
Control design
for a chemical disinfection process

using the residence time distribution

Diana Ugryumova

Master Thesis
Department of Applied Mathematics

Mathematical Theory of Systems and Control Group
The University of Twente, The Netherlands

Supervisor: Hans Zwart

Date of report
March 22, 2010

General information

Written by Diana Ugryumova

Master Thesis
At the Mathematical Theory of Systems and Control Group
Department of Applied Mathematics
The University of Twente, The Netherlands

Title project:

Control design for a chemical disinfection process
using the residence time distribution

Supervisor:

Hans Zwart (University of Twente, the Netherlands)

Address:

The University of Twente
Postbus 217
7500 AE Enschede
The Netherlands

i

Foreword

This is the final report of a Master assignment in Applied Mathematics, at
the chair of Mathematical Theory of Systems and Control at the University
of Twente, the Netherlands. The goal of this Master assignment is to work
further on one of the topics of the PhD thesis of Simon van Mourik [14],
being the control design for a chemical disinfection process via residence
time distribution.

Many tanks to my fellow PhD students for all the fun and interesting dis-
cussions during lunches and coffee brakes, especially to my roommate Svet-
lana Polenkova. Special thanks to Ruud van Damme and Jaroslav Krystul for
numerous ideas on how to solve numerical problems; to Gjerrit Meinsma who
was patiently answering my questions at any moment and for introducing me
to the beautiful world of Asymptote; to Timon Zijnge for all his support and
for the readable figures in this report; to my supervisor Hans Zwart who
helped me and motivated me during the whole project. And above all my
parents and friends for the emotional support.

ii

Summary

The goal of this project is to design a controller for a ultraviolet disinfection
system. A disinfection system consists of a tube with a ultraviolet lamp
in its center. Some liquid containing bacteria is flowing through the tube.
The aim of the controller is to minimize the total energy consumption of the
ultraviolet lamp, while keeping the amount of bacteria on the outlet of the
system under a given bound.

To achieve this goal we derive a model for our system. This model is
based on the residence time distribution of the bacteria inside the tube. The
result is a bilinear state-space model with a possible time-delay.

In this report we compare several methods for identification of the res-
idence time distribution. An algorithm based on system realization theory
gives a good estimate. Then, a PID and a LQG controller is designed for the
linearized system. The performance of both controllers is tested by imple-
menting them on the bilinear model of the system.

For further research we recommend to explore the possibilities of residence
time distribution identification using a positive realization theory. Since bac-
teria concentration are always positive, we are dealing with a positive system.
It would also be interesting to design a controller for the bilinear system di-
rectly and compare this to the controller designed for the linearized system.

iii

List of abbreviations

ARX autoregressive exogenous (model)
BT balanced truncation (method)
ERA eigensystem realization algorithm
IO input-output (model)
IR impulse response
ISO input-state output (model)
LTI linear time invariant
LQG linear quadratic Gaussian (control)
PID proportional-integral-derivative (control)
RTD residence time distribution
SV singular value
UV ultraviolet

List of symbols

α parameter of bacteria destruction rate
β total residence time of all particles, equals

∫∞
0
ρ(t)dt

ρ(t) residence time distribution
C(t) bacteria concentration

Ċ(t) extinction rate of the bacteria concentration
Cin(t) input concentration of bacteria
Cout(t) output concentration of bacteria
e(t) estimation error
h(t) impulse response
K(t) lamp intensity
k discrete time
t continuous time
u(t) the input
y(t) the output
ŷ(t) estimate of the output y(t)

iv

Contents

Foreword ii

Summary iii

List of abbreviations and symbols iv

1 Introduction 1

1.1 Report structure . 2

2 Mathematical model 4

2.1 The Input-Output model derivation 4

2.1.1 UV lamp off . 5

2.1.2 UV lamp on . 6

2.2 From IO to ISO (nonlinear) model 9

2.2.1 Scalar form of RTD function 9

2.2.2 Matrix form of RTD function 10

2.2.3 Linearized ISO model 11

2.3 ISO model with time-delay . 12

2.3.1 Linearization of the model with a time-delay 14

3 Estimation of the residence time distribution 16

3.1 Identification of RTD via balanced truncation 22

3.2 Eigensystem Realization Algorithm 27

v

3.3 Identification of RTD from IR 30

3.3.1 Why ARX model does not work? 34

3.4 Maximum likelihood method 38

3.5 A brief review of the results 41

4 Controller design 42

4.1 PID controller . 46

4.2 LQG controller . 58

4.3 Bilinear system with linear feedback 60

5 Conclusions and recommendations 65

Appendices 68

A Mathematical background 68

A.1 Definitions . 68

A.2 Mathematical norms . 68

A.3 Discrete to continuous system transformation 69

A.4 Convolution and Impulse Response 71

A.5 Proof Conservation of mass 72

B Likelihood function derivatives 73

Bibliography 78

vi

Chapter 1

Introduction

In chemical processes it is often necessary to control the concentration of
some particles. The aim of this project is to control the final concentration
of bacteria that leave a disinfection reactor. Inside the reactor the bacteria
are subjected to the Ultraviolet (UV) light radiation. It is experimentally
proved that bacteria are being destroyed when subjected to UV light [8]. At
this moment it often happens that the UV light inside the reactor is at its
maximum intensity. In other words, the lamp can be either turned on or
turned off. With this research we want to explore the possibility of using less
than the maximum energy of the UV lamp to destroy a sufficient amount of
bacteria.

Chemical disinfection processes play an important role in our everyday
life. A simple example of such a process is the disinfection of drinking water.
This is usually done using chlorine to ensure the microbiological safety 1.
Because it is a highly reactive gas, the disinfection using chlorine has many
by-products, which may be harmful for the environment. There are various
alternatives and environment friendlier ways of water disinfection, such as
heat, oxidation, filtration or ultraviolet light emission. All these disinfection
methods either kill or deactivate the bacteria, therefore preventing it from
reproduction.

In our project we use a UV-lamp to reduce the bacteria concentration
in apple juice, for previous research see [14]. The disinfection process using
UV-light has several advantages: it does not effect the taste, color and smell
of the substance that is being disinfected. That is why it is very attractive
to use UV-light in disinfecting food and drinks. A clear disadvantage of

1In most countries around the world, however not in the Netherlands.

1

this method is that the performance of the disinfection is reduced by a high
turbidity of the liquid and strongly affected by the type, age and density of
bacteria. We would like to point out that the UV-light disinfection method
can also be used for other disinfection purposes, like the air in a surgery room
or for drinking water.

To control a system first we need to model and to identify it. One way to
find the model is by looking at the physical characteristics of the system, such
as the motion of the fluid inside the reactor, described by the Navier-Stokes
equations. In this report we look at the problem from a mathematical point
of view, using the experimental input-output measurements of the system as
a basis for our model. With this mathematical model we want to describe the
essential dynamics of the system. This gives us a relatively simple, though
nonlinear, model to work with.

Building a mathematical model of our system, we use the residence time
distribution approach. The residence time is approximately the time that
a particle stays in the disinfection reactor. Chemical processes have the
desirable property that we can measure the residence time distribution of the
system. Therefore we can use system identification methods to estimate the
system associated with the residence time distribution. The most challenging
aspect for the system identification in this project is the positivity of the
system, since the bacteria concentrations and the lamp intensity are always
positive quantities.

The final goal of this project is to design a controller which makes the
outgoing concentration small, or smaller than some predefined value, with
high certainty. At the same time it is desirable to minimize the energy
consumption of the lamp. For controller design purpose the positivity and
the nonlinearity of the system are the biggest challenges.

1.1 Report structure

In the beginning of this chapter we have explained the motives for designing
a controller for a disinfection system. First, we need to find a suitable model
for our disinfection system. The mathematical model based on the residence
time distribution of the particles inside the reactor is introduced in Chapter 2.
There the assumptions are stated for the mathematical input to output model
of the reactor. Then the input-output model is rewritten in a input-state-
output form, which is easier to implement. Because this model is nonlinear, a
linearization around the equilibria points of the system is performed. Finally,

2

a model with a time-delay factor is also derived and linearized.

In Chapter 3, we identify the residence time distribution of the particles
in a tank. We perform the identification using four different methods. Some
of these methods do not work as good as we had expected. Some reasons for
these problems are provided. The different methods are then compared with
each other.

Chapter 4 treats the controller design for the linearized model derived
in Chapter 2. We use two different methods of designing a controller. In
Section 4.1 a robust controller is designed using classical control design rules.
Using modern control theory we design a LQG controller in Section 4.2. In
Section 4.3 we compare the performance of both controllers on the nominal
bilinear model of the system.

The conclusions and final remarks are presented in Chapter 5.

At the end of this report an Appendix with some background information
about the topics discussed in the report is added. Mathematical background
is presented in Appendix A. Extra information about the maximization of
the likelihood function from Chapter 3 is found in Appendix B.

To perform the identification of the system and to design a controller
the mathematical programming language Matlab [10] is used. A typesetting
program LATEX is used to write this report.

3

Chapter 2

Mathematical model

In this chapter we derive the mathematical model of the disinfection system.
In Section 2.1 we derive an Input-Output (IO) model of the system and state
the assumptions. First this is done when the UV lamp is off and then for
the case when the UV lamp is on. In Section 2.2 we write the nonlinear
IO equation in a bilinear Input-State-Output (ISO) form which is easier
for control design implementation. This bilinear ISO model is linearized
in Subsection 2.2.3. In Section 2.3 a model with time-delay is derived and
linearized in Subsection 2.3.1.

2.1 The Input-Output model derivation

A schematic representation of the disinfection reactor is shown in Fig. 2.1.
Here, Cin is the concentration of bacteria in the apple juice flowing into the

Cin

Cout

Figure 2.1: Schematic representation of a UV reactor.

cylindric reactor. Inside the reactor the grey tube represents the UV-lamp.
When bacteria enter the reactor they are exposed to the UV light irradiation
which destroys them. The bacteria that were not destroyed by the UV light

4

leave the reactor after some time, usually a few seconds. Cout represents the
concentration of bacteria flowing out of the system.

In this section we derive the mathematical model (see also [14]) of the
disinfection system. We consider two different stages of modeling for this
particular system: first, when the UV-lamp is off and secondly, with UV-
lamp on.

2.1.1 UV lamp off

When the lamp is off, there is no external influence on the bacteria inside
the tank. We define the input and the output of the disinfection system as
the in- and outflow of the bacteria concentrations in and out of the reactor,
respectively. We make the following assumptions about the system:

A-1. No reaction is taking place: the total input into the tank is equal to
the total output.

A-2. The relationship between the input and the output is linear : if you put
twice as many bacteria into the tank, then twice as many bacteria will
come out of the tank.

The bacteria are living organisms that can grow and reproduce very fast.
The linearity assumption is good only if we assume that the bacteria
stay inside the reactor not long enough to grow or reproduce.

A-3. The system is time invariant : the (chemical) conditions of the tank
(the whole system) don’t change over time. In other words, it doesn’t
matter for the results if you do the experiment today or tomorrow.

A-4. The system is causal : the number of bacteria coming out of the tank
is zero as long as there are no bacteria coming into the tank.

A-5. The system is positive: if the input into the system is non-negative
signal, then the output will also be non-negative (for a formal definition
see Appendix A.1).

We cannot have a negative amount of bacteria on the input nor on the
output.

Thus, we assume (assumptions A-2.–A-3.) that our system is Linear Time
Invariant (LTI). Intuitively, we can imagine that the particles put inside the
tank at one instant, say at time t = 0, will come out of the tank at various

5

times t > 0. Thus the particles will have different residence times inside the
system [6].

In most chemical processes it is possible to measure the Residence Time
Distribution (RTD) - the distribution in time of particles on the output of
the system. The shape of the RTD curve depends strongly on the mixing
that occurs inside the reactor [6]. For example, a reactor that consists of
well-mixed tanks connected in series the RTD has a bell-shaped form.

The RTD can be estimated as follows. During a short fixed time inter-
val a high concentration of some substance (say, ink) is injected at the inlet
of the system. On the outlet of the reactor the concentration of this sub-
stance is measured, until the concentration becomes zero. For a schematic
representation of this phenomenon see Fig. 2.2.

reactor

t = 0 t = 0

injection detection

ρ
(t

)

Figure 2.2: A schematic representation of the measurement of the residence
time distribution, with an impulse on the input side and on the output the
residence time distribution curve ρ(t).

