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Part I
General solution concepts






Chapter 1
Preliminaries

This chapter reviews and discusses the basic assumptions and techniques that will
be used in this monograph. Proofs of results given in this chapter are omitted, but
can be found in standard textbooks on Markov chains and queueing theory, e.g.,
[1, 2, 6, 8, 12, 13, 14, 15]. Results from these references are used in this chapter
without reference except for cases where a specific result (e.g. theorem) is inserted
into the text.

1.1 Basic results for Markov chains

Consider a stochastic process {N(¢), t € T} taking values in a countable state
space S. Applications will usually assume that § C Ng and that ¢ represents time. !
Then, a state s = (ny,...,ny) € S is a vector with components n; € Ng, i = 1,...,J.
For a discrete-time stochastic process T is the set of integers: T = Ny, or T = Z,
whereas for a continuous-time stochastic process 7' is the positive real line: 7 = Rg
or the real line T = R. A vector s € R’ is called non-negative if n; > 0,i=1,...,J,
and positive if it is non-negative and non-null. In this monograph emphasis will
be on continuous-time stochastic processes. Therefore, in the sequel all results are
given for continuous-time stochastic processes only. The exposition in this section
focusses on continuous-time Markov chains with countable state space S. In this
section, we will not impose further structure on the states s € S.

A stochastic process is a stationary process if (N(t1),N(t2),...,N(t)) has the
same distribution as (N(#; + 7),N(t2+7),...,N(tr+ 7)) forallk e N, t1,12,...,1; €
T, v € T. The stochastic process {N(t), t € T} is a Markov process if for ev-
ery k> 1,1 <.+ <ty <tyy1, and any sy,...,S¢4 in S, the joint distribution of
(N(t1),...,N(trs1)) is such that

! NO = {0*1~27}’Z: {"'7727717071727"‘}’]1{: (700700)’R3> = [0700)
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]P’{N(thrl) = Sk+1‘N(l‘1) = S],...,N(Ik) = Sk}
=P{N(tx+1) = si41 [N (1) = s}, (1.1)

whenever the conditioning event (N(¢;) = sy, ...,N(f;) = s¢) has positive probabil-
ity. In words, for a Markov process the state at a given time contains all information
about the past evolution necessary to probabilistically predict the future evolution
of the process.

A Markov process is time-homogeneous if the conditional probability
P{N(s+1) =s'|N(s) = s} is independent of s for all s, > 0, s,s' € S. For a time-
homogeneous Markov process the transition probability from state s to state s’ in
time 7 is defined as

P(s,s';t) =P{N(s+1) =s'|N(s) =s}, s,6>0.

The transition matrix P(t) = (P(s,s';t), s,8' € S) has non-negative entries (1.2) and
row sums equal to one (1.3). The Markov property (1.1) implies that the transition
probabilities satisfy the Chapman-Kolmogorov equations (1.4). In addition, we as-
sume that the transition matrix is standard (1.5). For all s,s’ € S, s,t > 0, a standard
transition matrix satisfies:

P(s,s';1) > 0; (1.2)

Y P(s,s's1) =1 (1.3)

s'es

P(s,s'ss+1) =Y P(s,s":5)P(s",s"51); (1.4)
s"eS

limP(s,s';t) = &, (1.5)

t10 ’

where &y is the Kronecker-delta, 8y = 1 if s =" and &gy = 0 if s # . For a
standard transition matrix it is natural to extend the definition of P(s,s’;-) to [0, )
by setting P(s,s’;0) = & . Then for all s, s’ the transition probabilities are uniformly
continuous on [0,0). Furthermore, each P(s,s';t) is either identically zero for all
t > 0 or never zero for t > 0 (Lévy’s dichotomy [2, Theorem I1.5.2]).

