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Addendum to 7.3.3:
Tutorial on Markov chains for introductory probability

This tutorial, especially written for first-year math students, contains additional
material to Section 7.3.3 in the book Operations Research, Introduction to Mod-
els and Methods by Boucherie et.al. This additional material is self-contained
and may be used independently of the material in Section 7.3.3. Therefore,
some of the definitions and results of Chapter 7 are repeated.

Introduction

A gem for teaching Markov chains to beginning students is the game of Egg
Russian Roulette. This game was played for several years in The Tonight Show
with Jimmy Fallon. In this show Jimmy plays the Egg Russian Roulette game
with a guest of the show. The guest was always a celebrity from sports or film:
Tom Cruise, Anna Kendrick, Jodie Foster, David Beckham, to name a few. The
guest and Jimmy take turns picking an egg from a carton and smashing it on
their heads. The carton contains a dozen eggs, four of which are raw and the
rest are boiled. Neither Jimmy nor the guest knows which eggs are raw and
which are boiled. The first person who has cracked two raw eggs on their head
loses the game.

The entertainment value of seeing famous people with raw yolk and albumin
running down their hair and faces made the game very popular. Incidentally,
the origin of the game has a rich history, dating back to the Middle Ages. In
the rural English hamlet of Swaton (184 inhabitants, currently), the throwing
of eggs started around 1322 when the new abbot of the town, who owned all of
the poultry, handed out eggs to loyal churchgoers as alms. Whenever the church
was cut-off from the rest of the hamlet by the sometimes overflowing local river,
the eggs were chucked to the churchgoers waiting on the other side of this
watercourse. Recently, this tradition has been slightly adapted and restored:
every year since 2006, this little village hosts a world championship of Russian
Egg Roulette, which attracts contestants from all over the world.

Let’s go back to Jimmy Fallon’s Tonight Show. In the show, the guest is the
first to choose an egg.

Questions: Do you think each player has the same probability of losing the
game? Does the guest of the show has an advantage because there are more
hard boiled eggs to select from at the start?

To answer these questions, the method of absorbing Markov chains will be used.
This method essentially boils down to the use of conditional probabilities and
matrix calculations.
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A Primer on Markov chains

Markov chains represent the most important stochastic process in probability.
This section gives a first impression of the fascinating world of Markov chains.
This branch of probability was founded by the Russian mathematician A.A.
Markov (1856–1922) at the beginning of the 20th century.1 Before Markov the
theory of probability involved observing a series of events that were independent
of each other. The classic examples are coin-flipping and dice-rolling. Markov
added the idea of interdependence to probability, the notion that what happens
next is linked to what is happening now. In his famous 1913 lecture for the
Imperial Academy of Sciences in St. Petersburg, Markov used this notion to
analyze the frequencies at which vowels and consonants occur in Pushkin’s novel
“Eugene Onegin.” Markov’s model is a very versatile probability model that
is used today in countless applications in many different areas, such as voice
recognition, DNA analysis, stock control, telecommunications and a host of
others. Markov chains are everywhere in science today.

A Markov chain can be seen as a dynamic stochastic process that randomly
moves from state to state with the property that only the current state is relevant
for the next state. In other words, the memory of the process goes back only to
the most recent state. A picturesque illustration of this would show the image of
a frog jumping from lily pad to lily pad with appropriate transition probabilities
that depend only on the position of the last lily pad visited. In order to plug
a specific problem into a Markov chain model, the state variable(s) should be
appropriately chosen in order to ensure the characteristic memoryless property
of the process. The basic steps of the modeling approach are:

• Choosing the state variable(s) such that the current state summarizes
everything about the past that is relevant to the future states.

• The specification of the one-step transition probabilities of moving from
state to state in a single step.

Using the concept of state and choosing the state in an appropriate way,
surprisingly many probability problems can be solved within the framework of
a Markov chain. The set of states is denoted by I and is assumed to be finite.
The one-step transition probabilities are denoted by:

pij = the probability of going from state i to state j in one step

1Markov lived through a period of great political activity in Russia and, having firm opin-
ions, he became heavily involved. Maksim Gorky, the Russian short-story writer, novelist and
left wing activist, was elected a member of the Russian Academy of Sciences in 1902, but
his election was soon withdrawn for political reasons on the Tsar’s orders. Markov protested
strongly and refused to accept honours awarded him on the following year. In June 1907
Tsar Nicholas dissolved the Second Duma which had been elected with majority on the left.
Markov repudiated his membership and might have expected to suffer severe consequences
but the authorities chose not to make an example of an elderly and distinguished mathemati-
cian. In 1913 the Romanov dynasty, which had been in power in Russia since 1613, celebrated
their 300 years of power. This was not likely to improve their already weak position. Markov
showed his disapproval of the celebration but holding celebrations of his own - he celebrated
200 years of the Law of Large Numbers!
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for i, j ∈ I. The one-step probabilities must satisfy

pij ≥ 0 for all i, j ∈ I and
∑
j∈I

pij = 1 for all i ∈ I.

