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1

Introduction

Tsunamis, from the Japanese words ’tsu’ (harbour) and ’nami’ (wave), are long water

waves generated by offshore earthquakes, explosive volcanism near the surface of the

ocean, submarine slides or a meteorite that hit the ocean. A tsunami can occur in

oceans, bays, lakes or reservoirs. The characteristic feature that makes a tsunami so

dangerous for the coastal area is its exceptional wavelength compared to its height. In

the open ocean, even the largest tsunami rarely exceeds 0.5m in height. However, the

spacing between tsunami wave crests can be hundreds of kilometres. These character-

istics allow the tsunami waveheight to increase substantially in the last 10−20m depth

of water before the shore. Therefore, in tsunami simulations the waveheight near the

shore is the most important aspect scientists would like calculate correctly.

Unfortunately, the present-day simulation tools still cannot calculate the waveheight

near the shore accurately enough. One source of inaccuracy is the interaction of the

incoming waves with reflected waves from the coast. Besides, computing the details of

run-up and run-down of waves on the shore is computationally very demanding and

expensive since closer to the shore a finer computational resolution will be needed.

Moreover, the modelling of the physical processes is bound to be rather rudimentary

because many aspects of tsunami propagation, e.g. nonlinearity, dispersion, friction,

etc., have to be considered.

Most of the tsunami simulations nowadays will use a fixed wall as boundary con-

dition at the shore to simplify the problem. But this will cause inaccuracies in the

1



1. INTRODUCTION

reflected waves since in fact there are run-up and run-down waves on the shore. There-

fore, we will need to design boundary conditions that are able to calculate more accurate

wave interactions near the shore without increasing the computational cost.

Figure 1.1: Effective boundary condition illustration

In this thesis, we will derive so-called Effective Boundary Conditions (EBCs) to be

imposed at the shoreline. These EBCs are of general relevance and can be implemented

in any numerical program to approximate the onshore tsunami flow without the ne-

cessity to calculate the detailed flooding and drying flows. The effect of the run-up

of the waves on the shore when they return and interact after run-down with the in-

coming waves from the sea should be modeled in an approximate way in these EBCs.

The illustration of the EBCs problem can be seen in fig. (1.1). In some detail, the

basic idea is that in a zone before the shoreline (at a position of given, nonzero depth),

x = B, information of the incoming wave is ’measured’ in time, without disturbing

the waves. Denote this information symbolically by d(t). Then a theoretical model is

used to obtain the wave reflection by the run-up and run-down at the shore [B,L], and

select the information that accounts for the reflected waves influx I into the sea at the

shoreline x = B. Symbolically this theoretical model can be denoted by M(d), where

2



at time t the result will depend on the incoming wave for all previous time, i.e.

I = M(d)(t) (1.1)

depends on d(τ) for all τ < t.

The challenges in this schematic overview of mapping the incoming waves to the

outgoing reflected waves are:

1. Defining the ’measurement’ of the property of incoming waves operator d(t);

2. Making a theoretical model for the wave interaction at the shore M(d);

3. Including the reflected wave properties I = M(d) in an influx boundary condition;

and,

4. Implementing the above analytic results numerically.

Challenges 1 and 3 are kept simple at this moment, since we model the wave propaga-

tion using linear Shallow Water Equation (SWE), which has known influx and outflux

transparent boundary conditions. Actually the tsunami propagation is better modeled

using a linear Variational Bousinesq Model (VBM) which will also be derived in this

thesis, since it accounts the dispersive effect and vertical fluid motions. The major

challenge in this thesis concerns challenge 2, in which we have to make the theoretical

model for the wave interaction on the shore. Only two cases will be considered here: the

EBC when the waves propagate over a flat bathymetry and are reflected by a fixed wall

at L > B, and the EBC when the waves propagate over a slowly varying bathymetry

within [B,L] and continue over flat bathymetry (constant depth for x > L). For the

numerical solution, we will use a Finite Element Method (FEM) with quadrilateral

elements in two-dimensional (2D). To check the EBC, we will compare the results with

the simulation on the whole domain in a one-dimensional (1D) setting.

The organization of this thesis is as follows. In Chapter 2 we will start with the

derivation of the linear SWE and linear VBM from variational principles. The modeling

of the EBCs over flat and slowly varying bathymetry will be described in Chapter 3

and 4. At last, conclusions and further work that is required will close this thesis in

3



1. INTRODUCTION

Chapter 5. In the appendix, the numerical methods and implementations, and several

test cases for linear SWE and linear VBM will be shown.

4



2

Variational Formulation of

Surface Wave

Consider the three dimensional space with two horizontal directions x = (x, y) and the

vertical direction z opposite to the direction of gravity with constant acceleration of

gravity g. The surface elevation is denoted by η(x, t) and measured from z = 0. The

fluid velocity is denoted by U, with the assumption that the fluid flow is irrotational,

curl U ≡ ∇3 × U = 0, with ∇3 = (∇, ∂z). Hence, there exist a scalar function Φ,

such that U = ∇3Φ = (∇Φ, ∂zΦ). The depth is given by h(x, t), so the bathymetry

is described by z = −h(x, t). In this report we will assume that there is no bottom

motion, so h(x, t) = h(x).

The basic equations for gravity driven irrotational motion of a layer of incompress-

ible fluid with a free surface follow from the dynamic variational principle described by

Luke’s Variational Formulation (Luke 1967)

CritΦ,η

∫
P(Φ, η)dt,

where

P(Φ, η) =
∫

[
∫ η

−h
{∂tΦ +

1
2
| ∇3Φ |2 +gz}dz]dx; (2.1)

P is the pressure functional. Minimization of this ”pressure principle” with respect to

Φ gives the governing equation for the interior of the fluid, the kinematic boundary

5



2. VARIATIONAL FORMULATION OF SURFACE WAVE

condition at the surface and the boundary condition at the bottom. In this case, it is

assumed that there is no friction and no flow through the bottom (impermeable). Min-

imization with respect to η gives the dynamic free surface condition. The formulation

will involve two physical quantities, i.e. η(x, t) and φ(x, t) := Φ(x, z = η(x, t), t). The

second variable is the velocity potential at the free surface.

We start with introducing K(φ, η) as the kinetic energy functional of our basic quan-

tities. The kinetic energy is found as the value function of the following minimization

problem

K(φ, η) = min
Φ
{K(Φ, η) | Φ = φ at z = η} (2.2)

where K(Φ, η) =
∫
{
∫ η
−h

1
2 | ∇3Φ |2 dz}dx. The functional P(Φ, η) in (2.1) can be

rewritten as

P(Φ, η) =
∫

[
∫ η

−h
{∂tΦ +

1
2
| ∇3Φ |2 +gz}dz]dx

= −[
∫
φ∂tηdx−K(Φ, η)−

∫
1
2
g(η2 − h2)dx] + ∂t

∫
dx
∫ η

−h
Φdz (2.3)

using ∫ η

−h
∂tΦdz = ∂t

(∫ η

−h
Φdz

)
− φ∂tη. (2.4)

Now Luke’s Variational Principle can be rewritten as follows (Miles 1977):

−Critφ,η
∫
{
∫
φ∂tηdx−H(φ, η)}dt (2.5)

where H(φ, η) is the Hamiltonian Functional (total energy)

H(φ, η) = K (φ, η) +
∫

1
2
g(η2 − h2)dx. (2.6)

The resulting variational principle in (2.5) is known as the canonical action principle.

The Euler-Lagrange equations which are obtained by taking variations with respect to

φ and η in the action principle are given by

∂tη = δφH(φ, η) (2.7a)

6



2.1 Shallow Water Equations

∂tφ = −δηH(φ, η) (2.7b)

and are known as Hamilton equations. By using (2.6), equations (2.7a)-(2.7b) can be

rewritten as

∂tη = δφH(φ, η) = δφK(φ, η) (2.8a)

∂tφ = −δηH(φ, η) = −[gη + δηK(φ, η)]. (2.8b)

The remaining problem is to determine the functional for the kinetic energy. The

Hamiltonian containing functional K (2.2) can not be expressed explicitly in the basic

variables η and φ, which is the essential problem of surface wave theory. Surface

wave models deal with the choice of this kinetic energy, i.e. approximation for the

velocity potential Φ (Cotter and Bokhove 2009, Groesen 2006, Klopman et. al. 2005).

Examples of such approximation will be given in the following subsections in the form

of the shallow water and Boussinesq type of approximations.