Using assumptions A-2.–A-4., we can write the relation between the input
and the output concentration as a convolution(for a proof see Appendix A.4):

y(t) =

∫ t

−∞
ρ(t− τ)u(τ)dτ, (2.1)

where u(t) and y(t) are the input and output concentrations of bacteria,
respectively, and ρ(t) is the RTD. From Eq. (2.1) we see that the RTD
function is nothing else than the Impulse Response (IR) of the system 1.

2.1.2 UV lamp on

Once we turn on the UV lamp inside the reactor, a chemical process starts.
The energy from the UV light radiation penetrates the bacteria, inactivates

1In the literature the IR function is sometimes indicated by h(t).

6

them by damaging their DNA and thereby prevents them from reproduction.
For figures and some statistics see [13]. If exposed to the UV light radiation
long enough the bacteria are killed and thus the bacteria concentration is
reduced.

Our system has now two inputs, the input concentration into the reactor
and the UV-lamp intensity, and one output, the bacteria concentration on
the outlet of the reactor. We revise the assumptions made in Subsection 2.1.1
and adjust them (indicated with *):

A*-1. Reaction is taking place: the UV-lamp is on which eventually kills
the bacteria inside the reactor. We assume that the bacteria extinc-
tion rate is uniform through the reactor and is first-order. This would
surely be a good assumption when we use a so-called thin film reac-
tor [8], where the liquid substance is pumped as a thin layer through
the reactor with (multiple) UV lamp(s) inside the reactor.

A*-2. The relationship between the input and the output is nonlinear : be-
cause the concentration of bacteria is decreasing inside the reactor
tank, we have to consider the rate of extinction of the bacteria to de-
scribe the system. The extinction rate is assumed to be proportional
to the lamp intensity. When the lamp is off, Subsection 2.1.1, the lamp
intensity is zero and the extinction rate of bacteria is zero as well.

Assumptions A-3.–A-5. stay the same as in Subsection 2.1.1.

First we define the symbols used in the model derivation. We are inter-
ested in the rate of extinction of the bacteria. In that case we consider the
concentrations Cin(t) and Cout(t) as the input and the output of the system,
respectively. The UV lamp intensity K(t) is the other input into the system.
Later on we are going to control this input lamp intensity K(t) to obtain the
desired output concentration Cout(t).

Using assumption A*-1., we propose a first order linear differential equa-
tion as a simple model for the extinction rate of the bacteria concentration,
Ċ(t):

Ċ(t) = −αK(t)C(t), (2.2)

where we assume K(t) ≥ 0, ∀t, α is a certain parameter describing the
destruction rate of the bacteria and C(t) is the bacteria concentration per unit
volume. The parameter α depends on a lot of factors, such as temperature
and chemical characteristics of the fluid, background flora, etc.. Eq. (2.2)
applies as long as bacteria are inside the reactor-tube. From the RTD we

7

know that this time is not fixed. Therefore we combine Eq. (2.1) and (2.2)
to get a model for the relationship between the input concentration Cin(t),
the output concentration Cout(t) and the lamp intensity K(t).

Assume that bacteria are put into the reactor with the concentration Cin,
which is constant for some small period of time ∆ after time t0: Cin(t) =
Cin(t0) for t0 ≤ t ≤ t0 + ∆. Assume as well that Cin(t0) stays inside the
reactor for tr seconds and comes out of the reactor with concentration Cout,tr

at time t0 + tr. We want to calculate this concentration of bacteria, Cout,tr ,
that are left after being subjected to the UV light inside the reactor. Using
Eq. (2.2) we find the following relation between Cin, K and Cout,tr :

Cout,tr(t0 + tr) = Cin(t0) exp

(
−α
∫ t0+tr

t0

K(τ)dτ

)
. (2.3)

In Eq. (2.3) the integral at the end can be interpreted as the total light
that the particles with residence time tr received during their stay inside the
reactor. Substituting t = t0 + tr in Eq. (2.3) gives:

Cout,tr(t) = Cin(t− tr) exp

(
−α
∫ t

t−tr
K(τ)dτ

)
. (2.4)

Equation (2.4) describes the output concentration Cout,tr(t) at any time in-
stant t with t ≥ tr for bacteria with residence time tr. Given the RTD
function ρ(t) of bacteria inside the reactor, we can compute the total output
concentration.

Normalizing ρ(t) by the total amount of bacteria that has been inside the
reactor

∫∞
0
ρ(t)dt, we get a probability density for bacteria with residence

time tr:
ρ(tr)∫∞

0
ρ(t)dt

.

Taking an integral of the product of the output concentration function for
bacteria with residence time tr, Cout,tr(t), with the likelihood that bacteria

stay tr seconds inside the reactor,
ρ(tr)∫∞

0
ρ(t)dt

dtr, the total output concentra-

tion of the bacteria becomes:

Cout(t) =

∫ ∞
0

Cout,tr(t)
ρ(tr)∫∞

0
ρ(t)dt

dtr

=
1

β

∫ ∞
0

Cin(t− tr) exp

(
−α
∫ t

t−tr
K(τ)dτ

)
ρ(tr)dtr,

(2.5)

8

where β =
∫∞

0
ρ(t)dt is a normalizing constant.

Equation (2.5) is the nonlinear mathematical model of our system with
UV lamp on. We are going to use this model for the controller design in
Chapter 4.

2.2 From IO to ISO (nonlinear) model

In Eq. (2.5), we derived the relation between the output bacteria concen-
tration Cout(t), the input concentration Cin(t), the lamp intensity K(t) and
the RTD function ρ(t). For the purpose of designing a controller, this IO
equation needs to be rewritten as a state-space model. The ISO model has
the advantage that it is easier to implement. To be able to write this IO
model in ISO form we assume some representation of ρ as a function of t.

For the model derivations in this and the next sections we assume that
all integrals exist.

2.2.1 Scalar form of RTD function

For the purpose of simplicity we first assume that ρ(t) = exp(at) and we
change the coordinates in Eq. (2.5) as t− tr = ζ. Then:

Cout(t) =
1

β

∫ t

−∞
Cin(ζ) exp

(
−α
∫ t

ζ

K(τ)dτ

)
exp (a(t− ζ)) dζ

=
1

β

∫ ∞
−∞

Cin(ζ) exp

(
−α
∫ t

ζ

K(τ)dτ + a(t− ζ)

)
1I(t− ζ)dζ,

(2.6)

where 1I(t − ζ) = 1 if t ≥ ζ and 0 elsewhere. It is the well-known indica-
tor function. The last step in Eq. (2.6) is not necessary, but it makes the
derivation more clear.

Choosing the state of the system as

x(t) =

∫ t

−∞
Cin(ζ) exp

(
−α
∫ t

ζ

K(τ)dτ

)
exp (a(t− ζ)) dζ

9

and taking the derivative of the state gives:

ẋ(t) =

∫ ∞
−∞

(
Cin(ζ)

d

dt

[
−α
∫ t

ζ

K(τ)dτ + a(t− ζ)

]
exp

(
−α
∫ t

ζ

K(τ)dτ + a(t− ζ)

)
1I(t− ζ)

+ Cin(ζ) exp

(
−α
∫ t

ζ

K(τ)dτ + a(t− ζ)

)
δ(t− ζ)

)
dζ,

Cout(t) =
1

β
x(t),

(2.7)

where δ(t) denotes the Dirac delta function. So we have:

ẋ(t) =

∫ t

−∞
Cin(ζ) [−αK(t) + a] exp

(
−α
∫ t

ζ

K(τ)dτ + a(t− ζ)

)
dζ + Cin(t)

= [−αK(t) + a]x(t) + Cin(t),

Cout(t) =
1

β
x(t). (2.8)

Choosing the input Cin(t) = u(t) and the output Cout(t) = y(t) we find the
ISO representation of the IO model in Eq. (2.5):

ẋ(t) = (−αK(t) + a)x(t) + u(t),

y(t) =
1

β
x(t).

(2.9)

We see that the system (2.9) is bilinear in the state, because of the control
times state term K(t) ·x(t). This result we obtain under the assumption that
ρ(t) = exp (at).

2.2.2 Matrix form of RTD function

In general we can represent the system in a matrix state-space form. As-
sume that we can express ρ(t) = CeAtB. Then the IO model of our system
becomes:

Cout(t) =
1

β

∫ ∞
0

Cin(t− tr) exp

(
−α
∫ t

t−tr
K(τ)dτ

)
C exp(Atr)Bdtr. (2.10)

Note that in our case Cin(t) and K(t) are scalar functions. Changing the
coordinates in Eq. (2.10) as t− tr = ζ, we get:

Cout(t) =
1

β
C

∫ t

−∞
exp

(
−α
∫ t

ζ

K(τ)Idτ + A(t− ζ)

)
B Cin(ζ)dζ. (2.11)

10

Choosing the state of the system as

x(t) =

∫ t

−∞
exp

(
−α
∫ t

ζ

K(τ)Idτ + A(t− ζ)

)
B Cin(ζ)dζ

and taking the derivative of the state with respect to t (this goes in a similar
way to equations (2.7) and (2.8)), we get:

ẋ(t) =

∫ t

−∞
[−αK(t)I + A] exp

(
−α
∫ t

ζ

K(τ)Idτ + A(t− ζ)

)
B Cin(ζ)dζ

+B Cin(t)

= [−αK(t)I + A]x(t) +B Cin(t), (2.12)

Cout(t) =
1

β
Cx(t).

Choosing the input Cin(t) = u(t) and the output Cout(t) = y(t), we get the
general (matrix) state space form of the system:

ẋ(t) = (−αK(t)I + A)x(t) +Bu(t),

y(t) =
1

β
Cx(t).

(2.13)

Thus we have written the IO equation (2.5) in an ISO from in equa-
tion (2.13), under the condition that ρ(t) can be written in the from CeAtB.

2.2.3 Linearized ISO model

In Eq. (2.13) we found the general ISO representation of our system, under
the assumption that ρ(t) = CeAtB. This model is bilinear in the state.

When designing a controller one usually starts to design a controller for
the linearized system. Then we can compare the performance of the controller
for the linearized system to the performance of the controller for the bilinear
system. We compare the performance of the controllers by means of the
time constant of the system, implementation difficulty, total energy usage,
robustness, etc., see Chapter 4.

We perform a standard linearization of the ISO model (2.13) from Sec-
tion 2.2. Linearizing around the equilibrium point peq = (ueq, Keq, yeq, xeq),
for which holds

0 = (−αKeqI + A)xeq +Bueq, yeq =
1

β
Cxeq, (2.14)

11

we get the following, where x∗(t) is the deviation of the state x(t) = x∗(t)+xeq

from the equilibrium xeq:

ẋ(t) =
d

dt
(x∗(t) + xeq)

= (−α(K∗(t) +Keq)I + A)(x∗(t) + xeq) +B(u∗(t) + ueq),

y(t) = (y∗(t) + yeq) =
1

β
C(x∗(t) + xeq).

(2.15)

After rewriting these equations, using the linearization conditions (2.14),
and assuming that the nonlinear factor x∗(t)K∗(t) is negligible, we get the
linearized ISO form of the system:

ẋ∗(t) = (−αKeqI + A)x∗(t)− αxeqK∗(t) +Bu∗(t),

y∗(t) =
1

β
Cx∗(t).

(2.16)

This model (2.16) can be used as an approximation for the original non-
linear model (2.13) around the equilibrium point peq. The closer we are to
the equilibrium point peq, the better the linearized model (2.16) will approx-
imate (2.13).

2.3 ISO model with time-delay

From Fig. 2.2 we see that there is a time-delay in our system. It can be useful
to take the time-delay into account when modeling the system, see Chapter 3.
We assume that we can express the RTD function with time-delay td ≥ 0
as ρ(t) = CeA(t−td)B for t ≥ td and 0 for t < td. Thus in short notation:
ρ(t) = CeA(t−td)B1I(t− td). Our IO model with time-delay becomes:

Cout(t)=
1

β

∫ ∞
0

Cin(t−tr) exp

(
−α
∫ t

t−tr
K(τ)dτ

)
C exp(A(tr−td))B1I(tr−td)dtr.

Changing the coordinates as t− tr = ζ and putting the matrix C before the
integral, we obtain:

Cout(t)=
1

β
C

∫ t

−∞
exp

(
−α
∫ t

ζ

K(τ)Idτ + A(t− td − ζ)

)
B1I(t−td−ζ)Cin(ζ)dζ.

