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Abstract

This is the first report on the study of cable coupling. The work to date has
involved developing models of the cable coupling phenomenon. Results are pro-
vided showing the estimate cable coupling compared with measurements. From
a comparison of the braid transfer impedance models it is concluded that the
Kley model seems reasonably accurate. From the measurement results provided
by previous Thales reports it is apparent that stray reactances play an impor-
tant role in defining the resonant points in the cable coupling. Comparable
simulation results can be obtained through the application of reasonable stray
reactive values. At resonance the cable coupling will only be limited by losses
in the circuit. An estimate of losses is therefore required to obtain an estimate
of maximum coupling. The proposed future work will therefore include the
estimation of stray reactances and losses.
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1 Theory of cable transfer impedance

In this section three well known models for cable transfer impedance were con-
sidered and compared for cable sheaths with a single layer weave. The models
considered were the models of Vance [1], Tyni [2], and Kley [3]. Note that in
the past different nomenclatures have been used for describing the models so
a table is provided in the appendix comparing the nomenclature used in this
report with previous work.

1.1 Sheath parameters

The basic parameters of a braided sheath as depicted in Figure 1. are:

P Picks or the number of carrier crossings per unit length

N Number of carriers

n Number of wires in each carrier

l lay length (one carrier rotation)

d wire diameter

α braid angle

h radial spindle separation.

Do outer diameter of dielectric

Dm mean braid diameter

b hole width

The above parameters over specify the braid, so P or l are given as and the
other parameter is deduced from:

l =
N

2P
(1)

Braid angle α and radial spindle separation h are also calculated from (2),
(3) and (4) as proposed by Katakis [4] who suggested Dm is also a function of h.
The equations represent a non-linear relationship so a solution is found through
a Newton-Raphson iteration of the equations.

tan α =
2πDmP

N
(2)

[
2π

N
cos α

]
h2 +

[
(1− n)d +

2π

N
(Do + 2d) cos α

]
h− 2d2 = 0 (3)

Dm = Do + 2d + h (4)
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Figure 1: Detail of the sheath showing defined parameters

Once h and alpha are found then

b =
2πDm

N
cosα− nd (5)

These then are all the parameters necessary to define the shield for the calcula-
tion of the transfer impedance. A typical set of cable parameters can be found
in [5].

1.2 Vance model

The Vance model [1] is one of the earliest and simplest models which takes into
account skin depth and braid inductance. The DC resistance of the braid is
given by

Rc =
4

πd2nNσ cosα
(6)

Then allowing for the skin depth effect the screen impedance can be found from
[7]

Zd = Rc
(1 + j)d/δ

sinh((1 + j)d/δ)
(7)
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where the skin depth δis given by

δ =
1

(πfµ0σ)1/2
(8)

Additionally to the screen impedance is a braid inductance M which is given
by

M =
πµ0

6N
(1− χ)3/2 e2

E(e)− (1− e2)K(e)
(9)

e = (1− tan2 α)1/2 if α < 45o

or

M =
πµ0

6N
(1− χ)3/2

e2√
1−e2

E(e)− (1− e2)K(e)
(10)

e = (1− cot2 α)1/2 if α > 45o

where K(e) and E(e) are complete elliptic integrals of the first and second kind,
respectively, defined by

K(e) =
∫ π/2

0

dϕ

(1− e2 sin2 ϕ)1/2
(11)

E(e) =
∫ π/2

0

(1− e2 sin2 ϕ)1/2dϕ (12)

F is fill factor of braid given by

F =
nNd

2πDm cos α
(13)

F0 is the minimal filling factor given by

F0 = F cosα (14)

and the optical coverage χ is given by

χ = 2F − F 2 (15)

The total transfer impedance is then given by

ZT (f) = Zd(f) + 1jωM (16)

1.3 Tyni model

In the Tyni model [2] the transfer impedance is found from the braid inductance
Lb and the leakage or gap inductance Lh due to the gaps in the screen. This
model was studied extensively in [8] and found to be reasonably accurate.
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Lb =
µ0h

4πDm
(1− tan2α) (17)

Lh =
µ02N

πcosα

(
b

πDm

)2

exp

(−πd

b
− 2

)
(18)

The transfer impedance Zt is then given by

Zt = Zd + jω(Lh − Lb) (19)

where Zd is the braid impedance allowing for skin depth given by 7

1.4 Kley model

The Kley model [3]is the best and most rigorously developed of the three models
and the Thales report 3.3 RCTR study [7]suggests that this is probably the more
accurate.