2.1 Shallow Water Equations

The Shallow Water Equations (SWE) are derived with the assumption that the wave-

length of the waves are much larger than the depth of the fluid layer so that the vertical

variations are small and will be ignored. In this case, there will be no dispersive effect.

The velocity potential is approximated over depth by its value at the surface, namely

Φ(x, z, t) ≈ φ(x, t). Thus, the kinetic energy becomes

K(φ, η) =
1
2

∫
(η + h) | ∇φ |2 dx. (2.9)

With the above approximation for kinetic energy, Luke’s Variational Principle in (2.5)

simplifies to

Critφ,η

∫ [∫ {
−φ∂tη +

1
2
|∇φ|2 (η + h) +

1
2
g
(
η2 − h2

)}
dx
]
dt. (2.10)

7



2. VARIATIONAL FORMULATION OF SURFACE WAVE

The variational derivative of (2.10) with respect to φ in the direction δφ and with

respect to η in the direction δη are

∫ [∫
{−∂tηδφ+ (η + h)∇φ �∇ (δφ)} dx

]
dt = 0 (2.11a)

∫ [∫ {
∂tφδη +

1
2
|∇φ|2 δη + (gη) δη

}
dx
]
dt = 0. (2.11b)

The resulting Euler-Lagrange equations from the expressions in (2.11a) and (2.11b)

are the non-linear SWE. Because at this moment we will use only linear SWE by

restricting to waves of small amplitudes, eq.(2.11a) and eq.(2.11b) become

∫ [∫
{−∂tηδφ+ h∇φ �∇ (δφ)} dx

]
dt = 0 (2.12a)

∫ [∫
{∂tφδη + (gη) δη} dx

]
dt = 0. (2.12b)

The Euler-Lagrange equations lead to linear SWE

∂tη = −∇ � [h∇φ] (2.13a)

∂tφ = −gη (2.13b)

This system of equations (2.13a)-(2.13b) can be rewritten as one second order in time

equation for η and for φ as:

∂ttη −∇ · [c2∇η] = 0 or ∂ttφ−∇ � [c2∇φ] = 0 (2.14)

with c =
√
gh.

Finite Element Discretization of linear Shallow Water Equations. The

discretization of eq. (2.12a) and (2.12b) is obtained by approximating the unknown

solution by a finite linear combination of basis functions:

η(x, t) ≈ ηh(x, t) =
n∑
k=1

η̂k (t)Tk (x) (2.15a)

8



2.1 Shallow Water Equations

φ(x, t) ≈ φh(x, t) =
n∑
k=1

φ̂k (t)Tk (x) . (2.15b)

Substitution of (2.15a)-(2.15b) in (2.12a)-(2.12b) gives

∫ {
−

(
∂t

n∑
k=1

η̂k(t)Tk(x)

)
δφ+ h(x)∇

(
n∑
k=1

φ̂k (t)Tk(x)

)
�∇ (δφ)

}
dx = 0 (2.16a)

∫ {(
∂t

n∑
k=1

φ̂k(t)Tk(x)

)
δη + g

(
n∑
k=1

η̂k (t)Tk(x)

)
δη

}
dx = 0. (2.16b)

Because δφ and δη are arbitary admissible variations with respect to φ and η, we can

also approximate these variations using the same basis function as δφh =
∑n

i=1 viTi(x)

and δηh =
∑n

i=1wiTi(x). By substituting these approximations into (2.16a)-(2.16b),

the integrals vanish for arbitrary nonzero v and w, and we may conclude that

∫ {
−

(
∂t

n∑
k=1

η̂k(t)Tk(x)

)
Ti(x) + h(x)∇

(
n∑
k=1

φ̂k (t)Tk(x)

)
�∇Ti(x)

}
dx = 0

(2.17a)

∫ {(
∂t

n∑
k=1

φ̂k(t)Tk(x)

)
Ti(x) + g

(
n∑
k=1

η̂k (t)Tk(x)

)
Ti(x)

}
dx = 0 (2.17b)

for i = 1, ..., n.

We can rewrite the finite element discretization for linear SWE (2.17a)-(2.17b) in

an algebraic ordinary differential equations system as follow:

M∂t
−→η = G

−→
φ

M∂t
−→
φ = −gM−→η

or

(
M 0
0 M

)
∂t

( −→η
−→
φ

)
=
(

0 G
−gM 0

)( −→η
−→
φ

)
(2.18)

9



2. VARIATIONAL FORMULATION OF SURFACE WAVE

where −→η and
−→
φ denote the vectors solution for ηh and φh. The entry of a matrix

M is given by mij =
∫
Ω Ti(x)Tj(x)dΩ, and the entry of a matrix G is given by

gij =
∫
Ω h(x)∇Ti(x) �∇Tj(x)dΩ.

2.2 Variational Boussinesq Model

The Variational Boussinesq Model (VBM) aims to make a better approximation for the

kinetic energy that will lead to (approximate) dispersive effect. In shallow water, the

velocity potential at every depth is approximated by its value at the surface, but now,

the approximation for Φ will depend on z. Instead of minimizing the kinetic energy

over all Φ, we minimize it only over a subset

Φ = φ(x) + F (z)ψ(x), with F (z = η) = 0. (2.19)

Here the additional function ψ on the surface becomes a new variable and the vertical

profile function F will be chosen appropriately. The choice such that F (η) = 0 is taken

to assure that Φ(z = η) = φ. Since the choice for Φ(x, z, t) is given by (2.19), the

kinetic energy depends also on ψ : K(φ, η, ψ). From (2.2) it follows that, besides the

dynamic equations we will have in addition δψK = 0.

To get the functional for the kinetic energy, observe that |∇3Φ|2 = (∇Φ)2+(∂zΦ)2 =

[∇φ+ (∇2ψ)F ]2 + (ψF ′)2, where F ′ denotes derivative with respect to z. Instead of

(2.9), the kinetic energy for VBM reads

K(φ, η) =
1
2

∫ [∫ η

−h

{
(∇φ+ F∇ψ)2 + (F ′ψ)2

}
dz

]
dx.

By expanding the equation above, we get

K(φ, η) =
1
2

∫ [∫ η

−h

{
|∇φ|2 + 2F∇φ �∇ψ + (F |∇ψ|)2 + (F ′ψ)2

}
dz

]
dx.

Introducing the coefficients (which will depend on x through η and h)

α =
∫ η

−h
F 2dz, β =

∫ η

−h
Fdz, γ =

∫ η

−h

(
F ′
)2
dz (2.20)

10



2.2 Variational Boussinesq Model

we obtain

K(φ, η) =
1
2

∫ {
|∇φ|2(η + h) + 2β∇φ �∇ψ + α|∇ψ|2 + γψ2

}
dx. (2.21)

Now we rewrite Luke’s variational principle in (2.5) in a form of a minimization

problem with respect to three variables (φ, η, ψ)

Critφ,η,ψ

∫ { ∫
−φ∂tηdx+1

2 |∇φ|
2 (η + h) + 2β∇φ �∇ψ

+α|∇ψ|2 + γψ2 + 1
2g
(
η2 − h2

) }
dt. (2.22)

The variational derivative of (2.22) with respect to φ, η, and ψ in the direction δφ,

δη, and δψ leads to three equations below

∫ [∫
(δφ) ∂tηdx−

∫
{(η + h)∇φ �∇ (δφ) + β∇ (δφ) �∇ψ} dx

]
dt = 0 (2.23a)

∫ [
−
∫

(δη) ∂tφdx−
∫ {

gη (δη)− 1
2
|∇φ|2 (δη)

}
dx
]
dt = 0 (2.23b)

∫ [∫
{(β∇φ) �∇ (δψ) + (α∇ψ) �∇ (δψ) + γψ (δψ)} dx

]
dt = 0. (2.23c)

As we did in SWE, to simplify the problem, linearization of the variational derivatives

above result in

∫ [∫
(δφ) ∂tηdx−

∫
{h∇φ �∇ (δφ) + β∇ (δφ) �∇ψ} dx

]
dt = 0 (2.24a)

∫ [
−
∫

(δη) ∂tφdx−
∫
gη (δη) dx

]
dt = 0 (2.24b)

∫ [∫
{(β∇φ) �∇ (δψ) + (α∇ψ) �∇ (δψ) + γψ (δψ)} dx

]
dt = 0. (2.24c)

Note that we have defined α, β, γ in (2.20). Originally, α, β, and γ are functions of x

and t (through η and h), but we assume now that the depth h is much larger than the

elevation η. So we approximate α, β, γ by

11



2. VARIATIONAL FORMULATION OF SURFACE WAVE

α =
∫ 0

−h
F 2dz, β =

∫ 0

−h
Fdz, γ =

∫ 0

−h

(
F

′
)2
dz.