For a standard transition matrix the transition rate from state s to state s is de-
fined as Pl h)

N — /
q(S,SI) — 1}}&.‘1 (S7S ’h) S,S )

For all s,s’ € S this limit exists. For s # s’ this limit is finite (1.6), whereas for s = &'
the limit may be infinite. For practical systems the limit for s = &' is finite too. In the
sequel, we assume that the limit exists for s = §': (1.7). A Markov process is called
a continuous-time Markov chain if for all s,s’ € S the limit exists and is finite (1.6),
(1.7). In addition, we assume that the rate matrix is conservative (1.8). Then for all
s,s’ the rate matrix satisfies
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0<gq(s,s') <o, §#s; (1.6)
0 <q(s) :== —q(s,s) <o (1.7)
Y a(s.;s)=0. (1.8)
s'es

For a rate matrix Q = (q(s,s'), s,s' € S) that satisfies (1.6), (1.7), the definition of
the transition rates implies that the transition probabilities can be expressed in the
transition rates. This gives, for s,s’ € S,

P(s,s';h) = 8y +q(s,s')h+o(h) forh |0, (1.9)

where o(h) denotes a function g(h) with the property that g(h)/h — 0 as h | 0.
For small positive values of h, for s’ # s, the term ¢(s,s’)z may be interpreted as
the conditional probability, up to order o(%), that the Markov chain {N(7)} makes a
transition to state s’ during (¢, +h) given that the process is in state s at time ¢. From
(1.7), (1.8), note that g(s) = Y. 45q(s,s). If g(s) is finite, g(s)h is the conditional
probability that {N(¢)} leaves this state during (¢,7+ k) given that {N ()} is in state s
attime 7. As a consequence, ¢(s,s’) can be interpreted as the rate at which transitions
occur, i.e., as transition rates. To elaborate on the transition rates and on the role of
stability, consider the conditional probability that the process remains in s during
(t,t + h) if the process is in s at time ¢. This conditional probability is

P{N(t)=s,1<T<t+hNit)=s}=e 1" n>o0.
The exit-time from state s, &(s), defined as
E(s)=inf{s: s>0, N(t+s) #s}

given that the process is in state s at time s, has an exponential distribution with
mean ¢g(s) .

For every initial state N(0) =s, {N(¢), t € T} is a pure-jump process, which
means that the process jumps from state to state and remains in each state a strictly
positive sojourn-time with probability 1. For the Markovian case, the process re-
mains in state s for an exponentially distributed sojourn-time with mean ¢(s)~!. In
addition, conditional on the process departing from state s it jumps to state 8" with
probability p(s,s’) = ¢(s,s')/q(s). This second interpretation is sometimes used
as a definition of a continuous-time Markov chain and is used to construct such
processes. The Markov chain represented via the exponentially distributed hold-
ing times with mean ¢(s) ! and transition probabilities p(s,s’), s,s' € S, is referred
to as the Markov jump chain of the Markov chain {N(¢)}. Note that we obtain the
Markov chain with transition rates ¢(s,s’) from the Markov jump chain with holding
times with mean ¢(s)~! and transition probabilities p(s,s’) as g(s,s’) = g(s)p(s,s’),
s,s’ €.
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From the Chapman-Kolmogorov equations (1.4) two systems of differential
equations for the transition probabilities can be obtained. To this end, observe that
for a standard transition matrix every element P(s,s’;-) has a continuous derivative
in (0,e0), which is continuous at zero if the rate matrix satisfies (1.6), (1.7) [2, The-
orem II.12.8]. Conditioning on the first jump of the Markov chain in (0, 7] yields the
Kolmogorov backward equations (1.10), whereas conditioning on the last jump in
(0,1] gives the Kolmogorov forward equations (1.11). The validity of this method is
discussed below. These equations read for s,s’ € S, t > 0,

dP(s,s';t

7(& ) = Z q(s,s")P(s",s';1), (1.10)
s’eS

dP(s,s';t

WS _ 3 bl sa(s" ). i
s’es

If the rate matrix satisfies (1.6), (1.7), then starting from the initial state N(0) =s, a
first jump of the Markov chain exists for # > 0. As a consequence conditioning on
this first jump is allowed. In contrast, the last jump of the Markov chain in (0,7] is
not properly defined. It may be that also for a rate matrix that satisfies (1.6), (1.7)
jumps will accumulate in such a way that {N(7)} will make infinitely many jumps
in finite time. In this case {N ()} is not properly defined for all ¢ > 0 from the rate
matrix.

