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Addendum to 5.8.4:
Kelly System for Investing and Kuhn-Tucker Conditions

In this addendum to Section 5.8.4 of the book Operations Research, Introduction
to Models and Methods by Boucherie et.al, an algorithm is derived for the Kelly
system for gambling and investing with multiple betting/investment objects.1

To do so, we first give an elementary discussion of the Kuhn-Tucker conditions
for nonlinear optimization problems.

Kuhn-Tucker conditions for nonlinear programming

The most general form of a nonlinear programming problem is

max f(x)

subject to gi(x) ≤ bi for i = 1, 2, . . . ,m,

where x = (x1, . . . , xn) ∈ Rn represents the (decision) variables, m is the number
of constraints for the variables and the bi are given constants. The set of feasible
solutions is defined by

D = {x ∈ Rn : gi(x) ≤ bi for i = 1, 2, . . . ,m}.

It is noted that the set D is convex if the gi(x)’s are convex functions.2 A
feasible solution x∗ ∈ D is said to be an optimal solution (global optimum) for
the nonlinear programming problem if f(x∗) ≥ f(x) for all x ∈ D.

For any λ = (λ1, . . . , λm) ∈ Rm, define the Lagrange function

L(x, λ) = f(x)−
m∑
i=1

λi(gi(x)− bi).

A very useful result is:

Theorem 1. Suppose that x∗ and λ∗ satisfy

(i) gi(x
∗) ≤ bi for i = 1, 2, . . . ,m

(ii) L(x∗, λ∗) ≥ L(x, λ∗) for all x ∈ Rn

(iii) λ∗i ≥ 0 for i = 1, 2, . . . ,m

(iv) λ∗i {gi(x∗)− bi} = 0 for i = 1, . . . ,m.

Then x∗ is an optimal solution for the nonlinear programming problem.

1The Kelly system is named after the physicist John Kelly Jr. Working at Bell Labs, he
published in 1956 a paper titled A New Interpretation of Information Rate in the Bell System
Technical Journal. Virtually no one took much note of the article when it first appeared.
Nowadays it is widely used in gambling and investing. In the paper Kelly posited a scenario
in which a horse-race better has an edge: a ‘private wire’ of somewhat reliable, but not
perfect tips from inside information. How should he bet? Wager too little, and the advantage
is squandered. Too much, and ruin beckons. The Kelly bet size is found by maximizing the
expected value of the logarithm of wealth, which is equivalent to maximizing the expected
geometric growth rate. In the context of the St. Petersburg paradox, it was already suggested
by Daniel Bernoulli in 1738 that a gambler should not maximize expected return but rather
logarithmic utility.

2A nice treatment of convexity and concavity of functions of several variables can be found
in https://mjo.osborne.economics.utoronto.ca/index.php/tutorial/index/1/cvn/t
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Proof. The proof is simple. The first condition says that x∗ is a feasible
solution. Take any other feasible solution x. Then.

f(x∗)
(iv)
= f(x∗)−

m∑
i=1

λ∗i

(
gi(x

∗)− bi
) (ii)

≥ f(x)−
m∑
i=1

λ∗i

(
gi(x)− bi

) (iii)

≥ f(x).

The last inequality also uses that gi(x)− bi ≤ 0 for all i.

The λi are called the Lagrange multipliers and condition (iv) is called the
complementary slackness condition. In fact, Theorem 1 suggests a relaxation
approach in which you try to solve the difficult nonlinear programming problem
by solving the unconstrained optimization problem max {L(x, λ) : x ∈ Rn} for
given non-negative values of the Lagrange multipliers, where you try to choose
λ in such way the corresponding optimal solution x∗ satisfies the conditions (i)
and (iv) in Theorem 1. However, this very computationally intensive approach
is not practically useful for most problems.

Suppose now that the function f(x) is differentiable and concave, and the
functions gi(x) for i = 1, . . . ,m are differentiable and convex. Then, the set
of feasible solutions is a convex set and for any given non-negative Lagrange
multipliers λi, the Lagrange function L(x, λ) is concave as function of x (verify!).
In this case condition (ii) is equivalent with

∇xL(x∗, λ) = 0.