The equations of linear VBM will be found from the Euler-Lagrange of the equations

(2.24a)-(2.24c) as

∂tη = −∇ � (h∇φ)−∇ � (β∇ψ) (2.25a)

∂tφ = −gη (2.25b)

0 = −∇ � (β∇φ)−∇ � (α∇ψ) + γψ. (2.25c)

The three coupled linear VBM equations in (2.25a)-(2.25c) have to be solved to-

gether. Given h(x), the values of α, β, γ in linear VBM can be calculated beforehand.

In a time stepping procedure, the algorithm is as follows. At a specific moment we

have current values of h, η, φ, ψ. To procees one time step, to arrive at η+, φ+, ψ+, the

following steps have to be taken.

(1) To update the value of ψ we proceed with the current η and φ, and calculate

the solution ψ+ of the elliptic equation

(2) Having found the updated ψ+, make a time step to get updated η+, φ+ from

the dynamic equations

(3) Repeat the process for next time step.

In this report, the choice for the function F (z) will be taken to be a parabolic

profile:

F =
2z
h

+
z2

h2
. (2.26)

This is motivated by the fact that the solution of Φ for harmonic solutions of linear wave

approximation (small variation in surface elevation and mildly sloping topography) are

cosine hyperbolic functions, which resemble a parabolic profile. Then the values of

α, β, γ are

α(x) =
8
15
h(x), β (x) = −2

3
h (x) , γ (x) =

4
3h (x)

. (2.27)
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2.2 Variational Boussinesq Model

Finite Element Discretization of linear Variational Boussinesq Model.

The discretization of eq. (2.24a)-(2.24c) is obtained by approximating the unknown

solution by a finite linear combination of basis functions:

η(x, t) ≈ ηh(x, t) =
n∑
k=1

η̂k (t)Tk (x) (2.28a)

φ(x, t) ≈ φh(x, t) =
n∑
k=1

φ̂k (t)Tk (x) (2.28b)

ψ (x, t) ≈ ψh (x, t) =
n∑
k=1

∧
ψk (t)Tk (x) . (2.28c)

As we did in the FEM implementation for SWE, we will also use the variational

principle for VBM. So, we substitute the approximation for the variables φ, η, and ψ

into the linear VBM in integral form (2.24a), (2.24b), and (2.24c). Then we get

∫


∂t

(∑n
k=1

∧
ηk(t)Tk(x)

)
δφ

−h(x)∇
(∑n

k=1

∧
φk(t)Tk(x)

)
�∇ (δφ)

−β(x)∇
(∑n

k=1

∧
ψk(t)Tk(x)

)
�∇(δφ)


dx = 0 (2.29a)

∫ {
∂t

(
n∑
k=1

∧
φk(t)Tk (x)

)
δη + g

(
n∑
k=1

∧
ηk(t)Tk(x)

)
δη

}
dx = 0 (2.29b)

∫


β(x)∇
(∑n

k=1

∧
φkTk (x)

)
�∇ (δψ)

+α(x)∇
(∑n

k=1

∧
ψkTk (x)

)
�∇ (δψ)

+γ (x)
(∑n

k=1

∧
ψkTk(x)

)
(δψ)


dx = 0. (2.29c)

Because δφ, δη, and δψ are arbitrary admissible variations with respect to φ, η,

and ψ, then we can also approximate these variations using the same basis function

as δφh =
∑n

i=1 piTi(x), δηh =
∑n

i=1 qiTi(x), and δψh =
∑n

i=1 riTi(x). If we substitute

these approximation into (2.29a)-(2.29c) then the integrals vanish for arbitrary nonzero

13



2. VARIATIONAL FORMULATION OF SURFACE WAVE

p, q, and r; we may conclude that

∫


∂t

(∑n
k=1

∧
ηk(t)Tk(x)

)
Ti(x)

−h(x)∇
(∑n

k=1

∧
φk(t)Tk(x)

)
�∇Ti(x)

−β(x)∇
(∑n

k=1

∧
ψk(t)Tk(x)

)
�∇Ti(x)


dx = 0 (2.30a)

∫ {
∂t

(
n∑
k=1

∧
φk(t)Tk (x)

)
Ti(x) + g

(
n∑
k=1

∧
ηk(t)Tk(x)

)
Ti(x)

}
dx = 0 (2.30b)

∫


β(x)∇
(∑n

k=1

∧
φkTk (x)

)
�∇Ti(x)

+α(x)∇
(∑n

k=1

∧
ψkTk (x)

)
�∇Ti(x)

+γ (x)
(∑n

k=1

∧
ψkTk(x)

)
Ti(x)


dx = 0 (2.30c)

for i = 1, ..., n.

We can rewrite the finite element discretization for linear VBM (2.30a)-(2.30c) in

an algebraic ordinary differential equations system as follow:

M∂t
−→η = G

−→
φ + R

−→
ψ

M∂t
−→
φ = −gM−→η

L
−→
ψ = R

−→
φ .

where −→η ,
−→
φ , and

−→
ψ denote the vectors solution for ηh, φh, and ψh.

The first two dynamic equations can be rewritten as a system of ordinary differential

equations

(
M 0
0 M

)
∂t

( −→η
−→
φ

)
=
(

0 G
−gM 0

)( −→η
−→
φ

)
+

(
R
−→
ψ

0

)
(2.31)

and the third equation can be expressed as

−→
ψ = L−1

(
R
−→
φ
)

(2.32)
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2.2 Variational Boussinesq Model

The system (2.31) and (2.32) should be solved together with the algorithm de-

scribed before. The entry of a matrix L is given by lij =
∫
Ω−α(x)∇Ti(x) �∇Tj(x) −

γ(x)Ti(x)Tj(x)dΩ, and the entry of a matrix R is given by rij =
∫
Ω β(x)∇Ti(x) �

∇Tj(x)dΩ.
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3

Effective Boundary Condition

over Flat Bathymetry

In this chapter, we will derive the Effective Boundary Condition (EBC) for waves prop-

agating over a flat bathymetry and reflected by a fixed wall. The challenges in deriving

EBC (in Chapter 1) for this case will be answered. Challenges 1, 2, and 3 will be

explained in Section 3.2, and challenge 4 in Section 3.3.

3.1 Problem Formulation

The physical domain from x = 0 until x = L will be divided into two parts, as illus-

trated in fig. (3.1). The domain [0, B] will be calculated numerically, but the domain

[B,L] will be calculated analytically. Note that the position B will become the ’bound-

ary’ of the numerical domain, but it is not a physical boundary of any kind: the aim

will be to simulate on [0, B] the actual wave propagation in the physical domain [0, L].

Ideally, the modelling in [B,L] should be so good and so well constructed at x = B that

there is no affect in [0, B] of this hybrid analytic-numerical. The boundary at x = 0 is

taken here as a hard wall (but could also be an inflow or transparent boundary). At

x = L we take a hard wall boundary condition. Consider a wave that propagates to

the right and arrives at x = B. This wave will continue to propagate to x = L, bounce

back, and propagate to the left passing again the boundary at x = B.

17



3. EFFECTIVE BOUNDARY CONDITION OVER FLAT
BATHYMETRY

Problem For instance η(x, t) and φ(x, t) are the solutions on the physical domain

[0, L] with flat bathymetry and hard wall boundary conditions at x = 0 and x = L.

Take restriction of these solutions on [0, B] as (ηr, φr).

Aim: Design EBC such that the problem on [0, B] with EBC has solutions (η1, φ1) so

that η1 = ηr and φ1 = φr.

Figure 3.1: Effective boundary condition over flat bathymetry illustration

3.2 Effective Boundary Condition over Flat Bathymetry

For waves propagating over flat bottom (h(x) = h), linear SWE (2.14) in 1D have the

general solutions:

η(x, t) = F1(
x

c
− t) +G1(

x

c
+ t)

φ(x, t) = F2(
x

c
− t) +G2(

x

c
+ t),

in which F1, G1, F2, and G2 can be any function having two continuous derivatives

with respect to x and t.