In the Kley model there are inductances; Ml due to the apertures allowing
for the curvature of the screen, Mg mutual inductance between carriers in the
braid and and an inductive term due Ls to the tangential components of the
electromagnetic field.

These inductances are given by the following equations

Ml = 0.875M exp(−τh) (20)

Mg =
−0.11
Nn

µ0 cos(2K1α) (21)

Ls =
1

ωπσδ
[D−1

l + D−1
g ] (22)

where M is given by 10 and

τh = 9.6F 3
√

χ2d/Dm (23)

K1 =
π

4

[
2
3
F0 +

π

10

]
(24)

D−1
l =

10πF 2
0 cosα

Dm
[1− F ] exp(−τE) (25)

D−1
g =

−3.3
2πF0Dm

cos(2K2α) (26)

τF = 12F 3
√

χ2d/Dm (27)

K2 =
π

4

[
2
3
F0 +

3
8

]−1

(28)
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Figure 2: Predicted transfer impedance using parameters (RG58-Man.)

1.5 Comparison of the transfer impedance models

The predicted transfer impedance as given by the Vance, Tyne and Klay models
for the common cable type RG58 with the parameters as supplied by the manu-
facturers (RG58-Man in appendix) are given in Figure 2 . There is a significant
difference between the models but they are comparable to the typical results
shown in Figure 3 [6] and a previous report [7] found that the Kley model gave
the best results. Benson et al. [8] also reported that the Tyni model tended
to over estimate the cable transfer impedance. Figure 4 shows the predicted
transfer impedance using other RG58 parameters as given in [5] and by com-
paring this to Figure 2 this indicates by how much the transfer impedance may
vary between manufacturers. In this report the Kley model and the parameters
(RG58-Man) given in the appendix will be predominantly used.

Figures 5 - 7 show the predicted transfer impedances and their variance
after applying a reasonable estimate of the manufacturers tolerances using the
(RG58-Man) parameters. The assumed manufacturers tolerances are given in
Table 1 are as used by Benson et al. [8] and the statistical distribution was
assumed to be constant. Note that α and b are dependent variables.
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Figure 3: Typical transfer impedances of different cables [6]

Table 1. Variance in braid parameters
σD0 σd σl

0.13 mm 0.003 mm 1.979 mm

The standard deviation, skew and kurtosis of the distribution of the pre-
dicted transfer impedances assuming a constant distribution for the tolerances
are given in Figures 8 to 10. There is only a small skew and kurtosis so the
variation in transfer impedance can be considered to be a normal distribution.
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Figure 4: Predicted transfer impedance using parameters (RG58) [6]
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Figure 5: Predicted transfer impedance and its variance using the Tyni model
[2] and manufacturing tolerances for (RG58-Man.)
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Figure 6: Predicted transfer impedance and its variance using the Kley model
[3] and manufacturing tolerances for (RG58-Man.)

10



10
−1

10
0

10
1

10
2

10
3

10
0

10
1

10
2

10
3

10
4

tr
an

sf
er

 im
pe

da
nc

e 
m

 O
hm

s/
m

Frequency in MHz

Model by E. F. Vance

 

 

Expected
Expected−SD
Expected+SD

Figure 7: Predicted transfer impedance and its variance using the Vance model
[1] and manufacturing tolerances for (RG58-Man.)
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Figure 8: Predicted standard deviation in the transfer impedance using manu-
facturing tolerances for (RG58-Man.)
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Figure 9: Predicted skew in the statistical distribution in the transfer impedance
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Figure 11: A typical cable layout of two parallel cables showing points were
significant stray reactances can affect coupling

