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Part I
Solution concepts for Markovian networks

of queues





Chapter 1
Preliminaries

This chapter reviews and discusses the basic assumptions and techniques that will
be used in this monograph. Proofs of results given in this chapter are omitted, but
can be found in standard textbooks on Markov chains and queueing theory, e.g.
[?, ?, ?, ?, ?, ?, ?]. Results from these references are used in this chapter without
reference except for cases where a specific result (e.g. theorem) is inserted into the
text.

1.1 Basic results for Markov chains

Consider a stochastic process {N(t), t ∈ T} taking values in a countable state space
S. Applications will usually assume that S ⊆ NJ

0 and that t represents time. Then a
state n = (n1, . . . ,nJ) ∈ S is a vector with components ni ∈ N0, i = 1, . . . ,J. For a
discrete-time stochastic process T is the set of integers: T = N0, or T = Z, whereas
for a continuous-time stochastic process T is the positive real line: T =R+

0 = [0,∞)
or the real line T =R. A vector n ∈RJ is called non-negative if ni ≥ 0, i = 1, . . . ,J,
and positive if it is non-negative and non-null. In this monograph emphasis will
be on continuous-time stochastic processes. Therefore, in the sequel all results are
given for continuous-time stochastic processes only. The exposition in this section
focusses on Markov chains with countable state space S. We will not impose further
structure on the states n ∈ S.

A stochastic process is a stationary process if (N(t1),N(t2), . . . ,N(tk)) has the
same distribution as (N(t1 +τ),N(t2 +τ), . . . ,N(tk +τ)) for all k ∈N, t1, t2, . . . , tk ∈
T , τ ∈ T . The stochastic process {N(t), t ∈ T} is a Markov process if for ev-
ery k ≥ 1, t1 < · · · < tk < tk+1, and any n1, . . . ,nk+1 in S, the joint distribution of
(N(t1), . . . ,N(tk+1)) is such that

P{N(tk+1) = nk+1|N(t1) = n1, . . . ,N(tk) = nk}
= P{N(tk+1) = nk+1|N(tk) = nk} , (1.1)

3



4 1 Preliminaries

whenever the conditioning event (N(t1) = n1, . . . ,N(tk) = nk) has positive probabil-
ity. In words, for a Markov process the state at a given time contains all information
about the past evolution necessary to probabilistically predict the future evolution
of the Markov process.

A Markov process is time-homogeneous if the conditional probability
P{N(s+ t) = n′|N(t) = n} is independent of t for all s > 0, n,n′ ∈ S. For a time-
homogeneous Markov process the transition probability from state n to state n′ in
time t is defined as

P(n,n′; t) = P
{

N(s+ t) = n′|N(s) = n
}
, s, t > 0.

The transition matrix P(t) = (P(n,n′; t), n,n′ ∈ S) has non-negative entries (1.2)
and row sums equal to one (1.3). The Markov property (1.1) implies that the tran-
sition probabilities satisfy the Chapman-Kolmogorov equations (1.4). In addition,
assume that the transition matrix is standard (1.5). For all n,n′ ∈ S, s, t ∈ T , a stan-
dard transition matrix satisfies:

P(n,n′; t)≥ 0; (1.2)

∑
n′∈S

P(n,n′; t) = 1; (1.3)

P(n,n′;s+ t) = ∑
n′′∈S

P(n,n′′;s)P(n′′,n′; t); (1.4)

lim
t↓0

P(n,n′; t) = δn,n′ . (1.5)

δn,n′ is the Kronecker-delta, δn,n′ = 1 if n = n′ and δn,n′ = 0 if n 6= n′. For a stan-
dard transition matrix it is natural to extend the definition of P(n,n′; ·) to [0,∞) by
setting P(n,n′;0) = δn,n′ . Then for all n,n′ the transition probabilities are uniformly
continuous on [0,∞). Furthermore, each P(n,n′; t) is either identically zero for all
t > 0 or never zero for t > 0 (Lévy’s dichotomy [?, Theorem II.5.2]).

For a standard transition matrix the transition rate from state n to state n′ can be
defined as

q(n,n′) = lim
h↓0

P(n,n′;h)−δn,n′

h
.

For all n,n′ ∈ S this limit exists. For n 6= n′ this limit is finite (1.6), whereas for
n= n′ the limit may be infinite. For practical systems the limit for n= n′ is finite too.
In the sequel it is assumed that the limit exists for n = n′: (1.7). A Markov process
is called a continuous-time Markov chain if for all n,n′ ∈ S the limit exists and is
finite (1.6), (1.7). In addition it is assumed that the rate matrix is conservative (1.8).
Then for all n,n′ the rate matrix satisfies
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0≤ q(n,n′)< ∞, n′ 6= n; (1.6)

0≤ q(n) :=−q(n,n)< ∞; (1.7)

∑
n′∈S

q(n,n′) = 0. (1.8)

For a rate matrix that satisfies (1.6), (1.7), the definition of the transition rates im-
plies that the transition probabilities can be expressed in the transition rates. This
gives, for n,n′ ∈ S,

P(n,n′;h) = δn,n′ +q(n,n′)h+o(h) for h ↓ 0, (1.9)

where o(h) denotes a function g(h) with the property that g(h)/h→ 0 as h ↓ 0.
For small positive values of h, for n′ 6= n, the term q(n,n′)h may be interpreted as
the conditional probability, up to order o(h), that the Markov chain {N(t)} makes a
transition to state n′ during (t, t+h) given that the process is in state n at time t. From
(1.7), (1.8), note that q(n) = ∑n′ 6=n q(n,n′). If q(n) is finite, q(n)h is the conditional
probability that {N(t)} leaves this state during (t, t + h) given that {N(t)} is in
state n at time t. As a consequence, q(n,n′) can be interpreted as the rate at which
transitions occur, i.e., as transition rates. To elaborate on the transition rates and on
the role of stability, consider the conditional probability that the process remains in
n during (s,s+h) if the process is in n at time s. This conditional probability is

P{N(τ) = n, s < τ < s+h|N(s) = n}= e−q(n)h, h > 0.

The exit-time from state n, ε(n), defined as

ε(n) = inf{t : t > 0, N(t + s) 6= n}

given that the process is in state n at time s, has a negative-exponential distribution
with mean q(n)−1.

For every initial state N(0) = n, {N(t), t ∈ T} is a pure-jump process, which
means that the process jumps from state to state and remains in each state a strictly
positive sojourn-time with probability 1. For the Markovian case, the process re-
mains in state n for a negative-exponentially distributed sojourn-time with mean
q(n)−1. In addition, conditional on the process departing from state n it jumps
to state n′ with probability p(n,n′) = q(n,n′)/q(n). This second interpretation is
sometimes used as a definition of a continuous-time Markov chain and is used to
construct such processes. The Markov chain represented via the holding times q(n)
and transition probabilities p(n,n′), n,n′ ∈ S, is referred to as the Markov jump
chain of the Markov chain {N(t)}. Note that we obtain the Markov chain with tran-
sition rates q(n,n′) from the Markov jump chain with holding times with mean
q(n)−1 and transition probabilities p(n,n′) as q(n,n′) = q(n)p(n,n′), n,n′ ∈ S.

From the Chapman-Kolmogorov equations two systems of differential equations
for the transition probabilities can be obtained. To this end, observe that for a
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standard transition matrix every element P(n,n′; ·) has a continuous derivative in
(0,∞), which is continuous at zero if the rate matrix satisfies (1.6), (1.7) [?, Theo-
rem II.12.8]. Conditioning on the first jump of the Markov chain in (0, t] yields the
so-called Kolmogorov backward equations (1.10), whereas conditioning on the last
jump in (0, t] gives the Kolmogorov forward equations (1.11). The validity of this
method is discussed below. These equations read for n,n′ ∈ S, t ≥ 0,

dP(n,n′; t)
dt

= ∑
n′′∈S

q(n,n′′)P(n′′,n′; t), (1.10)

dP(n,n′; t)
dt

= ∑
n′′∈S

P(n,n′′; t)q(n′′,n′). (1.11)

If the rate matrix satisfies (1.6), (1.7), then starting from the initial state N(0) = n,
a first jump of the Markov chain exists for t > 0. As a consequence conditioning on
this first jump is allowed. In contrast, the last jump of the Markov chain in (0, t] is
not properly defined. It may be that also for a rate matrix that satisfies (1.6), (1.7)
jumps will accumulate in such a way that {N(t)} will make infinitely many jumps
in finite time. In this case {N(t)} is not properly defined from the rate matrix for all
t > 0.

Example 1.1.1 (Explosion in a pure birth process) Consider the Markov chain
{N(t), t ∈ [0,∞)}, at state space S = N0 with transition rates

q(n,n′) =


q(n), if n′ = n+1,
−q(n), if n′ = n,
0, otherwise,

with initial distribution P(N(0) = n) = δ (n,0). Then {N(t)} is a pure birth process
that spends a negative-exponentially distributed time with rate q(n) in state n and
then jumps to state n+1 with probability 1, n ∈ S. Let ξ (n) denote the time spent
in state n, and ξ = ∑

∞
n=0 ξ (n) the time spent in the states 0,1,2, . . .. Let q(n) = 2n,

then

E{ξ}=
∞

∑
n=0

E{ξ (n)}=
∞

∑
n=0

2−n = 2

by monotone convergence. As E{ξ}<∞ it must be that P(ξ <∞) = 1 and therefore
{N(t)} is explosive (diverges to infinity in finite time).1 �

An additional assumption on the rate matrix guaranteeing the existence of a last
jump in (0, t] is regularity. A pure-jump Markov chain is regular if for every initial
state N(0) = n the number of transitions in finite time is finite with probability 1. For
a regular Markov chain the last jump before t is well-defined and conditioning on the
last jump before t is allowed. Thus if a pure-jump Markov chain satisfies (1.6), (1.7)
and is regular, then for all t > 0 the evolution of the process is uniquely determined

1 We may actually show the following stronger result: A pure birth process is explosive if and only
if ∑

∞
n=0 q(n)−1 < ∞.
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by the transition rates, that is specification of the transition rates is sufficient to
completely characterize the process.

Regularity is a property of the rate matrix. It can be shown [?] that the rate matrix
is regular if and only for some ν > 0 the system of equations

∑
n′∈S

q(n,n′)x(n′) = νx(n), n ∈ S,

has no bounded solution other than {x(n) = 0, n ∈ S}. This characterization of reg-
ularity may be difficult to apply in practical situations. A simple sufficient condition
ensuring regularity of a Markov chain is the existence of a uniform finite upper
bound on q(n). If such a bound exists, i.e., if a constant C exists such that for all
n ∈ S

q(n)≤C < ∞,

then the Markov chain is said to be uniformizable and the forward and backward
equations have the same solution. Uniformizability can be too strong for practi-
cal applications as it excludes, for example, the infinite-server queue (see Example
2.3.1). More general sufficient conditions can be found in, e.g., [?, Section 4-3]. A
detailed discussion of regularity is beyond the scope of this monograph. The be-
haviour of irregular Markov chains is, for example, discussed in [?, ?].

The following theorem summarizes the results on regularity and the forward and
backward equations stated above.

Theorem 1.1.2 ([?, Theorem II.18.3]) For a conservative, regular, continuous-
time Markov chain the forward equations (1.11) and the backward equations (1.10)
have the same unique solution {P(n,n′; t), n,n′ ∈ S, t ≥ 0}. Moreover, this unique
solution is the transition matrix of the Markov chain.

In particular, Theorem 1.1.2 states that either the forward or the backward equations
can be solved to find the transition matrix

P(t) = eQt =
∞

∑
n=0

(Qt)n

n!
, t ≥ 0.

Usually the forward equations are easier to use in practical cases as they allow for
an interpretation using probability fluxes (see below).

For any initial distribution {p(0)(n), n ∈ S} defined as

p(0)(n) = P{N(0) = n} , ∑
n∈S

p(0)(n) = 1,

the time-dependent distribution {p(n, t), n ∈ S} defined as

p(n, t) = P{N(t) = n} , ∑
n∈S

p(n, t) = 1,

can be obtained from the forward equations (1.11). Pre-multiplication of the forward
equations (1.11) with the initial distribution {p(0)(n), n ∈ S} gives for the time-
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dependent distribution the following version of the Kolmogorov forward equations
for n′ ∈ S, t ≥ 0,

d p(n′, t)
dt

= ∑
n6=n′

{
p(n, t)q(n,n′)− p(n′, t)q(n′,n)

}
,

p(n′,0) = p(0)(n′).

(1.12)

From the interpretation of the transition rates obtained from (1.9), for n 6= n′,
the probability that the process jumps from n to n′ in the interval (t, t + h) is
p(n, t)q(n,n′)h+o(h). Therefore, p(n, t)q(n,n′) may be called the probability flux
or probability flow from state n to state n′. The forward equations now express that
the rate of change of the probability mass of state n′, d p(n′,t)

dt , equals the net proba-
bility flux from S \ {n′} to n′. Thus the Kolmogorov forward equations express an
intuitively obvious relation for the time-dependent probabilities. A similar straight-
forward interpretation of the backward equations is not available.

Remark 1.1.3 (Uniformization) The embedded Markov chain of {N(t), t ∈ R+
0 }

is the discrete-time Markov chain {Y (t), t ∈ N0} at state space S with transi-
tion probabilities p(n,n′) = q(n,n′)/q(n), n,n′ ∈ S, that follows the transitions of
{N(t)}. If q(n) = q for all n ∈ S then {N(t)} makes transitions at constant rate q
and the state after k transitions is determined by the k-step transition probabilities of
{Y (t)}.

If {N(t)} is uniformizable with supn∈S q(n)≤C < ∞ we may define the discrete-
time Markov chain {X(t), t ∈ N0} at state space S with transition probabilities, for
n,n′ ∈ S,

pu(n,n′) =
{

q(n,n′)/C, if n′ 6= n,
1−q(n)/C, if n′ = n.

Note that for pu(n,n′) = p(n,n′)q(n)/C for n′ 6= n. Thus, {X(t)} is an embed-
ded Markov chain with transitions occurring at the event times of a Poisson pro-
cess with rate C. In state n ∈ S with probability 1− q(n)/C the Markov chain
makes a self-transition, and with probability q(n)/C the Markov chain makes
a transition to another state, and this state is n′ with probability p(n,n′).2 Let
Pu = (pu(n,n′), n,n′ ∈ S). Then for all n,n′ ∈ S and t > 0

P(t) =
∞

∑
k=0

(Ct)k

k!
e−Ct (Pu)

k . (1.13)

Uniformization transfers the continuous-time Markov chain {N(t)} into the discrete-
time Markov chain {X(t)}. Evaluation of P(t) for fixed t via (1.13) is efficient as
(Pu)

k can be computed efficiently. Observe, however, that the sum must be evaluated

2 Observe that for {X(t)} the exit-time from state n is ε(n)=∑
K
k=1 Xk, where K has a geometric dis-

tribution with succes probability q(n)/C, and the Xk, k = 1,2, . . ., are i.i.d. negative-exponentially
distributed with rate C. Hence ε(n) has a negative-exponential distribution with rate q(n).
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for each t separately, so that uniformization does not provide an elegant construction
for P(t) for all t. See [?] for a survey on uniformization. �

The remaining part of this section considers the stationary or equilibrium be-
haviour of Markov chains. Throughout it will be assumed that the rate matrix sat-
isfies (1.6), (1.7), is conservative and regular. Although these assumptions are not
necessary for a large part of the discussd67dion below, the discussion particularizes
to conservative, regular Markov chains when the stationary distribution is related
to the invariant distribution (the equilibrium solution of the Kolmogorov forward
equations). When the assumptions are crucial to the theory they will be explicitly
repeated.

If P(t) = (p(n,n′; t), n,n′ ∈ S) is a transition matrix then the following limit
exists for all n,n′ ∈ S

lim
t→∞

p(n,n′; t) = υ(n,n′).

The matrix ϒ = (υ(n,n′), n,n′ ∈ S) satisfies for all n,n′ ∈ S, s > 0,

υ(n,n′) = ∑
n′′∈S

υ(n,n′′)p(n′′,n′;s)

= ∑
n′′∈S

p(n,n′′;s)υ(n′′,n′) = ∑
n′′∈S

υ(n,n′′)υ(n′′,n′).

Furthermore, υ(n,n′)≥ 0 for all n,n′ ∈ S, and if υ(n,n) 6= 0 then ∑n′∈S υ(n,n′) =
1. Therefore, ϒ characterizes the stationary behaviour, but cannot be immediately
associated with the stationary distribution. For ϒ to be the stationary distribution
additional assumptions guaranteeing that υ(n,n) 6= 0 must be made.

A state n is absorbing if the process cannot leave state n, that is p(n,n; t) = 1 for
all t ≥ 0. For a non-absorbing state n the recurrence-time τ(n) is defined as

τ(n) = inf{t : t > ε(n), N(t) = n if N(0) = n},

where ε(n) is the exit-time from state n. τ(n) is the time it takes the process to return
to state n if it starts at n. A state n is called recurrent if recurrence to n is certain, i.e.,
if P{τ(n)< ∞}= 1. Otherwise it is transient. A recurrent state is positive-recurrent
if E{τ(n)}< ∞, that is if the expected return-time to state n is finite. Otherwise it is
null-recurrent.

State n is reachable from state n′ if passage from n to n′ is possible, that is if
P(n,n′; t) > 0 for some positive t. Two states communicate if each one is reach-
able from the other. A set V ⊂ S is closed if the process cannot leave V , so that
q(n,n′) = 0 for n ∈ V, n′ ∈ S \V . A set V ⊂ S is irreducible if it is closed and all
its states communicate. Two irreducible sets are disjoint, so the state space S can be
decomposed into disjoint irreducible sets V1, V2, . . ., and a non-irreducible set W .
For the equilibrium behaviour of {N(t)} the process may be analysed at each irre-
ducible set separately. Therefore, without loss of generality, for equilibrium analysis
the Markov chain may be assumed irreducible at S, that is S is an irreducible set.
In this case all states n ∈ S are of the same type (transient, null-recurrent, positive-
recurrent).
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A measure m = (m(n), n∈ S) such that 0≤m(n)< ∞ for all n∈ S and m(n)> 0
for some n ∈ S is called a stationary measure if for all n′ ∈ S, t ≥ 0,

m(n′) = ∑
n∈S

m(n)P(n,n′; t),

and is called an invariant measure if for all n ∈ S,

∑
n′ 6=n

{
m(n)q(n,n′)−m(n′)q(n′,n)

}
= 0. (1.14)

The relation between stationary and invariant measures is rather complicated [?].
Based on regularity of the rate matrix a simple relation between these measures
can be obtained. If the Markov chain is irreducible and positive-recurrent at S then
there exists a unique (up to a multiplicative factor) stationary measure m which is
positive (m(n)> 0 for all n∈ S). From this result, for a regular and irreducible pure-
jump process, if a finite mass (∑n∈S m(n) < ∞) invariant measure m exists then the
process is positive-recurrent and m is the unique stationary measure. In the literature,
an irreducible positive-recurrent process with invariant measure having finite mass
is called ergodic.

Ergodicity is an important property of a process as it guarantees the existence
of a unique stationary distribution π , that is a stationary measure summing to
unity. Furthermore, if {N(t)} is ergodic and π is the stationary distribution then
P(n,n′; t)→ π(n′) (t→∞) for all n,n′ ∈ S, or equivalently, P(n, t)→ π(n) (t→∞)
for all n ∈ S for any initial distribution P0. As a consequence π may be called equi-
librium distribution. Moreover, if {N(t)} is ergodic then for any f : S→ [0,∞) such
that ∑n∈S f (n)π(n)< ∞, with probability 1

lim
T→∞

1
T

∫ T

0
f (N(t))dt = Eπ { f (N)} ≡ ∑

n∈S
π(n) f (n).

In particular, for f (N(t)) = 1{N(t) = n}, the indicator of the event {N(t) = n}, i.e.,
1{A}= 1 if A occurs and 0 otherwise,

lim
T→∞

1
T

∫ T

0
1{N(t) = n}dt = π(n).