Example 1.1.1 (Explosion in a pure birth process) Consider the Markov chain
{N(t), t €[0,0)}, at state space S = N with transition rates

q(s), ifs'=s+1,
q(S,S/) = _LI(S)7 if ' = S,
0, otherwise,

with initial distribution P(N(0) =s) = 8(s,0). Then {N(¢)} is a pure birth process
that spends an exponentially distributed time with rate g(s) in state s and then jumps
to state s + 1 with probability 1, s € S. Let £(s) denote the time spent in state s, and
& =Y (& (s) the time spent in the states 0,1,2,.... Let g(s) = 25, then

B} = iOE{é(s» - 202 —2

by monotone convergence. As E{&} < oo it must be that P(& < o) = 1 and therefore
{N(t)} is explosive (diverges to infinity in finite time).> O

An additional assumption on the rate matrix guaranteeing the existence of a last
jump in (0,¢] is regularity. A pure-jump Markov chain is regular if for every initial
state N(0) = s the number of transitions in finite time is finite with probability 1. For

2 We may actually show the following stronger result: A pure birth process is explosive if and only
i Eoq(s) ! <o
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aregular Markov chain the last jump before ¢ is well-defined and conditioning on the
last jump before ¢ is allowed. Thus if a pure-jump Markov chain satisfies (1.6), (1.7)
and is regular, then for all # > 0 the evolution of the process is uniquely determined
by the transition rates, that is specification of the transition rates is sufficient to
completely characterize the process.

Regularity is a property of the rate matrix. It can be shown [11] that the rate
matrix is regular if and only for some v > 0 the system of equations

Y a(s.s)x(s) = vx(s), seS,

s'es

has no bounded solution other than {x(s) =0, s € S}. This characterization of regu-
larity may be difficult to apply in practical situations. A simple sufficient condition
ensuring regularity of a Markov chain is the existence of a uniform finite upper
bound on ¢(s). If such a bound exists, i.e., if a constant C exists such that for all
scsS

q(s) <C < oo,

then the Markov chain is said to be uniformizable and the forward and backward
equations have the same solution. Uniformizability can be too strong for practical
applications as it excludes, for example, the infinite-server queue (see Example ??).
More general sufficient conditions can be found in, e.g., [15, Section 4-3]. A detailed
discussion of regularity is beyond the scope of this monograph. The behaviour of
irregular Markov chains is, for example, discussed in [9, 10].

The following theorem summarizes the results on regularity and the forward and
backward equations stated above.

Theorem 1.1.2 ([2, Theorem I1.18.3]) For a conservative, regular, continuous-
time Markov chain the forward equations (1.11) and the backward equations (1.10)
have the same unique solution {P(s,s’;t), s,s' € S, t > 0}. Moreover, this unique
solution is the transition matrix of the Markov chain.

In particular, Theorem 1.1.2 states that either the forward or the backward equations
can be solved to find the transition matrix

P)=e2 =Y ) 5y

|
=0 n.

Usually the forward equations are easier to use in practical cases as they allow for
an interpretation using probability fluxes (see below).
For any initial distribution {p()(s), s € S} defined as

poy(s) =P{N(0)=s}, Y po(s)=1,

ses

the time-dependent distribution {p(s,t), s € S} defined as

p(s,t) =P{N(t)=s}, } p(s.1)=1,

ses
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can be obtained from the forward equations (1.11). Pre-multiplication of the forward
equations (1.11) with the initial distribution { p(o)(s), s € S} gives the following
version of the Kolmogorov forward equations for the time-dependent distribution,
fors’ €§,t>0,

WL _ {pls.ngls.s)) - plsals.5)},
s#s )

p(s,0) = p()(s).

