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Abstract

Polymers are known to exhibit various flow instabilities during extrusion in
which a molten polymer is forced to flow through a narrow die, in order to
form a strand or acquire a desired shape of the final product. Recent de-
velopments in experimental techniques revealed that some of the instabilities
are interfacial in nature, that is originate from the violation of the no-slip
boundary condition at the polymer melt/die wall interface. The ability to
control the extrusion instabilities thus lays through the understanding of the
boundary conditions at the interface between a polymer melt and a solid wall.

The subject of the present work is the modeling of a polymer flow near a
solid wall. Its ultimate goal is to develop a consistent mathematical formal-
ism which is able to describe correctly the real mechanics of the melt, such
as entanglements between different polymers and chain connectivity. The
model should provide an adequate mathematical representation of all the ma-
jor physical processes inherent to polymer chains in the melt, such as con-
vection, retraction, reptation, and constraint release. Finally, it must be able
to reproduce quantitatively available experimental data, provided that the
necessary molecular parameters and processing conditions are known. A suc-
cessful model for polymer melt flow will allow us to understand the mechanics
of extrusion instabilities, and perhaps suggest a way to eliminate them.

To avoid using adjustable parameters, we start with the consideration of the
single polymer dynamics in flow. The derived ”microscopic” equations of
motion are then used to find the corresponding constitutive equation for an
ensemble of polymer chains. We show that the behavior of the ensemble can
successfully be described in terms of the so-called bond vector correlator. All
macroscopic quantities of practical interest which represent the state of the
ensemble, e.g. local stress, can be readily expressed in terms of this correlator.

In a die, the polymer melt comes into contact with the die wall. Due to attrac-
tive polymer-wall interaction, some of the polymers become attached to the
wall. So there are two ”sorts” of molecules in the melt: adsorbed (i.e., attached
to the wall) and bulk (i.e., unattached). As a result, two bond vector corre-
lators must be introduced. We show that these correlators satisfy nonlinear
integro-partial differential equations which account for all the major processes
for polymers in the melt. Due to entanglements between bulk and adsorbed
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molecules, these equations are coupled and must be solved simultaneously.

The Brownian motion of an adsorbed molecule may result in its sudden de-
tachment from the wall, after which it becomes bulk. The reversibility of
adsorption implies that the actual number of adsorbed molecules on the wall
is governed by the balance between adsorption and desorption. We show
that it satisfies a non-linear balance equation which is coupled to the equa-
tion of motion for the bond vector correlator of the adsorbed molecules via
flow-induced chain stretch.

The equations of motion for the adsorbed and bulk polymer molecules together
with the balance equation for the surface density of adsorbed molecules form
a system of equations which lies at the heart of the model. This system de-
scribes the flow of the polymer melt in the die and contains information on
the dynamics of both bulk and adsorbed molecules. The latter are found to
have a significant influence on the polymer melt flow in the die via their en-
tanglements with the bulk chains. We show that a decrease in the number
of the entanglements (via detachement of adsorbed chains from the wall or
disentanglement between adsorbed and bulk molecules) may lead to a signif-
icant increase in the interfacial fluid velocity between the melt and the wall.
Both desorption and disentanglement can therefore be regarded as possible
slip mechanisms.

In both slip scenarios (due to desorption or disentanglement), it is the dy-
namics of the adsorbed molecules that governs the boundary conditions at
the polymer melt / die wall interface. The present model provides a detailed
information about the dynamics of the adsorbed molecules, and therefore is
able to describe and quantify the boundary conditions. The model predicts the
onset of slip over a wide range of temperatures, polymer melts, and wall ma-
terials. For certain cases, the model predicts a ”mixed” slip regime, in which
desorption and disentanglement occur in parallel. The onset of slip receives a
spatial attention in this work. In particular, the present model demonstrates
a complex nonmonotonous dependence of the parameters of the stick-to-slip
transition on the molecular parameters of the melt and material of the die
wall. Besides that, the model exhibits a complicated nonlinear temperature
dependence of the parameters of the transition, which has not been revealed
in the earlier theories for wall slip.

In a real extrusion system, the polymer melt is normally polydisperse and
therefore contains various fractions of polymer molecules with different molec-
ular weights. In order to study the effect of polydispersity of bulk and adsorbed
molecules on the onset of wall slip, the developed model has been extended.
We found a strong dependence of the parameters of the stick-to-slip transi-
tion on the molecular weight distribution (MWD) of the melt. Specifically,
we show that polydisperse melts can be much more resistant to the onset of
slip than monodisperse ones.
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Chapter 1

Introduction

The word POLYMER does not refer to a specific substance, but rather a phe-
nomenon of molecular structure that is observed in nearly an infinite number
of different materials. POLY is of the Greek origin and means many. MER
means part or parts. A polymer is a chain-like molecule made up of many
individual molecular components, called ”monomers”. Each monomer can in
turn be a complex molecule. For example, let us take a look at the simple
sketch below of a polypropylene molecule:

In this case, each monomer is a propylene molecule which consists of two
carbon atoms. One carbon atom has two hydrogen atoms attached to it, and
the other one has one hydrogen atom and one methyl group (CH3).

Polymers are abundant in nature (e.g. proteins, cellulose). Found to possess a
unique variety of properties, they soon became an object of intensive research,
encouraged by growing demands of industry. Insights in their molecular struc-
ture have led to the feasibility of designing and fabricating new materials with
desired macroscopic properties. All this, together with the ease of processing,
generated a vast market for polymers. As a consequence, in recent decades
the number of available synthetic polymers has increased dramatically.

1.1 An industrial problem

Many fabrication processes of polymers involve an extrusion step, in which
a molten polymer is forced to flow through a narrow shaping die, thereby
acquiring the desired shape of the final product such as strand, tube or film.
A simple sketch of an extruder is shown in Figure 1.1, in which the polymer
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2 Chapter 1. Introduction

melt is conveyed into the die by a plunger. The final product, usually referred
to as extrudate, has to fulfill specific requirements. For example, synthetic
films, which are widely used in packing, must be transparent and smooth.

  

PlungerV  

Plunger 

Barrel 

Die 

Extrudate 

Molten 
polymer 

Figure 1.1: A simple extruder. The plunger moves at a constant speed, thus forcing the melt
to flow through the shaping die. The thin lines indicate corresponding velocity profiles.

Economical stimuli demand fast operations with high extrusion rates. Unfor-
tunately, it is observed that an increase in the extrusion speed often leads to a
decrease in the quality of the extrudate. This phenomenon, visually observed
as distortions and undulations of the extrudate, poses a serious problem for the
polymer processing industry by limiting the production rates and technologi-
cal opportunities of the polymeric materials. Different types of the extrudate
distortions are commonly referred to as extrusion instabilities.

Classification of the extrusion instabilities could be based on the amplitude of
the extrudate distortions. At low extrusion rates, no instabilities are observed
and so the extrudate shows no distortions. When increasing the plunger speed,
the first manifestation of the extrusion instabilities is often the appearance of
distortions on the extrudate surface, which is usually referred to as ”shark-
skin”. At higher extrusion rates, the extrudate emerges in periodic bursts,
which is reflected in a pattern of pressure oscillations. This type of volume
distortions is usually referred to as ”spurt”. At very high extrusion rates,
no regular volumetric distortions are observed, and the extrudate is helically
or chaotically disturbed. The sequence of the extrudate distortions during
controlled flow rate extrusion of a linear low-density polyethylene (LLDPE)
through a long stainless steel capillary is shown in Figure 1.2



1.2. Extrusion instabilities and wall slip 3

1.2 Extrusion instabilities and wall slip

Extrusion instabilities were first observed during the Second World War [1]
and afterwards reported by numerous authors. The recent experimental data
on the extrusion instabilities can be found in the reviews [2, 3, 4]. Despite
the fact that these phenomena are known for more than half a century, the
understanding of their origin, together with the feasibility of predicting their
occurrence during extrusion, is still a challenge. In order to explain the occur-
rence of the extrusion instabilities, various mechanisms were proposed, such
as a nonmonotonous stress-strain relation, presence of an oscillating boundary
layer, and wall slip. In the past, all these concepts evolved in parallel and had
their own supporters.

Figure 1.2: Five stages of a molten polyethylene flowing out of a die, visible at the top. The
flow rate increases from left to right. Note that in the two leftmost photographs the extrudates
are nice and smooth, while in the middle one undulations start to develop. As the flow rate
increases even further towards the right, the amplitude of the undulations becomes stronger.
When the flow rate is enhanced even more, the extrudate can break. From www.ilorentz.org

The latest developments in the experimental techniques made it possible to
pinpoint the actual mechanism behind the extrusion instabilities. In partic-
ular, the recent experimental evidence suggests that some of the instabilities
(e.g. spurt-like instabilities) originate from the violation of the no-slip bound-
ary condition at the interface between the melt and the die wall. For exam-
ple, Milner and coworkers [5] developed a novel technique, based on the Laser
Doppler Velocimetry (LDV), which allows one to measure the velocity of the
melt in close proximity to the die wall. They observed an apparent stick-
to-slip transition prior to the onset of spurt oscillations. The experimentally
observed connection between the wall slip and the extrusion instabilities has
been recently reviewed in [6, 7, 8]. In contrast to polymer melts, the wall slip
has never been observed for ordinary liquids (e.g. water).

The possibility of the wall slip for a polymer melt was first predicted by de
Gennes [9]. He recognized that due to its high viscosity the melt should always
show significant slippage when flowing over an ideal non-adsorbing surface,
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whatever the flow rate. An ordinary liquid has a much smaller viscosity than
the polymer melt and therefore does not show any measurable slip.

1.3 The Interfacial layer

In a real extrusion system, the polymer melt does not flow over the ideal
non-adsorbing surface. In fact, due to the presence of attractive polymer-
wall interaction, some of the molecules in the near-wall layer of the melt may
become adsorbed on (or, equivalently, attached to) the wall (see Figure 1.3).
In general, each of them makes several connections with the wall, thereby
forming so-called loops and tails. The loop is a part of an adsorbed molecule
between adjacent polymer-wall connection points. Both ends of the loop are
attached to the wall. The tail is a part of an adsorbed molecule that has only
one connection with the wall.

Every adsorbed chain has two tails. Despite they belong to the same molecule,
their motions can be considered as being independent of each other. Hereafter,
each tail will be regarded as a separate ”tethered chain”. The tethered chain
is much more mobile than the loop. It can renew its spatial configuration
via constraint release, retraction, or thermal fluctuations, whereas the loop by
constraint release alone. Being severely restricted in motion, in the presence
of flow loops will eventually be squeezed against the wall by the moving mesh
of surrounding constraints, and thus will not interact with the flowing bulk.
In this work, the dynamics of the loops is discarded, and instead the dynamics
of the tethered chains is only considered.

Figure 1.3: The interfacial layer. The thin and thick lines stand for bulk and surface molecules,
respectively.

The adsorbed molecules (and accordingly the tethered chains) occupy a thin
near-wall layer which separates the flowing bulk and the die wall. It will be
referred to as the interfacial layer throughout the text. In the absence of flow,
each tethered chain has its own length. However, as a first approximation, we
will assume that at rest all the tethered chains in the interfacial layer have
the same length equal to L0T , their mean equilibrium length. We will also
assume that unattached polymer molecules are monodisperse. Their equilib-
rium length will be denoted by L0B. Later on, we will consider a more general
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case in which the tethered chains and unattached molecules are allowed to
have different molecular weights.

Attention must be paid to the fact that L0T is not only a function of the
molecular weight of the unattached polymer molecules, but also depends on
the strength of the polymer-wall interaction. On a low surface energy wall,
adsorbed molecules tend to have only one connection with the wall, so that
L0T ≈ L0B/2. In contrast, on a high surface energy wall, adsorbed molecules
make on average several connections with the wall, and hence L0T << L0B.

The presence of the tethered chains in the near-wall layer implies that in the
real extrusion system the polymer melt actually flows over a ”polymer brush”
made up of the tethered chains. Despite being attached to the wall, these
tethered chains remain entangled with unattached polymer molecules in the
polymer bulk. In what follows, the unattached molecules in the bulk will for
short be referred to as ”bulk molecules”.

As shown by Brochard-Wyart and de Gennes [10], entanglements between
bulk and tethered chains strongly reduce the interfacial fluid velocity at the
polymer melt/die wall interface compared to the case of the melt flowing past
the ideal non-adsorbing wall. On the basis of this observation, two mecha-
nisms were proposed to explain the origin of slip. The first view, conceptual-
ized by Bergem [11], suggests that slip stems from a sudden disentanglement
between the adsorbed and bulk molecules at a certain critical stress. After
the disentanglement, the polymer melt will slip on the die wall, covered by a
”lubrication layer” of surface molecules smashed against the wall by the flow.
Slip due to disentanglement is often referred to as ”cohesive” slip.

The second view explains slip by adhesive failure of adsorbed polymer molecules
on the die wall. Due to their entanglements with the bulk chains, in the pres-
ence of flow they undergo a certain flow-induced drag force which tends to
detach them from the wall. A strong enough flow may cause a massive des-
orption of the adsorbed molecules after which the polymer melt slips over the
”bare” die wall. This type of slip is usually referred to as ”adhesive” slip.

1.4 Modeling of wall slip

In both slip scenarios, it is the dynamics of tethered chains that control the
onset of slip. A number of theories have been proposed to model the behavior
of the tethered chains and predict wall slip by either desorption or disentangle-
ment. Theories that focus on the former can be found in [12, 13, 14, 15, 16, 17].
In particular, Lau and Schowalter [12] developed a simple model for adhe-
sive slip, based on the activation rate kinetics of adsorption/desorption and
Eyring’s absolute rate theory. They argued that the wall shear stress σw alters
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the activation energy of desorption and postulated a power law dependence of
the slip velocity on σw above some critical stress for the onset of slip. A differ-
ent perspective on adhesive slip was offered by Hill, Hasegawa, and Denn [13]
who argued that normal stresses rather than shear stress control the onset of
slip. Their relation between the slip velocity and wall shear stress is, however,
virtually similar to that found by Lau and Schowalter. Stewart [14] further
modified Lau and Showalter’s theory by incorporating a proportionality of
the bonding free energy to the polymer-wall work of adhesion. He proposed
a simple linear relation between the critical wall shear stress for the onset of
adhesive slip and work of adhesion at the melt /die wall interface.

Theories that predict slip via disentanglement can be found in [18, 19, 20, 21,
22]. The theoretical foundation for cohesive slip was developed by Brochard-
Wyart and de Gennes [18] who proposed a scaling model for a polymer flow
over a low-density brush of end-tethered chains of the same polymer. They
imagined entanglements between these chains and nearby molecules in the
bulk and postulated that the end-tethered chains undergo a coil-to-stretch
transition at a critical shear stress. Since stretched chains cannot entangle
with the bulk, this transition can be related to a transition to a strong slip.
Further developments of this model can be found in Ajdari et al [19] and
Mhetar and Archer [20]. Recently, Joshi et al [21, 22] proposed a molecular
theory for cohesive slip based on the microscopic consideration of the near-
wall layer and physical processes on the tethered chains. They argued that
the tethered chains undergo a ”suppressed” constraint release (SCR) whose
strength determines the resistibility of the system to slip. Above a certain
critical stress, the SCR is no longer able to prevent orientation of these chains
by the flow which leads to a sudden disentanglement between the bulk and
tethered chains.

In reality, both slip mechanisms occur in parallel and therefore should be
studied simultaneously. Theories that include both disentanglement and des-
orption were proposed by Yarin and Graham [23] and Joshi et al [24]. The
model of Yarin and Graham is based on a simplified description of the near-
wall layer in which the tethered chains are represented as dumbbells that are
rotated and stretched by the flow. The lifetime of a dumbbell is controlled by
the amount of stretch gained by the dumbbell due to flow. The dumbbells are
assumed to move independently of each other which restricts the scope of the
model to rather low surface energy walls. Joshi and coworkers proposed an
alternative way to the slip modeling based on the transient network theory, in
which the entanglement network in the melt consists of junctions constantly
created and annihilated due to the motion of the polymer chains. They show
that with strain-dependent rates of formation f and loss g of junctions their
model can predict the observed behavior of the stick-to-slip transition. How-
ever, a consistent derivation of the functional forms of f and g was not given,
and instead some empirical forms were used.
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The goal of the present work is to develop a molecular theory for slip which
unites the two slip mechanisms into a single framework. The model must be
valid over a wide range of wall materials and polymer melts including those
for which desorption and disentanglement occur in parallel and thus must
be considered self-consistently. The model must be applicable over a wide
range of temperatures, in order to be able to interpret the observed rheologi-
cal behavior. Finally, the model should be quantitative and contain only those
parameters that can be measured directly or estimated from independent ex-
perimental data.

1.5 Thesis outline

This work is organized as follows: in chapter 2 we introduce a few basic con-
cepts to represent flexible chains. These are the s0 coordinates, the parame-
terized curve, and the bond vector. We also derive a ”microscopic” equation
of motion for the bond vectors of a tethered chain. In chapter 3, we introduce
the bond vector correlator, an effective mathematical ”tool” to describe the
ensemble-averaged dynamics of tethered chains. Based on the microscopic
equation of motion for the bond vectors of the tethered chain, the corre-
sponding equation of motion for the bond vector correlator is derived, which
accounts for all the major mechanisms for the tethered chains such as re-
traction, convection, constraint release, and contour length fluctuations. The
contents of Chapter 2 and Chapter 3 is based on our previous work [25].

In chapter 4, the bond vector correlator of bulk chains is introduced. The
equation of motion for this correlator is based on the microscopic equation of
motion for the bond vectors of a bulk chain. The contents of Chapter 4 is
based on our previous work [26]. In chapter 5, a molecular model for cohesive
slip is formulated for the case of parallel plate geometry. This model does
not allow for flow-induced detachment of adsorbed molecules, thus treating
the surface density of tethered chains as a free parameter. In Chapter 6,
this model is extended to include desorption. The contents of Chapter 5 and
Chapter 6 is based on our earlier work [27] and [28], respectively. In Chapter
7, the effect of polydispersity of the bulk and tethered chains on the onset of
wall slip is studied. The contents of Chapter 7 is partially developed in [29].





Chapter 2

Dynamics of tethered chains

As mentioned before, it is adsorbed molecules that play a key role in the poly-
mer melt dynamics in the die. In this chapter, we will consider a case in which
the polymer-wall interaction is strong enough to prevent their detachment. In
this regime, tethered chains are considered to be grafted permanently on the
wall, and slip only occurs via disentanglement. We will study all the major
physical mechanisms inherent to tethered chains and derive an equation of
motion for a single tethered chain in flow.

2.1 The tube concept

To begin with, let us first introduce the concept of the tube [30], applied for
both tethered and bulk chains, which is widely used in modeling the behavior
of entangled polymer melts. It was recognized that motions of a polymer chain
in the melt orthogonal to its contour are severely restricted by the nearby
molecules which impose topological constraints on the chain (see Figure 2.1).
The Brownian motion of the chain implies fast oscillations of its contour within
the mesh of the constraints. In a photograph of the chain taken with an
exposure time much larger than the period of these oscillations, its Brownian
motion will visualize as a ”fuzzy” tube-like structure (see Figure 2.2). The
diameter of this ”tube” is of order the mean spacing between entanglements.
The axis of the tube is often referred to as the primitive path of the polymer
chain. Note that the length of the primitive path is normally much smaller
than the actual length of the physical chain.

Photographing the chain with a finite exposure time is equivalent to time av-
eraging over the corresponding time scale. This means that the motion of the
primitive path only captures the time averaged behavior of the physical chain.
In what follows, the motion of the physical chain will only be represented via
the motion of its primitive path. Moreover, the primitive path of the chain
will for short be referred to as ”chain” throughout the text.
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Figure 2.1: Chain in a melt. Open circles
stand for surrounding molecules.

Figure 2.2: Tube.

2.2 Major physical mechanisms for tethered chains

On a microscopic level, as noticed by Joshi et al [21], the dynamics of tethered
chains is governed by the following physical processes: convection, retraction,
constraint release, and thermal fluctuations. Thermal fluctuations describe
the Brownian motion of a tethered chain within the mesh of the surrounding
constraints and can be visualized as fluctuations in the length of its primitive
path. Convection describes the flow-induced deformation of a tethered chain
by the moving constraints. It rotates the chain in the direction of the flow
(see Figure 2.3). Convection tries to disentangle the tethered chain from the
bulk and ultimately squeeze it against the die wall. Clearly, it is convection
that causes wall slip in the absence of desorption.

Figure 2.3: Convection.

Deformation of the tethered chain by the flow also implies that in the presence
of flow the length of the primitive path may be larger than its equilibrium
value. In other words, the flow stretches the primitive path of the chain.
Due to the Brownian motion and the connectivity of the tethered chain, its
primitive path tends to restore the equilibrium length by shrinking back within
the mesh of constraints (see Figure 2.4). This mechanism will be referred to
as retraction. Note that retraction works in parallel to convection.

Attention must be paid to the fact that the constraints on the tethered chain
are not permanent. In fact, they are imposed by other polymer molecules
whose motions may result in a sudden removal of one of them. After this,
the chain contour can make a random local jump to a configuration which is
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Figure 2.4: Retraction.

more favorable under the given conditions (see Figure 2.5). Each constraint
release event permits the chain to move locally a distance of order the tube
diameter, whereupon it finds itself once again constrained by the surrounding
molecules. Constraint release ”randomizes” configurations of tethered chains,
thereby preventing their orientation by the flow. Whether slip will occur at a
given flow rate in the absence of desorption is thus determined by the balance
of convection and constraint release. The importance of constraint release in
the dynamics of tethered chains was first recognized by Joshi et al [21].

Figure 2.5: Constraint release.

2.3 The parameterized chain

Having introduced the concepts of tube and primitive path and established the
major physical mechanisms for tethered chains, we now need a suitable coordi-
nate system to address each segment of the primitive path of a tethered chain.
One of the possible choices is to refer to it using its arclength ŝ taken along
the chain contour from the tethered end (see Figure 2.6). The description of
the chain contour, that treats the arclength ŝ as a curvilinear coordinate, is
commonly used in the theory of monodisperse inextensible chains, for which
the length of the primitive path always remains equal to its equilibrium value.
Alternatively, the primitive path of the tethered chain can be presented as a
three dimensional parameterized curve R(s0, t) where parameter s0 runs over
a certain fixed interval 0...L0, the same for all tethered chains (see Figure 2.6).
Here L0 is an arbitrarily chosen number. The attached and free end of the
tethered chain correspond to s0 = 0 and s0 = L0, respectively.

The parameter s0 ”labels” the same physical segment of the primitive path at
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Figure 2.6: Parametrization of a tethered chain: ŝ is the arclength of the segment s0; R̂(s0, t)
is the position vector at s0 and time t; λ̂(s0, t) and û(s0, t) are the local stretch and unit
tangent vector at s0 and time t, respectively.

all times, and therefore can be regarded as its coordinate. Note that different
tethered chains ”share” their parametrization interval with each other which
implies that s0 does not only address a certain segment of one tethered chain,
but refers to alike segments of all the tethered chains. In contrast, R(s0, t)
specifies the spatial position of the segment of one particular tethered chain.
Therefore, there are two types of variables present in the model: deterministic
(i.e., fixed global variables such as s0 and L0) and stochastic (i.e., chain and
time dependent variables such as R(s0, t)). Hereafter, in order to distinguish
between them, the latter will be denoted by a hat sign.

Since we have freedom in choosing L0, it is convenient to take L0 as the equi-
librium primitive path length of the tethered chain. So under the assumption
that all the tethered chains have the same equilibrium length L0T , parameter
s0 runs over the interval 0...L0T . With L0 chosen as the equilibrium length of
the primitive path, s0 measures the equilibrium arclength of a chain segment
along the primitive path. Its actual arclength ŝ(s0, t) (see Figure 2.6) is

ŝ(s0, t) =

s0∫

0

dx λ̂(x, t) ,

where

λ̂(s0, t) =
∂ŝ(s0, t)

∂s0
. (2.1)

Here λ̂(s0, t) is local stretch of the primitive path of the chain at s0 and time

t. In the presence of flow, when polymer chains are stretched, λ̂(s0, t) > 1 and

therefore ŝ 6= s0. At rest, ŝ(s0, t) ≡ s0 so that λ̂(s0, t) ≡ 1 along the chain
contour. Note that in the presence of flow different polymer molecules show,
in general, different amounts of stretch. In this case, both ŝ(s0, t) and λ̂(s0, t)
become chain-dependent and should be denoted by the hat sign.

Every tethered chain in the interfacial layer has its own parametrization func-
tion R̂(s0, t) which reflects the evolution of its primitive path in time. Once
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R̂(s0, t) is known, the dynamics of the chain is completely defined. Alter-
natively, the spatial configuration of the primitive path can be described in
terms of so-called ”bond vectors” which are defined as follows

b̂(s0, t) =
∂R̂(s0, t)

∂s0
. (2.2)

As follows from eqn.(2.1) and eqn.(2.2), the modulus of b̂(s0, t) coincides with

the local stretch λ̂(s0, t) of the primitive path at s0 and time t. The orienta-

tion of the bond vector b̂(s0, t) at a certain point along the chain contour is
described by the unit vector û(s0, t) defined as

û(s0, t) =
b̂(s0, t)

|b̂(s0, t)|
. (2.3)

As shown in Figure 2.6, û(s0, t) coincides with the unit tangent to the primitive
path at s0 and time t and therefore specifies local orientation of the chain
contour. Note that both the local stretch λ̂ and local orientation û pertain to
a single tethered chain and hence carry a hat sign.

Once the parametrization function R̂(s0, t) of every tethered chain in the in-
terfacial layer is known, the dynamics of the layer is completely defined. In
practice, however, such a detailed description is not necessary. In fact, in order
to calculate various macroscopic properties of the layer, such as the wall stress
or layer thickness, we only need to know certain averages over the ensemble
of tethered chains. The bond vector b̂(s0, t) of a tethered chain contains in-
formation on both its local stretch and local orientation, and therefore can
also be used to describe the single tethered chain dynamics and ultimately
to calculate the macroscopic properties of the layer. As will be shown later
on, for the calculation of the macroscopic properties, which involves averag-
ing over the ensemble of tethered chains, the description based on the bond
vectors turns out to be the most convenient one. In the next chapter, we
will demonstrate that using the bond vectors allows one to develop a simple,
yet accurate, mathematical formalism able to represent the behavior of the
ensemble of tethered chains in flow.

2.4 The equation of motion for the bond vector

Having introduced the coordinate system, we may now derive the equation of
motion for a single tethered chain in a flow. We will first consider retraction
and convection in the absence of constraint release and contour length fluc-
tuations. Let us point out a tethered chain in the interfacial layer. Figure
2.7 shows two snapshots of the chain taken at time t and t + ∆t (where ∆t
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is small). Next, let us choose a segment on the chain contour, say s0, and

follow its trajectory between t and t + ∆t. If R̂(s0, t) is the position vector of
segment s0 at time t, then that at time t + ∆t can be symbolically written as
( ¯̄A∗ ¯̄B)R̂(s0, t), where operators ¯̄A and ¯̄B describe the motion of the segment
(between t and t + ∆t) due to convection and retraction, respectively. Here

operator ( ¯̄A∗ ¯̄B) represents the combined action of retraction and convection.
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Figure 2.7: Time evolution of a tethered chain. The ¯̄A-operator determines how the primitive
path is deformed by the flow. The ¯̄B-operator describes retraction of the test chain.

The complex motion of segment s0 due to retraction and convection can be
visualized as a two step process. First, it ”slides along” the chain contour to
a certain position s′0, which satisfies the following equation (see Figure 2.7)

R̂(s′0, t) = ( ¯̄B)R̂(s0, t) = R̂(s0 + ∆ŝ0, t) , (2.4)

where ∆ŝ0 = s′0−s0. Then, the chain is convected in the absence of retraction

so that segment s′0 finally arrives at ( ¯̄A∗ ¯̄B)R̂(s0, t), as depicted in Figure 2.7.
Comparison between the two snapshots of the test chain yields

R̂(s0, t + ∆t) = ( ¯̄A ∗ ¯̄B)R̂(s0, t) = ( ¯̄A)R̂(s′0, t) = ( ¯̄A)R̂(s0 + ∆ŝ0, t) (2.5)

Note that ∆ŝ0 is not equal to the physical distance passed by segment s0
along the chain contour due to retraction between t and t + ∆t. It gives
the distance between segment s0 and virtual segment s′0 measured along the
parametrization axis. ∆ŝ0(s0, t) can be written as a product υ̂0(s0, t)∆t, where
υ̂0(s0, t) is the velocity (at time t) at which segment s0 moves along the axis
due to retraction. The retraction velocity υ̂0(s0, t) is defined by

υ̂0(s0, t) = lim
∆t→0

∆ŝ0(s0, t)

∆t
. (2.6)

According to [31], for small ∆t the convection operator ¯̄A can be expanded

in powers of ∆t as ¯̄A = ¯̄1 + ¯̄KI∆t + O(∆t2), where ¯̄1 is the unit tensor and
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¯̄KI the so-called gradient velocity tensor whose αβ component is given by

KI
αβ(r, t) =

∂Vα(r, t)

∂rβ
, (2.7)

where V(r, t) is the fluid velocity at position r in the interfacial layer. In gen-
eral, V(r, t) can be written as V(r, t) + δv(r, t), where V(r, t) is the ”macro-
scopic” velocity of monomers induced by the flow and δv(r, t) pertains to their
”microscopic” Brownian motions. δv(r, t) rapidly oscillates in time with the
period T equal to that of the thermal oscillations. On the other hand, the
primitive path of the tethered chain only captures its time-averaged behavior
with the time scale much larger than T . Since in our case the tensor ¯̄KI de-
scribes the flow-induced deformation of the primitive path, the actual velocity
profile V(r, t) in eqn.(2.7) must be replaced with macroscopic V(r, t).

