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Abstract

This is the final report conducted during my study period in Thales, Nederland
form September 2008 to January 2009. The work was focussed on the study
of cable coupling. This has involved developing models of the cable coupling
phenomenon and developing some statistical analysis. Results show that the
estimate cable coupling compares reasonably well with measurements and the
statistical analysis provides some useful bounds for the expected values and in-
sight into the important parameters. From a comparison of the braid transfer
impedance models it is concluded that the Kley model seems reasonably accu-
rate. From the measurement results provided by previous Thales reports it is
apparent that stray reactances play an important role in defining the resonant
points in the cable coupling. Comparable simulation results can be obtained
through the application of reasonable stray reactive values. At resonance the
cable coupling will only be limited by losses in the circuit and this can provide a
simple estimate of the maximum cable coupling. Using an estimate of the losses
and the statistical distribution of the important parameters provides an engi-
neer with the probability distribution of the cable coupling. A full description
of the approach and the advantages it provides for efficient and cost effective
EMC compliance is given in this report.
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1 Theory of cable transfer impedance

In this section three well known models for cable transfer impedance were con-
sidered and compared for cable sheaths with a single layer weave. The models
considered were the models of Vance [1], Tyni [2], and Kley [3]. Note that in
the past different nomenclatures have been used for describing the models so
a table is provided in the appendix comparing the nomenclature used in this
report with previous work.

1.1 Sheath parameters

The basic parameters of a braided sheath as depicted in Figure 1. are:

P Picks or the number of carrier crossings per unit length

N Number of carriers

n Number of wires in each carrier

l lay length (one carrier rotation)

d wire diameter

α braid angle

h radial spindle separation.

Do outer diameter of dielectric

Dm mean braid diameter

b hole width

The above parameters over specify the braid, so P or l are given as and the
other parameter is deduced from:

l =
N

2P
(1)

Braid angle α and radial spindle separation h are also calculated from (2),
(3) and (4) as proposed by Katakis [4] who suggested Dm is also a function of h.
The equations represent a non-linear relationship so a solution is found through
a Newton-Raphson iteration of the equations.

tan α =
2πDmP

N
(2)

[
2π

N
cos α

]
h2 +

[
(1− n)d +

2π

N
(Do + 2d) cos α

]
h− 2d2 = 0 (3)

Dm = Do + 2d + h (4)
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Figure 1: Detail of the sheath showing defined parameters (m=8, n=5)

Once h and alpha are found then

b =
2πDm

N
cosα− nd (5)

These then are all the parameters necessary to define the shield for the calcula-
tion of the transfer impedance. A typical set of cable parameters can be found
in [5].

1.2 Vance model

The Vance model [1] is one of the earliest and simplest models which takes into
account skin depth and braid inductance. The DC resistance of the braid is
given by

Rc =
4

πd2nNσ cosα
(6)

Then allowing for the skin depth effect the screen impedance can be found from
[5]

Zd = Rc
(1 + j)d/δ

sinh((1 + j)d/δ)
(7)
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where the skin depth δis given by

δ =
1

(πfµ0σ)1/2
(8)

Additionally to the screen impedance is a braid inductance M which is given
by

M =
πµ0

6N
(1− χ)3/2 e2

E(e)− (1− e2)K(e)
(9)

e = (1− tan2 α)1/2 if α < 45o

or

M =
πµ0

6N
(1− χ)3/2

e2√
1−e2

E(e)− (1− e2)K(e)
(10)

e = (1− cot2 α)1/2 if α > 45o

where K(e) and E(e) are complete elliptic integrals of the first and second kind,
respectively, defined by

K(e) =
∫ π/2

0

dϕ

(1− e2 sin2 ϕ)1/2
(11)

E(e) =
∫ π/2

0

(1− e2 sin2 ϕ)1/2dϕ (12)

F is fill factor of braid given by

F =
nNd

2πDm cos α
(13)

F0 is the minimal filling factor given by

F0 = F cosα (14)

and the optical coverage χ is given by

χ = 2F − F 2 (15)

The total transfer impedance is then given by

ZT (f) = Zd(f) + 1jωM (16)

1.3 Tyni model

In the Tyni model [2] the transfer impedance is found from the braid inductance
Lb and the leakage or gap inductance Lh due to the gaps in the screen. This
model was studied extensively in [8] and found to be reasonably accurate.
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Lb =
µ0h

4πDm
(1− tan2α) (17)

Lh =
µ02N

πcosα

(
b

πDm

)2

exp

(−πd

b
− 2

)
(18)

Note that the equation for Lb is as quoted by Benson et al. [8] but this
appears to be different to that quoted in the Thales report [7] The transfer
impedance Zt is then given by

Zt = Zd + jω(Lh − Lb) (19)

where Zd is the braid impedance allowing for skin depth given by 7

1.4 Kley model

The Kley model [3]is the best and most rigorously developed of the three models
and the Thales report 3.3 RCTR study [7]suggests that this is probably the more
accurate.

In the Kley model there are inductances; Ml due to the apertures allowing
for the curvature of the screen, Mg mutual inductance between carriers in the
braid and and an inductive term due Ls to the tangential components of the
electromagnetic field.

These inductances are given by the following equations

Ml = 0.875M exp(−τh) (20)

Mg =
−0.11
Nn

µ0 cos(2K1α) (21)

Ls =
1

ωπσδ
[D−1

l + D−1
g ] (22)

where M is given by 10 and

τh = 9.6F 3
√

χ2d/Dm (23)

K1 =
π

4

[
2
3
F0 +

π

10

]
(24)

D−1
l =

10πF 2
0 cosα

Dm
[1− F ] exp(−τE) (25)

D−1
g =

−3.3
2πF0Dm

cos(2K2α) (26)

τF = 12F 3
√

χ2d/Dm (27)

K2 =
π

4

[
2
3
F0 +

3
8

]−1

(28)
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The total transfer impedance is then given by

Zt = Zd + jω(Ml + Mg + Ls) (29)

Kley also found that better results were obtained if the braid wire diameter
d was replaced by an adjusted value dr given by

dr =
0.67d√
cos α

(30)

1.5 Braid internal impedance for external propagation

As well as providing a transfer mechanism between the internal voltages and
currents and the external voltage and currents it also forms the transmission line
conductor for the internal and external propagation. The internal impedance
of the braid conductor for the external propagation is an important parameter
because it provides one of the main loss mechanisms for the external circuit.
From [5] the internal impedance for the external circuit of a cylindrical conductor
is

Ze =
1

πDmσd

(1 + j)d
δ

coth
(1 + j)d

δ
≈ Rc

(1 + j)d
δ

coth
(1 + j)d

δ
(31)

This may be further adjusted to allow for a non uniform distribution of the
external surface current due to the nature of the external circuit.