Thus π(n) is the long-run fraction of time the process spends in state n. The result
may be extended to a function h : S× S→ [0,∞) on the transitions of {N(t)}. If
∑n,n′∈S π(n)q(n,n′)h(n,n′)< ∞, then with probability 1

lim
T→∞

1
T

∞

∑
k=1

h(N(τk−1),N(τk))1(τk ∈ (0,T ]) = ∑
n,n′∈S

π(n)q(n,n′)h(n,n′), (1.15)

where 0 = τ0 < τ1 < τ2 < · · · are the transition epochs of {N(t)}. Conditions for the
process to be ergodic can be found, for example, in [?, ?].
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The following theorem summarizes the relation between stationary, invariant and
equilibrium distributions, and is the basis for determining the stationary or equilib-
rium distribution.

Theorem 1.1.4 (Equilibrium distribution) Let {N(t), t ≥ 0} be a conservative,
regular, irreducible continuous-time Markov chain.

(i) If a positive finite mass invariant measure m exists then the Markov chain is
positive-recurrent (ergodic). In this case π = (π(n), n ∈ S) defined as π(n) =
m(n) [∑n∈S m(n)]−1, n ∈ S, is the unique stationary distribution and π is the
equilibrium distribution, i.e., for all n,n′ ∈ S,

lim
t→∞

P(n,n′; t) = π(n′),

independent of the initial distribution.
(ii) If a positive finite mass invariant measure does not exist then for all n,n′ ∈ S,

lim
t→∞

P(n,n′; t) = 0.

The main result of Theorem 1.1.4 is that the stationary or equilibrium distribution
can be obtained as the unique probability solution to (1.14). The equations (1.14)
for m = π , the invariant distribution, can be obtained from the Kolmogorov forward
equations. To this end note that the transition matrix P(t) is the unique solution
to (1.11). Furthermore, for a standard transition matrix dP(n,n′;t)

dt → 0 (t → ∞) for
all n,n′ ∈ S. Thus for t → ∞ (1.11) reduces to (1.14). Similar to the interpretation
of (1.12), the equations (1.14) for m = π can be interpreted as balancing the flow
of probability mass on S. To this end π(n) is interpreted as the probability mass
at state n and q(n,n′) as the conductance of the direct path from n to n′. Then
π(n)q(n,n′) is the flux of probability mass from n to n′ and (1.14) states that the
flow of probability mass leaving n is balanced by the flow of probability mass en-
tering n. Therefore, (1.14) is usually referred to as global balance equations.

1.2 Three solution concepts

This section introduces three approaches to obtain the stationary or equilibrium dis-
tribution that will form the basis for the analysis in Chapters 2, 3, and 4, respectively:
reversibility, partial balance, and Kelly’s lemma.

Assumption 1.2.1 Throughout this monograph, let {N(t), t ≥ 0} be a conservative,
ergodic, continuous-time Markov chain with initial distribution P(n,0) = π(n), n ∈
S. Let N be the random variable recording the state of {N(t), t ≥ 0} in equilibrium
with distribution π .

As is discussed in Section 1.1, under Assumption 1.2.1 the equilibrium distribution
or stationary distribution, π = (π(n), n ∈ S), can be obtained as the unique solution
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to the global balance equations

∑
n′ 6=n

{
π(n)q(n,n′)−π(n′)q(n′,n)

}
= 0, n ∈ S, (1.16)

also called full balance equations or total balance equations as these equations ex-
press balance of the total probability flow in and out of each state n. Solving the
global balance equations is often very hard. Almost all solutions available in litera-
ture satisfy more stringent balance relations.

Note that under Assumption 1.2.1 the Markov chain {N(t), t ≥ 0} is stationary:

Theorem 1.2.2 If Markov chain {N(t), t ≥ 0} has initial distribution P(n,0) =
π(n), n∈ S, then {N(t), t ≥ 0} is stationary and P(n, t) = π(n), n∈ S, for all t ≥ 0.

1.2.1 Reversibility

The most stringent balance relation is transition balance. A Markov chain satisfies
transition balance if for all n,n′ ∈ S the transition rate from n to n′ equals the
transition rate from n′ to n, that is for all n,n′ ∈ S

q(n,n′) = q(n′,n).

If a Markov chain satisfies transition balance then m(n) = 1 for all n ∈ S satisfies
the global balance equations (1.16). The equilibrium distribution π exists only if S
is finite, in which case π(n) = |S|−1, n ∈ S, with |S| the cardinality of S.

A less restrictive form of balance often encountered in physical systems is de-
tailed balance [?, ?, ?]. A Markov chain satisfies detailed balance if a distribution
π = (π(n), n ∈ S) exists that satisfies the detailed balance equations (1.17), for all
n,n′ ∈ S,

π(n)q(n,n′)−π(n′)q(n′,n) = 0. (1.17)

Detailed balance is an important equilibrium concept. Summing (1.17) over all
n′ ∈ S yields that a distribution π that satisfies the detailed balance equations is
the stationary distribution. The detailed balance equations state that the probability
flow between each pair of states is balanced.

Detailed balance is related to reversibility. A stochastic process {N(t), −∞ <
t < ∞} is reversible if (N(t1),N(t2), . . . ,N(tn)) has the same distribution as (N(τ−
t1),N(τ − t2), . . . ,N(τ − tn)) for all n ∈ N, t1, t2, . . . , tn ∈ R, τ ∈ R. If a stochastic
process is reversible and the direction of time is reversed, then the probabilistic
behaviour of the process remains the same. The algebraic detailed balance property
and the probabilistic reversibility property are the basis for the analysis in Chapter 2.

Theorem 1.2.3 (Reversibility and detailed balance) Let {N(t), t ∈ T}, T =R, be
a stationary Markov chain with transition rates q(n,n′), n,n′ ∈ S. {N(t)} is re-
versible if and only if there exists a distribution π = (π(n), n ∈ S) that satisfies the



1.2 Three solution concepts 13

detailed balance equations. When there exists such a distribution π , then π is the
equilibrium distribution of {N(t)}.

Proof. See Chapter 2. �

1.2.2 Partial balance

Partial balance is less restrictive than detailed balance. Define for n ∈ S a collection
of mutually exclusive sets {Ak(n), k ∈ I(n)}, I(n)⊆N, such that

⋃
k∈I(n) Ak(n) = S.

A Markov chain is partially balanced over {Ak(n), k ∈ I(n)} if a distribution π =
(π(n), n ∈ S) exists such that for all n ∈ S, k ∈ I(n),

∑
n′∈Ak(n)

{
π(n)q(n,n′)−π(n′)q(n′,n)

}
= 0. (1.18)

The following result follows by summation of (1.18) over k ∈ I(n).

Theorem 1.2.4 (Partial balance) A distribution π = (π(n), n ∈ S) satisfying the
partial balance equations (1.18) is a stationary distribution.

Chapter 3 explores partial balance as a means to obtain the equilibrium distribution
of Markov chains.

1.2.3 Kelly’s lemma

The transition rates of the time-reversed Markov chain are given in the following
theorem.

Theorem 1.2.5 Let {N(t), t ∈ T}, T = R, be a stationary Markov chain with
transition rates q(n,n′), n,n′ ∈ S and equilibrium distribution π = (π(n), n ∈ S).
The time-reversed process {N(τ− t), t ∈ T} is a conservative, regular, irreducible
continuous-time stationary Markov chain with transition rates qr(n,n′), n,n′ ∈ S,
given by

qr(n,n′) =
π(n′)
π(n)

q(n′,n)

and the same equilibrium distribution π = (π(n), n ∈ S).

Proof. See Chapter 4. �

An important consequence of Theorem 1.2.5 is Kelly’s lemma that will be the
basis for the analysis in Chapter 4.

Theorem 1.2.6 (Kelly’s lemma) Let {N(t), t ∈ T}, T =R, be a stationary Markov
chain with transition rates q(n,n′), n,n′ ∈ S. If we can find a collection of numbers
qr(n,n′), n,n′ ∈ S, such that
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∑
n′ 6=n

q(n,n′) = ∑
n′ 6=n

qr(n,n′), n ∈ S,

and a distribution π = (π(n), n ∈ S) such that

π(n)qr(n,n′) = π(n′)q(n′,n), n,n′ ∈ S,

then qr(n,n′), n,n′ ∈ S, are the transition rates of the time-reversed Markov chain
{N(τ − t), t ∈ T} and π = (π(n), n ∈ S), is the equilibrium distribution of both
Markov chains.

Proof. See Chapter 4 �



Chapter 2
Reversibility, Poisson flows and feedforward
networks

2.1 The birth-death process

A birth-death process is a Markov chain {N(t), t ∈ T}, T = [0,∞), or T = R, at
state space S⊆ N0 with transition rates, for n,n′ ∈ S,

q(n,n′) =


λ (n) if n′ = n+1, (birth rate),
µ(n)1(n > 0), if n′ = n−1, (death rate),
−λ (n)−µ(n), if n′ = n, n > 0,
−λ (n), if n′ = n, n = 0,

for λ : S→ [0,∞), µ : S→ (0,∞). We are interested in the distribution
The Kolmogorov forward equations (1.12) read

dP(n, t)
dt

= P(n−1, t)λ (n−1)+P(n+1, t)µ(n+1)−P(n, t)[λ (n)+µ(n)],

n > 0,
dP(n, t)

dt
= P(n+1, t)µ(n+1)−P(n, t)λ (n), n = 0.

Except for a few special cases, an (elegant) solution P(n, t), n ∈ S, is not available,
see [?] for solutions for some special cases. The global balance equations (1.16)
read

0 = π(n−1)λ (n−1)+π(n+1)µ(n+1)−π(n)[λ (n)+µ(n)], n > 0,

0 = π(1)µ(1)−π(0)λ (0).

Starting with the balance equation for n = 0 we readily obtain that π satisfies the
detailed balance equations

π(n)λ (n) = π(n+1)µ(n+1), n ∈ S,

15
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that may be iteratively solved to obtain the following result.

Theorem 2.1.1 Let {N(t)} be a birth-death process at state space S = N0, with
birth rates λ (n) and death rates µ(n). If

π(0)−1 :=

[
∞

∑
n=0

n−1

∏
r=0

λ (r)
µ(r+1)

]
< ∞, (2.1)

then the equilibrium distribution is

π(n) = π(0)
n−1

∏
r=0

q(r,r+1)
q(r+1,r)

= π(0)
n−1

∏
r=0

λ (r)
µ(r+1)

, n ∈ S. (2.2)

Note that we may always find an invariant measure m that satisfies m(n)λ (n) =
m(n+1)µ(n+1), n ∈ S, and that the normalisation condition (2.1) guarantees that
the invariant measure m is summable to obtain the equilibrium distribution (2.2).

Example 2.1.2 (The M|M|1 queue) Let customers arrive to a queue according to a
Poisson process (the arrival process) with rate λ . Suppose there is a single server
serving the customers in order of arrival and that customers’ service times have a
negative-exponential distribution with mean µ−1 and are independent of each other
and of the arrival process. This queue is referred to as the single server queue or
M|M|1 queue. The Markov chain {N(t), t ∈ T}, T = [0,∞), that records the number
of customers in the queue is a birth-death process at state space S = N0 with birth
and death rates

q(n,n′) =

{
λ (n) = λ , if n′ = n+1, (birth rate),
µ(n) = µ1(n > 0), if n′ = n−1, (death rate)

and equilibrium distribution

π(n) = (1−ρ)ρn, n ∈ S,

provided that the queue is stable:

ρ :=
λ

µ
< 1.

�

Example 2.1.3 (The M|M|1|c queue) Reconsider the M|M|1 queue, but now with
finite waiting room that may contain at most c− 1 customers. Let the system start
in state 0 at time 0. Customers arriving to the queue containing c customers (1 in
service and c− 1 waiting) are discarded. The Markov chain {N(t), t ∈ T}, T =
[0,∞), that records the number of customers in the queue is a birth-death process at
state space S = {0,1,2, . . . ,c} with birth and death rates

q(n,n′) =

{
λ (n) = λ1(n < c), if n′ = n+1, (birth rate),
µ(n) = µ1(n > 0), if n′ = n−1, (death rate).
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For the M|M|1|c queue starting in state 0 the process remains in the set S: the birth
rate in state c equals 0, so that the set of detailed balance equations is truncated at
state c:

π(n)λ (n) = π(n+1)µ(n+1), n = 0, . . . ,c−1.

The equilibrium distribution is that of the M|M|1 queue truncated to S:

π(n) = π(0)ρn, n ∈ {0,1, . . . ,c},

with

π(0) =

[
c

∑
n=0

ρ
n

]−1

=
1−ρ

1−ρc+1 .
�

Example 2.1.4 (The M|M|s queue) Let customers arrive to a queue according to
a Poisson process with rate λ . Suppose there are s, s ≥ 1, servers serving the cus-
tomers in parallel (each server serves one customer) in order of arrival and that
customers’ service times have a negative-exponential distribution with mean µ−1

and are independent of each other and of the arrival process. This queue is referred
to as the multi server queue or M|M|s queue. The Markov chain {N(t), t ∈ T},
T = [0,∞), that records the number of customers in the queue is a birth-death pro-
cess at state space S = N0 with birth and death rates

q(n,n′) =

{
λ (n) = λ , if n′ = n+1, (birth rate),
µ(n) = µ min(n,s), if n′ = n−1, (death rate)

and equilibrium distribution

π(n) =


π(0)

ρn

n!
, if 0≤ n < s,

π(0)
ρn

sn−ss!
, if n≥ s,

with normalising constant

π(0)−1 =
s−1

∑
n=0

ρn

n!
+

ρs

(s−ρ)(s−1)!
,

provided that the queue is stable:

ρ :=
λ

µ
< s.

�
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2.2 Detailed balance

Several properties of birth-death processes carry over to Markov chains that satisfy
detailed balance.

Definition 2.2.1 (Detailed balance) A Markov chain {N(t)} at state space S with
transition rates q(n,n′), n,n′ ∈ S, satisfies detailed balance if a distribution π =
(π(n), n ∈ S) exists that satisfies for all n,n′ ∈ S the detailed balance equations:

π(n)q(n,n′)−π(n′)q(n′,n) = 0. (2.3)

Summing (2.3) over all n′ ∈ S gives the following result.

Theorem 2.2.2 If a distribution π satisfies the detailed balance equations then π is
the equilibrium distribution.

The detailed balance equations state that the probability flow between each pair of
states is balanced.

The equilibrium distribution of the birth-death process may be iteratively ob-
tained and is characterised via the ratio of the product of the transition rates (birth
rates) on a path from state 0 to state n and the transition rates (death rates) on the
reversed path from state n to state 0, see (2.2). This result may be generalized to
Markov chains satisfying detailed balance. Kolmogorov’s criteria provide this char-
acterization and give a useful insight into the nature of detailed balance.

Lemma 2.2.3 (Kolmogorov’s criterion) A Markov chain {N(t)} satisfies detailed
balance if and only if its transition rates satisfy for all r ∈N and any finite sequence
of states n1,n2, . . . ,nr ∈ S, nr = n1,

r−1

∏
i=1

q(ni,ni+1) =
r−1

∏
i=1

q(nr−i+1,nr−i). (2.4)

Proof. If {N(t)} satisfies detailed balance, then for i = 1, . . . ,r

π(ni)q(ni,ni+1) = π(ni+1)q(ni+1,ni).

Multiplying these equations for the finite sequence of states n1,n2, . . . ,nr ∈ S, nr =
n1, yields (2.4).

Conversely, suppose the transitions rates satisfy (2.4). Let n0 ∈ S be an arbitrary
state. Since {N(t)} is irreducible, for all n ∈ S there exists a sequence of states
n = nr+1,nr, . . . ,n1,n0 such that ∏

r
i=0 q(nr−i+1,nr−i)> 0. Let

π(n) = G
r

∏
i=0

q(ni,ni+1)

[
r

∏
i=0

q(nr−i+1,nr−i)

]−1

. (2.5)

Observe that π(n) does not depend on the sequence of states: if n = nr+1 = n′r+1,
n′r, . . . ,n′1,n0 = n′0 is another sequence of states such that ∏

r
i=0 q(n′r−i+1,n

′
r−i) > 0
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then (2.4) implies that

r

∏
i=0

q(n′i,n
′
i+1)

[
r

∏
i=0

q(n′r−i+1,n
′
r−i)

]−1

=
r

∏
i=0

q(ni,ni+1)

[
r

∏
i=0

q(nr−i+1,nr−i)

]−1

.

Furthermore, irreducibility and (2.4) imply that π(n) > 0 for all n ∈ S. It remains
to show that π satisfies detailed balance. To this end, consider n′ ∈ S. If q(n,n′) =
q(n′,n) = 0 then detailed balance is trivially satisfied. If q(n′,n)> 0, then we may
extend the sequence of states n = nr+1,nr, . . . ,n1,n0 to n′,n = nr+1,nr, . . . ,n1,n0
and (2.4) implies that we may define

π(n′) = G

(
r

∏
i=0

q(ni,ni+1)

)
q(n,n′)

[(
r

∏
i=0

q(nr−i+1,nr−i)

)
q(n′,n)

]−1

.

Hence, π satisfies detailed balance π(n)q(n,n′)= π(n′)q(n′,n) and therefore global
balance. As {N(t)} is assumed to be ergodic, it must be that π is summable, so that
G may be chosen such that π is a distribution and therefore {N(t)} satisfies detailed
balance. �

Equation (2.4) reflects that any finite path in the state space which returns to its
initial point n1 has the same probability whether this path is traced in one direction
or the other. This implies that a reversible Markov chain shows no net circulation in
the state space. In practice, relations (2.4) usually have to be established for a small
number of simple paths only, and (2.4) for general paths then follows by decompo-
sition of these paths into simple paths.

The following result is a direct consequence of Kolmogorov’s criterion (2.4), in
particular of the definition of π in (2.5). It provides a construction method for the
equilibrium distribution by analogy with (2.2).

Lemma 2.2.4 (Kolmogorov’s criterion) For a Markov chain that satisfies detailed
balance the equilibrium distribution π is given by

π(n) = π(n′)
q(n1,n2)q(n2,n3)

q(n2,n1)q(n3,n2)
· · · q(nr−1,nr)

q(nr,nr−1)
, (2.6)

for arbitrary n′ ∈ S for all r ∈ N and any path n1,n2, . . . ,nr ∈ S such that n1 = n′,
nr = n for which the denominator is positive.

The truncation property illustrated for the M|M|1|s queue in Example 2.1.3 car-
ries over to Markov chains satisfying detailed balance. The proof follows by inser-
tion of the proposed distribution into the detailed balance equations (2.3).

Theorem 2.2.5 (Truncation) Consider a Markov chain {N(t)} at state space S
with transition rates q(n,n′), n,n′ ∈ S, that satisfies detailed balance and has equi-
librium distribution π . Let V ⊂ S.

Let r > 0. If the transition rates are altered by changing q(n,n′) to rq(n,n′) for
n ∈V , n′ ∈ S\V , then the resulting Markov chain {Nr(t)} satisfies detailed balance
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and has equilibrium distribution

πr(n) =

{
Gπ(n), n ∈V,
Grπ(n), n ∈ S\V,

where G is the normalizing constant.
If r = 0 then the Markov chain is truncated to V and the resulting Markov chain

sastisfies detailed balance with equilibrium distribution

π0(n) = π(n)

[
∑

n∈V
π(n)

]−1

, n ∈V.

Example 2.2.6 (Network of parallel M|M|1 queues and truncation) Consider a
network consisting of two M|M|1 queues in parallel. Queue j has arrival rate λ j
and service rate µ j, j = 1,2. The Markov chains {N j(t)} recording the number
of customers in queue j, j = 1,2, are assumed independent. The Markov chain
{N(t) = (N1(t),N2(t))} at state space S = N2

0, where state n = (n1,n2) and n j
records the number of customers in queue j, j = 1,2, has transition rates, for
n,n′ ∈ S, n′ 6= n,

q(n,n′) =

{
λ j, if n′ = n+ e j, j = 1,2,
µ j, if n′ = n− e j, j = 1,2,

(2.7)

where e j is the j-th unit vector with 1 in position j and 0 elsewhere. The random
variables N j := N j(∞) recording the equilibrium number of customers in queue j
are independent random variables, so that the equilibrium distribution of {N(t)} is
the product of the marginal equilibrium distributions of the number of customers
π j(n j) in queue j:

π(n) =
2

∏
j=1

π j(n j), n ∈ S,

with
π j(n j) = (1−ρ j)ρ

n j
j , n j ∈ N0,

provided that

ρ j :=
λ j

µ j
< 1, j = 1,2.