With the help of the gradient velocity tensor ¯̄KI , eqn.(2.5) now reads as

R̂(s0, t + ∆t) = [¯̄1 + ¯̄KI(t)∆t + O(∆t2)] R̂(s0 + υ̂0 ∆t, t) , (2.8)

where the expression in square brackets determines the deformation of the
contour of the tethered chain produced by the flow over the small time interval
between t and t+∆t. Note that the interfacial layer is rather thin. Its thickness
is normally much smaller than the length of bulk polymer chains. This implies
that the velocity profile V(r, t) in the layer can be approximated linear so that

the spatial dependence in ¯̄KI can be dropped. Furthermore, in a simple shear
flow ¯̄KI has only one non-zero component equal to the wall shear rate γ̇w.

According to eqn.(2.2), given an equation of motion for R̂(s0, t), one can

readily find the one for b̂(s0, t). Namely, by differentiating both sides of
eqn.(2.8) with respect to s0 and taking the limit ∆t → 0, the equation of

motion for the bond vector b̂(s0, t) takes the form

∂b̂(s0, t)

∂t
= ¯̄KI(t) · b̂(s0, t) +

∂

∂s0

(
υ̂0(s0, t) b̂(s0, t)

)
. (2.9)

Eqn.(2.9) has the form of a balance equation and contains two contributions
on the RHS. The first one pertains to convection, and therefore describes affine
”stretching” and ”rotation” of the bond vector by the flow. The second term
stems from retraction and describes ”sliding” and ”shrinking” of the bond
vector along the chain contour. Multiplying both sides of eqn.(2.9) by the

unit vector û(s0, t) and taking into account that b̂ = λ̂û, one finds that

∂λ̂(s0, t)

∂t
= ¯̄KI(t) · b̂(s0, t) · û(s0, t) +

∂

∂s0

(
υ̂0(s0, t) λ̂(s0, t)

)
.

Next, integrating both sides of this equation over s0 from 0 to x and taking
into account that at the tethered end υ̂0 = 0, we finally find that the retraction
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velocity υ̂0(x, t) can be written as

υ̂0(x, t) =
1

λ̂(x, t)

x∫

0

ds0 ξ̂(s0, t) , ξ̂ =
∂λ̂

∂t
−KI

αβûαûβλ̂ . (2.10)

Here summation is implied over the repeated indices. In eqn.(2.10), ξ̂(s0, t) is
the local retraction rate of the primitive path of the tethered chain at s0 and
time t. The integral in eqn.(2.10) gives the velocity at which segment x of the
tethered chain slides along its contour due to retraction. It is in turn equal to
∂ŝ(x, t)/∂t, where ŝ(x, t) is the actual arclength of segment x. So eqn.(2.10)
shows that the retraction velocity υ̂0(x, t) of segment x is equal to its velocity

along the chain contour divided by the corresponding local stretch λ̂(x, t).
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Figure 2.8: A tethered chain as a bead-spring system.

The local retraction rate ξ̂(s0, t) describes relaxation of the local stretch of
the primitive path due to the connectivity and the Brownian motion of the
physical chain. According to eqn.(2.10), its explicit form can be found by
studying relaxation of an initially stretched chain in the absence of flow (i.e.,
¯̄KI = 0). In order to calculate ξ̂(s0, t), let us first recall that the primitive
path represents the time averaged behavior of the physical chain. Due to the
presence of constraints and connectivity of the physical chain, motions of the
neighboring segments of the primitive path are not independent [31]. Let a be
the characteristic equilibrium correlation length between different segments of
the primitive path. Then, motions of segments s0 and s′0 for which |s0−s′0| > a
can be considered as being independent of each other. Apparently, a is of order
of the mean equilibrium distance between entanglements. In the literature, a
is often referred to as the step length of the primitive path.

If L0T is the equilibrium length of the primitive path, then the chain con-
tour can be divided into ZT = L0T/a discrete segments, each can ”rotate”
independently of its neighbors. Each of these segments contains on average
Ne = NT/ZT monomers, where NT is the total number of monomers per teth-
ered chain. So at equilibrium each tethered chain in the melt can be presented
as a freely-jointed chain [31] which consists of ZT + 1 beads connected by ZT

bonds. At rest, all the bonds have the same length a. In a flow, however, each
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bond is allowed to have its own length. Due to the connectivity and the Brow-
nian motion of the physical chain, the bonds are elastic. So in the flow they
can be replaced by elastic springs (see Figure 2.8). Clearly, representation of
the tethered chain by the bead-spring system allows to capture its flexibility
and elasticity, as well as possible chain stretch induced by the flow.

The dynamics of the bead-spring system can readily be inferred from the
Rouse model [31, 32]. Let R̂n(t) be the position vector of the n-th bead at
time t. Following to Doi and Edwards [31], a microscopic force balance for

the bead yields the following equation of motion for R̂n(t)

m
∂2R̂n(t)

∂t2
= −Neζ

∂R̂n(t)

∂t
+

3kBT

a2

[
R̂n+1(t) + R̂n−1(t)− 2R̂n(t)

]
, (2.11)

where m, kB, T , and ζ are the mass of a bead, the Boltzmann constant, the
absolute temperature, and the monomeric friction coefficient, respectively. In
eqn.(2.11), we took into account that in our case the equilibrium length of each
spring is equal to a and each bead contains approximately Ne monomers so
that its friction coefficient is of order Neζ. The first term on the RHS describes
friction between the bead and the neighboring polymers. The second term
stems from the elasticity of the springs, where 3kBT/a2 is the spring constant.
The term on the LHS is the inertial term. Since for a realistic polymer chain
in a melt the mass of a bead and its accelerations are normally small, the
inertia term can be neglected in comparison to the other contributions.

Note that for long enough tethered chains eqn.(2.11) can be written in terms of
the s0-coordinates introduced earlier. Namely, keeping in mind that n ≈ s0/a,
the second term on the RHS of eqn.(2.11) can be approximated by a second
derivative with respect to s0. Therefore,

∂R̂(s0, t)

∂t
≈ 3kBT

Neζ

∂2R̂(s0, t)

∂s2
0

. (2.12)

Eqn.(2.12) describes the trajectory of segment s0 of the tethered chain due to
retraction. In reality, it only slides along the chain contour whose local orien-
tation is given by the unit tangent vector û(s0, t) (see eqn.(2.3)). Projection
of eqn.(2.12) on the chain contour then yields

û · ∂R̂

∂t
=

3kBT

Neζ

∂λ̂

∂s0
. (2.13)

where use was made of eqn.(2.1) and eqn.(2.2). The inner product on the LHS
of eqn.(2.13) gives the actual velocity of segment s0 along the chain contour
equal to ∂ŝ(s0, t)/∂t. As discussed earlier, this velocity is in turn equal to the

integral over the local retraction rate ξ̂ in eqn.(2.10). Therefore, differentiation
of both sides of eqn.(2.13) with respect to s0 yields

ξ̂ =
3kBT

Neζ

∂2λ̂

∂s2
0

. (2.14)
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Eqn.(2.14) shows that relaxation of the local stretch can be visualized as one-
dimensional diffusion of monomers along the chain contour. In other words,
retraction originates from a fast local rearrangement of monomers along the
primitive path. Finally, from eqn.(2.10) and eqn.(2.14), one may conclude that
the equation of motion for the local stretch has the form of a diffusion equation
with the source term given by KI

αβûαûβλ̂. The source term is proportional to
the flow-induced velocity of segment s0 along the chain contour towards the
free end of the chain and therefore describes local stretching of the primitive
path by the flow

Let us show now that in some cases the explicit form of ξ̂ can be further
simplified. As follows from eqn.(2.14), relaxation of the local stretch λ̂ is
governed by the following equation of motion

∂λ̂

∂t
=

3kBT

Neζ

∂2λ̂

∂s2
0

. (2.15)

To solve it, we need to specify the boundary conditions for λ̂. The relaxation
time of segments of the tethered chain near the free end is of order τe, the
Rouse time of one entanglement segment. According to Doi and Edwards [31],
τe is equal to 3kBT/a2Neζ. Note that τe is of order the period of the Brownian

oscillations of the physical chain. On the other hand, λ̂ describes the local
stretch of the primitive path. Therefore, due to fast retraction processes active
at the free end of the physical chain, the corresponding stretch of the primitive
path can be neglected so that λ̂(L0T , t) = 1. On the other hand, the segments
near the tethered end have the largest relaxation time since their relaxation
requires retraction of all other chain segments. This means that the local
stretch at the tethered end is maximal, and so ∂λ̂/∂s0 = 0 if s0 = 0.

Applying standard techniques and taking into account the boundary condi-
tions for λ̂, the solution of eqn.(2.15) can be written in the form

λ̂(s0, t) = 1 +
∞∑

p=1,3,5,...

Ĉpe
−p2t/TRT cos

(pπs0

2L0T

)
, (2.16)

where

TRT =
4ζNeL

2
0T

3π2kBT
. (2.17)

The coefficients Ĉp are determined by the initial condition for λ̂(s0, t). As is
seen from eqn.(2.16), relaxation of the local stretch is described by a set of
relaxation times Tp = TRT/p2, where p = 1, 3, 5, . . .. Hereafter, the longest
relaxation time TRT will be referred to as the Rouse time of tethered chains.
In view of eqn.(2.16), TRT is the decay time of the first mode (p = 1) in the

relaxation spectrum of λ̂. The second mode has the decay time which is nearly
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ten times smaller than TRT . So on the time scale of TRT the high order modes
with p = 3, 5, . . . can be considered as relaxing instantaneously.

According to eqn.(2.15), the characteristic relaxation time of the local stretch
for the ”interior” segments of the tethered chain is of order 3kBT/L2

0TNeζ,
which is in turn of order TRT . So for flows whose time scale is larger than
TRT , TRT can be chosen as the smallest time scale for these segments. As a
result, the high order modes in eqn.(2.16) can be neglected and only the first
mode may be considered. Then, from eqn.(2.16) one can find that in this case

the local retraction rate ξ̂ can be approximated by

ξ̂ ≈ −λ̂− 1

TRT
. (2.18)

Hereafter, this approximation will be referred to as the single relaxation time
approximation. Note that it may not be applicable to segments of the tethered
chain near the free end. As mentioned earlier, the characteristic relaxation
time of these segments and accordingly the time scale associated with them
is much smaller than TRT . So the proper description of relaxation of the local
stretch for these segments requires consideration of many modes in eqn.(2.16).

2.5 Constraint release (CR)

Until now, we have derived the equation of motion for the single tethered
chain in flow which includes convection and retraction. In this section, we
will study constraint release (CR) on the chain and extend this equation to
include CR. As discussed earlier, every constraint release event allows the
chain contour to ”jump” locally over a distance of order the mean spacing
a0 between entanglements. Verdier and Stockmayer [33] developed a simple
model which allows one to describe CR as a sequence of local random jumps,
as depicted in Figure 2.9. Following their model, we again present the tethered
chain as a system of ZT + 1 beads connected by ZT springs. Each spring has
the equilibrium length equal to a, the equilibrium step length of the primitive
path. In a small time interval ∆t, internal beads make the following jumps:

Rn → (Rn+1 + Rn−1 −Rn) (2.19)

with probability νT∆t, where νT is the characteristic frequency of constraint
release on tethered chains. Here Rn is the position vector of the n-th bead.
The probability for Rn not to jump during the time interval ∆t is equal to
1− νT∆t. From the above, the equation of motion for the position vector Rn

due to constraint release can therefore be written as

∂Rn(t)

∂t
= νT

[
Rn+1(t) + Rn−1(t)− 2Rn(t)

]
. (2.20)
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Similar to eqn.(2.11), for long enough tethered chains eqn.(2.20) can be rewrit-
ten in terms of the s0-coordinates. Taking into account that n ≈ s0/a, from
eqn.(2.20) we finally arrive at

∂R̂(s0, t)

∂t
≈ νTa2∂

2R̂(s0, t)

∂s2
0

. (2.21)

As is seen, the equation of motion for the tethered chain due to CR has the
form of a diffusion process with the coefficient proportional to the correspond-
ing frequency νT of constraint release. The coefficient makes it explicit that
the local jumps of the chain contour occur at the rate equal to νT and each
jump is over a distance of order the mean entanglement spacing.

Figure 2.9: Local jump model.

A more rigorous approach to model CR was developed by Viovy et al [34].
They recognized that, as constraints are released at the same rate on all parts
of the tube, CR yields a Brownian-like motion of the tube itself. This implies
that the motion of the primitive path due to CR can be interpreted as a
Rouse process [31]. Based on this observation, Milner et al [35] proposed the
following equation of motion for a polymer chain in the melt due to CR

∂R̂(s0, t)

∂t
= νTa2

0
∂R̂(s0, t)

∂s2
0

+ g(s0, t) , (2.22)

where a0 is the mean entanglement spacing and g(s0, t) a delta-correlated,
zero-mean noise vector. Eqn.(2.22) has the form of a Langevin equation.
Since a ≈ a0, it agrees well with the earlier result in eqn.(2.21) obtained
from the simple bond-flip model. By the fluctuation-dissipation theorem, the
components of g(s0, t) are related to the frequency νT as follows

< gα(s0, t)gβ(s
′
0, t

′) >=
2

3
νTa3

0δ(t− t′)δ(s0 − s′0)δαβ . (2.23)

where < ... > denote averaging over tethered chains. Components of g(s0, t)
taken at different times or positions along the chain are uncorrelated, as is
typical for the Rouse process. To conclude, eqns.(2.9, 2.22) describe the evo-
lution of the single tethered chain in flow governed by convection, retraction,
and constraint release. In the next chapter, these equations will further be
used to derive the ”macroscopic” equation of motion for the interfacial layer.



Chapter 3

Equation of motion for the interfacial
layer

Based on the ”microscopic” consideration of the interfacial layer, in the pre-
vious chapter we studied the dynamics of a single tethered chain in flow. In
practice, however, we only need to know the behavior of the entire ensemble
of tethered chains present in the layer. Here the dynamics of this ensemble
will be studied and the corresponding constitutive equation will be derived.

3.1 The bond vector correlator

In order to quantify the dynamics of the ensemble of tethered chains, let us
introduce the following tensor ST (s0, t) whose components are given by

ST
αβ(s0, t) =< b̂α(s0, t)b̂β(s0, t) >T , (3.1)

where bα is the α component of the bond vector of a tethered chain and
< . . . >T denote averaging over the ensemble. Parameter s0 in eqn.(3.1) runs
from 0 to L0T , the equilibrium length of the tethered chains. The tensor
ST (s0, t) will be referred to as the ”bond vector correlator” throughout the
text. The superscript T in ST (s0, t) indicates that this tensor pertains to
tethered chains. Note that the averaging over the ensemble in eqn.(3.1) can
be replaced with averaging over all possible values of the bond vector, that is

ST
αβ(s0, t) =

∫

R3

d3b bαbβ fT (b, s0, t) . (3.2)

Here fT (b, s0, t) is the bond vector probability distribution function (BVPDF),

a fraction of the tethered chains whose bond vector b̂ at s0 and time t is equal

21
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to b. By definition, the BVPDF is normalized

∫

R3

d3b fT (b, s0, t) = 1 .

At rest, tethered chains are not stretched so that b̂ = û, where û is the
corresponding unit tangent vector to the chain contour (see Figure 2.6). By
definition, every tethered chain has only one connection with the die wall (at
s0 = 0). The attractive potential of the wall is localized on its surface. The
above implies that segments of the chain far from the tethered end do not
”feel” the non-anisotropy of the melt caused by the presence of the wall. As
a result, in the absence of flow all directions of the bond vector for these
segments are equally probable, and fT (b, s0, t) is isotropic. From eqn.(3.2) it
then follows that at equilibrium ST

αβ(s0, t) for s0 > 0 is diagonal and equal to

S
(eq)
αβ (s0, t) =

1

3
δαβ , (3.3)

where we used that in the absence of stretch ST
αα = 1.

As shown earlier, the bond vector b̂ can be written as the product λ̂û, where
λ̂ is the local stretch and û the local orientation of the chain contour. This
means that the correlator ST

αβ(s0, t) contains information on both the average
local stretch and the average local orientation of the tethered chains. Note that
in the absence of stretch (i.e., λ = 1), ST

αβ(s0, t) boils down to the orientation
tensor < ûû >T similar to one introduced by Doi and Edwards [31] to describe
the dynamics of bulk inextensible chains. Clearly, the bond vector correlator
provides an extension of the original orientation tensor of Doi and Edwards
to systems which allow chain stretch.

Once the correlator ST
αβ(s0, t) of the ensemble of tethered chains is known,

one can readily calculate various parameters of the ensemble. For example,
following Doi and Edwards [31], the local stress σI

αβ induced in the chains by

the flow is proportional to the value of ST
αβ averaged along the chain contour:

σI
αβ(t) =

G0I

L0T

L0T∫

0

ds0 ST
αβ(s0, t) . (3.4)

Here G0I is the elastic modulus of the interfacial layer. Later on, we will
calculate G0I in terms of the molecular parameters of the melt and the surface
density of tethered chains. Eqn.(3.4) reveals that the equation of motion for
ST

αβ is in fact the constitutive equation for the ensemble of tethered chains.
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3.2 The equation of motion for the bond vector corre-

lator

Let us first derive the equation of motion for the bond vector correlator
ST

αβ(s0, t) of tethered chains in the absence of constraint release and con-
tour length fluctuations. By differentiating eqn.(3.1) with respect to time and
taking into account eqn.(2.9), one can find (for s0 > 0)

∂ST
αβ

∂t
= KI

αγS
T
βγ + KI

βγS
T
αγ +

∂

∂s0
< b̂αb̂βυ̂0 >T + < b̂αb̂β

∂υ̂0

∂s0
>T . (3.5)

Here the first two terms on the RHS pertain to convection. Since ST
αβ contains

information on both the mean local stretch and the mean local orientation of
the tethered chains, these terms make it explicit that convection stretches
and rotates the tethered chains, as was discussed earlier. The last two terms
stem from retraction. They are proportional to the local retraction velocity υ̂0
introduced earlier in eqn.(2.10). According to eqn.(2.10), υ̂0(s0, t) depends on
the local stretch of segments x of the tethered chains which satisfy 0 ≤ x ≤ s0.
This implies that the retraction terms in eqn.(3.5) are ”nonlocal” with respect
to s0. In order to evaluate them, let us introduce the two-point BVPDF

f
(2)
T (b, s0|b′, s′0, t), which is the probability for a tethered chain to have (at

time t) bond vectors at s0 and s′0 equal to b and b′, respectively. In view of
eqn.(2.10), the third term on the RHS of eqn.(3.5) can be evaluated as follows
(for compactness’ sake, we leave out the time arguments)

< b̂α(s0)b̂β(s0)υ̂0(s0) >T =

s0∫

0

dx < b̂α(s0)ûβ(s0)ξ̂(x) >T =

s0∫

0

dx

∫

R3

d3b

∫

R3

d3b′ bα uβ ξ(b′)f (2)
T (b, s0|b′, x)

(3.6)

where uβ stands for bβ/|b|. Notice that in eqn.(3.6) use has been made of the

fact that the local retraction rate ξ̂(s0, t) depends on position s0 and time t

only via the corresponding bond vector b̂(s0, t) (see eqn.(2.14) and eqn.(2.18))

so that ξ̂(s0, t) = ξ(b̂(s0, t)), where ξ(b̂) is a deterministic function of b̂.
Eqn.(3.6) shows that the first retraction term in eqn.(3.5) in fact depends on

the two-point BVPDF f
(2)
T (b, s0|b′, s′0, t). On the other hand, as follows from

eqn.(3.2), the convection terms in eqn.(3.5) can simply be expressed in terms
of the one-point BVPDF fT (b, s0, t). The presence of the two-point BVPDF
in eqn.(3.5) reveals that in general the equation of motion for the bond vector
correlator ST

αβ (and also for the BVPDF fT (b, s0, t)) is not closed, and involves
higher order bond vector probability distribution functions.



24 Chapter 3. Equation of motion for the interfacial layer

In order to express f
(2)
T in terms of fT and thereby close eqn.(3.5), we need

a reliable closure approximation. Note that f
(2)
T (b, s0|b′, s′0, t) does not only

describe the evolution of a certain segment (s0 or s′0) of the primitive path,
but also includes correlations between separate segments. The range of these
correlations is described by a characteristic correlation length δ, the mean dis-
tance (along the parametrization axis) between separate segments of a teth-
ered chain at which their motions can be considered as being independent of
each other, and therefore

f
(2)
T (b, s0|b′, s′0, t) ≈ f(b, s0, t)f(b′, s′0, t) if |s0 − s′0| > δ . (3.7)

At rest, the correlation length δ is equal to the step length a of the primitive
path and therefore is of order the mean entanglement spacing a0. Then, as
discussed earlier, each tethered chain can be presented as a system of beads
connected by stiff bonds, each bond having the length a. Every bond can point
in any direction (except for the one attached to the wall), independently of
others. However, in the presence of stretch motions of the neighboring bonds
are no longer independent. To show this, let us point out a single tethered
chain in the interfacial layer. For simplicity, we assume that the chain contour
is fixed in space. Let us choose two different segments on the chain contour,
say s0 and s′0. At time t = 0, we start stretching the chain contour locally at
position s0. Due to the chain connectivity, the segment s′0 will ”slide” along
the chain contour (see Figure 3.1). Clearly, its position (and orientation) at
time ∆t is determined by the corresponding amount of stretch at s0. This
simple example shows that the correlation between separate chain segments
may become long-ranged (i.e., δ ≈ L0T ) when tethered chains are highly
stretched, which is expected at flow rates much larger than T−1

RT (TRT is the
characteristic relaxation time of the local stretch given by eqn.(2.17)).

 

0=t  tt ∆=  

0s′  
0s  

a
 

0s  0s′  

Figure 3.1: Correlation between separate chain segments.

In a flow whose rate is less than T−1
RT , tethered chains are stretched only

slightly. In this regime, the flow can still be considered as a perturbation on
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the level of one chain segment so that one may expect that δ ≈ a << L0T .
Constraint release ”randomizes” configurations of tethered chains and thus
weakens the correlation. It ”extends” the regime of small δ to even higher
flow rates. Note that in the regime of small δ (δ << L0T ), the two-point

BVPDF f
(2)
T (b, s0|b′, s′0, t) can be approximated through the following simple

exponential interpolation formula (leave out the time arguments):

f
(2)
T (b, s0|b′, s′0) ∼=

(
1− e−

|s0−s′0|
a

)
fT (b, s0)fT (b′, s′0) + e−

|s0−s′0|
a f

(2)
T (b, s0|b′, s0) ,

(3.8)
where δ has been replaced with the step length a. Eqn.(3.8) assures that for
|s0 − s′0| > a the bond vector probability distributions at s0 and s′0 become

independent, and so eqn.(3.7) holds. In order to calculate f
(2)
T (b, s0|b′, s0, t),

let us first recall eqn.(3.1) and eqn.(3.2). Their comparison yields that the
one-point BVPDF fT (b, s0, t) can formally be defined as follows

fT (b, s0, t) = < δ(b− b̂(s0, t)) >T , (3.9)

where < . . . >T denote averaging over the ensemble of tethered chains. Eqn.(3.9)
shows that fT (b, s0, t) is normalized, as expected. Similarly, the two-point

BVPDF f
(2)
T can be defined as

f
(2)
T (b, s0|b′, s′0, t) = < δ(b− b̂(s0, t)) δ(b′ − b̂(s′0, t)) >T . (3.10)

Eqn.(3.10) shows explicitly that f
(2)
T (b, s0|b′, s′0, t) is symmetric with respect

to interchanges of its arguments (b, s0) ¿ (b′, s′0). Comparison of eqn.(3.9)
with eqn.(3.10) then yields that

f
(2)
T (b, s0|b′, s0, t) = δ(b− b′)fT (b, s0, t)

So eqn.(3.8) becomes the closure approximation we were looking for:

f
(2)
T (b, s0|b′, s′0, t) ∼=

(
1− e−

|s0−s′0|
a

)
fT (b, s0, t)fT (b′, s′0, t) +

e−
|s0−s′0|

a fT (b,
s0 + s′0

2
, t)δ(b− b′) ,

(3.11)

where we have taken into account that the BVPDF f
(2)
T (b, s0|b′, s′0, t) is sym-

metric with respect to interchanges of its arguments (b, s0) ¿ (b′, s′0). The
closure approximation in eqn.(3.11) is only valid in a flow regime where teth-
ered chains are stretched only slightly. However, as we will see later on, in
most cases this is the regime where the stick-to-slip transition occurs.

Once the closure approximation (3.11) is given, we may now explicitly evaluate
the LHS of eqn.(3.6). Substitution of eqn.(3.11) into eqn.(3.6) yields (we again
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leave out the time arguments)

< b̂α(s0)b̂β(s0)υ̂0(s0) >T = < b̂α(s0)ûβ(s0) >T

s0∫

0

dx ξ̄T (x) +

s0∫

0

dx e−
s0−x

a ×
[

< b̂α(
s0 + x

2
)ûβ(

s0 + x

2
)ξ̂(

s0 + x

2
) >T − < b̂α(s0)ûβ(s0) >T ξ̄T (x)

]
,

(3.12)

where ξ̄T (x) stands for < ξ̂(x) >T . Note that exp
[−(s0 − x)/a

]
in the second

term on the RHS is a sharp function of x. It is maximal for x = s0 and
decreases rapidly with x when x < s0−a. In contrast, the expression in square
brackets in the second term is a smoothly varying function of x. Therefore, by
expanding it in a Taylor series in the vicinity of x = s0, we find that eqn.(3.12)
can be presented as the following series (for s0 > a)

< b̂α(s0)b̂β(s0)υ̂0(s0) >T = < b̂α(s0)ûβ(s0) >T

s0∫

0

dx ξ̄T (x) +

a

{
< b̂α(s0)ûβ(s0)ξ̂(s0) >T − < b̂α(s0)ûβ(s0) >T ξ̄T (s0)

}
+ . . .

(3.13)

The first term on the RHS is of order ξ̄TL0T , whereas the second of order
ξ̄Ta. So the series in eqn.(3.13) is in fact in powers of a/L0T . The closure
approximation (3.11) is only valid in the regime of small stretch (i.e., the
local stretch λ ≈ 1), which implies that eqn.(3.13) can further be simplified.

To this end, let us present λ̂ in the form λ̂ = 1+α̂, where α̂ is small. Expansion
of the first term on the RHS of eqn.(3.13) in powers of α̂ yields

< b̂α(s0)ûβ(s0) >T

s0∫

0

dx ξ̄T (x) = < b̂α(s0)b̂β(s0) >T

s0∫

0

dx ξ̄T (x)+O

(
ᾱ2

TL0T

TRT

)
,

(3.14)
where ᾱT stands for < α̂ >T . In eqn.(3.14), we have taken into account that

the local retraction rate ξ̂ can be written as −α̂/TRT (see eqn.(2.18)), where
TRT is the Rouse time of tethered chains. Note that the first term on the
RHS of eqn.(3.14) is of order L0T ᾱT/TRT , whereas the second one of order

L0T ᾱ2
T/TRT . Next, from eqn.(3.1) and the fact that the bond vector b̂ can be

written as a product λ̂û, where û is a unit vector, we have that for small α̂
√

< λ̂2 >T =< λ̂ >T +O(ᾱ2
T ) . (3.15)

At rest, tethered chains are not stretched, that is λ̂(s0, t) ≡ 1 for any s0. In
terms of the BVPDF, this implies that fT (b, s0, t) ∝ δ(|b| − 1). Eqn.(3.15)
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indicates that for small α̂ the mean square deviation of the local stretch re-
mains small, and so the stretch distribution function is still narrow peaked.
Taking this into account and recalling eqn.(2.18), we then have

< b̂α(s0)ûβ(s0)ξ̂(s0) >T=< b̂α(s0)ûβ(s0) >T < ξ̂(s0) >T +O(ᾱ2
TT−1

RT ) =

< b̂α(s0)b̂β(s0) >T < ξ̂(s0) >T +O(ᾱ2
TT−1

RT ) .
(3.16)

With the help of eqn.(3.14) and eqn.(3.16), eqn.(3.13) now reads as

< b̂α(s0)b̂β(s0)υ̂0(s0) >T = < b̂α(s0)b̂β(s0) >T

s0∫

0

dx ξ̄T (x) + O(ᾱ2
TL0TT−1

RT ) .

