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Abstract

In absence of forcing and dissipation, the atmosphere can be described
within the framework of Hamiltonian dynamics. We introduce the
parcel formulation for such a atmosphere, which forms the basis of our
Hamiltonian numerical method.

Introduction

Although our climate is ultimately driven by (nonuniform) solar
heating, many aspects of the flow can be understood qualitatively from
forcing-free and frictionless dynamics. In this limit of zero forcing and
dissipation, our weather system falls under the realm of Hamiltonian

fluid dynamics and the flow preserves several conservation laws such
as the conservation of energy and phase space structure. One would
like to have a numerical forecasting scheme that can reproduce the
correct flow structure for the limit of zero forcing and dissipation,
as does the exact system. Many present long-term weather forecast
models fail at this point. But the question remains, however:

Question:

Is it advantageous to use numerical schemes with a Hamil-
tonian core for realistic climate modeling?

The primitive equations

1. Model assumptions:

• fluid on rotating plane

• reversible thermodynamics ⇔ entropy conserved per fluid parcel

• hydrostatic balance

• statically stable atmosphere

2. Representation

• State of fluid given by the velocity, density and entropy. Pressure
eliminated as dependent variable.

•Rotating frame of reference ⇔ presence of Coriolis force

• Isentropic frame of reference: (x, y, z) → (x, y, s).

– The entropy s is used as a vertical coordinate. Since entropy is
materially conserved, the flow becomes horizontal.

– Density given by σ ≡ ρ∂Z∂s .

Why take isentropic coordinates?
→ Resulting quasi 2D flow structure simplifies Hamiltonian discretiza-
tion
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Figure 1: The conserved dynamics in isentropic coordinates is quasi 2D.

3. Equations in isentropic coordinates

• all variables are functions of (x, y, s, t)

• horizontal flow
→ v = (u, v, 0)T , v⊥ = (−v, u, 0)T , ∇ ≡ ( ∂∂x,

∂
∂y, 0)T

momentum balance
∂v

∂t
+ v · ∇v + fv⊥ + ∇M = 0 (1)

mass balance
∂σ

∂t
+ v · ∇σ + σ∇ · v = 0 (2)

The term fv⊥ in (1) is the Coriolis force. M in (1) is the Montgomery
potential, given by M = gZ(s) + E with E the enthalpy (per unit
mass).
Closure of system by

energy balance σ = −
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Hamiltonian dynamics

The theory of Hamiltonian systems provides methods to elucidate the
underlying conservation properties of our reversible atmosphere. A
basic example of a Hamiltonian system is Newton’s Second Law with
the force arising as the gradient of some potential. Such a system is
characterized by some energy function (the Hamiltonian) conserved
along the flow. In general, Hamiltonian systems are completely
specified by i) the Hamiltonian and, ii) the so-called (generalized)
Poisson bracket.
In [1], a rather special Hamiltonian description is introduced: the
parcel formulation. We apply the formulation to our atmospheric
model.

Why using parcel formulation?
→ The parcel formulation is an alternative continuum description par-
tially Lagrangian and partially Eulerian. This special viewpoint forms
the basis of our numerical method.

Parcel formulation

In the parcel formulation, we follow a specific parcel labelled by its
initial position A = (A,B, S). Remark: S is the entropy of that spe-
cific parcel. χt maps this fluid parcel to its later Eulerian position

(X(t), S) ≡ χt(A,B, S), having velocity (V (t), 0) ≡ χ̇t(A,B, S).
Then

dX

dt
= ∇V H = V (4a)

dV

dt
= −f ∇⊥

V H − ∇XH = −f V ⊥ − ∇XM (4b)

Here, (∇X ,∇V ) ≡ ( ∂
∂X , ∂

∂V ). The parcel’s Hamiltonian reads

H(X, S,V , t) =
1

2
V 2 +M (X, S, t) (5)

Crucial point: potential M regarded as Eulerian function evaluated at
parcel position! Write M (x, y, S, t)

∣

∣

(x,y)=X
≡M (X, S, t).

Procedure repeated for all parcels that constitute the fluid. Then the
density of our specific parcel follows directly from

σ(X, S, t) =

∫

σ(a, 0) δ((X , S) − χt(a)) da (6)

Since (6) holds for all parcels, we recover σ as function of (x, y, s, t).
This can be used to solve (3) for M.

⇓

Parcel Poisson system:

For each parcel we have dF
dt = {F,H} for arbitrary F,

Poisson bracket {F,H} = f ∇⊥
V F ·∇V H+∇XF ·∇V H−∇XH·∇V F

Note that with F = (X,V ) we obtain (4).

Note:
The full Eulerian Hamiltonian description can be found from the parcel
formulation by integrating out label dependencies. As a result, ODEs
⇒ PDE and functions ⇒ functional. This is in fact a much easier pro-
cedure than adopting reduction techniques commonly used to convert
continuum Lagrangian descriptions to Eulerian ones.

Numerical scheme: HPM

HPM stands for ’Hamiltonian Particle-Mesh Method’. It is a numerical
method based on the parcel formulation.

Conserved are mass, energy and potential vorticity q = f+∇⊥·v
σ .

It includes a symplectic time integrator assuring conservation of phase
space volume.

Why using particle-based discretization?
→ There does not exist a general method for finding Eulerian dis-
cretizations that are still Hamiltonian.

Algorithm of numerical method for atmospheric system:

i) Fluid decomposed in K isentropic layers. On each isentrope sk we
have Nk particles, each with fixed mass. Label particles on isentrope
sk with lsk.

ii) Lagrangian step:

(a) Apply symplectic time integrator to move the particles on each
isentrope sk.

∆X lsk

∆t
= V lsk

(7a)

∆V lsk

∆t
= −fV ⊥

lsk
− ∇(x,y)M̄sk(x, y, t)

∣

∣

(x,y)=X l
sk

(7b)

iii) Eulerian steps:

(a) Fixed grid (xi, yj, sk).

(b) Redistribution of particles induces new density field:

σ̄sk(x, y, t) =
∑

i,j

σskij(t) · ψ((xi, yj) − (x, y))

Density on the grid found from discretization of (6):

σskij(t) =

Nk
∑

l=1

σ(alsk
, 0)

∆x∆y
· ψ((xi, yj) − (X lsk

(t))) |∆al|

with ψ suitable interpolation function.

(c) Use new σ values on grid to solve energy balance (3) for potential
M numerically. This is an ODE for each horizontal grid point!

(d) Interpolate grid values of Msk(t) back to M̄sk(x, y, t). Use this
updated potential field for new Lagrangian step.

Outlook

HPM has proven to give excellent results for the (spherical) shallow
water system, see for example [2]. Our implementation for the
atmospheric model is still under construction.

Extensions:

• account for unresolved but important dynamics, like gravity waves

• apply appropriate smoothing to avoid nonlinear interaction with
unimportant subgrid flow structures

•method to deal with overturning of isentropes (instability)

•weather fronts, akin to shocks

• spherical model

•Forcing & friction
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Figure 2: The potential vorticity field for the shallow water system,
as computed by a high order ’conventional’ method as a reference
(left) and by HPM (right), see [2].
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