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WinZip and LZ77 o ) )
— WinZip is based on LZ77, a universal lossless compression
i method proposed by Lempel & Ziv [1977].
Compression is achieved by replacing repeated segments
in the data by I. a pointer and Il. the copy-length. To
avoid deadlock Ill. the first non-matching symbol is
added to each pointer-length pair.

EXAMPLE LZ77:

search buffer | look-ahead buffer output
abracadablra-

l (

[ albracadabr]a- (
[ ablracadabral- (
[ abrlacadabra ] (3.1,¢)
l (
l (
l

abracladabra- ]
abracadlabra- ]
abracadabra- ]

QUESTION: Why does LZ77 work? Note that the statistics of the data are unknown!
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Motivation

Definition

Let ---, X1, X0, X1, X2, -+ be the output of a binary stationary source. Then the entropy rate
H.(X) of the source is defined as

1
H(X) 2 lim NH(X:[,XQ,"‘ ,Xn).  code-bits / source-digit

N—o00

m We will show that a simple algorithm achieves rates Ry = E[L(X™)/N approaching the
source’s entropy rate Ho.(X) for N — oo.
Here L(z") is the length of the codeword for 2V € {0, 1}.

m The algorithm is universal. Knowledge of the source statistic is not needed.

m The algorithm that we propose here explains why LZ77 works.
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Waiting Times
m Consider the discrete stationary process
T 7X—3aX—27X—1aX07X17X2; X?n .

m Suppose that X; = z for symbol-value z € X with Pr{X; = z} > 0. We say that the waiting
time of the = that occurred at timet=1ism if Xy_,, =xand Xy Zxfort=2—m,---,0.

/ m =4
| X5 | Xo | X | X0 ‘ X | Xo |
=z #x #zx Fzx ==z

m Let .. (m) be the conditional probability that the waiting time of the x occurring at ¢t = 1 is
m, hence

Q. (m) 2 Pr{Xi—m=a,Xo_p #z, -, Xo # 2| X5 =2}
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Waiting Times

Then the average waiting time for symbol-value = with Pr{X; = x} > 0 is defined as

T)2 S mQu(m).

m=1,2,---
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Kac’s Result

Theorem (Kac, 1947)

For stationary and ergodic processes

for any x with Pr{X; =z} > 0.

In an ergodic process time averages are equal to ensemble averages.

1

T(@) = Pr{X; =z}’

(1)
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Kac’s Result

Consider a binary 11D process and assume that Pr{X; =0} = p > 0. Then

Qo(m) = p(l—p)m*1 and
T(0) = mp(1 —p)" "
m=1,2,.-
d
dp m=1,2,--- ( )
_ 4 -(-p _ 1
dpl—(1-p) ~p?
_ 1
p
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Kac’s Result for Sliding Blocks

m Let N be a positive integer. When --- | X 1, X, X1, Xo,--- is stationary and ergodic, then
X,1 Xo X1 X2
Xo X1 Xo X3
XN,Q XNfl XN XN+1

m Therefore Kac's result holds also for “sliding” N-blocks, hence

1
B Pr{(XhXQ,"' ,XN) = (Il,l’z,"' ,»’CN)7

if Pr{(X1,Xo, -, Xn) = (x1,%2,--+ ,xNn)} > 0.
m Now the waiting time is m if m is the smallest positive integer such that

T((w1, 22, ,oN))

(le—ma To2—m, axN—m) - (1‘1, Ty 7~TN)
_ A
or Y™ = zN where 2% = (24, a1, 1), for b > a.
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Universal Source Coding Algorithm Based on Waiting Times
m Suppose that our source is binary i.e. X,, € {0,1} for all integer n. The encoder wants to

. A
transmit a source block 2 = (21,3, - ,7x) to the decoder. Example N = 3.

/ m = 4

o X1 T2 X3

],'1‘332‘1‘3

m BOTH encoder and decoder have access to buffers containing all previous source symbols
L, X_2,T_1,X(-
m Using these previous source symbols in its buffer the ENCODER determines the waiting
time m of 2. It is the smallest positive integer m that satisfies

N—m _ _ N
T — 7 -
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Universal Source Coding Algorithm Based on Waiting Times

m The waiting time m is encoded and sent to the decoder.

m The (prefix) code for m consists of a preamble p(m) and an index i(m) and has length [(m

CODE TABLE for the waiting time m for N = 3:

m_ | pm) _i(m) I(m)
1 |00 - 240=2
2 |01 0 24+1=3
3 |01 1 2+1=3
4 |10 00 24-2=4
5 |10 01 24-2=4
6 |10 10 24-2=4
7 |10 11 242=4

>8 |11 copy of z1zox3 | 2+3=5

m After decoding m the DECODER can reconstruct z{¥ using the previous source symbols in

its buffer.

m Index lengths are 0,1,--- ; N — 1 and the “copy”-code has length N.

m The preamble p(m) of length [log, (N + 1)] bits specifies one of the N + 1 alternatives.

explaining zip using information theory



EINDHOVEN
e UNIVERSITY OF
TECHNOLOGY

I
>
T LAB

Universal Source Coding Algorithm Based on Waiting Times

m The code-table is constructed such that the code-block length I(m) satisfies

A {Dogg(NHﬂ*UngmJ if m < 2V,

[logy(N +1)] + N if m > 2N,
This results in the upper bound

I(m) < [logy(N +1)] + logy m.