As consequence of Theorem 1, we now obtain the following important main
theorem in nonlinear programming:

Theorem 2. Suppose that the function f(x) is differentiable and concave on
the set of feasible solutions, and the functions gi(x) are differentiable and convex
for i = 1, . . . ,m. If x∗ and λ∗ satisfy

(i) gi(x
∗) ≤ bi for i = 1, 2, . . . ,m

(ii)
∂f(x∗)

∂xj
−

m∑
i=1

λ∗i
∂gi(x

∗)

∂xj
= 0 for j = 1, . . . , n

(iii) λ∗i ≥ 0 for i = 1, 2, . . . ,m

(iv) λ∗i {gi(x∗)− bi} = 0 for i = 1, . . . ,m.

Then x∗ is an optimal solution for the nonlinear programming problem.

The four conditions in Theorem 2 are called Kuhn-Tucker conditions. These
conditions generalize the optimality conditions for linear programming, where
the λi’s play the role of the dual variables.

Special case of linear equality constraints. We now consider an optimiza-
tion problem with a nonlinear criterion function, linear equality constraints and
non-negativity constraints for the variables:
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max f(x1, . . . , xn)

subject to

n∑
j=1

aijxj = bi for i = 1, 2 . . . ,m,

xj ≥ 0 for j = 1, . . . , n

The following Kuhn-Tucker conditions then apply:

Theorem 3. Suppose the function f(x1, . . . , xn) is concave on the convex set
of feasible solutions. A feasible solution x∗ = (x∗1, . . . , x

∗
n) is an optimal solution

for the above optimization problem if multipliers λ∗1, . . . , λ
∗
m ∈ R exist such that

∂f(x∗)

∂xj
−

m∑
i=1

λ∗i aij ≤ 0 for j = 1, . . . , n

x∗j

[∂f(x∗)

∂xj
−

m∑
i=1

λ∗i aij

]
= 0 for j = 1, . . . , n

n∑
j=1

aijx
∗
j = bi for i = 1, . . . ,m

x∗j ≥ 0 for j = 1, . . . , n.

It is not difficult to derive Theorem 3 from Theorem 2 by considering each non-
negativity requirement xj ≥ 0 as an inequality gm+j(x) ≤ 0 with gm+j(x) =
−xj , and replacing each linear equality

∑n
j=1 aijxj = bi by the two inequalities∑n

j=1 aijxj ≤ bi and
∑n

j=1−aijxj ≤ −bi. The details of the derivation are left
to the reader. In the next section we will use Theorem 3 to analyze the Kelly
betting system.

Remark. The Kuhn-Tucker conditions are the very foundation for several
computational methods for solving nonlinear programming problems, such as
the quadratic programming problem with a quadratic criterion function and
linear constraints. The Kuhn-Tucker conditions for quadratic programming
problems have a simple form that can make solutions considerably easier to
obtain than for general linear programming problems. Choosing an algorithm
for a nonlinear programming problem is often difficult because no one algorithm
can be expected to work for every kind of nonlinear programming problems.
Software platforms as AIMMS, AMPL, GAMS, Python and R include a number
of optimizers for nonlinear programming problems with the hope that one of
these methods will suffice for the given problem. It should be pointed out that
in many problems it is difficult to determine whether the objective function is
concave in the feasible region and hence it is difficult to guarantee convergence
to a global optimum.

The Kelly betting system

In investment situations and in sport events such as soccer matches and horse
races multiple investments or bets can be simultaneously done. Imagine that
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opportunities to bet or invest arise at successive times t = 1, 2, . . .. There are n
betting objects j = 1, . . . , n, where n ≥ 2. You can simultaneously bet on one
or more of these objects.

Assumption: (a). At any betting opportunity, only one betting object can be
successful (e.g. in a horse race only one horse can win), where object j will be
successful with a given probability pj and non-successful with probability 1− pj,
independently of what happened at earlier betting opportunities. Hereby

0 < pj < 1 for all j and

n∑
j=1

pj = 1.

(b). At any betting opportunity, a stake on each non-successful object j is lost,
while fj > 0 dollars are added to your bankroll for every dollar staked on the
successful object j. The payoffs fj are such that pjfj > 1 for at least one object
j and

∑n
j=1 1/fj ≥ 1.

The probabilities pj are typically subjective probabilities being different for
each person. For example, in horse racing you can imagine that your personal
estimates of the win probability of the horses are different from the bookmaker’s
estimates. In the Assumption, the requirement

∑n
j=1 pj = 1 can be relaxed to∑n

j=1 pj ≤ 1 (introduce then an auxiliary investment object n + 1 with fn+1

very close to 0 and pn+1 = 1−
∑n

i=1 pi).
You start with a certain capital. At any investment opportunity, you can

invest any amount up to the size of your current capital, where earlier profits
can be reinvested.