1.6 Double braided cables

There is a wide range of multiple shielded cables but in this work the transfer
impedance of a double braid which is periodically connected together at elec-
trically short spacings as found in cable RG214 was investigated. For this type
of cable braid a transfer impedance can be derived which can be treated in the
same way as a single braid. The equivalent transfer impedance for a two-layer
braid periodically shorted together is given by [5]

Zt =
ZT1ZT2

Zi1 + Zi2 + jωL12
(32)

where Zi1 = inner impedance of the inner shield given by 31 , Zi2 = inner
impedance of the outer shield given by 31 , ZT1 The transfer impedance of the
inner shield, ZT2 The transfer impedance of the outer shield and L12 is the
inductance of the shield to shield transmission line given by

L12 =
µ0

2π
ln

a2

b1
(33)

with b1 is the inner braid outer radius and a2 is the outer braid inner radius.
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Figure 2: A typical cable layout of two parallel cables showing points were
significant stray reactances can affect coupling

2 Theory of cable coupling via the braid transfer
impedance

In this work the cable coupling due to transfer impedance alone is considered.
The effect of transfer admittance has not been included as for non optimized
cable sheaths it should only have a small effect [9, 10]. Coupling due to the
effect of a transfer impedance will occur between cables when they are laid
roughly in parallel along a common path. A typical cabling arrangement is
shown in Figure 2 where the cables have approximately a constant separation
along a length l, for instance due to being laid in cable trunking, but the cables
normally diverge near their connection points. The nature of the terminations
strongly effects the degree of cable coupling at high frequencies due to the stray
reactances they introduce. If the cables are connected to a common connector
endplate (or common cabinet) then the stray reactance will be inductive due
to the introduction of an extra loop area, but if the cables are connected to
electrically isolated units then the stray reactance will be mostly capacitive.
These stray reactances at the terminations can only be estimated due to the
geometric complexity of the terminations and the lack of known details. The
terminations are therefore the main limit to the accuracy to which the cable
coupling can be predicted.

The equivalent circuit for the coupling path created by the cable sheath
transfer impedance is shown in Figure 3. The currents Is along the source cable
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Figure 3: Equivalent circuit for cable coupling between two shielded cables via
the shield transfer impedance

creates a voltage gradient Eit(x) along the outer sheath given by

Eit(x) = ZtsIs(x) (34)

where Zts is the shield transfer impedance of the source cable and x is the
distance along the cable sheath. The voltage gradient on the source cable will
then induce a current on the outer sheath of the victim cable. This induced
current circulates around a circuit composed of the outer sheaths of the two
parallel cables and termed the tertiary circuit. For low frequencies ( λ >> the
length of the cables ) the sheath voltage gradient is independent of x. The
equivalent circuit for low frequency coupling to a transmission line is as given
in Figure 4. the induced current in the tertiary circuit It is then given by

It =
Eitl

jωLtll + Zt0 + Ztl
=

ZtsIsl

jωLtll + Zt0 + Ztl
(35)

where ω = 2πf is the angular frequency , Lt is the inductance per unit length
of the tertiary cable pair, Zt0 and Ztl are the termination impedances at each
end of the tertiary circuit (i.e. they represent the termination stray reactances
in parallel with half the total transmission line capacitance) and l is the length
over which the cables are approximately parallel. For cables laid closely together
ωLtll may be comparable to Zt0 and Ztl and hence the difficulty in estimating
the cable coupling.
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Figure 4: Equivalent circuit for low frequency cable coupling

The induced tertiary current will in turn induce a current Iv in the victim
cable due to the induced voltage gradient Evi(x) caused by the victims sheath
transfer impedance Ztv, as shown in Figure 3. The induced victim current will
then creates a voltage across the terminations of the victim cable which is the
usual measurable form of the cable coupling. For example the voltage across
terminal 0 of the victim Vv0 will be given by

Vv0 =
ZtvItlZv0

Zv0 + Zvl
=

ZtvZtsIsl
2Zv0

(Zv0 + Zvl)(jωLtll + Zt0 + Ztl)
(36)

where Zv0 and Zvl are the termination impedances of the victim circuit.
The cable coupling is then quantified by the ratio of the received victim

voltage to the source voltage. The coupling C in dB is then defined as

C = 20 log10

(
Vv0

Vs

)
(37)

The current in the tertiary circuit is often called the common mode current
but in fact it has the form of a differential mode as the victim and source
currents are of opposite sign. The presence of another cable or a ground plane
will enable other current paths to form and reduce the coupling between two
cables. In the case of an additional ground plane the induced tertiary circuit
current would have two modes of the form of a differential and common mode.
The general equivalent coupling circuit for two cables above a ground plane can
be represented by the circuit given in Figure 5. The differential and common
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Figure 5: Equivalent circuit for cable coupling between two shielded cables via
shield transfer impedance in the presence of a third conductor (ground plane of
third cable shield)

mode currents (Itd and Itc) on the cable sheaths are related to the total sheath
currents on the source cable and victim cable (Its and Itv respectively) by

[
Its

Itv

]
=

[ −1 1
1 1

] [
Itd

Itc

]
(38)

or
[Itsv] = [S][Itcd] (39)

where [Itsv] is the vector of cable sheath currents, [Itcd] is the vector of common
mode and differential mode currents and [S] is the modal transformation matrix.
For low frequencies ( λ >> the length of the cables ) the induced common mode
and differential mode currents on the tertiary circuit cable sheaths are then
related to the source sheath voltage (Etil) by

[
Etil
0

]
=

(
jωl

[
Lts Ltm

Ltm Ltv

]
+ [Zt0] + [Ztl]

)[
Its

Itv

]
(40)

where Lts and Ltv are the self inductance of the source and victim shields re-
spectively, Ltm is the mutual inductance between the source and victim cable
shields, [Zt0] and [Ztl] are the impedance matrices of the tertiary circuit termi-
nations as depicted in figure 5 and these then have the form

[ZtX ] =

[
Ztsx(Ztvx+Ztsvx)
Ztsvx+Ztsx+Ztvx

ZtsxZtvx

Ztsvx+Ztsx+Ztvx
ZtsxZtvx

Ztsvx+Ztsx+Ztvx

Ztvx(Ztsx+Ztsvx)
Ztsvx+Ztsx+Ztvx

]
(41)
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where X = 0 or l
Equation (40) is then solved for the victim current Itv which can then be

substituted for It in (36) to find the induced voltage across the victim termina-
tion/connector.

For higher frequencies the voltage per unit length along the source cable
sheath will have a significant variation along the cable length due to propagation
effects and these need to be taken into account. The propagation effects lead to
resonances in the tertiary circuit and a significant increase in cable coupling.