For a right Influx Transparent Boundary Condition (ITBC), i.e. transparent for

waves propagating to the right but influxing the waves propagating to the left, we

assumed that the solution to the exterior of our computational domain is known. It is

assumed that the solution outside the right BC is the propagating wave over a constant

depth hR at the right boundary. So, the solutions to this type of wave are:

18



3.2 Effective Boundary Condition over Flat Bathymetry

η(x, t) = F1(
x

cR
− t) +G1(

x

cR
+ t)

φ(x, t) = F2(
x

cR
− t) +G2(

x

cR
+ t)

where cR =
√
ghR. Differentiation of φ(x, t) with respect to x and t at the neighbour-

hood of this point results in:

∂xφ =
1
cR
F

′
2 +

1
cR
G′2

∂tφ = −F ′
2 +G′2.

Elimination of F ′2 yields the right ITBC as:

∂tφ+ cR∂xφ = 2G
′
2. (3.1)

This is the condition for the right ITBC, where the influx signal at x = xR is given by

2G′2.

Now, we can model the EBC over flat bathymetry as:

1. In order to measure the properties of the incoming wave d(t) at x = B, we have

the left ITBC (transparent for waves propagating to the left but influxing the

waves propagating to the right):

∂tφ− cB∂xφ = −2F ′(
x

cB
− t) (3.2)

where cB =
√
ghB, hB is the constant depth at x = B, and the influx signal at

x = B is given by −2F ′, F is the solution for the right wave potential velocity.

2. The theoretical model M for this case is the time delay 2B/cB needed by the

waves to propagate back and forth on the domain [B,L].

19



3. EFFECTIVE BOUNDARY CONDITION OVER FLAT
BATHYMETRY

3. In the same way, the reflected wave I at x = B can be included with the right

ITBC as:

∂tφ+ cB∂xφ = 2G′(
x

cB
+ t) (3.3)

where the influx signal at x = B is given by 2G′, G is the solution for the left

wave potential velocity.

Since at x = L the boundary is a hard wall, the waves that pass x = B and

bounce back at x = L, will pass x = B with the same profile but in opposite

direction, and with a time delay 2B/cB. Therefore, the EBC at x = B will be:

(∂tφ+ cB∂xφ) |t= (∂tφ− cB∂xφ) |t−2B/cB , (3.4)

with ∂tφ − cB∂xφ = 0 for t < 2B/cB, with the assumption that the initial

condition η(x, 0) = 0 and φ(x, 0) = 0 on [B,L], so there is no reflection wave yet

for t < 2B/cB. In the other words, the ’first’ wave that enters [B,L] will appear

in the model after 2B/cB s time delay.

We can rewrite (3.4) by using (2.13b) as:

(∂tφ+ cB∂xφ) = −2gη − (∂tφ+ cB∂xφ).

Therefore the EBC at x = B can be rewritten as:

(∂tφ+ cB∂xφ) |t= −(2gη + (∂tφ+ cB∂xφ)) |t−2B/cB (3.5)

with 2gη + (∂tφ + cB∂xφ) = 0 for t < 2B/cB, which is easier and cheaper to be

implemented in the numerical code than (3.4). This is because in (3.5) we can

store the value of ∂tφ+ cB∂xφ for the whole iteration, instead of calculating the

value of ∂tφ− cB∂xφ in the right hand side of (3.4) every iteration.

3.3 Simulations

To validate the EBC that has been formulated, we will compare it with the computation

in the whole domain [0, L]. For the simulation, the linear SWE code is used with
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3.3 Simulations

Figure 3.2: Comparison between the simulation on the whole domain (blue dashed line)
and using EBC (red solid line) at t = 15min

Figure 3.3: Comparison of the Hamiltonian between the simulation on the whole domain
(blue dashed line) and using EBC (red solid line) for t = 15 min
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3. EFFECTIVE BOUNDARY CONDITION OVER FLAT
BATHYMETRY

Figure 3.4: Comparison between the simulation on the whole domain (blue dashed line)
and using EBC (red solid line) at t = 30min

L = 100km, B = 80km, h = 1km, dx = 250m, and dt = 5s. The simulation is uniform

in y direction, with H = 15km and dy = 1500m.

The system of linear SWE (2.18) with EBC (3.5) is a type of delay differential

equation, in which the derivative of the unknown function at a certain time t is given in

terms of the values of the function at previous times t− 2B/cB. Problem of this type

can be dealt with using dde23 solver at MATLAB.

As initial condition we take a single hump in the middle of the whole domain with

zero velocity everywhere, i.e.

η(x, 0) = A exp−(
x− L/2
50
√
c

)2

φ(x, 0) = 0

with A = 2. Because of the boundary conditions and the symmetric initial condition,

the solutions is symmetric with respect to x = L/2 for all time.
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3.3 Simulations

Figure 3.5: Comparison of the Hamiltonian between the simulation on the whole domain
(blue dashed line) and using EBC (red solid line) for t = 30 min

Fig. (3.2) and fig. (3.4) are comparisons of simulations with EBC and simulations

on the whole domain. The blue dashed line represents the wave elevation calculated

in the whole domain [0, L], the red line represents the wave elevation using EBC at

x = B. Fig. (3.2) is the comparison at T = 15min, when the waves have bounced once

against the hard wall. Fig. (3.4) is the comparison at T = 30 min, when the waves

have bounced twice. Fig. (3.3) and fig. (3.5) are comparisons of the Hamiltonian

(total energy) during the simulations; it is the integrated energy density over the whole

interval [0, L] or [0, B], depending on the simulation case. We observe that the changing

in the energy (once and twice) of the simulation with EBC, corresponds to the inflow

and outflow of the waves in the calculation within the domain [B,L].

Numerical Performance. For the first simulation, the CPU time for solving

the PDE when calculated in the whole domain (using ode45 solver) is 14s, and when

using EBC is 83s. The increase of computational time when using EBC is because of

the use of the solver dde23 solver for the delay differential equation. In the second

simulation, the CPU time for solving the PDE when calculated in the whole domain is
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27s, and when using EBC is 187s. Fig. (3.3) and fig. (3.5) are the comparisons of the

Hamiltonian (total energy) during the simulations for the corresponding time. We can

observe that there is some incoming and outgoing amount of energy on the simulation

with EBC, which correspond to the waves calculated analytically within the domain

[B,L].

24



4

Effective Boundary Condition

over Slowly Varying Bathymetry

In this chapter, we will derive the Effective Boundary Condition (EBC) for waves

propagating over a slowly varying bathymetry. In Section 4.1, we will start with WKB

approximation, and continue with deriving the Reflection WKB approximation in Sec-

tion 4.2. The challenges in deriving EBC (in Chapter 1) for this case will be answered.

Challenges 1, 2, and 3 will be explained in Section 4.4, and challenge 4 in Section 4.5.

4.1 Problem Formulation

The physical domain from x = 0 until x = L is divided into two parts, as shown in fig.

(4.1). The domain [0, B] will be calculated numerically, whereas the domain [B,L] will

be calculated analytically. In this chapter, the depth of the domain h (x) will decrease

slowly from x = B until x = L, and with h(x > L) = h(L). The boundary at x = 0

can be chosen as in Chapter 3. At x = L, the boundary is chosen to be transparent.

For a wave that propagates to the right, passes the point x = B, will continue to x = L

and further.

Problem For instance η(x, t) and φ(x, t) are the solutions on the physical domain

[0, L] with slowly varying bathymetry on [B,L] and transparent boundary conditions

at x = 0 and x = L. Take restriction of these solutions on [0, B] as (ηr, φr).

Aim: Design EBC such that the problem on [0, B] with EBC has solutions (η1, φ1) so

that η1 = ηr and φ1 = φr.
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4. EFFECTIVE BOUNDARY CONDITION OVER SLOWLY VARYING
BATHYMETRY

Figure 4.1: Effective boundary condition over slowly varying bathymetry illustration

4.2 WKB Approximation

For waves above a slowly varying bathymetry, there is a very good approximation

termed the Wentzel-Kramer-Brillouin (WKB) approximation (van Groesen and Mole-

naar 2007, Hinch 1991). The variations in the water depth are slow if ∆h/L << 1,

where ∆h is the change in depth over a horizontal distance L (fig. 4.2). By rewriting

again eq. (2.14) in one dimension, we get:

∂2
t η − ∂x

[
c2∂xη

]
= 0. (4.1)

The differential equation (4.1) can be solved easily for constant c. Only for some special

functions c = c(x), one can solve this differential equation analytically.