2 Theory of cable coupling via the braid transfer
impedance

In this work the cable coupling due to transfer impedance alone is considered.
The effect of transfer admittance has not been included as for non optimized
cable sheaths it should only have a small effect [9, 10]. Coupling due to the
effect of a transfer impedance will occur between cables when they are laid
roughly in parallel along a common path. A typical cabling arrangement is
shown in Figure 11 where the cables have approximately a constant separation
along a length l, for instance due to being laid in cable trunking, but the cables
normally diverge near their connection points. The nature of the terminations
strongly effects the degree of cable coupling at high frequencies due to the stray
reactances they introduce. If the cables are connected to a common connector
endplate (or common cabinet) then the stray reactance will be inductive due
to the introduction of an extra loop area, but if the cables are connected to
electrically isolated units then the stray reactance will be mostly capacitive.
These stray reactances at the terminations can only be estimated due to the
geometric complexity of the terminations and the lack of known details. The
terminations are therefore the main limit to the accuracy to which the cable
coupling can be predicted.

The equivalent circuit for the coupling path created by the cable sheath
transfer impedance is shown in Figure 12. The currents Is along the source
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Figure 12: Equivalent circuit for cable coupling between two shielded cables via
the shield transfer impedance

cable creates a voltage gradient Eit(x) along the outer sheath given by

Eit(x) = ZtsIs(x) (29)

where Zts is the shield transfer impedance of the source cable and x is the
distance along the cable sheath. The voltage gradient on the source cable will
then induce a current on the outer sheath of the victim cable. This induced
current circulates around a circuit composed of the outer sheaths of the two
parallel cables and termed the tertiary circuit. For low frequencies ( λ >> the
length of the cables ) the sheath voltage gradient is independent of x. The
equivalent circuit for low frequency coupling to a transmission line is as given
in Figure 13. the induced current in the tertiary circuit It is then given by

It =
Eitl

jωLtll + Zt0 + Ztl
=

ZtsIsl

jωLtll + Zt0 + Ztl
(30)

where ω = 2πf is the angular frequency , Lt is the inductance per unit length
of the tertiary cable pair, Zt0 and Ztl are the termination impedances at each
end of the tertiary circuit (i.e. they represent the termination stray reactances
in parallel with half the total transmission line capacitance) and l is the length
over which the cables are approximately parallel. For cables laid closely together
ωLtll may be comparable to Zt0 and Ztl and hence the difficulty in estimating
the cable coupling.
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Figure 13: Equivalent circuit for low frequency cable coupling

The induced tertiary current will in turn induce a current Iv in the victim
cable due to the induced voltage gradient Evi(x) caused by the victims sheath
transfer impedance Ztv, as shown in Figure 12. The induced victim current will
then creates a voltage across the terminations of the victim cable which is the
usual measurable form of the cable coupling. For example the voltage across
terminal 0 of the victim Vv0 will be given by

Vv0 =
ZtvItlZv0

Zv0 + Zvl
=

ZtvZtsIsl
2Zv0

(Zv0 + Zvl)(jωLtll + Zt0 + Ztl)
(31)

where Zv0 and Zvl are the termination impedances of the victim circuit.
The cable coupling is then quantified by the ratio of the received victim

voltage to the source voltage. The coupling C in dB is then defined as

C = 20 log10

(
Vv0

Vs

)
(32)

The current in the tertiary circuit is often called the common mode current
but in fact it has the form of a differential mode as the victim and source
currents are of opposite sign. The presence of another cable or a ground plane
will enable other current paths to form and reduce the coupling between two
cables. In the case of an additional ground plane the induced tertiary circuit
current would have two modes of the form of a differential and common mode.
The general equivalent coupling circuit for two cables above a ground plane can
be represented by the circuit given in Figure 14. The differential and common
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Figure 14: Equivalent circuit for cable coupling between two shielded cables via
shield transfer impedance in the presence of a third conductor (ground plane of
third cable shield)

mode currents (Itd and Itc) on the cable sheaths are related to the total sheath
currents on the source cable and victim cable (Its and Itv respectively) by

[
Its

Itv

]
=

[ −1 1
1 1

] [
Itd

Itc

]
(33)

or
[Itsv] = [S][Itcd] (34)

where [Itsv] is the vector of cable sheath currents, [Itcd] is the vector of common
mode and differential mode currents and [S] is the modal transformation matrix.
For low frequencies ( λ >> the length of the cables ) the induced common mode
and differential mode currents on the tertiary circuit cable sheaths are then
related to the source sheath voltage (Etil) by