2.1 High frequency cable coupling

For high frequencies the cable currents are no longer uniform and the prop-
agation effects have to be considered. For a general source cable with supply
impedance Zs0 and load impedance Zsl the the input current Is(0) at the supply
connector is related to the supply voltage Vs by

Is(0) =
Vs

Zs0 + Zc

[
Zsl+Zc tanh γsl
Zc+Zsl tanh γsl

] (42)

where Zc is the characteristic impedance of the source cable (i.e. typically 50
Ω ) and γs is the propagation constant of the cable (i.e. γs ≈ jω/u where u
is typically 2c/3 ). The current can also be defined in terms of forward and
backward propagating waves such that

Is(0) = I+
s + I−s = I+

s + ρisI
+
s (43)

where

ρis =
[
Zc − Zsl

Zsl + Zc

]
e−2γsl (44)

Thus ( 42 ) and ( 43 ) can be combined to give

I+ =
[Zc + Zsl]eγslVs

2[Zsl(Zc cosh γsl + Zsl sinh γsl) + Zc(Zsl cosh γsl + Zc sinh γsl)]
(45)

The current along the source cable is then given by

Is(x) = [e−γsx + ρise
γsx]I+ (46)

where x is the distance along the cable from the supply point. The voltage
gradient along the shield of the source cable is then also a function of x as given
by

Eti(x) = ZtsIs(x) (47)

The cable sheath tertiary circuit and the victim cable will be equivalent to
transmission lines with a distributed series voltage source of the form as shown
in the line section given in Figure 6. The differential equations describing the
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Figure 6: Equivalent circuit a section ∆x of a transmission line with a distrib-
uted series voltage source.

induced voltagesVi and currents Ii on transmission lines with a distributed series
voltage source Ei(x) are given by Vance [5].

∂Vi

∂x
= Ei(x)− IiZ (48)

∂Ii

∂x
= −Y Vi (49)

where Z and Y are the transmission line series impedance and shunt admittance
respectively. Equations (48) and (49) can be differentiated and combined to
give

∂2Vi

∂x2
− γ2Vi =

∂Ei(x)
∂x

(50)

∂2Ii

∂x2
− γ2Ii = −Y Ei(x) (51)

Equation (51) has a general solution of the form [5] :

Ii(x) = [K1 + P (x)]e−γx + [K2 + Q(x)]eγx (52)

where
P (x) =

1
2Zc

∫ x

0

eγuEi(u)du (53)

Q(x) =
1

2Zc

∫ l

x

e−γuEi(u)du (54)

and K1 and K2 are set to satisfy the boundary conditions at x = 0 and x = l
which gives

K1 = ρ1

[
ρ2P (l)e−γl −Q(0)eγl

eγl − ρ1ρ2e−γl

]
(55)

K2 = ρ2e
−γl

[
ρ1Q(0)− P (l)
eγl − ρ1ρ2e−γl

]
(56)
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where Zc =
√

Z/Y , γ =
√

ZY and

ρ1 =
Z0 − Zc

Z0 + Zc
(57)

ρ2 =
Zl − Zc

Zl + Zc
(58)

Equation (52) is therefore used to first find the currents induced on the
tertiary cable sheath circuit and then it is also applied to the victim cable using
the deduced tertiary current profile to deduce the induced victim current and
the voltage induced across the victim terminals using.

Vv0 = Zv0Ivi(0) (59)
Vvl = ZvlIvi(l) (60)

For multiple cables or cables in the presence of a ground plane the currents
induced on each of the cable sheaths will be different and the governing equations
will comprise of N simultaneous equations where N = the number of cables in
the presence of a ground plane or N + 1 is the total number of cables when a
ground plane is not present. The governing equations are then

[
∂2Vi

∂x2

]
− [Z][Y ][Vi] =

[
∂Es(x)

∂x

]
(61)

[
∂2Ii

∂x2

]
− [Y ][Z] [Ii] = − [Y ] [Ei(x)] (62)

where [X] represents now a vector of the N components of X. Equations (61)
and (62) therefore represent N simultaneous equations. However if we transform
the components into model components using

[Xm] = [S]−1[X] (63)

where [S] is the transformation matrix comprising of the eigen vectors of [Y ][Z]
then (62) has the form of N independent equations

[
∂2Iim

∂x2

]
− [γm]2 [Ii] = −[S]−1 [Y ] [S] [Eim(x)] (64)

where [γm]2 is a diagonal matrix of the eigen values of [Y ][Z] and the general
solution is of the form:

[Ii(x)] = [[K1] + [P (x)]][e−γx] + [[K2] + [Q(x)]][eγmx] (65)

where

[K1] = [ρ1]([eγl]− [ρ1][ρ2][e−γl])−1([ρ2][P (l)][e−γl]− [Q(0)][eγl]) (66)

[K2] = [ρ2][e−γl]([eγl]− [ρ1][ρ2][e−γl])−1([ρ1][Q(0)]− [P (l)]) (67)

where

[ρ1] = ([Z0] + [Zc])−1([Z0]− [Zc]) ρ2 = ([Zl] + [Zc])−1([Zl]− [Zc]) (68)

where [Z0] and [Zl] are given by 42.
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3 Statistical analysis and the application of Un-
scented Transforms

The nature of Electromagnetic compatibility (EMC) involves process the para-
meters of which are often only poorly known or can have a significant variation.
Uncertainty is one of the most challenging aspects of EMC analysis. This is
particularly true for cable coupling where it is found that the properties of the
external circuit strongly effects the degree of coupling experienced. The para-
meters of the external circuit depends on the installation of the cables which can
only be known to a certain accuracy or may vary in a random fashion.Therefore
cable coupling can only be quantified within certain statistical limits dictated
by the statistical distribution of the parameters involved. Full analysis of cable
coupling must then include statistical analysis.

Calculating statistical parameters is very time consuming and often impossi-
ble. Solving complex systems using a Monte Carlo approach is not very feasible
as it uses several hundred thousand simulations to obtain the statistics of the
final result. Unscented Transforms UT offers a way of greatly reducing the
computational burden needed during statistical analysis. In this work I have
explored its application to cable coupling.

3.1 Statistical parameters

The property of cable coupling is quantified by a nonlinear function the para-
meters of which may have a random or statistical variation. The resulting cable
coupling will then also have some form of probability distribution the nature of
which needs to be quantified. The probability distribution defines the proba-
bility that a certain variable falls within a particular interval. There are many
families of probability distributions such as normal distribution, binomial dis-
tribution, exponential distribution and uniform distribution. Each distribution
function has a form which can be characterized by its mean, median, mode,
variance skewness and kurtosis.