(3.17)
Upon differentiating both sides of eqn.(3.17) with respect to s0 and neglecting
terms of order ᾱ2

TL0TT−1
RT , the third term on the RHS of eqn.(3.5) becomes

∂

∂s0
< b̂αb̂βυ̂0 >T = ξ̄TST

αβ +

[ s0∫

0

dx ξ̄T (x)

]
∂ST

αβ

∂s0
. (3.18)

In view of eqn.(2.10), the last term on the RHS of eqn.(3.5) reads as

< b̂αb̂β
∂υ̂0

∂s0
>T = < b̂αûβ

[
ξ̂ − 1

λ̂

∂λ̂

∂s0

s0∫

0

dx ξ̂(x)

]
>T . (3.19)

The first term on the RHS is of order ᾱTT−1
RT , whereas the second one of order

ᾱ2
TT−1

RT (since ∂λ̂/∂s0 is of order α̂/L0T ). Therefore, after neglecting terms of
order ᾱ2

TT−1
RT , eqn.(3.19) reduces to

< b̂αb̂β
∂υ̂0

∂s0
>T = ξ̄TST

αβ . (3.20)

where use has been made of eqn.(3.16). Finally, combination of eqns.(3.5,
3.18, 3.20) results in the following equation of motion for the bond vector
correlator ST

αβ(s0, t) (for s0 > a)

∂ST
αβ(s0, t)

∂t
= KI

αγS
T
βγ(s0, t) + KI

βγS
T
αγ(s0, t) + 2 ξ̄T (s0, t)S

T
αβ(s0, t)

+

[ s0∫

0

dx ξ̄T (x, t)

]
∂ST

αβ(s0, t)

∂s0
.

(3.21)

As is seen, ST
αβ(s0, t) satisfies an integro-partial differential equation. Notice

that the equations of motion for different components of ST
αβ are coupled
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through the gradient velocity tensor KI
αβ (see eqn.(2.7)). Therefore, in general,

the dynamics of tethered chains is actually governed by a system of nine
coupled equations, one for each component of ST

αβ. In a shear flow, where

KI
αβ has only one nonzero component, the number of equations reduces to

four. In contrast, in a description based on the parametrization functions
R̂(s0, t) (see Figure 2.6), in order to quantify the evolution of the ensemble of
tethered chains in flow, we have to deal with a macroscopically large system
of Langevin equations. The number of equations in this system is equal to
the number of tethered chains present in the interfacial layer.

In view of eqn.(2.18), the mean local retraction rate ξ̄T is given by

ξ̄T (s0, t) = −λ̄T (s0, t)− 1

TRT
, (3.22)

where λ̄T (s0, t) is the mean local stretch of tethered chains at position s0
and time t. As follows from eqn.(3.1) and eqn.(3.15), in a flow regime where
tethered chains are stretched only slightly, λ̄T (s0, t) can in turn be expressed
in terms of the correlator ST

αβ as follows

λ̄T =
√

ST
αα , (3.23)

where summation is implied over the repeated indices. Eqn.(3.23) reveals that
eqn.(3.21) is nonlinear. Eqn.(3.21) describes the dynamics of the ensemble
of tethered chains in the presence of flow. It accounts for convection and
retraction. However, it does not include constraint release and contour length
fluctuations, other possible relaxation mechanisms for tethered chains. In the
next section, we will further discuss eqn.(3.21) and derive the corresponding
contributions due to constraint release and contour length fluctuations.

3.3 Constraint release

In order to calculate the contribution of constraint release to the equation of
motion for ST

αβ(s0, t) derived earlier, let us first study the following correlator

Φαβ(s0, s
′
0, t) =

〈
∂R̂α(s0, t)

∂s0

∂R̂β(s
′
0, t)

∂s′0

〉

T

, (3.24)

where R̂β(s0, t) is the β component of the position vector R̂(s0, t) of segment
s0 of a tethered chain at time t. As was recognized by Viovy et al [34], motion
of the primitive path of the tethered chain due to CR can be modelled as
a Rouse process (see the discussion after Figure 2.9). Based on this obser-

vation, Milner et al [35] proposed an equation of motion for R̂(s0, t) due to
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CR which has the form of a Langevin equation (see eqn.(2.22)). Substitution
of eqn.(2.22) into eqn.(3.24) yields the following equation of motion for the
correlator Φαβ(s0, s

′
0, t) (for s0 6= s′0)

∂Φαβ

∂t
= νTa2

0

(
∂2

∂s2
0

+
∂2

∂s′20

)
Φαβ , (3.25)

where use has been made of the fact that g(s0, t) in eqn.(2.22), which rep-
resents a random force acting on segment s0, is uncorrelated with motions
of other segments of the chain (see eqn.(2.23)). In eqn.(3.25), νT is the fre-
quency of constraint release on tethered chains and a0 is the mean distance
between entanglements. As follows from eqns.(2.2, 3.10, 3.24), the corre-
lator Φαβ(s0, s

′
0, t) can be expressed via the second moment of the BVPDF

f
(2)
T (b, s0|b′, s′0, t) as

Φαβ(s0, s
′
0, t) =

∫

R3

d3b

∫

R3

d3b′ bαb′β f
(2)
T (b, s0|b′, s′0, t) . (3.26)

Eqn.(3.26) shows that the two-point BVPDF f
(2)
T should also satisfy eqn.(3.25).

Note that for s0 6= s′0, the BVPDF f
(2)
T (b, s0|b′, s′0, t) can be written as a

product of two one-point BVPDF’s (see eqn.(3.7)). Therefore, substituting
eqn.(3.7) into eqn.(3.25) and separating variables, one finds the correspond-
ing equation of motion for the one-point BVPDF fT (b, s0, t)

∂fT (b, s0, t)

∂t
− νTa2

0
∂2fT (b, s0, t)

∂s2
0

= χ(t)fT (b, s0, t) , (3.27)

where χ(t) is a function of time alone. Integrating both sides of eqn.(3.27) over
all possible values of the bond vector and taking into account that fT (b, s0, t)
is normalized, we have that χ(t) = 0. Next, by multiplying both sides of
eqn.(3.27) by bαbβ and integrating over all possible values of the bond vector,
we arrive at the following equation of motion for ST

αβ due to CR

[
∂ST

αβ

∂t

]

CR

= νTa2
0
∂2ST

αβ

∂s2
0

, (3.28)

where use was made of eqn.(3.2). Since constraint release works independently
of and in parallel to convection and retraction, eqn.(3.28) explicitly specifies
the contribution of CR to the equation of motion for the correlator ST

αβ (see
eqn.(3.21)). As is seen, it has the form of a diffusion process with the coefficient
proportional to the CR frequency νT . The diffusion form of eqn.(3.28) implies
that constraint release leads to relaxation of initially oriented configurations

of tethered chains towards the isotropic one described by the tensor S
(eq)
αβ in

eqn.(3.3). In particular, according to eqn.(3.28), the characteristic relaxation
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time of the overall configuration of a tethered chain is of order Z2
T/νT (ZT is the

mean number of constraints per tethered chain), in agreement with the earlier
predictions of Verdier and Stockmayer [33]. This implies that after a sequence
of Z2

T jumps most of the tethered chains in the ensemble will completely renew
their tubes, and so their initial configurations will be ”forgotten”.

Attention must be paid to the fact that the correlator ST
αβ does not only de-

scribe the mean local orientation of the tethered chains, but also contains
information on their mean local stretch (see eqn.(3.23)). Therefore, the diffu-
sion form of eqn.(3.28) suggests that constraint release also leads to relaxation
of the local stretch via removal of a constraint on a ”tout” piece of the tethered
chain. Apparently, in the presence of CR, each tethered chain can restore its
equilibrium length by either retraction or by constraint release.

3.4 Contour length fluctuations

Due to its Brownian motion, a physical chain in the melt rapidly oscillates
within the mesh of the surrounding constraints. Since the tube (and so the
primitive path) of the chain only captures its time averaged behavior, the
Brownian oscillations lead to fluctuations in the length of the chain primitive
path. These fluctuations can be visualized as if the free end of the path
”moved” inwards and outwards the tube. When the end moves inwards the
corresponding portion of the initial tube near the end is vacated. When the
end moves outwards again, it is free to choose its direction so that the portion
of the initial tube is forgotten. Clearly, such an ”inward-outward” motion
results in a fast local relaxation of the initial tube near the end towards the
isotropic nonstretched configuration described by the tensor S

(eq)
αβ in eqn.(3.3).

Milner and McLeish [36] developed a quantitative molecular theory for the
dynamics of star polymer melts, for which contour length fluctuations (CLF)
are the principal mode of stress relaxation. Since each tethered chain can be
considered as an ”arm” of a larger star polymer molecule, their results can
directly be used here to calculate the contribution of CLF to the equation of
motion for ST

αβ. According to [36], the characteristic relaxation time τT (s0) of
segment s0 of the tube due to CLF is equal to the corresponding mean first
passage time needed to retract the end of the primitive path inside the tube a
distance equal to L0T − s0. Milner and McLeish showed that for segments s0
which satisfy L0T − s0 > a the relaxation time τT (s0) increases exponentially
with the square of the distance from the chain end

τT (s0) ≈ τ0T e1.5 ZT (1−s0/L0T )2 , (3.29)

where use has been made of the fact that due to fast retraction of the primitive
path at the free end, the corresponding stretch can be neglected so that the
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actual arclength ŝ(s0, t) = s0. For the time constant τ0T we take the Rouse
time TRT of tethered chains (see eqn.(2.17)). A more accurate prefactor, which
depends on s0, can be found in [36]. Given τT (s0), the equation of motion for
the correlator ST

αβ due to CLF can be written as (for s0 < L0T − a)

[
∂ST

αβ(s0, t)

∂t

]

CLF

= − 1

τT (s0)

[
ST

αβ(s0, t)− Seq
αβ

]
, (3.30)

Since contour length fluctuations work independently of other processes for
tethered chains, eqn.(3.30) explicitly specifies their contribution to the equa-
tion of motion for the bond vector correlator ST

αβ. Eqn.(3.30) shows that CLF
are especially important for segments of the tethered chains near the free end.
Besides that, eqn.(3.30) indicates that CLF may give a significant contribu-
tion to the stress relaxation for short (small ZT ) tethered chains, whereas for
long ones they can be neglected.

3.5 Results and discussion

Combination of all the contributions from eqns.(3.21, 3.28, 3.30) leads to the
following final equation of motion for the correlator ST

αβ of tethered chains

∂ST
αβ

∂t
= KI

αγS
T
βγ + KI

βγS
T
αγ + νTa2

0
∂2ST

αβ

∂s2
0

+ 2 ξ̄TST
αβ +

[ s0∫

0

dx ξ̄T (x, t)

]
∂ST

αβ

∂s0
− 1

τT

[
ST

αβ − Seq
αβ

]
.

(3.31)

This equation describes the evolution of the tethered chains in flow. It includes
all the major mechanisms inherent to the tethered chains in the melt, such
as convection, retraction, constraint release, and contour length fluctuations.
Attention must be paid to the fact that in the strict sense eqn.(3.31) is only
applicable to the ”inner” segments of the tethered chains which satisfy a <
s0 < L0T − a, where a is the step length of the primitive path. Despite the
fact that these segments do not feel the non-anisotropy caused by the wall,
their relaxation behavior is affected by the presence of the wall. Namely, due
to the fact that each tethered chain is attached to the wall, eqn.(3.31) does
not contain reptation, another stress relaxation mode inherent to unattached
linear polymer chains. In other words, due to the presence of the wall reptation
is prohibited for the tethered chains and thus do not enter eqn.(3.31).

The effect of the wall is especially strong for segments of the tethered chains
near the tethered end (s0 = 0). For these segments, eqn.(3.31) may contain
additional terms which arise from the non-anisotropy of the melt near the
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wall. The non-anisotropy should be taken into account for those segments of
the tethered chains which satisfy 0 < s0 < a, where a is the step length of the
primitive path or, in other words, the characteristic correlation length between
different segments of the chain contour (see the discussion after eqn.(3.7)). As
we will see later on, in order to quantify the stick-to-slip transition at the
polymer melt/die wall interface we only need to know the value of the correla-
tor ST

αβ averaged along the chain contour. This implies that in practice, since
a is much smaller than the chain length L0T , we can neglect the anisotropy
effects in the equation of motion for segments with 0 < s0 < a and still use
eqn.(3.31).

In contrast to the inner segments of the tethered chains, relaxation of segments
which satisfy L0T − a < s0 < L0T is mainly controlled by fast contour length
fluctuations and retraction. As discussed earlier, the single relaxation time
approximation (see eqn.(2.18)) used in the derivation of eqn.(3.31) may not
be applicable for these segments. However, similar to the non-anisotropy
effects considered above, in practice we can neglect the high order relaxation
modes of the local stretch in the equation of motion for these segments and
still use eqn.(3.31).
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Figure 3.2: Symmetrizing the flow.

In order to solve eqn.(3.31), we must also specify the boundary conditions for
ST

αβ. First, due to fast CLF motions of the free end of the tethered chains,
the corresponding average local configuration of the primitive path is isotropic
and non-stretched, and therefore the BVPDF fT (b, L0T , t) = δ(|b| − 1)/4π.
On the other hand, each tethered chain can be imagined as an ”arm” of a
larger polymer molecule attached to the wall in the middle and subjected to a
symmetric flow (see Figure 3.2). Then, as follows from symmetry arguments,
ST

αβ(s0, t) can be thought of as being an even function of s0. Notice that in a

case where the flow is antisymmetric one would receive that ST
αβ(0, t) is zero,

which is unphysical since the trace of ST
αβ(s0, t) is always equal to or larger
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than unity. From the above, we find that

ST
αβ(s0 = L0T , t) =

1

3
δαβ

∂ST
αβ(s0, t)

∂s0

∣∣∣∣
s0=0

= 0 . (3.32)

By recalling eqn.(3.23), one may conclude that the mean local stretch at the
attached end of the tethered chains is maximal, as expected.

Eqn.(3.31) extended with the boundary conditions for the correlator ST
αβ in

eqn.(3.32) forms a system of equations that enables us to calculate the local
stress in the interfacial layer (see eqn.(3.4)), provided that the corresponding

gradient velocity tensor ¯̄KI and the molecular parameters of the melt are
known. Another outcome of the model is the thickness h of the interfacial
layer. In order to calculate h, we again present each tethered chain in the
layer as a system of ZT + 1 beads connected by ZT bonds (see Figure 3.3).
At equilibrium, tethered chains are not stretched, and all the bonds have the
same length equal to the step length a. In a flow, however, each bond may
have its own length which can be written as aλ̂, where λ̂ is the stretch of
the bond. The orientation of the bond is described by its unit vector û. As
follows from Figure 3.3, if R̂y is the y component of the end-to-end vector R̂
of a tethered chain then the layer thickness h can be estimated as

h ≈
√

< R̂yR̂y >T . (3.33)

Note that R̂ can be presented as

R̂ = a0

ZT∑

i=1

b̂(i) , (3.34)

where b̂(i) is the bond vector of the i-th bond given by λ̂(i)û(i), where λ̂(i)
is stretch and û(i) orientation of the bond. From eqns.(3.33, 3.34) we have

h2 ≈
ZT∑
i=1

ZT∑
j=1

< b̂y(i)b̂y(j) >T , (3.35)

where b̂y(i) is the y component of b̂(i). At equilibrium, there are no cor-
relations between neighboring bonds, and the bonds move independently of
each other (see the discussion after eqn.(3.7)). Recalling that in this case the
BVPDF fT is isotropic and all the bonds have the same length a, one can
find that at rest the correlator < by(i)by(j) >T= a2δij/3. From eqn.(3.35), the
equilibrium thickness h0 of the interfacial layer is then given by

h0 ≈
√

ZTa2

3
. (3.36)
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In the presence of flow, the correlator < by(i)by(j) >T does not vanish for
i 6= j. However, in a regime where the tethered chains are stretched only
slightly it decreases very rapidly with |i− j|, the distance between segments.
Therefore, neglecting long-range correlations in eqn.(3.35), the thickness h of
the interfacial layer can finally be written as

h2(t) ≈
ZT∑
i=1

< by(i)by(i) >=
3h2

0

L0T

L0T∫

0

ds0 ST
yy(s0, t) , (3.37)

where a transition has been made from the discrete to the continuous descrip-
tion of the tethered chains. The coefficient before the integral assures that at
rest h = h0. Eqn.(3.37) shows explicitly that the thickness h, similar to the
wall stress σI

αβ (see eqn.(3.4)), is a function of the bond vector correlator ST
αβ

averaged along the chain contour. This in turn implies that both σI
αβ and h

can be expressed via second order moments of the BVPDF fT (b, s0, t).
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Figure 3.3: Thickness of the interfacial layer.

To demonstrate the developed theory, eqn.(3.31) has been analyzed numer-
ically for a simple case of steady shear flow. The direction of the flow will
be denoted by the X-axis, whereas the normal to the wall by the Y -axis. In
this case, the gradient velocity tensor KI

αβ has only one non-zero component

KI
xy, which is equal to the shear rate γ̇w in the interfacial layer. The model

parameters are: the mean number ZT of constraints per tethered chain, the
Rouse time TRT of tethered chains, the mean entanglement spacing a0, the
equilibrium primitive path length L0T , the elastic modulus G0I of the layer,
and the frequency νT of constraint release. Since we have not yet specified an
explicit form of νT , in this section it will be regarded as a free parameter.

As discussed earlier, eqn.(3.31) is a nonlinear integro-partial differential equa-
tion. The procedure that were used to solve eqn.(3.31) is briefly discussed
below. First, the parametrization interval [0, L0T ] of the tethered chains is
discretized into N steps. For each pair of αβ, eqn.(3.31) extended with the
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boundary conditions (3.32) then turns into a nonlinear system of coupled alge-
braic equations for the components of the bond vector correlator {ST

γδ(xi)}i=N
i=1

(γ, δ = x, y, z). This system can be symbolically written in the following form

Fαβ

(
{ST

γδ(xi)}i=N
i=1

)
= 0 , γ, δ = x, y, z (3.38)

In general, Fαβ has 9N arguments. In the shear flow, the number of inde-
pendent variables reduces to 4N . In the presence of flow, components of the
bond vector correlator ST

αβ (and accordingly functionals Fαβ) are coupled via

the gradient velocity tensor KI
νµ, which implies that equations (3.38) must be

solved simultaneously. A solution of the system of equations for Fαβ is found
by the conventional Newton method with an adjustable step. The obtained
solution is then integrated along the chain contour, in order to calculate the
components of the wall stress tensor and the layer thickness h. The steady
shear model predictions for the thickness h and the wall shear stress σI

xy are
shown in Figure 3.4 and Figure 3.5, respectively.

Figure 3.4: Layer thickness vs wall
shear rate for ZT = 20.

Figure 3.5: Wall shear stress vs wall
shear rate for ZT = 20.

In Figure 3.4, the model predictions for the thickness h are shown versus the
wall shear rate γ̇w for different values of νT . As seen, h decreases monotonically
with γ̇w. Clearly, a strong enough flow may cause a significant orientation of
the tethered chains, which is visualized as a decrease in h. An increase in
the frequency νT of constraint release decreases the amount of chain orienta-
tion and therefore leads to an increase in h. Apparently, it is the strength
of constraint release, as measured by the frequency νT , that determines the
resistibility of the tethered chains to the flow.
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In Figure 3.5, the wall shear stress σI
xy is presented versus the wall shear rate

γ̇w for different values of νT . As is seen, σI
xy is a nonmonotonous function

of γ̇w. At small shear rates, an increase in γ̇w results in an increase in the
drag force exerted on the tethered chains by the flow, which in turn leads to
an increase in the corresponding tensile force acting along the contour of the
tethered chains. The stress σI

xy induced in the tethered chains is proportional
to this tensile force and therefore also increases with γ̇w.

At higher shear rates, constraint release is no longer able to resist strong
convection so that the tethered chains begin to align with the flow. In this
case, the flow starts to lose its ”grip” on the tethered chains. This amounts
to a decreases in the drag force on the chains, and ultimately leads to a
decrease in σI

xy. The maximum of σI
xy in Figure 3.5 then corresponds to a

shear rate γ̇∗w at which convection and constraint release balance each other.
As a consequence, an increase in the frequency νT shifts the maximum to
higher shear rates, as shown in Figure 3.5. For shear rates γ̇w > γ̇∗w, σI

xy
monotonically decreases with γ̇w. The non-monotonicity of the dependence of
σI

xy on γ̇w was also confirmed by direct numerical simulations in [37].

So far, the frequency νT of constraint release was regarded as a free parameter.
In reality, νT is a function of the flow rate and the molecular parameters of the
melt. To show this, let us consider a single tethered chain in the interfacial
layer. In general, it has entanglements with other tethered and bulk chains
present in the layer. This implies two sorts of constraints on the chain (see
Figure 3.6). Those of the first sort are imposed by the bulk chains, and can
be released via their reptation (the so-called thermal CR) or retraction (the
so-called convective CR). Constraints of the second sort are imposed by other
tethered chains and can only be released via thermal fluctuations of their free
ends (the so-called arm retraction).

 

 -    tethered 

    -    bulk 

Figure 3.6: Two sorts of constraints on a tethered chain.

Let τB and τT be the mean lifetime of a bulk and a tethered constraint, respec-
tively. As mentioned in the previous chapter, the thickness of the interfacial
layer is normally much smaller than the length of bulk molecules. This means
that most of the bulk chains present in the layer are actually short fragments of
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unattached polymer molecules from the bulk. Since the bulk and the tethered
constraints are imposed by different sorts of polymer chains and therefore
relax independently, the CR frequency νT of tethered chains can finally be
written as

νT = τ−1
B φZ + τ−1

T (1− φZ) , (3.39)

where φZ is the mean fraction of bulk constraints per tethered chain. Note that
τB is determined by the motion of polymer molecules in the bulk and therefore
is a function of the bulk flow rate. The explicit dependence of the frequency
νT on τB implies that the dynamics of the tethered chains is strongly coupled
to the dynamics of the polymer molecules in the bulk. Therefore, in order to
calculate νT explicitly and thus complete eqn.(3.31), we must also study the
dynamics of unattached polymer molecules subjected to a flow. This is the
subject of the next chapter.





Chapter 4

Dynamics of bulk molecules

In this chapter, the dynamics of molecules in the bulk is studied in the presence
of flow. As in the case of tethered chains, the dynamics of an ensemble of bulk
chains will be described by the corresponding bond vector correlator. The
resulting equation of motion for this correlator accounts for such mechanisms
for the bulk chains as convection, retraction, constraint release, contour length
fluctuations, and reptation. Based on a simple geometrical analysis, we also
calculate the frequency of constraint release in the bulk.

4.1 Bond vector correlator of bulk chains

Similar to tethered chains, the dynamics of an ensemble of bulk molecules will
be described by the corresponding bond vector correlator SB

αβ given by

SB
αβ(s0, t) =< b̂α(s0, t)b̂β(s0, t) >B (4.1)

where b̂α(s0, t) is the α component of the bond vector b̂(s0, t) of a bulk chain
and < . . . >B denote averaging over the ensemble. The equilibrium primitive
path length of the bulk molecules will be denoted as L0B. Note that in the
case of bulk chains, it is convenient to choose the parametrization interval as
−L0B/2 ≤ s0 ≤ L0B/2. Then, as follows from symmetry arguments and the
fact that SB

αβ(s0, t) involves averaging over the ensemble, SB
αβ(s0, t) is an even

function of s0. In this case, segments s0 = ±L0B/2 and s0 = 0 correspond to
the free ends and the center of the chain, respectively. Once the correlator
SB

αβ of the ensemble is known, the local stress induced in the bulk chains by
the flow can be written as (compare with eqn.(3.4))

σB
αβ(t) =

G0B

L0B

L0B/2∫

−L0B/2

ds0 SB
αβ(s0, t) , (4.2)

39
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where G0B is the elastic modulus of the bulk. Its explicit form can be found
in eqn.(5.10).

4.2 Reptation

Like tethered chains, bulk ones undergo convection, retraction, constraint re-
lease, and contour length fluctuations (CLF). In addition, they can ”reptate”.
As well as CLF, reptation stems from the Brownian motion of the physical
chain in the melt. Since the lateral motions of the physical chain are severely
restricted by its neighbors, its fast Brownian oscillations will eventually lead
to a curvilinear diffusion of the primitive path along itself (see Figure 4.1).
This motion, called reptation, is the principal stress relaxation mode for linear
entangled polymers in the linear viscoelastic regime. The notion of reptation
was first introduced by de Gennes [38] for the diffusion of a linear polymer
inside a strongly cross-linked gel, and afterwards has been extended by Doi
and Edwards [31] to polymer melts and highly concentrated solutions.

Figure 4.1: Reptation.

4.3 Equation of motion for the correlator SB
αβ

Since bulk chains undergo the same mechanisms as tethered ones, in the ab-
sence of reptation the equation of motion for SB

αβ(s0, t) has exactly the same

form as the one for ST
αβ (see eqn.(3.31)). Reptation ”works” independently

of and in parallel to other processes for bulk chains. This implies that in
order to calculate the contribution of reptation to the equation of motion for
SB

αβ(s0, t), we may study reptation separately. Following the ideas proposed by
de Gennes [38], we will describe reptation as the one-dimensional diffusion of

the primitive path. Let ∆ζ̂(s0, t) be the physical shift of segment s0 of a bulk
chain along the chain contour over a small time interval ∆t due to reptation.
Due to the Brownian nature of reptation, ∆ζ̂(s0, t) is stochastic and can be
modelled by a diffusion process. Therefore, we have

〈∆ζ̂〉 = 0 〈∆ζ̂
2〉 = 2Dc∆t , (4.3)
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where Dc is the diffusion coefficient of reptation. The Brownian motion of a
physical chain in a dilute solution is known to be successfully modelled by a
Rouse chain [31] undergoing local random forces. The Rouse chain consists of
a series of beads connected by elastic springs. The springs represent the con-
nectivity of the physical chain. Apart from elastic forces imposed by adjacent
springs, each bead experiences a stochastic force which describes the effect of
motions of other chains on the bead. The amplitudes and orientations of the
stochastic force on different beads are assumed to be uncorrelated with each
other. Reptation of the primitive path corresponds to the overall translation
of the physical chain along the tube, and therefore can be interpreted as an
one-dimensional Rouse process. So the parameter Dc in eqn.(4.3) can be iden-
tified with the diffusion coefficient of the Rouse motion in one dimension, and
therefore is given by (see, for example, Doi and Edwards [31])

Dc =
kBT

Nς
, (4.4)

where N , ς and T are the number of monomers per polymer chain, the
monomeric friction coefficient, and the melt temperature, respectively.
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Figure 4.2: Motion of a bulk chain due to reptation.