It is convenient to summarize the one-step transition probabilities in a matrix
P having pij as its (i, j)th element.

In Markov chains a key role is played by the n-step transition probabilities.
For any n = 1, 2, . . ., these probabilities are defined as

p
(n)
ij = the probability of going from state i to state j in n steps

for all i, j ∈ I. Note that p
(1)
ij = pij . How to calculate the n-step transition

probabilities? It will be seen that they can be calculated by matrix products.
This key fact is based on the so-called Chapman–Kolmogorov equations

p
(n)
ij =

∑
k∈I

p
(n−1)
ik pkj for all i, j ∈ I and n = 2, 3, . . . .

This recurrence relation can be seen by noting that the probability of going
from state i to state j in n steps is obtained by summing the probabilities of
the mutually exclusive events of going from state i to some state k in the first
n− 1 steps and then going from state k to state j in the nth step.

An extremely useful observation is that the n-step transition probabilities

p
(n)
ij can be calculated by multiplying the matrix P of one-step transition prob-

abilities by itself n times. Let’s verify this for n = 2. Then,

p
(2)
ij =

∑
k∈I

pikpkj for all i, j ∈ I.

This is the definition for the elements of the matrix product P×P = P2. The
argument can be extended to conclude that for any n ≥ 1 and i, j ∈ I:

p
(n)
ij = the (i, j)th element of the n-fold matrix product Pn.

This is a very important conclusion: many computations for finite-state Markov
chains boils down to matrix calculations!

Absorbing Markov chains

Many applied probability problems can be analyzed by using an absorbing
Markov chain with an appropriate choice of the state variable(s). A Markov
chain is said to be absorbing if there are one or more states i with pii = 1 and
thus pij = 0 for j ̸= i. That is, once the process is in an absorbing state it
always stays there. We give two examples of absorbing Markov chains before
we apply this concept to solve the Egg Russian Roulette problem.

Example (Desperate Joe goes for roulette). An instructive example of
an absorbing Markov chain is the following random-walk type of problem. Joe
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Dalton desperately wants to raise his bankroll of $600 to $1,000 in order to pay
his debts before midnight; otherwise he will get into big trouble with a loan
shark. He enters a casino to play European roulette. He decides to bet on red
each time using bold play, that is, Joe bets either his entire bankroll or the
amount needed to reach the target bankroll, whichever is smaller. Thus the
stake is $200 if his bankroll is $200 or $800 and the stake is $400 if his bankroll
is $400 or $600. In European roulette a bet on red is won with probability 18

37
and is lost with probability 19

37 .

Question: What is the probability that Joe will reach his goal?

To solve Joe’s problem, take a Markov chain with six states i = 0, 1, . . . , 5,
where state i means that Joe’s bankroll is i × 200 dollars. The states 0 and 5
are absorbing and the game is over as soon one of these states is reached. Thus
p00 = p55 = 1. The other pij are easily found. For example, the only possible
one-step transitions from state i = 2 are to the states 0 and 4, because Joe bets
$400 in state 2. Thus p20 = 19

37 and p24 = 18
37 . The other pij are given in the

following matrix P of one-step transition probabilities:



from\to 0 1 2 3 4 5

0 1 0 0 0 0 0
1 19

37 0 18
37 0 0 0

2 19
37 0 0 0 18

37 0
3 0 19

37 0 0 0 18
37

4 0 0 0 19
37 0 18

37
5 0 0 0 0 0 1

.

For any starting state, the process will ultimately absorbed in either state 0
or state 5. The absorption probabilities can be obtained by calculating Pn for
n sufficiently large. Trying several values of n, it was found that n = 20 is large

enough to have convergence of all p
(n)
ij in four or more decimals:

P20 = P21 = . . . =


1 0 0 0 0 0
0.8141 0 0 0. 0 0.1859
0.6180 0 0 0 0 0.3820
0.4181 0 0 0 0 0.5819
0.2147 0 0 0 0 0.7853
0 0 0 0 0 1

 .

You read off from row 4 that the probability of Joe reaching his goal when
starting with $600 is equal to

p
(20)
35 = p

(21)
35 = . . . = 0.5819.

This probability is the maximum probability for Joe of reaching the goal of get-
ting $1000. The intuitive explanation that bold play is optimal in Joe’s situation
is that the shorter Joe exposes his bankroll to the casino’s house advantage, the
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better it is (e.g., if Joe bets $50 each time, he reaches his goal with probability
0.4687, and with probability 0.2917 if each bet is for $20).