For a random variable x with a probability distribution p(x) the mean or
expected value of x is given by

E(x) =
∫

xp(x)dx (69)

The median m of a probability distribution is defines as

1
2

=
∫ m

−∞
p(x)dx =

∫ ∞

m

p(x)dx (70)

The mode of the distribution function is defined as point at which the distrib-
ution function takes its maximum value.

The variance σ2 of a probability distribution gives a measure of the probable
range of results and is defined by

σ2 =
∫

(x− µ)2p(x)dx (71)
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The skewness is a measure of the asymmetry or the probability distribution
function and is given by

γ1 =
∫

(x− µ)3p(x)dx

σ3
(72)

The measure of the peakedness of the probability function is given by its
kurtosis which is defined as

γ2 =
∫

(x− µ)3p(x)dx

σ3
− 3 (73)

In this work we we consider only normal and uniform distributions which
are probably most representative of the distribution of the parameters involved.
The normal distribution or Gaussian distribution of a variable x is given by

p(x) =
1

σ
√

2π
exp

(
− (x− µ)2

2σ2

)
(74)

where µ is the mean, mode and median of the random variable, σ2 is the variance
of the random variable and the skewness and excess kurtosis of the distribution
is zero.

A uniform distribution for the range a to b is defined as:

p(x) = 1
b−a a ≤ x ≤ b

p(x) = 0 (x < a) ∨ (x > b)
(75)

The mean and median of this distribution is (a + b)/2, the variance is (b −
a)2/12, the skewness is zero and the kurtosis is −6/5.

3.2 The Unscented Transform (UT)

The description of UT reproduced here can also be found in [11] but is repeated
here for completeness.

The UT was developed by Julier and Uhlman in 1997 [12] and it is similar to
the Moment Design Technique (MDT) [13]. Both methods use the moments of
the probability distribution function to develop the selection of points needed to
solve for the probability distribution of the mapping function. In MDT, these
points are called design values. In the UT approach they are the Sigma points
Si.

The main idea of the UT is to approximate the effect of an arbitrary nonlinear
mapping by the mapping of the set of sigma points. Once the mapping is
complete the statistical moments of the mapping are available form the weighted
average of the mapped values at the sigma points.

3.2.1 Calculation of the sigma points

Let G(U + û) be the continuous nonlinear mapping of a random variable û
of average value U and known probability distribution. The mapping can be
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expressed by the Taylor polynomial expansion:

G(U + û) = G(U) +
dG

du
û +

1
2!

d2G

du2
û2 +

1
3!

d3G

du3
û3 + .... (76)

This can then be written in the more compact form as

G(U + û) = G(U) + p(û) (77)

The expected value of the nonlinear mapping is then

G = E{G(U + û)} = E{G(U)}+ E{p(û)} = G(U) + P (78)

In equation(78) P is the expected value of the Taylor polynomial. The variance
of the nonlinear mapping is:

σ2
g = E

{
[G(U + û)−G]2

}
= E

{
p(û)2

}− P
2

(79)

This Taylor representation is also applicable to the sigma points.

G(U + Si) = G(U) + p(Si) (80)

The polynomial is the same if the sigma points belong to the probability distri-
bution of û. The comparison of the expected value and the variance of 80 with
78 and 79 results in the set of equations for the sigma points.

w0 = 1−
∑

i

wi (81)

∑
wiS

k
i = E{ûk} (82)

The order of the approximation k depends on how the polynomial is truncated.
Therefore, the truncation of the Taylor polynomial determines the number and
value of the sigma points Si as well as the weights wi of the UT.

The set of equations for the sigma points 81 and 82 is nonlinear. Thus
there are a number of possible choices for the sigma points satisfying the equa-
tion system. However, there is a set of solutions that are the roots to the
polynomials of the Gaussian quadrature integration scheme [15]. This simpli-
fies the solution of 81 and 82, since the weights and sigma points are more
easily calculated from the Gaussian quadrature integration scheme. Naturally
the interpolation polynomial is dependent on the probability distribution of û
(equivalent to the weighted function w(û) of the integration). Table I presents
the normalized sigma points and weights for the two probability distribution
systems considered. The normalization factor is the standard deviation in the
Gaussian distribution case. For the uniform distribution, the normalized factor
is the interval of the distribution [-1,1].
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Table I UT Sigma points and weights
Normalized sigma points and weights

Order Weights Sigma Points Probability Distribution
1 0.5 0.5 -0.577 0.577

2 0.278 0.444 0.278 -0.775 0 0.775 w(û) = 1
2 |û| < 1

w(û) = 0 |û| > 1
4 0.119 0.239 -0.906 -0.538

0.284 0.239 0.119 0 0.538 0.906
1 0.5 0.5 -1 1
2 0.167 0.666 0.167 -1.73 0 1.73 w(û) = 1

σ
√

2π
exp

(
− û2

2

)

4 0.011 0.222 -2.857 -1.356
0.534 0.222 0.011 0 1.356 2.857

3.2.2 Calculation of the moments of the mapped distribution

Once the sigma points are known, it is straightforward to apply them to the
nonlinear mapping. The statistical moments are calculated using:

E
{
G(U + û)n

}
=

∑

i

wiG(U + Si)n (83)

The central moments are calculated using the expected value of the mapping
( 83 with n =1). The general expression is

E
{[

G(U + û)
]n

}
=

∑
iwi

[
G(U + Si)−G

]n
(84)

The calculation of the resulting statistical moments is linked to the form of
the nonlinear function. If the nonlinear function is expressed in an analytical
form then the demoralized sigma points are used in the calculation. For example
consider the calculation of the first resonant frequency of a dielectric filled cavity
where the permittivity is a random variable. The nonlinear mapping function
has the form:

G(εr + û) =
f0√

εr + û
(85)

where f0 is the resonant frequency for a cavity filled with free space, εr is the
mean value of the permittivity and û is a zero mean random variable. The
distribution of the random variable determines the weights and sigma points.
As discussed in the previous section, the denormalization factor depends on
the type of distribution. For the uniform distribution, the variable will be
demoralized by the size of the interval. In the case of the normal distribution,
the denormalization factor is the standard deviation. The nonlinear function 85
is calculated for each sigma point and the moments are obtained using 83 and
84.

If the nonlinear function is numerical, such as resulting from a numerical
simulation, then the process has to be repeated for each sigma point.
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3.2.3 Accuracy of the unscented transform

The accuracy of the UT is dependent on the order of the approximation as pre-
sented in Table I. If the sigma points are obtained from the quadrature scheme,
then the accuracy will be the same as the chosen interpolation polynomial. As
an example one can compare the expected value and central moments if an exact
calculation is possible. This is the case of the nonlinear mapping given by 85.
In this example let f0 = 300 MHz, εr = 4 and 3 < û < 5. Thus for the uni-
form distribution the interval is [4-1, 4+1] and for the Gaussian distribution this
results in a standard deviation of 1/3 (considering a 99% confidence interval).
The sigma points, weights and results for 2nd order accuracy are then:

Uniform distribution

G(4− 0.775) = 300√
4−0.775

= 167.054

G(4) = 300√
4

= 150

G(4 + 0.775) = 300√
4+0.775

= 137.289

Thus the expected value from 83 is 0.278× 167.054 + 0.444× 150 + 0.278×
137.289 = 151.206 MHz.