As follows from Figure 4.2, the position vector R̂(s0, t) of segment s0 of a
reptating bulk chain satisfies the following equation of motion

R̂(s0, t + ∆t) = R̂
(
s0 + ∆ζ̂0, t) , (4.5)

where ∆ζ̂0 is a shift of segment s0 along the parametrization axis due to
reptation over the time interval between t and t+∆t. According to eqn.(2.1),

for small ∆t the shift ∆ζ̂0(s0, t) is related to the corresponding physical shift

∆ζ̂(s0, t) along the chain contour (see eqn.(4.3)) via

∆ζ̂0(s0, t) =
∆ζ̂(s0, t)

λ̂(s0, t)
,

where λ̂(s0, t) is the local stretch at position s0 and time t. Differentiating
both sides of eqn.(4.5) with respect to s0 and taking into account eqn.(2.2),
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one can find that the equation of motion for the bond vector b̂(s0, t) of the
bulk chain due to reptation is given by

b̂(s0, t + ∆t) =

[
1 +

∂∆ζ̂0

∂s0

]
b̂(s0 + ∆ζ̂0, t) . (4.6)

According to eqn.(4.3), the characteristic time TRept needed for the bulk chain
to reptate a distance of order its length L0B is of order L2

0B/Dc. On the
other hand, the retraction time TRB of bulk chains is given by eqn.(2.17) with
L0T replaced with L0B/2. From eqn.(2.17) and eqn.(4.4) it then follows that
TRB/TRept ∝ Ne/N = 1/ZB, where N is the number of monomers per bulk
chain, Ne the mean number of monomers between constraints, and ZB the
mean number of constraints per bulk chain. Since for a real polymer melt ZB is
usually rather large, the characteristic time scale of retraction is much smaller
than that of reptation. Therefore, in the presence of retraction, reptation can
be considered as a simultaneous and coordinated motion of all the segments
of the chain, so the chain moves in the melt as a whole. This implies that
on the time scale of reptation ζ̂0 is independent of s0 so that the second term
in the square brackets on the RHS of eqn.(4.6) can be neglected. Moreover,
reptation is the dominant relaxation mechanism for the bulk chains in the
absence of flow or for flows whose rate is smaller than T−1

Rept. In flows whose

rate is larger than T−1
RB (where chain stretch becomes essential), it gives only

a minor contribution to the stress relaxation compared to constraint release
and retraction, and can be neglected. So in flow regimes where reptation is
important the local stretch λ̂ ≈ 1 and ∆ζ̂0 in eqn.(4.6) can be replaced with

∆ζ̂. Finally, substitution of eqn.(4.6) into eqn.(4.1) yields

SB
αβ(s0, t + ∆t) = SB

αβ(s0, t)+ < ∆ζ̂
∂b̂α

∂s0
b̂β >B +

1

2
< (∆ζ̂)2∂

2b̂α

∂s2
0

b̂β >B +

< ∆ζ̂
∂b̂β

∂s0
b̂α >B + < (∆ζ̂)2∂b̂α

∂s0

∂b̂β

∂s0
>B +

1

2
< (∆ζ̂)2∂

2b̂β

∂s2
0

b̂α >B ,

where terms of order ∆ζ̂3 and higher were neglected. Taking the limit ∆t → 0
and keeping in mind that ∆ζ̂ is a zero-mean noise uncorrelated with the
corresponding bond vector at the same point, one can find that the equation
of motion for SB

αβ due to reptation has the form

[
∂SB

αβ

∂t

]

rept

= Dc

∂2SB
αβ

∂s2
0

. (4.7)

It is seen that the contribution of reptation to the equation of motion for
SB

αβ has the form of a diffusion process with the coefficient Dc defined in
eqn.(4.4). The diffusion form of eqn.(4.7) implies that, similar to constraint
release, reptation leads to relaxation of initially oriented configurations of bulk
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chains towards the isotropic one described by the tensor S
(eq)
αβ in eqn.(3.3).

Specifically, reptation constantly ”destroys” and ”creates” again portions of
the tube near the chain ends, and thereby constantly renews the tube.

In order to solve eqn.(4.7), we also need to specify the boundary conditions
for the correlator SB

αβ(s0, t). As found earlier for tethered chains (see the
discussion after eqn.(3.31)), due to fast CLF motions of the free end of a
polymer chain, the corresponding BVPDF is isotropic and the local stretch is
relaxed. Therefore, SB

αβ(s0, t) satisfies the following boundary conditions

SB
αβ(±L0B/2, t) =

1

3
δαβ . (4.8)

From eqns.(4.7, 4.8) it follows that reptation is described by the set of relax-
ation times Tp:

Tp =
L2

0B

π2Dcp2 , p = 1, 3, 5, . . . (4.9)

The longest of them (p = 1) is usually referred to as the reptation time and
will be denoted by TDB. According to eqn.(4.7), TDB can be regarded as the
characteristic time necessary for a bulk chain to completely renew its tube by
reptation. In other words, TDB is the characteristic time needed for the bulk
chain to reptate a distance of order its length L0B.

Finally, taking into account eqns.(3.31, 4.7), we can write down the equation
of motion for the correlator SB

αβ of bulk chains (for 0 < s0 < L0B/2)

∂SB
αβ

∂t
= KB

αγS
B
βγ + KB

βγS
B
αγ +

[
Dc + νBa2

0

]
∂2SB

αβ

∂s2
0

+ 2ξ̄BSB
αβ +

[ s0∫

0

dx ξ̄B(x, t)

]
∂SB

αβ

∂s0
− 1

τB
(SB

αβ − Seq
αβ) .

(4.10)

Here KB
αβ is the gradient velocity tensor for the polymer bulk. In a shear

flow, KB
αβ has only one non-zero component equal to the bulk shear rate γ̇b.

The third term on the RHS includes both reptation and constraint release.
Despite having a different origin, both contributions have the form of a diffu-
sion process. The diffusion due to reptation corresponds to the axial motion
of the chain along the tube, whereas the diffusion due to CR represents the
lateral motion. The last term on the RHS of eqn.(4.10) arises from contour
length fluctuations (CLF). In addition to reptation, which describes the overall
translation of the physical chain along the tube, CLF allow a more detailed
description of its Brownian motion in the melt. As discussed earlier, CLF
lead to local relaxation of the tube near the free ends of the chain towards
the isotropic nonstretched configuration described by the tensor tensor S

(eq)
αβ



44 Chapter 4. Dynamics of bulk molecules

in eqn.(3.3). Following eqn.(3.29), the mean relaxation time τB(s0) of segment
s0 of the tube is given by (for s0 < L0B/2− a)

τB(s0) ≈ 1

4
TRB e0.75 ZB (1−2s0/L0B)2 , (4.11)

where ZB is the mean number of constraints per bulk chain. In eqn.(4.11), for
the time constant we used a quarter of the Rouse time TRB of bulk molecules
(see eqn.(2.17) where L0T is replaced with L0B/2). A more accurate prefactor,
which depends on s0, can be found in [39].

The forth and fifth terms on the RHS of eqn.(4.10) pertain to retraction where
ξ̄B(s0, t) is the mean local retraction rate of the primitive path at s0 and time
t. In the single relaxation time approximation (see eqn.(2.18)), ξ̄B(s0, t) can
be written as follows

ξ̄B(s0, t) ≈ −λ̄B(s0, t)− 1

TRB
, TRB =

ςNeL
2
0B

3π2kBT
. (4.12)

Here λ̄B is the mean local stretch and TRB is the Rouse time of bulk molecules.
From eqn.(2.17) and (4.12) it follows that the Rouse TRB of a bulk molecule
is four times larger than the Rouse time TRT of a tethered chain with the
same number of monomers. As was mentioned earlier, the bond vector cor-
relator SB

αβ contains information on both the mean local stretch and mean
local orientation of the bulk molecules. In fact, as follows from eqn.(3.23), in
a flow regime where the bulk molecules are stretched only slightly we have
that λ̄B ≈

√
SB

αα, where summation is implied over the repeated indices. So
eqn.(4.10) is a nonlinear integro-partial differential equation. As was discussed
earlier, the single relaxation time approximation may not hold for segments of
the bulk chain near the free ends. However, as we will see later on, in practice
we are only interested in the value of the correlator SB

αβ averaged along the
chain contour. This implies that we can neglect high order relaxation modes
of the local stretch in the equation of motion for these segments and instead
use eqn.(4.10). A further discussion of eqn.(4.10) and its comparison with the
existing constitutive theories for the bulk chains can be found in [26].

4.4 Constraint release in the bulk

In order to complete eqn.(4.10), we must provide an explicit expression for νB,
the frequency of constraint release of bulk chains. In the absence of flow, con-
straint release is driven by reptation. In what follows, it will be referred to as
thermal constraint release (TCR). In the presence of flow, another mechanism
may give a contribution to constraint release. In this case, each bulk chain
undergoes a certain flow-induced drag force which deforms and stretches it.
Due to its connectivity, the chain constantly retracts back, in order to restore
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its equilibrium length. A simple way to visualize this motion is to imagine a
polymer chain pulled by one of its ends through the melt. If one of the chain
ends moves (within the mesh of constraints) over a distance of order the mean
entanglement spacing a0, it will release one (if entanglements are pairwise con-
tacts) or more constraints on other chains. Flow-induced constraint release
driven by retraction of polymer chains is commonly referred to as convective
constraint release (CCR). The importance of CCR in the dynamics of polymer
melts was recognized by Marrucci [40].

Let us first calculate the mean lifetime τ of an entanglement in the melt in
the absence of flow. For certainty, we assume that all the entanglements in
the melt are pairwise contacts between separate polymer chains. At rest, the
entanglements are destroyed by reptation of polymer chains. Let δt be the
average time needed for a bulk chain to reptate in the melt a distance equal
to the mean entanglement spacing a0. In the absence of CLF, reptation of
the bulk chain during the time interval 0...δt will release (on average) one
constraint on another chain. The number N(t = δt) of entanglements per
unit volume of the melt at time t = δt is then given by

N(t = δt) = N(t = 0)− n , (4.13)

where the entanglements ”creation” mechanism has been ignored. In Eq.
(4.13), n is the concentration of the bulk chains in the melt and N(t = 0) =
nZB/2 is the number of the entanglements per unit volume of the melt at
time t = 0. On the other hand, if τ is the mean lifetime of an entanglement
in the melt, then we have that

N(t = δt) = N(t = 0) · e−t/τ . (4.14)

By comparing Eq. (4.13) with Eq. (4.14), one may conclude that

τ =
ZB

2
δt . (4.15)

According to eqn.(4.3), δt ≈ a2
0/2Dc, so that finally we have

τ ≈ ZB

2

a2
0

2Dc
. (4.16)

Once τ is known, one can readily calculate the frequency νB of thermal con-
straint release in the melt. Eqn.(4.16) specifies the average lifetime of a con-
straint on a bulk molecule imposed by another bulk chain. Note that some of
the bulk molecules may have entanglements with tethered chains and therefore
may have constraints which correspond to the tethered chains. However, since
the thickness of the interfacial layer is much smaller than the length of the
bulk molecule, the average fraction of the ”tethered” constraints on each bulk
chain is small and can be neglected. Therefore, from eqn.(4.16) the frequency
νB of TCR can be written as

νB =
4Dc

ZBa2
0

(4.17)
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Substitution of eqn.(4.17) into eqn.(4.10) yields that the corresponding dif-
fusion coefficient of TCR is ZB times smaller than the one of reptation. So
for long monodisperse polymer chains thermal constraint release plays only a
minor role in the melt dynamics compared to reptation.

In a flow, constraints on bulk chains can also be released via retraction of
surrounding molecules (CCR). CCR works in parallel to and independently of
thermal constraint release. To calculate the mean lifetime of an entanglement
in the melt due to CCR, let us recall eqn.(4.15). In the case of CCR, δt is the
average time necessary for the end of a bulk chain to move (along the chain
contour) a distance a0 due to retraction. If υ is the average velocity between
the chain end and the tube, then δt = a0/υ. The velocity υ is equal to the
retraction velocity of the end along the chain contour and therefore can be
expressed in terms of the corresponding mean local retraction rate ξ̄B(s0, t) as
follows (see also the discussion after eqn.(2.10))

υ =

L0B/2∫

0

ds0 |ξ̄B(s0, t)| , (4.18)

where we took into account that ξ̄(s0, t) < 0. From eqn.(4.18) we then find

δt = a0

[ L0B/2∫

0

ds0 |ξ̄B(s0, t)|
]−1

. (4.19)

By substituting eqn.(4.19) into eqn.(4.15) and taking into account that ther-
mal and convective constraint release work independently of each other, we
finally have that in the presence of flow the mean lifetime τ of an entanglement
in the melt can be written as follows

τ−1 =
2

ZB

[
2Dc

a2
0

+ 2
1

a0

L0B/2∫

0

ds0 |ξ̄B(s0, t)|
]

, (4.20)

where the extra prefactor 2 before the CCR term stems from the fact that ev-
ery bulk chain has two free ends which independently contribute to convective
constraint release. Finally, from eqn.(4.20) the frequency of constraint release
in the melt in the presence of flow is given by

νB ≈ 4Dc

ZBa2
0

+ 2
2

L0B

[ L0B/2∫

0

dx |ξ̄B(x, t)|
]

, (4.21)

where we used that a0 ≈ a, where a is the step length of the primitive path
equal to L0B/ZB. The frequency νB in eqn.(4.21) represents a combined action
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of thermal and convective constraint release. Note that eqn.(4.21) does not
account for a possible effect of CLF on thermal constraint release in the melt.
Namely, CLF enhance reptation of polymers in their tubes and consequently
decrease the lifetime τ of an entanglement in the melt in comparison to the
original reptation picture. Following Doi and Edwards [31], inclusion of CLF
into eqn.(4.21) amounts to an increase of the reptation diffusion coefficient
Dc by the factor (1 + C/

√
ZB)2, where C is a constant. Direct numerical

simulation of reptation and CLF by Likhtman and McLeish [41] give C ≈ 1.52
(where the difference in the notations has been taken into account).

According to eqn.(4.21), the frequency of CCR is proportional to the mean re-
traction rate of the bulk chains averaged along the chain contour. Eqn.(4.21)
shows explicitly that CCR originates from retraction and vanishes in the ab-
sence of flow, where the chains are not stretched. Note that the single re-
laxation time approximation (see eqn.(4.12)) may not be applicable for chain
segments near the free ends (see the discussion after eqn.(2.18)). Since it is
these segments that give the major contribution to the integral in eqn.(4.21),
in eqn.(4.21) one has to use the exact expression for the retraction rate ξ̄B(s0, t)
which accounts for the fast relaxation modes of the local stretch. As follows
from eqn.(2.14) and eqn.(4.4), ξ̄B(s0, t) is given by

ξ̄B = 3ZBDc
∂2λ̄B

∂s2
0

, (4.22)

where λ̄B is the mean local stretch of a bulk chain. In the linear viscoelastic
regime, i.e., at flow rates less than the reciprocal reptation time TDB (see
eqn.(4.9)), bulk chains are hardly stretched. From eqn.(4.22) and eqn.(4.21)
it then follows that the CCR frequency is small. Clearly, in this regime CCR
plays only a minor role in the melt dynamics compared to reptation and
convection, and can be ignored. However, at higher flow rates, when chain
stretch becomes essential, the CCR frequency can be of order or even larger
than T−1

BD. In this regime, CCR becomes an important relaxation mechanism
for bulk chains. The important role of CCR in the dynamics of polymer
melts was first recognized by Marrucci [40]. He pointed out that in slow flows
convective constraint release is a slow, and perhaps not important, mechanism
for monodisperse polymer melts. However, in flows with a rate larger than
T−1

DB, constraints imposed on a bulk chain may be swept away rapidly by the
flow. In view of eqn.(2.10), we can rewrite the CCR frequency as

νB = 2
2

L0B

L0B/2∫

0

dx

[
Kαβ < ûαûβλ̂ >B −∂λ̄B

∂t

]
. (4.23)

As is seen, νB contains two contributions. In order to explain their origin, let
us imagine a chain which is pulled by one of its ends through the melt. If the
chain is inextensible, then the average velocity between the chain and the melt
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is equal to Kαβ< ûαûβ >B (where the bar denotes averaging along the chain
contour), which is the projection of the mesh velocity on the chain contour.
This corresponds to the first term on the RHS. In the presence of stretch,
this motion is also accompanied by retraction which provides an additional
velocity between the chain and the melt (the second term).

4.5 Results and discussion

Eqn.(4.10) extended with eqn.(4.21) was analyzed numerically using the con-
ventional Newton method for solving systems of nonlinear equations. The
numerical procedure of solving nonlinear integro-partial differential equations
similar to eqn.(4.10) was discussed earlier in Chapter 3. Attention must be
paid, however, to the fact that in eqn.(4.10) the frequency νB of constraint
release is now a function of the bond vector correlator SB

αβ (via the mean local
stretch in eqn.(4.23)), and is not a free parameter. The model predictions for
various flow histories are presented in Figs.(4.3-4.6).

0.01 0.1 1
0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

B

B
yy

B
xx

G0

σσ −

B
B
xy G0/σ

1/ −
RBB Tγ�

Figure 4.3: Shear stress and first normal
stress difference vs shear rate for ZB =
30. The dotted lines are predictions for
inextensible chains.

Figure 4.4: Mean chain lengthening vs
shear rate for different ZB.

In Figure 4.3 and Figure 4.4, the steady shear predictions are shown. In Fig-
ure 4.3, we plot the bulk shear stress σB

xy and the first normal stress difference

N1 = σB
xx − σB

yy as functions of the shear rate in the bulk γ̇B. It is seen that

both σB
xy and N1 increase monotonically with γ̇B, and have three different

regimes, in accordance with experimental observations [42, 43]. At low shear
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rates γ̇B < T−1
DB, there is a linear viscoelastic regime in which σB

xy ∝ γ̇B and

N1 ∝ γ̇2
B, similar to the behavior predicted by the reptation model for inex-

tensible chains of Doi and Edwards [31]. In this regime, it is convection and
reptation that govern the dynamics of the bulk chains, whereas the contribu-
tion of constraint release is small. Moreover, in this regime polymer chains are
hardly stretched so that the predictions of the ”full” theory with chain stretch
and a theory for inextensible chains (eqn.(4.10) where TRB → 0) coincide. In
the nonlinear regime T−1

DB < γ̇B < T−1
RB, the shear stress σB

xy increases only
slightly with γ̇B, whereas N1 continues to grow rapidly. As mentioned earlier,
in this regime CCR starts to play an important role in the dynamics of the
bulk chains, preventing their orientation by the flow. Omission of CCR leads
to an excessive chain alignment with the flow and therefore to the unrealis-
tic behavior in which σB

xy ∝ γ̇−0.5
B and N1 approaches a constant value (see,

for example, Doi and Edwards [31] and Marrucci and Grizzuti [44]). In the
nonlinear regime, omission of stretch leads to an underestimate of the actual
values of σB

xy and N1. Near the shear rate γ̇B ≈ T−1
RB the slopes of both curves

in Figure 4.3 again become steep due to significant chain stretch. The system
enters the third regime in which stretch effects become dominant.

Figure 4.4 shows the mean chain lengthening λ =< L̂ >B /L0B versus the bulk
shear rate γ̇B for different molecular weights M of bulk chains (we remind that
ZB is proportional to M). In the linear viscoelastic regime, the bulk chains are
hardly stretched. As follows from eqn.(4.10), in this regime λ = 1+O(γ̇2

BT 2
RB).

In the nonlinear regime T−1
DB < γ̇B < T−1

RB, the shear stress σB
xy is nearly

independent of γ̇B (see Figure 4.3). From eqn.(4.10) it then follows that in
this regime λ increases linearly with γ̇B, as depicted in Figure 4.4. Written as
functions of the dimensionless shear rate γ̇BTBR, all the curves corresponding
to different molecular weights superimpose to a single one. Since TRB ∝ Z2

B
(see eqn.(4.12)), this implies that λ ∝ Z2

B, and for a given γ̇B longer chains
are more stretched, as expected. Figure 4.4 shows explicitly that the chain
stretch becomes especially important as γ̇B approaches the reciprocal Rouse
time T−1

RB. Note that at γ̇B = T−1
RB the bulk chains have approximately 15%

stretch, whatever the molecular weight.

In Figure 4.5 and Figure 4.6, the model predictions are shown for transient
flows. In this case, one has to solve time dependent equation (4.10) with
appropriate initial conditions. To do so, an implicit time integration scheme
has been implemented. At each time step, this scheme requires a solution
of a system of nonlinear integro-partial differential equations similar to that
obtained in steady shear flows. Figure 4.5 shows early time relaxation of the
bulk shear stress σB

xy after the cessation of a steady shear flow. The initial

conditions for σB
xy are thus given by the corresponding values of the steady-

shear stress. As found, the curves corresponding to initial shear rates γ̇B

much smaller than T−1
RB nearly merge which implies that the stress relaxation

is independent of the ”prior” shear rate. In this regime, bulk chains are not
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Figure 4.5: Early time relaxation of shear
stress, normalized by its initial value at
steady state, versus time after cessation of
steady-state shear flow for different prior
shear rates. ZB = 30.

Figure 4.6: Relaxation of dimensionless
shear modulus G = 3σB

xy/(γG0B) versus
time after step shear strains of different
magnitudes γ. ZB = 30.

stretched so that relaxation of σB
xy can only be associated with relaxation of

configurations of the bulk chains initially aligned by the flow due to reptation.
Note that after the reptation time TDB most of the bulk chains will ”renew”
their tubes by reptation. Due to the Brownian nature of reptation, ”new”
configurations of the bulk chains are uncorrelated with those at time t = 0 so
that the corresponding BVPDF at t = TDB becomes isotropic. The isotropic
BVPDF corresponds to the diagonal bond vector correlator (see eqn.(3.3))
and thus zero shear stress (see eqn.(4.2)). Therefore, after TDB the initial
shear stress σB

xy in the melt is completely relaxed.

At higher shear rates, when the bulk chains are stretched prior to the cessation
of the flow, the relaxation of the shear stress is a two step process. First, on
the time scale of order TRB, it is only governed by retraction. In other words,
the bulk chains shrink to acquire their equilibrium length. Note that in this
time interval the rate of stress relaxation increases with γ̇B, similar to the
behavior observed in experiments [45]. That is to say, the more chains are
stretched, the faster they relax their stress. This is due to the influence of
chain stretch on the rate of CCR. According to eqn.(4.23), the CCR frequency
νB is proportional to the mean local stretch λ̄B, which is in turn proportional
to the bulk shear rate γ̇B (see Figure 4.4).

Attention must be paid to the fact that due to more effective constraint re-
lease, after time TRB chains that initially were more stretched are less oriented
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than those at smaller shear rates, and therefore show smaller amounts of the
shear stress. After time TRB, the shear stress decays at the same rate for
all the curves with different γ̇B. Clearly, in this regime the chain stretch has
completely relaxed so that the bulk chains continue to randomize their orien-
tations via reptation alone. Note that in the case of inextensible chains one
would expect that the stress relaxation rate via CCR is independent of the
bulk shear rate γ̇B prior the cessation.

In Figure 4.6, the model predictions are shown for a case of step shear defor-
mation. Figure 4.6 shows relaxation of the shear modulus G = 3 σB

xy/(γG0B)
after a step shear of various magnitudes γ. The melt is assumed to be at equi-
librium prior to the onset of deformation. After a small strain step, the bulk
chains are hardly stretched so that the shear stress relaxes via reptation. In
contrast, after a large strain step the bulk chains are stretched significantly so
that at first the shear stress decays via relaxation of stretch. At larger times
the stress relaxation is again governed by reptation. Such a ”reptational”
regime of the stress relaxation has been successfully described by the repta-
tion model for inextensible chains of Doi and Edwards [31]. They found that
for t > TRB all the curves G(γ, t) pertaining to different values of the strain
γ (see Figure 4.6) can be superposed into a single one by dividing G(γ, t) by
the corresponding value of the so-called damping function h(γ) [31]. Figure
4.6 shows that an explicit form of the dumping function h(γ) can readily be
inferred from the model predictions.

Eqn.(4.21) shows that in the presence of flow the frequency νB of constraint
release in the bulk is not only a function of the molecular parameters of the
melt, but also a function of the bond vector correlator SB

αβ of bulk chains
(via the local stretch). This implies that calculation of νB amounts to solving
the equation of motion for SB

αβ given by eqn.(4.10). On the other hand, as
we discussed earlier, νB is the entry parameter for the equation of motion of
tethered chains given by eqn.(3.31). From the above, one may conclude that
in order to quantify the dynamics of the tethered chains both eqn.(4.10) and
eqn.(3.31) must be solved simultaneously. In the next chapter, we will further
discuss this system and its possible applications.





Chapter 5

Slip due to disentanglement

In the previous chapters, we derived the equations of motion for bulk and teth-
ered chains and established that in reality they are coupled through constraint
release. These equations constitute of a system of equations which governs the
overall flow in the die, including the polymer bulk and the interfacial layer.
This system contains information about the polymer flow in the vicinity of
the wall and therefore can further be used to calculate the fluid velocity at the
polymer melt/die wall interface. In this chapter, this system will be solved
in a case of parallel plate geometry for which precise experimental data on
slip are available. Hereafter, we will ignore possible desorption of the tethered
chains from the wall.

5.1 Parallel plate rheometer

A simple sketch of a parallel plate rheometer is shown in Figure 5.1. It is
a controlled shear rate apparatus in which a homogeneous polymer melt is
confined between two metal plates. The lower plate is fixed and will be referred
to as ”wall” throughout the text. The upper plate is moving at a certain
constant velocity Vp. No slippage is assumed between the upper plate and
the melt. The movement of the upper plate creates a linear velocity profile
in the melt. However, as is seen in Figure 5.1, there are two different flow
regions that must be distinguished. The first one is the polymer bulk. It only
contains bulk polymer chains and has a shear rate γ̇b. The second region is
the interfacial layer. It may contain both tethered and bulk molecules. The
shear rate in this layer will be denoted by γ̇w.

Since the bulk and the interfacial layer contain different sorts of polymer
molecules, the corresponding shear rates γ̇b and γ̇w are also different. Attention
must be paid to the fact that the shear rates γ̇b and γ̇w are not independent,
but certain functions of the upper plate velocity Vp. Therefore, in order to
find their explicit dependence on Vp, we need two more equations. The first

53
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Figure 5.1: The parallel plate geometry (not on scale): H is the distance between plates; h is
the thickness of the interfacial layer; γ̇w and γ̇b are the shear rates in the layer and the bulk,
respectively. The slip velocity Vs is defined as the average velocity of monomers at the top of
the layer.

equation stems from the continuity of the average velocity of monomers in the
melt at the interface between the bulk and the interfacial layer, which can be
written in the following form

hγ̇w + γ̇b(H − h) = Vp , (5.1)

where H is a distance between the plates and h the thickness of the interfacial
layer. The first term on the LHS gives the slip velocity Vs, defined as the
average velocity of monomers at the top of the interfacial layer, whereas the
second represents a change in the melt velocity over the bulk. According to
Figure 3.4, the thickness h is a nonlinear function of the wall shear rate γ̇w.
Moreover, as follows from eqn.(3.38), h may also depend on γ̇b via the fre-
quency νT of constraint release of tethered chains. So for a given γ̇b, eqn.(5.1)
is a nonlinear equation for γ̇w. The second equation which relates γ̇b and γ̇w

stems from the force balance at the interface between the bulk and the layer.
It can be written as the continuity of the shear stress:

σB
xy(γ̇b) = σI

xy(γ̇w) , (5.2)

where we took into account that the polymer melt is homogeneous and so
neglected the spatial dependence of the shear stress. The wall shear stress
σI

xy and the shear stress in the bulk σB
xy are given by eqn.(3.4) and eqn.(4.2),

respectively. According to Figure 3.5, σI
xy is a nonlinear nonmonotonous func-

tion of γ̇w. It may also depend on γ̇b via the frequency of constraint release
νT . So eqn.(5.2) yields another nonlinear relation between γ̇b and γ̇w.

For a given velocity Vp of the upper plate, eqn.(5.1) and eqn.(5.2) enable us
to calculate the corresponding shear rates γ̇b and γ̇w. The shear stress in
the bulk and in the layer which enter eqn.(5.2) are calculated by solving the
equations of motion for the bulk (4.10) and tethered (3.31) chains, which in
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turn contain γ̇b and γ̇w as input parameters. This implies that eqns.(3.31,
4.10) extended with eqns.(5.1, 5.2) form a closed system of equations which
governs the dynamics of the overall polymer flow in the die. To be able to
solve this system, we must specify explicitly the frequency νT of constraint
release of tethered chains which enters eqn.(3.31) as well as the elastic moduli
of the bulk and interfacial layer in eqn.(3.4) and eqn.(4.2).

5.2 Constraint release on tethered chains

According to Figure 3.6, in general, each tethered chain has two sorts of
constraints: bulk and tethered ones. Bulk constraints are imposed by polymer
molecules from the bulk, and can be released via their reptation or retraction.
Tethered constraints are imposed by nearby tethered chains, and are released
via their contour length fluctuations. Let τB and τT be the mean lifetime of the
bulk and tethered constraints, respectively. Then, νT is given by eqn.(3.39).
In the previous chapter, when studying the dynamics of bulk molecules in
the presence of flow, we found an explicit form of τB as a function of the
molecular parameters of bulk chains (see eqn.(4.21)). Therefore, in order to
make eqn.(3.39) explicit, we need to calculate the mean lifetime τT as well as
the mean fraction φiZ of bulk constraints per tethered chain.

 

1=iZφ  

 

10 << iZφ  

 

0=iZφ  

Figure 5.2: Grafting regimes. From left to right: mushroom regime, intermediate regime, and
dry-brush regime. Thick and thin lines stand for tethered and bulk chains, respectively.

