
Appendix B.11

Corrections and additions to Chapter 11

In this chapter we collect corrections, extensions, etc. regarding Chapter 11.

B.11.1 Corrections and additions to Section 11.1

It turns out that the proof of part b. in Theorem 11.1.5 is wrong. Below we give a
correct proof.

Theorem B.11.1.1 Let A be the infinitesimal generator of the C0-semigroup T (t)
on the Hilbert space Z and consider the following semilinear differential equation

ż(t) = Az(t) + f (z(t)), t ≥ 0 z(0) = z0. (B.11.1)

If f : Z 7→ Z is locally Lipschitz continuous, then there exists a tmax > 0 such
that the differential equation (11.7) has a unique mild solution on [0, tmax) with the
following properties:

a. For 0 ≤ t < tmax the solution depends continuously on the initial condition,
uniformly on any bounded interval [0, τ] ⊂ [0, tmax).

b. If z0 ∈ D(A), then the mild solution is actually a classical solution on [0, tmax).

Moreover, if tmax < ∞, then

lim
t↑tmax
‖z(t)‖ = ∞.

If the mapping f is uniformly Lipschitz continuous, then tmax = ∞.

Proof a. This part can be found in the book.

b. It remains to show that for z0 ∈ D(A) the mild solution is in fact a classical
solution. Let t1, t2 be two time instances such that 0 ≤ t1 < t2 < tmax, and let z(t)

747



748 B.11 Corrections and additions to Chapter 11

be the (unique) mild solution corresponding to z(0) = z0 ∈ Z. Then from part a. the
following holds

z(t2) = T (t1)z(t2 − t1) +

∫ t1

0
T (t1 − s) f (z(s + t2 − t1))ds.

Thus the mild solution of (11.1) at time t2 equals the mild solution of

v̇(t) = Av(t) + f (v(t)), t ≥ 0, v(0) = z(t2 − t1)

at time t1. Combining this with (11.13), we find that for t2 − t1 sufficiently small

‖z(t2) − z(t1)‖ ≤ M1eω1t1‖z(t2 − t1) − z0‖. (B.11.2)

It remains to estimate the right-hand side of this inequality. Using (11.3), we deduce

z(t) − z0

t
=

T (t)z0 − z0

t
+

1
t

∫ t

0
T (t − s) f (z(s))ds

=
T (t)z0 − z0

t
+

1
t

∫ t

0
T (t − s) f (z0)ds +

1
t

∫ t

0
T (t − s)[ f (z(s)) − f (z0)]ds

=
T (t)z0 − z0

t
+

1
t

∫ t

0
T (q) f (z0)dq +

1
t

∫ t

0
T (t − s)[ f (z(s)) − f (z0)]ds.

Since z0 is in the domain of A, the first term converges to Az0 as t converges to zero.
The second term converges to f (z0) since T (t) is strongly continuous. It remains to
show that the last term converges to zero.

Since z and f are continuous, we can for every ε > 0 find a tε > 0 such that
‖ f (z(s)) − f (z0)‖ ≤ ε for s ∈ [0, tε]. Hence for t ∈ [0, tε] there holds

‖
1
t

∫ t

0
T (t − s)[ f (z(s)) − f (z0)]ds‖ ≤

1
t

∫ t

0
‖T (t − s)[ f (z(s)) − f (z0)]‖ds

≤ M1ε,

where M1 is the maximum of the semigroup over e.g. [0, 1]. This can be done for any
positive ε, and so we have that the right-derivative of z(t) at t = 0 exists. Combining
this with (B.11.2) we see that z(t) is Lipschitz continuous.

Next choose τ < tmax. Since z(t) is continuous on [0, τ], this function is bounded.
Combining this with the Lipschitz continuity of f , we see that f (z(t)) is Lipschitz
continuous on [0, τ]. Here we have used the Lipschitz continuity of z. Since every
Lipschitz continuous function is absolutely continuous, we conclude by Theorem
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B.5.1.1 that

z(t) = T (t)z0 +

∫ t

0
T (t − s) f (z(s))ds

is the classical solution of (B.11.1) on [0, τ]. Since τ < tmax was chosen arbitrarily ,
we have shown the assertion.

This result can also be found in Cazenave and Haraux [43, Proposition 4.3.9]
and Zheng [294, Corollary 2.5.2]. In the later reference f is assumed to be globally
Lipschitz continuous, but as can be seen from our proof this is not needed.