Normal distribution

G(4− 1.73
3 ) = 300√

4−0.577
= 162.142

G(4) = 300√
4

= 150

G(4 + 1.73
3 ) = 300√

4+0.577
= 140.231

Thus the expected value from 83 is 0.167× 167.054 + 0.666× 150 + 0.167×
137.289 = 150.398 MHz.

Table II shows the comparison of the UT calculations with exact analytical
results. In this table, the moments are calculated using 2, 3, and 5 sigma points
(As listed in Table I).

18



Table II UT Comparison with Exact Results
Type of Type of distribution
moment Uniform Uniform Normal Normal

(UT) (Exact) (UT) (Exact)
Expected 151.189 151.205 150.363 150.397

Value 151.206 150.398
(MHz) 151.205 150.4

Standard 10.962 11.143 6.277 6.36
Deviation 11.143 6.364

(MHz) 11.144 6.36
skewness 0 0.266 0 0.39

0.266 0.388
kurtosis -2 -1.109 -2 0.322

-1.19 0.04
-1.109 0.32

The results indicated in Table II shows how the order of accuracy is related
to the number of sigma points. It also shows that for nonlinear mappings the
resulting probability distribution is different from that of the variable although
it is dependent on it.

3.2.4 The multivariate Unscented Transform

The multiple random variable case can also be modelled by the UT. It is possible
to include either independent or correlated variables. Although the approach
allows for correlated variables, it is best to calculate the sigma points for inde-
pendent random variables. Once these points are known, they can be processed
by a linear transformation using the covariance matrix.

In multivariate cases, the choice of sigma points and weights is not unique
and it is usually necessary to use additional sigma points [16]. There are many
possible sets that may be used. One set that is simple to calculate is the
combination of sigma points provided by the appropriate quadrature scheme.
In this set, the weights are calculated by the product of individual weights of
each random variable.

In most multivariate problems, some random variables may have a more
dominant effect. This may be ascertained by careful analysis of the moments of
the marginal distributions or by the analysis of the correlation of the input and
output variables.

3.2.5 Estimation of a variables influence in the multivariate case

A numerical problem with several random variables may be well characterized
by a smaller subset of variables if they are more dominant. Using the concept
of marginal distribution probability function [16], it is possible to determine
what are the most important variables. These distributions are essentially one-
variable distributions, where the calculation is performed for each variable sepa-
rately using 84. The resulting expected value and variance provides information
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on the significance of each of the variables. Since the UT is based on the Taylor
approximation of the nonlinear mapping , the calculation of the marginal sta-
tistical moments provides a good estimate of the influence of each parameter in
the output result. For n variables the marginal statistical moments for the m
variable can be found using:

Ixm
=

E
{
G(Um)2

}− E
{
G(Um)

}2

E
{
G(U1, . . . , Un)2

}− E
{
G(U1, . . . , Un)

}2 (86)

where Ixm is the relative influence of variable Um in the variance of the result.

4 Results

In this section the models for cable transfer impedance are compared with known
behavior and measurements. From this it is deduced that the Kley model ap-
pears to give the most accurate results. Using the Kley model for the cable
transfer impedance the cable coupling is then predicted for a range of cabling
arrangements as investigated by two intern students [17] and [18].

4.1 Comparison of the transfer impedance models

4.1.1 Single braided cables

The predicted transfer impedance as given by the Vance, Tyne and Kley models
for the common single braid cable type RG58 with the parameters as supplied
by the manufacturers (RG58-Man in appendix) are given in Figure 7 . There
are significant differences between the models but the models are all comparable
to the typical results shown in Figure 8 [6] and a previous report [7] found that
the Kley model gave the best results. Benson et al. [8] also reported that the
Tyni model tended to over estimate the cable transfer impedance. Figure 9
shows the predicted transfer impedance using other RG58 parameters as given
in [5] and by comparing this to Figure 7 this indicates by how much the transfer
impedance may vary between manufacturers. In this report the Kley model and
the parameters (RG58-Man) given in the appendix will be predominantly used
for single braided cable.

Figures 10 - 12 show the predicted transfer impedances and their variance
after applying a reasonable estimate of the manufacturers tolerances using the
(RG58-Man) parameters. The assumed manufacturers tolerances are given in
Table III are as used by Benson et al. [8] and the statistical distribution was
assumed to be normal. Note that α and b are dependent variables.

Table III. Variance in braid parameters
σD0 σd σl

0.13 mm 0.003 mm 1.979 mm
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Figure 7: Predicted transfer impedance using parameters (RG58-Man.)
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Figure 8: Typical transfer impedances of different cables [6]

The standard deviation, skew and kurtosis of the distribution of the pre-
dicted transfer impedances assuming a normal distribution for the tolerances
are given in Figures 13 to 15. There is only a small skew and kurtosis so the
variation in transfer impedance can be considered to be also a normal distribu-
tion.

4.1.2 Double braided cables

The double braided cable considered was the RG214 cable the parameters of
which are given by Vance [5] and listed in the appendix. The predicted transfer
impedance as given by 31 and using the Vance, Tyne and Kley models for the
inner and outer braid transfer impedances are given in Figures 16 and 17 .
There are significant differences between the models. The Kley model seems
comparable to the typical results shown in Figures 18 and 19 from [19] and [20]
although it seems to predict a small peak in the transfer impedance at around
100 kHz. In this report the Kley model for the inner and outer cable braids for
the double braided cable and the parameters (RG214) given in the appendix
will be predominantly used for single braided cable.