Now consider the network of two M|M|1 queues in parallel with common ca-
pacity restriction n1 + n2 ≤ c. Customers arriving to the network with c customers
present are discarded. The Markov chain {N(t) = (N1(t),N2(t))} has state space
Sc = {(n1,n2) : n j ≥ 0, j = 1,2, n1 +n2 ≤ c} and transition rates (2.7) truncated to
Sc. Invoking Theorem 2.2.5. the equilibrium distribution is
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π(n) = Gc

2

∏
j=1

ρ
n j
j , n ∈ Sc = {(n1,n2) : n j ≥ 0, j = 1,2, n1 +n2 ≤ c},

with normalising constant

Gc =

[
c

∑
n1=0

c−n1

∑
n2=0

2

∏
i=1

ρ
ni
i

]−1

.

�

2.3 Erlang loss networks

Example 2.3.1 (M|M|∞ queue) Let customers arrive to a queue according to a
Poisson process with rate λ . Suppose there is an ample supply of servers serving
the customers so that each customer receives its own server. Let customers’ service
times have a negative-exponential distribution with mean µ−1, independent of each
other and of the arrival process. This queue is referred to as the infinite server queue
or M|M|∞ queue. The Markov chain {N(t), t ∈ T}, T = [0,∞), that records the
number of customers in the queue is a birth-death process at state space S =N0 with
birth and death rates

q(n,n′) =

{
λ , if n′ = n+1, (birth rate),
nµ, if n′ = n−1, (death rate)

and equilibrium distribution the Poisson distribution

π(n) = e−ρ ρn

n!
, n ∈ S,

where

ρ :=
λ

µ
.

�

Example 2.3.2 (M|M|s|s queue) Now assume the number of servers is finite, say
s, and let customers that find all servers occupied be rejected and discarded. Let the
system start in state 0 at time 0. The Markov chain {N(t), t ∈ T}, T = [0,∞), that
records the number of customers in the queue is a birth-death process at state space
S = {0,1,2, . . . ,s} with birth and death rates

q(n,n′) =

{
λ1(n < s), if n′ = n+1, (birth rate),
nµ, if n′ = n−1, (death rate).

This queue is referred to as the M|M|s|s queue or Erlang loss queue named after the
founding father of queueing theory: A.K. Erlang. For the M|M|s|s queue starting in



22 2 Reversibility, Poisson flows and feedforward networks

state 0 the process remains in the set S. According to the Truncation Theorem 2.2.5
the equilibrium distribution is that of the M|M|∞ queue truncated to S:

π(n) = π(0)
ρn

n!
, n ∈ {0,1, . . . ,s},

with

π(0)−1 =
s

∑
n=0

ρn

n!
.

The normalising constant can be recursively evaluated as follows.

T (s) = 1, S(s) = 1,{
T (k) := k+1

ρ
T (k+1),

S(k) := S(k+1)+T (k),
k = s−1, . . . ,0.

Then π(0) = T (0)/S(0). The recursion avoids evaluating the factorials. Note that
the recursion also yields all equilibrium probabilities:

π(n) =
T (n)
S(1)

, n = 0, . . . ,s.
�

Now consider a multidimensional network of J parallel M|M|∞ queues as fol-
lows. Let customers arrive to a queue j according to a Poisson process with rate
λ j, j = 1, . . . ,J. Suppose there is an ample supply of servers at each queue. Let
customers’ service times at queue j have a negative-exponential distribution with
mean µ

−1
j , independent of each other and of the arrival processes. The Markov

chain {N(t), t ∈ T}, T = [0,∞), that records the number of customers in the queues
has state space S = NJ

0 and states n = (n1, . . . ,nJ), with n j recording the number of
customers in the queue j, j = 1, . . . ,J, and transition rates

q(n,n′) =

{
λ j, if n′ = n+ e j,

n jµ j, if n′ = n− e j.

The random variables recording the number of customers in different queues are
clearly independent so that the equilibrium distribution is

π(n) =
J

∏
j=1

e−ρ j
ρ

n j
j

n j!
, n ∈ S = NJ

0,

where ρ j := λ j/µ j.
The Erlang loss network is the truncation of the network of parallel infinite server

queues to the polytope

S = {n ∈ NJ
0 : n≥ 0, nA≤ c},
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where c = (c1, . . . ,cK) ∈ RK and A is a J×K matrix. The Markov chain {N(t), t ∈
T}, T = [0,∞), that records the number of customers in the queues of the Erlang loss
network has state space S = {n ∈ NJ

0 : n ≥ 0, nA ≤ c} and states n = (n1, . . . ,nJ),
with n j recording the number of customers in the queue j, j = 1, . . . ,J, and transition
rates

q(n,n′) =

{
λ j1(A(n+ e j)< c), if n′ = n+ e j,

n jµ j, if n′ = n− e j.

According to the Truncation Theorem 2.2.5 the equilibrium distribution is that of
the network of parallel M|M|∞ queues truncated to S :

π(n) = π(0)
J

∏
j=1

ρ
n j
j

n j!
, n ∈ S,

where

π(0) =

[
∑
n∈S

J

∏
j=1

ρ
n j
j

n j!

]−1

.

Observe that

π(n) =
J

∏
j=1

ρ
n j
j

n j!

[
∑
n∈S

J

∏
j=1

ρ
n j
j

n j!

]−1

=
J

∏
j=1

ρ
n j
j

n j!
e−ρ j

[
∑
n∈S

J

∏
j=1

ρ
n j
j

n j!
e−ρ j

]−1

, n ∈ S,

is a multidimensional Poisson distribution truncated to S. This allows for an effi-
cient Monte-Carlo summation method to evaluate the normalising constant π(0),
see Chapter ?? for details.

2.4 Reversibility

The algebraic detailed balance property is related to the probabilistic reversibility
property.

Definition 2.4.1 (Reversibility) A stochastic process {N(t), t ∈ R} is reversible if
(N(t1),N(t2), . . . ,N(tk)) has the same distribution as (N(τ−t1),N(τ−t2), . . . ,N(τ−
tk)) for all k ∈ N, t1, t2, . . . , tk ∈ R, τ ∈ R.

If a stochastic process is reversible and the direction of time is reversed, then the
probabilistic behaviour of the process remains the same. We readily obtain the fol-
lowing result.

Theorem 2.4.2 If {N(t)} is reversible then {N(t)} is stationary.

The algebraic detailed balance property is related to the probabilistic reversibility
property.
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Theorem 2.4.3 (Reversibility and detailed balance) Let {N(t), t ∈ R} be a sta-
tionary Markov chain with transition rates q(n,n′), n,n′ ∈ S. {N(t)} is reversible if
and only if there exists a distribution π = (π(n), n ∈ S) that satisfies the detailed
balance equations. When there exists such a distribution π , then π is the equilibrium
distribution of {N(t)}.

Proof. If {N(t)} is reversible, then for all t,h ∈ R, h > 0, n,n′ ∈ S:

P(N(t +h) = n′, N(t) = n) = P(N(t) = n′, N(t +h) = n).

{N(t), t ∈ R} is a stationary Markov chain. Let π(n) = P(N(t) = n), t ∈ R. Then

P(N(t +h) = n′|N(t) = n)
h

π(n) =
P(N(t +h) = n|N(t) = n′)

h
π(n′).

Letting h→ 0 yields the detailed balance equations (2.3).
Now assume there exists a distribution π = (π(n), n ∈ S) that satisfies the de-

tailed balance equations. Recall that the Markov jump chain {N(t)} remains in
state n for a negative-exponentially distributed sojourn time with mean q(n)−1,
and has transition probabilities p(n,n′) = q(n,n′)/q(n). Now consider {N(t)}
for t ∈ [−H,H]. Suppose in the interval [−H,H] {N(t)} moves along the se-
quence of states n1, . . . ,nk and has (remaining) sojourn time hi in each state ni,
i = 1, . . . ,k− 1, and remains in state nk for at least hk until time H. With probabil-
ity π(n1) = P(N(−H) = n1) {N(t)} starts in state n1 at time −H. The probability
density with respect to h1, . . . ,hk for this sequence is

π(n1)q(n1)e−q(n1)h1 p(n1,n2)q(n2)e−q(n2)h2 · · ·q(nk−1)e−q(nk−1)hk−1 p(nk−1,nk)e−q(nk)hk , (2.8)

where e−q(nk)hk is the probability that {N(t)} resides in state nk for at least hk. Ob-
serve that q(ni)p(ni,ni+1) = q(ni,ni+1) and that Kolmogorov’s criterion (Lemma
2.2.4) implies that

π(n1)q(n1,n2)q(n2,n3) · · ·q(nk−1,nk) = π(nk)q(nk,nk−1) · · ·q(n3,n2)q(n2,n1),

which implies that the probability density (2.8) equals the probability density for
the reversed path that starts in nk at time H and moves along the sequence of states
nk, . . . ,n1 with (remaining) sojourn time hi in states ni, i = k, . . . ,2, and remains in
state n1 for at least h1 until time −H. Thus, (N(t1),N(t2), . . . ,N(tk)) has the same
distribution as (N(−t1),N(t2), . . . ,N(−tk)) that for all τ ∈ R has the same distribu-
tion as (N(τ− t1),N(τ− t2), . . . ,N(τ− tk)) since {N(t)} is stationary. �

Example 2.4.4 (Departure process from the M|M|1 queue) The arrival process to
the M|M|1 queue is a Poisson process with rate λ . If λ < µ the departure process
from the M|M|1 queue has rate λ as this rate is comprised of departure rate µ dur-
ing the fraction of time the queue is busy, 1−π(0) = ρ , and departure rate 0 during
the fraction of time the queue is idle, π(0) = 1− ρ , so that the departure rate is
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µ ·ρ +0 · (1−ρ) = λ . Alternatively, the departure rate in an ergodic Markov chain
for the M|M|1 queue must equal the arrival rate.1

Reversibility allows us to conclude that the departure process from the M|M|1
queue is a Poisson process. The Markov chain {N(t)} recording the number of cus-
tomer in the M|M|1 queue with arrival rate λ and service rate µ satisfies detailed
balance. Therefore, the Markov chain {Nr(t)} in reversed time has Poisson arrivals
at rate λ and service rate µ . The Markov chain {Nr(t)} is characterised by its transi-
tion rates. Therefore {Nr(t)} is the Markov chain of an M|M|1 queue with Poisson
arrivals at rate λ and negative-exponential service at rate µ . As epochs of the arrival
process for the reversed queue coincide with the epochs of the arrival process for
the original queue, it must be that the departure process from the M|M|1 queue is a
Poisson process with rate λ . �

2.5 Burke’s theorem and feedforward networks of M|M|1 queues

Example 2.4.4 characterises the departure process from the M|M|1 queue. In a tan-
dem network of two queues the departure process of the first M|M|1 queue will
be the arrival process for the second queue in the tandem. This allows us to obtain
the marginal distribution of the number of customers in each queue in this network
of two queues: the second queue is an M|M|1 queue with Poisson arrival process.
However, this is not sufficient to characterise the joint distribution of the number of
customers in the two queues. This requires the following stronger result.

Theorem 2.5.1 (Burke’s theorem) Let {N(t)} record the number of customers in
the M|M|1 queue with arrival rate λ and service rate µ , λ < µ . Let {D(t)}
record the customers’ departure process from the queue. In equilibrium the depar-
ture process {D(t)} is a Poisson process with rate λ , and N(t) is independent of
{D(s), s < t}.

The independence property in Burke’s theorem is surprising and counterintuitive,
as departures occur at rate µ when the queue is busy and at rate 0 when the queue
is idle, see Example 2.4.4. When the queue has been empty for a long time, then
clearly the departure rate has been zero for a long time. However, Burke’s theorem
gives no information on the number of customers in the queue, and therefore also
not of the busy and idle periods of the queue, only of the departure process.

Note that the arrival process {A(t)} is a Poisson process and that N(t) is indepen-
dent of {A(s), s > t} as Poisson arrivals in disjoint intervals are independent. Thus,
Burke’s theorem implies that {A(s), s> t}, N(t), and {D(s), s< t} are independent.

Proof of Burke’s theorem. The proof uses a refinement of the arguments in Exam-
ple 2.4.4. The epochs at which {N(t)} jumps upwards (arrivals to the queue) form

1 Note the for λ > µ the departure rate eventually will be µ as this M|M|1 queue eventually will
never be idle.
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a Poisson process with rate λ . The M|M|1 queue is reversible, so that the epochs
at which {N(−t)} jumps upwards must also form a Poisson process with rate λ .
If {N(−t)} jumps upwards at time t∗ then {N(t)} must jump downwards at time
t∗. Therefore, the departure process forms a Poisson process with rate λ . Moreover,
since {N(t)} is reversible the departure process up to time t∗ and N(t∗) have the
same distribution as the arrival process after −t∗ and N(−t∗). As the arrival process
is a Poisson process the arrival process after −t∗ is independent of N(−t∗). Hence,
the departure process up to time t∗ is independent of N(t∗). �

Remark 2.5.2 (Burke’s theorem for reversible processes) Note that the proof of
Burke’s theorem only uses that the arrival process is a Poisson process and that
{N(t)} is reversible. Therefore, the result of Burke’s theorem remains valid for any
birth-death process with constant birth rates λ (n) = λ , n ∈ N0. �

Consider a tandem network of two M|M|1 queues with Poisson arrival process
with rate λ to queue 1 and service rates µi at queue i, i = 1,2. Provided that
ρi = λ/µi < 1, i = 1,2, Example 2.4.4 shows that the Markov chain {N(t) =
(N1(t),N2(t))} at state space S = N2

0, where n = (n1,n2) and ni the number of
customers in queue i, i = 1,2, has marginal equilibrium distributions πi(ni) =
(1−ρi)ρ

ni
i , ni ∈ N0, for the number of customers at queue i, i = 1,2. Burke’s the-

orem enables us to obtain the equilibrium distribution for the tandem of M|M|1
queues. To this end, let t∗ be fixed but arbitrary. Observe that the number of cus-
tomers N2(t∗) of queue 2 at time t∗ is determined by the arrival process to queue 2
before t∗ and the service process at queue 2 before t∗. The arrival process to queue 2
is the departure process from queue 1. Burke’s theorem states that the departure pro-
cess from queue 1 before t∗ and N1(t∗), the number of customers at queue 1 at time
t∗, are independent. Hence, in equilibrium, at time t∗ the random variables N1(t∗)
and N2(t∗) are independent, so that, in equilibrium, at fixed but arbitrary time t∗,

π(n) =
2

∏
i=1

πi(ni), n ∈ S,

with
πi(ni) = (1−ρi)ρ

ni
i , ni ∈ N0,

provided that

ρi :=
λ

µi
< 1, i = 1,2.

This result readily extends to a tandem network of J M|M|1 queues. Let {N(t) =
(N1(t), . . . ,NJ(t))} at state space S = NJ

0, where n = (n1, . . . ,nJ) and ni the number
of customers in queue i, i = 1, . . . ,J, record the number of customers in a tandem
of J M|M|1 queues with Poisson arrival process with rate λ to queue 1 and service
rates µi at queue i, with ρi = λ/µi < 1, i = 1, . . . ,J. Consider fixed time t∗. Burke’s
theorem implies that N1(t∗) is independent of (N2(t∗), . . . ,NJ(t∗)). Similarly, N j(t∗)
is independent of (N j+1(t∗), . . . ,NJ(t∗)), j = 2, . . . ,J−1. Thus at time t∗ the random
variables N1(t∗), . . . ,NJ(t∗) are independent random variables, so that in equilibrium
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π(n) =
J

∏
j=1

(1−ρ j)ρ
n j
j , n j ∈ N0, j = 1, . . . ,J.

Remark 2.5.3 (Independence of processes) Clearly, the processes {N j(t)}, j =
1, . . . ,J, are not independent. If queue j has build up a very large queue at time
t∗, then the arrival process to queue j+1 will temporarily (but for a long time) have
negative-exponential interarrival times with rate µ j > λ so that the queue length at
queue j+1 subsequent to t∗ is likely to grow. �

Remark 2.5.4 (Sojourn times) Reversibility allows us to conclude an even stronger
result. Let Wj denote the sojourn time (including service time) of a customer at
queue j in a tandem of M|M|1 First In First Out queues (see Example 4.2.2). Then
in equilibrium Wj, j = 1, . . . ,J, are independent random variables, see Chapter ??.
�

In a feedforward network of J M|M|1 queues a customer leaving queue j can be
routed to any of the queues j + 1, . . . ,J, or may leave the network. Let pi j denote
the fraction of customers routing from queue i to queue j > i, and pi0 the fraction
of customers leaving the network from queue i, ∑

J
j=i+1 pi j + pi0 = 1. Customers

arrive to the network according to a Poisson process with rate µ0. A fraction p0 j of
these customers is routed to queue j, j = 1, . . . ,J, and ∑

J
j=1 p0 j = 1. The service rate

at queue j is µ j, j = 1, . . . ,J. Burke’s theorem implies that all flows of customers
among the queues are Poisson flows. The arrival rate λ j of customers to queue j is
obtained from superposition and random splitting of Poisson processes2:

λ j = µ0 p0 j +
j−1

∑
i=1

λi pi j, j = 1, . . . ,J, (2.9)

where µ0 p0 j is the Poisson arrival rate of customers arriving to the network at queue
j obtained from random splitting of the Poisson arrival process with rate µ0, and
λi pi j is the Poisson flow of customers from queue i to queue j obtained from ran-
dom splitting of the Poisson departure process with rate λi from queue i. The set of
equations (2.9) is referred to as traffic equations as these equations determine the
mean flow of customers in the network.

Theorem 2.5.5 (Equilibrium distribution: feedforward network) Let {N(t) =
(N1(t), . . . ,NJ(t))} at state space S =NJ

0, where n = (n1, . . . ,nJ) and n j the number
of customers in queue j, j = 1, . . . ,J, record the number of customers in the feedfor-
ward network of J M|M|1 queues described above. If ρ j = λ j/µ j < 1, with λ j the
solution of the traffic equations (2.9), j = 1, . . . ,J, then the equilibrium distribution
is the product of the marginal distributions of the queues:

2 Let {Ai(t)} be Poisson processes with rates λi, i = 1,2. The superposition {A1(t)+A2(t)} is a
Poisson process with rate λ1 +λ2. Random splitting with p ∈ (0,1) of a Poisson process {A(t)}
with rate λ yields two independent Poisson processes {A1(t)} and {A2(t)} with rates λ1 = pλ ,
λ2 = (1− p)λ .
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π(n) =
J

∏
j=1

(1−ρ j)ρ
n j
j , n j ∈ N0, j = 1, . . . ,J. (2.10)

The result may be further extended to feedforward networks that include queues
that can be modelled as birth-death processes with constant birth rates. We will not
pursue this approach since it breaks down when a customer may return to a queue it
visited before: if a customer revisits a queue in the interval (t, t +h) then the arrival
process in the interval (t, t + h) is no longer independent from the arrival process
before time t as the revisiting customer arrived before time t in its previous visit.
This is in contradiction with the independent increment property of the Poisson
process, so that the arrival process cannot be a Poisson process. Chapter 3 considers
networks with more general routing.

2.6 Literature

is due to R.R.P. Jackson [?] and



Chapter 3
Partial balance and networks with Markovian
routing

3.1 Networks of M|M|1 queues

Consider a queueing network consisting of J queues labelled 1,2 . . . ,J. In this
queueing network customers of a a single type route among the queues to receive a
desired service. At queue i a customer requires an amount of service that is negative-
exponentially distributed with rate µi, i = 1, . . . ,J, that is, if the required amount
of service is worked off at rate 1 then the service-time at queue i is negative-
exponentially distributed with rate µi, i = 1, . . . ,J. Let pi j denote the fraction of
customers that upon service completion route from queue i to queue j, j = 1, . . . ,J,
and pi0 the fraction of customers leaving the network from queue i, ∑

J
j=0 pi j = 1,

i = 1, . . . ,J. Customers arrive to the network according to a Poisson process with
rate µ0. A fraction p0 j of these customers is routed to queue j, j = 1, . . . ,J, and
∑

J
j=1 p0 j = 1. Customers are served one-by-one, and arrive one-by-one so that only

one customer can move between the queues of the queueing network at a time. At
the queues customer positions are not taken into account. As a consequence, n j, the
number of customers at the queue j, j = 1, . . . ,J, give a full description of the state
of the queueing network.