[
Etil
0

]
=

(
jωl

[
Lts Ltm

Ltm Ltv

]
+ [Zt0] + [Ztl]

)[
Its

Itv

]
(35)

where Lts and Ltv are the self inductance of the source and victim shields re-
spectively, Ltm is the mutual inductance between the source and victim cable
shields, [Zt0] and [Ztl] are the impedance matrices of the tertiary circuit termi-
nations as depicted in figure 14 and these then have the form

[ZtX ] =

[
Ztsx(Ztvx+Ztsvx)
Ztsvx+Ztsx+Ztvx

ZtsxZtvx

Ztsvx+Ztsx+Ztvx
ZtsxZtvx

Ztsvx+Ztsx+Ztvx

Ztvx(Ztsx+Ztsvx)
Ztsvx+Ztsx+Ztvx

]
(36)

18



where X = 0 or l
Equation (35) is then solved for the victim current Itv which can then be

substituted for It in (31) to find the induced voltage across the victim termina-
tion/connector.

For higher frequencies the voltage per unit length along the source cable
sheath will have a significant variation along the cable length due to propagation
effects and these need to be taken into account. The propagation effects lead to
resonances in the tertiary circuit and a significant increase in cable coupling.

2.1 High frequency cable coupling

For high frequencies the cable currents are no longer uniform and the prop-
agation effects have to be considered. For a general source cable with supply
impedance Zs0 and load impedance Zsl the the input current Is(0) at the supply
connector is related to the supply voltage Vs by

Is(0) =
Vs

Zs0 + Zc

[
Zsl+Zc tanh γsl
Zc+Zsl tanh γsl

] (37)

where Zc is the characteristic impedance of the source cable (i.e. typically 50
Ω ) and γs is the propagation constant of the cable (i.e. γs ≈ jω/u where u
is typically 2c/3 ). The current can also be defined in terms of forward and
backward propagating waves such that

Is(0) = I+
s + I−s = I+

s + ρisI
+
s (38)

where

ρis =
[
Zc − Zsl

Zsl + Zc

]
e−2γsl (39)

Thus ( 37 ) and ( 38 ) can be combined to give

I+ =
[Zc + Zsl]eγslVs

2[Zsl(Zc cosh γsl + Zsl sinh γsl) + Zc(Zsl cosh γsl + Zc sinh γsl)]
(40)

The current along the source cable is then given by

Is(x) = [e−γsx + ρise
γsx]I+ (41)

where x is the distance along the cable from the supply point. The voltage
gradient along the shield of the source cable is then also a function of x as given
by

Eti(x) = ZtsIs(x) (42)

The cable sheath tertiary circuit and the victim cable will be equivalent to
transmission lines with a distributed series voltage source of the form as shown
in the line section given in Figure 15. The differential equations describing the
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Figure 15: Equivalent circuit a section ∆x of a transmission line with a distrib-
uted series voltage source.

induced voltagesVi and currents Ii on transmission lines with a distributed series
voltage source Ei(x) are given by Vance [5].

∂Vi

∂x
= Ei(x)− IiZ (43)

∂Ii

∂x
= −Y Vi (44)

where Z and Y are the transmission line series impedance and shunt admittance
respectively. Equations (43) and (44) can be differentiated and combined to
give

∂2Vi

∂x2
− γ2Vi =

∂Ei(x)
∂x

(45)

∂2Ii

∂x2
− γ2Ii = −Y Ei(x) (46)

Equation (46) has a general solution of the form [5] :

Ii(x) = [K1 + P (x)]e−γx + [K2 + Q(x)]eγx (47)

where
P (x) =

1
2Zc

∫ x

0

eγuEi(u)du (48)

Q(x) =
1

2Zc

∫ l

x

e−γuEi(u)du (49)

and K1 and K2 are set to satisfy the boundary conditions at x = 0 and x = l
which gives

K1 = ρ1

[
ρ2P (l)e−γl −Q(0)eγl

eγl − ρ1ρ2e−γl

]
(50)

K2 = ρ2e
−γl

[
ρ1Q(0)− P (l)
eγl − ρ1ρ2e−γl

]
(51)
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where Zc =
√

Z/Y , γ =
√

ZY and

ρ1 =
Z0 − Zc

Z0 + Zc
(52)

ρ2 =
Zl − Zc

Zl + Zc
(53)

Equation (47) is therefore used to first find the currents induced on the
tertiary cable sheath circuit and then it is also applied to the victim cable using
the deduced tertiary current profile to deduce the induced victim current and
the voltage induced across the victim terminals using.