From the interpretation of the transition rates obtained from (1.9), for s # ¢/,
the probability that the process jumps from s to s’ in the interval (¢,f+ h) is
p(s,1)q(s,s")h + o(h). Therefore, p(s,t)q(s,s’) may be called the probability flux
or probability flow from state s to state s’. The forward equations now express that
the rate of change of the probability mass of state §', %s;”), equals the net proba-
bility flux from S\ {s'} to s’. Thus the Kolmogorov forward equations express an
intuitively obvious relation for the time-dependent distribution. A similar straight-

forward interpretation of the backward equations is not available.

Remark 1.1.3 (Uniformization) The embedded Markov chain of {N(t), t € R} }
is the discrete-time Markov chain {Y (¢), # € Ny} at state space S with transition
probabilities p(s,s’) = ¢(s,s')/q(s), s,s’ € S, that follows the transitions of {N(r)}.
If g(s) = g for all s € S then {N(¢)} makes transitions at constant rate ¢ and the state
after k transitions is determined by the k-step transition probabilities of {Y (¢)}.

If {N(¢)} is uniformizable with supcgg(s) < C < o we may define the discrete-
time Markov chain {X(¢), r € Ny} at state space S with transition probabilities, for
s,s €8,

, q(s,s')/C, ifs' #s,
Puls:$) = { l—q(s/)/C, ifs' =s.

Note that p,(s,s’) = p(s,s')g(s)/C fors’ #s. Thus, {X ()} is an embedded Markov
chain with transitions occurring at the event times of a Poisson process with rate C.
In state s € S with probability 1 — ¢(s)/C the Markov chain makes a self-transition,
and with probability g(s)/C the Markov chain makes a transition to another state,
and this state is s’ with probability p(s,s').> Let P, = (p,(s,s'), s,s’ € S). Then for
alls,s' €Sandr>0

0o k
Py =Y
k=0 :

Uniformization transforms the continuous-time Markov chain {N(¢)} into the discrete-
time Markov chain {X(¢)}. Evaluation of P(¢) for fixed ¢ via (1.13) is efficient as
(P,,)k can be computed efficiently. Observe, however, that the sum must be evaluated

e (P (1.13)

3 Observe that for {X(r)} the exit-time from state s is &(s) = fol) Xk, where K(s) has a geo-
metric distribution with succes probability ¢(s)/C, and the X, k = 1,2,.. ., are i.i.d. exponentially
distributed with rate C. Hence & (s) has an exponential distribution with rate ¢(s).
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for each ¢ separately, so that uniformization does not provide an elegant construction
for P() for all ¢. See [4] for a survey on uniformization. O

The remaining part of this section considers the stationary or equilibrium be-
haviour of Markov chains. Throughout it will be assumed that the rate matrix satis-
fies (1.6), (1.7), is conservative and regular. Although these assumptions are not
necessary for a large part of the discussion below, the discussion particularizes
to conservative, regular Markov chains when the stationary distribution is related
to the invariant distribution (the equilibrium solution of the Kolmogorov forward
equations). When the assumptions are crucial to the theory they will be explicitly
repeated.

If P(r) = (p(s,s5t), s,s' €S) is a transition matrix then the following limit exists
foralls,s' € S

lim p(s,s';¢) = v(s,s).

t—ro0

The matrix T’ = (v(s,s'), s,8' € S) satisfies for all s,8' € S, s > 0,

v(s,s) = Y v(s,s")p(s"s':s)

s'"eS
=Y p(s.s"i5)v(s",s) = ) v(s,s")v(s",s).
s'"eS s''es

Furthermore, v(s,s’) > 0 for all s,s' € S, and if v(s,s) # 0 then Ygy50(s,8') =
1. Therefore, 1" characterizes the stationary behaviour, but cannot be immediately
associated with the stationary distribution. For 1" to be the stationary distribution
additional assumptions guaranteeing that v(s,s) 7 0 must be made.