The evolution of the number of customers in the queues is recorded by the
Markov chain {N(t) = (N1(t), . . . ,NJ(t)), t ∈ R} at state space S ⊆ NJ

0 with states
n = (n1, . . . ,nJ). Let e j denote the j-th unit vector that has entry 1 in position j, 0
elsewhere, and e0 the zero-vector with all entries 0.

If {N(t)} is in state n and a customer routes from queue i to queue j in the
queueing network then the next state of {N(t)} is n− ei + e j, i, j = 0, . . . ,J. Here
queue 0 is introduced to represent the outside. If a customer routes from queue i
to queue 0 then this customer leaves the queueing network and if a customer routes
from queue 0 to queue j then this customers enters the queueing network at queue j,
j = 1, . . . ,J.

The queueing network introduced above is called open as arrivals to the queueing
network and departures from the queueing network are possible. In this case S =NJ

0.
The number of customers in the queueing network is not constant. The transition

29
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rates of {N(t)} for an open network are, for n 6= n′, n,n′ ∈ S,

q(n,n′) =
{

µi pi j, if n′ = n− ei + e j, i, j = 0, . . . ,J,
0, otherwise. (3.1)

A queueing network is called closed if arrivals to the queueing network and de-
partures from the queueing network are not possible. We may obtain a closed net-
work from the description above by setting µ0 = 0 and p j0 = 0, j = 1, . . . ,J. The
number of customers in a closed network is constant: S = SM = {n : ∑

J
j=1 n j = M}

for some M, the number of customers in the network. The transition rates of {N(t)}
for a closed network are, for n 6= n′, n,n′ ∈ S,

q(n,n′) =
{

µi pi j, if n′ = n− ei + e j, i, j = 1, . . . ,J,
0, otherwise. (3.2)

Below, we will show that the so-called product-form equilibrium distribution
(2.10) carries over to the Markov chain {N(t)} with general routing probabilities
pi j, i, j = 0, . . . ,J. We first consider unicity of the solution of the traffic equations.

Lemma 3.1.1 (Traffic equations: open network) Consider an open network. As-
sume that the routing matrix P = (pi j, i, j = 0, . . . ,J) is irreducible.1 Then the traffic
equations

λ j = µ0 p0 j +
J

∑
i=1

λi pi j, j = 1, . . . ,J, (3.3)

have a unique non-negative solution {λ j, j = 1, . . . ,J}.

Observe that the traffic equations (3.3) also imply a traffic equation for queue 0:
summing (3.3) over j = 1, . . . ,J yields

J

∑
j=1

λ j =
J

∑
j=1

J

∑
i=0

λ j p ji =
J

∑
j=1

λ j p j0 +
J

∑
j=1

J

∑
i=1

λ j p ji,

J

∑
j=1

{
µ0 p0 j +

J

∑
i=1

λi pi j

}
= µ0 +

J

∑
j=1

J

∑
i=1

λi pi j,

and therefore

µ0 =
J

∑
j=1

λ j p j0, (3.4)

reflecting that the arrival rate to the network equals the departure rate from the net-
work.

1 A matrix P = (pi j, i, j = 0, . . . ,J) with non-negative entries pi j, i, j = 0, . . . ,J, is irreducible if
for every pair i, j there exists an n ∈ N such that Pn

i j > 0. Observe that for a probability matrix this
is equivalent to the statement that the discrete-time Markov chain at state space {0, . . . ,J} with
transition matrix P is irreducible.
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Lemma 3.1.2 (Traffic equations: closed network) Consider a closed network. As-
sume that the routing matrix P = (pi j, i, j = 1, . . . ,J) is irreducible. Then the traffic
equations

λ j =
J

∑
i=1

λi pi j, j = 1, . . . ,J, (3.5)

have a unique non-negative solution {λ j, j = 1, . . . ,J} such that ∑
J
j=1 λ j = 1.

Proof of Lemmas 3.1.1, 3.1.2. First consider the open network. Let λ0 = µ0, recall
(3.4), and observe that ∑

J
i=0 p ji = 1, j = 0, . . . ,J, then the traffic equations for the

open network (3.3) read,

J

∑
i=0

λ j p ji =
J

∑
i=0

λi pi j, j = 0, . . . ,J. (3.6)

These equations are the global balance equations for the Markov chain at state space
Sto = {0, . . . ,J} with transition rates q(i, j) = pi j, i, j ∈ S.2 As the routing matrix is
irreducible, this Markov chain has a unique equilibrium distribution π(i), i ∈ Sto.
The solution {λ j, j = 0, . . . ,J} of the traffic equations must be proportional to π , in
particular λ j = µ0π( j)/π(0), j = 0, . . . ,J, so that the solution of the traffic equations
is unique and non-negative.

For the closed network, the traffic equations (3.5) are the global balance equa-
tions for the Markov chain with state space Stc = {1, . . . ,J}. The normalising con-
dition ∑

J
j=1 λ j = 1 guarantees unicity of the solution. �

Remark 3.1.3 (Markovian routing) Customers route among the queues according
to the transition probabilities pi j, i, j = 0, . . . ,J, of a discrete-time Markov chain.
This is referred to as Markovian routing. �

Theorem 3.1.4 (Equilibrium distribution: open network of M|M|1 queues)
Consider the Markov chain {N(t)} at state space S = NJ

0 with transition rates
(3.1) for the open network of M|M|1 queues. Assume that the routing matrix
P = (pi j, i, j = 0, . . . ,J) is irreducible and let {λ j, j = 1, . . . ,J} be the unique
solution of the traffic equations (3.3). If ρ j := λ j/µ j < 1, j = 1, . . . ,J, then {N(t)}
has unique equilibrium distribution

π(n) = Go

J

∏
j=1

ρ
n j
j , n ∈ S, (3.7)

where

Go =
J

∏
j=1

(1−ρ j).

Moreover, the equilibrium distribution (3.8) satisfies partial balance, for all n ∈ S,

2 This is the Markov chain for a single customer that routes among the queues 0, . . . ,J.



32 3 Partial balance and networks with Markovian routing

J

∑
j=0

{
π(n)q(n,n− ei + e j)−π(n− ei + e j)q(n− ei + e j,n)

}
, i = 0, . . . ,J.

Theorem 3.1.5 (Equilibrium distribution: closed network of M|M|1 queues)
Consider the Markov chain {N(t)} at state space S = SM = {n : ∑

J
j=1 n j = M}

with transition rates (3.2) for the closed network of M|M|1 queues containing M
customers. Assume that the routing matrix P = (pi j, i, j = 1, . . . ,J) is irreducible
and let {λ j, j = 1, . . . ,J} be the unique solution of the traffic equations (3.5) such
that ∑

J
j=1 λ j = 1. Let ρ j := λ j/µ j, j = 1, . . . ,J. Then {N(t)} has unique equilibrium

distribution

π(n) = GM

J

∏
j=1

ρ
n j
j , n ∈ S, (3.8)

where

GM =

[
∑
n∈S

J

∏
j=1

ρ
n j
i

]−1

.

Moreover, the equilibrium distribution (3.8) satisfies partial balance, for all n ∈ S,

J

∑
j=1

{
π(n)q(n,n− ei + e j)−π(n− ei + e j)q(n− ei + e j,n)

}
, i = 1, . . . ,J.

Remark 3.1.6 (Product-form equilibrium distribution) Observe that the equilib-
rium distribution of the open network of M|M|1 queues is a product of the marginal
distributions π j(n j) = (1−ρ j)ρ

n j
j , n j ∈ N0, of the M|M|1 queues with arrival rate

λ j and service rate µ j, j = 1, . . . ,J:

π(n) =
J

∏
j=1

π j(n j), n ∈ NJ
0.

Thus, the random variables N j := N j(∞) recording the equilibrium number of cus-
tomers in queue j, j = 1, . . . ,J, are independent random variables. Clearly, the pro-
cesses N j(t), j = 1, . . . ,J, are not independent, also recall Remark 2.5.3.

The equilibrium distribution of the closed network of M|M|1 queues equals
that of the open network except for normalisation. As a consequence, the random
variables N j := N j(∞) for the closed network are not independent. The distribu-
tion for the open and closed network of M|M|1 queues are called product-form
distributions. �

Theorems 3.1.4, 3.1.5 introduce the concept of partial balance that is an essential
element in the analysis of networks of queues in this monograph. We have the fol-
lowing result that we include here to highlight the role of partial balance.

Lemma 3.1.7 (Partial balance) Consider an open network of queues. A measure
m = (m(n), n ∈ S) that satisfies partial balance
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J

∑
j=0

{
m(n)q(n,n− ei + e j)−m(n− ei + e j)q(n− ei + e j,n)

}
= 0, i = 0, . . . ,J,

(3.9)
is an invariant measure.

Consider a closed network of queues. A measure m = (m(n), n∈ S) that satisfies
partial balance

J

∑
j=1

{
m(n)q(n,n− ei + e j)−m(n− ei + e j)q(n− ei + e j,n)

}
= 0, i = 1, . . . ,J,

(3.10)
is an invariant measure.

Proof. Summation of the partial balance equations (3.9) over i = 0, . . . ,J for the
open network and of the partial balance equations (3.10) over i = 1, . . . ,J for the
closed network yields the global balance equations (1.14). �

Proof of Theorems 3.1.4 and 3.1.5. We will first consider the open network and
show that m(n) = ∏

J
k=1 ρ

nk
k , n ∈ S, is an invariant measure using partial balance

(3.9) and then invoke Theorem 1.1.4 to complete the proof. Inserting m and the
transition rates (3.1) into the partial balance equations (3.9) for the open network
yields, for i = 0, . . . ,J, n ∈ NJ

0,

J

∑
j=0

{
m(n)q(n,n− ei + e j)−m(n− ei + e j)q(n− ei + e j,n)

}
=

J

∑
j=0

{
J

∏
k=1

ρ
nk
k µi pi j1(n− ei ∈ NJ

0)−
J

∏
k=1

ρ
nk−δki+δk j
k µ j p ji1(n− ei ∈ NJ

0)

}
,

where the indicator 1(n− ei ∈ NJ
0) in the first term reflects that a customer cannot

be served in queue i, i = 1, . . . ,J, when that queue is empty, and in the second term
reflects that for the state n− ei + e j to be contained in S it must be that n− ei ∈ NJ

0
and recall that e0 is the zero-vector.

First consider the partial balance equations for queue i = 0. Rearranging terms
and inserting ρi = λi/µi, i = 1, . . . ,J, yields

J

∑
j=0

{
m(n)q(n,n− ei + e j)−m(n− ei + e j)q(n− ei + e j,n)

}
1(i = 0)

=

{
µ0−

J

∑
j=1

λ j p j0

}
J

∏
k=1

ρ
nk
k 1(n ∈ NJ

0) = 0, (3.11)

since µ0−∑
J
j=1 λ j p j0 = 0, recall (3.4).

Now consider the partial balance equations for queues i 6= 0. Rearranging terms
yields
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J

∑
j=0

{
m(n)q(n,n− ei + e j)−m(n− ei + e j)q(n− ei + e j,n)

}
1(i 6= 0)

=

{
J

∑
j=0

λi pi j−µ0 p0i−
J

∑
j=1

λ j p ji

}
J

∏
k=1

ρ
nk−δki
k 1(n− ei ∈ NJ

0)1(i 6= 0) = 0, (3.12)

since ∑
J
j=0 λi pi j−µ0 p0i−∑

J
j=1 λ j p ji = 0, recall (3.3).

Irreducibility of {N(t)} follows from irreducibility of the routing matrix. If
ρ j < 1, j = 1, . . . ,J, then m(n) = ∏

J
k=1 ρ

nk
k , n ∈ S, has finite mass. Theorem 1.1.4

completes the proof of Theorem 3.1.4.
The proof of Theorem 3.1.5 follows from the proof above by setting µ0 = 0,

p j0 = 0, j = 1, . . . ,J. �

The normalising constant Go for the open network of M|M|1 queues is available
in closed form. For the closed network of M|M|1 queues Buzen’s algorithm provides
an efficient recursion to evaluate the normalising constant GM . The complexity of
Buzen’s algorithm is O(JM).

Algorithm 3.1.8 (Buzen’s Algorithm) Define G(m, j), m = 0, . . . ,M, j = 1, . . . ,J.
Set

G(0, j) = 1, j = 1, . . . ,J,
G(m,1) = ρ

m
1 , m = 0, . . . ,M.

For j = 2, . . . ,J, m = 1, . . . ,M, do

G(m, j) = G(m, j−1)+ρ jG(m−1, j). (3.13)

Then GM = G(M,J)−1.

Buzen’s algorithm yields

G(m, j) = ∑
{n:n1+···+nm= j}

m

∏
i=1

ρ
ni
j ,

the inverse of the normalising constant for the closed network of j M|M|1 queues
with m customers, m = 1, . . . ,M, j = 1, . . . ,J. The recursion can readily be con-
cluded observing that the first term in the right-hand side of (3.13) covers the case
in which nm = 0 and the second term the case nm > 0.

The marginal distribution of the number of customers at queue j in the network
containing M customers is

π j(n j) = GMρ
n j
j [G−1

M−n j
−ρ jG−1

M−n j−1], n j = 0, . . . ,M−1,

π j(M) = GMρ
n j
j ,

and the mean number of customers at queue j is
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E[N j] =
M

∑
m=1

ρ
m
j

GM

GM−m
.

Remark 3.1.9 (Jackson and Gordon-Newell networks) Open networks of M|M|1
queues are often called Jackson networks, referring to J.R. Jackson who first ob-
tained their equilibrium distribution [?] and closed networks of M|M|1 queues are
called Gordon-Newell networks, referring to W.J. Gordon and G.F. Newell who ob-
tained their equilibrium distribution [?]. In the exposition in this chapter we have
introduced queue 0 to represent the outside of the network of queues which allows
a unified analysis of open and closed networks. �

3.2 Kelly-Whittle networks

A closer examination of the partial balance equations (3.9), (3.10) and (3.11), (3.12)
reveals that a multiplicative factor φ(n)−1 in the transition rates q(n,n′) may be
absorbed in the equilibrium distribution and that an additional function ψ(n−ei) in
the transition rates q(n,n−ei +e j), i, j = 0, . . . ,J, is merely a constant in the partial
balance equations for each fixed i, i = 0, . . . ,J. The Kelly-Whittle network provides
precisely this generalisation of the Jackson network.

A Kelly-Whittle network is a Markov chain {N(t)} at state space S ⊆ NJ
0 with

transition rates, for n′ 6= n,

q(n,n′) =


ψ(n− ei)

φ(n)
µi pi j, if n′ = n− ei + e j, i, j = 0, . . . ,J,

0, otherwise,
(3.14)

where ψ : NJ
0 → [0,∞) and φ : NJ

0 → (0,∞). We will consider closed networks as
special case of open networks with µ0 = 0 and pi0 = 0, i = 1, . . . ,J. Note that we
may absorb µi, i = 1, . . . ,J, in ψ and φ via the transformation

ψ(n) := ψ(n)
J

∏
j=1

µ
−ni
i , φ(n) := φ(n)

J

∏
j=1

µ
−ni
i , n ∈ NJ

0.

We have the following result.

Theorem 3.2.1 (Equilibrium distribution: Kelly-Whittle network) Consider the
Kelly-Whittle network {N(t)} at state space S ⊆ NJ

0 with transition rates (3.14).
Assume that the routing matrix P = (pi j, i, j = 0, . . . ,J) is irreducible and let
{λ j, j = 1, . . . ,J} be the solution of the traffic equations (3.3). Let ρ j = λ j/µ j,
j = 1, . . . ,J. Assume that

G−1
KW = ∑

n∈S
φ(n)

J

∏
j=1

ρ
n j
j < ∞,
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and that {N(t)} is irreducible. Then {N(t)} has unique equilibrium distribution

π(n) = GKW φ(n)
J

∏
j=1

ρ
n j
j , n ∈ S. (3.15)

Moreover, the equilibrium distribution (3.15) satisfies partial balance, for all n ∈ S,

J

∑
j=0

{
π(n)q(n,n− ei + e j)−π(n− ei + e j)q(n− ei + e j,n)

}
= 0, i = 0, . . . ,J.

Observe that Theorem 3.2.1 includes the assumption that {N(t)} is irreducible. A
sufficient condition for irreducibility is that ψ(n)> 0 for all n ∈ S∩NJ

0.

Remark 3.2.2 (Product-form equilibrium distribution) The equilibrium distribu-
tion (3.15) is a product of a part determined by the service rates and a part deter-
mined by the routing probabilities:

π(n) = GKW

(
φ(n)

J

∏
j=1

µ
−n j
j

)(
J

∏
j=1

λ
n j
j

)
, n ∈ S,

which is often referred to as a product-form distribution. Recall that in Remark 3.1.6
the term product-form was introduced to represent a product over the queues. �

Proof of Theorem 3.2.1. We will first show that m(n) = φ(n)∏
J
j=1 ρ

n j
j , n ∈ S, is

an invariant measure using partial balance (3.9). Theorem 1.1.4 then completes the
proof.

Inserting m and the transition rates (3.14) into the partial balance equations (3.9)
for the open network yields, for i = 0, . . . ,J, n ∈ NJ

0, and denoting λ0 = µ0,

J

∑
j=0

{
m(n)q(n,n− ei + e j)−m(n− ei + e j)q(n− ei + e j,n)

}
=

J

∑
j=0

{
φ(n)

J

∏
k=1

ρ
nk
k

ψ(n− ei)

φ(n)
µi pi j

−φ(n− ei + e j)
J

∏
k=1

ρ
nk−δki+δk j
k

ψ(n− ei)

φ(n− ei + e j)
µ j p ji

}
,

=
J

∑
j=0

{
λi pi j−λ j p ji

}
ψ(n− ei)

J

∏
k=1

ρ
nk−δki
k = 0, (3.16)

where the last step follows observing that the term ψ(n− ei)∏
J
k=1 ρ

nk−δki
k is a con-

stant for the summation over j and invoking the traffic equations (3.3). �

Remark 3.2.3 (Base states) Note that the indicator 1(n− ei ∈ NJ
0) that appears in

(3.12) to guarantee that the base state m = n− ei of non-moving customers in the
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transition n→ n− ei + e j is non-negative is not included in (3.16). The function
ψ : NJ

0 → [0,∞) takes this restriction into account. Further note that the base state
m = n− ei is the same for the transitions n→ n− ei + e j and n− ei + e j → n. The
function ψ is defined on the base states

Sb = {m ∈ NJ
0 : ∃i, j ∈ {0, . . . ,J}, i 6= j s.t. m+ ei, and m+ e j ∈ S},

whereas the function φ is defined on state space S. �

Remark 3.2.4 (Poisson arrivals) If the arrival process to the Kelly-Whittle net-
work is a Poisson process it must be that the transition rates q(n,n+ e j) are inde-
pendent of the state n, n∈ S =NJ

0, j = 1, . . . ,J. Hence, it must be that ψ(n) = φ(n),
n ∈ NJ

0. �

Example 3.2.5 (Independent queues) A natural example is the network in which
the service rate at queue i only depends on the number of customers at queue i:

q(n,n− ei + e j) =

κi(ni)µi pi j, i, j = 1, . . . ,J,
κi(ni)µi pi0, i = 1, . . . ,J, j = 0,
µ0 p0 j, i = 0, j = 1, . . . ,J,

(3.17)

for κi : N0 :→ (0,∞), i = 1, . . . ,J. These transition rates may be written in the form
(3.14) as follows. First, let ηi : N0 :→ (0,∞), i = 1, . . . ,J, be defined as

ηi(n)−1 =
n

∏
r=1

κi(r), n ∈ N0, i = 1, . . . ,J.