Vv0 = Zv0Ivi(0) (54)
Vvl = ZvlIvi(l) (55)

For multiple cables or cables in the presence of a ground plane the currents
induced on each of the cable sheaths will be different and the governing equations
will comprise of N simultaneous equations where N = the number of cables in
the presence of a ground plane or N + 1 is the total number of cables when a
ground plane is not present. The governing equations are then

[
∂2Vi

∂x2

]
− [Z][Y ][Vi] =

[
∂Es(x)

∂x

]
(56)

[
∂2Ii

∂x2

]
− [Y ][Z] [Ii] = − [Y ] [Ei(x)] (57)

where [X] represents now a vector of the N components of X. Equations (56)
and (57) therefore represent N simultaneous equations. However if we transform
the components into model components using

[Xm] = [S]−1[X] (58)

where [S] is the transformation matrix comprising of the eigen vectors of [Y ][Z]
then (57) has the form of N independent equations

[
∂2Iim

∂x2

]
− [γm]2 [Ii] = −[S]−1 [Y ] [S] [Eim(x)] (59)

where [γm]2 is a diagonal matrix of the eigen values of [Y ][Z] and the general
solution is of the form:

[Ii(x)] = [[K1] + [P (x)]][e−γx] + [[K2] + [Q(x)]][eγmx] (60)

where

[K1] = [ρ1]([eγl]− [ρ1][ρ2][e−γl])−1([ρ2][P (l)][e−γl]− [Q(0)][eγl]) (61)

[K2] = [ρ2][e−γl]([eγl]− [ρ1][ρ2][e−γl])−1([ρ1][Q(0)]− [P (l)]) (62)

where

[ρ1] = ([Z0] + [Zc])−1([Z0]− [Zc]) ρ2 = ([Zl] + [Zc])−1([Zl]− [Zc]) (63)
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Figure 16: Measurement of Crosstalk in two RG58 coax cables (l= 2m, and
common connector plates) [11].

3 Comparison of theoretical predictions with mea-
surements

For this initial study to results were used from the internship report by Leon
Korteweg [11]. The two results considered were for measurements of crosstalk
between two RG58 cables. In the first example the cables were 2m long and they
terminated into the same connector plate. In the second example the cables were
of different lengths and the remote termination of the cables were not connected
to the same connector plate (termed a floating set up in [11]). The results from
these measurements are given in Figures 16 and 17 (which are Figures 4-49 and
4-46 in the report). What is immediately apparent in the results provided is
that the first resonance does not correspond to the expected half wavelength
frequency (75MHz for a cable length of 2m) therefore stray reactances in the
tertiary circuit must be important (the cables circuits have matched loads so do
not resonate).

The theoretical prediction for the coupling between the 2m length cables
with the common connector plates and using the low frequency model is given
in Figure 18. Notice that this model can not predict the point at which there
is resonance in the tertiary circuit which leads to an increased cable coupling.

Figure 19 shows the simulation results for the more complete high frequency
model and giving the tertiary terminations as a stray inductance of 1/3 µH to
represent the loop inductance at the connector plate. The results in Figure 19
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Figure 17: Measurement of Crosstalk at different cable lengths (2× RG58,
d=5cm, floating cables) [11].

compare well with the measurements. The resonant frequencies are the same,
but this depends on the approximated tertiary terminal impedance. The overall
predicted coupling is about 10 dBs lower than the measurements. This may be
due to the model of the cable transfer impedance. Figure 20 Shows the predicted
cable crosstalk using the upper bound of the expected transfer impedance given
the manufacturing tolerances of the cable braid. This result agrees better with
the measurement results and it can also be noticed that errors in the predicted
transfer impedance does not affect the predicted resonant frequencies. The other
possibility is that the Klay model [3]is not sufficiently accurate. Simulations
using the Vance [1] and Tyni [2] transfer impedance models are given in Figures
21 and 22 respectively. It appears that the Tyni and Vance models do not
reproduce the observed cable cross coupling as well as the Klay model.

