..2

12=T(0,...0)

Indeed B, from reduced load approximation does not violate the upper bound
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Monte Carlo summation

For performance measures: compute equilibrium distribution

K n
O
_ oy e M 5
Pr{X=n}= > nlSs
o ["k
a0,
nts k=1 "'k o A p
aO -
for blocking probability of class k call ~ p —aT7 =1 "¢
k A ny
o g
aO -+
- n,
nlS 4=1 {
K ny
In general: evaluate o r,
a0 -+
T =1 T

difficult due to size of the state space : use Monte Carlo summation
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Monte Carlo summation

Example: evaluate integral
d C

i

Monte Carlo summation:
draw points at random in box abcd
# points under curve / # points is measure for surface //// = value integral

b

f (X)dx

QD

Method d
Let X =U(ab) Y=U(0,c) indep, and let Z=1(Y < f(X))

draw n indep. Samples 7 . 7 b
” 1
" unbiased estimator of C(b—a)J F(x)ax

a

Then 7 = Zatt2
n

with 95% confidence interval [211,961/52(;1)/;4 ]

Powerful method: as accurate as desired
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Monte Carlo summation
For blocking probabilities hy

Qo
Or

nﬂ! e_pl

=)
=3

B — n =1
k ° rﬂ
a0
< n,
nlS [=1 {
ratio of multidimensional Poisson( p) distributed r.v.

ny

e_p€

d
Let X =Poisson( p) then B, = PHX(p) €T}
P{X(p) € S}

Estimate enumerator and denominator via Monte Carlo summation:

draw V. from Poisson( r), i=1...,n iid

1

Let g(v))=1(V, TU) for U=T, and U=S

ny
r£

e

o A
Eg)=P{x(nTU}=a O

nlU =1

confidence interval?

|
n,!
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Monte Carlo summation

fo) & rnﬂ
For blocking probabilities ao -
_ a7, 0=t nt! e
Bk B o & rnﬂ e_p/
i
aO -
aTs =1 T

Estimate enumerator and denominator via Monte Carlo summation:

confidence interval? Harvey-Hills method (acceptance rejection method HH)

B — P{X(p) eT,}
“ Pr{X(p)eS}

~PH{X (p) €T, | X(p) € S}

draw V. from Poisson( p), i=1...,n iid

if sample ¢S ignore

if sample €S count g(V;) =LV, T, |V, €53)
if sample also €T, count as succes Eg(V) =B,

unbiased estimator!
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Presented at the 9th International Teletraffic Conference, 1979.

KR
J.S. Kaufman and K.M. Rege Blocking in a shared resource environment with batched
Poisson arrival processes. Performance Evaluation, 24, 249-263, 1996

Boucherie and van Dijk: chapter 16
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