Fluid = ) particles



A Conservative Numerical Scheme

for Hydrostatic Flow in Isentropic
Coordinates

Bob Peeters'*
Joint work with Onno Bokhove! & Jason Frank?

IDEPT. OF APPLIED MATHEMATICS, UNIVERSITY OF TWENTE, ENSCHEDE
2CWI, AMSTERDAM

*b.w.i.peetersQutwente.nl

26 May 2009 — 2nd meeting on Wave-flow Interactions



Outline

Outline

1. Introduction & Motivation

Continuum dynamics

2. Eulerian-isentropic equations
3. Hamiltonian formulation

Discrete dynamics

4. Horizontal discretization
5. Vertical discretization

6. Properties of numerical scheme

Edinburgh 2009 Page 3 of 39



Outline

7. Numerical examples

8. Conclusions & Outlook

Edinburgh 2009 Page 4 of 39



1. Introduction & Motivation

Goal:

construct Hamiltonian model for hydrostatic atmosphere.

Why?
e Investigate how it behaves when weak forcing and friction added.

= Does it produce better climate ensemble forecasts as compared to

conventional schemes?

Edinburgh 2009 Page 5 of 39



1. Introduction & Motivation

Tasks:

1. Find Hamiltonian description of fluid system,

2. find Hamiltonian discretization.

Pointe:
No general method for Eulerian Hamiltonian discretization.

= will use discretization based on the Hamiltonian

parcel formulation applied to our fluid.
(Bokhove & Oliver, 2006)
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Continuum dynamics




2. Fulerian-isentropic equations

The Eulerian equations

e rotating plane

e hydrostatic balance
e fully compressible
e ideal gas

e statically stable atmosphere — isentropic coordinates (z, v, s)

Why isentropic coordinates?

e flow becomes horizontal — simplifies description

(except at boundaries...)
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2. Fulerian-isentropic equations

Isentropic coordinates

—» adiabatic
---» diabatic

—
= (/)
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2. Fulerian-isentropic equations

The equations

e momentum eq.

%—?%—v-Vv%—va%—VM:O
e continuity eq.

0

a—‘z LV (ov) =0

e hydrostatic eq. for ideal gas
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2. Fulerian-isentropic equations

e 0 is pseudodensity,
o M =gZ+c,T(o, %—f) is the Montgomery potential.

— Closed formulation for {v, o, Z}.

o v=uv(x,s,t)

o=o(x,s,t)

Z =Z(zx,s,t)
Picture:

Flow can be thought of as being horizontal, where all layers are

coupled though eq. (3), which is nonlinear elliptic equation in s only.
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2. Fulerian-isentropic equations

Boundaries:

e periodicity in (z,y)
e 7 given at bottom (B) and top (7T

e Zp r(x,y) is isentropic, somewhat restricted...
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2. Fulerian-isentropic equations

Flow set-up
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3. Hamiltonian formulation

The parcel formulation
(Bokhove & Oliver, 2006)

e mixed Eulerian-Lagrangian

e fluid is continuum of parcels labelled by (a, s) having horizontal
positions X (¢; a, s).

(initially, labels and positions coincide)

e parcels are moving in a Fulerian prescribed potential
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3. Hamiltonian formulation

Remarks on parcel formulation:

e discretization of this continuum formulation will 'directly’ lead to

a discrete Hamiltonian scheme: HPM.

e alternative is fully Lagrangian description, which can be
discretized into SPH.

e both HPM and SPH require some sort of smoothing to
maintain accuracy over long-time integrations.
= Eulerian grid in HPM allows for efficient numerical

implementation.
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3. Hamiltonian formulation

Parcel formulation for the hydrostatic
atmosphere

System variables:
e parcel variables: X (t;a,s), U(t;a,s)

e Kulerian variables: o(x,s,t), Z(x,s,t)
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3. Hamiltonian formulation

Motion of distinguished parcel (A, S) given by

dX
W = V — VVH, (4&)
dV N N

with (Vx,Vv) = (5%, 52 )-

H is the parcel Hamiltonian,

H(X,V,t) = %VQ + M(X,1). (5)
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3. Hamiltonian formulation

° M(X,t) = M(iE, S7t)‘(ac,s)=(X75)

e Remember: Eulerian M found from Eulerian Z and o.
— 7 found from elliptic equation (3), but how to recover ¢ from

parcel data?

e Mass conservation law can be rewritten as

(%, 5,1) = / / oola,s)d(x — X (t a,s))da. (6)

— this equation couples all parcels.
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Discrete dynamics




4. Horizontal discretization

Hamiltonian discretization:

The Hamiltonian Particle-Mesh Method
(HPM)

(Frank et al., 2002)

e actually introduced before the concept of 'parcel formulation’

— parcel formulation is the continuum analog of HPM
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4. Horizontal discretization

Steps (per isentrope):

i) Fluid decomposed in N particles having fixed finite masses my.
ii) Discretize (4) as

AXg

AV _ _ _
Atk =—fVy —Vx,M,=—fVy Hy,—Vx,Hy, (7b)

with HPM parcel Hamiltonian
_ _ 1 _
Hy=H(X, Vi, S, t) = 5 Vit + M(Xy,S,t).

iii) Redistribution of particles induces new density field.