Figures 20 and 21 show the predicted transfer impedances and their vari-
ance after applying a reasonable estimate of the manufacturers tolerances using
the (RG214) parameters. The assumed manufacturers tolerances are given in
Table IV are consistent with that used by Benson et al. [8] and the statistical
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Figure 9: Predicted transfer impedance using parameters (RG58) [6]
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Figure 10: Predicted transfer impedance and its variance using the Tyni model
[2] and manufacturing tolerances for (RG58-Man.)
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Figure 11: Predicted transfer impedance and its variance using the Kley model
[3] and manufacturing tolerances for (RG58-Man.)
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Figure 12: Predicted transfer impedance and its variance using the Vance model
[1] and manufacturing tolerances for (RG58-Man.)
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Figure 13: Predicted standard deviation in the transfer impedance using man-
ufacturing tolerances for (RG58-Man.)
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Figure 14: Predicted skew in the statistical distribution in the transfer im-
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Figure 15: Predicted kurtosis in the statistical distribution in the transfer im-
pedance using manufacturing tolerances for (RG58-Man.)
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Figure 16: Predicted transfer impedance of a double braided cable using para-
meters (RG214)
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Figure 17: Predicted transfer impedance of a double braided cable using para-
meters (RG214.)
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Figure 18: Data for transfer impedance of a double braided cable (RG214) from
[19]
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Figure 19: Data for transfer impedance of a double braided cable (RG214) from
[20]
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Figure 20: Predicted transfer impedance and its variance using the Kley model
[3] and manufacturing tolerances for double braided cable(RG214)

distribution was assumed to be normal.

Table IV. Variance in double braid parameters
σD0 σd σl

Inner 0.37 mm 0.004 mm 1.836 mm
Outer 0.4 mm 0.004 mm 1.979 mm

4.2 Predicted and measured cable coupling

For this study results were used from the internship reports by Leon Korteweg
[17] and Tom Wijnands [18]. The reports contain an extensive set of mea-
surements but there was only time to study some results from cable to cable
coupling of RG58 coaxial cables and wire to cable coupling of double braided
RG214 coaxial cables.
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Figure 21: Predicted transfer impedance and its variance using the Kley model
[3] and manufacturing tolerances for double braided cable(RG214)
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Figure 22: Measurement of Crosstalk at different cable lengths (2× RG58,
d=5cm, for floating cables) [17].

4.2.1 Single braided cable (RG58)

In the first example using single braided cable three different configurations
were considered. The first configuration was of cables which had electrically
isolated terminations and were nor located near to a conducting earth ground
plane. These cables were called floating cables and a range of cable lengths were
investigated. A typical set of results for this configuration are given in Figure 22
from [17]. Note that no comparable set of results were found from [18] report.

In the second example the cables were 2m long and they terminated into
the same connector plate so the termination earths were electrically connected.
There was no conducting ground plane for this example. Typical results for this
configuration are given in Figure 23from [18] respectively.

In the third and final example the cables were also 2m long and terminated
into the same connector plate so the termination earths were electrically con-
nected. But there was a conducting ground plane for this example that was also
electrically connected to the terminating end plates. Typical results for this
configuration are given in Figure 24from [18] respectively.

What is immediately apparent in the results provided from [17] and [18] is
that the first resonance does not correspond to the expected half wavelength
frequency (75MHz for a cable length of 2m) therefore stray reactances in the
tertiary circuit must be important (the victim and source cable circuits have
matched loads so do not resonate).

The simulation of the ”floating” cables using a tertiary circuit termination
impedance of 10 pF to represent stray capacitance and using the high frequency
model is shown in Figure 25. The model appears to predict the resonances
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Figure 23: Measurement of Crosstalk in two RG58 coax cables (l= 2m, and
common connector plates) [18].
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Figure 24: Measurement of Crosstalk in two RG58 coax cables (l= 2m, common
connector plates and ground conducting tray, d= 2cm) [18].

38



10
−1

10
0

10
1

10
2

−220

−200

−180

−160

−140

−120

−100

−80

−60

−40
C

ro
ss

ta
lk

 (
dB

)

Frequency in MHz

 

 

l=2m
l=4m
l=6m
l=8m

Figure 25: Simulation Crosstalk in two RG58 coax cables (d= 5cm, and no
common connector plate at remote termination) using a high frequency model
and the Kley model [3]of the transfer impedance

reasonably well. But the overall the coupling appears to be about 20 dBs too low
and this may possibly due to manufacturing tolerances of the braid or incorrect
braid data. Below 1 MHz the observed cable coupling is a lot greater than the
predicted coupling but this may be due to the noise floor of the measurements.

The theoretical prediction for the coupling between the 2m length cables
with the common connector plates and no ground plane using the low frequency
model is given in Figure 26. Notice that this model can not predict the point
at which there is resonance in the tertiary circuit leading to an increased cable
coupling.

Figure 27 shows the simulation results for the more complete high frequency
model and giving the tertiary terminations as a stray inductance of 0.4 µH to
represent the loop inductance at the connector plate. The results in Figure 27
compare reasonably well with the measurements. The resonant frequencies of
the peaks are the same, but this depends on the approximated tertiary terminal
impedance. To aid direct comparison the measurements and simulations are
combined in Figures 28 and 29. The overall predicted coupling is about 10 dBs
lower than the measurements. This may be due to the model of the cable transfer
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Figure 26: Simulation Crosstalk in two RG58 coax cables (l= 2m, and common
connector plates) using a simple low frequency model and the Kley model of
the transfer impedance.

impedance. Figure 30 Shows the predicted cable crosstalk using the upper
bound of the expected transfer impedance given the manufacturing tolerances
of the cable braid. This result agrees better with the measurement results and
it can also be noticed that errors in the predicted transfer impedance does not
affect the predicted resonant frequencies. The other possibility is that the Kley
model [3]is not sufficiently accurate. Simulations using the Vance [1] and Tyni
[2] transfer impedance models are given in Figures 31 and 32 respectively. It
appears that the Tyni and Vance models do not reproduce the observed cable
cross coupling as well as the Kley model.

The theoretical prediction for the coupling between the 2m length cables with
the common connector plates with a connecting ground plane using the complete
high frequency model and giving the tertiary terminations as a stray common
mode inductance of 0.125 µH and differential mode inductance of 0.135 µH to
represent the termination inductance at the connector plate is given in Figure
33. The results in Figure 33 compare reasonably well with the measurements.
The resonant frequencies of the peaks are the same, but this depends on the
approximated tertiary terminal impedance. To aid direct comparison the mea-
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Figure 27: Simulation Crosstalk in two RG58 coax cables (l= 2m, and common
connector plates) using a high frequency model and the Kley model [3] of the
transfer impedance.
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Figure 28: Simulation Crosstalk in two RG58 coax cables compared with mea-
surement (l= 2m, and common connector plates, d=touching) using a high
frequency model and the Kley model [3] of the transfer impedance.
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Figure 29: Simulation Crosstalk in two RG58 coax cables compared with mea-
surement (l= 2m, and common connector plates, d=10cm) using a high fre-
quency model and the Kley model [3] of the transfer impedance.
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Figure 30: Simulation Crosstalk in two RG58 coax cables compared with mea-
surement (l= 2m, and common connector plates, d=10cm)using a high fre-
quency model and the Kley model [3] of the transfer impedance and the upper
bound of the expected transfer impedance (Zt + σZt) given manufacturing tol-
erances.
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Figure 31: Simulation Crosstalk in two RG58 coax cables (l= 2m, and common
connector plates) using a high frequency model and the Vance model [1] of the
transfer impedance
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Figure 32: Simulation Crosstalk in two RG58 coax cables (l= 2m, and common
connector plates) using a high frequency model and the Tyni model [2]of the
transfer impedance
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Figure 33: Simulation Crosstalk in two RG58 coax cables (l= 2m, and common
connector plates and ground plane) using a high frequency model and the Kley
model [3] of the transfer impedance.

surements and simulations are combined in Figures 34 and 35. The overall
predicted coupling is again about 10 dBs lower than the measurements.