The lifetime τT of the tethered constraints was estimated by Ajdari et al
[46]. They found that τT increases exponentially with the molecular weight of
tethered chains and can be written as

τT ≈ TDB(ZT ) Z−1
T exp(1.5ZT ) , (5.3)

where TDB(ZT ) is the reptation time of a bulk chain with ZT constraints.
On the other hand, according to eqns.(4.9, 4.17), the mean lifetime of a bulk
constraint due to TCR is of order TDB(ZB)/ZB. So for long enough tethered
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chains (ZT > 5 if ZB < 100) the mean lifetime of a tethered constraint is
much larger than that of a bulk one. Thus, one may think that only the bulk
constraints are released on a tethered chain, so eqn.(3.39) boils down to

νT ≈ νBφiZ , (5.4)

where νB is the CR frequency in the bulk and φiZ the mean fraction of bulk
constraints per tethered chain. Note that φiZ is a function of the surface den-
sity of the tethered chains. At low surface densities, entanglements between
neighboring tethered chains are unlikely so that φiZ = 1 (see Figure 5.2).
This regime is often referred to as the mushroom regime. At very high surface
densities, bulk chains are expelled from the interfacial layer so that it is only
populated by the tethered chains. In this regime (usually referred to as the
dry-brush regime), the tethered chains have only tethered constraints so that
φiZ = 0. There is also an intermediate grafting regime in which a tethered
chain has both bulk and tethered constraints, and so 0 < φiZ < 1.

5.3 Model of half-entanglements

Let ΣT be the surface density of the tethered chains, that is the number of
the tethered chains per unit area of the die wall. In order to find an explicit
dependence of the fraction φiZ on ΣT , we will assume that all the entangle-
ments in the melt are pairwise contacts between separate polymer chains.
Then, the entanglement network in the layer can be imagined as consisting
of interacting ”half-entanglements” (see Figure 5.3). Every tethered chain
contributes to ZT/2 entanglements, or equivalently, provides ZT ”tethered”
half-entanglements. Every bulk chain present in the layer may provide up to
ZB ”bulk” half-entanglements.

Figure 5.3: The entanglement network in the interfacial layer.

Each half-entanglement ”interacts” with another tethered or bulk one avail-
able in the interfacial layer. Two half-entanglements build an entanglement
of one of the three types: tethered-tethered (T-T), bulk-bulk (B-B), or bulk-
tethered (B-T). Let WT and WB be a fraction of tethered and bulk half-
entanglements per unit volume of the layer, respectively. Since half-entanglements
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are distributed homogeneously in the layer, the corresponding volume fractions
of entanglements of each type are given by

WBB = WBWB WTT = WTWT WBT = 2WBWT (5.5)

The factor 2 in the expression for WBT is due to the fact that WBT = WTB.
Since each tethered chain provides ZT tethered half-entanglements, the num-
ber of the tethered half-entanglements per unit area of the wall in the layer is
ZTΣT , where ΣT is the surface density of tethered chains. On the other hand,
the total number of half-entanglements per unit area of the wall in the layer is
equal to 2h/a3

0, where h is the layer thickness and a0 the mean entanglement
spacing. So the volume fractions of half-entanglements WT and WB are

WT = a3
0
ZTΣT

2h
, WB = 1− a3

0
ZTΣT

2h
, (5.6)

where we used that WT + WB = 1. As follows from eqn.(5.6), if the surface
density ΣT of the tethered chains is equal to the following critical value

Σ∗
T =

2h

a3
0

1

ZT
, (5.7)

the volume fraction WB of the bulk half-entanglements vanishes, which means
that the layer no longer contains bulk chains. In other words, the layer is only
populated by the tethered chains. So Σ∗

T can be associated with the surface
density of the dry-brush regime (see Figure 5.2).

In terms of the volume fractions of bulk and tethered half-entanglements, the
mean fraction φiZ of bulk constraints per tethered chain can be written as

φiZ =
WBT

WTT + WBT
=

2WB

WT + 2WB
, (5.8)

where use was made of eqn.(5.5). According to eqn.(5.8), in the dry-brush
regime φiZ = 0 so that all the constraints on the tethered chains are tethered,
as expected. In the mushroom regime, for which ΣT → 0, from eqn.(5.6)
it follows that φiZ = 1. Hence, all the constraints on the tethered chains
are bulk, as expected. Let Σ∗∗

T be the critical surface density at which the
layer enters the intermediate grafting regime. The mushroom regime then
corresponds to surface densities ΣT < Σ∗∗

T . The critical surface density Σ∗∗
T is

a surface density of the tethered chains at which each tethered chain has on
average only one tethered constraint, and so φiZ = 1− 1/ZT . Therefore, from
eqn.(5.6) and eqn.(5.8) one can find that

Σ∗∗
T ≈ 4h

a3
0

1

Z2
T

. (5.9)

Comparison of eqn.(5.9) with eqn.(5.7) yields that the critical surface den-
sity of the intermediate regime is approximately ZT/2 times smaller than the
surface density of the dry brush regime.
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Figure 5.4: Mean fraction of bulk constraints per tethered chain vs surface density of tethered
chains.

The behavior of φiZ (see eqn.(5.8)) as a function of ΣT is shown in Figure
5.4. It is seen that φiZ is a monotonically decreasing function of ΣT , which
implies that the role of interactions between neighboring tethered chains in-
creases with ΣT . In the mushroom regime φiZ ≈ 1 so that the frequency
νT of constraint release on the tethered chains (see eqn.(5.4)) is equal to the
corresponding frequency νB of constraint release in the polymer bulk, cal-
culated in the previous chapter (see eqn.(4.21)). However, at higher surface
densities, where interactions between neighboring tethered chains become es-
sential and thus φiZ < 1, νT can be much smaller than νB. Clearly, in this
regime constraint release on the tethered chains is ”suppressed” by interac-
tions between separate tethered chains. Note that it is constraint release that
prevents orientation of the tethered chains by the flow. Therefore, one may
expect that by increasing the surface density of the tethered chains we ”ease”
their alignment by the flow and thus facilitate slip via disentanglement. So,
at high surface densities, due to the suppressed constraint release, wall slip
via disentanglement may occur earlier than in the mushroom regime.

5.4 Elastic modulus of the interfacial layer

To solve eqn.(5.2), we only need to know the ratio between the elastic moduli
of the layer G0I and the bulk G0B. Let us show that by using the half-
entanglements model developed earlier, it can readily be expressed in terms
of the molecular parameters of the melt and the surface density ΣT of the
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tethered chains. According to Doi and Edwards [31], G0B is given by

G0B =
nMkBT

Me
, (5.10)

where n is the concentration of the bulk chains in the melt, M their molecular
weight, and Me the average molecular weight between entanglements. Note
that eqn.(5.10) can rewritten in terms of the mean equilibrium entanglement
spacing a0. To show this, let us point out a unit volume in the bulk. If all the
entanglements in the melt are pairwise contacts between separate polymers,
then the total number N of entanglements per this volume is given by

N =
n

2
ZB =

1

a3
0
, (5.11)

where ZB is the the mean number of constraints per bulk chain. Notice that
ZB is equal to M/Me. Then, from eqn.(5.10) and eqn.(5.11) one can find that

G0B =
2kBT

a3
0

. (5.12)

Since a3
0 specifies the average volume ”occupied” by one entanglement, eqn.(5.12)

explicitly shows that the elastic modulus G0B of the bulk is proportional to the
equilibrium number of entanglements per unit volume of the melt, in accor-
dance with earlier predictions of the rubber elasticity theory (see, for example,
de Gennes [47]). An expression similar to eqn.(5.12) can also be written for
the elastic modulus G0I of the interfacial layer. However, as was recognized by
Joshi et al [22], it is mostly entanglements between bulk and tethered chains
that are active in transferring stress from the flowing bulk to the interfacial
layer. Thus, G0I can be written as

G0I ≈ 2kBT

a3
0

ψ0
BT , (5.13)

where ψ0
BT is the equilibrium fraction of bulk-tethered (B-T) entanglements

per unit volume in the interfacial layer. According to eqns.(5.5, 5.6, 5.7), ψ0
BT

has the form

G0I

G0B
= ψ0

BT =
W 0

BT

W 0
BB + W 0

BT + W 0
TT

= 2
Σ0T

Σ∗
0T

[
1− Σ0T

Σ∗
0T

]
. (5.14)

Here Σ∗
0T is the equilibrium surface density of the dry-brush regime (see

eqn.(5.7) where h is replaced with its equilibrium value h0). Σ0T is the equi-
librium surface density of the tethered chains. We remind that in the absence
of desorption Σ0T is constant and equal to the actual surface density ΣT in
eqn.(5.6). An expression for ψ0

BT was also proposed by Joshi et al [22]. Based
on phenomenological arguments, they found that ψ0

BT ∝ φ0
Z Σ0S a2

0, where φ0
Z

is the mean equilibrium fraction of bulk constraints per tethered chains (see
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eqn.(5.8)). This relation was further used to calculate the stick-slip law over
a wide range of surface densities. However, as follows from eqn.(5.8) and
eqn.(5.14), it only holds in the vicinity of the dry-brush regime, and thus
cannot be applied in the mushroom or intermediate grafting regimes.
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Figure 5.5: Equilibrium fraction of B-T entanglements per unit volume in the interfacial layer
vs surface density of tethered chains.

The behavior of ψ0
BT as a function of Σ0T is shown in Figure 5.5. As seen,

ψ0
BT is a nonmonotonous function of Σ0T . At small Σ0T , neighboring teth-

ered chains do not overlap and contribute independently to ψ0
BT . According

to eqn.(5.14), in this regime ψ0
BT ∝ Σ0T , which implies that addition of one

tethered chain to the interfacial layer will create ZT new bulk-tethered en-
tanglements. At the critical surface density Σ∗∗

0T (see eqn.(5.9)), neighboring
tethered chains start to overlap. In this regime, addition of one tethered
chain to the layer will create both tethered-tethered and bulk-tethered entan-
glements. At Σ0T ≈ 0.5 Σ∗

T the number of the bulk-tethered entanglements in
the layer is maximal and equal to half of the total amount of entanglements in
the layer. In this regime, all the bulk chains present in the layer are already
entangled with the tethered ones so that addition of one tethered chain to the
layer will ”replace” ZT bulk-tethered and bulk-bulk entanglements with ZT

tethered-tethered ones. By increasing Σ0T , we increase the number of entan-
glements between the tethered chains, which results in a gradual ”exclusion”
of the bulk molecules from the interfacial layer and consequently leads to a
decrease in ψ0

BT . At Σ0T = Σ∗
0T the layer is in the dry-brush regime and no

longer contains bulk-tethered entanglements, and thus ψ0
BT = 0. Note that

the nonmonotonous behaviour of ψ0
BT was also predicted in [22].

According to eqn.(3.4) and eqn.(5.14), the wall shear stress σI
xy is proportional

to the equilibrium volume fraction ψ0
BT of the bulk-tethered entanglements in

the layer. In the absence of these entanglements, we have that σI
xy = 0 and
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therefore γ̇w = 0 (see Figure 3.5), irrespective the value of the upper plate
velocity Vp. In this case, the bulk and the tethered chains do not interact
with each other so that the polymer bulk slips freely over the interfacial layer.
In reality, in the absence of the bulk-tethered entanglements the bulk and the
tethered chains may still interact via monomer-monomer friction, a mechanism
which is not included in eqn.(3.4). In the presence of the monomer-monomer
friction both σI

xy and γ̇w will have small, but finite, values proportional to the
velocity of the bulk chains near the interface between the bulk and the inter-
facial layer [37]. However, in the presence of the bulk-tethered entanglements
the contribution of the monomer-monomer friction to eqn.(3.4) is small and
can be neglected.

5.5 Results and Discussion

Having specified the CR frequency νT of tethered chains and the elastic moduli
of the bulk and interfacial layer, we are now able to describe quantitatively the
polymer flow in the die. In fact, the equation of motion for the interfacial layer
(see eqn.(3.31)) and for the bulk (see eqn.(4.10)) extended with eqns.(5.1, 5.2)
form a closed system of equations which governs the dynamics of the whole
polymer flow in the die and therefore can provide quantitative predictions for
the stick-slip boundary conditions at the die wall. The independent input
parameters for this system are: the mean number ZB of constraints per bulk
chain, the mean number ZT of constraints per tethered chain, the Rouse time
TRB of bulk chains, the mean entanglement spacing a0, the step length a of
the primitive path, and the surface density ΣT of tethered chains.

The final system was analyzed numerically using the procedure described ear-
lier in Chapter 3 and 4. Attention must be paid to the fact that eqn.(3.31) and
eqn.(4.10) are not independent. Namely, as was discussed earlier, eqn.(3.31) is
coupled to eqn.(4.10) via the frequency νT of constraint release of the tethered
chains. This implies that in general eqn.(3.31) depends on both the bulk γ̇b

and the wall γ̇w shear rates. In contrast, since the average fraction of ”teth-
ered” constraints on the bulk chains is small, one can neglect the dependence
of eqn.(4.10) on γ̇w and so consider eqn.(4.10) as a function of γ̇b alone. This
is an important property of the obtained system which allows one to simplify
remarkably the numerical algorithm.

The procedure of solving the system of eqns.(3.31, 4.10, 5.1, 5.2) is given be-
low. First, for a certain bulk shear rate γ̇b we solve eqn.(4.10). Its solution
gives us the corresponding values of the CR frequency νB of the bulk chains
and the bulk shear stress σB

xy. The obtained values of νB and σB
xy are then sub-

stituted into eqn.(3.31) and eqn.(5.2), respectively. Next, eqn.(5.2) is solved
using a simple iterative search algorithm to compute the wall shear rate γ̇w

pertaining to the given γ̇b. Each step of this algorithm requires a solution of



62 Chapter 5. Slip due to disentanglement

eqn.(3.31). For the found γ̇w, eqn.(3.31) gives the corresponding thickness h
of the interfacial layer. Finally, the found values of γ̇b, γ̇w, and h are sub-
stituted into eqn.(5.1) to calculate the velocity Vp of the upper plate. After
this, the procedure is repeated again for a larger γ̇b until a certain critical
point is reached after which the system has only the trivial solution, that is
γ̇w = 0, γ̇b = 0. As we mentioned before, such a trivial solution corresponds
to a regime of complete disentanglement between the bulk and the tethered
chains. So the critical point can be associated with a point at which the bulk
and the tethered chains fully disentangle and cohesive slip occurs.

Let V cr
p be the velocity of the upper plate at the critical point. As we will

see later, at V cr
p the near wall layer jumps from the ”entangled” to the ”fully

disentangled” state, which in turn leads to a jump in the melt velocity at the
wall. After the jump, the tethered chains are squeezed against the wall by the
strong flow. They occupy a very thin near-wall layer of thickness of order a0,
the mean entanglement spacing. The polymer bulk slips freely over the layer
of the smashed tethered chains, which implies that the velocity of monomers
in the melt is no longer continuous at the interface between the bulk and
this layer. In this case, the slip velocity Vs can be defined as the velocity of
monomers in the bulk near the interface. Clearly, after the disentanglement
we have that Vs = Vp (if we neglect the monomer-monomer friction between
the bulk and the tethered chains). In what follows, we will mostly focus on
flow regimes prior to the transition point, and discuss the exact mechanics of
the stick-to-slip transition initiated by the flow. The trivial slip regime after
the transition point will be discussed only briefly.

Figure 5.6: Thickness of the interfacial layer vs global shear rate for different surface densities
of tethered chains. For ZB = 30, ZT = 10.

The steady state model predictions for the polymer flow in the die are pre-
sented in Figs.(5.6 - 5.13). In Figure 5.6, the thickness h of the interfacial layer
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(see eqn.(3.37)) is shown as a function of the ”global” shear rate γ̇ = Vp/H
up to the critical point for different surface densities of the tethered chains.
As is seen, h is a monotonically decreasing function of γ̇. At small γ̇, both
the shear rate γ̇w in the layer and the shear rate γ̇b in the bulk increase with
Vp. The bulk shear rate γ̇b determines the strength of constraint release on
the tethered chains, measured by the frequency νT . So an increase in Vp also
leads to an increase in νT . At small γ̇, the actual thickness of the layer is de-
termined by the balance of convection and constraint release on the tethered
chains. As a result, the decrease of h when increasing γ̇ indicates that the
rate of convection for the tethered chains increases with Vp faster than νB.

At larger γ̇, due to the increased imbalance between convection and constraint
release, the slope of the curves in Figure 5.6 becomes so steep that even a small
increase in γ̇ leads to a sharp decrease in h. In this regime, a strong deviation
of the thickness h from its equilibrium value h0 suggests a severe orientation
of the tethered chains by the flow. The alignment of the tethered chains with
the flow direction results in a decrease in the number of the bulk-tethered
entanglements in the interfacial layer. At the critical shear rate γ̇cr = V cr

p /H,
constraint release is no longer able to resist strong convection and prevent
further alignment of the tethered chains. As a result, at γ̇cr the bulk and the
tethered chains suddenly disentangle and so the system enters the strong slip
regime. As mentioned earlier, after the disentanglement the tethered chains
occupy a very thin near-wall layer of thickness a0.

The presented picture is consistent with the original idea of Bergem [11], who
proposed a sudden loss of entanglements between bulk and tethered chains
at a critical stress as the mechanism of wall slip. The imbalance between
CR and convection at a critical shear rate as a cause for the disentanglement
between the bulk and tethered chains was also suggested by Joshi et al [21].
In the slip model of Brochard and de Gennes [18], the mechanism for the dis-
entanglement is a coil-to-stretch transition of the tethered chains at a critical
stress. They argue that a fast enough flow deforms the tethered chains into
cigar shaped coils. The diameter D of the cigar, determined by the balance
between entropic and friction forces acting on the tethered chains, decreases
if the wall shear rate is increased. When D decreases below the entanglement
spacing, the entropic and friction forces can no longer balance each other so
that bulk and tethered chains suddenly disentangle. Since the entropic and
friction forces in Brochard and de Gennes’ model can be associated with con-
straint release and convection, their model provides a virtually similar picture
of the chain disentanglement to that proposed here.

As is seen in Figure 5.6, for a given shear rate γ̇, the layer thickness h is a non-
monotonous function of the surface density Σ0T of the tethered chains. This
can be explained as follows. At large Σ0T , where interactions between separate
tethered chains ”suppress” constraint release in the layer, the tethered chains
are more easily oriented by the flow than at medium surface densities. On
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the other hand, in the mushroom regime the tethered chains undergo a larger
flow-induced drag force compared to higher surface densities, where this force
is distributed among a larger number of tethered chains. So for a given γ̇,
the tethered chains are less oriented in the intermediate grafting regime (see
Figure 5.2) in comparison to other regimes.

Figure 5.7: Critical shear rate vs surface
density for different ZB and ZT = 10.

Figure 5.8: Critical shear rate vs surface
density for different ZT and ZB = 50.

In Figure 5.7 and Figure 5.8, the critical shear rate γ̇cr is shown versus the
surface density Σ0T of tethered chains for different molecular weights of the
bulk and tethered chains. Intuitively, one would expect that the more tethered
chains in the layer we have, the larger is the friction between the melt and the
wall, and therefore the harder it is to make the melt slip. This suggests that
γ̇cr would monotonically increase with Σ0T . However, it is seen in Figure 5.7
that such argumentation only works for small surface densities. In fact, the
predicted dependence of γ̇cr on Σ0T is nonmonotonous. Earlier, when study-
ing constraint release on tethered chains, we found that an increase in Σ0T

”strengthens” the interactions between separate tethered chains in the interfa-
cial layer. Since these interactions suppress constraint release on the tethered
chains and therefore ease their orientation by the flow, γ̇cr is expected to de-
crease with Σ0T at high surface densities of tethered chains, as is illustrated
in Figure 5.7 and Figure 5.8.

At small Σ0T , constraint release on tethered chains is much stronger than
at high surface densities. However, as mentioned earlier, in this regime the
chains may undergo strong convection even at rather small shear rates γ̇. As
a result, the corresponding critical shear rate γ̇cr for the onset of disentangle-
ment is small. The maximal γ̇cr in Figure 5.7 and Figure 5.8 corresponds to
intermediate surface densities, as expected. In this regime, tethered chains
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are harder to orient so that the system has a larger resistibility to the flow.

By comparing Figures 5.7 and 5.8 with Figure 5.5, one may conclude that the
critical shear rate γ̇cr can be related to the number of the bulk-tethered (B-T)
entanglements in the layer. At small Σ0T , both γ̇cr and the equilibrium fraction
ψ0

BT of the B-T entanglements (see eqn.(5.14)) are small, which indicates that
a small number of the B-T entanglements is insufficient to prevent the onset
of slip at high shear rates. In this regime, γ̇cr and ψ0

BT are proportional to
Σ0T , which implies that separate tethered chains move independently of each
other. As a result, each tethered chain gives a separate contribution to γ̇cr.
Addition of one tethered chain to the interfacial layer will create ZT new B-T
entanglements and therefore will ”improve” the resistibility of the system to

slip. At the critical surface density Σ
(cr)
0T ≈ 0.5 Σ∗

0T , the number of the B-T
entanglements in the layer is maximal and so is the resistibility of the system
to slip. As a consequence, in this case γ̇cr is also maximal, as is shown in Figure

5.7. Σ
(cr)
0T marks a grafting regime in which tethered-tethered entanglements

start to play an important role in the dynamics of the interfacial layer (see the
discussion after Figure 5.4). A further increase in Σ0T decreases the number
of the B-T entanglements in the melt and so γ̇cr also decreases.

Figure 5.7 shows that an increase in the molecular weight of the bulk chains
leads to a decrease in γ̇cr for a fixed Σ0T . In particular, the amplitude of the
maximum in Figure 5.7 is nearly proportional to T−1

RBZ−1
B . On the other hand,

the position of the maximum, as determined by the critical surface density

Σ
(cr)
T , is insensitive to ZB and given by

Σ
(cr)
T ≈ 0.5 Σ∗

0T , (5.15)

where Σ∗
0T is the equilibrium surface density of the dry-brush regime (see

eqn.(5.14)). In contrast, as is seen in Figure 5.8, the critical shear rate γ̇cr can
be a decreasing, increasing, or even nonmonotonous function of ZT , depend-
ing on the value of the surface density Σ0T . The amplitude of the maximum
in Figure 5.8 is independent of ZT , whereas its position scales as 1/

√
ZT , in

agreement with eqn.(5.7) and eqn.(3.36). The nonmonotonous dependence of
the critical shear rate for the onset of disentanglement on the surface density
of tethered chains was also predicted by Joshi et al [22] and reported by Lèger
and coworkers [8, 48]. Similar to the critical shear rate γ̇cr, the corresponding
critical shear stress σcr, i.e., the shear stress in the melt prior to the transi-
tion point, is found to be a nonmonotonous function of Σ0T . At low surface
densities, σcr scales linearly with Σ0T and can be written as

σcr = C1G0BΣ0T , (5.16)

where C1 is a constant independent of Σ0T . According to eqn.(5.10), the elastic
modulus G0B of the bulk is proportional to the melt temperature T . Therefore,
eqn.(5.16) can be written in a form similar to that proposed by Brochard
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and de Gennes [18]. Specifically, based on phenomenological arguments, they
found that in the mushroom regime

σcr ∝ Σ0TkBT , (5.17)

where kB is the Boltzmann constant. In the absence of desorption, Σ0T is
constant so that σcr increases linearly with T over the whole range of melt
temperatures, in agreement with the experimental data of Wang and Drda
[49]. On the other hand, according to eqn.(4.12), the Rouse time of bulk
chains TRB ∝ T−1. Therefore, from Figure 5.7 one may infer that in the
absence of desorption the critical shear rate γ̇cr is also proportional to the
melt temperature T .

Figure 5.9: Critical shear rate vs molecular weight of bulk molecules for two different surface
densities of tethered chains and ZT = 15.

In Figure 5.9, the critical shear rate γ̇cr is presented as a function of the
molecular weight of bulk chains for different grafting regimes. Since the Rouse
time TRB of bulk chains is proportional to Z2

B (see eqn.(4.12)), Figure 5.9 shows
that at small surface densities γ̇cr scales as Z−3.4

B , that is as the reciprocal
reptation time TDB (see eqn.(4.9)). A similar result was found by Joshi et
al [18]. At higher surface densities Σ0T , γ̇cr becomes more sensitive to ZB.
Durliat and coworkers [48] reported that γ̇cr scales as M−3.1±0.5

w at surface

densities up to the critical value Σ
(cr)
T , which agrees well with the predictions

of the present model. Contrary to the critical shear rate γ̇cr, the model predicts
only a weak dependence of the critical shear stress σcr on ZB, in agreement
with the behavior reported by Wang and Drda [50].

In Figure 5.10, the slip velocity Vs is shown versus the shear rate γ̇ up to the
transition point. It is seen that two different regimes can be discerned. At
small γ̇, Vs is small compared to the upper plate velocity Vp (see Figure 5.1)
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Figure 5.10: Slip velocity vs global shear
rate. ZB = 40, ZT = 10.

Figure 5.11: Slip length vs slip velocity.
ZB = 40, ZT = 10.

and slowly increases with γ̇. This regime will be referred to as the weak slip
regime throughout the text. When γ̇ approaches the critical shear rate γ̇cr,
the slope of the curve Vs(γ̇) becomes so steep that even a small increase in γ̇
leads to a dramatic increase in Vs. At γ̇cr, a sudden disentanglement between
the bulk and the tethered chains occurs after which Vs ”jumps” up to Vp. The
flow regime prior to γ̇cr will be referred to as ”stick-to-slip” transition. Above
γ̇cr, a third regime is expected in which Vs is macroscopic. This regime will
be referred to as the strong slip regime.

Note that in a real extrusion die Vp (defined as the melt velocity at the die
axis) is not always constant, but determined by the mass flux leaving the die.
The ”jump” in Vs enhances the mass transfer through the die, whereas the
incoming mass flux is constant (at a constant piston speed). The incompress-
ibility of the melt in the die then yields that after the jump Vp may drop below
the critical level so that entanglements between the tethered and bulk chains
can be restored. After this, the stress in the layer will ”build up” again and
the cycle will repeat itself. So for the real extrusion die at the constant piston
speed the strong slip regime is characterized by unstable flow with periodical
alternations of the boundary conditions at the polymer/wall interface between
the ”no-slip” and ”slip” limit. As was shown in [51, 52, 53], combination of
the oscillating boundary conditions together with conservation of mass and
momentum over the die allows one to explain the origin of the infamous spurt
oscillations of the extrudate.

The existence of the three regimes in the curve Vs(γ̇) was first predicted by
Brochard and de Gennes [18] for cohesive slip and reported by Lèger and
coworkers [8, 5, 48]. Figure 5.10 shows that Vs is non-zero even at small
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shear rates γ̇, in agreement with the precise measurements of Migler et al
[5]. However, Vs remains small compared to Vp up to the transition point γ̇cr,
which implies that the weak slip regime can hardly be inferred from macro-
scopic behavior, such as a change in the slope of the experimentally measured
strain-stress curves. At γ̇cr, the transition from weak to strong slip occurs
after which Vs is no longer microscopic. Such a transition can be detected
via a significant pressure drop in controlled shear rate experiments or even
visually. As is seen in Figure 5.10, this transition is rather sharp, that is ini-
tiated within a narrow interval of shear rates prior to γ̇cr. Note that at shear
rates prior to γ̇cr, the bulk and tethered chains are just at the limit of being
disentangled. Brochard and de Gennes [18] called this regime the marginal
regime. In contrast to Brochard and de Gennes’ model, the present theory is
able to describe quantitatively the polymer flow in the marginal regime.

In Figure 5.11, the slip length bs = Vs/γ̇b is shown as a function of the slip
velocity Vs. At small Vs, bs is microscopic and almost independent of Vs. Such
a behavior has been predicted earlier by Brochard and de Gennes [18] and
Joshi and coworkers [21]. The value of bs at small Vs is often referred to as
the zero-slip-length b0. Note that b0 is a function of the molecular parameters
of the melt and the surface density Σ0T of tethered chains. We found that
b0 increases as Σ0T is decreased, similar to the behavior predicted by Joshi
et at [22]. In particular, in the mushroom regime we found that b0 ∝ 1/Σ0T ,
in accordance with the earlier predictions of Brochard and de Gennes [18].
In the vicinity of the critical point, bs starts to grow rapidly with Vs. After
the transition to strong slip, a regime of nearly constant bs is expected [18] in
which bs is macroscopically large and equal to βη, where η is the melt viscosity
and β the friction coefficient between the melt and the layer of tethered chains
squeezed against the wall. The three regimes in the curve bs(Vs) were observed
experimentally by Migler et al [5].

In the rest of this section, the model predictions will be compared with
the available experimental data on slip. Lèger et al [8] and Durliat et al
[48] performed a series of experiments on monodisperse polydimethylsiloxane
(PDMS) chains of molecular weight 96 kg/mol adsorbed on a silica wall with
a controlled surface density. These chains form a polymer brush which is
in contact with a monodisperse PDMS melt of molecular weight 970 kg/mol.
The size and molar mass of the monomer are reported to be 0.5 nm and
0.074 kg/mol, respectively. Using the molecular data of Fetters et al [54],
from eqn.(5.10) the mean entanglement spacing a0 is estimated to be 4.8 nm.
The distance H between parallel plates in the rheometer (see Fig. 5.1) is
reported to be 8 µm. Based on independent molecular measurements, in [27]
the parameters of the model ZT , ZB, and Σ∗

0T were estimated to be 10, 100,
and 1.95 · 1016 (chains/m2), respectively. The equilibrium thickness h0 of the
interfacial layer was estimated to be around 18 nm. By fitting the data of
[8, 48], in [27] the value of the Rouse time TRB of bulk PDMS chains was
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found to be around 1.5× 10−4s.