Following van Groesen and Molenaar, for a slowly varying velocity c(εx), we take

as Anzats for (4.1):

η (x, t) = ρ (εx)F (θ (x, t)) (4.2)

where the profile function F is arbitrary, the phase θ satisfies the eiconal equation:

(∂tθ)
2 = c2 (∂xθ)

2 (4.3)
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4.2 WKB Approximation

and the amplitude ρ satisfies

ρ (εx) =
A√
c (εx)

. (4.4)

Figure 4.2: Slowly varying bathymetry

This solution can be obtained by substituting (4.2) to (4.1). By regrouping the

terms, we will get

∂2
t η − ∂xc2 (εx) ∂xη = r0F

′′ + r1F
′ + r2F (4.5)

with r0 = ρθ2
t −ρc2θ2

x, r1 = ρθtt− 2εc2ρxθx− 2εccxρθx− c2ρθxx, and r2 = ε2∂x
(
c2∂xρ

)
.

Requiring r0 = 0 will lead to (4.3). Then r1 = 2εcρx+ερcx, and requiring this to vanish

leads to (4.4). Since both c and ρ are slowly varying, the order of the remaining residue

r2 is then O
(
ε2
)

as in the WKB approximation.

Thus, the WKB approximation for right traveling waves is

η (x, t) =
A√
c (x)

F

(
t−
∫ x

0

1
c (ζ)

dζ

)
. (4.6)

It can be observed that this is precisely the solution of

∂tη +
√
c∂x
√
cη = 0, (4.7)

which can be checked by subsituting (4.6) to (4.7).
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4.3 Reflection WKB Approximation

Because our aim is to look for the expression of reflected waves that travels to the left

for right travelling waves, we will write the total wave elevation (η) as the sum of a

right (−→η ) and a left (reflected) wave
(←−
ξ
)
, i.e.

η = −→η +
←−
ξ . (4.8)

Anticipating the WKB-equation for right and left travelling waves, we observe that

(∂t +
√
c∂x
√
c)(∂t −

√
c∂x
√
c) = ∂2

t −
√
c∂xc∂x

√
c.

Hence, we rewrite equation (4.1) as

(
∂2
t −
√
c∂xc∂x

√
c−

(
∂xc

2∂x −
√
c∂xc∂x

√
c
))
η =

(
∂2
t −D2 − b

)
η = 0,

where we use the operator D(.) =
√
c(∂x
√
c(.)), and define b(.) = ∂x(c2∂x(.)) −

√
c∂x(c∂x(

√
c(.))).

With (4.8) we get

(
∂2
t −D2

)−→η +
(
∂2
t −D2

)←−
ξ = b−→η + b

←−
ξ . (4.9)

The first term in the left hand side vanishes by (4.7). The first term in the right hand

side is a simple multiplication operator b−→η = −1
4ε

2(c′(x)2 +2c(x)c′′(x))−→η , which is the

WKB approximation’s residue of O
(
ε2
)
. The second term b

←−
ξ will be of higher order

and will be neglected in the following. The remaining terms are

(∂t + D) (∂t −D)
←−
ξ = b(x)−→η . (4.10)

For simplicity, we will use η for −→η and ξ for
←−
ξ in the rest of this section. To solve

(4.10), we will do some algebraic steps and a transformation such that we can get the

analytical solution for the reflection wave in a simpler form. By defining (∂t −D) ξ = λ,

we can rewrite (4.7) and (4.10) as a system of differential equations

(∂t + D) η = 0
(∂t + D)λ = b(x)η

(∂t −D) ξ = λ.
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4.3 Reflection WKB Approximation

By multiplying all the equations with
√
c (x), the system become

(∂t + c∂x) η = 0
(∂t + c∂x)λ = b(x)η

(∂t − c∂x) ξ = λ.

for η =
√
cη, λ =

√
cλ, and ξ =

√
cξ.

After introducing the time independent variable

y = y (x) such that ∂y = c∂x → y =
∫ x

0

dζ

c (ζ)

our system becomes a system with constant coefficients

(∂t + ∂y) η = 0 (4.11)

(∂t + ∂y)λ = b(y)η (4.12)

(∂t − ∂y) ξ = λ. (4.13)

The solution of this system can be found successively:

(i) Given the initial condition η (x, 0) = F (x) then η (x, 0) =
√
c (x)F (x) = F̄ (x),

and the first equation has the solution

η = F̄ (y − t) (4.14)

which is actually the WKB solution (4.6).

(ii) Since we have (∂t −D) ξ = λ and ξ (x, 0) = 0, it follows that λ (x, 0) = 0. By

substituting (4.14) to (4.12), the general solution λ is given by

λ = F̄ (y − t) B(y) +G1(y − t) with B (y) =
∫ y

0
b(ζ)dζ,

and G1 can be any function. B (y) is only nonvanishing for x > B so G1(y− t) = 0 and

the particular solution for λ is

λ = F̄ (y − t) B(y) with B (y) =
∫ y

0
b(ζ)dζ. (4.15)
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(iii) By substituting (4.15) to (4.13), we obtain the general solution of ξ as

ξ = −
∫ y

0
F̄ (2β − (y + t))B (β) dβ +G2 (y + t) ,

with G2 can be any function. At t = 0, we have no reflection wave, ξ (x, 0) = 0, so

the particular solution for ξ is

ξ = −
∫ y

0
F̄ (2β − (y + t))B (β) dβ +

∫ y+t

0
F̄ (2β − (y + t))B (β) dβ

=
∫ y+t

y
F̄ (2β − (y + t))B (β) dβ (4.16)

Comparison between Reflection WKB approximation and numerical so-

lutions. Before continuing with the EBC over slowly varying bathymetry, we will

compare this analytical solution of Reflection WKB approximation with numerical so-

lutions. We will perform the simulation on the domain [−100, 100]km with the same

parameters used in the previous chapter, for total simulation time t = 25min. The

bathymetry is defined by

h(x) = −h0 − h1

2
tanh((x−m)/w) +

h0 + h1

2
,

where h0 = 1000m is the depth before the slowly varying bathymetry and h1 = 100m

is the depth after the slowly varying bathymetry, m is the ’middle’ of the slope and w

is the ’half width’ of the slope.

In the 3 cases to follow we take m = 50km and 3 different slopes of the bottom by

taking w = 5km (slope 1:15), w = 10km (slope 1:30), and w = 15km (slope 1:45). We

present the results of the waves: with blue dashed line is the numerical solution and

with red solid line is the analytical solution. Figure (4.3) is the comparison between the

numerical and analytical solution for slope 1:15. From this simulation, it can be seen

that the numerical solution has a small negative wave approximately at x = 80km. And

by looking at the analytical solution (the red solid line), actually this is the reflected

waves that going to the left. A big part of reflection waves will propagate to the right,

but a small part of it will propagate to the right. This also explains eq. (4.10), where
←−
ξ actually satisfies ’total’ wave equation (which already neglects the b

←−
ξ term).
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4.3 Reflection WKB Approximation

Figure 4.3: Comparison of numerical (blue dashed line) and analytical (red solid line)
solution for steep slope (w = 5km)

Figure 4.4: Comparison of numerical (blue dashed line) and analytical (red solid line)
solution for mild slope (w = 10km)
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Figure 4.5: Comparison of numerical (blue dashed line) and analytical (red solid line)
solution for very mild slope (w = 15km)

The quite large error between the numerical and the analytical solution may be

caused by the fact that the bathymetry varies not slowly enough, since the analytical

solution actually only valid in slowly varying bathymetry. Therefore, comparisons were

done for milder slopes 1:30 in fig (4.4) and 1:45 in fig (4.5). These comparisons show

that the analytical solutions get closer and closer to the numerical one.

Fig. (4.6) shows the plot of −→η (x, t),
←−
ξ (x, t), and λ(x, t) at t = 25min for the case

w = 10km. The plot of b(x) and B(x) can be seen in fig. (4.7) and fig. (4.8). It can

be observed that B(x) is nonvanishing on the slope, and this generates λ(x, t) (see eq.

(4.15)) after the propagating waves −→η (x, t) enter the slope, and at last will generate

the reflection waves
←−
ξ (x, t).

The comparison of the WKB approximation (−→η (x, t)), the Reflection WKB ap-

proximation (−→η (x, t) +
←−
ξ (x, t)), and the numerical solution for the case w = 5km

(dx = 125m) is shown in fig. (4.9). Here we can see more clearly (also from fig.