(2)

m After processing the block ) both the encoder and decoder can update their buffers.

Then the next block
2N A
TN41 = TN+, TN42, " 5 L2N
is processed in a similar way, etc.

m Buffers need only contain the previous B = 2"V — 1 source symbols! If m > 2"V then z
copied and m is not needed anymore.
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Analysis of the Waiting-Time Algorithm

m Assume that 2 occurred as first block. What is the expected codeword length L(x1V) for zV?

@) = S Qumim)
m=1,2,---
(a)
< Z Q m)[logy(N +1)] + Qey (m)logym
m=1,2,- m=1,2,--
(b)
< [logy(N 4+ 1)] + log, < Z mQxfr(m)>
m=1,2,.--
© 1

= Nloga(N+1)] +logs 1oy

m (a) follows from the bound (2) on I(m),
m (b) from Jensen's inequality E[log, M] < log, E[M] since the log, is a convex-N.
m Furthermore (c) follows from Kac's theorem (1).

m Now L(xY) is upper bounded by preamble length [log,(N + 1)] plus the ideal codeword
|ength 10g2 m
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Analysis of the Waiting-Time Algorithm

m The probability that & occurred as first block is Pr{X{¥ = x{}. For the expected codeword
length E[L(X1V)] we therefore obtain

EL(XY)] = Y Pr{X{ =2 }L(a})

N
T

1
< Pr{X} =2V} <[log (N +1)] +log )
2 Pt ey (s  BXY =l

= [logy(N +1)] + H(X).
m For the rate Ry we now obtain

BILXY) _ HXY) | Nlogy(N + 1)1

Ev=—"N "<="Nw N
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Achieving Entropy

First note that

. H(X{) a
MmN = HeolX)
and ) N1
lim [logy (N +1)] —o.
N—o00 N

Theorem (W., 1986, 1989)

The Waiting-Time Algorithm achieves entropy since

H(X{') | [logy(N +1)]
N T N )

lim Ry = lim < = H(X).

N—oc0 N—oc0

The encoder and decoder use buffers of length B = 2N — 1 in which previous symbols are stored.

NOTE: This algorithm is universal. Although the statistics of the source are unknown, entropy is

achieved.
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Conclusion

m Simple algorithm

m Beautiful analysis
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“Algorithms Are Fun”

Prof. PIET SCHALKWIJK,

Chair Information Theory Group, TH Eindhoven
1972 - 1995
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Piet’s Algorithms: Pascal - Triangle Algorithm [1972]

IEEE TRANSACTIONS ON INFORMATION THEORY, MAY 1972

Fig. 1. Pascal’s triangle gives an ordering of source sequences.

250 citations, universal, binary I1D
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Information Theory, Two Flavors

m FIRST: Capacity Theorems and their Information-theoretic Proofs
m THEN: Coding Algorithms and their Information-theoretic Analysis
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Information Theory, Two Flavors
m Capacity Theorems and their Information-theoretic Proofs

Edward van der Meulen (KU Leuven), my PhD thesis supervisor, 1982

m Coding Algorithms and their Information-theoretic Analysis
Piet Schalkwijk (TH Eindhoven), my MSc thesis supervisor, 1979
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Information Theory, Two Flavors
m Capacity Theorems and their Information-theoretic Proofs
Edward van der Meulen, and
Claude E. Shannon approach, Science

m Coding Algorithms and their Information-theoretic Analysis
Piet Schalkwijk, and
Richard W. Hamming approach, Engineering

Q: Am | an engineer or a scientist?
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2025 IEEE Hamming Medal, April 23-24, Tokyo

% 2025 IEEE RICHARD W.
- HAMMING MEDAL HONOREE

eaty - Qualcomm

Recognition of Coding-Algorithms approach to Information Theory

explaining zip using information theory May 19, 2025



	Outline
	INTRODUCTION, MOTIVATION
	Lempel Ziv [1977]
	Motivation

	WAITING TIMES, KAC
	Waiting Times
	Kac's Result

	WAITING-TIME ALGORITHM
	Description
	Analysis
	Achieving Entropy
	Conclusion

	HAMMING MEDAL
	Schalkwijk, Algorithms
	Information Theory, Two Flavors
	Hamming Medal