Then

κi(n) =
ηi(n−1)

ηi(n)
, n ∈ N, i = 1, . . . ,J,

so that (3.17) has the form (3.14) with

ψ(n) = φ(n) =
J

∏
i=1

ηi(ni), n ∈ NJ
0 .

From (3.17) observe that each birth-death process with constant birth rates may be
included. Typical examples are, for n ∈ N, i = 1, . . . ,J,

κi(n) = 1, single server queue,
κi(n) = min(n,s), s server queue,
κi(n) = n, infinite server queue.

�

Example 3.2.6 (Reversible service rates; φ -balance; balanced fairness) Consider
the Markov chain {N(t)} at state space S = NJ

0 with transition rates, for n′ 6= n,

q(n,n′) =
{

κi(n)µi pi j, if n′ = n− ei + e j, i, j = 0, . . . ,J,
0, otherwise,
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with κi(n) : S→ [0,∞) such that κi(n) > 0 if ni > 0 and κi(n) = 0 if ni = 0, i =
1, . . . ,J. The equilibrium distribution may be obtained in closed form (3.15) if the
service rate function κi(n) satisfies the φ -balance property, that is if a function
φ : S→ (0,∞) exists such that for n, n− e j + ek ∈ S, j,k = 0, . . . ,J,

φ(n)κ j(n) = φ(n− e j + ek)κk(n− e j + ek),

i.e., the service rate process at state space S with transition rates q(n,n− ei + e j) =
κi(n), i, j = 0, . . . ,J, is reversible with invariant measure φ(n). We readily obtain
that κi(n) satisfies the φ -balance property if and only if for some function ψ : Sb→
(0,∞), for j = 0, . . . ,J,

κ j(n) =
ψ(n− e j)

φ(n)
,

i.e., the service rate process of the Kelly-Whittle network is a reversible process,
that is also referred to as balanced fairness.

Kolmogorov’s criterion (2.4) or (2.6) implies that the service rate function κi(n)
satisfies the φ -balance property if and only if

φ(n) = φ(n′)
r

∏
i=1

κ ji(ni)

κki(ni+1)

for arbitrary n′ ∈ S for all r ∈ N and any path n1,n2, . . . ,nr ∈ S such that n1 = n′,
nr = n, and ni+1 = ni− e ji + eki , i = 1, . . . ,r−1. �

Remark 3.2.7 (Customer types) Consider a queueing network of J queues la-
belled 1,2 . . . ,J in which customers of types u = 1, . . . ,U route among the queues.
The evolution of the number of customers of different types in the queues is
recorded by the Markov chain {N(t), t ∈ R} at state space S ⊆ NJ×U

0 with states
n = (n1, . . . ,nJ), n j = (n j(u), u = 1, . . . ,U), with n j(u) denoting the number of
customers of type u in queue j. Let e j(u) denote the ju-th unit vector. Let pi j(u,u′)
denote the fraction of customers of type u that upon service completion in queue i
route to queue j and turn into a type u′ customer, i, j = 0, . . . ,J, u,u′ = 1, . . . ,U .

A Kelly-Whittle network with multiple customer types is a Markov chain {N(t)}
at state space S⊆ NJ×U

0 with transition rates, for n′ 6= n,

q(n,n′) =


ψ(n− ei(u))

φ(n)
µi(u)pi j(u,u′), if n′ = n− ei(u)+ e j(u′),

i, j = 0, . . . ,J, u,u′ = 1, . . . ,U,
0, otherwise,

where ψ : NJ×U
0 → [0,∞) and φ : NJ×U

0 → (0,∞). Assume that the routing matrix
P = (pi j(u,u′), i, j = 0, . . . ,J, u,u′ = 1, . . . ,U) is irreducible and let {λ j(u), j =
1, . . . ,J, u = 1, . . . ,U} be the solution of the corresponding traffic equations (3.3).
Let ρi(u) = λi(u)/µi(u), i = 1, . . . ,J, u = 1, . . . ,U . Assume that
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G−1
KW = ∑

n∈S
φ(n)

J

∏
j=1

U

∏
u=1

ρ j(u)n j(u) < ∞,

and that {N(t)} is irreducible. Then {N(t)} has unique equilibrium distribution

π(n) = GKW φ(n)
J

∏
j=1

U

∏
u=1

ρ j(u)n j(u), n ∈ S.
�

3.3 Partial balance

Define for n∈ S a collection of mutually exclusive sets {Ak(n), k ∈ I(n)}, I(n)⊆N,
such that

⋃
k∈I(n) Ak(n) = S. A Markov chain is partially balanced over {Ak(n), k ∈

I(n)} if a distribution π = (π(n), n ∈ S) exists such that for all n ∈ S, k ∈ I(n),

∑
n′∈Ak(n)

{
π(n)q(n,n′)−π(n′)q(n′,n)

}
= 0. (3.18)

The following result follows by summation of (3.18) over k ∈ I(n).

Theorem 3.3.1 (Partial balance) A distribution π = (π(n), n ∈ S) satisfying the
partial balance equations (3.18) is a stationary distribution.

For Kelly-Whittle networks we may identify the following nested set of balance
equations, for n ∈ S:

Transition balance:

q(n,n− ei + e j) = q(n− ei + e j,n), i, j = 0, . . . ,J; (3.19)

Detailed balance:

π(n)q(n,n− ei + e j) = π(n− ei + e j)q(n− ei + e j,n), i, j = 0, . . . ,J;
(3.20)

Partial balance:

J

∑
j=0

π(n)q(n,n− ei + e j) =
J

∑
j=0

π(n− ei + e j)q(n− ei + e j,n), i = 0, . . . ,J;

(3.21)
Global balance:

J

∑
i, j=0

π(n)q(n,n− ei + e j) =
J

∑
i, j=0

π(n− ei + e j)q(n− ei + e j,n). (3.22)
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Obviously, transition balance implies detailed balance, which implies partial bal-
ance, which in turn implies global balance. The balance equations have the follow-
ing clear interpretation:

Detailed balance states that the probability flow out of state n due to a customer
served at queue i that routes queue j balances with the probability flow into state
n due to a customer served at queue j that routes to queue i.

Partial balance states that the probability flow out of state n due to a customer
served at queue i balances with the probability flow into state n due to a customer
routing to queue i.

Global balance states that the probability flow out of state n due to a customer
served at some queue routing to some other queue balances with the probability
flow into state n due to a customer served at some queue routing to some other
queue.

The sets Ak(n), n ∈ S, are for n ∈ S:

Global balance (3.22):

A1(n) =
J⋃

i, j=0

{n− ei + e j},

A2(n) = S\A1(n) and observe that q(n,n′) = 0 for n′ ∈ A2(n),

Partial balance (3.21):

Ai(n) =
J⋃

j=0

{n− ei + e j}, i = 0, . . . ,J,

AJ+1(n) = S\
J⋃

i=0

Ai(n) and observe that q(n,n′) = 0 for n′ ∈ AJ+1(n),

Detailed balance (3.20) and transition balance (3.19):

Ai, j(n) = {n− ei + e j}, i, j = 0, . . . ,J,

AJ·J+1(n) = S\
J⋃

i, j=0

Ai, jk(n) and observe that q(n,n′) = 0 for n′ ∈ AJ·J+1(n),

where we have used i, j instead of k in the labelling of the sets for detailed and
transition balance for ease of notation.

Observe that the traffic equations (3.3) are the key-element in the proof of The-
orem 3.2.1. Conversely, if π given in (3.15) satisfies partial balance (3.21) then the
traffic equations must be satisfied, which is readily obtained observing that the terms
involging φ cancel.
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Theorem 3.3.2 (Partial balance and the traffic equations) The traffic equations
(3.3) are a necessary and sufficient condition for π given in (3.15) to satisfiy partial
balance (3.21).

Remark 3.3.3 (Interpretation of the traffic equations) The solution of traffic
equations (2.9) for the feedforward network of Section 2.5 determines the rates of
the Poisson arrival processes to the queues. For closed networks of M|M|1 queues
and Kelly-Whittle networks the flows of customers among the queues are not Pois-
son. However, also for a Kelly-Whittle network with Poisson arrivals we may inter-
pret the solution λ j, j = 1, . . . ,J, of traffic equations as the arrival rate of customers.

The number of customers that route from queue i to queue k in the time-interval
(0, t] is

Hi j(t) =
∞

∑
k=0

1(Nτk = Nτk−1 − ei + e j, τk ∈ (0, t]),

where 0 = τ0 < τ1 < τ2 < · · · are the transition epochs of {N(t)}. The average
number of customers moving from queue i to queue j is, recall (1.15),

λi j = lim
T→∞

Hi j(T )
T

= ∑
n∈S

π(n)q(n,n− ei + e j), i, j = 0, . . . ,J.

Consider the network with Poisson arrivals, so that ψ(n) = φ(n), n ∈ NJ
0, recall

Remark 3.2.4. The average number of customers arriving to queue j from queue i
is, with λ0 = µ0,

λi j = ∑
n∈S

GKW φ(n)
J

∏
j=1

ρ
n j
j

φ(n− ei)

φ(n)
µi pi j

= λi pi j ∑
n∈S,ni>0

GKW φ(n− ei)
J

∏
j=1

ρ
n j−δi j
j = λi pi j.

�

Partial balance plays a crucial role in the analysis of networks of queues. As an
illustration, consider the open network of 2 M|M|1 queues, with Poisson arrival rate
µ0, service rates µi at queue i, i = 1,2 and routing probabilities pi j, i, j = 0,1,2.
The transition diagram is depicted in Figure 3.1. Global balance states that for each
n ∈ N2

0 the total probability flow along all transitions out of state n equals the total
probability flow along all transitions into state n. Partial balance breaks this balance
of flows into triangles: partial balance for queue 0 (in red in Figure 3.1) balances the
flows from n to n− e0 + e1 and n− e0 + e2 (out of queue 0) with the flow to n from
n+ e1 and n+ e2 (into queue 0):

∑
j∈{1,2}

π(n)q(n,n− e0 + e j) = ∑
j∈{1,2}

π(n− e0 + e j)q(n− ei + e j,n);

partial balance for queue 1 (in blue in Figure 3.1) balances the flows from n to
n− e1 + e0 and n− e1 + e2 (out of queue 1) with the flow to n from n− e1 + e0 and
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Fig. 3.1 Open network of two M|M|1 queues.
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Fig. 3.2 Open network with finite capacity.

n− e1 + e2 (into queue 1):

∑
j∈{0,2}

π(n)q(n,n− e1 + e j) = ∑
j∈{0,2}

π(n− e1 + e j)q(n− e1 + e j,n),

partial balance for queue 2 (in green in Figure 3.1) balances the flows from n to
n− e2 + e0 and n− e2 + e1 (out of queue 2) with the flow to n from n− e2 + e0 and
n− e2 + e1 (into queue 2):

∑
j∈{0,1}

π(n)q(n,n− e2 + e j) = ∑
j∈{0,1}

π(n− e2 + e j)q(n− e2 + e j,n).

Observe that at the boundary n = (n1,0), n1 ∈ N, departures from queue 2 are pro-
hibited and transitions to (n1,0) due to an arrival of a customer to queue 2 cannot
occur: there remain four transitions out of state (n1,0) and four transitions into state
(n1,0). These transitions coincide with those of partial balance for queue 0 and par-
tial balance for queue 1. The probability flow from state (n1,0) due to a customer
departing from queue 2 equals 0 as and the probability flow to state (n1,0) due to
a customer arriving queue 2 equals 0.3 Global balance in state (n1,0) is satisfied as
a consequence of partial balance for queues 0 and 1. At the boundary (0,n2) global
balance is satisfied as a consequence of partial balance for queues 0 and 2, and at
the origin (0,0) global balance is satisfied as a consequence of partial balance for
queue 0.

Partial balance allows us to incorporate state space restrictions. Let {N(t)} record
the number of customers in the queues of an open network of M|M|1 queues in
which the total number of customers is restricted not to exceed c and arrivals finding
c customers in the network are blocked and cleared. The state space is S = Sc = {n∈

3 We may also state that partial balance for queue 2 in state (n1,0) reads 0 = 0.
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NJ
0 : n j ≥ 0, j = 1, . . . ,J, ∑

J
j=1 n j ≤ c} and the transition rates are, for n′ 6= n,

q(n,n′) =



µ0 p0 j, if n′ = n+ e j, and ∑
J
j=1 n j < c, j = 0, . . . ,J,

µi pi j, if n′ = n− ei + e j, and ni > 0, i, j = 1, . . . ,J,

µi pi0, if n′ = n− ei, and ni > 0, i = 1, . . . ,J,

0, otherwise.

Observe that at the boundary ∑
J
j=1 n j = c partial balance for queue 0 is ”removed”,

but that partial balance for queues j = 1, . . . ,J remains satisfied by the invariant
measure m(n) = ∏

J
j=1 ρ

n j
j , n ∈ Sc, also see Figure 3.2 for J = 2. Hence, with

{λ j, j = 1, . . . ,J} the unique solution of the traffic equations (3.3), {N(t)} has
unique equilibrium distribution

π(n) = Gc

J

∏
j=1

ρ
n j
j , n ∈ Sc = {n ∈ NJ

0 : n j ≥ 0, j = 1, . . . ,J,
J

∑
j=1

n j ≤ c},

where

Gc =

[
∑

n∈Sc

J

∏
j=1

ρ
n j
i

]−1

.

The truncation result is similar to that in Theorem 2.2.5 for reversible Markov
chains. The result may be generalised by analogy to that of Theorem 2.2.5 for a cut
between V and S \V such that all partial balance equations involving states n ∈ V
and n′ ∈ S\V remain satisfied.

Theorem 3.3.4 (Truncation) Consider Markov chain {N(t)} at state space S with
transition rates q(n,n′), n,n′ ∈ S, and equilibrium distribution π . Let V ⊂ S. Let 0≤
r < 1 and suppose that the transition rates are altered from q(n,n′) to rq(n,n′) for
n ∈V , n′ ∈ S\V . The resulting Markov chain {Nr(t)} has equilibrium distribution

πr(n) =

{
Gπ(n), n ∈V,
Grπ(n), n ∈ S\V,

where G is the normalizing constant, if and only if π satisfies

∑
n′∈S\V

π(n)q(n,n′) = ∑
n′∈S\V

π(n′)q(n′,n), n ∈V.

Remark 3.3.5 (Backward partial balance; networks with vacancies) Partial bal-
ance (3.21) seems the obvious choice for {N(t)} recording the number of customers
in the queues of a network. However, in the global balance equations (3.22) we
might also consider the terms for fixed j. This is referred to as backward partial
balance, for each n ∈ S,
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J

∑
i=0

π(n)q(n,n− ei + e j) =
J

∑
i=0

π(n− ei + e j)q(n− ei + e j,n), j = 0, . . . ,J,

and may be interpreted as follows:

Backward partial balance states that the probability flow out of state n due to a
customer arriving to queue j balances with the probability flow into state n due
to a customer being served at queue j.

Backward partial balance represents the flow of empty spaces in a queueing network
containing finite capacity queues. �

3.4 State-dependent routing and blocking protocols

A further examination of the proof of Theorem 3.2.1reveals that we may generalise
Markovian routing to state-dependent routing provided that the state-dependent traf-
fic equations that will be introduced below have a non-negative solution. A Kelly-
Whittle network with state-dependent routing is a Markov chain {N(t)} at state
space S⊆ NJ

0 with transition rates, for n′ 6= n,

q(n,n′) =


ψ(n− ei)θi(n− ei)

φ(n)
µibi j(n− ei), if n′ = n− ei + e j, i, j = 0, . . . ,J,

0, otherwise,
(3.23)

where φ : S→ (0,∞) and ψ,θi,bi j : Sb→ [0,∞), and Sb is the set of base states:

Sb = {m ∈ NJ
0 : ∃i, j ∈ {0, . . . ,J}, i 6= j s.t. m+ ei and m+ e j ∈ S}.

We have the following result.

Theorem 3.4.1 (Equilibrium distribution: Kelly-Whittle network with state-
dependent routing) Consider the Kelly-Whittle network with state-dependent rout-
ing {N(t)} at state space S⊆NJ

0 with transition rates (3.23). Assume that a solution
H : S→ [0,∞) exists of the state-dependent traffic equations, for n ∈ S, i = 0, . . . ,J:

J

∑
j=0

H(n)θi(n− ei)bi j(n− ei) = H(n− ei)θ0(n− ei)µ0b0i(n− ei) (3.24)

+
J

∑
j=1

H(n− ei + e j)θ j(n− ei)b ji(n− ei).

Assume that

G−1 = ∑
n∈S

φ(n)
J

∏
j=1

(
1
µ j

)n j

H(n)< ∞,

and that {N(t)} is irreducible. Then {N(t)} has unique equilibrium distribution
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π(n) = Gφ(n)
J

∏
j=1

(
1
µ j

)n j

H(n), n ∈ S. (3.25)

Moreover, the equilibrium distribution (3.25) satisfies partial balance, for all n ∈ S,

J

∑
j=0

{
π(n)q(n,n− ei + e j)−π(n− ei + e j)q(n− ei + e j,n)

}
= 0, i = 0, . . . ,J.

(3.26)

Remark 3.4.2 (Routing function) The function bi j : Sb → [0,∞), i, j = 0, . . . ,J,
represents routing of customers among the queues. Without loss of generality, we
may assume

bi(m) :=
J

∑
j=0

bi j(m) = 1, m ∈ Sb, i = 0, . . . ,J,

as we may absorb bi(m) in θi(m) for all m ∈ Sb. �

Remark 3.4.3 (Product-form equilibrium distribution) The distribution (3.25) is
referred to as product-form distribution as it is a product of a part determined by the
service rates, φ(n)∏

J
j=1 µ

−n j
j , and a part determined by the routing function, H(n),

also recall Remark 3.2.2. �

Remark 3.4.4 (State-dependent traffic equations) Observe that the state-depen-
dent traffic equations (3.24) are just as difficult to solve as the partial balance equa-
tions (3.26). In applications, often the routing function contains the Markov routing
probabilities pi j, i, j = 0, . . . ,J, and a function of the base state:

bi j(m) = pi j f (m), m ∈ Sb,

for some f : Sb→ [0,∞). With λ j, j = 1, . . . ,J, the solution of the traffic equations
(3.3), often H(n) =∏

J
j=1 λ

n j
j , n∈ S, is a solution of the state-dependent traffic equa-

tions (3.24). �

Proof of Theorem 3.4.1. It is sufficient to show that π satisfies partial balance
(3.26). Theorem 1.1.4 then completes the proof.

Inserting π and the transition rates (3.23) into the partial balance equations (3.26)
yields, for i = 0, . . . ,J, n ∈ NJ

0,
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J

∑
j=0

{
π(n)q(n,n− ei + e j)−π(n− ei + e j)q(n− ei + e j,n)

}
=

J

∑
j=0

{
J

∏
k=1

(
1
µk

)nk

H(n)ψ(n− ei)θi(n− ei)µibi j(n− ei)

−
J

∏
k=1

(
1
µk

)nk−δki+δk j

H(n− ei + e j)ψ(n− ei)θ j(n− ei)µ jb ji(n− ei)

}
,

=

{
H(n)θi(n− ei)bi j(n− ei)−H(n− ei)θ0(n− ei)µ0b0i(n− ei)

−
J

∑
j=1

H(n− ei + e j)θ j(n− ei)b ji(n− ei)

}
ψ(n− ei)

J

∏
k=1

(
1
µk

)nk−δki

= 0,

where the last step follows observing that the term ψ(n− ei)∏
J
k=1 ρ

nk−δki
k is a con-

stant for the summation over j and invoking the state-dependent traffic equations
(3.24). �

Example 3.4.5 (Capacity constraints: no product-form) Consider the open tan-
dem Jackson network of 2 queues, where queue 1 has capacity restriction c1. As in
the M|M|1|c1 queue, if queue 1 contains c1 customers a customer arriving to queue
1 is discarded. The state space is S = {n : 0 ≤ n1 ≤ c1, 0 ≤ n2}. In the transition
diagram, in state (c1,n2) transitions from state (c1,n2) to state (c1 +1,n2) (arrivals
are discarded) and from state (c1 + 1,n2− 1) to state (c1,n2) (this state is not in
S) are removed. As a consequence, in state (c1,n2) partial balance is not satisfied
for queue 0 and queue 2. We may verify that a product-form distribution does not
satisfy global balance. The product-form preserving blocking protocols introduced
below modify the transition rates such that partial balance remains valid and the
equilibrium distribution is a product-form distribution. �

Example 3.4.6 (Stop-protocol) Consider the open Kelly-Whittle network of 2
queues with capacity constraint c1 at queue 1. Arrivals to queue 1 are discarded
when n1 = c1. The transition diagram is depicted in Figure 3.3, where the transi-
tions crossing the vertical line indicating the region n1 ≤ c are to be deleted. As a
consequence, partial balance is not satisfied for states (c1,n2), n2 = 0,1, . . .. Partial
balance is restored when the other transitions of partial balance for queue 0 and
queue 2 are removed in states (c1,n2), n2 = 0,1, . . ., as depicted in Figure 3.4. This
modification is referred to as the stop-protocol. For general Kelly-Whittle networks
with transition rates (3.14) and finite capacity constraints n j ≤ c j, j = 1, . . . ,J, the
stop-protocol is as follows:

Stop-protocol: If queue i in a Kelly-Whittle network with finite capacity con-
straints becomes saturated (ni = ci) then stop service at all other queues j =
1, . . . ,J, j 6= i, and stop the arrival process to the network.
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Fig. 3.3 Two queues with finite capacity.