Figure 5.12: Slip velocity vs global shear
rate. The solid line is the model predic-
tion.

Figure 5.13: Critical shear rate vs graft-
ing density. The solid line is the model
prediction.

In Figure 5.12, the model predictions for the slip velocity Vs as a function of
the global shear rate γ̇ are compared with the microscopic slip data of Lèger
et el [8]. The surface density Σ0T is reported in [8] to be nearly 7 times larger
than the corresponding critical surface density of the intermediate grafting
regime Σ∗∗

T (see eqn.(5.9)). It is seen that the model predictions are in a good
agreement with the experimental data over a wide range of shear rates up to
the critical shear rate γ̇cr. In Figure 5.13, the critical shear rate γ̇cr is shown
versus the surface density Σ0T of tethered chains. The model predictions are
compared with the data on slip by Durliat et al [48]. It is seen that the
model is able to predict γ̇cr over a wide range of surface densities, including
those where interactions between neighboring tethered chains start to play an
important role in the dynamics of the interfacial layer.

In this chapter, a molecular model for cohesive slip was formulated in the
absence of desorption. In the next chapter, we will extend this model to
incorporate possible desorption of tethered chains. As will be shown later on,
the model for cohesive slip can still be applied for die walls with high surface
energy for which desorption plays only a minor role in the melt dynamics.





Chapter 6

Unified slip model

In the previous chapters, we developed a molecular model for cohesive slip in
which desorption was ignored. In reality, however, desorption may play an
essential, if not dominant, role in the dynamics of the melt. In particular,
it is probably the dominant slip mechanism in a case of a low adsorbing die
wall, where even a slow flow may initiate a massive detachment of adsorbed
polymer molecules from the wall. In this chapter, a slip model is developed
which unites both disentanglement and desorption into a single mathematical
framework.

6.1 Surface density of adsorbed molecules in the ab-

sence of flow

Despite being attached to the wall, each adsorbed polymer molecule under-
goes constant Brownian oscillations within the mesh of the surrounding con-
straints. Strong enough oscillations may cause its sudden detachment from
the wall after which it becomes unattached. This implies that adsorption is a
reversible process. Hereafter, desorption due to the thermal oscillations will
be referred to as thermal desorption. Note that after some time the detached
polymer molecule may again be adsorbed on the wall. Therefore, at equilib-
rium adsorbed molecules are constantly created and destroyed on the wall.
The number of the adsorbed molecules per unit area of the wall is then deter-
mined by the balance between desorption and adsorption. Let us calculate the
number of unattached polymer molecules in the melt which can be adsorbed
on the wall. To this end, imagine for a moment that there is no interaction
between the melt and the wall. According to the freely-jointed chain model
[31], in the absence of flow each molecule in the melt has a coil-like shape with
the diameter RB given by

RB ≈
√

NBb . (6.1)
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Here NB and b are the number of monomers per molecule and monomeric size,
respectively. The near wall-layer of thickness RB then contains both complete
and incomplete coils (see Figure 6.1). Next, if a0 is the mean distance between
entanglements, then the total number of entanglements per unit area of the
wall in this layer is equal to RB/a3

0, where a3
0 is the average volume ”occupied”

by one entanglement. Let ZB be the mean number of constraints per polymer
in the melt. If all the entanglements in the melt are pair-wise contacts between
neighboring polymers, then each molecule contributes to ZB/2 entanglements.
The equilibrium number of compete coils per unit area of the wall in the near-
wall layer is then estimated to be

Σ0B =
RB

a3
0

2

ZB
. (6.2)

Now we ”switch on” the interaction between the melt and the wall. The at-
tractive potential of the wall is localized on its surface, so that only those coils
that nearly ”touch” the wall will be adsorbed. Short fragments of molecules
penetrating the near-wall layer from above are unlikely to touch the wall (see
Figure 6.2). So one may think that only complete coils will interact with the
wall and eventually become adsorbed. The surface density Σ0B in Eq.(6.2) can
therefore be associated with the maximal number of bulk molecules which can
be adsorbed per unit area of the wall. In reality, due to the presence of desorp-
tion, the actual number of the adsorbed molecules will be smaller then Σ0B.
Let ΣS be the actual number of the adsorbed molecules per unit area of the
wall. Then, in the presence of desorption, the corresponding number of the
bulk molecules in the near-wall layer that are able to interact with the wall is
given by

ΣB =
RB

a3
0

2

ZB
− ΣS . (6.3)

Here the second term on the RHS represents those bulk molecules that have
already been adsorbed on the wall. Due to the presence of adsorption, each
of these ΣB bulk molecules can be assigned a characteristic lifetime τa after
which it will be adsorbed by the wall. Similarly, due to the presence of thermal
desorption, each of ΣS surface molecules is assigned a certain lifetime τd. From
the above, the equation of motion for ΣS in the absence of flow is given by

∂

∂t
ΣS = − 1

τd
ΣS +

1

τa

{
RB

a3
0

2

ZB
− ΣS

}
. (6.4)

It has the form of a balance equation with the first and the second term on the
RHS pertaining to thermal desorption and adsorption, respectively. Eqn.(6.4)
makes it explicit that exchanges between the adsorbed and unattached molecules
are governed by the first-order kinetics with the coefficients equal to the corre-
sponding reciprocal lifetimes. To solve eqn.(6.4), we need to specify τd and τa.
As was recognized by Lau and Schowalter [12], exchanges between attached
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and unattached states can be interpreted in terms of first order chemical re-
actions for which the activation rate theory of chemical kinetics is known
to apply [55]. From the activation rate theory, the frequency with which a
molecule passes over a potential energy barrier, through an activated state,
can be presented as a product of a pre-exponential frequency factor and an
activation term (see also Chernyak and Leonov [56])

k = C
kBT

h
exp

(− E

kBT

)
(6.5)

where h, kB, and T are the Planck and Boltzmann constants, and the absolute
temperature, respectively. In eqn.(6.5), E is the height of the barrier. The
pre-factor C is independent of the temperature. From eqn.(6.5), the ratio
τa/τd can be written in the form

τa/τd = kd/ka = Ae−Eadh/kBT , (6.6)

where kd and ka are the corresponding rates of desorption and adsorption,
respectively. In eqn.(6.6), A is a constant and Eadh is equal to a difference
between the average free energies of a polymer molecule in the adsorbed and
unattached state. Eadh represents the average work necessary to detach one
adsorbed molecule from the wall in the absence of flow. Hereafter, Eadh will be
referred to as adhesion energy. The value of the adhesion energy characterizes
the strength of the polymer-wall interaction, and is specific for a particular
polymer/wall pair. It depends on the material of the wall, the chemical struc-
ture of the polymer, and the roughness of the wall surface. Note that in a real
experiment Eadh can easily be varied by choosing an appropriate wall material
or using different chemical wall coatings.

Figure 6.1: No polymer-wall interaction Figure 6.2: With polymer-wall interaction

Eqn.(6.6) makes it explicit that the actual number of the adsorbed polymer
molecules on the wall does not only depend on the molecular parameters of
the melt and material of the wall, but also is temperature dependent. In
particular, as follows from eqn.(6.6) and eqn.(6.4), an increase in T leads to
a decrease in ΣS. Note that in the limit T → 0 the desorption time τd →∞.
This implies that at low temperatures thermal desorption is suppressed so that
the adsorbed molecules can be considered as grafted permanently on the wall.
From eqn.(6.4) it then immediately follows that in the absence of desorption,
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ΣS is maximal and equal to

Σ
(max)
S =

RB

a3
0

2

ZB
. (6.7)

Clearly, Σ
(max)
S can be considered as the low temperature limit of the actual

surface density ΣS. In general, we therefore have ΣS ≤ Σ
(max)
S . Notice that

Σ
(max)
S is only a function of the molecular parameters of the melt, and does

not depend on the wall material.

6.2 Desorption in the presence of flow

In the presence of flow, tails of the adsorbed molecules undergo, in parallel
to the Brownian force, a certain drag force produced by the moving mesh of
constraints, which rotates and stretches them. By stretching the tails, this
drag force ”weakens” the attractive potential of the wall, thereby facilitat-
ing their desorption. So in the presence of flow, the mean lifetime τd of a
tethered chain on the wall is a function of the flow rate. In particular, since
stronger flows detach tethered chains more easily, τd is expected to decrease
as the flow rate is increased. On the other hand, adsorption is controlled by
chemical interactions between the polymer and the wall, which implies that
the adsorption time τa in eqn.(6.4) is hardly affected by the flow.

Following Hill [15], the effect of the flow on the desorption rate of tethered
chains can be presented as a decrease in the activation energy Eadh by a value
of ∆U > 0, the mean excess elastic energy gained by a tethered chain due to
flow. Note that ∆U pertains to the physical tethered chain. If τ0 is the mean
lifetime of a tethered chain on the wall at equilibrium, then from eqn.(6.6) its
corresponding lifetime τ in the presence of flow can be written as

τ = τ0e
−∆U/kBT , (6.8)

Eqn.(6.8) shows explicitly that τ < τ0, as expected. To calculate ∆U , let us
present the tethered chain as a bead-spring system with NT beads, where NT

is the number of monomers per single tethered chain. According to [31], the
elastic energy of such a system is given by

U =
3

2

kBT

b2

NT∑
n=1

∣∣∣∣Rn − Rn−1

∣∣∣∣
2

. (6.9)

Here b is the equilibrium distance between adjacent beads, whilst |Rn−Rn−1|
gives the actual distance between beads n and n − 1. In the case of small
stretch, |Rn−Rn−1| can be written as b+αn, where |αn| << b. Then, neglecting
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terms of order α2
n, from eqn.(6.9) one can find that the elastic energy U of the

tethered chain can be approximated by

U ≈ 3
kBT

b

NT∑
n=1

∣∣∣∣
∂R(n, t)

∂n

∣∣∣∣ , (6.10)

where the position vector Rn of the n-th bead is now considered as a con-
tinuous function of n. Next, summation over the beads in eqn.(6.10) can be
replaced with the corresponding integral over n. After this, eqn.(6.10) can be
rewritten in the following form

U ≈ 3kBTNT

{
1

Ln

Ln∫

0

dx

∣∣∣∣
∂R(x, t)

∂x

∣∣∣∣
}

, (6.11)

where x = nb. In eqn.(6.11), Ln = bNT is the length of the physical teth-
ered chain. The expression in the curved brackets is equal to the value of
∂R(x, t)/∂x averaged along the physical chain. Attention must be paid to
the fact that eqn.(6.11) includes the fast Brownian oscillations of the physical
chain. Averaging it over time yields that the expression in the curved brackets
should be replaced with the corresponding average over the primitive path of
the tethered chain.

U = 3kBTNT

{
1

L0T

L0T∫

0

ds0

∣∣∣∣
∂R̂(s0, t)

∂s0

∣∣∣∣
}

, (6.12)

where L0T is the primitive path length of the tethered chain and R̂(s0, t)
its parametrization function (see Figure 2.6). According to eqn.(2.2), the

derivative ∂R̂(s0, t)/∂s0 in eqn.(6.12) is equal to the bond vector b̂(s0, t) of
the tethered chain. This implies that the expression in the curved brackets
gives the local stretch λ̂(s0, t) averaged along the chain contour. Attention
must be paid to the fact that eqn.(6.12) pertains to a single tethered chain.
From the above, the mean excess elastic energy of the tethered chain gained
in the presence of flow is given by

∆U ≈ 3kBTNT (¯̄λ− 1) , ¯̄λ =
1

L0T

L0T∫

0

ds0 λ̄T (s0, t) . (6.13)

Here λ̄T (s0, t) is the mean local stretch of the tethered chain at s0 and time t. ¯̄λ
is the mean lengthening of the tethered chain given by the ratio L̄T/L0T , where
L̄T and L0T are the mean actual and equilibrium length of the tethered chain,
respectively. Note that ∆U is proportional to the number NT of monomers
per tethered chain. According to eqn.(6.8), this implies that in the presence
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of flow the desorption rate of tethered chains becomes very sensitive to their
molecular weight. In view of eqn.(6.13), eqn.(6.8) reads as

τ = τ0e
−3NT (¯̄λ−1) , (6.14)

Eqn.(6.14) reveals that the mean lifetime of the tethered chain in the presence
of flow decreases exponentially with the number NT of monomers per chain.
As a consequence, long tethered chains have a much smaller lifetime on the
wall than short ones.

In general, desorption of one of the tails of an adsorbed polymer molecule
does not result in detachment of the whole molecule from the wall, but instead
leads to a new configuration of the molecule with a longer tail. However, in
the presence of flow the new configuration has a much smaller lifetime than
the original one. Moreover, desorption is expected to play a role in the melt
dynamics only for relatively low surface energy walls for which many loops
configurations of adsorbed molecules are unlikely (see Figure 1.3). From the
above, it follows that in the presence of flow the mean desorption time τd of
the adsorbed molecule is nearly equal to the mean lifetime of a tethered chain.
As a result, one may think that desorption of one tail of the adsorbed molecule
inevitably leads to detachment of the whole molecule. From eqn.(6.14), we
therefore have that in the presence of flow the mean desorption time τd of an
adsorbed molecule (whose tails consist of NT monomers) can be written as

τd = τ 0
d e−3NT (¯̄λ−1) (6.15)

where τ 0
d is the thermal desorption time introduced earlier. Since τ 0

d is flow
independent, eqn.(6.15) explicitly shows how the flow affects the desorption
rate of adsorbed molecules via induced chain stretch. According to Hooke’s
law, ¯̄λ is proportional to the mean tensile force F̄ induced in tethered chains
by the flow, so that eqn.(6.15) can be rewritten in the form similar to that
found by Yarin and Graham [23]. Moreover, as follows from eqn.(2.10) and

eqn.(2.18), in a steady shear flow ¯̄λ − 1 is proportional to the wall shear
stress σw (with the proportionality coefficient being a function of the normal
stresses at the wall). This implies that eqn.(6.15) can also be written in the
form proposed by Lau and Schowalter [12]

Once eqn.(6.15) is known, the equation of motion for the surface density ΣS of
adsorbed molecules at equilibrium (see eqn.(6.4)) can readily be generalized to
a case with a flow. As we will see later on, desorption from a low surface energy
wall mostly occurs in flow regimes for which the equilibrium random coil
structure of polymers is disturbed only slightly. So eqn.(6.7) can still be used

for the maximal surface density Σ
(max)
S of adsorbed molecules. Therefore, the

equation of motion for ΣS in the presence of flow has the form of eqn.(6.4) with
the desorption time τd now given by eqn.(6.15). Its steady state solution gives
us the corresponding surface density ΣT of tethered chains (since ΣT = ΣS/2),
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which can be written as follows

ΣT =
Σ0T

X0 + (1−X0) e 3NT (¯̄λ−1)
, (6.16)

where Σ0T is the equilibrium surface density. The dimensionless parameter
X0 is given by

X0 =
Σ0T

Σ
(max)
T

=
1

1 + Ae−Eadh/kBT
, (6.17)

where Σ
(max)
T = 2Σ

(max)
S . According to eqn.(6.17), X0 gives the fraction of

Σ
(max)
S sites on the wall occupied by polymer molecules in the absence of flow.

For a given temperature T , an increase in the adhesion energy Eadh enables
the wall to capture more polymer chains on its surface and X0 increases. On
the other hand, for a given Eadh an increase in the temperature enhances
desorption from the wall and therefore X0 decreases.

Since X0 is flow independent, eqn.(6.16) quantifies the effect of the flow on
the surface density ΣT of tethered chains. Specifically, since X0 < 1, from
eqn.(6.16) we have that ΣT < Σ0T , as expected. Eqn.(6.16) shows that ΣT

decreases as the wall shear rate γ̇w is increased (as follows from eqn.(3.31), at

small shear rates ¯̄λ ∝ γ̇2
w). The amplitude of this change depends, however,

on the strength of the polymer-wall interaction, measured by the adhesion
energy Eadh. At low Eadh, X0 is small and ΣT is very sensitive to γ̇w. In this
regime, even a rather slow flow for which (¯̄λ− 1) > 1/3NT may cause massive
detachment of adsorbed molecules (after which ΣS << Σ0S) and ultimately
adhesive slip. At high Eadh, X0 is close to unity and ΣT ≈ Σ0T over a wide
range of flow rates. In this case, adsorbed molecules are permanently grafted
on the wall, and so the melt is most likely to slip cohesively.

Since Σ
(max)
T is temperature independent, eqn.(6.17) shows that the no-flow

density Σ0T decreases as T is increased. In a flow, the temperature dependence
of ΣT is more complicated. In this case, it is not only determined by the
temperature dependence of Σ0T , but also by that of ¯̄λ. This implies that in the
case of intermediate Eadh, for which both slip mechanisms are expected to work
in parallel, the temperature dependence of the stick-to-slip transition cannot
normally be inferred from adhesive failure or disentanglement based theories.
Clearly, an analysis of extrusion systems with intermediate Eadh requires a
consideration of a more general model in which both slip mechanisms are
combined self-consistently.

According to eqn.(3.23), the mean local stretch λ̄T of a tethered chain in
eqn.(6.13) can be expressed in terms of the bond vector correlator ST

αβ of

tethered chains introduced earlier. As a result, the mean chain lengthening ¯̄λ
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in eqn.(6.15) can be written as

¯̄λ ≈ 1

L0T

L0T∫

0

ds0

√
ST

αα , (6.18)

where summation is implied over the repeating indices. Let us recall that it
is ¯̄λ that determines the effect of the flow on the desorption rate of adsorbed
molecules from the wall (see eqn.(6.15)). On the other hand, ST

αα in eqn.(6.18)
depends on the surface density ΣT of tethered chains via the corresponding
frequency νT of constraint release. This implies that ¯̄λ is in fact a function of
ΣT so that the equation of motion for the surface density ΣS (see eqn.(6.4))
becomes nonlinear in the presence of flow. The non-linearity of eqn.(6.4) is a
distinctive feature of the present model, which has not been revealed in earlier
adhesive failure theories.

According to eqn.(6.15), the desorption/adsorption kinetics of polymer molecules

depends on the correlator ST
αβ (via the mean chain lengthening ¯̄λ). On the

other hand, the dynamics of tethered chains depends on the surface density
ΣS of adsorbed molecules (via the frequency νT of constraint release). This
implies that the two slip mechanisms are in fact coupled and therefore cannot
be studied separately. The adhesive failure or disentanglement based theories
for slip can therefore be interpreted at the limiting case Eadh → 0 or Eadh →∞
of the more general theory developed here. Since the present theory accounts
for the coupling between the two mechanisms in a self-consistent way, it is able
to predict correctly the rheological behavior of extrusion systems with inter-
mediate adhesion energies for which pure adhesive failure or disentanglement
theories are not applicable.

6.3 Stick-to-slip transition in the presence of desorp-

tion

The equation of motion for tethered chains (see eqn.(3.31)) and for bulk
molecules (see eqn.(4.10)) extended with eqns.(5.1, 5.2) and the equation of
motion for the surface density ΣT form a closed system of equations which
governs the overall polymer flow in the parallel plate rheometer. This system
lies at the heart of the model. It must be emphasized that in this system
ΣT is no longer a free parameter, as was the case in the previous chapter,
but satisfies a nonlinear balance equation of the form of eqn.(6.4) with the
desorption time τd given by eqn.(6.15).

The final system of equations was solved numerically according to the proce-
dure described earlier in Chapter 5. The steady-state model predictions for the
polymer flow near the wall are presented in Figs.(6.3 - 6.8). The independent
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input parameters for this system are: the mean number ZB of constraints per
bulk chain, the mean number ZT of constraints per tethered chain, the Rouse
time TRB of bulk chains, the mean entanglement spacing a0, the step length
a of the primitive path, and the dimensionless parameter X0 (see eqn.(6.17)).
Attention must be paid to the fact that ZT , as well as X0, is a function of the
adhesion energy Eadh. In the case of a low adsorbing wall (i.e., small Eadh),
adsorbed molecules make on average only one connection with the wall so that
ZT ≈ ZB/2. At large Eadh, adsorbed molecules can make several connections
with the wall (see Figure 1.3). In this regime, tethered chains are expected to
be shorter than in the case of small Eadh.

Figure 6.3: Surface density ΣT (on the left) and layer thickness h (on the right) vs shear rate
for three different adhesion energies (see the text). Σ0T and h0 are the equilibrium surface
density of tethered chains and layer thickness, respectively. Results for ZB = 40.

In Figure 6.3, the surface density ΣT of tethered chains and thickness h of
the interfacial layer are shown as functions of the global shear rate γ̇ = Vp/H
(see Figure 5.1) up to the transition point for different values of Eadh and
a fixed temperature. According to eqn.(6.17), the parameter X0 increases
monotonically with Eadh, whereas ZT is expected to decrease. The ”low” en-
ergy curve in Figure 6.3 corresponds to the no-loops configuration of adsorbed
molecules (each molecule makes only one connection with the wall) for which
ZT = ZB/2. For certainty, we take X0 = 0.2. For the ”high” energy curve we
take ZT = ZB/4 and X0 = 0.8. And for the ”intermediate” energy curve we
take ZT = ZB/3 and X0 = 0.4.

As is seen in Figure 6.3, at small Eadh the surface density ΣT starts to drop
rapidly near the critical shear rate γ̇cr, which indicates the onset of massive
chain desorption induced by the flow. In contrast, h remains nearly equal to its
no-flow value h0 over a wide range of shear rates up to γ̇cr. As was discussed
earlier, at small surface densities of adsorbed molecules, desorption of one



80 Chapter 6. Unified slip model

adsorbed molecule ”destroys” 2 ZT bulk-tethered (B-T) entanglements in the
interfacial layer, and hence decreases the resistibility of the layer to cohesive
slip. A further increase in the shear rate γ̇ enhances desorption and leads to a
further decrease in the number of the B-T entanglements. At γ̇cr, the number
of B-T entanglements in the layer becomes insufficient to prevent alignment
of tethered chains by the flow. At this point, the ”survived” tethered chains
are suddenly smashed against the wall by the flow and slip occurs. Since for
small Eadh the decrease in the number of the B-T entanglements in the layer
is caused by desorption, the corresponding value of γ̇cr can be associated with
the onset of adhesive slip. Notice that the massive desorption is only initiated
in the vicinity of γ̇cr, as is typical for activation processes.

At high Eadh, Figure 6.3 shows a sharp decrease in h near γ̇cr, whereas ΣT

remains nearly equal to Σ0T . Apparently, this implies slip via disentangle-
ment. This regime was discussed in detail in the previous chapter. Finally,
for intermediate Eadh both h and ΣT deviate substantially from their equilib-
rium values at γ̇cr, which clearly indicates that in this regime desorption and
disentanglement compete with each other. In this regime, the B-T entangle-
ments in the interfacial layer are released by desorption and disentanglement
so that γ̇cr can be associated with the onset of ”mixed” slip. Apparently, for
intermediate Eadh the adhesive failure of cohesive slip theories are no longer
applicable and a more general mixed-slip theory is needed.

Figure 6.4: Slip velocity vs shear rate for
different adhesive energies. Results for
ZB = 40.

Figure 6.5: Slip length vs slip velocity for
different adhesion energies. Results for
ZB = 40.

In Figure 6.4, the slip velocity Vs = hγ̇w is shown as a function of the global
shear rate γ̇ for two different adhesion energies corresponding to adhesive
and cohesive slip. The ”high” adhesion energy curve pertaining to slip via
disentanglement was discussed in the previous chapter. The ”low” adhesion
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energy curve Vs(γ̇) in Figure 6.4 is associated with adhesive slip. Figure 6.4
then shows that, despite a different slip mechanism, Vs(γ̇) also comprises the
three slip regimes, similar to the case of cohesive slip. This behavior has not
been revealed in the previous slip theories. Note that for adhesive slip the
transition between the weak and the strong slip regime is not so sharp in
comparison to cohesive slip. Moreover, as is seen in Figure 6.4, larger slip
velocities are found in the case of adhesive slip. This agrees with the behavior
predicted by Stewart [14] and experimental data of Hatzikiriakos and Dealy
[57] who observed an increase in the slip velocity when lowering the surface
energy of the wall by fluoropolymer coatings.

In Figure 6.5, the slip length bs = Vs/γ̇b is shown versus Vs for two different
adhesion energies corresponding to adhesive and cohesive slip. As is seen,
the curves corresponding to different slip mechanisms have a qualitatively
similar behavior. At small Vs, bs is microscopic and almost independent of
Vs for both adhesive and cohesive slip. The nearly constant slip length in
the weak slip regime was predicted earlier by Brochard and de Gennes [18]
and Joshi et al [21, 22] for cohesive slip. In the vicinity of γ̇cr, bs starts to
grow rapidly with Vs. At γ̇cr, the system enters the strong slip regime in
which bs is independent of Vs and equal to βη, where η is the melt viscosity
and β the friction coefficient between the melt and the wall. Since η and
β have a roughly similar temperature dependence [23], this implies that in
the strong slip regime bs is nearly temperature independent for both cohesive
and adhesive slip. A similar conclusion was made by Yarin and Graham [23]
who recognized that the temperature independence of bs could not only be
attributed to cohesive slip, as assumed in [58]. The temperature dependence
of the slip length in the weak slip regime depends on the value of Eadh. As
is seen in Figure 6.5, in this regime bs is nearly inversely proportional to X0
(see eqn.(6.17)), the dimensionlized surface density Σ0T of tethered chains. At
high Eadh, X0 is a smooth function of the temperature T so that bs is nearly
temperature independent. In contrast, at low Eadh, X0 rapidly decreases if T
is increased. In this regime, bs is a monotonically increasing function of T . In
conclusion, Figure 6.5 shows that for a given temperature a larger slip length
is found (prior to the transition point) for lower energy walls, similar to the
behavior reported by Wang and Drda [49].

6.4 Temperature dependence of the stick-to-slip tran-

sition

In Figure 6.6, the critical shear rate γ̇cr and corresponding shear stress σcr

are shown versus X0 for a specific polymer melt and different wall materials.
According to eqn.(6.17), in this case a decrease in X0 is only related to an
increase in the melt temperature T . So Figure 6.6 actually shows the temper-
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ature dependence of σcr and γ̇cr for the melt and the chosen wall materials. To
establish the dominant slip mechanism at a certain temperature, the curves in
Figure 6.6 are accompanied with the corresponding values of (ΣT/Σ0T , h/h0).
The data on the ”high” adhesion energy curve show that ΣT remains nearly
equal to Σ0T over the whole range of temperatures. Clearly, on a wall for
which Eadh is high slip mainly occurs due to disentanglement. In contrast,
on the ”low” adhesion energy curve three different regions can be discerned.
At small T , for which X0 > 0.65, chain desorption is suppressed and cohesive
slip is expected even at low Eadh. At a certain critical temperature T ∗∗, for
which X0 ≈ 0.65, desorption is suddenly initiated. In the vicinity of T ∗∗, both
slip mechanisms occur in parallel, which implies a regime of the ”mixed” slip.
At higher temperatures, adhesive slip becomes dominant. Note that the mas-
sive chain desorption is initiated over a rather narrow temperature interval
(corresponding to X0 = 0.65...0.7), as expected for an activation process.

 

T  

Figure 6.6: Critical shear stress (on the left) and critical shear rate (on the right) vs parameter
X0 defined in eqn.(6.17) for two values of the adhesion energies. For points the corresponding
values of ΣT /Σ0T and h/h0 are given. Results for ZB = 40.