(2.17)

12

Choosing the state of the system as

x(t) =

∫ t

−∞
exp

(
−α
∫ t

ζ

K(τ)Idτ + A(t− td − ζ)

)
B1I(t− td − ζ)Cin(ζ)dζ

and taking the derivative of the state x(t) with respect to t, we get:

ẋ(t) = exp (−Atd)B1I(−td)Cin(t) +

∫ t

−∞
[−αK(t)I + A]

exp

(
−α
∫ t

ζ

K(τ)Idτ + A(t− td − ζ)

)
B 1I(t− td − ζ)Cin(ζ)dζ

+

∫ t

−∞
exp

(
−α
∫ t

ζ

K(τ)Idτ + A(t− td − ζ)

)
B δ(t− td − ζ)Cin(ζ)dζ

= [−αK(t)I + A]x(t) + exp

(
−α
∫ t

t−td
K(τ)dτ

)
B Cin(t− td),

Cout(t) =
1

β
Cx(t). (2.18)

In comparison to the general IO model without a time-delay, (2.12), we get

the extra term exp
(
−α
∫ t
t−td

K(τ)dτ
)

being a weighted delay of K(t).

Choosing the input Cin(t) = u(t) and the output Cout(t) = y(t), we get
the general state space form of the system with time-delay td:

ẋ(t) = (−αK(t)I + A)x(t) + exp

(
−α
∫ t

t−td
K(τ)dτ

)
Bu(t− td),

y(t) =
1

β
Cx(t).

(2.19)

We see that the output of the model (2.19) is 0 for t < td, provided
the initial state x(0) = 0. This is exactly what we wanted to achieve. In
comparison to the model without a time-delay, (2.13), we notice that the
model of the system with a time-delay, (2.19), has an extra nonlinear term
caused by the second term in the differential equation of the state.

In the next chapter we will see that a model with a time-delay gives better
estimate for the RTD function, so that we can use this model to design a
control later on.

13

2.3.1 Linearization of the model with a time-delay

Again we perform a standard linearization, this time for the ISO model with
time-delay (2.19) found in Section 2.3. For the equilibrium point peq =
(ueq, Keq, yeq, xeq) holds

0 = (−αKeqI + A)xeq + exp (−αKeqtd)Bu
eq, yeq =

1

β
Cxeq. (2.20)

Linearizing the model with time-delay around the equilibrium point peq, with
x(t) = x∗(t) + xeq, we get:

ẋ∗(t) =(−αKeqI + A)x∗(t)− αxeqK∗(t) + (−αKeqI + A)xeq − αx∗(t)K∗(t)

+ exp

(
−α
[∫ t

t−td
K∗(τ)dτ +Keqtd

])
B(u∗(t− td) + ueq),

y(t) =(y∗(t) + yeq) =
1

β
C(x∗(t) + xeq).

After rewriting these equations, using Eq. (2.20), expanding the expo-

nential exp
(
−α
∫ t
t−td

K∗(τ)dτ
)

, and assuming that the nonlinear factors

x∗(t)K∗(t) and

∫ t

t−td
K∗(τ)dτ , and the higher order terms of the exponential

expansion are negligible, we get the linearized ISO model with a time-delay td:

ẋ∗(t) = (−αKeqI + A)x∗(t)− αxeqK∗(t)

+ exp (−αKeqtd)

(
−α
∫ t

t−td
K∗(τ)dτ

)
Bueq

+ exp (−αKeqtd)Bu
∗(t− td),

y∗(t) =
1

β
Cx∗(t).

(2.21)

Furthermore, if we can assume that the time-delay factor td is very small,
td � 1, or that K(t) varies little in the time-interval [t − td, t], then we can
approximate the weighted delay of K(t) as

∫ t
t−td

K∗(τ)dτ ≈ tdK
∗(t). With

these assumptions the Eq. (2.21) can be simplified even more:

ẋ∗(t) = (−αKeqI + A)x∗(t)− [αxeq + exp (−αKeqtd)αtdBu
eq]K∗(t)

+ exp (−αKeqtd)Bu
∗(t− td),

y∗(t) =
1

β
Cx∗(t).

(2.22)

14

The models (2.21) and (2.22) can be used as an approximation for the
original nonlinear model with time-delay (2.19) around the equilibrium point
peq. The closer we are to the equilibrium point peq, the better the linearized
models (2.21) and (2.22) will approximate (2.19).

As we would expect, with zero time-delay, td = 0, the linearized models
with time-delay (2.21) and (2.22) give us the linearized model without time-
delay (2.16).

15

Chapter 3

Estimation of the residence
time distribution

As already mentioned in the Introduction (Chapter 1), the goal of this thesis
is to design a controller for a chemical disinfection system. For that we
first need to identify the chemical system we are dealing with. The process
of building mathematical models of dynamical systems using observed data
from the system is called System Identification [11].

In this chapter we are going to explore several methods for the identifica-
tion of the measured Residence Time Distribution. From practice we know
that the RTD function has a bell-shaped form with a heavy tail. Before we
are going to perform system identification on an experimental RTD, we want
to understand the identification procedure on a known (test) system. For
that purpose we are going to generate a test RTD function that has the de-
sired bell-shaped form. We use this test system to compare the performance
of several system identification methods. Next, we state and explain some
important identification objectives for a disinfection system.

In Section 3.1 a model reduction technique called Balanced Truncation
(BT) is presented and treated. In Section 3.2 a method called Eigensystem
Realization Algorithm (ERA) is introduced, which is based on Markov pa-
rameters of the system. In theory the ERA method is very similar to BT,
but in practice the first method gives better results than the second. In
Section 3.3 we discuss the parametric system identification method from im-
pulse response data. Unfortunately, this method does not give good results.
Explanations why this parametric identification method does not work are
given in Subsection 3.3.1. The last system identification method treated in

16

this report is based on maximization of a certain Likelihood Function, Sec-
tion 3.4. Of the investigated methods, this is the only one that takes the
positivity of our system into account. Thus we expect to get the best results
using this last identification method.

Measured RTD

We make a realistic assumption that our reactor is non-ideal - it is not per-
fectly mixed everywhere. There are different ways to model a non-ideal
reactor [6]. For example, by a series of tanks connected together with the
same total volume as the initial reactor. For the tanks-in-series model of the
reactor, the measured RTD usually has a bell-shaped form as in Figure 3.1.
Each of the tanks connected in series is assumed to be ideal, i.e., perfectly
mixed.

0 5 10 15 20 25 30
0

0.02

0.04

0.06

0.08

0.1

(sec)

n=2

n=10

n=4

Figure 3.1: Examples of RTD curves. n is the number of well-mixed tanks
connected in series.

In modern mathematical systems theory the most common way of de-
scribing a dynamical system is a general continuous-time ISO form:

ẋ(t) = Ax(t) +Bu(t), x(0) = x0,

y(t) = Cx(t) +Du(t),

where t represents continuous time, u(t) is the input, x(t) is the state with x0

as initial state, y(t) is the output and A,B,C,D are matrices of appropriate
dimensions. Note that in Chapter 2 we derived models for our system using
this ISO from. The matrix D describes the throughput of the system, i.e.,
the part of the output that is influenced by the input directly. In our system
there are no particles that go directly from the input to the output. That is

17

why for the disinfection system we can assume that there is no throughput,
D = 0. We also assume that for negative time the input into the system is
zero u(t) = 0, ∀ t < 0, therefore the system is initially at rest, x0 = 0. That
is why we use the following ISO form to describe our disinfection system:

ẋ(t) = Ax(t) +Bu(t), x(0) = 0,

y(t) = Cx(t).
(3.1)

We can write down explicitly the output in terms of the input. However, we
are mainly interested in the IR h(t) of the system (3.1):

h(t) = C exp (At)B. (3.2)

As we have seen in Subsection 2.1.1, the experimental RTD function is
the same as the IR of a system. Hence we can write the experimental RTD
function as a continuous-time IR of the form (3.2).

There are several ways of writing a RTD in the (3.2)-form. First of all,
because the RTD measurements are in discrete time, we want to write the
RTD as an IR in discrete time:

hd(k) = CdAd
k−1Bd, hd(0) := 0, k = 1 . . . N, (3.3)

with matrices Ad, Bd, Cd the discrete-time equivalent of A,B,C in Eq. (3.2)
and k the discrete time step. For the continuous-to-discrete time transfor-
mation, see Appendix A.3.

Given a discrete-time RTD function ρ(k−1), k = 1 . . . N , with ρ(N−1) ≈
0, we claim that the following choice of the matrices Ad, Bd and Cd will give
us the desired IR (3.3):

Ad =


0 1 0 . . . 0

0
.

...
...

. 0
...

. . . 1
0 0 0

 , Bd =


ρ(0)

...

...
ρ(N)

 , Cd =
(

1 0 . . . 0
)
.

(3.4)
The proof of the claim is straightforward

for k = 0 the IR hd(0) := 0,

for k = 1 the IR hd(1) = CdBd = ρ(0),

...

for k = N the IR hd(N) = CdAd
N−1Bd = ρ(N − 1).

18

Thus, putting the RTD measurements in the form (3.4) we get a discrete ISO
system of the same order as the number of RTD measurements, i.e., N . We
notice that the system of order N is too big to work with, but fortunately
there are ways of reducing the order of the system, see Sections 3.1 and 3.2.

Generating a test residence time distribution

Now we generate a test system, which helps us to compare different system
identification methods. We assume that the chemical disinfection system can
be approximated by a series, say n, of small tanks, see Fig. 3.2, which are all
well mixed.

u

y

tank 1

tank 2

...

Figure 3.2: A schematic representation of the tanks in series model of the
system.

To generate a test RTD function we want to derive a certain ISO form
for our system. Assume that the input u enters tank 1, the outflow rate λ of
tank 1 is exactly the same as the inflow rate of tank 2, the outflow rate λ of
tank 2 is exactly the same as the inflow rate of tank 3, etc.. Define xi(t) as
the concentration of particles in tank i at time t, for i = 1 . . . n. We measure
the outflow y of the last tank.

We obtain the following ISO form of the system:

ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t),
(3.5)

19

with the following matrices:

A =


−λ 0 0 . . . 0

λ −λ 0
. . .

...

0 λ −λ . . .
...

. 0
0 . . . 0 λ −λ

 , B =


1
0
...
0

 , C =
(

0 . . . 0 λ
)
,

where λ is a real positive number, A ∈ Rn×n, B ∈ Rn×1, C ∈ R1×n. The
Residence Time Distribution ρ(t) is the output of the system if the input u
is the pulse.

In the next sections we are going to use the structure (3.5) together with

n = 20 and λ = 1.5 (3.6)

as our test system. The IR of this test system is evaluated in continuous
time and then sampled once a second. It is shown in Figure 3.3. We see that
this IR has the desired bell-shaped form.

0 5 10 15 20 25 30

0

0.04

0.08

0.12

Time (sec)

A
m

p
li
tu

d
e

Figure 3.3: Impulse response of our test system.

System identification objectives

There are several system identification objectives to which we want to pay
closer attention.

First, we take a closer look at the model equations (2.4) and (2.5) de-
rived in the previous chapter. Putting t = tr in (2.4), we get the output
concentration of particles with residence time tr at the time instant tr:

Cout,tr(tr) = Cin(0) exp

(
−α
∫ tr

0

K(τ)dτ

)
. (3.7)

20

From this equation we see that the initial input concentration Cin(0) decays
exponentially inside the system, provided the lamp is turned on. The decay
holds because we assumed in Eq. (2.2) that the light intensity functionK(t) ≥
0, ∀t, implying that the integral

∫ tr
0
K(τ)dτ ≥ 0. Notice, that for particles

with a small residence time the exponent in (3.7) is approximately 1 and
Cout,tr ≈ Cin. Thus, particles with the smallest residence time contribute to
the total output concentration Cout(t) the most, see Eq. (2.5). Therefore we
want to model the particles with small residence time properly.

Secondly, we assume that when the UV-lamp is off no reaction is taking
place inside the reactor and thus that there is conservation of mass. That
means that the total input into the system must be equal to the total output.
In fact, because our system is causal and LTI, the conservation of mass
directly follows from the total IR being equal to 1, i.e.,

∫∞
0
h(t)dt = 1 ⇐⇒∫∞

0
u(t)dt =

∫∞
0
y(t)dt. For a proof see Appendix A.5.