(4.6)) that the WKB approximation for −→η (x, t) only will not give the small negative

waves for the left propagating waves over the slowly varying bathymetry. The Reflec-

tion WKB approximation also gives better approximation for the maximum waveheight
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4.3 Reflection WKB Approximation

Figure 4.6: Plot of −→η (x, t), λ(x, t),
←−
ξ (x, t), and h(x)
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Figure 4.7: Plot of b(x)

Figure 4.8: Plot of B(x)

34



4.4 Effective Boundary Condition over Slowly Varying Bathymetry

compared to the numerical solution. Therefore, we can claim that this Reflection WKB

approximation corrects the WKB approximation for the left propagating waves.

Figure 4.9: Comparison between the WKB approximation (black dotted line), the Re-
flection WKB approximation (red solid line), and the numerical solution (blue dashed line)

4.4 Effective Boundary Condition over Slowly Varying

Bathymetry

1. Given the solution for the right propagating waves η(x, t) = F (xc − t), the prop-

erties of the incoming wave d(t) at x = B is given by

η(x, t)|x=B = F (
B

cB
− t), (4.17)

with cB =
√
ghB, hB is the constant depth before the slope (x < B).

2. The theoretical model for the shore M(d) is given by the Reflection WKB ap-

proximation in y variable as:

ξ(y, t) =
∫ y+t

y
F̄ (2β − (y + t))B (β) dβ (4.18)
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3. The reflected wave I at x = B can be included with the right ITBC as:

∂tφ+ cB∂xφ = 2G′(
x

cB
+ t) (4.19)

where the influx signal at x = B is given by 2G′, G is the solution for the left

wave potential velocity (as derived in Section 3.2).

Thus, with the relation ∂tφ = −gη, the EBC over slowly varying bathymetry can

be formulated as:

∂tφ+ cB∂xφ = −2g
←−
ξ (B, t), (4.20)

with
←−
ξ (x, t) is given by (4.18) after transforming back to x variable.

4.5 Simulations

For checking the EBC implementation, we will compare it with the numerical solution

on the whole domain. For the EBC simulation, we will use the domain [−100, 20]km

and the other parameters are the same as in the previous subsection. Fig (4.10)-(4.12)

shows the comparison of reflection waves between the simulation on the whole domain

and with EBC in part of the domain for w = 5km (slope 1:15), w = 10km (slope 1:30),

and w = 15km (slope 1:45). The blue dashed line represents the reflection wave cal-

culated in the whole domain [−100, 100]km, the red one represents the reflection wave

using EBC at x = 20km. Here it can be seen clearly that there is quite large error

between the numerical and the analytical solution that may be caused by the fact that

the bathymetry varies not slowly enough, since the analytical solution actually only

valid in slowly varying bathymetry. It can be seen that when the slope is steeper, the

error is larger.

Numerical Performance. For the case w = 10km, the CPU time for solving the

PDE when calculated in the whole domain is 86s. The CPU time needed to calculate

the reflection wave analytically is 4.56s and the CPU time to solve the PDE in part

of the domain, together with influxing the EBC is 69s. This numerical performance

shows that the use of EBC can reduce the computational time.
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4.5 Simulations

Figure 4.10: Comparison between the simulation on the whole domain (blue dashed line)
and using EBC (red solid line) for steep slope (w = 5km)

Figure 4.11: Comparison between the simulation on the whole domain (blue dashed line)
and using EBC (red solid line) for mild slope (w = 10km)
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Figure 4.12: Comparison between the simulation on the whole domain (blue dashed line)
and using EBC (red solid line) for very mild slope (w = 15km)
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5

Conclusions and Future Work

5.1 Conclusions

The effective boundary conditions (EBCs) is designed with the aim to calculate more

accurate wave interactions near the shore without increasing the computational cost.

In this thesis, the EBCs over flat bathymetry and over slowly varying bathymetry have

been derived. Both of these EBCs have been implemented and compared with the

numerical solution where the calculation on the shore was also included.

For the EBC over flat bathymetry, the comparison between the EBC calculation

and the numerical solution on the whole domain shows good agreements. One of the

results can be seen in fig. (3.4). We found that the computational time using the

EBC is more expensive because of the use of the dde23 solver for time integration in

MATLAB to solve the delay differential equation. This problem may can be overcome

by developing our own code with fix time discretization to solve the time integration,

since MATLAB uses its own time discretization.

The comparison between the EBC calculation over slowly varying bathymetry and

the numerical solution on the whole domain shows that there is quite some error; this is

expected because of the second order WKB approximation. One of the result can bee

seen in fig. (4.11). The results show that when the slope is steeper, the error is larger.

This problem may can be overcome by deriving the higher order WKB approximation

or doing iteration in calculating
←−
ξ such that the second term in the right hand side of
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equation (4.9), which is neglected in this thesis, can be included in the calculation.

As an additional result, the Reflection WKB approximation has been derived in

this thesis, which not only models the reflected wave, but also improves the WKB

approximation for the wave that propagates over the slowly varying bathymetry. The

comparison for the WKB approximation, the Reflection WKB approximation, and the

numerical solution is shown in fig. (4.9)

5.2 Future Work

For future work, the EBC when there is run-up and run-down on the shore will be

interesting. The model of wave propagation in the sea, which is kept simple as the

linear SWE model in this report can also be improved to a more accurate model, e.g.

linear VBM and models which include nonlinearity.
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Appendix A

Numerical Solution of linear

Shallow Water Equations and

linear Variational Boussinesq

Model

A.1 Two Dimensional Finite Element Method: Quadri-

lateral Element

We will use quadrilateral elements for approximating the solution of linear SWE, and

we will start with the simple case of a rectangle with all sides in the coordinates di-

rections. Such a rectangle may be considered as the product of two one-dimensional

elements in x and y- direction respectively. The simplest element is the one with the 4

vertices as nodes and a bilinear approximation.

The basis function for a rectangle as illustrated at fig.(A.1). can be defined by:

T1(x, y) = λ1(x)λ1(y)

T2(x, y) = λ2(x)λ1(y)

T3(x, y) = λ2(x)λ2(y)

41



A. NUMERICAL SOLUTION OF LINEAR SHALLOW WATER
EQUATIONS AND LINEAR VARIATIONAL BOUSSINESQ MODEL

Figure A.1: Quadrilateral element

T4(x, y) = λ1(x)λ2(y) (A.1)

with λi (x) is one-dimensional basis functions in x-direction and λj (y) in y-direction.

We can verify that the basis function Ti (x, y) in (A.1) have the shape

Ti(x, y) = ai0 + ai1x+ ai2y + ai3xy. (A.2)

But unfortunately the basis functions of the shape (A.2) are not continuous for a

general quadrilateral. Since it is not clear what the general shape of the basis functions

must be, we have to use some special construction method. The standard technique is

known as isoparametric transformations. The idea is we do not know what the basis

functions look like for a general quadrilateral, but for a square with sides in x and

y-direction is obvious. So, we can transform the general quadrilateral element in the

x − y−plane with a coordinate transformation (x, y) → (ξ, η) to a standard element

(the unit square) in the ξ − η−plane. Such a transformation is called isoparametric if

it is satisfies the following properties:

1. The nodes x1,x2, ...,xk are transformed to fixed point ξ1, ξ2, ..., ξk, i.e. the points

in the reference element are always the same.

2. Straight sides in the original element remain straight in the reference element.

3. If the basis functions in the transformed element are given by T1(x), T2(x), ...Tk(x)
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then the inverse transformation (ξ, η)→ (x, y) is given by

x =
k∑
l=1

xlTl (ξ, η) (A.3)

and the interpolation by

u(x) =
k∑
l=1

ulTl(ξ, η) (A.4)

In the other words, we use the same element for transformation and interpolation.