4.2.2 Double braided cable (RG214)

In the second example using double braided cable because of the low transfer
impedance the victim cable was excited by a parallel wire. To demonstrate
double braided cable only one example configuration was considered necessary
and that was the wire and cable attached to a common connector plate with
a common conducting ground plane. Typical results for this configuration are
given in Figures 36 from [18].

The theoretical prediction for the coupling between a 2m length wire and
a 2m coaxial double braided cable with the common connector plates with a
connecting ground plane using the complete high frequency model and giving
the tertiary terminations as a stray common mode inductance of 0.125 µH and
differential mode inductance of 0.135 µH to represent the termination induc-
tance at the connector plate is given in Figure 37. The results in Figure 37
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Figure 34: Simulation Crosstalk in two RG58 coax cables compared with
measurement (l= 2m, and common connector plates and ground plane,
height=touching) using a high frequency model and the Kley model [3] of the
transfer impedance.
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Figure 35: Simulation Crosstalk in two RG58 coax cables compared with mea-
surement (l= 2m, and common connector plates, height=10cm) using a high
frequency model and the Kley model [3] of the transfer impedance.
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Figure 36: Measurement of Crosstalk between a wire and a RG214 coax cable
(l= 2m, common connector plates and ground conducting tray, d= 5cm) [18].
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Figure 37: Simulation Crosstalk between a wire and RG214 coax cable (l= 2m,
and common connector plates and ground plane) using a high frequency model
and the Kley model [3] of the transfer impedance.

compare reasonably well with the measurements. The resonant frequencies of
the peaks are the same, but this depends on the approximated tertiary terminal
impedance. To aid direct comparison the measurements and simulations are
combined in Figures 38 and 39. The overall predicted coupling is again about
10 dBs to 10 dBs lower than the measurements. Figure 40 Shows the predicted
cable crosstalk using the upper bound of the expected transfer impedance given
the manufacturing tolerances of the cable braid. This result agrees only slightly
better with the measurement results and it can also be noticed that errors in the
predicted transfer impedance does not affect the predicted resonant frequencies.

4.3 Prediction of the peak cable coupling

From the results presented for cable coupling it can be seen that the important
feature is the peaks in the coupling which occur at the frequencies where the
tertiary circuit resonates. It, therefore, may be more important to predict the
peak coupling at the resonant frequencies than deduce the detail of the coupling.
From the equations of cable coupling derived earlier it can be seen that the peaks
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Figure 38: Simulation Crosstalk between a wire and RG214 coax cable compared
with measurement (l= 2m, d=5cm, and common connector plates and ground
plane, height=touching) using a high frequency model and the Kley model [3]
of the transfer impedance.
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Figure 39: Simulation Crosstalk between a wire and RG214 coax cable compared
with measurement (l= 2m, d=5cm and common connector plates, height=10cm)
using a high frequency model and the Kley model [3] of the transfer impedance.
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Figure 40: Simulation Crosstalk between a wire and RG214 coax cable com-
pared with measurement (l= 2m, d=5cm and common connector plates,
height=touching) using a high frequency model and the Kley model [3] of the
maximum expected transfer impedance.
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in the cable coupling occur when K1 and K2 from (55) and (56)are maximum
or for modal propagation when [K1] and [K2] from (66) and (67) are maximum
. These equations can therefore be used to predict the resonant frequencies
of the tertiary circuit. Then by simply calculating crosstalk at the frequencies
of resonance of the tertiary circuit a far more useful measure can be derived
as Figures 41 and 42. Figures 41 and 42 show measured and predicted cross
coupling and the predicted peak coupling at the resonant frequencies for two
cables touching or at a 5 cm separation respectively and without a ground plane.
It can be seen that the predicted peak coupling provides a far simpler curve and
probably more useful.

This approach can also be used for the conditions with a ground plane or
in the presence of many parallel cables. However, when there is more than one
return path there will be several modes of propagation and each mode needs
to be solved for. Figure 43 shows measured and predicted cross coupling and
the predicted peak coupling at the resonant frequencies of the two propagation
modes (differential and common) for two cables at a 2 cm separation and heights
10cm from the conducting ground plane.

4.4 Statistical analysis of the cable coupling

From the results it can be seen that the cable coupling can be predicted to
a reasonable accuracy but that the important parameters may only be poorly
known. In this section an method of assessing the degree of coupling in the
presence of uncertainty is addressed.

If we consider the case of two cables above ground then the uncertain pa-
rameters are the cable height, separation and the terminating impedance of
the tertiary circuit (See Figures 3 and 5). For this examination it is assumed
that the terminating impedance comprises two parameters: the inductance to
ground and the inductance between the two cables (e.g. in Figure 5 for the load
end these are Ztsvl for the mutual impedance and Ztsl Ztvl for the impedances
to ground) . The parameter values used and their variance are given in Table
V. In estimating the variance it was felt that the terminating impedance may
only be known within 50% of its assumed value. Therefore initially the effect of
these four parameters, assuming they had a uniform distribution, on the peak
coupling for the two modes of propagation were plotted and these are given in
Figures 44 to 51. Figures 52 and 53 show the results for the separation having
a normal distribution, for comparison with Figures 44 and 45.
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Figure 41: Simulation Crosstalk in two RG58 coax cables compared with mea-
surement (l= 2m, and common connector plates, d=touching) using a high
frequency model and the Kley model [3] of the transfer impedance. Also shown
is the predicted peak crosstalk at the resonant frequencies
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Figure 42: Simulation Crosstalk in two RG58 coax cables compared with mea-
surement (l= 2m, and common connector plates, d=5 cm) using a high fre-
quency model and the Kley model [3] of the transfer impedance. Also shown is
the predicted peak crosstalk at the resonant frequencies
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Figure 43: Simulation Crosstalk in two RG58 coax cables compared with mea-
surement (l= 2m, and common connector plates, height=10cm) using a high
frequency model and the Kley model [3] of the transfer impedance. Also shown
is the predicted peak crosstalk at the resonant frequencies
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Figure 44: Simulation of the peak Crosstalk in two RG58 coax cables and
one standard deviation margin for mode 1 resonant frequencies (l= 2m, and
common connector plates, height=10cm) using a high frequency model and the
Kley model [3] of the transfer impedance. The terminating inductance between
the cables was a variable and had a uniform distribution