Thirdly, the bacteria concentrations in our system are positive. There-
fore we are dealing with a positive system, see assumption A-5. in Subsec-
tion 2.1.1. From [1, 4] we know that the system is positive if and only if
A, B, C are positive matrices. In discrete time this means that all entries of
these matrices are non-negative. In continuous time matrix A should be Met-
zler, i.e., the off-diagonal elements are non-negative. For formal definitions
of a positive system and a Metzler matrix, see Appendix A.1.

Summarizing, when identifying our system we want to pay closer atten-
tion to the following aspects:

B-1. The estimate of ρ(t) should have a better fit for small t than for large t
(by using some kind of weighting function).

B-2.
∫∞

0
ρ̂(t)dt = 1, where ρ̂(t) is the estimate of the RTD.

B-3. In discrete time, the system realization matrices A, B and C should all
be positive. In continuous time, the matrix A should be Metzler and
B, C positive.

Next, we are going to use four different system identification methods. We
compare the outcomes of these methods using our test system, (3.5)–(3.6).

21

3.1 Identification of RTD via balanced trun-

cation

Background

Knowing the IR of the system gives us the opportunity to construct a state-
space representation of the system with the dimension equal to the number
of measurement points, see the beginning of this chapter. For example, if
you have 30 data points, you get a system of order 30. It could be difficult to
design a controller and time consuming to simulate the results for a system
of such a high order.

That is why we want to explore the possibilities of making the systems
order as low as possible, while keeping the essential dynamics of the system as
close as possible to the original one. One way of doing this is by performing
a Balanced Truncation (BT) [15], which uses the Hankel Singular Values
(SV’s) of the system, see Appendix A.1 for the definition.

We analyze the system by looking at its Hankel SV’s. Intuitively, a Hankel
SV is a measure of energy for each state in the system. Physically speaking, a
system needs to generate some energy to reach a certain state (controllability
of a state). Likewise, there is some amount of energy stored in each state
(observability of a state).

The plot of Hankel SV’s of our test system is shown in Figure 3.4. We
see that there are at most six relevant Hankel SV’s and the other values are
negligible. The states with small Hankel SV’s have relatively low-energy.

0 5 10 15 20 25 30 35
0

0.2

0.4

0.6

0.8

Figure 3.4: The Hankel singular values of the test system.

22

The idea behind the BT method is that we can discard all relatively small
Hankel SV’s of the system. These low-energy states can be discarded while
keeping the systems dynamics close to the original system [15].

We need a formal definition by which we can discard small Hankel SV’s
of the system. In system theory one usually wants to minimize some norm
of the error.

In this case we consider the error to be the difference in magnitude of
the original system and the reduced order system. We want to minimize the
following weighted error in the frequency-domain [15]:

min
order(Gred)≤n

‖W (G−Gred)‖∞, (3.8)

where W is a suitable weighting function in the frequency-domain, G is the
transfer function of the original system and Gred is the transfer function of
the reduced order system; for the definition of H∞-norm see Appendix A.2.
We choose the weighting function W such that there is a higher weight on
the particles with small residence time than on particles with large residence
time (see the identification objectives in the beginning of this chapter).

Results

We use the function reduce in Matlab to perform BT. We compare the
results of the model reduction by looking at the IR of G and of Gred. We
consider Gred as a good fit if it’s IR shows a good resemblance to the IR of
the original system G, especially for small times t.

First, we want to reduce the order of our system by minimizing the norm
of Eq. (3.8) without using a weighting function, i.e., W0(s) = 1. From
Figure 3.4 we can see that we can discard at least twenty-four SV’s. Thus
we try to get Gred of orders 5 and 4. The resulting IR’s are presented in
Figure 3.5 (dashed line). Notice, that the scale of the two figures is different.
The IR of Gred of order 5 gives a better approximation of the original test
system, as we would have expected. Both Gred’s of order 5 and of order 4
have a large error with respect to the original system G for small time t.
Using a suitable weighting function W , we next want to improve the IR of
Gred for small t.

In the frequency-domain the weighting function objectives are reversed,
compared to the time-domain. Therefore we want to put a small weight
on small values of s and a large weight on large s. For example a weighting
function W1(s) = s+0.001

0.1s+0.2
satisfies our requirements. This gives a small weight

23

with W1

n = 5
n = 5
y

0 5 10 15 20 25 30

0

0.04

0.08

0.12

(a) Order Gred is 5.

0 5 10 15 20 25 30
-0.1

-0.05

0

0.05

0.1

0.15

with W1

n = 4
n = 4
y

(b) Order Gred is 4.

Figure 3.5: The IR of the test system compared to the IR of reduced order
system and reduced order system using weighting function W1(s).

W1 = 0.005 for s = 0 and a large weight W1 = 10 for s → ∞, exactly what
we wanted.

Again we compare the reduced systems of orders 5 and 4 in Figure 3.5
(circles line). Looking at the IR for small t we see that performing a BT with
the weighting function W1 gives worse results than without weighting, using
W0. This is against our expectations and until now we unfortunately do not
have an explanation for this.

For comparison we use the weighting function W2(s) = 0.0001s+1
0.5s+0.1

. This
gives W2 = 10 for s = 0 and W2 ≈ 0 for large s. In other words, this
is exactly opposite the weighting conditions coming from our identification
objectives.

We compare the results of the weighting function W2 to no weighting W0,
Figure 3.6. We see that for small t the IR of the reduced order system using
the weighting function W2 is closer (in magnitude) to the IR of the original
system G. But, for large t the deviation from the IR of the nominal system
gets bigger, opposite to the results with weighting function W1.

Let us look at the error norms of the differences between the original
and the reduced order systems, in both frequency- and time-domain. The
error bounds of the reduced order systems are presented in Table 3.1. We
consider the H∞-norm and the L1-norm of the errors, see Appendix A.2 for
the formal definition of these norms. For the BT method, the H∞-norm of
the error is bounded from above by two times the sum of the left out Hankel

24

0 5 10 15 20 25 30

0

0.04

0.08

0.12
y
n = 5
n = 5
with W2

(a) Order Gred is 5.

0 5 10 15 20 25 30
-0.04

0

0.04

0.08

0.12
y
n = 4
n = 4 with W2

(b) Order Gred is 4.

Figure 3.6: Compare the IR of the nominal, reduced and reduced using
weighting function W2(s).

↓ Gred order H∞ error norm (upper bound) L1 error norm (≈)
weights → W0 W1 W2 W0 W1 W2

5 0.06 0.01 0.01 0.07 0.07 0.15
4 0.19 0.05 0.03 0.19 0.19 0.32

Table 3.1: Error bounds of the reduced order systems.

25

SV’s σred+1, σred+2, . . . , σN :

‖G−Gred‖∞ ≤ 2(σred+1 + σred+2 + . . .+ σN).

The L1-norm is approximated here by a sum, i.e., it is approximately the
difference of the area’s under the absolute IR’s, see Appendix A.2.

From Table 3.1 we see that the error bound of the reduced order systems in
the frequency-domain becomes smaller using weighting functions W1 and W2,
compared to no weighting W0. According to the theory, see Appendix A.2,
the L1-norm of the error is larger or equal to the corresponding H∞-norm of
the error.

In Figure 3.7 the magnitude errors of the estimated transfer function Gred

compared to the transfer function G of the original system are presented. The
effects on the estimated Gred of using a weighting function W0, W1 or W2 are
compared. In Figure 3.7(a) the Gred’s of order n = 5 and in Figure 3.7(b) the
Gred’s of order n = 4 are presented. We would expect that using the weighting

0 0.2 0.4 0.6 0.8 1
-0.2

-0.1

0

0.1

error n = 5, W0

error n = 5, W1

error n = 5, W2

(a) Errors of the models with order n = 5.

0 0.2 0.4 0.6 0.8 1

-0.2

0

0.2

0.4

error n = 4, W0

error n = 4, W1

error n = 4, W2

(b) Errors of the models with order n = 4.

Figure 3.7: Magnitude errors in the frequency domain of the estimated mod-
els using different weightings W0, W1 and W2.

W1 would give better estimation results for large s than using the weighting
W2, because the prior has a higher weighting on large s. From both figures
of the magnitude estimation errors we see that it is the other way around,
i.e., using W2 seems to give smaller estimation errors for large s than using
W1. As we mentioned before, the results described above are contradictory
to our expectations, but until now we do not have an explanation for it.

26

3.2 Eigensystem Realization Algorithm

Background

In this section we use the Eigensystem Realization Algorithm (ERA) [7]
to identify our system with a low-order model. In theory this method is
equivalent to the BT system-order reduction method. However, in practice
the ERA method usually gives better numerical results than BT method. The
ERA method is based on a matrix containing the Markov parameters of the
system. Markov parameters are defined as the discrete impulse responses
at the time steps k, i.e., the CA(k−1)B terms (throughout this section we
assume that the matrices A,B and C belong to a discrete-time system).
Construction of the state-space matrices A,B and C is called the system
realization problem. In the beginning of this chapter we showed how to
construct a state-space model from IR measurements, where the order of the
model is equal to the number of measurement points. Thus, the real problem
of realization theory is constructing a state-space model with order as low as
possible while keeping the dynamics of the reduced order system as close as
possible to the original system.

Problem formulation. Given the IR values ρk in discrete time, construct
a (minimal) state-space realization (A,B,C) in terms of ρk, such that ρk =
CAk−1B holds for every k.

ERA approach. Construct the generalized Hankel r × m matrix H(j)
from the Markov parameters:

H(j − 1) =


ρj ρj+1 . . . ρj+m−1

ρj+1 ρj+2 . . . ρj+m
...

...
. . .

...
ρj+r−1 ρj+r . . . ρj+r+m−2

 ,

where r and m are arbitrary integers. In this case we choose r = m = N ,
where N is the number of measurements points of the IR. In this way we get
a symmetric matrix with zeros under the anti-diagonal.

Then the Hankel matrices H(0) for j = 1 and H(1) for j = 2 are used in
a clever way to construct the state-space matrices A,B and C of the given
system, see [7] for the details. Let us notice that:

H(0) = OrCm and H(1) = OrACm,

where Or =
(
C CA CA2 . . . CAr−1

)
T is the observability matrix and

27

Cm =
(
B AB A2B . . . Am−1B

)
is the controllability matrix of the

system.

Performing singular value decomposition on the matrix H(0) = UΣV T,
the minimal state-space of the given single-input-single-output system is then
identified as:

A = Σ−
1
2UTH(1)V Σ−

1
2 , B = Σ

1
2V TE1 , C = ET

1 UΣ
1
2 ,

with E1 =
(

1 0 . . . 0
)

T.

Results

To be able to compare this identification method to the other methods treated
in this report, we use the ERA to estimate a reduced order discrete-time
model of our test system. In the next section we use autoregressive models
to estimate our system. As a result we get a transfer function describing the
reduced order system. To be able to compare the ERA result and the results
from the next section, we convert the state-space (A,B,C) ERA model to a
transfer function.

From previous section we know that a system of order 5 gives us a good
estimate of our original test system. We also compute ERA estimates for
lower orders n = 4 and n = 3, for comparison.

The IR of the estimated system is compared to the IR of the test system
in Figure 3.8. In Figure 3.8(a) the IR of the original test system is compared
to the IR of the reduced order system of order 5. We can see that roughly
the first 8 seconds of the fit are not as good as we would like - the deviations
from the IR of the original system are large.

We say that the time starting at zero until the IR of the system deviates
significantly from zero is approximately the time-delay of our system. From
the IR of our test system in Figure 3.3 we can see that our system has a
time-delay τ of approximately 5 seconds. To improve the estimate we can
add a time-delay to our model. We do this by setting the first values of the
output y(k) to zero and applying again the ERA for y(k), k > 5. This indeed
gives a better fit for k > 5, see Figure 3.8(b).

With the ERA method we get the following transfer function estimate of
order n = 5 with a time-delay τ = 5.

PN(q)

PD(q)
=
q−5(0.0003q−1 + 0.0008q−2 + 0.0044q−3 + 0.0021q−4 + 0.0071q−5)

1− 3.23q−1 + 4.40q−2 − 3.16q−3 + 1.20q−4 − 0.20q−5

(3.9)

28

0 5 10 15 20 25 30

0

0.04

0.08

0.12
y

ERA
n = 5, τ = 0

(a) IR estimate using the ERA algorithm,
5-th order.