A state s is absorbing if the process cannot leave state s, that is p(s,s;t) = 1 for
all # > 0. For a non-absorbing state s the recurrence-time €(s) is defined as

e(s)=inf{r: t > &(s), N(t) =sif N(0) =s},

where & (s) is the exit-time from state s. £(s) is the time it takes the process to return
to state s if it starts at s. A state s is called recurrent if recurrence to s is certain, i.e.,
if P{e(s) < oo} = 1. Otherwise it is transient. A recurrent state is positive-recurrent
if E{e(s)} < o, that is if the expected return-time to state s is finite. Otherwise it is
null-recurrent.

State s is reachable from state s’ if passage from s to s’ is possible, that is if
P(s,s';1) > 0 for some positive 7. Two states communicate if each one is reachable
from the other. A set V C S is closed if the process cannot leave V, so that ¢(s,s’) =0
forseV, s € S\V. AsetV C Sis irreducible if it is closed and all its states commu-
nicate. Two irreducible sets are disjoint, so the state space S can be decomposed into
disjoint irreducible sets Vi, V,,..., and a non-irreducible set W. For the equilibrium
behaviour of {N(¢)} the process may be analysed at each irreducible set separately.
Therefore, without loss of generality, for equilibrium analysis the Markov chain may
be assumed irreducible at S, that is S is an irreducible set. In this case all states s € S
are of the same type (transient, null-recurrent, positive-recurrent).



10 1 Preliminaries

A measure m = (m(s), s € S) such that 0 < m(s) < o for all s € S and m(s) > 0
for some s € S is called a stationary measure if for alls’ € S, ¢t > 0,

=Y m(s)P(s,ss1),

ses

and is called an invariant measure if for all s € S,

Y {m(s)q(s.s") —m(s')q(s';s)} = 0. (1.14)
s'#s

The relation between stationary and invariant measures is rather involved [10].
Based on regularity of the rate matrix a simple relation between these measures
can be obtained. If the Markov chain is irreducible and positive-recurrent at S then
there exists a unique (up to a multiplicative factor) stationary measure m which is
positive (m(s) > 0 for all s € S). From this result, for a regular and irreducible pure-
jump process, if a finite mass (Ygcgm(s) < o) invariant measure m exists then the
process is positive-recurrent and m is the unique stationary measure. In the litera-
ture, an irreducible positive-recurrent process with invariant measure having finite
mass is called ergodic.

Ergodicity is an important property of a process as it guarantees the existence
of a unique stationary distribution T, that is a stationary measure summing to
unity. Furthermore, if {N(¢)} is ergodic and 7 is the stationary distribution then
P(s,s';t) = w(s') (1 — o) for all 5,8’ € S, or equivalently, P(s',7) — 7(s') (f — o)
for all s’ € S for any initial distribution Pg). As a consequence 7 may be called equi-
librium distribution. Moreover, if {N(¢)} is ergodic then for any f : S — [0, ) such
that Y'scs f(S)(s) < eo, with probability 1

1 (T

lim = [ f(v(0)dr = E x(s
Jim ) SOV =B ()} = L x(s)s
In particular, for f(N(t)) = 1{N(¢) = s}, the indicator of the event {N(¢) =s}, i.e.,
1{A} = 1if A occurs and 0 otherwise,

T —roo

1 T
lim — [ 1{N(¢z) =s}dt = n(s).
T Jo

Thus 7(s) is the long-run fraction of time the process spends in state s. The result
may be extended to a function 4 : S x S — [0,e0) on the transitions of {N(¢)}. If
YssesT(s)q(s,s')h(s,s’) < oo, then with probability 1

hmfzh (%—1),N (%)) L(m € (0,T]) = Y 7(s)g h(s,s"), (1.15)

T=eT s,s’'es

where 0 =Ty < 7) < T» < - -- are the transition epochs of {N(z)}. Conditions for the
process to be ergodic can be found, for example, in [3, 5].
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The following theorem summarizes the relation between stationary, invariant and
equilibrium distributions, and is the basis for determining the stationary or equilib-
rium distribution.