We will do the bilinear transformation. The nodes xi of the quadrilateral are trans-

formed to the vertices of the unit square in the following way:

x1 → (0, 0) , x2 → (1, 0) , x3 → (1, 1) , x4 → (0, 1) (A.5)

The basis functions in the (ξ, η)-plane are bi-linier and defined by

T1 = (1− ξ) (1− η) , T2 = ξ (1− η) , T3 = ξη, T4 = (1− ξ) η (A.6)

In order that the transformation is applicable, it must be invertible, i.e. for each x

in the quadrilateral, there must be a unique ξ. So the Jacobian of the transformation

must be non-singular for each x in the quadrilateral. The Jacobian matrix J is defined

by:

J =

[
∂x
∂ξ

∂x
∂η

∂y
∂ξ

∂y
∂η

]
(A.7)

and by transformation (A.3), the determinant of J is given by:

det(J) = (x2 − x1 +Axη) (y4 − y1 +Ayξ)− (x4 − x1 +Axξ)(y2 − y1 +Ayη), (A.8)

with Ax = x1 − x2 + x3 − x4 and Ay = y1 − y2 + y3 − y4.
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By Newton Cotes rule, then the integration of the reference element (A.5) is given

by the two-dimensional equivalent of the Trapezoid rule:

∫ 1

0

∫ 1

0
Int(ξ, η)dξdη ≈

1
4

4∑
k=1

Int(ξk, ηk) (A.9)

A.2 FEM Implementation for linear SWE

By using the Newton Cotes rule (A.9), then the approximation of mij and gij in (2.18)

will be

mij ≈
1
4

4∑
k=1

(TiTj |J |) (ξk, ηk) and gij ≈
1
4

4∑
k=1

(h∇Ti �∇Tj |J |) (ξk, ηk) (A.10)

The values of |J | in the integration points in the reference element can be computed

immediately from eq. (A.8). To compute the values of ∇Ti we have to express

the derivatives to x and y into derivatives of ξ and η, since Ti is only known in the

(ξ, η)-plane:

∂Tk
∂x

=
∂Tk
∂ξ

∂ξ

∂x
+
∂Tk
∂η

∂η

∂x
,

∂Tk
∂y

=
∂Tk
∂ξ

∂ξ

∂y
+
∂Tk
∂η

∂η

∂y
.

To compute these derivatives, we need the values of ∂ξ∂x and so on, that can be calculated

as the inverse of the Jacobian matrix J.

A.2.1 FEM Implementation for Boundary Conditions

To implement linear SWE as wave models for tsunami simulation, we need boundary

conditions. At this moment, we will use two types of boundary conditions, i.e. hardwall

boundary condition (HBC) and influx transparent boundary condition (ITBC).
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A.2.1.1 Hard wall Boundary Condition

In the HBC, the normal flow through the boundary is assumed to be zero or U.n = 0,

where U is fluid velocity. Note that we approximate the velocity potential at each

depth by its value at the surface: Φ(x, z, t) ≈ φ(x, t), so the condition for hardwall can

be rewritten as ∇φ.n = 0 (since U = ∇3Φ and Φ ≈ φ). The derivation of the gov-

erning equations of linear SWE from the first variation (2.12a)-(2.12b) do not give the

corresponding boundary condition because the functional that we minimized accounts

only for the interior (from Pressure principle in (2.1)). We need to modify the weak

formulation in order to incorporate the boundary conditions. Therefore, we use the

corresponding governing equations from the weak formulation of (2.13a)-(2.13b) only

for implementing the BC. To have the weak formulation of (2.13a)-(2.13b), we multiply

the first equation of (2.13a)-(2.13b) by a test function and integrate it over a domain,

then we do partial integration for the right hand side term, so we obtain the following

equation for linear SWE

∫
Ω
v∂tηdx =

∫
Ω
h(x)∇φ.∇vdx−

∫
∂Ω

(vh (x)∇φ.n) d∂Ω (A.11)

For HBC, the condition ∇φ.n = 0 has to be satisfied in the boundary term(s)

of (A.11). This condition makes the boundary term in (A.11) vanishes. With this

condition, we will have the system of matrix equation exactly the same with our system

in (2.18). So the HBC’s FEM implementation for SWE gives the same system of matrix

equation as we derived based on the variational principle, where the BC term is ignored.

A.2.1.2 Periodic Boundary Condition

The Periodic Boundary Condition (PBC) in 2 dimensional case are

η(0, y, t) = η(L, y, t) and η(x, 0, t) = η(H, 0, t) (A.12a)

φ(0, y, t) = φ(L, y, t) and φ(x, 0, t) = φ(H, 0, t) (A.12b)

with L is the length of the domain in x−direction and H is the length of the domain

in y-direction.
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A.2.1.3 Influx Transparent Boundary Condition

In the same way with deriving the Influx Transparent Boundary Condition (ITBC) for

1D case Section 3.2, thus for 2D case the right ITBC will be

∂tφ+ c∇φ · n = 2G
′
2. (A.13)

where n is outward normal direction at the boundary, G2 is the solution for the left

wave potential velocity.

Including the right ITBC (A.13) into the last term in the RHS of (A.11) gives∫
Ω
v∂tηdx =

∫
Ω
h(x)∇φ.∇vdx−

∫
∂Ω

(
vh (x)

(
−1
c
∂tφ+

2
c
G

′
2

))
d∂Ω (A.14)

From (2.13b) we have the relation ∂tφ = −gη, so (A.14) is equivalent with∫
Ω
v∂tηdx =

∫
Ω
h(x)∇φ.∇vdx−

∫
∂Ω

(v (cη − 2cG1)) d∂Ω, (A.15)

with G1 is the solution for the left wave elevation.

For FEM implementation for the linear SWE with ITBC, we will use this last

equation instead of (2.11a), by setting that test function v = δφ. Now we will only

treat the boundary term, because the rest is the same with (2.18). The boundaries in a

2D domain are basically a curve, so the boundary integration in (A.15) is implemented

as if in 1D FEM. In 1D case, we use a linear basis function which is given by

T1k(x) =


(
x−xk−1

xk−xk−1

)
, x ∈ [xk−1, xk](

x−xk+1

xk−xk+1

)
, x ∈ [xk, xk+1]

0, elsewhere

(A.16)

We approximate v, , η, and G1 in boundary term of (A.15) by linear combination

of basis function in 1D (A.16), then substitute these approximations into the boundary

term. This will gives a matrix called B which is assembled from a 2 × 2 elementary

matrix, in which the entries are given by

bij =
√
g

∫
∂Ω

√
h(x)T1i(x)T1j(x)d∂Ω, with i, j = 1, 2

then approximation
√
h(x) =

∑n
i=1

√
ĥiT1i(x), gives
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Bek
=
√
g∆k

( √
h1
4 +

√
h2

12

√
h1+

√
h2

12√
h1+

√
h2

12

√
h1

12 +
√
h2
4

)
where ek denotes the k-th element in the boundary, ∆k is the length between two points

of the element in the boundary, and h1 and h2 are the depth in the points of element

at the boundary (the indices correspond to the local numbering, note that the local

numbering for 1D case are 1 and 2). With the presence of the boundary term, our

system of matrix equation (2.18) will be

M∂t
−→η = G

−→
φ −B−→η + B

−→
G1

M∂t
−→
φ = −gM−→η

or

(
M 0
0 M

)
∂t

( −→η
−→
φ

)
=
(
−B G
−gM 0

)( −→η
−→
φ

)
+

(
B
−→
G1

0

)
. (A.17)

with
−→
G1(t) is the influx signal vector at the boundary.

A.2.2 Test Cases

A.2.2.1 Simulation on Uniform Mesh

Uniform mesh here means that all the quadrilaterals have uniform shape and are perfect

rectangles. For the computational domain, the width and the length of the domain are

100km, the number of elements is 100× 100, the depth is 1km, and the gravitational

constant is 9.81m/s2. Hard wall boundary condition will be used here. First, we will

give the initial condition as a single Gaussian hump in the middle of the domain, with

initial potential velocity is zero everywhere. The wave will spread over the domain and

when hit the wall, they will bounce back to the middle and so forth, since the mass

and energy is conserved. The initial condition is shown is fig. (A.2), and pictures of

the wave propagation can be seen in fig. (A.3). The energy conservation can be seen

in fig. (A.4). The energy at the start of the simulation is 7.70476 × 108 J and at the

end is 7.70473× 108 J.
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Figure A.2: Initial condition single Gaussian hump

Figure A.3: Wave propagation at t = 6min (left) t = 12min (right
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Figure A.4: Plot of energy conservation during the simulation

Figure A.5: Uniform sinusoidal function along y-axis as the initial condition
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Figure A.6: Wave propagation at t = 6min

Figure A.7: Plot of energy conservation during the wave propagation

50



A.2 FEM Implementation for linear SWE

The second initial condition is uniform sinusoidal function along y-axis, with po-

tential velocity is zero everywhere. Transparent boundary condition is used here. The

analytical solution of this initial value problem is the wave will propagate to the left and

to the right with the same form and half of the initial condition. The initial condition

can be seen in fig. (A.5). Fig. (A.6) is the wave propagation at t = 6min. We can

see that the wave height is half of the initial condition. We also can check our code

through the group velocity of the wave. Since the depth is 1km, then the wave velocity

should be
√

9.81× 1000 = 99.0454m/s. We can see that at t = 6min, the wave already

about 35km from the initial condition. The energy conservation can be seen in fig.