Question: How to (re)invest each time your current capital in order to maxi-
mize the growth rate of your capital in the long run?

It makes no sense to invest each time your whole capital in the object j with
the largest value of pjfj . It is true that this maximizes the expected reward, but
the law of large numbers tells you that you will go broke at a certain moment
when you invest many times your whole capital in that object. The simple
but powerful idea of Kelly is to invest each time a same fixed proportion of
your current capital if you want to maximize the long-run growth rate of your
capital. A Kelly strategy is characterized by parameters α1, . . . , αn with αi ≥ 0
for i = 1, . . . , n and

∑n
i=1 αi ≤ 1. Under this strategy you invest each time the

same fraction αi of your current capital in object i, while you keep in reserve a
fraction

β = 1−
n∑

i=1

αi

of your current capital.
For a given Kelly strategy (α1, . . . , αn), we first determine the long-run

growth rate of your capital. Next we use the Kuhn-Tucker condition from
Theorem 3 to find the values of α1, . . . , αn for which the long-run growth rate
of your capital is maximum.
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Derivation of the growth rate. Let V0 be your initial capital. Define the
random variable Vn as

Vm = the size of your capital after m investment periods.

Then, letting the random variable Rki be equal to fi if in the kth investment
period the investment in object i is successful and be 0 otherwise,

Vm =
(
β +

n∑
i=1

αiR1i

)
× . . .×

(
β +

n∑
i=1

αiRmi

)
V0 for m = 1, 2, . . . .

The growth factor Gm is defined by

Gm =
1

m
ln
(Vm
V0

)
for m = 1, 2, . . . .

Then,

Gm =
1

m

[
ln
(
β +

n∑
i=1

αiR1i

)
+ . . .+ ln

(
β +

n∑
i=1

αiRmi

)]
.

For any fixed i, the random variables Rki for k = 1, 2, . . . are independent and
identically distributed. By the law of large numbers,

lim
m→∞

Gm = E
[

ln
(
β +

n∑
i=1

αiRi

)]
with probability 1,

where random vector (R1, . . . , Rn) has the joint distribution

P (Ri = fi, Rj = 0 for j 6= i) = pi for i = 1, . . . , n.

Thus

lim
m→∞

Gm =

n∑
i=1

pi[ln(β + fiαi)] with probability 1.

This formula gives the asymptotic growth factor of your capital when each time
you invest the same fixed fraction αi of your current capital in object i for
i = 1, . . . , n.

Kuhn-Tucker analysis for the optimal Kelly strategy. The goal is to
find the values for the αi’s such that the long-run growth rate of your capital is
maximum. Therefore you must solve the optimization problem

Maximize f(β, α1, . . . , αn) =
∑n

i=1 pi ln(β + fiαi)

subject to β +

n∑
i=1

αi = 1

β, α1, . . . , αn ≥ 0.
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The criterion function f(β, α1, . . . , αn) is concave on the convex set of feasible
solutions.3 By the Kuhn-Tucker conditions in Theorem 3, β, α1, . . . , αn ≥ 0 are
optimal values for the optimization problem if for some real number λ,

pifi
β + fiαi

− λ ≤ 0 for i = 1, . . . , n, (5.1)

n∑
i=1

pi
β + fiαi

− λ ≤ 0, (5.2)

αi

[ pifi
β + fiαi

− λ
]

= 0 for i = 1, . . . , n, (5.3)

β
[ n∑
i=1

pi
β + fiαi

− λ
]

= 0, (5.4)

β +

n∑
i=1

αi = 1. (5.5)

Observe that (5.1) and (5.3) give

pifi
β
− λ ≤ 0 if αi = 0 and

pifi
β + fiαi

− λ = 0 if αi > 0.

In view of pj < 1 for all j, is reasonable to expect that β > 0 in the optimal
solution. Let us take this for granted for the moment and check it later. Then,
condition (5.4) reduces to

n∑
i=1

pi
β + fiαi

= λ, (5.6)

and so condition (5.2) also holds. Let the set V be defined by

V = {i | αi > 0}.