The simulation of the ”floating” cables using a tertiary circuit termination
impedance of 10 pF, to represent stray capacitance, is shown in Figure 23. The
model appears to predict the resonances reasonably well. Below but the overall
the coupling appears to be about 20 dBs too low and this may possibly due to
manufacturing tolerances of the braid or incorrect braid data. Below 1 MHz
the observed cable coupling is a lot greater than the predicted coupling but this
may be due to the noise floor of the measurements.

4 Conclusions and suggestions for future work

From the results of the work so far it appears that a reasonable estimate of cable
coupling can be made but the degree of cable coupling is significantly effected by
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Figure 18: Simulation Crosstalk in two RG58 coax cables (l= 2m, and common
connector plates)using a simple low frequency model and the Klay model of the
transfer impedance.
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Figure 19: Simulation Crosstalk in two RG58 coax cables (l= 2m, and common
connector plates)using a high frequency model and the Klay model [3] of the
transfer impedance.
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Figure 20: Simulation Crosstalk in two RG58 coax cables (l= 2m, and common
connector plates)using a high frequency model and the Klay model [3] of the
transfer impedance and the upper bound of the expected transfer impedance
(Zt + σZt) given manufacturing tolerances.
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Figure 21: Simulation Crosstalk in two RG58 coax cables (l= 2m, and common
connector plates)using a high frequency model and the Vance model [1] of the
transfer impedance
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Figure 22: Simulation Crosstalk in two RG58 coax cables (l= 2m, and common
connector plates)using a high frequency model and the Tyni model [2]of the
transfer impedance
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Figure 23: Simulation Crosstalk in two RG58 coax cables (d= 5cm, and no
common connector plate at remote termination)using a high frequency model
and the Kley model [3]of the transfer impedance

29



parameters that can only be roughly estimated. How to address this to provide
some useable results for practical engineers needs to be tackled in the future
work.

The Klay [3] model of the braid transfer impedance appears to be sufficiently
accurate as it is assumed the observed 10 dB underestimate of the cable coupling
can be attributed to uncertainties in the braid parameters.

Up until the first resonance the cable coupling is normally very low (<
100dB). The frequency at which the first resonance occurs is normally less than
the ideal half wavelength frequency due to stray reactances. The resonances were
faithfully reproduced in the simulations by adding small inductances or capac-
itances at the terminations of the tertiary circuit (circuit comprising the cable
braids and connector plates). The coupling model developed so far assumes the
tertiary circuit is completely lossless so the maximum predicted coupling could
be infinite. The only reason large peaks do not appear in the presented results
in that the modelled tertiary circuit has a very high Q and frequency steps have
not fallen exactly on the resonant points. For example Figure 24 shows the
detail of a resonance point indicating a maximum coupling of 200 dB. A means
of estimating the losses in the tertiary circuit is therefore required.

From these observations the proposed work plan for the next two months
are;

• Complete coupling model to include the ground plane

• Find a practical way of estimating the stray reactances in the tertiary
circuit and their uncertainty.

• Find a practical way of estimating the losses in the tertiary circuit and
their uncertainty.

• Include the losses in the model of cable coupling

• Provide a practical estimate of cable coupling given the uncertainties in
the parameters

• If there is time I will also look at multiple cable coupling

Appendix

cable parameters

Cable type N n D0 /mm d /mm l /mm α
RG58 12 9 2.95 0.127 19.79 27.42

RG58-A 16 7 2.95 0.127 19.72 27.56
RG58-Rep 18 6 2.95 0.127 19.79 27.56

The RG58 and RG58-A parameters are from [5] and the RG58-Rep N and
n parameters were provided by [7] with the rest taken from RG58-A
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Figure 24: Detail os a simulated cable coupling resonance point for an ideal
tertiary circuit of length 2m

comparison of nomenclature

This Report Kley [3] Vance [1] Report [7]
P - P -
N m C ζ
n n N N
d d d d
α α α ψ

Dm Dm 2a 2b
χ B K χ
F G F F
k1 k1 - k
k2 k2 - k
Dl DL - Dl

Dg DG - Dg
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