Alternatively, the win probability 0.5819 can be calculated by solving four
linear equations. To do so, define fi as the probability of ever getting absorbed
in state 5 when the starting state is i. By definition, f0 = 0 and f5 = 1. By
conditioning on the next state after state i and using the law of conditional
probability, you get the four linear equations

f1 =
19

37
× 0 +

18

37
f2, f2 =

19

37
× 0 +

18

37
f4,

f3 =
19

37
f1 +

18

37
× 1, f4 =

19

37
f3 +

18

37
× 1.

The solution of these equations is f1 = 0.1859, f2 = 0.3820, f3 = 0.5819, and
f4 = 0.7853. The same solution as found by matrix multiplication.

A similar set of linear equations can be used to calculate E(N), where the
random variable N is the number of bets made by Joe. To do so, parametrize
again and define ei as the expected value of the number of bets when the starting
state is i. By definition, e0 = e5 = 0. By conditioning on the next state after
state i and using the law of conditional expectation, you get

e1 = 1 +
19

37
× e0 +

18

37
× e2, e2 = 1 +

19

37
× e0 +

18

37
× e4,

e3 = 1 +
19

37
× e1 +

18

37
× e5, e4 = 1 +

19

37
× e3 +

18

37
× e5.

The solution of these linear equations is e1 = 1.9675, e2 = 1.9887, e3 = 2.0323,
and e4 = 2.0103. Thus E(N) = 2.0323.

Another nice example of an absorbing Markov chain is provided by the
episode Glass Stepping Stones in the 2021 Netflix series of Squid Game.

Example (The deadly glass bridge game). The squid game is one of the
most watched series in Netflix. In an insanely sadistic rat race − based on old-
fashioned children’s games − a few hundred downtrodden people are given the
chance to still make something of their lives. The blood-curdling episode glass
stepping stones’ of the originally Korean series is about 16 players crossing a
floating bridge of 18 steps, see www.youtube.com/watch?v=IZXBEgTrJrU. For
each step, the player has a choice to pick the left pane or the right pane. One
of these two panes is of tempered glass, capable of supporting the weight of
a person, and the other of normal glass, which breaks when stepped on. It
is impossible to see the difference between the panes of tempered glass and
normal glass, which are randomly assigned to the steps. Sixteen players will try
to cross the bridge one after the other, choosing one of the two panes at each
step. The bad news is that if a player jumps onto a panel with normal glass,
the glass breaks and the player tumbles down, resulting in death. The good
news is that the sacrifice was not in vain, because the broken panel gives all
remaining players valuable information about what the right path to safety is.
Furthermore, it is assumed that each player also knows the safe panels chosen
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by previous players. In sequence, each player attempts to cross the bridge and
keeps moving until the player has either successfully crossed all 18 steps on the
bridge or has tumbled down in between.

Question: What is the expected number of survivors, what is the probability
of survival for each player, and what is the probability distribution of the number
of survivors?

To answer these questions, consider an absorbing Markov with 20 states i =
0, 1, . . . , 18, 19. State i with 1 ≤ i ≤ 18 means that the game has moved forward
to step i where a player jumped on normal glass and was eliminated, state
19 means that a player has safely reached the final step 18, and state 0 is an
auxiliary state corresponding to the beginning of the game. State 19 is the
absorbing state of the Markov chain, that is, p19,19 = 1. For i = 0, 1, . . . , 18,
the one-step transition probabilities are

pij =
(1
2

)j−i

for j = i+ 1, .., 18 and pi,19 =
(1
2

)18−i

.

The other pij are 0. You calculate the matrix products Pk for k = 1, . . . , 16.
Let ak be the probability that player k survives and dk be the probability that
exactly k players survive for k = 0, 1, . . . , 16. Then

ak = p
(k)
0,19 for k = 1, 2, . . . , 16,

and so ak is given by the (0, 19)th element of Pk. The dj ’s can next be calculated
from

d16−k+1 = ak − ak−1 for k = 1, 2, . . . , 16,

where a0 = 0. The explanation is that ak also gives the probability that 16−k+1
or more players survive, because each player knows what panes were chosen by
the previous players and so, if player k crosses safely the bridge, any player
behind player k crosses safely the bridge. Thus the probability that the total
number of survivors is exactly equal to 16 − k + 1 is obtained by subtracting
the probability ak−1 from the probability ak. Of course, the probability d0 is
1−

∑16
k=1 dk. The expected value of the number of survivors can be calculated

as
∑16

k=1 k dk. The matrix calculations lead to

a1 = 0.000, a2 = 0.000, a3 = 0.001, a4 = 0.004, a5 = 0.015, a6 = 0.048,

a7 = 0.119, a8 = 0.240, a9 = 0.407, a10 = 0.593, a11 = 0.760,

a12 = 0.881, a13 = 0.952, a14 = 0.985, a15 = 0.996, a16 = 0.999.