Using the above observations, the above Kuhn-Tucker conditions can now be
rewritten as

pifi
β + fiαi

= λ for i ∈ V (5.7)

pifi
β

≤ λ for i 6∈ V (5.8)

n∑
i=1

pi
β + fiαi

= λ (5.9)

β +

n∑
i=1

αi = 1. (5.10)

3Letting f(x, y) = ln(x + cy) for variables x, y > 0 and constant c > 0, it follows that
∂2f
∂x2

∂2f
∂y2 − ( ∂2f

∂x∂y
)2 = 0 and ∂2f

∂x2 < 0, and so f(x, y) is concave in the two variables x, y >

0. Using this result and the basic definition of concavity, it is now readily verified that∑n
i=1 pi ln(β + fiαi) is concave on the convex set of feasible solutions.
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The next step is to solve β, the αi’s and λ from this system of conditions.
Equation (5.7) can be rewritten as

αi =
pi
λ
− β

fi
for i ∈ V. (5.11)

Note λ 6= 0 under condition (5.9). By the definition of V , condition (5.10) can
be written as

∑
i∈V αi = 1− β. Substituting (5.11) in this equality, we get

β =
1−

∑
i∈V pi/λ

1−
∑

i∈V 1/fi
. (5.12)

Next we verify that λ = 1. Replacing
∑

i∈V pi by 1 −
∑

i/∈V pi, we can rewrite
(5.12) as ∑

i 6∈V

pi = 1− λ+ λβ
(

1−
∑
i∈V

1/fi

)
.

Using this equality and splitting
∑n

i=1 into
∑

i∈V and
∑

i/∈V in (5.9), equation
(5.9) can be rewritten as∑

i∈V

pi
β + fiαi

+
1− λ
β

= λ
∑
i∈V

1/fi.

Substituting (5.7) in this equation gives,∑
i∈V

λ

fi
+

1− λ
β

= λ
∑
i∈V

1

fi
.

showing that under the conditions (5.7)−(5.10),

λ = 1.

Summarizing, we must find non-negative α1, . . . , αn and V = {i | αi > 0} such
that

(a)
∑

i∈V 1/fi < 1

(b) pifi > β for i ∈ V and pifi ≤ β for i /∈ V .

(c) β = 1−
∑

v∈V αv > 0.

Then the Kuhn-Tucker conditions (5.7)−(5.10) with λ = 1 are satisfied. Note
that the second part of (b) is condition (5.8).

In order to satisfy (a)−(c), it is no restriction to assume that the investment
objects are (re)numbered such that

p1f1 ≥ p2f2 ≥ . . . ≥ pnfn.

This ordering implies the following result for the algorithm for computing the
optimal solution:

pjfj ≤ B(s) for all j ≥ s+ 1 if ps+1fs+1 ≤ B(s),
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where B(k) is defined by

B(k) =
1−

∑k
j=1 pj

1−
∑k

j=1 1/fj
for k = 1, . . . , n.

This leads to the following algorithm.

Algorithm

Step 0. Arrange that p1f1 ≥ p2f2 ≥ . . . ≥ pnfn.
Step 1. Determine r as the largest integer k for which

∑k
j=1 1/fj < 1.4

Step 2. Calculate B(k) over the indexes k = 1, . . . , r. Stop at the first index k
for which pk+1fk+1 ≤ B(k) (and then pjfj ≤ B(k) for all j > k). Let s be this
index and let β = B(s).

Step 3. Set αi = pi − β/fi for i = 1, . . . , s and αi = 0 for i > s.

It is now easily seen that the algorithm satisfies the conditions (a)−(c). Con-
dition (c) is satisfied: B(s) > 0, by s ≤ r < n, and so αi < pi for all i, which
implies that

∑
i∈V αi <

∑n
i=1 pi = 1. Thus the algorithm produces the optimal

values for the αi’s.
5

Next we give two numerical examples to illustrate the algorithm.

Numerical examples. The Kelly strategy has been developed for situations
in which many betting opportunities repeat themselves under identical condi-
tions. However, the Kelly strategy provides also a useful heuristic guideline for
situations with only one opportunity to bet.

Example 1 (Soccer). Suppose that the soccer club Manchester United is
hosting a match against Liverpool, and that a bookmaker is paying out 4.5
times the stake if Liverpool wins, 4.5 times the stake if the match ends in
a draw, and 1.75 times the stake if Manchester United wins. You estimate
Liverpool’s chance of winning at 25%, the chance of the game ending in a draw
at 25%, and the chance of Manchester winning at 50%. If you are prepared to
bet 100 pounds, how should you bet on this match? The Kelly betting model
with n = 3 betting objects applies, where

p1 = 0.25 (win for Liverpool), p2 = 0.25 (draw), p3 = 0.50 (win for United)

f1 = f2 = 4.5 and f3 = 1.75.