Density on grid found from discretization of (6):
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4. Horizontal discretization

Omi(S,1) Z my(s) Ya(@m — Xk (t;5))

iv) Solve BVP (3) for each gridpoint, leading to M,,;(s,1t).

v) Reconstruct global M from grid data by discretizing

M(X,S,t):/ M(z.,S.6)6(X — z) da

X S t ZMml S t —CBml)ACBml
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5. Vertical discretization

...still need to discretize in the s-direction.

Vertical discretization: Finite elements (FEM)

Why finite elements?
— exact conservation of energy in the reduced finite element

function space

e Hermite FEM basis functions

— solves Z"(s) and 02" /0s simultaneously.
— M"(s) will be smooth.
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5. Vertical discretization

FEM weak formulation of (6) reads:
/wh(w,s,t) o (x,s,t)ds
— /wh(m,s,t)///ag(A,S)a(m—Xh(t;A,S))(S(s—S) dAdSds

EWh(w,Sj,t) //O’Oj(A) 5($—Xj(t; A))ASJ dA.

— we distinguish Eulerian s and Lagrangian S
— all FEM integrals over Lagrangian S are to be evaluated by

(same) quadrature
— all FEM integrals over Eulerian s have to be solved up to machine

precision
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5. Vertical discretization

Example of FEM discretization:

e 4 Eulerian elements, and

e a four-point Gauss quadrature per

element to solve the S-integrals.

53
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5. Vertical discretization

Discrete energy expressions

e Discrete kinetic energy - Lagrangian
1 2
=> > 5 Mk |Ujk(8)]” AS;.
ik

e Discrete potential energy - Eulerian

/ Z{ ( (Omis 0Zp/08) +9

Zf,fll> } Ax Ay ds.

Edinburgh 2009

Page 26 of 39



6. Properties of numerical scheme

Properties of HPM-FEM scheme:

e Continuous-time
— Hamiltonian system of egs.
— exact conservation of mass, energy and phase space volume

— discrete Poisson bracket

e Discrete-time: symplectic time integration
— exact conservation of mass and phase space volume

— asymptotic conservation of energy (quadratic)
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6. Properties of numerical scheme

Accuracy of HPM-FEM scheme:

e FEM: up to 4" order,

e HPM: up to 2% order,

2nd

e time integration: order.
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7. Numerical examples

Example 1: normal modes

e nondimensionalized

e static isothermal background
o f =0, 2D-set up (z, s)

e linearize equations (e = 107°)

e substitute normal modes u = U(s) e!F*=wt) etc.

— Sturm-Liouville system for the amplitudes
e domain z € (0,27 and s € [1, 2]

e no topography
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7. Numerical examples

Amplitudes of first normal mode:

x 10>

1.5¢ —U

0.5¢

—0.51

-1.5
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7. Numerical examples

S
A zp(s) =1
S:2| !
| u Z
s=1 N ! e
Y 2T
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7. Numerical examples

Numerical parameters:

e 40 x-cells,4 particles per cell initially

e 40 s-isentropes, 4-point Gauss quadrature over S

o At =0.0185, T = 2 period

= (Can our nonlinear code reproduce the linear dynamics?

MOVIE
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7. Numerical examples

Example 2: flow over a hill
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7. Numerical examples

e nondimensionalized
o f =0, 2D-set up (z,s)
e nonlinear

e stationary

— fluxes independent of x
e small bump (ampl. 0.02) in middle of domain
e onflow u(s) = 2

e bottom and top are isentropic
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7. Numerical examples

= Can our Lagrangian particle scheme reproduce a Eulerian steady
state?

Numerical parameters:
e 100 z-cells, 2 particles per cell initially

e 20 s-isentropes, 4-point Gauss quadrature over S

o At=0.0038, T = 10

MOVIE
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7. Numerical examples

Example 3: unsteady flow over a hill

Same set-up as before, except:
e bump amplitude 0.1

e bump rises smoothly in At = 2.

MOVIE

— max drift energy after rise: 3.4-107".
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8. Conclusions & Outlook

Conclusion:

Found a conservative numerical scheme for the hydrostatic Euler

equations based on HPM in horizontal and Hermite FEM in vertical.
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8. Conclusions & Outlook

Outlook:

e Further validation of model output from comparisons to

pseudospectral-FEM output,
e 3D test case including rotation,
e generalize model to free surface,
e find a way how to handle bottom-intersecting isentropes,
e formulate stabilizer to avoid isentropes to overturn ~ fronts,

e forcing & friction.
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