Table V Parameters of the variables considered
Variable Mean Standard

deviation
Mutual 0.33 µH 0.16 µH

Inductance
Inductance 5 nH 2.5 nH
to ground

Height 5 cm 2.5 cm
Separation 2 cm 1 cm

From the results presented in Figures 44 to 51 it can be seen that each
of the variables have different degrees of impact on the overall results. It can
be seen that the terminating inductance to ground does not have a significant
effect on the cross coupling. To assess the importance of each of the other
parameters the marginal statistical moment of the variance in the cross coupling
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Figure 45: Simulation of the peak Crosstalk in two RG58 coax cables and
one standard deviation margin for mode 2 resonant frequencies (l= 2m, and
common connector plates, height=10cm) using a high frequency model and the
Kley model [3] of the transfer impedance. The terminating inductance between
the cables was a variable and had a uniform distribution
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Figure 46: Simulation of the peak Crosstalk in two RG58 coax cables and
one standard deviation margin for mode 1 resonant frequencies (l= 2m, and
common connector plates, height=10cm) using a high frequency model and the
Kley model [3] of the transfer impedance. The terminating inductance between
the cables and ground was a variable and had a uniform distribution
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Figure 47: Simulation of the peak Crosstalk in two RG58 coax cables and
one standard deviation margin for mode 2 resonant frequencies (l= 2m, and
common connector plates, height=10cm) using a high frequency model and the
Kley model [3] of the transfer impedance. The terminating inductance between
the cables and ground was a variable and had a uniform distribution
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Figure 48: Simulation of the peak Crosstalk in two RG58 coax cables and
one standard deviation margin for mode 1 resonant frequencies (l= 2m, and
common connector plates, height=10cm) using a high frequency model and the
Kley model [3] of the transfer impedance. The height of the cables was a variable
and had a uniform distribution
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Figure 49: Simulation of the peak Crosstalk in two RG58 coax cables and
one standard deviation margin for mode 2 resonant frequencies (l= 2m, and
common connector plates, height=10cm) using a high frequency model and the
Kley model [3] of the transfer impedance. The height of the cables was a variable
and had a uniform distribution
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Figure 50: Simulation of the peak Crosstalk in two RG58 coax cables and
one standard deviation margin for mode 1 resonant frequencies (l= 2m, and
common connector plates, height=10cm) using a high frequency model and the
Kley model [3] of the transfer impedance. The separation of the cables was a
variable and had a uniform distribution
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Figure 51: Simulation of the peak Crosstalk in two RG58 coax cables and
one standard deviation margin for mode 2 resonant frequencies (l= 2m, and
common connector plates, height=10cm) using a high frequency model and the
Kley model [3] of the transfer impedance. The separation of the cables was a
variable and had a uniform distribution
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Figure 52: Simulation of the peak Crosstalk in two RG58 coax cables and
one standard deviation margin for mode 1 resonant frequencies (l= 2m, and
common connector plates, height=10cm) using a high frequency model and the
Kley model [3] of the transfer impedance. The terminating inductance between
the cables was a variable and had a normal distribution
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Figure 53: Simulation of the peak Crosstalk in two RG58 coax cables and
one standard deviation margin for mode 2 resonant frequencies (l= 2m, and
common connector plates, height=10cm) using a high frequency model and the
Kley model [3] of the transfer impedance. The terminating inductance between
the cables was a variable and had a normal distribution
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peak amplitude and frequency for the other three variables were calculated using
(86) and the results are given in Table VI. Table VI provides a useful incite into
the importance of each of the parameters.

Table VI Marginal statistical moment of the parameter variances
Frequency Amplitude

Variable Common Differential Common Differential
mode mode mode mode

Mutual 0.38 0.8 0.3 0.74
Inductance

Height 0.58 0.027 0.64 0.015
Separation 0.013 0.16 0.001 0.2

The results presented in Table VI shows that the height of the cables has
an important influence on the maximum cable coupling but only at frequencies
associated with the common mode. This is because the height effects the com-
mon mode propagation impedance. Similarly the separation of the cables has a
much small impact and mainly effects the differential mode resonant frequencies.
This is also as expected as the differential mode propagation characteristics are
mainly effected by the separation. The mutual inductance of the terminating
impedance also strongly effects the cable coupling but mostly at the resonant
frequencies of the differential mode.

5 Conclusions

Good progress has been made in developing a model for coaxial cable coupling.
Both single braided cables and double braided cables were investigated. The
cable layouts considered were either with a ground plane or without a ground
plane. The models produced provided reasonable agreement with the measure-
ments provided. The cable coupling is strongly effected by parameters such as
cable height, separation and stray impedances all of which have a large variation
in a normal cable layout. Therefore practical ways of deducing the cross cou-
pling were investigated such as a simplified representation and non deterministic
solutions.

For a practical approaches for estimating cable coupling it was found that
the maximum cable coupling can be estimated from the coupling amplitude of
the resonant frequencies. The actual frequencies may be very variable so it is
not valuable to find the detail of the cable coupling variation with frequency but
it is more practical to simply plot along the maximum coupling at the resonant
frequencies.

A non deterministic approach for estimating the cable coupling was also
investigated. It was shown that the range amplitude in cable cross coupling
could be estimated and also the importance of each of the parameters could
also be demonstrated.

This work is only touched on analyzing the measurement data provided and
there is a lot more work which can be done. There is probably at leat a couple
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publishable papers from the work done so far. It is hoped that in the near future
future studies can include the following.

• An estimate of probability function and the cumulative probability func-
tion to enable optimized cable layout

• Power cable coupling

• Twisted pair

• Multiple cable coupling

• Different screens and cable trunking

Appendix

cable parameters

Cable type N n D0 /mm d /mm l /mm α
RG58 12 9 2.95 0.127 19.79 27.42

RG58-A 16 7 2.95 0.127 19.72 27.56
RG58-Rep 18 6 2.95 0.127 19.79 27.56
RG214 (I) 24 6 7.42 0.16 18.36 52.9
RG214 (O) 24 7 8.05 0.16 19.79 53

The RG58 and RG58-A parameters are from [5] and the RG58-Rep N and
n parameters were provided by [7] with the rest taken from RG58-A

comparison of nomenclature

This Report Kley [3] Vance [1] Report [7]
P - P -
N m C ζ
n n N N
d d d d
α α α ψ

Dm Dm 2a 2b
χ B K χ
F G F F
k1 k1 - k
k2 k2 - k
Dl DL - Dl

Dg DG - Dg
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