Since p1f1 = p2f2 = 1.125 and p3f3 = 0.875, the condition p1f1 ≥ p2f2 ≥ p3f3
is satisfied. The algorithm goes as follows:

4Note that r < n, by the second part of Assumption 2.
5In the analysis we have assumed that n ≥ 2. For the case of a single investment/betting

object (n = 1) with win probability p and payment factor f such that 0 < p < 1 and pf > 1,
the algorithm boils down to the optimal Kelly betting fraction α = (pf − 1)/(f − 1). This
betting fraction satisfies 0 < α < 1.
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Step 1. Since 1/f1 = 10
45 , 1/f1 + 1/f2 = 20

45 and 1/f1 + 1/f2 + 1/f3 > 1, the
index r = 2.

Step 2. B(1) = 27
28 , B(2) = 9

10 and p2f2 = 1.125 > B(1). This gives s = 2
with β = B(s) = 0.9.

Step 3. α1 = α2 = 0.25− 0.9
4.5 = 0.05 and α3 = 0.

Thus the Kelly strategy proposes that you stake 5% of your bankroll of 100
pounds on a win for Liverpool, 5% on a draw, and 0% on a win for Manchester
United. For this strategy, the subjective expected value of your bankroll after
the match is equal to 100− 10 + 0.25× 4.5× 5 + 0.25× 4.5× 5 = 101.25 pounds.
The expected percentage increase of your bankroll is 1.25%. It is interesting to
note that the two concurrent bets on the soccer match act as a partial hedge
for each other, reducing the overall level of risk.6

Example 2 (Horse race). In a horse race there are seven horses A, B, C ,
D , E, F and G with respective win probabilities 40%, 25%, 20%, 7%, 4%, 3%
and 1% and payoff odds 1.625:1, 2.9:1, 4.5:1, 9:1, 14:1. 17:1 and 49:1. Payoff
odds a:1 means that in case of a win you will receive your stake plus a pounds
for each pound staked. Numbering the horses A, B, C, D, E, F , and G as 1
(= C), 2 (= A), 3 (= B), 4 (= D), 5 (= E), 6 (= F ), and 7 (= G), the Kelly
model applies with

p1 = 0.2, p2 = 0.4, p3 = 0.25, p4 = 0.07, p5 = 0.04, p6 = 0.03, p7 = 0.01,

f1 = 5.5, f2 = 2.625, f3 = 3.9, f4 = 10, f5 = 15, f6 = 18, f7 = 50

satisfying the condition of decreasing values of the pifi’s:

p1f1 = 1.1, p2f2 = 1.05, p3f3 = 0.975, p4f4 = 0.7,

p5f5 = 0.6, p6f6 = 0.54, p7f7 = 0.50.

The algorithm goes as follows:

Step 1. The index r = 5 is the largest value of k for which
∑k

j=1 1/fj < 1.

Step 2. B(1) = 0.97778, B(2) = 0.91485, B(3) = 0.82956, B(4) = 0.98986 and
B(5) = 2.82635. Also, p2f2 > B(1), p3f3 > B(2), but p4f4 ≤ B(3). This gives
s = 3 with β = B(s) = 0.82956.

Step 3. α1 = 0.0492, α2 = 0.0840, α3 = 0.0373, and αj = 0 for j > 3.

Thus you bet 8.4% of your bankroll on horse A, 3.7% on horse B, 4.9% on
horse C and nothing on the other horses. It is noteworthy that horse B is
included in your bet, even though a bet on horse B alone is not favorable
(p3f3 < 1). The expected value of the percentage increase in your bankroll is

100×
∑3

j=1(pifiαi − αi) = 4.6%.

6An interesting project would be to derive an algorithm for the case of simultaneous betting
options, where the outcomes of the bets are independent of each other and thus more than one
bet can be successful at the same time. Think of betting on a number of soccer matches that
are played at the same time. How should a gambler allocate the stakes when the Kelly criterion
of maximizing log-utility is used? This question is addressed in C. Whitrow. Algorithms for
Optimal Location of Bets on Many Simultaneous Events, Journal of the Statistical Royal
Society Series C, Vol. 66, No 5 (2007), pp. 607-623.