Figure 6.6 reveals that for both cohesive and adhesive slip σcr and γ̇cr are
nonmonotonous functions of T with a maximum at a certain temperature T ∗.
The amplitude of the maximum varies only slightly with Eadh (or, equivalently,
with the wall material). Its position corresponds to X0 ≈ 0.5 (for ZB = 40).
Note that T ∗ is a function of Eadh, so the actual values of T ∗ are generally dif-
ferent for the ”low” and ”high” adhesion energy curves. The nonmonotonous
temperature dependence of σcr and γ̇cr has not been predicted earlier. Instead,
the existing slip theories predict σcr to increase linearly with T (for cohesive
slip) or monotonically decrease with T (for adhesive slip). Let us show now
that the earlier predictions can be interpreted as the limiting case Eadh →∞
or Eadh → 0 of the more general theory developed here. For temperatures
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T > T ∗ (i.e., X0 < 0.5) both σcr and γ̇cr increase almost linearly with X0, and
so

σcr = C1G0BX0 , γ̇cr = C2X0T
−1
BR , (6.19)

where C1 and C2 are constants independent of X0. As seen in Figure 6.6, in
this regime the curves corresponding to different Eadh (and so to different slip
mechanisms) nearly coincide which yields that C1 and C2 are independent of
Eadh. So equations (6.19) are universal and do not depend on the actual slip
mechanism. Brochard and de Gennes [18] found that in the case of cohesive
slip at small surface densities of tethered chains, σcr is given by

σcr ∝ ΣTkBT (6.20)

This clearly agrees with eqn.(6.19) if one recalls eqn.(6.17) and eqn.(5.10).
Eqns.(6.19, 6.20) show that in the absence of desorption (when X0 is con-
stant) the critical shear stress σcr is a linear function of the melt temperature
T , similar to the behavior reported in [49, 59]. In this regime, γ̇cr also in-
creases linearly with T (since the Rouse time TRB ∝ T−1). Clearly, the linear
temperature dependence of σcr and γ̇cr can be attributed to cohesive slip. As
mentioned earlier, eqn.(6.19) also holds for adhesive slip at T > T ∗. However,
this does not imply a similar temperature dependence of σcr and γ̇cr. Namely,
for low Eadh X0 rapidly decreases as T is increased. In this regime, both σcr

and γ̇cr are more likely to decrease with T , as predicted by adhesive failure
theories. A decrease in σcr with the temperature T was reported by Joshi et
al [60] who studied a flow of polyethylene slipping on a low-adsorbing fluo-
ropolymer surface. Note that in the case of the mixed slip (at intermediate
Eadh) the actual temperature dependence of σcr and γ̇cr in the regime T > T ∗
strongly depends on the value of Eadh.

Figure 6.6 shows that for temperatures below T ∗, at which both σcr and γ̇cr

have a maximum, σcr and γ̇cr become very sensitive to the value of Eadh, as
opposed to the regime T > T ∗ considered above. For T < T ∗, σcr and γ̇cr

are larger (at a given X0) for higher Eadh. In this regime, both σcr and γ̇cr

increase with the temperature, irrespective the dominant slip mechanism. For
example, the shear stress σcr ∝ T α, where α > 1 is a function of Eadh. The
deviation from the linear dependence was reported by Wang and Drda [50]
who observed an increase in σcr/G0B with T for polyethylene resins below
2000C. They called it ”a low-temperature anomaly” and hypothesized that it
stems from a flow-induced transition to an ordered phase. The present theory
makes it clear that this anomaly can be explained in terms of disentanglement
and/or desorption. The existing theories for slip do not, however, explain the
low temperature anomaly. Note that an increase in σcr and γ̇cr with T at
low Eadh, which is unexpected for adhesive slip, arises from the fact that for
T < T ∗ the system is actually in the regime of the ”mixed” slip.

Another consequence of the nonmonotonous temperature dependence of σcr

and γ̇cr predicted by the model is a sudden elimination of wall slip (and ulti-
mately extrudate distortions) during a controlled rate extrusion over a narrow
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temperature window, similar to the behavior reported by Kolnaar and Keller
[61]. The absence of extrudate distortions in [61] was hypothesized to be a
result of the existence of a flow-induced mesophase. The present model, how-
ever, is able to explain this phenomenon in terms of disentanglement and/or
desorption.

6.5 Wall material dependence

Here the dependence of the stick-to-slip transition on the material of the wall
is discussed for a polymer melt at a fixed temperature. In this case, variations
in X0 are related (via Eadh) to variations in the surface energy of the wall.
In Figure 6.7, the critical shear stress σcr and shear rate γ̇cr are shown versus
X0. According to eqn.(6.17), for a given temperature, X0 increases with Eadh

so that in Figure 6.7 the adhesion energy Eadh increases from left to right.
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Figure 6.7: Critical shear stress (on the left) and critical shear rate (on the right) vs parameter
X0. The curve is obtained via interpolation of low, intermediate, and high adhesion energy
regimes. Results for ZB = 40.

Similar to the behavior depicted in Figure 6.6, both σcr and γ̇cr are found to be
nonmonotonous functions of Eadh with a maximum at a certain critical E∗

adh
corresponding to X0 ≈ 0.5. At low Eadh, the surface density ΣT of tethered
chains is small so entanglements between nearby chains are unlikely. In this
regime, the tethered chains move independently of each other, so both σcr and
γ̇cr are linear functions of ΣT , in accordance with eqn.(6.19). At low Eadh, the
absolute values of σcr and γ̇cr are small, which means that even a rather slow
flow may cause the stick-to-slip transition. This is due to the fact that at
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low Eadh the polymer-wall interaction is not strong enough to capture a large
number of polymers on the wall and prevent their desorption by the flow.

A further increase in Eadh ”creates” more adsorbed molecules on the wall and
”impedes” their desorption. According to eqns.(5.14, 6.19), for Eadh < E∗

adh
both σcr and γ̇cr are proportional to the number of bulk-tethered entangle-
ments in the interfacial layer and therefore increase with Eadh. At E∗

adh, the
number of the bulk-tethered entanglements is maximal, which implies max-
imal σcr and γ̇cr. However, above E∗

adh it starts to decrease with Eadh due
to the increasing role of tethered-tethered entanglements. Besides that, these
entanglements suppress constraint release in the layer, thereby decreasing its
resistibility to cohesive slip. As a consequence, a further increase in Eadh above
E∗

adh will result in a decrease in σcr and γ̇cr.

The model predictions for the material dependence of the stick-to-slip tran-
sition are in agreement with the data of Anastasiadis and Hatzikiriakos [62],
who reported an increase in σcr with Eadh at a fixed temperature. Apparently,
they studied the regime Eadh < E∗

adh. Lèger and coworkers [8] reported a
nonmonotonous dependence of γ̇cr on the surface energy of tethered chains
permanently attached to the wall, which also confirms the model predictions.
Note that the nonmonotonous wall material dependence of the stick-to-slip
transition is not revealed by other ”mixed” slip theories. For example, the
transient network model of Joshi et al [24] predicts σcr to be independent of
Eadh for both low and high adhesion energies. In the intermediate regime, σcr

was predicted to increase linearly with the adhesion energy Eadh.

Figure 6.8: Critical shear stress vs surface
density of adhesion energy. The solid line
is the model prediction.

Figure 6.9: Critical shear stress vs melt
temperature. The solid line is the model
prediction.

In the rest of this chapter, predictions of the model will be compared with
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available data on slip. Recently, Anastasiadis and Hatzikiriakos [62] measured
adhesion energies of various polymer-wall pairs and found an apparent relation
between σcr and Eadh. Let us compare their data on LLDPE of molecular
weight M = 119600 g/mol (Dowlex 2049 from Dow Chemical) on various
wall materials, including stainless steel, fluoropolymers Teflonr, and Vitonr.
The reported values of the adhesion energy Wadh per unit area of the wall
for Dowlex 2049 on stainless steel, Vitonr, and Teflonr are 22.6, 16.8, and
9.3 dyn/cm, respectively. Based on the molecular data of Fetters et al [54],
the input model parameters for Dowlex 2049 were found in [28]. Specifically,
the mean number ZB of constraints per bulk chain, the elastic modulus G0B

of the bulk, the mean entanglement spacing a0, and the maximum surface

density Σ
(max)
T of tethered chains were estimated to be 120, 2.6 MPa, 1.6 nm,

and 2.8 · 1017 chains/m2, respectively. The adhesion energy per tethered chain

Eadh is estimated as Wadh/Σ
(max)
T . Since the value of the parameter A (see

eqn.(6.17)) and the mean number of constraints ZT per tethered chain are
not known, we will regard them as adjustable parameters. In Figure 6.8, the
model predictions for σcr vs Wadh are compared with the data of Anastasiadis
and Hatzikiriakos. A good agreement between the theory and experiment is
found for A ≈ 100 and ZT ≈ 25.

In Figure 6.9, model predictions for σcr versus the melt temperature T are
compared with the data of Wang and Drda [50] on HDPE of molecular weight
M = 130500 g/mol (MH07 from BP Chemicals). The values of Eadh and
parameter A for MH07 on steel are taken the same as for Dowlex 2049. The
molecular weight between entanglements Me ≈ 1500 g/mol, the elastic modu-
lus G0B ≈ 2.5 MPa, and the mean number ZT ≈ 15 of constraint per tethered
chain for MH07 were found by the best fit to the data. The found value for
G0B and Me are in a good agreement with the estimates from [63]. The mean
number ZB of constraints per bulk chain and mean entanglement spacing a0
(corresponding to these Me and G0B) are estimated to be 80 and 1.8 nm,
respectively. Figure 6.9 clearly shows a nonlinearity in the temperature de-
pendence of the critical shear stress, earlier referred to as the low temperature
anomaly. Since the surface energy of a steel wall is rather high, Figure 6.9
corresponds to a regime where cohesive slip is dominant. The existing cohe-
sive slip theories predict the ratio σcr/T to be temperature independent. In
contrast, as is seen in Figure 6.9, the present model is able to provide a good
quantitative description of the observed low temperature phenomenon.

So far we have studied the case of monodisperse polymer bulk flowing over
a grafted polymer brush of monodisperse tethered chains. In reality, poly-
mer melts are always polydisperse and contain various fractions of polymer
molecules with different molecular weights. In the next chapter, we will incor-
porate polydispersity of the bulk and the tethered chains into the developed
formalism and study its effect on the parameters of the stick-to-slip transition.



Chapter 7

Effect of polydispersity on wall slip

In the previous chapters, we studied a flow of a monodisperse polymer melt
near a die wall. In reality, melts are always polydisperse. Here we will extend
the developed theory to include polydispersity of bulk and tethered chains, and
ultimately discuss the effect of polydispersity on the parameters of the stick-to-
slip transition. For simplicity, we will assume that the interaction between the
melt and the wall is strong enough to prevent desorption of adsorbed molecules
from the wall. In this regime, slip can only occur via disentanglement.

7.1 Bond vector correlator of a polydisperse bulk

Let us first study the effect of polydispersity on the dynamics of the polymer
bulk. As was shown earlier, the dynamics of an ensemble of bulk polymer
chains, with equilibrium length L0B, can be successfully described by the so-
called bond vector correlator SB

αβ(s0, t) defined as

SB
αβ(s0, t) =< b̂α(s0, t)b̂β(s0, t) >B , −L0B/2 ≤ s0 ≤ L0B/2 , (7.1)

where < . . . >B denote averaging over the ensemble and b̂α(s0, t) is the α

component of the bond vector b̂(s0, t) of a bulk chain. Parameter s0, defined
as the equilibrium arclength of a segment of the primitive path (see Figure
2.6), serves as a curvilinear coordinate for the chosen segment. It runs over a
fixed interval from −L0B/2 to L0B/2, the same for all bulk chains. Once SB

αβ
is known, one can readily calculate various properties of the ensemble. For
example, according to eqn.(4.2), the local stress σB

αβ in the melt is given by
(the elastic modulus G0B of the bulk is given by eqn.(5.10))

σB
αβ(t) =

G0B

L0B

L0B/2∫

−L0B/2

ds0 SB
αβ(s0, t) , (7.2)
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A polydisperse melt contains various fractions of polymers with different
molecular weights. Hereafter, polymers with molecular weight Mi will be
referred to as i-chains. Let ni be the concentration of the i-chains in the melt.
If P is the total number of different fractions of polymers in the melt, then
the numbers {ni}i=P

i=1 represent the melt composition. In what follows, these
numbers are assumed to be macroscopic so that each fraction of polymers of
the same sort can be considered as an ensemble. For example, the number of
the i-chains per unit volume of the melt yields an ensemble of monodisperse
polymers whose equilibrium length is equal to Li0B. For this ensemble, the
bond vector correlator SB

iαβ can be introduced defined as

SB
iαβ(s0, t) =< b̂α(s0, t)b̂β(s0, t) >i , (7.3)

where the averaging is taken over the i-chains. Note that parameter s0 in
eqn.(7.3) runs from −Li0B/2 to Li0B/2. Certainly, the dynamics of the poly-
disperse melt cannot be described by a single bond vector correlator. Instead,
one must specify the correlator for each sort of polymers in the melt. Once
SB

iαβ is known for each melt component, the dynamics of the melt is com-
pletely defined, and thus its macroscopic properties can easily be calculated.
For example, the local stress σB

αβ in the polydisperse melt is given by

σB
αβ(t) =

P∑
i=1

Gi0B

Li0B

Li0B/2∫

−Li0B/2

ds0 SB
iαβ(s0, t) , (7.4)

where the elastic modulus Gi0B is defined by

Gi0B =
niMikBT

Me
, (7.5)

where Mi, ni, T and Me are the molecular weight of the i-chains, their con-
centration in the melt, the melt temperature, and the mean molecular weight
between entanglements, respectively. Let us show that eqn.(7.4) can be pre-
sented in a more convenient form. To this end, let us formally rewrite the cor-
relator SB

iαβ of the i-chains as SB
iαβ(s0, t) = SB

iαβ(xLi0B, t), where x = s0/Li0B is
a dimensionless coordinate. Since for each sort of polymer chains −Li0B/2 ≤
s0 ≤ Li0B/2, we have that x runs over the same interval from −1/2 to 1/2
for all the chains present in the melt. With the help of the dimensionless
coordinate x, eqn.(7.4) now can be rewritten as follows

σB
αβ(t) =

ρkBT

Me

1/2∫

−1/2

dx ΦB
αβ(x, t) , (7.6)

where ρ is the density of the melt given by

ρ =
P∑

i=1

ρiMi . (7.7)
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The tensor ΦB
αβ(x, t) in eqn.(7.6) can be regarded as the ”generalized” bond

vector correlator of the polydisperse melt. Its components are given by

ΦB
αβ(x, t) =

P∑
i=1

ωiS
B
iαβ(xLi0B, t) , (7.8)

where ωi = ρiMi/ρ is the weight fraction of the i-chains in the melt. Ap-
parently, the fractions {wi}i=P

i=1 represent the molecular weight distribution
(MWD) of the components of the melt. Note that this distribution is normal-
ized, that is w1 + w2 + ... + wP = 1. Eqn.(7.6) shows that calculation of the
local stress in the polydisperse melt amounts to calculation of the tensor ΦB

αβ,

which is in turn equal to the value of the ”partial” bond vector correlator SB
iαβ

averaged over the MWD of the melt. In order to find the equation of motion
for SB

iαβ, let us recall that SB
iαβ describes the dynamics of the ensemble of the

monodisperse i-chains. In Chapter 4, we were able to derive the equation of
motion for the bond vector correlator of monodisperse polymer molecules (see
eqn.(4.10)) and the corresponding boundary conditions (see eqn.(4.8)). Based
on these results, one can immediately write down the equation of motion for
the bond vector correlator SB

iαβ of the i-chains (for 0 < s0 < Li0B/2):

∂SB
iαβ

∂t
= KB

αγS
B
iβγ + KB

βγS
B
iαγ +

[
Dic + νia

2
0

]
∂2SB

iαβ

∂s2
0

+ 2 ξ̄iBSB
iαβ +

[ s0∫

0

dxξ̄iB(x, t)

]
∂SB

iαβ

∂s0
− 1

τiB
(SB

iαβ − Seq
αβ) .

(7.9)

The first two terms on the RHS pertain to convection, where KB
αβ is the

gradient velocity tensor in the polymer bulk. The third term corresponds to
reptation and constraint release. The coefficients Dic and νi are the diffusion
coefficient of reptation and the frequency of constraint release on the i-chains,
respectively. The last term pertains to contour length fluctuations (CLF) of
the i-chains. The corresponding relaxation time τiB(s0) is given by

τiB(s0) ≈ 1

4
TiRB e0.75 ZiB (1−2 s0/Li0B)2 ,

where ZiB is the mean number of constraints per i-chain and TiRB its Rouse
time. The forth and fifth terms stem from retraction of the i-chains, with ξ̄iB

being the corresponding local retraction rate of the chain contour:

ξ̄iB(s0, t) ≈ −λ̄iB(s0, t)− 1

TiRB
, TiRB =

ςNeL
2
i0B

3π2kBT
.

Here λ̄iB(s0, t) is the mean local stretch of the i-chains at s0 and time t. In a
regime where the i-chains are stretched only slightly, we have that λ̄iB(s0, t) ≈√

SB
iαα(s0, t), where summation is implied over the repeating indices.
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We have established that the correlator SB
iαβ of the i-chains satisfies a nonlinear

integro-partial differential equation in which the coefficients also depend on
the sort of polymer chains under consideration. This implies that, in general,
there is no closed equation of motion for the tensor ΦB

αβ. To calculate ΦB
αβ, one

must solve the equation of motion for the correlator SB
iαβ for each component

of the melt. Attention must be paid to the fact the equation of motion for
SB

iαβ contains, as a parameter, the corresponding frequency νi of constraint
release of the i-chains. In a polydisperse melt, different sorts of polymers
may interact with each other via entanglements. In the presence of convective
constraint release (CCR), this implies that νi is actually a function of all the
bond vector correlators SB

jαβ (j = 1...P ) present in the melt

νi = νi(S
B
1αβ, S

B
2αβ, . . . , S

B
Pαβ) . (7.10)

Therefore, calculation of the ”generalized” bond vector correlator ΦB
αβ of a

polydisperse melt with P components amounts to solving a system of P cou-
pled equations of motion (see eqn.(7.9)), one for each sort of molecules. Note
that in the linear viscoelastic regime, where CCR gives only a minor contri-
bution to the melt dynamics and can be neglected, these equations decouple.
In this regime, constraint release in the melt is driven by reptation so that
νi is only a function of the molecular parameters of the melt. As was shown
in [29], in this regime νi does not only depend on the molecular parameter
of the i-chains, but depends on the molecular parameters of all the sorts of
polymer chains present in the melt. In the next section, we will study CR in
the polydisperse melt and derive an explicit expression for νi.

7.2 Constraint release in a polydisperse melt

In a polydisperse polymer melt which contains P sorts of chains, each molecule
has, in general, P sorts of constraints. For example, constraints of the j-th
sort are imposed by j-chains. In what follows, they will simply be referred to
as j-constraints. Each sort of constraints has its own characteristic lifetime.
The mean lifetime τj of the j-constraints depends on the molecular parameters

of the j-chains. Let φ
(i)
j be the mean fraction of the j-constraints per i-chain.

Then, the frequency νi of constraint release of the i-chains can be written as

νi =
P∑

j=1

1

τj
φ

(i)
j . (7.11)

To calculate φ
(i)
j , let us assume that all the entanglements in the melt are

pairwise contacts between neighboring polymers. Then, the entanglement
network in the melt can be considered as consisting of interacting ”half-
entanglements”. If ZiB is the mean number of constraints per i-chain, then
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each i-chain contributes to ZiB/2 entanglements, or, equivalently, provides ZiB

half-entanglements of the i-th sort. Each half-entanglement interacts with an-
other one present in the melt. Two half-entanglements build an entanglement
of one of P (P + 1)/2 sorts. Let Wi be the fraction of the half-entanglements
of the i-th sort per unit volume of the melt. If ni is the concentration of the
i-chains in the melt, then the number of the half-entanglements of the i-th
sort per unit volume of the melt is niMi/Me, where Me is the mean molecular
weight between entanglements. On the other hand, it is equal to 2Wi/a

3
0,

where a0 is the mean entanglement spacing. Therefore, Wi can be written as

Wi =
ρa3

0

2Me
ωi , (7.12)

where ωi is the mass fraction of the i-chains in the melt. Once the fractions Wi

are known, one can readily calculate the corresponding volume fractions of en-
tanglements of each sort in the melt. Since half-entanglements are distributed
homogeneously in the melt, they are given by

Wii = WiWi , Wi6=j = 2WiWj , (7.13)

where the prefactor 2 in the expression for Wij stems from the fact that
Wij = Wji. Given the volume fractions Wij of entanglements, the CR matrix

φ
(i)
j in eqn.(7.11) can be written as

φ
(i)
j =

Wij

P∑
m=1

Wim

. (7.14)

Finally, substitution of eqs.(7.12, 7.13) into eqn.(7.14) yields

φ
(i)
i =

ωi

2− ωi
, φ

(i)
j 6=i =

2ωj

2− ωi
. (7.15)

It is seen that the components of the CR matrix φ
(i)
j are only functions of the

molecular weight distribution of the melt. The existence of the nondiagonal

components φ
(i)
j 6=i reveals that the motions of different sorts of polymer chains

in the polydisperse melt are coupled via constraint release. The strength of

this coupling, as measured by φ
(i)
j 6=i, is a function of the melt MWD.

Let us now find the mean lifetime τj of the j-constraints, which amounts to
calculation of the mean lifetime of the half-entanglements of the j-th sort (or,
for short, ”j” half-entanglements) in the melt. At rest, they are released via
reptation of the j-chains. Let δtj be the average time needed for a j-chain
to reptate over a distance a0. In the absence of CLF, reptation of the j-
chain during the time interval 0...δti will release (on average) one constraint
on another chain, or, in other words, will ”destroy” two half-entanglements.
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These half-entanglements, however, may have different sorts. The probabil-
ity to destroy one ”i” and one ”j” half-entanglement is equal to Wij (see
eqn.(7.13)), whereas two ”j” half-entanglements Wjj. The number Nj of the
”j” half-entanglements per unit volume of the melt at time t = δtj is then

Nj(t = δtj) = Nj(t = 0)− ni

[ P∑

i=1,i 6=j

Wij + 2Wjj

]
, (7.16)

where the entanglements ”creation” mechanism has been ignored. In eqn.(7.16),
ni is the concentration of the i-chains in the melt, and Nj(t = 0) = njZj the
number of the ”j” half-entanglements per unit volume of the melt at time
t = 0. On the other hand, if τj is the mean lifetime of a ”j” half-entanglement,
then we have that

Nj(t = δtj) = Nj(t = 0) · e−t/τj . (7.17)

By comparing eqn.(7.16) with eqn.(7.17), one finally arrives at

τj =
Zj

2Wj
δtj . (7.18)

where use has been made of eqn.(7.13) and the fact that the distribution
function Wi over the half-entanglements in the melt is normalized, that is
W1 + ...+WP = 1. According to Doi and Edwards [31], δtj ≈ a2

0/2Djc so that
finally we have that

τj =
Zj

2Wj

a2
0

2Df
jc

, Df
jc =

Djc[
1− 1.5√

Zj

]2 , (7.19)

where we have also included an effect of CLF on the mean lifetime of the
j-constraints (see the discussion after eqn.(4.21)). Substitution of eqns.(7.11,
7.15, 7.19) into eqn.(7.9) yields that in the polydisperse melt, thermal con-
straint release on the i-chains is mostly driven by reptation of the low molec-
ular weight components of the melt. Clearly, in contrast to a monodisperse
melt, thermal constraint release may play an important role in the dynamics
of the polydisperse melt and therefore must be taken into account into any
realistic description of the melt behavior.

In the presence of flow, the j-constraints can also be released, in parallel
to reptation, via retraction of the j-chains. In order to calculate the mean
lifetime of a j-constraint due to CCR, let us recall eqn.(7.18). In the case of
retraction, δtj can be associated with the average time needed for an end of a
j-chain to retract (along the tube) a distance equal to the mean entanglement
spacing a0. According to eqn.(4.19), δtj is given by

δtj = a0

[ Lj0B/2∫

0

ds0 ξ̄jB(s0, t)

]−1

, (7.20)
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where ξ̄jB is the mean local retraction rate of the chain contour so that the
integral in eqn.(7.20) gives the average velocity between the chain end and the
melt. Taking into account that both ends of the j-chain contribute to CCR and
the fact that thermal and convective constraint release work independently of
each other, from eqn.(7.18) and eqn.(7.20) we finally have that in the presence
of flow the mean lifetime τj of the j-constraint is given by

τ−1
j =

2Wi

Zj

[
2Df

jc

a2
0

+ 2
1

a0

Lj0B/2∫

0

ds0 ξ̄jB(s0, t)

]
(7.21)

Eqn.(7.21) represents a combined action of thermal and convective constraint
release. In a case of a monodisperse melt (P = 1), it boils down to eqn.(4.19)
derived earlier in Chapter 4. Since the fractions Wj in eqn.(7.21) are functions
of the melt MWD, eqn.(7.21) reveals that the mean lifetime of the j-constraint
is not only a function of the molecular parameters of the j-chains, as assumed
in many molecular theories for polydisperse systems (see, for example, Ru-
binstein and Colby [64]), but also depends on the melt MWD. Therefore, as
follows from eqn.(7.15) and eqn.(7.21), constraint release in the polydisperse
melt shows a complex nonlinear dependence on its molecular weight distribu-
tion. In what follows, the reciprocal mean lifetime τj of the j-constraints will
be referred to as the mobility of the j-constraints.

Once the mobility of each sort of constraints in the melt and the matrix

φ
(i)
j are known, constraint release in the melt is completely defined. The

components of φ
(i)
j represent the mobility distribution of the constraints for

every sort of polymers in the melt. For example, according to eqn.(7.11), the
frequency νi of constraint release of the i-chains is equal to the mobility of the

j-constraints averaged over the corresponding distribution φ
(i)
j (j = 1...P ).

Most of the existing constitutive theories for polydisperse systems do not
normally acknowledge the constraints mobility distribution, thus assigning
all the constraints on a polymer chain a single characteristic lifetime. So
the present model offers a more accurate treatment of CR in the melt in
comparison to other theories. Since constraint release plays an essential role in
the dynamics of polydisperse systems, the thorough treatment of CR enables
the present model to provide a more accurate description of the melt dynamics.

The system of equations of motion for each correlator SB
jαβ (j = 1...P ) ex-

tended with eqns.(7.11, 7.15, 7.21) forms a closed system of coupled equations
which determines the behavior of the polydisperse polymer melt in a flow.
This system is valid in both the linear and nonlinear viscoelastic regime, and
therefore is applicable over a wider range of flow rates than most of the existing
constitutive theories for polydisperse melts. The present approach is differ-
ent from the conventional mixing rule models based on the Tsenoglou / des
Cloizeaux concept of ”double reptation” [65, 66, 67, 68], in which the dynam-
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ics of the polydisperse melt is analyzed in terms of the rheological behavior
of monodisperse melts. In fact, the presence of the nondiagonal components

of the CR matrix φ
(i)
j 6=i in eqn.(7.15) makes it explicit that even in the linear

viscoelastic regime motions of different sorts of polymer molecules in the melt
are coupled and cannot be considered independently. This implies that the
dynamics of the polydisperse melt cannot, in general, be described in terms
of the dynamics of its monodisperse components. In the next section, the
developed formalism will further be used to study an affect of polydispersity
of bulk molecules on the onset of cohesive slip.

7.3 Polydispersity of the bulk: effect on wall slip

In this section, we will study how polydispersity of the bulk may affect the
onset of cohesive slip. For simplicity, we assume that the interfacial layer
is monodisperse, that is all the tethered chains have the same equilibrium
length L0T . As was established earlier, in order to quantify the stick-to-slip
transition, both the constitutive equation for the bulk and for the layer must be
solved simultaneously. In a case of a polydisperse bulk, the ”bulk” constitutive
equation is presented by a system of P coupled equations (see eqn.(7.9)), each
for one component of the melt. The constitutive equation for monodisperse
tethered chains was derived in Chapter 3 (see eqn.(3.31)). As a parameter, it
contains the frequency νT of constraint release on tethered chains which in turn
is inversely proportional to the mean lifetime of constraints in the polymer bulk
(see eqn.(5.4)). A polydisperse bulk with P sorts of polymer chains contains
P sorts of constraints whose mean lifetimes are given by eqn.(7.21). This
implies that the monodisperse tethered chains entangled with polydisperse
bulk molecules have, in general, P sorts of bulk constraints. If τi is the mean
lifetime of the i-constraints in the polymer bulk and φiZ is the mean fraction of
bulk constraints of the i-th sort per tethered chain, then the average frequency
νT of constraint release of the tethered chains has the form

νT =
P∑

i=1

1

τi
φiZ . (7.22)

According to eqn.(5.8), φiZ is given by

φiZ =
2WiB

WT + 2WB
, (7.23)

where WT and WiB are the fractions of tethered (see the discussion after
Figure 5.3) and bulk half-entanglements of the i-th sort per unit volume in
the interfacial layer, respectively. The total volume fraction WB of the bulk



7.3. Polydispersity of the bulk: effect on wall slip 95

half-entanglements in the interfacial layer is given by

WB =
P∑

i=1

WiB . (7.24)

Note that WT + WB = 1. In order to calculate WiB, let us again consider the
entanglement network in the polydisperse bulk. In the previous section, we
were able to calculate the fraction Wi of half-entanglements of the i-th sort
per unit volume (see eqn.(7.12)). Since fractions of half-entanglemens of the
i-th sort in the bulk and in the layer are equal, we have that

WiB = WiWB , (7.25)

where Wi is defined in eqn.(7.12). Since the distribution Wi is normalized, WiB

given by eqn.(7.25) satisfies eqn.(7.24). Therefore, from eqns.(7.22, 7.23, 7.25)
one may find that the average frequency νT of constraint release of tethered
chains can be written as

νT =
P∑

i=1

Wiτ
−1
i φZ , φZ =

2(1−WT )

WT + 2(1−WT )
, (7.26)

where the volume fraction WT of ”tethered” half-entanglements in the inter-
facial layer was calculated earlier in Chapter 5 (see eqn.(5.6)). According to
eqn.(5.6), it is a function of the molecular weight and the surface density of
tethered chains. The mean lifetime τi of the bulk constraints of the i-th sort
is given by eqn.(7.21).