0 5 10 15 20 25 30

0

0.04

0.08

0.12
y

ERA
n = 5, τ = 5

(b) ERA fit with time-delay taken into ac-
count - the first 5 entries of the output are
set to zero.

0 5 10 15 20 25 30

0

0.04

0.08

0.12
y

ERA
n = 4, τ = 0

(c) IR estimate using the ERA algorithm,
order n = 4.

0 5 10 15 20 25 30

0

0.04

0.08

0.12
y

ERA
n = 4, τ = 5

(d) ERA fit with time-delay τ = 5 and
order n = 4.

0 5 10 15 20 25 30
-0.04

0

0.04

0.08

0.12
y
ERA
n = 3, τ = 0

(e) IR estimate using the ERA algorithm,
order n = 3.

0 5 10 15 20 25 30

0

0.04

0.08

0.12
y

ERA
n = 3, τ = 5

(f) ERA fit with time-delay τ = 5 and
order n = 3.

Figure 3.8: IR’s of the fitted transfer functions using ERA.

29

with poles at
p1 = 0.56 + 0.44i,

p2 = 0.56− 0.44i,

p3 = 0.73,

p4 = 0.69 + 0.21i,

p5 = 0.69− 0.21i.

Because the fifth order gives such good results, we try to reduce the order
of the estimated system even more. We do the same procedure for n = 4
and n = 3. The results are presented in figures 3.8(c) – 3.8(f). As we would
expect, the lower the order of the estimate, the worse the result. Although
if we account for the time-delay and set the first few values of the IR to zero
we still get good results with an estimate of order 4, Figure 3.8(d). For a
system estimate of order 3, Figure 3.8(f), we can see relatively large jumps
just after 5 seconds. Because we want our estimate to have a better fit for
small time t, the minimal order realization of our test system in this case
would be n = 4, taking a time-delay of the system into account.

Of the two RTD identification methods we already discussed, this method
gives the best results. We see that a system of order n = 4 already gives a
good estimate of our test system. We could even try to use the third order
estimate, setting the first 5 or even 6 values to zero.

3.3 Identification of RTD from IR

Background

There is a complete theory about system identification, see [11,12]. Although
relatively little research is done about parametric system identification from
impulse response data. It is straightforward to use the Realization Theory
to identify a system from it’s IR, but not much is known about fitting some
parametric structure to the IR data. The reason for this could be that for
most (physical) systems it is difficult or even impossible to measure the IR.
For example, in electric networks it is not possible to generate a voltage pulse.
Even if we could do that (using the lightning strike), the high voltage pulse
input could destroy the network.

Another difficulty we have to cope with is that we have a small number of
measurement points to fit a suitable parametric model. For example, the IR

30

of our test system consists of 30 points. If we would like to fit a parametric
structure of order 5 we have to estimate 9 parameters with 30 data points.

In any case we start by fitting some system identification model struc-
tures, such as IV4, PEM, AR(MA)X, etc. to our test system (3.5)–(3.6). A
big advantage of these models compared to the BT method from Section 3.1 is
that we can model the so-called ”dead”-time of the system explicitly. ”Dead”-
time is the delay time of the system. By modeling the dead-time we expect
to get better results, because as we can see in Figure 3.3, the IR of our test
system is almost zero for t ≤ 5.

In this section we are going to estimate our test system with the following
discrete Autoregressive eXogenous (ARX) model structure:

PD(q)y(k) = PN(q)u(k − τ) + e(k), (3.10)

where k represents discrete time, q is the time-shift operator, PD(q) and
PN(q) are polynomials of orders nPD

and nPN
, respectively, with nPN

≤ nPD
,

τ is the delay of the system and the equation error-term e(t) is assumed
to be white noise. We can convert the estimated discrete-time model to
continuous-time by using the transformation described in the Appendix A.3.

Results

From Section 3.1 we know that we can approximate our system by a model
of order n ≤ 6. We use the System Identification toolbox of Matlab [10] to
fit the discrete ARX structure (3.10).

We can estimate the time-delay of the system from the IR function, the
same way we did it in the previous section. Time-delay of the system means
that there is a minimum residence time for the bacteria inside the reactor.
The time-delay of our system is approximately τ = 5. After a couple of
trial-and-error estimations with ARX structures of different orders, we chose
nPN

= 1, nPD
= 5 and the delay-term τ equal to 5 seconds. Then we get the

following transfer function:

PN(q)

PD(q)
=

2.1 · 10−4q−5

1− 4.18q−1 + 7.48q−2 − 7.17q−3 + 3.68q−4 − 0.81q−5
(3.11)

31

with poles at:
p1 = 0.70 + 0.65i,

p2 = 0.70− 0.65i,

p3 = 0.96,

p4 = 0.91 + 0.32i,

p5 = 0.91− 0.32i.

For the plot of the poles with their 99% confidence intervals, see Figure 3.9.
The poles are denoted with a cross. We can see that the confidence regions
of the four complex poles are partly outside the unit stability circle. Thus
the estimated ARX model could become unstable, due to uncertainties in
the model parameters.

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

Figure 3.9: The poles with their confidence intervals of the fitted ARX struc-
ture.

The estimated parameters of this ARX model have huge standard devi-
ations σ, as we can see in Table 3.2. For the numerator of the estimated
transfer function, PN(q), σPN

is even bigger than the value of the parameter
itself!

In Figure 3.10(a) the IR of the original (sampled continuous-time) system
is compared to the IR of the estimated ARX model (dashed line). We can
see that the estimated model is an awful fit to our test system.

In Figure 3.10(b) the prediction errors y(k)−ŷ(k) (with ŷ(k) the estimated
output) of the estimated ARX model are presented. Even for such a small
data-set of 30 points, the prediction errors look like white noise. There is the
following relation between the prediction error and the equation error of the

32

parameter value σ
PD,1 -4.18 0.13
PD,2 7.48 0.46
PD,3 -7.17 0.67
PD,4 3.68 0.46
PD,5 -0.81 0.13
PN,1 2.1 ·10−4 7.7 ·10−4

Table 3.2: Standard deviations, σ, of the estimated ARX parameters.

0 5 10 15 20 25 30
0

0.04

0.08

0.12
y

ŷ ARX

ARX
ŷ modified

(a) Original output compared to the esti-
mated output using 5th order ARX and
estimated output using 5th order ARX
with first τ = 5 output entries set to zero.

P
re

d
ic

ti
o
n

er
ro

r

5 10 15 20 25 30

-1

0

1

2
×10−3

(b) Prediction error plot of the esti-
mated ARX model.

Figure 3.10: Results of the ARX model estimation with (nPD
, nPN

, τ) =
(5, 1, 5).

33

model:

y(k)− ŷ(k) =
1

PD(q)
e(k).

One of our system identification objectives, see the beginning of this chapter,
was that the model prediction error y(k)− ŷ(k) has to be colored, i.e., |y(1)−
ŷ(1)| � |y(30) − ŷ(30)|. So we can assume that the weight of 1

PD(q)
on the

equation error does not have enough freedom to get the write prediction error
structure. Thus we try another parametric model structure with different
weights on the equation error, like ARMAX or PEM [11]. The results are
again poor and for that reason are not presented in this report. The reason
why will become intuitively clear once we have shown the obstacles in ARX
parameters estimation from IR data.

At the beginning of this section we made an assumption that the equation
error e(t) is white noise. It is possible that the chosen parametric model
structure is not useful for the identification of our test system from impulse
response data. In Subsection 3.3.1 we give some explanation why the ARX
model gives such a poor result. We also will see why it is not surprising that
the parameter PN,1 has such a big variance.

We try to improve the ARX model estimate by setting the first few values
of our output sequence equal to zero. For our test system these are the first 5
values of the IR. We are allowed to do this because we have already assumed
that the first 5 seconds are the dead-time of our system, i.e., ρ(t) = 0 for
t ∈ [0, 5]. Next, we use exactly the same ARX structure (3.10) but a slightly
modified IR to fit a model to our test system.

The resulting IR is shown in Figure 3.10(a) (circles line). Compared
to (3.11) this gives a slightly better estimate for our system. But this fit is
still very poor. In Subsection 3.3.1 we give some reasons why the parametric
model structure gives such poor results.

3.3.1 Why ARX model does not work?

In the previous section we have seen that the system identification results
from IR using the ARX model structure are very poor. Here we provide an
intuitive explanation for this problem. For this purpose want to have a closer
look at the following points:

• the available experimental data (pulse input and impulse response out-
put)

34

• the chosen model structure (ARX)

• the identification method (least squares)

and the combination of the three. As already said at the beginning of Sec-
tion 3.3, from the practical point of view it is not often the case that we
have to identify the system from its measured IR. Possibly because of this
reason there is not much theory on system identification using IR. Thus at
first it seemed reasonable to try a simple ARX model structure to identify
our system. In this subsection we give some reasons why the ARX model
structure is insufficient for system identification from IR.

An ARX model gives us a parametric fit to the given (experimental)
input-output data of the system. In our case the input (in discrete time)
has only one non-zero value, because it is a discrete impulse input: u(k) =
(1 0 . . . 0)T.

Let us now have a closer look at the estimation procedure of the ARX
model parameters. One of the biggest assumptions for the ARX model struc-
ture, next to the linearity and time-invariance of the system, is that the
equation error e(k) is white noise (zero expectation, finite variance and un-
correlated). The parameters of the ARX model are computed by minimizing
the quadratic equation error 1, e(k), the so-called Least Squares Estimation
(LSE):

min
PD,PN

‖e(k, PD, PN)‖2 = min
PD,PN

‖PD(q)y(k)− PN(q)u(k)‖2. (3.12)

To solve the LSE problem of Eq. (3.12) we set up the parameter equations
in a matrix form (for clarity the vector with equation errors on the right side
of the equation is left out):


yn+1

yn+2
...
...
yN

=


yn yn−1 . . . y1

yn+1 yn . . . y2
...

. . .
...

...
...

. . .
...

yN−1 yN−2 . . . yN−n

∣∣∣∣∣∣∣∣∣∣∣

un+1−τ . . . un+1−τ−m
un+2−τ . . . un+2−τ−m

...
...

...
...

uN−τ . . . uN−τ−m


︸ ︷︷ ︸

F



a1

a2
...
an
b0
...
bm


,

(3.13)

1In the literature the equation error is sometimes called the estimation error.

35

where N is the number of data points, n and m+1 are the orders of PD(q) and
PN(q) polynomials, respectively, τ is the time-delay. In our case the input
vector has only one (the first one) non-zero entry, u(k) = (1 0 . . . 0)T.
Thus the matrix F in Eq. (3.13) reduces to F̃ :

F̃ =


yn yn−1 . . . y1

yn+1 yn . . . y2
...

. . .
...

...
...

. . .
...

yN−1 yN−2 . . . yN−n

∣∣∣∣∣∣∣∣∣∣∣

0 . . . 0 u1
...

... 0

...
...

...
...

0 . . . 0 0

 , (3.14)

under the condition that n = τ +m, otherwise all entries in the right part of
matrix F̃ in (3.14) would be zero.

Putting F̃ back in (3.13), we see that we can estimate only the parameter
bm. This is why with the given IR data we can estimate only one parameter
in the nominator of the transfer function PN(q) (see Results in Section 3.3).

To make the matter even worse, to estimate the only parameter of PN(q)
we have just one equation, see (3.13) and (3.14):

yn+1 = a1yn + . . .+ any1 + bmu1. (3.15)

We examine (3.15) using the results from Section 3.3. There we fitted an
ARX model of orders n = 5, m + 1 = 1 and τ = 5. The best results we
got by setting the first τ = 5 values of the output equal to zero. In that
case (3.15) reduces to y6 = b0u1 and the b0 parameter is defined at once by
the first non-zero output value yτ+1 = y6. From the IR of our test system we
know that this output value is very small. Intuitively, we can see that with
a larger value of y(t), t > 6, we get a different value for the parameter b0.
The results show that the standard deviation of b0 is indeed large.

We have explained why the combination of the available data and the
model structure give poor estimation results, for the given test system.