(c1,n2)

p�
-
IR

(c1,0)
p�

-
IR

p
(0,n2)

6 IR
?
-
�6

?

p
(0,0)

-
�6

?

n1 ≤ c1

Fig. 3.4 Two queues: stop-protocol.

A direct consequence of the stop-protocol is that two queues cannot become satu-
rated simultaneously. For the open network the state space is

Sc,o = {n ∈ NJ
0 : 0≤ n j ≤ c j, 0≤ ni +n j < ci + c j, i 6= j, i, j = 1, . . . ,J}

and for the closed network containing M customers

Sc,M = {n∈NJ
0 : 0≤ n j ≤ c j, 0≤ ni+n j < ci+c j, i 6= j, i, j = 1, . . . ,J,

J

∑
j=1

n j =M}.

Under the stop-protocol, the transition rates (3.14) have the form (3.23) with

θi(m) = 1, i = 0, . . . ,J, m ∈ Sb
c ,

f (m) = 1(m j < c j, j = 1, . . . ,J), m ∈ Sb
c ,

bi j(m) = pi j f (m), i, j = 0, . . . ,J, m ∈ Sb
c

and
Sb

c = Sb
c,o = {m ∈ NJ

0 : 0≤ m j ≤ c j−1}

for open networks and

Sb
c = Sb

c,M = {m ∈ NJ
0 : 0≤ m j ≤ c j−1,

J

∑
j=1

n j = M−1}

for closed networks. The state-dependent traffic equations (3.24) now reduce to the
traffic equations (3.3), that is,



48 3 Partial balance and networks with Markovian routing

H(n) =
J

∏
j=1

λ
n j
j , n ∈ Sc,

satisfies the state-dependent traffic equations (3.24). Assume that

G−1
c = ∑

n∈Sc

φ(n)
J

∏
j=1

ρ
n j
j < ∞,

and that {N(t)} is irreducible. Then {N(t)} has unique equilibrium distribution

π(n) = Gcφ(n)
J

∏
j=1

ρ
n j
j , n ∈ Sc.

�

Example 3.4.7 (Recirculate-protocol) Under the recirculate-protocol, if a queue
is saturated then at all other queues departing customers are recirculated into their
originating station as newly arriving customers to undergo a new service:

Recirculate-protocol: If queue i in a Kelly-Whittle network with finite capacity
constraints becomes saturated (ni = ci) then at all all other queues j = 1, . . . ,J,
j 6= i, departing customers are recirculated into their originating station as newly
arriving customers to undergo a new service, and arriving customers are dis-
carded.4

The state spaces coincide with those under the stop-protocol. Under the recirculate-
protocol, the transition rates (3.14) have the form (3.23) with

θi(m) = 1, i = 0, . . . ,J, m ∈ Sb
c ,

f (m) = 1(m j < c j, j = 1, . . . ,J), m ∈ Sb
c ,

bi j(m) = pi j f (m), i 6= j, i, j = 0, . . . ,J, m ∈ Sb
c ,

bii(m) = ∑
j 6=i

pi j(1− f (m)), i = 1, . . . ,J, m ∈ Sb
c ,

where bii(m) represents a dummy-transition from state m+ ei to state m+ ei. The
equilibrium distribution coincides with the equilibrium distribution under the stop-
protocol. �

Example 3.4.8 (Jump-over-protocol) The stop- and recirculate-protocols above
change the behaviour of all stations of the network when a single station is satu-
rated. It may be more natural to only modify the behaviour of the saturated queue.
For example, consider the tandem of 2 single server queues, where queue 2 has
capacity restriction c2. Queue 1 has Poisson arrivals at rate µ0. Suppose queue 1
continues working no matter what the state of queue 2, but that customers arriving

4 The arrival process has negative-exponential interarrival times, so that we may also say that
arrivals are recirculated to station 0.
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to queue 2 when n2 = c2 are discarded just like in the M|M|1|c2 queue. Burke’s the-
orem 2.5.1 implies that in equilibrium the number of customers N1,N2 in the queues
are independent random variables and therefore that the equilibrium distribution is
the product of the marginal queue length distributions. The jump-over-protocol gen-
eralises this argument to Kelly-Whittle networks.

The jump-over-protocol modifies only the behaviour of the customer that is
blocked. Under the jump-over-protocol, a customer that is blocked to enter a sta-
tion jumps over this station and attempts to enter the next station as if it was served
at the saturated queue.

Jump-over-blocking If queue i in a Kelly-Whittle network with finite capacity
constraints becomes saturated (ni = ci) then a customer arriving to queue i will
immediately select a new station j with probability pi j, j = 0, . . . ,J, i = 1, . . . ,J.

We may generalise this protocol to allow customers in all states to jump over a
station:

Generalised jump-over-blocking A customer arriving at station i when ni cus-
tomers are present will be accepted with probability ai(ni), and will jump over
the station with probability 1−ai(ni). A rejected customer selects a new station
j with probability pi j, j = 0, . . . ,J, i = 1, . . . ,J.

Let c j = inf{k : a j(k) = 0, k = 0,1,2, . . .}, j = 1, . . . ,J. The state space is

S jo,c,o = {n ∈ NJ
0 : 0≤ n j ≤ c j, i = 1, . . . ,J}

for the open network, and for the closed network containing M customers

S jo,c,M = {n ∈ NJ
0 : 0≤ n j ≤ c j, j = 1, . . . ,J,

J

∑
j=1

n j = M}.

Define the matrices P(m) = (pi ja j(m j), i, j = 0, . . . ,J), and P∗(m) = (pi j(1−
a j(m j)), i, j = 0, . . . ,J). The transition rates of the Kelly-Whittle network under
the generalised-jump-over protocol have the form (3.23), for m ∈ Sb

jo,c, with

θi(m) = 1, i = 0, . . . ,J,

bi j(m) = pi ja j(m j)+(P∗(m)P(m))i j +(P2
∗ (m)P(m))i j + · · ·=

∞

∑
k=0

(Pk
∗ (m)P(m))i j,

where
Sb

jo,c = Sb
jo,c,o = S jo,c,o

for the open network and

Sb
jo,c = Sb

jo,c,M = Sb
jo,c,M−1

for the closed network. For a j(m j) = 1(m j ≤ c j)
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H(n) =
J

∏
j=1

λ
n j
j , n ∈ S jo,c,

satisfies the state-dependent traffic equations (3.24). Assume that

G−1
jo,c = ∑

n∈S jo,c

φ(n)
J

∏
j=1

ρ
n j
j < ∞,

and that {N(t)} is irreducible. Then {N(t)} has unique equilibrium distribution

π(n) = G jo,cφ(n)
J

∏
j=1

ρ
n j
j , n ∈ S jo,c.

�

3.5 Literature

Staat al in Remark 3.1.9: Open networks of M|M|1 queues are often called Jackson
networks, referring to J.R. Jackson who first obtained their equilibrium distribution
[?] and closed networks of M|M|1 queues are called Gordon-Newell networks, re-
ferring to W.J. Gordon and G.F. Newell who obtained their equilibrium distribution
[?]. In the exposition in this chapter we have introduced queue 0 to represent the
outside of the network of queues which allows a unified analysis of open and closed
networks.
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HvD over blocking etc
Chandy Martin psi=phi
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Chapter 4
Kelly’s lemma and networks with fixed routes

4.1 The time-reversed process and Kelly’s Lemma

For the stationary Markov chain {N(t)} with state space S and transition rates
q(n,n′), n,n′ ∈ S, the time-reversed process {Nr(t)}= {N(τ− t)}, for some τ ∈R,
is a stationary Markov chain with state space S. From P(N(t + h) = n′,N(t) = n),
the joint distribution of N(t) and N(t+h) for some t ∈R, h > 0, n,n′ ∈ S, we obtain
by conditioning on N(t +h) in the left-hand side and on N(t) in the right-hand side,
for n,n′ ∈ S, t ∈ R, h > 0,

P(N(t) = n|N(t +h) = n′) =
P(N(t) = n)

P(N(t +h) = n′)
P(N(t +h) = n′|N(t) = n). (4.1)

Dividing by h and taking the limit h ↓ 0 we obtain the following result.

Theorem 4.1.1 Let {N(t), t ∈ T}, T = R, be a stationary Markov chain with
transition rates q(n,n′), n,n′ ∈ S, and equilibrium distribution π(n), n ∈ S. The
time-reversed process {N(τ − t), t ∈ T} is a conservative, regular, irreducible
continuous-time stationary Markov chain with transition rates qr(n,n′), n,n′ ∈ S
given by

qr(n,n′) =
π(n′)
π(n)

q(n′,n),

and the same equilibrium distribution π(n), n ∈ S.

Remark 4.1.2 (Assumptions of Theorem 4.1.1) Observe that it is essential that
{N(t), t ∈ T} is stationary. To see this, consider (4.1). If {N(t), t ∈ T} is not
stationary, then it must be that P(N(t) = n) or P(N(t + h) = n′) depend on t for
some n,n′ ∈ S, so that P(N(t) = n|N(t + h) = n′) will depend on t and therefore
{N(τ− t), t ∈ T} will not be time-homogeneous. �

An important consequence of Theorem 4.1.1 is the following theorem that will
be the basis for the analysis in this chapter.

51
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Theorem 4.1.3 (Kelly’s lemma) Let {N(t), t ∈ T}, T =R, be a stationary Markov
chain with transition rates q(n,n′), n,n′ ∈ S. If we can find a collection of numbers
qr(n,n′), n,n′ ∈ S, such that

∑
n′ 6=n

q(n,n′) = ∑
n′ 6=n

qr(n,n′), n ∈ S, (4.2)

and a distribution π = (π(n), n ∈ S) such that

π(n)qr(n,n′) = π(n′)q(n′,n), n,n′ ∈ S, (4.3)

then qr(n,n′), n,n′ ∈ S, are the transition rates of the time-reversed Markov chain
{N(τ − t), t ∈ T} and π(n), n ∈ S, is the equilibrium distribution of both Markov
chains.

Proof. From (4.3) and (4.2) it follows that

∑
n′∈S

π(n′)q(n′,n) = ∑
n′∈S

π(n)qr(n,n′)

= π(n) ∑
n′∈S

q(n,n′).

Theorem 4.1.1 concludes the proof. �

Example 4.1.4 (The M|M|1 queue) The M|M|1 queue has Poisson arrival rate λ

and service rate µ . For λ < µ the departure rate must be λ , recall Remark 2.4.4.
A natural guess for the arrival rate of the time-reversed process is qr(n,n+1) = λ ,
n ∈ N0. A further guess could then be qr(n,n− 1) = µ , n ∈ N, and an educated
guess for the equilibrium distribution is π(n) = (1−ρ)ρn, with ρ = λ/µ . Clearly,
Kelly’s lemma 4.1.3 is satisfied. Thus, the time-reversed process is an M|M|1 queue
with Poisson arrivals at rate λ and service rate µ . This could also be concluded
observing that the Markov chain {N(t)} recording the number of customer in the
M|M|1 queue is a reversible Markov chain. �

Example 4.1.5 (Kelly-Whittle networks) Consider a Kelly-Whittle network {N(t)}
at state space S⊆ NJ

0 with transition rates, for n′ 6= n,

q(n,n′) =


ψ(n− ei)

φ(n)
µi pi j, if n′ = n− ei + e j, i, j = 0, . . . ,J,

0, otherwise,
(4.4)

where ψ : NJ
0→ [0,∞) and φ : NJ

0→ (0,∞). As argued in Remark 3.2.6 the service
process is a reversible process. The proof of Theorems 3.1.4 and 3.1.5 argues that
the routing process is a Markov chain with equilibrium distribution λ j, j = 1, . . . ,J,
up to normalisation. According to Kelly’s lemma 4.1.3, the time-reversed routing
process is the Markov chain with transition probabilities
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pr
i j :=

λ j

λi
p ji, i, j = 0, . . . ,J.

A natural guess for the transition rates of the time-reversed Kelly-Whittle network
{Nr(t)} is, for n 6= n′,

qr(n,n′) =


ψ(n− ei)

φ(n)
µi pr

i j, if n′ = n− ei + e j, i, j = 0, . . . ,J,

0, otherwise.
(4.5)

Observe that

∑
n′ 6=n

q(n,n′) =
J

∑
i, j=0

ψ(n− ei)

φ(n)
µi pi j =

J

∑
i=0

ψ(n− ei)

φ(n)
µi,

∑
n′ 6=n

qr(n,n′) =
J

∑
i, j=0

ψ(n− ei)

φ(n)
µi pr

i j =
J

∑
i, j=0

ψ(n− ei)

φ(n)
µi

λ j

λi
p ji =

J

∑
i=0

ψ(n− ei)

φ(n)
µi,

where the last equality is due to the traffic equations (3.3).
An educated guess for the equilibrium distribution is π(n) = GKW φ(n)∏

J
j=1 ρ

n j
j ,

n ∈ S, that clearly satisfies (4.3):

π(n)qr(n,n′) = GKW φ(n)
J

∏
k=1

ρ
nk
k

ψ(n− ei)

φ(n)
µi pr

i j

= GKW φ(n)
J

∏
k=1

ρ
nk
k

ψ(n− ei)

φ(n)
µi

λ j

λi
p ji

= GKW φ(n− ei + e j)
J

∏
k=1

ρ
nk−δki+δk j
k

ψ(n− ei)

φ(n− ei + e j)
µ j p ji

= π(n− ei + e j)q(n− ei + e j,n).

Kelly’s lemma 4.1.3 implies that qr(n,n′) given in (4.5) are the transition rates of the
time-reversed Kelly-Whittle network and that π(n) = GKW φ(n)∏

J
j=1 ρ

n j
j , n ∈ S, is

the equilibrium distribution of both the Kelly-Whittle network and the time-reversed
Kelly-Whittle network provided ∑n∈S φ(n)∏

J
j=1 ρ

n j
j < ∞. �

4.2 Queue disciplines

A complete description of a queue in a network with customer classes c, c= 1, . . . ,C,
requires a description of the position of the customers in the queue as well as rules
for the position of new customers and the attention of the server towards different
customers.
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Definition 4.2.1 (Queue with customer types: (κ,γ,δ )-protocol) Let customers in
the queue be ordered: if the queue contains n customers then these customers are in
positions 1, . . . ,n, n ∈ N. Assume the queue operates as follows:

• a customer of class c requires a negative-exponentially distributed amount of
service with rate µ(c);

• if n > 0 customers are present service is provided at rate κ(n)> 0;
• a fraction γ(`,n) of the service effort is directed to the customer in position `,

`= 1, . . . ,n; if the customer in position ` completes service and leaves the queue
customers in positions `+1, `+2, . . . ,n move to positions `,`+1, . . . ,n−1, re-
spectively;

• a customer that arrives moves into position ` with probability δ (`,n+ 1); cus-
tomers previously in positions `,`+1, . . . ,n move to positions `+1, `+2, . . . ,n+
1, respectively,

where, for n ∈ N:
n

∑
`=1

γ(`,n) = 1,
n

∑
`=1

δ (`,n) = 1.

Example 4.2.2 (Queue disciplines) The (κ,γ,δ )-protocol is a flexible model to
describe various queueing disciplines. A queue operates under the

First-In-First-Out protocol (FIFO) if customers that arrive join the tail of the
queue and service is provided by a single server to the customer at the front of
the queue,

Last-In-First-Out-Preemptive-Resume protocol (LIFO-PR) if customers that
arrive join the tail of the queue and service is provided by a single server to the
customer at the tail of the queue, and upon arrival of a new customer at the tail of
the queue service of the customer in service is interrupted and the new customer
at the tail of the queue is served,

Processor-Sharing protocol (PS) if a single server equally shares its attention to
all customers present in the queue and (for symmetry) a customer that arrives is
placed at a random position in the queue,

Infinite-server protocol (INF) if each customer receives its own server and (for
symmetry) a customer that arrives is placed at a random position in the queue.

Table 4.1 provides the functions κ,γ,δ for these protocols. We have included the

Table 4.1 The functions κ,γ,δ , `= 1, . . . ,n, n ∈ N:

κ(n) γ(`,n) δ (`,n)
FIFO 1(n > 0) 1(`= 1) 1(`= n)
LIFO-PR 1(n > 0) 1(`= n) 1(`= n)
PS 1(n > 0) 1/n 1/n
INF n 1/n 1/n
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indicator 1(n > 0) instead of 1 for the service rate κ to emphasise that the service
rate is constant whenever customers are present. �

Example 4.2.3 (Multi-class LIFO-PR queue: equilibrium distribution) Consid-
er the multi-class LIFO-PR queue as introduced above. Let customers of class c
arrive according to a Poisson process with rate λ (c), c = 1, . . . ,C, and let ρ(c) =
λ (c)/µ(c), c= 1, . . . ,C. Assume that ρ :=∑

C
c=1 ρ(c)< 1, where ρ the mean amount

of work arriving to the queue per unit time. If n > 0 customers are present, let
c = (c(1), . . . ,c(n)), c(i) ∈ {1, . . . ,C}, record the class of the customers in position
i, i = 1, . . . ,n. Let {N(t)} record the state of the Markov chain at state space

S = {c : c = (c(1), . . . ,c(n)), c(i) ∈ {1, . . . ,C}, i = 1, . . . ,n, n ∈ N0}. (4.6)

The transition rates are, for c = (c(1), . . . ,c(n)), c′ 6= c, c,c′ ∈ S,

q(c,c′) =
{

λ (c), if c′ = (c(1), . . . ,c(n),c), c ∈ {1, . . . ,C},
µ(c(n)), if c′ = (c(1), . . . ,c(n−1)).

As customers are placed at the tail of the queue and served from the tail of the queue,
a natural guess for the time-reversed multi-class LIFO-PR queue is the multi-class
LIFO-PR queue with the same rates:

qr(c,c′) =
{

λ (c), if c′ = (c(1), . . . ,c(n),c), c ∈ {1, . . . ,C},
µ(c(n)), if c′ = ((c(1), . . . ,c(n−1)).

We will now use Kelly’s lemma 4.1.3 to show that

π(c) = (1−ρ)
n

∏
i=1

ρ(c(i)), c = (c(1), . . . ,c(n)) ∈ S, (4.7)

is the equilibrium distribution. Clearly, (4.2) is satisfied:

∑
c′ 6=c

q(c,c′) =
C

∑
c=1

λ (c)+µ(c(n)),

∑
c′ 6=c

qr(c,c′) =
C

∑
c=1

λ (c)+µ(c(n)).