(A.7). The energy at the start of the simulation is 3.04441 × 109 J and at the end is

3.04439× 109 J.

Figure A.8: Non-uniform (jiggled) mesh

A.2.2.2 Simulation on Non-uniform (jiggled) Mesh

Results of the simulation using uniform mesh has already shown that the code run well,

but we still have to do the simulation using non-uniform mesh to make sure that all

the transformation is run well. This is needed since some terms in the determinant of

the Jacobian (A.8) will be zero when the element is a perfect rectangle. In fig (A.8),

we can see the illustration of jiggled mesh used in the simulation.
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Figure A.9: Wave propagation at t = 6min

Figure A.10: Plot of energy conservation during the simulation
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We will do the simulation again with the uniform sinusoidal function along y−axis

as the initial condition (fig. (A.5)), and with velocity is zero everywhere. The boundary

condition is transparent. Fig. (A.9) is the wave propagation at t = 6min. We can see

that fig. (A.9) is almost the same with fig. (A.6). In fig. (A.9), there is ’thick’ line

between two propagated wave, and also at some points. This result is estimated as the

consequence of using non-uniform mesh. In fig. (A.10), we can see the plot of energy

conservation, which at the beginning of the simulation is 3.04442 × 109 J and at the

end is 3.04442× 109 J.

Figure A.11: Initial condition of harmonic waves

Figure A.12: Wave propagation of harmonic waves at t = T
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Figure A.13: Plot of energy conservation during the wave propagation

A.2.2.3 Harmonic waves

As the last simulation in linear SWE, we will do the test case using harmonic waves

(using non-uniform mesh). The initial condition is given by

η(x, 0) = A sin(k1x+ k2y) (A.18)

φ(x, 0) = − g
ω
A cos(k1x+ k2y) (A.19)

Then the period will be T = 2π
ω , with ω is the angular frequency defined as ω =

k
√
gh, and k =

√
k2

1 + k2
2 is the wave number (here, we will use k1 = k2 = k∗ = 2π).

As width and length of the domain, we will use the wavelength, which is defined as

λ = 2π
k∗
. The number of elements is 50 × 50. For the simulation of harmonic waves,

then we use the periodic boundary condition. Fig. (A.11) shows the plot of the initial

condition, and fig (A.12) shows the wave propagation at t = T (waves period). It can

be seen that the waves profile is the same as the initial condition, as expected. After

running the simulation for 20T , we will get the energy (Hamiltonian plot) as fig (A.13),

the energy at the beginning of the simulation is 4.90325J and at the end 4.90324J .

The L2 − error and L∞ − error of the wave elevation η at t = T on uniform grid can

be seen in table (A.1).
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Nx ×Ny h L2 − error order L∞ − error order

8×8 0.125 0.0974 - 0.1554 -

16×16 0.0625 0.0224 2.12 0.0399 1.96

32×32 0.0313 0.0053 2.08 0.0103 1.95

64×64 0.0156 0.0013 2.03 0.0058 0.83

Table A.1: L2 − error and L∞ − error of the wave elevation η at t = T on uniform grid
for linear SWE

A.3 FEM Implementation for linear VBM

To get the solution of −→η ,
−→
φ , and

−→
ψ at each time step in (2.31)-(2.32), then we can use

one of the methods to solve ordinary differential equations problem. Here, Runga Kutta

method will be used. By using the Newton Cotes rule (A.9), then the approximation

of lij and rij will be

lij ≈
1
4

4∑
k=1

(
− 8

15
h∇Ti �∇Tj |J | −

4
3h
TiTj |J |

)
(ξk, ηk) (A.20)

rij ≈
1
4

4∑
k=1

(−2
3
h∇Ti �∇Tj |J |) (ξk, ηk) . (A.21)

A.3.1 FEM Implementation for Boundary Conditions

To implement VBM as wave models for tsunami simulation, we need boundary con-

ditions. At this moment, we will use two types of boundary conditions, i.e. hardwall

boundary condition (HBC) and periodic boundary condition (PBC).

A.3.1.1 Hardwall Boundary Condition

In the HBC, the normal flow through the boundary is assumed to be zero or U.n = 0,

where U is fluid velocity. Note that we approximate the velocity potential at each

depth by its value at the surface: Φ(x, z, t) ≈ φ(x, t), so the condition for hardwall can

be rewritten as ∇φ.n = 0 (since U = ∇3Φ and Φ ≈ φ). The derivation of the gov-

erning equations of linear VBM from the first variation (2.24a)-(2.24c) do not give the

corresponding boundary condition because the functional that we minimized accounts
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only for the interior (from Pressure principle in (2.1)). We need to modify the weak

formulation in order to incorporate the boundary conditions. Therefore, we use the

corresponding governing equations from the weak formulation of (2.25a)-(2.25c) only

for implementing the BC. To have the weak formulation of (2.25a)-(2.25c), we multiply

the first equation of (2.25a)-(2.25c) by a test function and integrate it over a domain,

then we do partial integration for the right hand side term, so we obtain the following

equation for linear VBM

∫
Ω
v∂tηdx=

∫
Ω
h(x)5 φ.5 vdx+

∫
Ω
β(x)5 ψ.5 vdx (A.22)

−
∫
∂Ω

(vh (x)5 φ.n) d∂Ω−
∫
∂Ω

(vβ (x)5 φ.n) d∂Ω. (A.23)

For HBC, the condition 5φ.n = 0 has to be satisfied in the boundary term(s) of

(A.22). This condition makes the boundary term in (A.22) vanish. With this condition,

we will have the system of matrix equation exactly the same with our system in (2.31)-

(2.32). So the HBC’s FEM implementation for VBM gives the same system of matrix

equation as we derived based on the variational principle, when the BC term is ignored.

A.3.1.2 Periodic Boundary Condition

The Periodic Boundary Condition (PBC) in 2 dimensional case are

η(0, y, t) = η(L, y, t) and η(x, 0, t) = η(H, 0, t) (A.24a)

φ(0, y, t) = φ(L, y, t) and φ(x, 0, t) = φ(H, 0, t) (A.24b)

ψ(0, y, t) = ψ(L, y, t) and ψ(x, 0, t) = ψ(H, 0, t) (A.24c)

with L is the length of the domain in x−direction and H is the length of the domain

in y-direction.
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A.3.2 Test Cases

For the linear VBM, we will do the same simulations as we did in linear SWE with non-

uniform mesh. For the computational domain, the width and the length of the domain

are 100m, the number of elements is 100×100, the depth is 1km, and the gravitational

constant is 9.81m/s2. Hard wall boundary condition will be used here. First, with

a single Gaussian hump in the middle of the domain, and the second with uniform

sinusoidal function along y−axis, with initial potential velocity is zero everywhere. For

the first case, fig. (A.14) shows us the propagation at t = 6min and t = 12min. For

the second case, fig. (A.15) is the wave propagation at t = 6min, in which we can see

the dispersive effect of Linear VBM.

Figure A.14: Wave propagation at t = 6min and t = 12min (with a single Gaussian
hump as initial condition)

A.3.2.1 Harmonic waves

By substitung the anzats η = aei(kx−ωt), φ = bei(kx−ωt), ψ = cei(kx−ωt) to (2.25c), we

will get the dispersion relation of LVBM as

ω2 = ghk2

(
1− β2

h

k2

αk2 + γ

)
. (A.25)

First, we will use the initial condition:

η(x, 0) = A sin(kx)

φ(x, 0) = − g
ω
A cos(kx)
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Figure A.15: Wave propagation at t = 6min (with uniform sinusoidal along y−axis as
initial condition)

Figure A.16: Initial condition of harmonic waves
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Figure A.17: Wave propagation of harmonic waves at t = T

with k = 2π. Fig (A.16) shows the initial condition, and fig (A.17) show the wave

profile at t = T = 2π/ω. The L2 − error and L∞ − error of the wave elevation η at

t = T on uniform grid can be seen in table (A.2).

Nx ×Ny h L2 − error order L∞ − error order

8×8 0.125 0.0974 - 0.1554 -

16×16 0.0625 0.0224 2.12 0.0399 1.96

32×32 0.0313 0.0053 2.08 0.0107 1.89

64×64 0.0156 0.0013 2.03 0.0053 1.01

Table A.2: L2 − error and L∞ − error of the wave elevation η at t = T on uniform grid
for linear VBM
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