Another guess is that the homogeneous part of the system is non-negligible.
One usually assumes that because of stability of the system the homogenous
part can be neglected. We estimate the homogenous part of the system by
fitting an AutoRegressive (AR) structure to the output (the same structure
as ARX in (3.10), but with u(k) = 0,∀k). The results of fitting an AR
structure of order 5 are presented in Figure 3.11.

From Figure 3.11(a) we see that the homogenous part is negligible, as we
would normally have expected. Here the first five output values are taken

36

0 5 10 15 20 25 30

-0.01

0

0.01

0.02
y
ŷ hom

(a) Output and the estimated homogenous
part of the system.

0 5 10 15 20 25 30

0

0.04

0.08

0.12
y
ŷ from y(8)
ŷ from y(12)

(b) Homogenous part estimate of 5th order
with different initial conditions.

Figure 3.11: Estimated homogenous part of the system.

as the initial state of the system. Evaluating the AR structure with even
more values of output y(k) as the initial conditions gives us better results,
see Figure 3.11(b). In any case, as we have seen in other sections of this
chapter, we can approximate our system with a 5-th order model. But a
5-th order AR model does not give good results, therefore we exclude the
possibility that the homogenous part of the system is non-negligible.

The result of yet another modification is presented in Figure 3.12. We take
the ‘best’ result of Section 3.3. The best ARX model was found by putting
the first τ = 5 entries of the output equal to zero. The numerator of the
estimated transfer function is very small, see the dotted line in Figure 3.12.
We scale the estimated output by the original output. The estimated ratio
is our new parameter in the numerator PN,1. In Figure 3.12 the resulting IR
is presented as dashed line. We see that roughly the first 10 seconds give a
pretty good estimate. The new parameter is a kind of amplification of the
‘old’ estimate. Of course the whole IR is amplified and that is why after 25
seconds we see a big deviation of the new estimate from the original output.

We have given some reasons why the parametric structure ARX gives
poor estimation results of our test system. Nevertheless, we did not give a
proof that the ARX structure is wrong for our input-output data. In [12] the
reason why ARX does not work for the impulse input is stated in a formal
way for a simple first-order ARX model structure. In essence, the impulse
input is not exciting enough and that results in an inconsistent estimator for
PN(q): the estimate P̂N in mathematical terms does not converge to the true

37

0 5 10 15 20 25 30

0

0.04

0.08

0.12
y

modified ARX

scaled model

Figure 3.12: The IR of the 5th order ARX model fit with first τ = 5 values
set to zero and the IR of the modified ARX model with a scaled parameter
PN,1.

value of PN(q) independent of the size of the experimental data. In [12] this
is shown for a simple case of first-order ARX model, that the estimator P̂N,1
is not consistent, i.e., it does not converge to the true value of PN0,1.

3.4 Maximum likelihood method

Background

Until now we did not account for the positivity characteristic of our system
while performing system identification. In [5] an overview is given of the
problems in minimal positive system identification. It states that for high-
order systems the order of positive realization is often larger than the order
of the minimal system realization without the positivity constraints. This
shows that it is a difficult problem to find a minimal positive realization of
a system.

In this section we are going to use a different, compared to the previous
sections, approach for the identification of a system. Namely, the likelihood
function maximization [2, 11]. We use a result from [4], where a likelihood
function is maximized subjected to the positivity aspect of the system.

The key idea of this system identification method is to assume some
probability distribution for the (experimental) data. We find the parameters

38

of the supposed distribution by maximizing the joint probability for the whole
data-set.

We make the following assumptions about our system:

- The output of the system follows a Poisson distribution.

This is justified when the bacteria coming out of the reactor follow a
discrete Poisson process, where the number of bacteria in nonoverlapping
time intervals is independent for all intervals.

- The system is positive and linear.

This assumptions we already made before when we derived the mathe-
matical model of the system, see Section 2.1.1.

- The system is of third order.

As we have seen from the previous sections, we can estimate the test
RTD function with a third order system.

So our problem as described in [4] is to find the residues and the eigenval-
ues of a continuous-time single-input-single-output positive LTI system with
the following IR h(t):

h(t) = r1 exp (λ1t) + r2 exp (λ2t) + r3 exp (λ3t), (3.16)

subject to the following conditions:

(1) r1 > 0,

(2) r1 + r2 + r3 ≥ 0,

(3) (λ1 + δ̄)r1 + (λ2 + δ̄)r2 + (λ1 + δ̄)r3 ≥ 0,

(4) (λ1 + δ)2r1 + (λ2 + δ)2r2 + (λ3 + δ)2r3 ≥ 0,

∀δ s.t. −λ3 ≤ δ ≤ δ̄ with δ̄ := −λ1 + λ2 + λ3 − 2
√

Θ

3
, where

Θ := (λ2 − λ3)2 + (λ1 − λ2)(λ1 − λ3),

(5) λ3 < λ2 < λ1,

together with the boundary conditions for all six parameters: |ri| ≤ R and
λm ≤ λi ≤ λM , i = 1, 2, 3, where R, λm, λM are some constants. The above
conditions are necessary and sufficient for the existence of a third-order pos-
itive system realization from a measured IR, for more details see [4].

39

The Likelihood function is defined as the joint probability density function
of the process variables. In our case it is the product of the discrete Poisson
probabilities that at time k the experimentally measured concentration of
bacteria zk is equal to an integer value nk, for k ≥ 1. Thus the Likelihood
function we want to maximize is the following:

L(θ) =
N∏
k=1

P(zk = nk) =
αn1

1 · . . . · α
nN
N

n1! · . . . · nN !
exp

(
−

N∑
k=1

αk

)
, (3.17)

where N is the number of measurements of our system and αk is the intensity
coefficient of the bacteria output (Poisson) process, which is closely related
to the IR h(t) in (3.16). α is defined as follows:

αk(θ) =
1

∆

3∑
j=1

rj
λj
eλjk∆(1− e−λj∆),

where ∆ is a time step. It is a function of the vector of the unknowns
θ =

(
r1 r2 r3 λ1 λ2 λ3

)
T.

Results

We maximize the Likelihood function (3.17) by using the Matlab optimiza-
tion algorithm fmincon. The direct implementation of this system identifi-
cation method in Matlab does not work. This is possibly due to numerical
problems related to the evaluation of the likelihood function. A possible
solution for this problem in Matlab could be providing the Gradient and
the Hessian of the Likelihood function and the nonlinear optimization con-
straints explicitly, which are needed to perform the optimization. In Matlab
this could give better estimation results and reduce the number of fmincon
algorithm iterations. Unfortunately, this adjustment did not work either. In
some way or another, the optimization routine of fmincon stops after just a
few iterations and returns the initial value θ0 as the optimal solution for our
problem.

In Appendix B the Gradient and the Hessian of our likelihood function
are given in explicit form. To make the numerical calculations easier we
minimize the logarithm of the likelihood function.

40

3.5 A brief review of the results

In this chapter we used four different methods to estimate a RTD function.
Some results did not agree with our expectations, for example a time-domain
parametric ARX structure was a poor fit to our test RTD. An intuitive
explanation for this is that the pulse input does not excite the system enough
to use a parametric model.

We have seen that the ERA from realization theory gave the best identi-
fication results. Comparing the parametric ARX model to the ERA method
we can see that ERA weights all the output values at once, while ARX
‘looks’ one step back at every given time. To compare the two methods in
formula form, it is easier to consider the state equation: ERA method weights
x(k) = Ak−1B and the ARX method x(k) ≈ Ax(k − 1) ≈ A2x(k − 2) etc..

In previous section we have tried to estimate our test system by a positive
system of third order. Unfortunately, the implementation in Matlab did not
give the desired results. Overall, finding a positive realization of a system is
known as a difficult problem.

41

Chapter 4

Controller design

There exist many control design approaches. The choice of a specific design
approach depends on the objectives and the goals of the controller. In Chap-
ter 2 we derived a bilinear state-space representation of our system. In [3]
these systems are called ’nearly linear’, which gives us a good motivation for
designing a controller based on the linearized model of our system.

In this chapter we design a controller for the linearized system around
an equilibrium point using two different approaches. In Section 4.1 we use
classical control rules to design a Proportional Integral Derivative (PID)
controller. Next, we improve the performance and robustness of the controller
using a lead compensator. In Section 4.2 we use a modern control theory
to design a Linear Quadratic Gaussian (LQG) controller. We compare the
performance of the controllers by their time constant - the rise time of the
system’s response to a step input, robustness and implementation difficulty.
In Section 4.3 we implement both linear feedback controllers on the nonlinear
model of our system.

Design specifications and goals

Before designing a controller for any system we first have to understand the
characteristics of the system and define the goals of the controller. As we have
seen in Chapter 2, our system has two inputs and one output, for a schematic
representation, see Figure 4.1. In the control literature u(t) usually denotes
the input to the controller. In our case it denotes the bacteria input into
the system, which we cannot control. The controller input in our case is the
lamp intensity, which we can adjust up to some limiting value.

42

K

u

yGsys

Figure 4.1: Schematic representation of a nonlinear system with two inputs
and one output.

When the system is linearized around an equilibrium point, we can ’un-
link’ the state-space system in two parts: one from the bacteria input to the
bacteria output and the other from the lamp intensity input to the bacteria
concentration output, see Figure 4.2. Furthermore, in the linearized model
both the inputs and the output represent the deviations from the equilibrium
values, i.e., u∗(t) = u(t) − ueq, K∗(t) = K(t) −Keq and y∗(t) = y(t) − yeq.
Thus, we have to keep in mind that we do not design a controller for the real
inputs u(t) and K(t) and the real output y(t), but rather for the deviations
of these quantities from the equilibrium state of the system, u∗(t), K∗(t) and
y∗(t), respectively.

K ∗

u∗

y∗G1

G2

+

Figure 4.2: Schematic representation of the linearized system.

In this chapter we use feedback control theory to design a suitable con-
troller for our system. For schematic representation of the system with a
feedback, see Figure 4.3. Here the plant represents the “controllable” part
of the system, which in our case is the subsystem G1 with the lamp inten-
sity input K∗(t) and the bacteria concentration output y∗(t). Noise in our
case is the input of the system that we cannot control. Because we have
no prior knowledge of the (statistical) properties of the incoming bacteria,
we will assume that u∗(t) is a stochastic noise with some positive non-zero
expectation.

The most important objectives for the design of a feedback controller
for the linearized system are: stability, robustness and good performance.
Stability is the most essential requirement for any system. In mathematical

43

Plant

Noise

+−

Controller

u∗

y∗
K ∗

Figure 4.3: Representation of the linearized system with a feedback.

terms it means that we require all poles of the closed-loop transfer function
to have negative real part. With a feedback controller it is possible to achieve
stability even when the initial plant of the system is unstable. We want the
behavior of our system also to be robust against (small) perturbations of
the plant and variations of the noise. To achieve good performance of the
system the controller has to respond quickly to changes in the input (here
by input we mean both lamp intensity and bacteria inputs of the system).
Furthermore, we prefer a simple controller above a complicated controller.
This is because a simpler controller is easier to implement and it is easier to
understand its dynamics.

Equilibrium point of the linearized system

Usually it is not difficult to compute an equilibrium point of the system,
i.e., where the state does not change over time: ẋeq(t) = 0. In our project
we use a model derived using the RTD function. In Chapter 3 we used
system identification methods to estimate the RTD. Using the estimated
RTD function in our model gives some complications, as we will see next.

We have to assume some reasonable value for the parameter α of our
model, since we have no knowledge about the actual parameters of the sys-
tem. In Subsection 2.1.2 we defined α as the destruction rate of bacteria by
the UV light inside the reactor. Solving the equilibrium equations of (2.14)

44

by eliminating the state and rearranging the equation, we get:

yeq

ueq
= C(−αKeqI + A)−1(−B). (4.1)

Thus we can calculate a lamp intensity when the system is in an equilibrium
for a certain destruction ratio of bacteria yeq/ueq. In chemical processes lit-
erature the term ‘log-reduction’ of bacteria is usually used to indicate this
bacteria destruction coefficient. If we want to achieve a 4-log reduction of
bacteria, it means that 99,99% of bacteria have to be destroyed by the UV
light inside the reactor.