Finally, to calculate the stick-to-slip law for the polydisperse bulk, we must
also specify explicitly the MWD of bulk chains, or in other words, the fractions
{ωi}i=P

i=1 (see eqn.(7.8)). As an example, we will take the continuous log-normal
molecular weight distribution ω(M), found to be a good approximation for the
actual MWD of many industrial polymers (see, for example, van Ruymbeke
et al [69]). The log-normal MWD ω(M) has the form

ω(M) =
1√

2πMσ
e
−
1

2

[
ln(M)− ln(M0)

σ

]2

, 0 < M < ∞ , (7.27)

where M0 and σ are the parameters of the distribution. Note that ω(M) is
normalized, that is

∞∫

0

dM ω(M) = 1 . (7.28)

The typical behavior of ω(M) as a function of the molecular weight M is
depicted in Figure 7.1. The value of M0 determines the position of the max-
imum of the distribution. In contrast, the value of σ controls the ”width”
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of the distribution. Apparently, a small σ corresponds to a narrow MWD,
inherent to monodisperse melts. Large values of σ pertain to highly poly-
disperse systems which contain various fractions of long and short polymer
chains. Note that an increase in σ ”shifts” the maximum of the distribution
to lower molecular weights (for a fixed value of M0). Other properties of the
log-normal distribution are described in detail in [70].

Figure 7.1: Log-normal distribution for M0/Me = 30 and different values of the parameter σ.
Me is the mean molecular weight between entanglements.

The system of constitutive equations for the polydisperse bulk (see eqn.(7.9))
together with the constitutive equation for the interfacial layer (see eqn.(3.31))
and eqns.(5.1, 5.2) was solved numerically for the case M0 = 30Me and differ-
ent values of the parameter σ. The molecular weight of tethered chains MT

is assumed to be equal to 10Me. The geometry of the system is the same as
in Figure 5.1. The numerical procedure was described in detail in Chapter
5 (see Section 5). Note that in the case of the polydisperse bulk, instead of
solving a single ”bulk” constitutive equation, one has to solve a system of P
coupled equations. Here P is the number of steps used to ”discretize” the
log-normal distribution. The dependence of the critical shear rate γ̇cr for the
onset of macroscopic slip (and ultimately spurt oscillations) on the parameter
σ of the MWD is shown in Figure 7.2. It is seen that γ̇cr increases monoton-
ically with σ. This dependence becomes especially strong at larger values of
σ, where even a small increase in σ leads to a sharp increase in γ̇cr. Clearly,
a polydisperse melt has a larger value of γ̇cr, or equivalently, is more resistant
to cohesive slip than that with a narrow MWD.

The observed increase in the ”resistibility” of the melt to slip with increasing
σ can be explained as follows. As mentioned earlier, the onset of slip via
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disentanglement is determined by the strength of constraint release on tethered
chains, measured by the frequency νT . According to eqn.(5.4), the value of
νT is in turn determined by the dynamics of bulk molecules. In particular,
thermal constraint release on the tethered chains stems from reptation of the
bulk molecules, and therefore is a function of the corresponding reptation
time TDB (see eqn.(4.9)). In fact, as follows from Figure 5.9, γ̇cr is inversely
proportional to TDB and thus scales with the molecular weight M of bulk
chains as M−3.4. The presence of shorter polymer chains in the bulk with
smaller TDB enhances the strength of CR on the tethered chains and therefore
postpones the onset of slip to larger shear rates. As mentioned earlier, an
increase in the parameter σ of the log-normal distribution moves its maximum
to lower molecular weights. In other words, the increase in σ adds to the
system more shorter (M < M0) chains than those with molecular weight
larger than M0. This eventually leads to the increase in γ̇cr.

Figure 7.2: Critical shear rate for the onset of macroscopic wall slip versus width of the log-
normal distribution for M0 = 30Me. The molecular weight MT of tethered chains is equal to
10Me. TRB30 is the Rouse time of bulk chains (see eqn.(4.12)) with ZB = 30.

The parameters of the log-normal distribution (M0 and σ) for a given polydis-
perse melt can be determined from molecular measurements. Namely, for each
polydisperse melt the mean number molecular weight M̄n and mean weight
molecular weight M̄w can be measured, which are defined as follows

M̄n =

P∑
i=1

niMi

P∑
i=1

ni

, M̄w =

P∑
i=1

niM
2
i

P∑
i=1

niMi

, (7.29)

where ni and Mi are the concentration of polymer chains of the i-th sort in the
melt and their molecular weight, respectively. Note that for a monodisperse
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melt (P = 1) we have that M̄n = M̄w. For polydisperse melts, M̄w is normally
larger than M̄n. Therefore, the ratio

I =
M̄w

M̄n
≥ 1 (7.30)

can be used as a measure of the degree of polydispersity of a melt. The
parameter I is commonly referred to as the index of polydispersity. The
values of M̄n and M̄w calculated with the help of the log-normal MWD in
eqn.(7.27) are given by [70]

M̄n = M0e
−σ2/2 , M̄w = M0e

+σ2/2 . (7.31)

Therefore, in this case the polydispersity index I has the form

I =
M̄w

M̄n
= e+σ2

. (7.32)

The value of I is only determined by the parameter σ and thus is a measure
of the width of the MWD, as expected. Moreover, I rapidly increases with σ.
As we saw in Figure 7.2, an increase in σ (or equivalently in I) postpones the
onset of cohesive slip to larger shear rates in comparison to the case of the
monodisperse polymer bulk.

7.4 Polydispersity in the layer: effect on wall slip

In the previous section, we studied the flow of a polydisperse melt over a layer
of monodisperse tethered chains. Here we will try to account for polydispersity
of the tethered chains and its effect on the onset of wall slip. For simplicity,
we now assume that the polymer bulk is monodisperse. As was found in
Chapter 5, in the case of the monodisperse tethered chains entangled with the
monodisperse polymer bulk, the wall shear stress can be written as

σI
xy = G0BΨ0

BT

1

L0T

L0T∫

0

ds0S
T
xy(x, t) , (7.33)

where L0T is the equilibrium length of the tethered chains. The bond vec-
tor correlator ST

αβ describes the dynamics of the ensemble of tethered chains
present in the interfacial layer. It satisfies a nonlinear equation of motion (see
eqn.(3.31)) with the boundary conditions given by eqn.(3.32). In eqn.(7.33),
G0B is the elastic modulus of the bulk and Ψ0

BT is the equilibrium fraction of
bulk-tethered entanglements per unit volume of the interfacial layer (see the
discussion before Figure 5.5). According to eqn.(5.14), Ψ0

BT is given by

Ψ0
BT = 2WTWB , (7.34)
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where WT and WB are the fractions of tethered and bulk half-entanglements
per unit volume of the interfacial layer, respectively. The explicit form of
WT and WB is given by eqn.(5.6). A polydisperse interfacial layer contains
various fractions of tethered chains with different molecular weights. Let Li0T

be the equilibrium length of tethered chains of the i-th sort. In what follows,
tethered chains of the i-th sort will simply be referred to as i-chains. The
number of the i-chains per unit area of the wall will be denoted by ΣiT . The
total number of sorts of the tethered chains in the layer is P . In a case of the
polydisperse layer, eqn.(7.33) generalizes to

σI
xy = G0B

P∑

i=0

Ψ0
iBT

1∫

0

dxST
ixy(xLi0T , t) , (7.35)

where x = s0/Li0T is a dimensionless coordinate. Ψ0
iBT is the fraction of

entanglements per unit volume of the layer which tethered chains of the i-th
sort make with bulk chains present in the layer. According to eqn.(7.34), for
the monodisperse bulk, Ψ0

iBT can be written as

Ψ0
iBT = 2W 0

iTW 0
B , (7.36)

where W 0
iT is the equilibrium volume fraction of tethered half-entanglements

of the i-th sort in the layer. According to eqn.(5.6), W 0
iT can be expressed via

the surface density ΣiT of the i-chains as follows

W 0
iT =

ZiTΣiT

2h0
a3

0 . (7.37)

Here h0 is the equilibrium thickness of the interfacial layer, ZiT the num-
ber of constraints per i-chain, and a0 the mean distance between entangle-
ments. Once W 0

iT are given, the total volume fraction W 0
T of the tethered

half-entanglements in the interfacial layer is given by

W 0
T =

P∑
i=1

W 0
iT . (7.38)

Note that W 0
T + W 0

B = 1, so eqn.(7.36) can be rewritten in terms of W 0
iT as

Ψ0
iBT = 2W 0

iT (1−W 0
T ) . (7.39)

Let us introduce the fractions Ωi (i = 1...P ) of tethered chains defined by

Ωi =
ZiTΣiT

Ω
, (7.40)

where

Ω =
P∑

i=1

ZiTΣiT . (7.41)
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The values {Ωi}i=P
i=1 represents the molecular weight distribution of the teth-

ered chains. Note that this distribution is normalized, that is Ω1+. . .+ΩP = 1.
In terms of Ωi, the equilibrium fraction W 0

iT of tethered half-entanglements of
the i-th sort in the layer can be written as

W 0
iT =

a3
0Ω

2h0
Ωi . (7.42)

According to eqn.(7.41), Ω is proportional to the average molecular weight of
the tethered chains. To show this explicitly, let us introduce the overall surface
density ΣT of the tethered chains, i.e., the total number of the tethered chains
per unit area of the wall, defined as

ΣT =
P∑

i=1

ΣiT . (7.43)

From eqn.(7.41) and eqn.(7.43) one may find that Ω can be rewritten as

Ω = Z̄TΣT , Z̄T =
1

ΣT

P∑
i=1

ΣiTZiT . (7.44)

Clearly, Z̄T represents the mean number of constraints per tethered chain. If
Me is the mean molecular weight between entanglements, then we have that
Z̄T = MT/Me, where MT is the average molecular weight of tethered chains.
Eqn.(7.44) shows that Ω is equal to the product of the mean number Z̄T of
constraints per tethered chain and the overall surface density ΣT . Let us show
that with the help of Z̄T , eqn.(7.39) can be rewritten in a more convenient
form. To this end, we introduce the surface density Σ∗

0T defined as

Σ∗
0T =

2h0

a3
0Z̄T

. (7.45)

In view of eqn.(7.45), the fraction W 0
iT in eqn.(7.42) can be rewritten as

W 0
iT =

ΣT

Σ∗
0T

Ωi . (7.46)

Therefore, eqn.(7.39) finally reads as

Ψ0
iBT = 2

ΣT

Σ∗
0T

[
1− ΣT

Σ∗
0T

]
Ωi . (7.47)

It is seen that Ψ0
iBT = 0 if ΣT = Σ∗

0T , which implies the absence of entangle-
ments between bulk and tethered chains at Σ∗

0T . Apparently, Σ∗
0T represents

the surface density of the dry-brush regime (see discussion after eqn.(5.7)) for
the case of the polydisperse interfacial layer.
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According to eqn.(5.4), the frequency of constraint release on the monodis-
perse tethered chains is proportional to the average fraction φZ of the bulk
constraints per tethered chain. The fraction φZ , given by eqn.(5.8), was found
to be a function of the molecular weight of the tethered chains. This implies
that in the case of a polydisperse interfacial layer and a monodisperse bulk
the frequency νiT of constraint release of the i-chains can be written as

νiT = νBφiZ , (7.48)

where νB is the frequency of constraint release in the polymer bulk. The
explicit form of νB as a function of the molecular and flow parameters of the
bulk was calculated earlier in Chapter 4 (see eqn.(4.21)). The fraction φiZ of
bulk constraints per i-chain can be written as (see eqn.(5.8))

φiZ =
2WB

WiT + 2WB
, (7.49)

where WB and WiT are the fractions of bulk and tethered half-entanglements
of the i-th sort, respectively. In view of eqn.(7.46), they are given by

WiT =
ΣT

Σ∗
T

Ωi , WB = 1− ΣT

Σ∗
T

. (7.50)

Here use was made of the fact that WB = 1 − WT , where WT is the total
fraction of tethered half-entanglements in the layer. In eqn.(7.50), Σ∗

T is given
by eqn.(7.42) in which the equilibrium thickness h0 of the interfacial layer is
replaced with its actual thickness h. Eqn.(7.49) and eqn.(7.50) show that in
the dry brush regime, for which ΣT = Σ∗

T , the fraction φiZ = 0 so that the
tethered chains have only tethered constraints, as expected.

The constitutive equation for the monodisperse bulk (see eqn.(4.10)) together
with the constitutive equation for the interfacial layer and eqns.(5.1, 5.2) was
solved numerically for a case in which the interfacial layer contains only two
sorts of tethered chains: short (with molecular weight MT is 8Me) and long
(with molecular weight MT is 16Me). The molecular weight of bulk chains MB

is assumed to be equal to 45Me. The geometry of the system is the same as in
Figure 5.1. The numerical procedure was described in detail in Chapter 5 (see
Section 5). Note that in the case of a polydisperse interfacial layer containing
two sorts of tethered chains, the ”layer” constitutive equation is represented
by a system of two equations of motion (similar to eqn.(3.31)), each for one
sort of the tethered chains. These two equations can be solved independently
as long as the characteristic lifetimes of the tethered constraints are larger
than those imposed by bulk molecules (see the discussion after Figure 5.2).

Figure 7.3 shows the dependence of the critical shear rate γ̇cr for the onset of
cohesive slip on the mass fraction ΩS of the short tethered chains in the layer.
The mass fraction of the long tethered chains is then given by ΩL = 1 − ΩS.
As is seen, γ̇cr has a nonmonotonous behavior as a function of ΩS. The
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Figure 7.3: Critical shear rate vs fraction of short tethered chains in the layer. The inter-
facial layer is assumed to contain two sorts of tethered chains: short (MT = 8Me) and long
(MT = 16Me). The molecular weight of bulk chains is equal to MB = 45Me. TRB45 is the
corresponding Rouse time of bulk chains (see eqn.(4.12)).

minimum of the curve approximately corresponds to ΩS = 0.5. The values
ΩS = 0 and ΩS = 1.0 correspond to purely monodisperse tethered chains with
MT = 8Me and MT = 16Me, respectively. Notice that the difference between
the maximum and the minimum of the curve in Figure 7.3 is rather small.
This implies that the polydispersity of the interfacial layer has only a subtle
effect on the onset of wall slip, especially when compared to the corresponding
effect of the ”bulk” polydispersity studied in the previous section.

7.5 Conclusions

We studied effect of polydispersity on the onset of cohesive slip described
by the critical shear rate γ̇cr. Two scenarios were analyzed: polydispersity
in the bulk and polydispersity in the interfacial layer. As found, the ”bulk”
polydispersity has a strong effect on the onset of slip. In particular, in the case
of the log-normal MWD, a sharp increase in γ̇cr with the polydispersity index I
was found. So a polydisperse melt starts to slip at larger shear rates than that
with a narrow MWD. Such a strong dependence of the parameters of the stick-
to-slip transition on the melt composition can be used in practice to postpone
the onset of spurt. In contrast, the parameters of the stick-to-slip transition
show a rather weak dependence on the polydispersity of tethered chains. So
the single molecular weight approximation used in the previous chapters, in
which all the tethered chains are assumed to have the same molecular weight
equal to their actual average one, is reliable for practical calculations.



Chapter 8

Summary

What was studied?

The focus of this work is the study of the interaction between a flowing polymer
melt and a die wall. It is known that under certain conditions the flow be-
comes unstable which manifests itself via various distortions of the extrudate,
commonly referred to as extrusion instabilities. Some of these instabilities
are shown to be interfacial in nature, or in other words, originate from the
violation of the no-slip boundary condition at the polymer/die wall interface.
This is the reason why special attention in this work is paid to the predictions
of the stick-slip law in terms of the molecular and flow parameters, as well as
the extruder geometry.

We remind you that for ordinary (Newtonian) liquids the no-slip boundary
condition is usually satisfied. However, as shown by Greenberg and Demay
[71], Georgiou and Crochet [72] and Dubbeldam and Molenaar [73], when
the no-slip boundary condition is modified to include a possible stick-to-slip
transition above a certain critical stress, even a Newtonian flow starts to
show large pressure oscillations at the die outlet, qualitatively similar to those
observed for polymer melts. This clearly indicates the importance and the
effect of the boundary conditions on the polymer flow in the die.

A possibility for a polymer melt to slip was predicted by de Gennes [9] already
a long time ago in the 1970’s. He pointed out that due to its high viscosity the
melt will always show a significant amount of slippage when flowing past an
ideal non-adsorbing surface, whatever the flow rate may be. In a real extruder,
the melt flows over a ”brush” of polymer molecules adsorbed on the wall. In
this case, the onset of wall slip may be associated with a sudden disentangle-
ment between the bulk and surface molecules, after which the polymer melt
slips freely over the wall, covered by a thin ”lubrication” layer of smashed
surface chains. In the picture used by de Gennes and then adopted in other
models on slip, the boundary conditions for a polymer melt at the melt/wall
interface are governed by the dynamics of surface polymer molecules which
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occupy a narrow boundary layer between the melt and the wall. This layer is
of a molecular size and therefore must be studied microscopically. Therefore,
in order to calculate the stick-slip law, we first focused on the description of
the dynamics of polymer molecules attached to the die wall.

What has been done?

First, starting from a microscopic consideration of the interfacial layer, we
derived an equation of motion for a single tethered chain in a flow. It was
further used to find the corresponding equation of motion for an ensemble of
tethered chains attached to the wall surface. This equation actually describes
the behavior of the ensemble-averaged configuration of a tethered chain in
flow and takes into account all the major physical mechanisms for tethered
chains, such as convection, retraction, constraint release, and contour length
fluctuations.

Since the dynamics of the tethered chains is coupled to that of the polymer
molecules in the bulk, the derived equation is not closed. In order to complete
it, an equation of motion for bulk chains has been derived based on a micro-
scopic consideration of the melt. Since bulk chains undergo the same physical
mechanisms as tethered ones and can also reptate, this derivation amounts
to incorporation of reptation into the existing equation of motion for teth-
ered chains. Moreover, using a simple geometrical analysis, we calculated the
frequency of constraint release on bulk chains as a function of the molecular
parameters of the melt. The equation of motion for the interfacial layer and for
the bulk together with the continuity of stress and velocity, and the balance
equation for the surface density of tethered chains form a closed system of
equations which lies at the heart of the model. We emphasize that the devel-
oped model consistently unites desorption and disentanglement into a single
mathematical formalism. In Chapter 7, the proposed model was extended to
include polydispersity of bulk and tethered chains.

What was found?

We found that the polymer melt always shows a certain amount of slippage
when flowing past a die wall, whatever the flow rate may be. At small flow
rates, however, the slip velocity is microscopic and therefore cannot be inferred
from experimental stress-strain curves. The presence of a polymer ”brush” of
surface molecules entangled with the bulk drastically reduces the slip velocity,
compared to the case of a polymer melt flowing over an ideal non-adsorbing
wall. A decrease in the number of entanglements between bulk and surface
molecules due to flow-induced desorption or disentanglement results in an
increase of the slip velocity. At the critical shear rate, a massive chain desorp-
tion or disentanglement occurs after which the interaction between the melt
and the wall is only determined by monomer-monomer friction. This regime
is characterized by macroscopically large values of the slip velocity. These
results are in a good agreement with the earlier predictions of Brochard and
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de Gennes [18].

We found that the dominant slip mechanism is determined by both the value
of the adhesion energy Eadh and melt temperature T . For large Eadh, the
melt slips cohesively (i.e., via disentanglement) over the whole range of tem-
peratures. In this regime, desorption gives only a small contribution to the
dynamics of the tethered chains so that the actual surface density of teth-
ered chains is nearly equal to its no-flow value for all flow rates up to the
critical point. For small Eadh, the melt may slip via desorption, desorption
plus disentanglement, or even disentanglement alone, depending on the melt
temperature. Note that in industrial practice steel dies are often used. Since
steel is known to have a large surface energy, one would expect in this case
slip via disentanglement as the dominant slip mechanism. In the case of a
fluoropolymer-coated die wall, which has a much lower surface energy than a
steel one, the regime of mixed slip is expected.

The analysis of the stick-slip law for various polymer-wall pairs has revealed
its complex non-linear and non-monotonous dependence on the melt tempera-
ture T . The parameters of the stick-slip transition become especially sensitive
to T in the case of slip via desorption, as expected for an activation process.
Therefore, the temperature dependence of the stick-slip law can conveniently
be used to figure out the dominant slip mechanism for a particular polymer-
wall pair. Similar to the temperature dependence, the stick-slip law shows a
non-monotonous dependence on the wall material, in agreement with avail-
able experimental observations. The maximum in the critical shear stress and
shear rate correspond to a grafting regime for which the number of entangle-
ments between surface and bulk molecules is maximal. This grafting regime
pertains to intermediate surface densities of tethered chains, that is where the
interfacial layer contains a lot of tethered chains but the interactions between
them are not yet strong enough to allow their orientation by the flow. At very
low or very high surface densities of tethered chains, an early onset of slip is
predicted, that is to say at lower values of the critical shear stress and shear
rate. This is due to the lack of bulk-tethered entanglements or suppressed
constraint release on tethered chains, respectively.

Finally, the effect of polydispersity of bulk and tethered chains on the parame-
ters of the stick-to-slip transition was studied. It was found that polydispersity
of bulk chains ”postpones” the onset of the macroscopic slip regime to larger
shear rates. Such a dependence of the stick-slip law on the composition of the
melt can indeed be used in practice to suppress spurt oscillations and thus
increase the production rate of polymers. On the contrary, the stick-slip law
shows a rather weak dependence on polydispersity of tethered chains.

From wall slip to spurt?

As was mentioned in the Introduction, in order to explain the origin of ex-
trusion instabilities, several mechanisms were proposed including constitutive
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instabilities, oscillating boundary layers, and wall slip. Experimentally, it has
been observed that there is a significant influence of the material of the die
on both the onset and development of surface distortions (see, for example,
Ramamurthy [74]). Moreover, apparent slip at the die wall has been found
in polymer melts prior to the onset of spurt oscillations (see, for example,
Münstedt et al [75]). Therefore, the recent experimental data corroborates
the hypothesis that spurt, that is large pressure oscillations of the extrudate,
originates from slip of the polymer melt over the die wall.

Attempts to explain the occurrence of spurt oscillations via the onset of wall
slip have also been made on the phenomenological level. The relaxation os-
cillation (RO) model of Molenaar and Koopmans [51] and its refined version
by den Doelder et al [52, 53] model spurt on the basis of conservation of mass
over the system together with conservation of momentum in the die extended
with appropriate stick-slip boundary conditions. The boundary conditions
are presented as a switch curve in which a transition from the ”no-slip” to
”slip” regime occurs at a certain critical wall stress. Is is shown that the non-
monotonous form of the switch curve and incompressibility of the melt in the
die are the ingredients necessary to obtain pressure oscillations. In Figure 8.1,
we present a simple flow curve, qualitatively similar to those measured during
extrusion for polymers that exhibit spurt.

The flow curve represents the relation between the imposed flow rate Q through
the die and the measured pressure drop P over the die during extrusion. The
flow rate Q is defined as an integral of the melt velocity over the cross-section
of the die. The geometry of the die is the reason that the melt compressibility
in the die can be ignored (contrary to the situation in the barrel). This yields
that Q is uniform over the die. Then, the mass flux which leaves the die per
unit of time can be written as ρQ where ρ is the (constant) polymer density.
The pressure drop over the die P is defined as the difference Pin−Pout, where
Pin and Pout are the pressure in the die entry and die exit region, respec-
tively. Clearly, the flow curve is a global relation which is characteristic for
the given extrusion system and is determined by the molecular properties of
the polymer, the properties of the die wall, and the die geometry.

In Figure 8.1, it is seen that for polymer melts that exhibit spurt oscillations
the flow curve is discontinuous and has two branches. As seen in Figure 1.1,
movement of the plunger pumps the melt into the die and therefore creates a
non-zero mass flux at the die outlet. At small extrusion speed (or equivalently
small plunger velocities) the pressure difference P and the flow rate Q are
small, so the state of the extrusion system is represented by a point on the
first (lower) branch. An increase in the extrusion speed leads to an increase
in Q. The flow rate Q is proportional to the melt velocity in the die which in
turn is proportional to the corresponding bulk shear rate γ̇b (see Figure 5.1).
Moreover, the increase in the plunger velocity results in an increase in the
die inlet pressure Pin so that the pressure difference P also increases. So the
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Figure 8.1: Qualitative sketch of the flow curve.

system ”slides” up along the first branch of the flow curve.

When the plunger velocity approaches a certain critical value, a sudden tran-
sition from microscopic to macroscopic slip occurs along the whole die. After
this, the polymer melt slips freely over a bare metallic wall (in the case of
pure desorption) or over a thin lubrication layer of smashed surface molecules
(in the case of disentanglement). The occurrence of slip implies that a larger
amount of material can be transferred through the die so that the flow rate in
the die Q jumps to a higher value. This means that the system ”jumps” onto
the second branch characterized by macroscopic slip. For a constant plunger
speed, the incompressibility of the melt in the die implies that the amount of
the material per unit of time which enters the die is also constant. Therefore,
in the presence of wall slip, after a while, the flow rate in the die will drop to a
certain value at which new entanglements between bulk and surface molecules
can again be restored via readsorption of bulk molecules or thermal motion of
smashed surface chains. The creation of the entanglements between bulk and
surface molecules reduces the flow rate in the die so the system ”jumps back”
onto the first branch. After this the cycle repeats itself.

So the occurrence of spurt oscillations can be explained by the hysteresis in
the two-branched flow curve. The analysis of the flow curve shows that the
upmost point of the first branch is associated with the critical point of the
stick-to-slip transition. As discussed earlier, the slip velocity remains small
compared to the plunger velocity up to this point. Therefore, the first branch
of the flow curve can be associated with microscopic slip. In contrast, the
second branch in Figure 8.1 corresponds to a regime of macroscopic slip.

The fact that the slip velocity remains microscopic up to the transition point
after which it jumps to macroscopic values implies that in practice the bound-
ary condition at the die wall can be approximated by a simple switch function,
similar to the behavior assumed in [52, 53]. The present model is able to calcu-
late the parameters of the switch function in terms of the molecular properties
of polymer melt, the properties of the die wall, and the extruder geometry.
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The predictions of the relaxation oscillation model [51, 52, 53] for the ampli-
tude and period of spurt oscillations are shown to be in a good quantitative
agreement with available experimental data, provided that the parameters of
the stick-slip transition are chosen properly. Therefore, using the results ob-
tained in this work, the RO model, which takes the stick-slip law as an input,
can be made fully quantitative. The conclusion is that the present model is
not only capable of predicting the onset of wall slip, and hence spurt. It may
also be used to predict the period and amplitude of the spurt oscillations from
readily accessible rheological data and processing conditions.

Why is this model important?

As was mentioned in the Introduction, extrusion instabilities cause a serious
problem for the processing industry, limiting the production rate and quality
of resins. Despite the fact that extrusion instabilities are known for more than
50 years, for many of these instabilities a reliable mathematical model, which
is able to describe quantitatively their onset and evolution, is still lacking. The
reason for this is the complexity of polymeric systems and their intermolecular
interactions. The ability to model and ultimately manipulate the onset of
extrusion instabilities therefore poses a very serious challenge. The focus of
the presented work is wall slip and related spurt phenomena. Spurt is one of
the major issues that confront the polymer processing industry. A successful
theory for spurt should at least be able to answer the following three questions:

• why does spurt occur?

• when does spurt occur?

• what should we do to postpone the onset of spurt?

In order to answer all these questions, the theory must be able to model
the flow of a polymer melt near the die wall over a wide range of flow rates
and wall materials. Moreover, for practical purposes it is important that the
theory can predict spurt from readily accessible material data and processing
conditions. The present model satisfies these conditions and makes a step
ahead in the modelling of flow of polymer melts. It can predict the onset of wall
slip (and thus spurt) by desorption or disentanglement of surface molecules.
Since desorption and disentanglement are taken into account self-consistently,
the model can be applied over a wide range of adhesion energies, including
those where both slip mechanisms occur in parallel. The model contains no
adjustable parameters and allows to formulate the stick-slip law in terms of the
extruder geometry, molecular and surface parameters. Finally, the predictions
of the model can further be used in practice to postpone or even eliminate
spurt, e.g. by varying the material properties of the die wall or choosing an
appropriate temperature regime of processing.
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