Theorem 1.1.4 (Equilibrium distribution) Let {N(t), t > 0} be a conservative,
regular, irreducible continuous-time Markov chain.

(i) If a positive finite mass invariant measure m exists then the Markov chain is
positive-recurrent (ergodic). In this case T = (n(s), s € §) defined as w(s) =
m(s) [Lsesm(s)] ', s €S, is the unique stationary distribution and 7 is the
equilibrium distribution, i.e., for all s,s' € S,

. IO\ /
,IEE,P(S’S 3t) =m(s)),
independent of the initial distribution.
(ii) If a positive finite mass invariant measure does not exist then for all s,s' € S,
lim P(s,s’;t) = 0.
f—o0
The main result of Theorem 1.1.4 is that the stationary or equilibrium distribution
can be obtained as the unique probability solution to (1.14). The equations (1.14)
for m = x, the invariant distribution, can be obtained from the Kolmogorov forward
equations. To this end note that the transition matrix P(¢) is the unique solution
to (1.11). Furthermore, for a standard transition matrix w — 0 (t — oo) for
all s,s’ € S. Thus for t — o (1.11) reduces to (1.14). Similar to the interpretation
of (1.12), the equations (1.14) for m = 7 can be interpreted as balancing the flow of
probability mass on S. To this end 7(s) is interpreted as the probability mass at state s
and ¢(s,s’) as the conductance of the direct path from s to s’. Then 7(s)g(s,s’) is the
flow of probability mass from s to s’ and (1.14) states that the flow of probability
mass leaving s is balanced by the flow of probability mass entering s. Therefore,
(1.14) is usually referred to as global balance equations.

1.2 Three general solution concepts

This section introduces three approaches to obtain the stationary or equilibrium dis-
tribution that will form the basis for the analysis in Chapters ??, ??, and ??, respec-
tively: reversibility, partial balance, and Kelly’s lemma.

Assumption 1.2.1 Throughout this monograph, let {N(t), t > 0} be a conservative,
ergodic, continuous-time Markov chain with initial distribution P(s,0) = 7(s), s € S.
Let N be the random variable recording the state of {N(t), t > 0} in equilibrium
with distribution 7.

As is discussed in Section 1.1, under Assumption 1.2.1 the equilibrium distribution
or stationary distribution, & = (7(s), s € S), can be obtained as the unique solution
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to the global balance equations

Y {#(s)q(s,s) —m(s')q(s';s)} =0, seS, (1.16)
s'#£s

also called full balance equations or total balance equations as these equations ex-
press balance of the total probability flow in and out of each state s. Solving the
global balance equations is often very hard. Almost all solutions available in litera-
ture satisfy more stringent balance relations.

Note that under Assumption 1.2.1 the Markov chain {N(z), ¢ > 0} is stationary:

Theorem 1.2.2 [f Markov chain {N(t), t > 0} has initial distribution P(s,0) =
n(s), s € S, then {N(t), t > 0} is stationary and P(s,t) = 7(s), s € S, forall t > 0.

1.2.1 Reversibility

The most stringent balance relation is transition balance. A Markov chain satisfies
transition balance if for all s,s’ € S the transition rate from s to s’ equals the transi-
tion rate from s’ to s, that is for all s,s' € §

Q(Sv S/) = q(slv S)'

If a Markov chain satisfies transition balance then m(s) = 1 for all s € S satisfies the
global balance equations (1.16). The equilibrium distribution 7 exists only if S is
finite, in which case 7(s) = |S|~!, s € S, with |S| the cardinality of S.