In Figure 4.4 the relation (4.1) is presented for different RTD estimates of
matrices (A, B, C). Namely, order 5, 6 and 20. The parameter α is chosen
as α = 0.55. The nominal test system (3.5)–(3.6), indicated by its order,
n = 20, is shown for comparison. On the horizontal axis are the equilibrium
values of the lamp intensity and on the vertical axis are the destruction ratios
of bacteria. We can see that for bacteria reduction of less than 2-log (less

10−6

10−5

10−4

10−3

10−2

10−1

100

0 0.5 1 1.5 2 2.5 3
10−7

Lamp intensity Keq

In
a
ct

iv
a
ti

o
n

ra
ti

o
y

e
q
/u

e
q

n = 20

n = 6

n = 5

Figure 4.4: Inactivation ratio yeq/ueq dependent on Keq for different RTD
models of order n = 5, n = 6 and n = 20.

than 99%), we get approximately the same value for the equilibrium lamp
intensity. But if we want to get a 4-log reduction of bacteria the values of
Keq vary a lot. For example, when we use a RTD estimate of order n = 6, the
inactivation ratio curve even becomes negative at approximately Keq = 1.2.

45

For the RTD estimate of order n = 5, the inactivation ratio curve is relatively
flat for some time after Keq = 1, reaching 4-log reduction for Keq ≈ 30. For
the nominal system of order n = 20, 4-log reduction is achieved at Keq = 1.6.
This means that although we concluded in Chapter 3 that a reduced order
model with n = 5 gives a good approximation to our test RTD function,
we cannot use this RTD estimate for the model of our system if we want to
achieve high log reduction of the bacteria. Therefore we are forced to use a
higher order RTD estimate.

Table 4.1 presents the parameters of an equilibrium point of our system.
We use these parameter values in the next two sections to design a controller.

parameter value
RTD order n 6
α 0.55
ueq 1
yeq 10−4

Keq 1.18

Table 4.1: Equilibrium point parameters of the system.

4.1 PID controller

Background

The Proportional Integral Differential (PID) controller is very common in
controller design for chemical processes. P is the proportional part of the
controller - it produces a signal which is proportional to the error between the
output signal and the desired output. I is the integral part of the controller
- the integrated error is fed back into the system. D is the derivative part of
the controller - the rate of change of the error is fed back to the controller.
Because a PID controller takes care of the error signal in three different ways
it often produces the desirable robust controller for the system. For more
information about robust control theory and controller design see [2, 15].

PID controller has the following transfer function structure:

CPID(s) = g

(
Tds

εs+ 1
+ 1 +

1

Tis

)
, (4.2)

46

where parameter g is a proportional gain of the controller, Td is the derivative
time and Ti is the integral time of the controller. The purely derivative part
of PID controller, Tds, i.e., ε = 0, is not technically realizable. For this reason
we make the differentiator realizable by choosing 0 < ε� Td.

It could be very cumbersome to find PID controller parameters by trial-
and-error. A straightforward approach was developed to find the parameter
values, the Ziegler-Nichols rules. According to these rules we first connect
the P-part of the PID controller to the plant. We increase the gain g0 of the
controller until it becomes unstable and estimate the period T0 of undamped
oscillations which occur in the step-response of the loop gain G1(s)CP(s).
For a schematic representation of the closed-loop see Figure 4.5. Then, the

G1−

Controller

y∗
K ∗

Figure 4.5: Schematic representation of the plant with a feedback controller.

parameters of the PID controller are given by

g = 0.6g0, Td = 0.125T0, Ti = 0.5T0. (4.3)

The Ziegler-Nichols rules were developed under the assumption that the
transfer function of the plant is of a well damped low-pass type.

We should mention the effect of the three PID actions of the system.
First, connecting a P-action to the plant results in a smaller time-constant
of the system, i.e., the system responds quicker to the disturbances. Used
by itself the proportional action could make the system unstable. To find
out which values of proportional gain g make the plant unstable we can look
at the root-loci of the plant, which are the trajectories of the roots of the
characteristic equation of the closed-loop system 1 +G1CP. Secondly, the I-
action connected to the plant eliminates the steady-state error of the system
and makes the time-constant smaller. This comes at the expanse of a large
overshoot and a slower response (or settling time) of the system. Thirdly,
the derivative action decreases the overshoot of the step-response and makes
the system faster at the cost of small steady-state error.

47

There are different ways of improving a controller. One way to make a
system more robust is to use a so-called ‘lead compensator’. It creates a
phase advance of the system, which is always a good thing because it makes
the relative stability margins larger. The lead compensator Clead(s) has the
following transfer function form:

Clead(s) =
γ
s

ω0

+ 1

s

ω0

+ γ
, (4.4)

for γ > 1 and with ω0 the cross-over frequency around which we want to
design a lead compensator. In the frequency interval (1

ω0
, γω0) the lead

compensator has a differentiating action.

Results

We want to use the Ziegler-Nichols rules to design a robust controller for
our system. Before designing a controller we need to understand the system.
We look at its stability characteristics and the open-loop step and frequency
responses. Because we have two inputs into the system we consider two open-
loop subsystems. We can control only the lamp intensity, thus the plant of
the system is the transfer function from K∗(t) to y∗(t), which we have called
G1. The goal of this design is to control the bacteria concentration, which is
the second input into the system. Therefore, after designing a controller we
verify it on the closed-loop system with the transfer function from u∗(t) to
K∗(t).

As introduced in the previous section, we call G1 the plant of our system
and u∗(t) the noise of the system. In Figure 4.6 the pole-zero plots of the
plant are presented. Figure 4.6(a) shows the poles and zeros of the RTD
model of order 6. We can see that all zeros are in the right-half plane, which
means that the inverse of this system is unstable. Figure 4.6(b) shows the
pole-zero plot of the plant in the linearized system G1. One of the zeros
has a large magnitude as is indicated by an arrow. The former represents
the model of the system when the UV lamp is off and the latter represents
the linearized model of the system when the lamp is turned on. From the
pole-zero plots we can see that just by turning on the lamp results in a stable
system and a stable inverse system (all zeros have negative-real part).

The pole-zero plot of the transfer function G2 from the noise input u∗(t)
to the output y∗(t) is shown in Figure 4.7. We can see that this subsystem

48

-0.5 0 0.5 1

-1

0

1

Real Part

Im
a
g
in

a
ry

P
a
rt

(a) Pole-zero plot of the RTD model of
order n = 6.

-1.5 -1 -0.5 0 0.5

-1

0

1

Real Part
Im

a
g
in

a
ry

P
a
rt

(b) Pole-zero plot of the plant of the lin-
earized system.

Figure 4.6: Pole-zero plots.

-1 -0.5 0 0.5

-1

0

1

Real Part

Im
a
g
in

a
ry

P
a
rt

Figure 4.7: Pole-zero plot of the noise subsystem.

49

is also stable, but has one zero in the right-half complex plane. Notice, that
G1 and G2 have the same poles.

In Figure 4.8(a) the response in the time-domain of the system to both
step inputs is presented. We can see that the plant has a reverse response to

0 4 8 12 16 20

-3

-2

-1

0
×10−3

Time (sec)

A
m

p
li
tu

d
e

plant
noise

(a) Step responses of the open-loop
subsystems.

-130
-110
-90
-70
-50

M
a
g
n

it
u

d
e

(d
B

)
10−2 10−1 100 101 102

0

90

180

270

360

P
h

a
se

(d
eg

)

Frequency (rad/sec)

plant
noise

(b) Bode plots of the open-loop subsys-
tems.

Figure 4.8: Step response and frequency response of the system.

a step lamp intensity input. This means that as we turn the lamp intensity
higher, the concentration of bacteria will decrease to some new equilibrium.
We can see that the noise input converges to the desired bacteria inactivation
ratio of 10−4. In the first 2 seconds it looks like the noise subsystem experi-
ences a reverse response. This could be explained by the fact that we use an
approximation of the RTD function to model the system. From Figure 4.9 we
can see that in the first 5 seconds there is a considerable derivation in the step
response of the estimated RTD from the original test RTD function, which
is zero for the first 5 seconds. Thus we should keep in mind that our model
error is approximately ten times larger than the equilibirum output-value of
the bacteria concentration.

Figure 4.8(b) represents the open-loop frequency responses of both sub-
systems. From the Bode magnitude plot we can see that our plant is low-pass
system type. It as well does not have many bumps, suggesting that the sys-
tem is of low-order. These characteristics of the plant of our system satisfy
the assumptions of the Ziegler-Nichols controller design rules.

To be able to use the Ziegler-Nichols rules we have to connect a propor-
tional gain to the plant. In Figure 4.10(a) the root loci of the characteristic
polynomial of the closed-loop with proportional gain are presented. It shows
how the poles of the closed-loop transfer function behave for different posi-
tive values of the controller gain. We can see that there is one pole that goes

50

0 5 10 15 20 25 30

0

0.2

0.4

0.6

0.8

1

(sec)

discrete
continuous

(a) Step Responses of the discrete-time
and continuous-time RTD model with n=
6.

0 1 2 3 4 5 6 7 8
-4

0

4

8

12 ×10−3

(sec)

(b) Zoomed-in step response of the con-
tinuous RTD model.

Figure 4.9: Step response of the discrete-time and continuous-time RTD
models

to +∞ for gain g →∞. Usually in control theory the negative value of the

-1.5 -1 -0.5 0 0.5
-1.5

-1

-0.5

0

0.5

1

1.5

Real Axis

Im
a
g
in

a
ry

A
x
is

(a) Root loci of the plant with positive
proportional gain.

-1.5 -1 -0.5 0 0.5
-1.5

-1

-0.5

0

0.5

1

1.5

Real Axis

Im
a
g
in

a
ry

A
x
is

(b) Root loci of the plant with negative
proportional gain.

Figure 4.10: Root loci of the plant.

controller is fed back into the system. This rule is based on the assumption
that the plant of the system has a positive response to a step input. In our
case we have a negative step response, see Figure 4.8(a). Therefore, we have
to use a negative gain for the controller.

The root loci of the plant connected to a negative gain are shown in
Figure 4.10(b). From the root loci we can see that the system stays stable for
all possible (negative) gain values of the feedback. Thus the closed-loop does
not become unstable whatever value of the gain we choose and we cannot

51

apply the Zigeler-Nichols rules. When we connect an integrator feedback

CI(s) =
1

s
to the plant, the closed-loop eventually does become unstable. In

Figure 4.11 the root loci of
G1(s)

s
are presented for gain values −∞ ≤ g ≤ 0.

-1.5 -1 -0.5 0 0.5
-3

-2

-1

0

1

2

3

Real Axis

Im
a
g
in

a
ry

A
x
is

Figure 4.11: Root loci of the plant connected to an integrator.

Now we use the Ziegler-Nichols rules to design a PID feedback controller

for the plant with an integrating action, i.e., for
G1(s)

s
. From root-loci

plot we derive the smallest value of the proportional gain g0 for which the
system becomes unstable and undamped oscillations occur in the response.
In Table 4.2 the values of parameters for a PID controller are presented based
on (4.3). As a rule-of-thumb, the parameter ε which makes the derivative

parameter value
g0 −4377.8
T0 2.34
g −2626.7
Td 0.3
Ti 1.17
ε 10−3

Table 4.2: Parameters of the PID controller.

action of the controller realizable, is chosen in the order of 10−2Td.

We can validate the designed PID controller in the time- and frequency-
domain. As introduced in the beginning of this chapter, we validate the
designed controller by the stability, robustness and performance characteris-
tics of the closed-loop transfer function. We call a closed-loop system stable
when:

52

- the transfer functions of the plant and the controller are proper,

- there is no unstable pole-zero cancellation in the closed-loop gainG1(s)C(s),

- the zeros of the closed-loop characteristic polynomial 1 + G1(s)C(s) have
a negative real part.

In our case there is no unstable zero-pole cancellation in the closed-loop gain
G1(s)CI(s)CPID(s). Together with stable poles of the closed-loop transfer
function, see the pole-zero plot in Figure 4.12, we can conclude that our
closed-loop system is stable.

-2.5 -2 -1.5 -1 -0.5 0 0.5

-2

-1

0

1

2

Real Part

Im
a
g
in

a
ry

P
a
rt

2x

Figure 4.12: The closed-loop pole-zero plot with the I-PID controller.

From Figure 4.13(a), we see that the stability margins of our system are
very small. This means that the closed-loop system with the I-PID controller
can become unstable for small perturbations of the plant or small variations
in noise. The vertical line indicates the ‘critical’ frequency of 180◦ and the
modulus stability margin of the closed-loop system. Because of the poor
stability margins, the robustness of this closed-loop system is not sufficient.