For c = (c(1), . . . ,c(n)) it is sufficient to check (4.3) for arrivals and departures. To
this end, let c′ = (c(1), . . . ,c(n),c), c′′ = (c(1), . . . ,c(n−1)), then

π(c)qr(c,c′) = π(c′)q(c′,c)⇔ λ (c) = ρ(c)µ(c),

π(c)qr(c,c′′) = π(c′′)q(c′′,c)⇔ ρ(c(n))µ(c(n)) = λ (c(n)),

that are trivially satisfied. Kelly’s lemma 4.1.3 implies that (4.7) is indeed the equi-
librium distribution. �
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Example 4.2.4 (Multi-class FIFO queue: equilibrium distribution) Now consid-
er the multi-class FIFO queue. Let customers of class c, c = 1, . . . ,C, arrive with
rate λ (c), c = 1, . . . ,C, and let ρ(c) = λ (c)/µ(c), c = 1, . . . ,C. Assume that ρ :=
∑

C
c=1 ρ(c)< 1. Let {N(t)} record the state of the Markov chain at state space (4.6)

with transition rates, for c = (c(1), . . . ,c(n)), c′ 6= c, c,c′ ∈ S,

q(c,c′) =
{

λ (c), if c′ = (c(1), . . . ,c(n),c), c ∈ {1, . . . ,C},
µ(c(1)), if c′ = (c(2), . . . ,c(n)).

Note that these rates differ from those for multi-class LIFO-PR via the departure
rate: customers now depart from position 1. As customers are placed at the tail
of the queue and served from the head of the queue, a natural guess for the time-
reversed multi-class FIFO queue is the queue in which customers are placed at the
head of the queue and are served from the tail of the queue:

qr(c,c′) =
{

λ (c), if c′ = (c,c(1), . . . ,c(n)), c ∈ {1, . . . ,C},
µ(c(n)), if c′ = (c(1), . . . ,c(n−1)).

Observe that these are the transition rates for a multi-class FIFO queue with reversed
numbering of customer positions: customers are served in position n and new cus-
tomers are placed in postion 1. Now consider condition (4.2) in Kelly’s lemma, for
c = (c(1), . . . ,c(n)),

∑
c′ 6=c

q(c,c′) =
C

∑
c=1

λ (c)+µ(c(1)),

∑
c′ 6=c

qr(c,c′) =
C

∑
c=1

λ (c)+µ(c(n)).

For these terms to be equal it must be that the service rates are identical for all
customer classes: µ(c) = µ , c = 1, . . . ,C. In that case, following the reasoning
for the multi-class LIFO-PR queue we readily obtain that (4.7) is the equilibrium
distribution of the multi-class FIFO queue. For c = (c(1), . . . ,c(n)) it is sufficient
to check (4.3) for arrivals and departures. To this end, let c′ = (c,c(1), . . . ,c(n)),
c′′ = (c(1), . . . ,c(n−1)), then

π(c)qr(c,c′) = π(c′)q(c′,c)⇔ λ (c) = ρ(c)µ(c),

π(c)qr(c,c′′) = π(c′′)q(c′′,c)⇔ ρ(c(n))µ(c(n)) = λ (c(n)),

that are trivially satisfied.1 Kelly’s lemma 4.1.3 implies that (4.7) with µ(c) = µ ,
c = 1, . . . ,C, is indeed the equilibrium distribution.

Alternatively, we might guess that the time-reversed multi-class FIFO queue co-
incides with the original multi-class FIFO queue, i.e., serving customers at the head
of the queue (position 1) and placing new customers at the tail of the queue (po-

1 Note that these equations do not require that µ(c) = µ , c = 1, . . . ,C.
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sition n + 1). However, in that case condition (4.3) of Kelly’s lemma cannot be
satisfied. To see this, consider c = (c(1), . . . ,c(n)) and c′ = (c(1), . . . ,c(n),c), then
qr(c,c′) = λ (c), whereas q(c′,c) = 0. �

By analogy with the examples above we may investigate the equilibrium distribution
for a general queue operating under the (κ,γ,δ )-protocol. We will consider two
cases: equal service rates for all customer classes and symmetric queues.

Theorem 4.2.5 (Equal service rates) Let {N(t)} record the state of a queue oper-
ating under the (κ,γ,δ )-protocol to which customers of class c arrive according to
a Poisson process with rate λ (c), c = 1, . . . ,C. Assume that µ(c) = µ , c = 1, . . . ,C,
and that

G =

[
∞

∑
n=0

n

∏
`=1

ρ

κ(`)

]−1

< ∞,

where ρ = λ/µ with λ = ∑
C
c=1 λ (c) the arrival rate to the queue. Then {N(t)} has

unique equilibrium distribution

π(c) = G
n

∏
`=1

ρ(c(`))
κ(`)

, c = (c(1), . . . ,c(n)). (4.8)

Proof. The transition rates of {N(t)} are, for c = (c(1), . . . ,c(n)), c′ 6= c, c,c′ ∈ S,
c ∈ {1, . . . ,C},

q(c,c′) =
{

λ (c)δ (`,n+1), if c′ = (c(1), . . . ,c(`),c,c(`+1), . . . ,c(n)),
µ(c(`))κ(n)γ(`,n), if c′ = c(1), . . . ,c(`−1),c(`+1), . . . ,c(n)).

(4.9)
Following the arguments in Example 4.2.4, for c ∈ {1, . . . ,C}, let

qr(c,c′) =
{

λ (c)γ(`,n+1), if c′ = (c(1), . . . ,c(`),c,c(`+1), . . . ,c(n)),
µ(c(`))κ(n)δ (`,n), if c′ = c(1), . . . ,c(`−1),c(`+1), . . . ,c(n)),

(4.10)
which are the transition rates of a queue under the (κ,δ ,γ)-protocol with the role of
γ and δ reversed. Under the assumption µ(c) = µ , c = 1, . . . ,C, for the distribution
π in (4.8) both conditions of Kelly’s lemma 4.1.3 are satisfied. �

Definition 4.2.6 (Symmetric queue) A queue operating under the (κ,γ,δ )-protocol
is called a symmetric queue if

γ(`,n) = δ (`,n), `= 1, . . . ,n, n ∈ N.

Theorem 4.2.7 (Symmetric queue) Let {N(t)} record the state of a symmetric
queue to which customers of class c arrive according to a Poisson process with
rate λ (c), c = 1, . . . ,C. Assume that

G =

[
∞

∑
n=0

n

∏
`=1

ρ

κ(`)

]−1

< ∞,
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where ρ = ∑
C
c=1 λ (c)/µ(c) the mean amount of work arriving to the queue per unit

time. Then {N(t)} has unique equilibrium distribution

π(c) = G
n

∏
`=1

ρ(c(`))
κ(`)

, c = (c(1), . . . ,c(n)). (4.11)

Proof. The transition rates of {N(t)} are, for c = (c(1), . . . ,c(n)), c′ 6= c, c,c′ ∈ S,
c ∈ {1, . . . ,C}, given in (4.9). Following the arguments in Example 4.2.3, let qr be
given in (4.10). Under the assumption γ(`,n) = δ (`,n), for the distribution π in
(4.11) both conditions of Kelly’s lemma 4.1.3 are satisfied. �

Remark 4.2.8 (Conditions Kelly’s lemma) Observe that the assumptions µ(c) =
µ , c = 1, . . . ,C, in Theorem 4.2.5 and γ(`,n) = δ (`,n), `= 1, . . . ,n, n ∈ N, in The-
orem 4.2.7 are not required for condition (4.3) of Kelly’s lemma, and are sufficient
for condition (4.2) in Kelly’s lemma, for c = (c(1), . . . ,c(n)):

∑
c′ 6=c

q(c,c′) =
C

∑
c=1

n+1

∑
`=1

λ (c)δ (`,n+1)+
n

∑
`=1

µ(c(`))κ(n)γ(`,n)

=
C

∑
c=1

λ (c)+κ(n)
n

∑
`=1

µ(c(`))γ(`,n),

∑
c′ 6=c

qr(c,c′) =
C

∑
c=1

n+1

∑
`=1

λ (c)γ(`,n+1)+
n

∑
`=1

µ(c(`))κ(n)δ (`,n)

=
C

∑
c=1

λ (c)+κ(n)
n

∑
`=1

µ(c(`))δ (`,n).

For condition (4.2) to be satisfied it must be that, for all c = (c(1), . . . ,c(n)) ∈ S,

n

∑
`=1

µ(c(`))γ(`,n) =
n

∑
`=1

µ(c(`))δ (`,n),

for which µ(c) = µ , c = 1, . . . ,C, or γ(`,n) = δ (`,n), `= 1, . . . ,n, n ∈ N, are suffi-
cient conditions. �

Remark 4.2.9 (Aggregation of customer numbers) Consider the multi-class FIFO,
LIFO-PR or PS queue. From Theorems 4.2.5, 4.2.7, the equilibrium distribution is

π(c) = (1−ρ)ρn
n

∏
`=1

ρ(c(`))
ρ

, c = (c(1), . . . ,c(n)),

with ρ(c) = λ (c)/µ(c), and ρ =∑
C
c=1 λ (c)/µ(c) the mean amount of work arriving

to the queue per unit time. If µ(c) = µ , c = 1, . . . ,C, then ρ(c)/ρ = λ (c)/λ is the
probability that a customer in the queue is of type c, c = 1, . . . ,C.

The equilibrium distribution of the total number of customers n(c) of class c,
c= 1, . . . ,C, may be obtained by summation over all states c such that ∑

n
`=11(c(`)=
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c}= n(c):

π(n(1), . . . ,n(C)) = (1−ρ)ρn n!
n(1)! · · ·n(C)!

C

∏
c=1

(
ρ(c)

ρ

)n(c)

.

The equilibrium distribution of the total number of customers is

π(n) = (1−ρ)ρn, n ∈ N0.
�

4.3 Networks with customer types and fixed routes

Let customers of types u = 1, . . . ,U arrive to a network of J queues according to
a Poisson process with rate µ0(u), u = 1, . . . ,U . A customer’s type uniquely deter-
mines his route through the network along the sequence of queues

r(u,1),r(u,2), . . . ,r(u,L(u)),

i.e., the route of a customer of type u has L(u) stages r(u,s), s = 1, . . . ,L(u), and
starts in queue r(u,1) at stage 1, passes through L(u) queues and leaves the network
in stage L(u) from queue L(u).23 A customer may visit the same queue at multiple
stages. The next queue on its route is then determined by the stage of its current visit
to that queue. In addition, a customer may pass through a queue a fixed number of
times.

Let queue j operate according to the (κ j,γ j,δ j)-protocol, j = 1, . . . ,J, recall Def-
inition 4.2.1. Let c j(`) = (u j(`), s j(`)), with u j(`) the type and s j(`) the stage
of the customer in position ` in queue j, j = 1, . . . ,J. The state of queue j con-
taining n j customers is c j = (c j(1), . . . ,c j(n j)), and the state of the network is
c = (c1, . . . ,cJ). Let {N(t)} record the state of the Markov chain at state space
S = {c= (c1, . . . ,cJ)} as described above. It is convenient to introduce the following
notation. For c = (c1, . . . ,cJ), let

C(u,s)
(`, j),(`′,k)c denote state c′ obtained from state c by removing the customer

of type u in stage s in position ` from queue j and adding that
customer in position `′ to queue k.

For j = 0 a customer arrives to the network (and ` is redundant and will be set
to zero), and we use (u,0) to indicate that a customer of type u arrives to the net-
work. For k = 0 a customer departs from the network (and `′ = 0). Note that for

2 We will not assume that U is finite. Therefore, we assume that ∑
U
u=1 µ0(u)< ∞.

3 We may model customer types that stay in the network by setting L(u) = 1. This also allows
modelling a closed network in the same notation as used for the open network. We will not discuss
closed networks separately.
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C(u,s)
(`, j),(`′,k)c ∈ S it must be that j = r(u,s), k = r(u,s+ 1) for some s = 0, . . . ,L(u),

with convention that s+1 := 0 if s= L(u).4 Observe that it may be that C(u,s)
(`, j),(`′,k)

c=

C(u,s)
(`, j),(`′,k)c, for ` 6= `, for example when all customers in queue j are of type u and

in the same stage of their route. The transition rates are, for u = 1, . . . ,U , c′ 6= c,
c,c′ ∈ S,

q(c,c′) =

∑{
`
′ : C(u,0)

(0,0),(`′,k)
c=C(u,0)

(0,0),(`′,k)c
}µ0(u)δk(`

′
,nk +1), if c′ =C(u,0)

(0,0),(`′,k)c,

∑{
`,`
′ : C(u,s)

(`, j),(`′,k)
c=C(u,s)

(`, j),(`′,k)c
}µ j(u)κ j(n j)γ j(`,n j)δk(`

′
k,nk +1), if c′ =C(u,s)

(`, j),(`′,k)c,

∑{
`, : C(u,L(u))

(`, j),(0,0)
c=C(u,L(u))

(`, j),(0,0)c
}µ j(u)κ j(n j)γ j(`,n j), if c′ =C(u,L(u))

(`, j),(0,0)c.

Let λ j(u,s) denote the arrival rate of customers of type u to queue j = r(u,s),
s = 1, . . . ,L(u), u = 1, . . . ,U . Then it must be that

λ j(u,s) =
{

µ0(u), if j = r(u,s),
0, otherwise.

The mean amount of work arriving to queue j per unit time is

ρ j =
U

∑
u=1

L(u)

∑
s=1

λ j(u,s)
µ j(u)

, j = 1, . . . ,J.

We may now obtain the equilibrium distribution for the network with fixed routes.

Theorem 4.3.1 (Network with fixed routes) Let {N(t)} record the state of a net-
work of queues with fixed routes in which queue j operates according to the
(κ j,γ j,δ j)-protocol. Assume that, for all c j = (c j(1), . . . ,c j(n)),

n

∑
`=1

µ j(u j(`))γ j(`,n) =
n

∑
`=1

µ j(u j(`))δ j(`,n), (4.12)

and

G j =

[
∞

∑
n=0

n

∏
`=1

ρ j

κ j(`)

]−1

< ∞,

Let

4 Note that the type of the customer in position ` in queue j is unique. The index (u,s) is added for
notational convenience to specify the customer’s service requirement.
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π j(c j) = G j

n j

∏
`=1

ρ j(c j(`))

κ j(`)
, c j = (c j(1), . . . ,c j(n j)),

with ρ j(c j(`)) = λ j(u j(`),s j(`))/µ j(u j(`)). Then {N(t)} has unique equilibrium
distribution

π(c) =
J

∏
j=1

π j(c j), c ∈ S.

Proof. A natural guess for the reversed process is that customers of type u arrive
according to a Poisson process with rate µ0(u) to queue L(u) and follow the reversed
route r(u,L(u)), . . . ,r(u,1), and that the transition rates have the role of γ and δ

reversed: for u = 1, . . . ,U , c′ 6= c, c,c′ ∈ S,

qr(c′,c) =

∑{
`
′ : C(u,0)

(0,0),(`′,k)
c=C(u,0)

(0,0),(`′,k)c
}µk(u)κk(nk +1)δk(`

′
,nk +1), if c′ =C(u,0)

(0,0),(`′,k)c,

∑{
`,`
′ : C(u,s)

(`, j),(`′,k)
c=C(u,s)

(`, j),(`′,k)c
}µk(u)κk(nk +1)δk(`

′
k,nk +1)γ j(`,n j), if c′ =C(u,s)

(`, j),(`′,k)c,

∑{
`, : C(u,L(u))

(`, j),(0,0)
c=C(u,L(u))

(`, j),(0,0)c
}µ0(u)γ j(`,n j), if c′ =C(u,L(u))

(`, j),(0,0)c.

Observe that π j is the equilibrium distribution of queue j, recall Remark 4.2.8,
and that π is a distribution. For the proposed distribution π and transition rates qr

we have, for c = (c1, . . . ,cJ), c j = (c j(1), . . . ,c j(n j)), j = 1, . . . ,J,

∑
c′

q(c,c′) =
U

∑
u=1

µ0(u)+
J

∑
j=1

n j

∑
` j=1

µ j(u j(` j))κ j(n j)γ j(` j,n j),

∑
c′

qr(c,c′) =
U

∑
u=1

µ0(u)+
J

∑
k=1

nk

∑
`k=1

µk(uk(`k))κk(nk)δk(`k,nk),

so that (4.3) is satisfied due to (4.12). For c′ =C(u,s)
(`, j),(`′,k)c, with j,k 6= 0, we have

π(c)q(c,c′) = π(c) ∑{
`,`
′ : C(u,s)

(`, j),(`′,k)
c=C(u,s)

(`, j),(`′,k)c
}µ j(u)κ j(n j)γ j(`,n j)δk(`

′
k,nk +1),

π(c′)qr(c′,c)

= π(c) ∑{
`,`
′ : C(u,s)

(`, j),(`′,k)
c=C(u,s)

(`, j),(`′,k)c
} ρk(ck(`

′
k))

ρ j(c j(` j))

κ j(n j)

κk(nk +1)
µk(u)κk(nk +1)

×δk(`
′
k,nk +1)γ j(`,n j).



62 4 Kelly’s lemma and networks with fixed routes

The arrival rate of type u customers equals µ0(u) at all stages of their route, which
implies that ρk(ck(`

′
k))µk(u) = ρ j(c j(` j))µ j(u) so that π(c)q(c,c′) = π(c′)qr(c′,c).

The other cases j = 0 and k = 0 follow by analogy, so that (4.2) is satisfied. Kelly’s
lemma 4.1.3 completes the proof. �

Remark 4.3.2 (Fixed routes or Markovian routing) We may also consider the
network in which queue j operates according to the (κ j,γ j,δ j)-protocol, j =
1, . . . ,J, and customers select the next queue using Markovian routing. The analysis
follows the analysis of the network with customer types presented in Remark 3.2.7.

We may use a network with fixed routes to model a network with Markovian
routing by introducing a type for each possible customer route. Conversely, a net-
work with fixed routes may be modelled using Markovian routing and customer
types as described in Remark 3.2.7 via degenerate routing probabilities combined
with types recording the stages.

Fixed routes may be the natural description in some applications, whereas
Markovian routing may be natural in other applications. �

Remark 4.3.3 (BCMP networks) Networks consisting of multi-class queues op-
erating under the FIFO, LIFO-PR, PS, and INF protocols are commonly referred
to as BCMP networks, referring to F. Baskett, K.M. Chandy, R.R. Muntz, and F.G.
Palacios [?]. The exposition in this section follows the lines of F.P. Kelly [?]. �

4.4 Quasi-reversibility

Burke’s theorem 2.5.1 implies that the output process from a reversible queue before
time t, the input process to that queue after t and the state of the queue at t are
independent. This independence property implies that the equilibrium distribution in
a feedforward network is a product over the marginal distributions of the queues and
is the key-property to obtain a product-form equilibrium distribution in feedforward
networks. Quasi-reversibility formalises this independence property as a starting
point to obtain a product-form distribution for networks with fairly general queues.

Let customers of classes c = 1, . . . ,C arrive to a queue to receive service. Cus-
tomers arrive one-by-one and all customers that arrive to the queue eventually leave
without changing their class. Let {N(t)} record the state of the queue. We will as-
sume that {N(t), t ∈ R} is a Markov chain at state space S and states n ∈ S with
transition rates q(n,n′), n,n′ ∈ S, and equilibrium distribution π(n), n ∈ S. We do
not impose structure on the states except for the assumption that the state changes
each time a customer arrives to the queue or departs from the queue. Let S(c,n)⊂ S
denote the set of states that may be obtained from state n when a customer of class
c arrives to the queue, c = 1, . . . ,C, n ∈ S. Let {Ac(t), t ∈ R} and {Dc(t), t ∈ R}
record the arrival and departure processes of customers of class c.

Definition 4.4.1 (Quasi-reversibility) A stationary Markov chain {N(t)} record-
ing the evolution of a queue to which customers of classes c = 1, . . . ,C arrive to
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receive service and eventually leave without changing their class is quasi-reversible
if for all t ∈ R the state at time t, N(t), is independent of {Ac(s), s > t}, the arrival
process of class c customers after time t, and independent of {Dc(s), s < t}, the
departure process of class c customers prior to time t, c = 1, . . . ,C.

Observe that the time-reversed Markov chain {N(−t)} is also quasi-reversible as
we may identify the arrival process of the forward Markov chain with the departure
process of the time-reversed Markov chain.