A less restrictive form of balance often encountered in physical systems is de-
tailed balance [7, 8, 14]. A Markov chain satisfies detailed balance if a distribution
= (n(s), s €S) exists that satisfies the detailed balance equations (1.17), for all
s,s’ €8,

n(s)q(s,s') —m(s')g(s';s) = 0. (1.17)

Detailed balance is an important equilibrium concept. Summing (1.17) overalls’ € S
yields that a distribution 7 that satisfies the detailed balance equations is the sta-
tionary distribution. The detailed balance equations state that the probability flow
between each pair of states is balanced.

Detailed balance is related to reversibility. A stochastic process {N(f), —oo <
t < oo} is reversible if (N(t1),N(f2),...,N(t,)) has the same distribution as (N (7 —
1),N(tT—1),...,N(t—1t,)) forall n €N, t;,12,...,t, € R, 7 € R. If a stochastic
process is reversible and the direction of time is reversed, then the probabilistic be-
haviour of the process remains the same. The algebraic detailed balance property
and the probabilistic reversibility property are the basis for the analysis in Chap-
ter 2?.

Theorem 1.2.3 (Reversibility and detailed balance) Ler {N(¢), €T}, T =R, be
a stationary Markov chain with transition rates q(s,s'), s,s' € S. {N(t)} is reversible
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if and only if there exists a distribution T = (7n(s), s € S) that satisfies the detailed
balance equations. When there exists such a distribution T, then T is the equilibrium

distribution of {N(t)}.
Proof. See Chapter ??. O

1.2.2 Partial balance

Partial balance is less restrictive than detailed balance. Define for s € S a collection
of mutually exclusive sets {Ax(s), k € I(s)}, I(s) C N, such that U () Ax(s) = S.
A Markov chain is partially balanced over {A(s), k € I(s)} if a distribution & =
(n(s), s € S) exists such that for all s € S, k € I(s),

Y ){n(s)q(s,s’)—n(s’)q(s’,s)} =0. (1.18)

s/ €Ay (s

The following result follows by summation of (1.18) over k € I(s).

Theorem 1.2.4 (Partial balance) A distribution © = (n(s), s € S) satisfying the
partial balance equations (1.18) is a stationary distribution.

Chapter ?? explores partial balance as a means to obtain the equilibrium distribution
of Markov chains.

1.2.3 Kelly’s lemma

The transition rates of the time-reversed Markov chain are given in the following
theorem.

Theorem 1.2.5 Let {N(t), t € T}, T =R, be a stationary Markov chain with
transition rates q(s,s'), s,s' € S, and equilibrium distribution © = (7(s), s € S).
The time-reversed process {N(t —t), t € T} is a conservative, regular, irreducible
continuous-time stationary Markov chain with transition rates q'(s,s'), s,s' € S,
given by

758 =T gl

and the same equilibrium distribution T = (7(s), s € S).

Proof. See Chapter ??. (]

An important consequence of Theorem 1.2.5 is Kelly’s lemma that will be the
basis for the analysis in Chapter ??.
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Theorem 1.2.6 (Kelly’s lemma) Let {N(¢), t € T}, T =R, be a stationary Markov
chain with transition rates q(s,s'), s,s' € S. If we can find a collection of numbers
q'(s,s'), s,8' €S, such that

Y als.s) =) q'(s.s), seS,
s'#s s'#s

and a distribution T = (7(s), s € S) such that
n(s)q’(s,8") = n(s)q(s',s), s,;8'€S,

then q'(s,s'), s,8' € S, are the transition rates of the time-reversed Markov chain
{N(t—t),t €T} and m = (n(s), s € S), is the equilibrium distribution of both
Markov chains.

Proof. See Chapter ?? (|
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