The expected value of the number of survivors is 7.000076, a value very close
to 7 (in the Netflix episode the actual number of survivors was 3, a remarkably
small number of survivors in the light of d0 + d1 + d2 + d3 = 0.047). The
value 7 is obtained by the following heuristic argument: if the number of steps
is large enough, the number of panes unlocked’ by a player is approximately
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geometrically distributed with parameter 1
2 and expected value 2, and this makes

it plausible that on average about 9 players have to be sacrificed in order for
the remaining 16− 9 = 7 players to cross the bridge safely.2

Markov chain analysis for Egg Russian Roulette

An absorbing Markov chain is used to analyze the game of Egg Russian Roulette.
The state of the Markov chain is described by the triple (i, r1, r2), where i
denotes the number of smashed eggs, r1 is the number of raw eggs picked by
the guest and r2 is the number of raw eggs picked by the host of the game. The
states satisfy 0 ≤ i ≤ 11 and r1 + r2 ≤ 3. The process starts in state (0, 0, 0)
and ends when one of the absorbing states (i, 2, 0), (i, 2, 1), (i, 0, 2), or (i, 1, 2) is
reached. The guest loses the game if the game ends in a state (i, 2, 0) or (i, 2, 1)
with i odd. In a non-absorbing state (i, r1, r2) with i even, the guest picks an
egg and the process goes either to state (i+1, r1+1, r2) with probability 4−r1−r2

12−i

or to state (i+ 1, r1, r2) with probability 1− 4−r1−r2
12−i . In a non-absorbing state

(i, r1, r2) with i odd, the host picks an egg and the process goes either to state
(i+1, r1, r2+1) with probability 4−r1−r2

12−i or to state (i+1, r1, r2) with probability

1 − 4−r1−r2
12−i . This sets the matrix P of one-step transition probabilities. The

probability that the guest will lose can be computed by calculating P11. This
requires that the states are ordered in a one-dimensional array. It is easier to
use a recursion to calculate the probability of the guest losing the game. For
that, you reason in the same way as in the above gambling problem. For any
state (i, r1, r2), let p(i, r1, r2) be the probability that the guest will lose if the
process starts in state (i, r1, r2). The sought probability p(0, 0, 0). The sought
probability can be calculated by a recursion with the boundary conditions can be
calculated by a recursion with the boundary conditions p(i, 2, 0) = p(i, 2, 1) = 1
and p(i + 1, 0, 2) = p(i + 1, 1, 2) = 0 for i = 3, 5, 7, 9 and 11. The recursive
calculations are

p(i, r1, r2)=
4−r1−r2
12− i

p(i+ 1, r1 + 1, r2) +
(
1− 4−r1−r2

12− i

)
p(i+ 1, r1, r2)

for i = 0, 2, 4, 6, 8 and 10, and

p(i, r1, r2)=
4−r1−r2
12− i

p(i+ 1, r1, r2 + 1) +
(
1− 4−r1−r2

12− i

)
p(i+ 1, r1, r2)

for i = 1, 3, 5, 7, 9 and 11. The recursive computations lead to the value 5
9 for the

probability that the guest of the show will lose the game. Interestingly enough,
the game turns out to be fair for the case of three raw eggs and nine boiled
eggs. For the case of five raw eggs and seven boiled eggs, the guest will lose with

2A true slaughter of the players would have been the case if the players could only have seen
the broken panels and had no further information. This problem can be solved by dynamic
programming by defining the value function pm(k) as the probability that the mth person
sees k broken panels and formulating a recurrence equation for pm(k). The probability that
the mth person will survive is

∑18
k=0 pm(k)0.518−k. The probability that there will be exactly

j survivors is p17(16− j).
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probability 0.563. Similar recursive computations give that the expected number
of trials has the values 8.41, 6.86 and 5.73 for the respective cases of three, four
and five raw eggs. All of these results might also be verified by computer
simulation – a Python program is easily written. In fact, simulations of the
problem are provided by the videos online of episodes of Egg Russian Roulette
in The Tonight Show by Jimmy Fallon, with Higgins as unsurpassed sidekick
with his characteristically shrill voice, reminiscent of the character Igor from the
parody movie Young Frankenstein. In the 18 episodes I found on Internet the
guest lost 9 times the game. Remarkably, the experimental probability of 50%
resulting from this very small sample size is not far away from the theoretical
probability of 55.6%.