Theorem 4.4.2 If {N(t)} is a quasi-reversible Markov chain, then

(i) the arrival processes {Ac(t), t ∈ R}, c = 1, . . . ,C, form independent Poisson
processes;

(ii) the departure processes {Dc(t), t ∈ R}, c = 1, . . . ,C, form independent Pois-
son processes.

Proof. By the definition of quasi-reversibility the arrival rate of class c customers
in the interval (t, t + h) is independent of N(t). Hence, ∑n′∈S(c,n) q(n,n′), the ar-
rival rate of class c customers given that N(t) = n depends only on the class of the
customer:

λ (c) := ∑
n′∈S(c,n)

q(n,n′), c = 1, . . . ,C, (4.13)

for all n ∈ S and since {N(t)} is a Markov chain is independent of {N(s), s < t}.
Thus, the arrival process has stationary and independent increments so that it is a
Poisson process.

Consider the time-reversed process. Identification of arrivals (departures) of the
forward process with departures (arrivals) of the time-reversed process combined
with the observation that the time-reversed process is quasi-reversible, implies that
the departure process of class c customers is Poisson with rates λ (c). �

Remark 4.4.3 (Algebraic characterisation of quasi-reversibility) The last argu-
ment in the proof above also shows that

λ (c) = ∑
n′∈S(c,n)

qr(n,n′), (4.14)

with qr the transition rates of the time-reversed Markov chain. Combining (4.13),
and (4.14) yields, for n ∈ S,

λ (c) = ∑
n′∈S(c,n)

q(n,n′) = ∑
n′∈S(c,n)

qr(n,n′). (4.15)

Inserting the time-reversed transition rates yields, for n ∈ S,

∑
n′∈S(c,n)

π(n)q(n,n′) = ∑
n′∈S(c,n)

π(n′)q(n′,n). (4.16)

Note that the summation in (4.16) is over subset of the states: those states that may
be reached due to arrival of class c customers. The total rate out of state n may
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also include transitions in which no customers arrive or depart from the queue.
The partial balance property (4.16) provides an algebraic characterisation of quasi-
reversibility:

In equilibrium the flow out of state n due to a customer of type c arriving to the
queue balances with the probability flow into state n due to a customer of type c
departing from the queue. �

Remark 4.4.4 (Reversibility and quasi-reversibility) Reversibility and quasi-
reversibility are separate notions. The birth-death process with state-dependent birth
rates is reversible but not quasi-reversible since the arrival process depends on the
state of the Markov chain. If we split state 1 in an M|M|1 queue with arrival rate λ

and service rate µ into two states, 1a and 1b, and set the transition rate from state 0
to state 1a to pλ and to state 1b to (1− p)λ , and the transition rates from state 2 to
state 1a to (1− p)µ and to state 1b to pµ , 0 < p < 1, then the arrival and departure
processes to the system are not affected so that the Markov chain is quasi-reversible,
but the Markov chain is reversible only if p = 1/2. �

Burke’s theorem 2.5.1 is based on the assumption that the arrival process to a re-
versible queue is a Poisson process. Properties (i) and (ii) above are not sufficient
for the Markov chain {N(t)} to be quasi-reversible as these properties do not men-
tion independence of the state of the Markov chain.

In applications the arrival process is often such that N(t) is independent of
{Ac(s), s > t} and the form of the reversed process may allow us to conclude
that N(t) is also independent of {Dc(s), s < t} so that the Markov chain {N(t)}
is quasi-reversible. For example, the Markov chain {N(t)} recording the number
of customers in the M|M|1 queue with one class of customers is quasi-reversible
as a consequence of Burke’s theorem 2.5.1. This result carries over to reversible
queues with Poisson arrivals and one class of customers. For queues with multiple
customer classes, Example 4.2.3 shows that the time-reversed multi-class LIFO-PR
queue with class-dependent service rates is also a multi-class LIFO-PR queue with
class-dependent service rates. Identifying the arrivals to the time-reversed queue
with the departures from the forward time queue shows that the queue is quasi-
reversible. Similarly, Example 4.2.4 shows that for the multi-class FIFO queue to
be quasi-reversible it must be that the service rate does not depend on the class of
the customers. The result for the multi-class LIFO-PR queue may be generalised to
symmetric queues.

Theorem 4.4.5 (Symmetric queue is quasi-reversible) Let {N(t)} record the state
of a symmetric queue to which customers of class c arrive according to independent
Poisson processes with rate λ (c), c = 1, . . . ,C. Then {N(t)} is quasi-reversible.

Proof. Arrivals of class c customers, c = 1, . . . ,C, occur according to independent
Poisson processes. Therefore N(t) is independent of {Ac(s), s > t}, c = 1, . . . ,C.
The transition rates of {N(t)} are, for c = (c(1), . . . ,c(n)), c′ 6= c, c,c′ ∈ S, c =
1, . . . ,C,
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q(c,c′) =
{

λ (c)γ(`,n+1), if c′ = (c(1), . . . ,c(`),c,c(`+1), . . . ,c(n)),
µc(`)κ(n)γ(`,n), if c′ = c(1), . . . ,c(`−1),c(`+1), . . . ,c(n)). (4.17)

Following the proof of Theorem 4.2.7, these are also the transition rates of the time-
reversed queue. The arrival process to the time-reversed queue is a Poisson process.
As arrivals in the time-reversed process coincide with departures of {N(t)}, we find
that N(t) is independent of {Dc(s), s < t}, which completes the proof. �

Example 4.4.6 (Order Independent (OI) queue) Let customers of type c arrive to
a queue according to independent Poisson processes with rates λ (c), c = 1, . . . ,C.
If n > 0 customers are present, let c = (c(1), . . . ,c(n)), c(i) ∈ {1, . . . ,C}, record the
class of the customers in position i, i = 1, . . . ,n. Let {N(t)} record the state of the
Markov chain at state space

S = {c : c = (c(1), . . . ,c(n)), c(i) ∈ {1, . . . ,C}, i = 1, . . . ,n, n ∈ N0}. (4.18)

The queue operates under the following modification of the (κ,γ,δ )-protocol:

• a customer of class c requires a negative-exponentially distributed amount of
service with rate µ(c);

• if n > 0 customers are present, in state c service is provided at rate κ(c)> 0;
• in state c = (c(1), . . . ,c(n)) a fraction γ(`,c) of the service effort is directed to

the customer in position `, ` = 1, . . . ,n; if the customer in position ` completes
service and leaves the queue customers in positions `+ 1, `+ 2, . . . ,n move to
positions `,`+1, . . . ,n−1, respectively;

• a customer that arrives in state c = (c(1), . . . ,c(n)) moves into position n+1.

In contrast with the standard (κ,γ,δ )-protocol, we will not assume that

n

∑
`=1

γ(`,c) = 1,

so that part of the service effort might be wasted. The transition rates are, for c =
(c(1), . . . ,c(n)), c′ 6= c, c,c′ ∈ S,

q(c,c′) =
{

λ (c), if c′ = (c(1), . . . ,c(n),c), c ∈ {1, . . . ,C},
κ(c)µ(c(`))γ(`,c), if c′ = (c(1), . . . ,c(`−1),c(`+1), . . . ,c(n)).

The queue is an Order Independent queue if, there exist η(n), n ∈N, and s(`,c),
`= 1, . . . ,n, c = (c(1), . . . ,c(n))∈ S, n∈N, such that for all c = (c(1), . . . ,c(n))∈ S
and all `= 1, . . . ,n, the service rates can be written as

κ(c)µ(c(`))γ(`,c) = η(n)s(`,c)

such that

(i) s(`,c(1), . . . ,c(n)) = s(`,c(1), . . . ,c(`)), `= 1, . . . ,n,
(ii) k(c(1), . . . ,c(n)) := ∑

n
`=1 s(`,c(σ(1)), . . . ,c(σ(n))) for all permutations

(σ(1), . . . ,σ(n)) of (1, . . . ,n),
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(iii) η(n)> 0 for n > 0 and s1(c)> 0, c = 1, . . . ,C.

The function s(`,c) regulates the rate at which service is provided to position `.
Condition (i) requires that the service rate of a customer in the queue depends only
on its own class and the customer classes of customers in front of it in the queue.
Condition (ii) is the distinguishing condition for the OI queue and requires that the
total service rate is independent of the order of the customers in the queue. Condition
(iii) is a necessary and sufficient condition for the Markov chain to be irreducible.

The OI queue is quasi-reversible and has equilibrium distribution

π(c(1), . . . ,c(n)) = GOI

n

∏
`=1

λ (c(`))
η(`)k(c(1), . . . ,c(`))

, c ∈ S, (4.19)

with normalising constant

G−1
OI = ∑

c∈S

n

∏
`=1

λ (c(`))
η(`)k(c(1), . . . ,c(`))

provided that GOI < ∞.
The global balance equations are

π(0)
C

∑
c=1

λ (c) = η(1)k(c)
C

∑
c=1

π(c) (4.20)

and for n≥ 1

π(c(1), . . . ,c(n))

(
C

∑
c=1

λ (c)+η(n)k(c(1), . . . ,c(n))

)

=
C

∑
c=1

n

∑
`=0

π((c(1), . . . ,c(`),c,c(`+1), . . . ,c(n))η(n+1)

×s(`+1,c(1), . . . ,c(`),c,c(`+1), . . . ,c(n))
+ λ (c(n))π(c(1), . . . ,c(n−1)). (4.21)

Observe that the distribution (4.19) satisfies

π(c(1), . . . ,c(n))η(n)k(c(1), . . . ,c(n)) = λ (c(n))π(c(1), . . . ,c(n−1)), (4.22)

so that it is sufficient to show that π satisfies the algebraic characterisation of quasi-
reversibility (4.16), for c = 1, . . . ,C:

n

∑
`=0

π(c(1), . . . ,c(`),c,c(`+1), . . . ,c(n))
π(c(1), . . . ,c(n))

η(n+1)s(`+1,c(1), . . . ,c(`),c) = λ (c).

(4.23)
Following [?], this may be shown by induction in n. First observe that (4.23) is
satisfied for n = 0:
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π(c)
π(0)

η(1)s(1,c) =
λ (c)

η(1)k(c)
η(1)s(1,c) = λ (c),

since s(1,c) = k(c). Now assume (4.23) is satisfied for 1,2, . . . ,n−1. We have

n

∑
`=0

π(c(1), . . . ,c(`),c,c(`+1), . . . ,c(n))
π(c(1), . . . ,c(n))

η(n+1)s(`+1,c(1), . . . ,c(`),c)

=
n−1

∑
`=0

π(c(1), . . . ,c(`),c,c(`+1), . . . ,c(n))
π(c(1), . . . ,c(n))

η(n+1)s(`+1,c(1), . . . ,c(`),c)

+
π(c(1), . . . ,c(n),c)
π(c(1), . . . ,c(n))

η(n+1)s(n+1,c(1), . . . ,c(n),c)

(4.22)
=

n−1

∑
`=0

π(c(1), . . . ,c(`),c,c(`+1), . . . ,c(n−1))
π(c(1), . . . ,c(n−1))k(c(1), . . . ,c(`),c,c(`+1), . . . ,c(n))

×η(n)k(c(1), . . . ,c(n))
η(n+1)

η(n+1)s(`+1,c(1), . . . ,c(`),c)

+
λ (c)

η(n+1)k(c(1), . . . ,c(n),c)
η(n+1)s(n+1,c(1), . . . ,c(n),c)

(ii)
=

k(c(1), . . . ,c(n))
k(c(1), . . . ,c(n),c)

n−1

∑
`=0

π(c(1), . . . ,c(`),c,c(`+1), . . . ,c(n−1))
π(c(1), . . . ,c(n−1))

×η(n)s(`+1,c(1), . . . ,c(`),c)

+λ (c)
s(n+1,c(1), . . . ,c(n),c)

k(c(1), . . . ,c(n),c)
(∗)
= λ (c)

k(c(1), . . . ,c(n))+ s(n+1,c(1), . . . ,c(n),c)
k(c(1), . . . ,c(n),c)

(ii∗)
= λ (c),

where (ii) is due to k(c) being invariant under permutations (condition (ii)), (∗) due
to the induction hypothesis, and (ii∗) due to the definition of k(c).

Several queues and queue disciplines may be modeled as OI queues, including
the M|M|1|c queue and the PS and INF queue disciplines. The LCFS-PR discipline
violates condition (i) and therefore cannot be modeled as OI queue.

An important example of an OI queue is the MultiServer centre with Concurrent
Classes of Customers (MSCCC queue). Customers of class c = 1, . . . ,C arrive to
an MSCCC queue according to independent Poisson processes with rates λ (c), c =
1, . . . ,C, and have negative-exponential service times with rate µ . Customers of each
class are served in the order of their arrival. When a server becomes free, the queue is
searched from the front looking for the first customer to admit into service subject to
the following constraints: at most K customers can be in service and at most Bc ≥ 1
customers of class c can be in service, c = 1, . . . ,C. Let

η(n) = 1, n = 1,2, . . . ,
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and

s(`,c(1), . . . ,c(n))=
{

µ, if the customer in position ` is served in (c(1), . . . ,c(n)),
0, otherwise.

Let n(c) = ∑
n
`=11(c(`) = c} the total number of customers of class c, c = 1, . . . ,C.

Then

k(c(1), . . . ,c(n)) = µ min{K,
C

∑
c=1

min{n(c),Bc}}

is equal for all permutations of the customers, and all conditions of the OI queue
are satisfied. The MSCCC queue is a quasi-reversible generalisation of the FCFS
queue. �

4.5 Networks of quasi-reversible queues with fixed routes

Let customers of types u = 1, . . . ,U arrive to a network of J quasi-reversible queues
according to a Poisson process with rate µ0(u), u = 1, . . . ,U . Following the notation
introduced in Section 4.3, a customer’s type uniquely determines his route through
the network along the sequence of queues r(u,1),r(u,2), . . . ,r(u,L(u)).

Let {N j(t)} at state space S j with transition rates q j(c j,c′j), c j,c′j ∈ S j, record
the state of queue j with customers of class (u,s) arriving according to Poisson
processes with rate λ j(u,s) and let π j = (π j(c j), c j ∈ S j) denote the equilibrium
distribution of {N j(t)}, j = 1, . . . ,J. Then q j and π j satisfy (4.15), (4.16), in partic-
ular λ j(u,s) = ∑c′j∈S j((u,s),c j)

q j(c j,c′j).
Consider {N(t)} at state space S = S1× ·· · × SJ , the Cartesian product of the

state spaces of the queues, with states c = (c1, . . . ,cJ). It is convenient to introduce
the following notation. For c = (c1, . . . ,cJ), and j,k = 0, . . . ,J, let

C(u,s)
j,k c denote the set of states c′ obtained from state c by removing the customer

of type u in stage s from queue j and adding that customer in stage s+1
to queue k:

(C(u,s)
j,k c)i =


{ci}, if i 6= j,k,

Sk((u,s+1),ck), if i = k,

{c′j s.t. c j ∈ S j((u,s),c′j)}, if i = j,

with the convention that for j = 0 a customer arrives to the network which also
implies that k = r(u,1) and we set s = 0, and for k = 0 a customer departs from the
network which implies that j = r(u,L(u)) and we set L(u)+1 = 0. Note that j,k are
uniquely defined by (u,s) and are added for notational convenience. The transition
rates are, for u = 1, . . . ,U , c 6= c′, c,c′ ∈ S,
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q(c,c′) =

qk(ck,c′k), if c′ ∈C(u,1)
0,k c, (arrival),

q j(c j,c′j)
qk(ck,c′k)

∑c′k∈Sk((u,s+1),ck)
qk(ck,c′k)

, if c′ ∈C(u,s)
j,k c, (routing),

q j(c j,c′j), if c′ ∈C(u,L(u))
j,0 c, (departure),

q j(c j,c′j), if c j,c′j ∈ S j, c′i = ci, i 6= j, (internal),

(4.24)
where an internal transition of queue j is a transition without the arrival or departure
of a customer from queue j, j = 1, . . . ,J. Observe that quasi-reversibility implies
that

qk(ck,c′k)
∑c′k∈Sk((u,s+1),ck)

qk(ck,c′k)
=

qk(ck,c′k)
λk(u,s+1)

. (4.25)

This is the probability that state c′k is selected from the set Sk((u,s + 1),ck), by
analogy with the probability δk(`,ck + 1) that a customer is placed in position ` in
the network of Section 4.3.

Theorem 4.5.1 (Network of quasi-reversible queues with fixed routes) Let
{N(t)} = {(N1(t), . . . ,NJ(t))} record the state of a network of J quasi-reversible
queues to which customers of types u = 1, . . . ,U arrive according to independent
Poisson processes with rates µ0(u) to follow fixed route r(u,1),r(u,2), . . . ,r(u,L(u)),
u = 1, . . . ,U. Let S j, q j, and π j denote the state space, transition rates and equilib-
rium distribution of queue j, j = 1, . . . ,J. Then {N(t)} has equilibrium distribution

π(c1, . . . ,cJ) =
J

∏
j=1

π j(c j), (c1, . . . ,cJ) ∈ S = S1×·· ·×SJ . (4.26)

Remark 4.5.2 (Feedforward network of quasi-reversible queues) If the routes
are such that the network is a feedforward network, then by analogy with the re-
sults in Section 2.5 for feedforward networks of M|M|1 queues based on Burke’s
theorem 2.5.1, for a network of quasi-reversible queues states N j(t) of the queues
are independent at fixed times so that the equilibrium distribution of the network is
(4.26). Moreover, the arrival process of customers of type u at each of the queues is
a Poisson process with rate µ0(u), u = 1, . . . ,U . �

Proof of Theorem 4.5.1. A natural guess for the time-reversed process is that cus-
tomers of types u = 1, . . . ,U arrive according to a Poisson process with rate µ0(u),
u = 1, . . . ,U , and route through the network along the sequence of queues in re-
versed order r(u,L(u)), . . . ,r(u,1) and that each queue operates according to its
time-reversed transition rates. Recall that quasi-reversibility implies (4.25). Define,
for u = 1, . . . ,U , c 6= c′, c,c′ ∈ S,
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qr(c′,c) =

qr
k(c
′
k,ck), if c′ ∈C(u,1)

0,k c, (departure),

qr
k(c
′
k,ck)

qr
j(c′j,c j)

λ j(u,s)
, if c′ ∈C(u,s)

j,k c, (routing),

qr
j(c′j,c j), if c′ ∈C(u,L(u))

j,0 c, (arrival),

qr
j(c′j,c j), if c j,c′j ∈ S j, c′i = ci, i 6= j, (internal).

(4.27)

For a routing transition from queue j = r(u,s) to queue k = r(u,s+ 1) it must be
that λ j(u,s) = λk(u,s+1), which implies that

π j(c j)πk(ck)q j(c j,c′j)
qk(ck,c′k)

λk(u,s+1)
= π(c′j)πk(c′k)q

r
k(c
′
k,ck)

qr
j(c′j,c j)

λ j(u,s)
,

so that condition (4.3) of Kelly’s lemma 4.1.3 is satisfied for routing transitions. By
analogy, condition (4.3) of Kelly’s lemma 4.1.3 is satisfied for arrival/departure and
internal transitions. Condition (4.2) is readily verified, which shows that (4.27) are
the transition rates of the time-reversed process and that (4.26) is the equilibrium
distribution of {N(t)}. �

Remark 4.5.3 (Closed networks of quasi-reversible queues) If customers of type
u departing from queue r(u,L(u)) immediately return to queue r(u,1), u = 1, . . . ,U ,
the network is a closed network of quasi-reversible queues. The Markov chain
{N(t)} at state space SM with transition rates (4.24) consisting only of the parts
(routing) and (internal) records the number of customers in the queues. Except for
normalisation, the equilibrium distribution remains that of the open network:

π(c1, . . . ,cJ) = GM

J

∏
j=1

π j(c j), (c1, . . . ,cJ) ∈ SM ⊂ S1×·· ·×SJ ,

with GM the normalising constant. �

Remark 4.5.4 (Markovian routing) We may also consider the network in which
customers select the next queue using Markovian routing, recall Remark 4.3.2.
Chapter ?? considers a network with state-dependent routing. �
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