Figures 4.13(b) and 4.13(c) present the step responses from both inputs
to the output. From Figure 4.13(b) we see that there is a large negative
overshoot in the step response in the first few seconds. This indicates that
the closed-loop system responds too quickly. Figure 4.13(c) presents the
response of the closed-loop system to the step noise input. Again we can see
a large overshoot and small oscillations in the first 10 seconds of the response,
which are not desirable at all. Thus the performance of the I-PID controller,
designed using the Ziegler-Nichols rules, is not sufficient.

One way to improve the designed controller is to tune the parameter val-
ues of the PID controller until we achieve better closed-loop characteristics.

53

−100

−80

−60

−40

−20

0

20

M
ag

ni
tu

de
 (d

B)

10−2 10−1 100 101 102
0

45

90

135

180

225

270

Ph
as

e
(d

eg
)

Frequency (rad/sec)

(a) Bode plot of the closed-loop with the I-PID controller.

0 5 10 15 20 25 30

-0.4

0

0.4

0.8

Time (sec)

A
m

p
li
tu

d
e

(b) The closed-loop step response
with the I-PID controller.

0 4 8 12 16 20
-2

-1

0

1

2
×10−3

Time (sec)

A
m

p
li
tu

d
e

closed-loop
open-loop

(c) The closed-loop step response
from the noise input to the output.

Figure 4.13: Validation of the PID controller design in time- and frequency-
domain.

54

This could be a tiresome process. Instead, we use a lead compensator to
achieve better stability margins of the closed-loop system and thus making
the system more robust against (small) perturbations. As a starting point
we use again the system with the integrator in the feedback, i.e., the system

with loop gain
g0G1(s)

s
with g0 = 1. By increasing the static gain g0 we can

explore the closed-loop dynamics. Figure 4.14 shows the Nyquist plot of the

loop gain with the integral controller of the form
g0

s
with g0 = 2000. The

‘critical’ frequency is the frequency at which the system eventually becomes
unstable if we increase the static gain g0 even further. In Figure 4.14 this fre-
quency region is marked with grey ellipses. For our test system the ‘critical’
frequency is between 2 and 3 rad/sec.

-4 -3.5 -3 -2.5 -2 -1.5 -1 -0.5 0
-2

-1.5

-1

0.5

0

0.5

1

1.5

2
0 dB

-20 dB

-10 dB

-6 dB

-4 dB

-2 dB

20 dB

10 dB

6 dB

4 dB

2 dB

Real Axis

Im
a
g
in

a
ry

A
x
is

Figure 4.14: Nyquist plot of the loop gain with the integral controller.

We design a lead compensator around frequency ω0 = 2, to obtain satis-
factory stability of the closed-loop system. The Bode plot of the compensator
is presented in Figure 4.15. Using this compensator in series with the inte-
grator in the feedback, we achieve phase advance for the loop gain of the
system around frequency 2 rad/sec.

Setting the gain equal to the PID-gain g from Table 4.2, we arrive at

the following structure for the controller:
g

s
Clead(s), which is a compensated

integral controller. Again we use the same validation techniques as for the
I-PID controller, see Figure 4.16.

55

-20

-10

0

10

20

M
a
g
n

it
u

d
e

(d
B

)

10−2 10−1 100 101 102 10−3
0

30

60

90
P

h
a
se

(d
eg

)

Frequency (rad/sec)

Figure 4.15: Frequency response of the lead compensator with parameters
γ = 10 and ω0 = 2.

From Figure 4.16(a) we can see that the closed-loop system is stable. The
Bode plot of the closed-loop transfer function, in Figure 4.16(b), shows that
the system is also robust against perturbations, because the Bode phase is
less than 180◦ even before the Bode magnitude crosses the 0 dB line. The
response of the closed-loop system to a step lamp intensity input is presented
in Figure 4.16(c). For comparison, the step response of the closed-loop system
with the I-PID controller is also shown in the same figure. We can see that
the system with lead compensator is slower and has a larger settling time, but
the overshoot is reduced considerably. By fine-tuning the lead compensator,
which is much easier than fine-tuning a PID-controller, we could get even
better closed-loop responses. Due to the lack of time, this is not done in this
report.

In Figure 4.16(d) the closed-loop response to a step noise input is com-
pared to the open-loop response to a step noise input. We can see that the
closed-loop system is quicker than the open-loop system. The closed-loop sys-
tem with the compensated integral controller has a much smaller overshoot
than the closed-loop system with the I-PID controller, see Figure 4.13(c), as
already concluded from the responses of the system to a step lamp intensity
input in Figure 4.16(c).

Overall, we prefer the integral controller with lead compensator to the
I-PID controller, because on top of all reasons mentioned above, the prior
has a simpler structure than the latter.

56

-2.5 -2 -1.5 -1 -0.5 0 0.5
-4

-3

-2

-1

0

1

2

3

4

Real Part

Im
a
g
in

a
ry

P
a
rt

(a) The closed-loop pole-zero pattern.

-40
-30
-20
-10

0
10

M
a
g
n

it
u

d
e

(d
B

)

10−2 10−1 100 101 102
-45

0

45

90

P
h

a
se

(d
eg

)

Frequency (rad/sec)

(b) Bode plot of the closed-loop trans-
fer function.

0 5 10 15 20 25 30

-0.4

0

0.4

0.8

Time (sec)

A
m

p
li
tu

d
e

compensated PI
I-PID

(c) Step response of the closed-loop
system.

0 4 8 12 16 20
-20

-15

-10

-5

0

5
×10−4

Time (sec)

A
m

p
li
tu

d
e

closed-loop
open-loop

(d) Closed-loop step response from
the noise input to the output.

Figure 4.16: Validation in time- and frequency-domain of the integral con-
troller with a lead compensator.

57

4.2 LQG controller

Background

In this section we design a Linear Quadratic Gaussian (LQG) controller for
our system [9]. The L stands for linear system, Q stands for the quadratic
criterium that is being minimized and G stand for the Gaussian noise of
the model. This type of controller is used to achieve optimal disturbance
attenuation. It minimizes the following cost function for the control input
K(t):

J(K) = E
(∫ ∞

0

Qy(t)2 +RK(t)2dt

)
. (4.5)

The LQG controller gives a very simple feedback of the form K(t) =
F (t)x(t), where F (t) is a Kalman gain and x(t) is the state of the system
that is fed back. Because we only know the output of our system, we have
to estimate the state.

We use the linearized model (2.16) to design a continuous-time Kalman
estimator for the state of the system using the following state-space repre-
sentation of the plant:

ẋ(t) = Ãx(t) + B̃K(t) + G̃u(t),

y(t) = C̃x(t) + v(t),

s.t. E(u) = E(v) = 0, var(u) = U, var(w) = W, cov(u,w) = 0,

(4.6)

where v(t) is an added measurement noise, Ã = (−αKeqI +A), B̃ = −αxeq,
G̃ = B and C̃ = 1

β
C, corresponding to the equations (2.16). Both u(t) and

v(t) are assumed to be white noise. In Figure 4.17 a schematic representation
of Kalman filtering is presented. Thus we use the estimated state x̂ together
with the optimal feedback gain F as the LQG controller. The state-estimator

u

K

y

K x̂

ŷ
System Kalman filter

Figure 4.17: Schematic representation of the Kalman filter state estimator.

is constructed by minimizing the steady-state error covariance:

lim
t→∞

E
(
‖x(t)− x̂(t)‖2

)
58

Thus, to design a LQG controller we use the following steps (and functions
in Matlab):

- compute a full state feedback (with lqry),

- compute a Kalman state estimator (with kalman),

- connect the state-estimator and the feedback-gain (with lqgreg).

Results

In Figure 4.18 the closed-loop frequency responses of the system using a LQG
feedback are presented. The frequency response of the open-loop system is
also presented in the same figure, for comparison. The frequency responses
are computed from both inputs K and u to the output. We see no difference

−200

−150

−100

−50

0
From: K

To
: y

10−2 100 102 104
0

90

180

270

360

To
: y

From: u

10−2 100 102 104

Bode Diagram

Frequency (rad/sec)

M
ag

ni
tu

de
 (d

B)
 ;

Ph
as

e
(d

eg
)

closed−loop

open−loop

Figure 4.18: Bode plots of the closed-loop with the LQG controller compared
to the open-loop responses.

59

in the responses. At this moment we do not have any idea why the closed-
loop response with the LQG controller is similar to the open-loop response
of the system.

4.3 Bilinear system with linear feedback

In the previous sections we designed a controller for the linearized model of
our system (2.16) using two different approaches. In this section we imple-
ment the designed controllers as a linear feedback on the nominal bilinear
model of our system (2.13). For a schematic representation of this closed-loop
system, see Figure 4.19. Here the bacteria concentration input u(t) consists

Gsys

++
−

Controller

+

+
−

u(t)

y(t)

K ∗

K (t)

ueq

u∗

yeq

K eq

y∗

Figure 4.19: Schematic representation of the bilinear system with a linear
feedback controller.

of two parts - the equilibrium value ueq and a band-limited white noise term
u∗(t). The output of the system y(t) is fed back to the controller by sub-
tracting the equilibrium output value yeq first. The difference between the
equilibrium lamp intensity value Keq and the output of the controller K∗(t)
is the second input to the nonlinear plant Gsys.

We want to compare the performance of the controller designed for the
linearized system implemented to the bilinear model of the system. We use
Simulink of Matlab to simulate the bilinear system with the three different
linear feedback controllers.

60

First, we implement the integral controller with the lead compensator
designed in Section 4.1 in the feedback of the bilinear system. In Figure 4.20
the bacteria input to the system is shown. The bacteria concentration input

0 100 200 300 400 500 600 700 800 900 1000
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Time (sec)

In
p

u
t

b
a
ct

er
ia

co
n

ce
n
tr

a
ti

o
n

Figure 4.20: Noisy bacteria concentration input into the bilinear system.

from Figure 4.20 is simulated using a band-limited white noise generator
around ueq = 1 and with noise power 0.1 and sample time 5 seconds for
u∗(t).

In Figure 4.21 the simulation results of the bilinear system with the linear
compensated integral control feedback are presented. In Figure 4.21(a) it is
shown how the controlled lamp intensity evaluates in time. Starting at the
equilibrium value of Keq = 1.6, the lamp intensity has a negative overshoot
in the first 10 seconds of the simulation. After the first 10 seconds it fluc-
tuates around its equilibrium value with less than 5%. The output bacteria
concentration is shown in Figure 4.21(b). Apart from a large overshoot in
the first 10 seconds, we can be sure that 99,99% of bacteria are inactivated
by the UV light inside the system. The overshoot indicated that the designed
controller responds too quickly to the derivations in the bacteria on the input
of the system.

Next, we implement the LQG controller designed in Section 4.2. Again
we simulate the bilinear system with the bacteria concentration input simi-

61

0 100 200 300 400 500 600 700 800 900 1000
1.4

1.45

1.5

1.55

1.6

1.65

1.7

Time (sec)

In
p

u
t

la
m

p
in

te
n

si
ty

(a) Lamp intensity input into the bilinear system.

0 100 200 300 400 500 600 700 800 900 1000
0

0.5

1

1.5

2

2.5
×10−4

Time (sec)

O
u

tp
u

t
b

a
ct

er
ia

co
n

ce
n
tr

a
ti

o
n

(b) Bacteria concentration output.

Figure 4.21: Simulation results of the bilinear system using the integral con-
troller with lead compensator in the feedback.

62

lar to the input shown in Figure 4.20. The LQG controller makes very small
changes in the lamp intensity, as we can see from Figure 4.22. These small

0 100 200 300 400 500 600 700 800 900 1000
1.6− 2 · 10−5

1.6

1.6 + 2 · 10−5

1.6 + 4 · 10−5

Time (sec)

In
p

u
t

la
m

p
in

te
n

si
ty

Figure 4.22: Input lamp intensity to the bilinear system with the linear LQG
controller feedback.

adjustments of lamp intensity seem sufficient to reduce the bacteria concen-
tration even more than when using the integral controller. See Figure 4.23
for the bacteria concentration output of the simulated bilinear system with
the LQG feedback controller. Because in Section 4.2 the closed-loop system
with the LQG controller showed surprisingly poor responses, we should be
careful with interpreting the results of this simulation.

In the beginning of Section 4.1 we also designed an I-PID controller.
The robustness properties of this controller were not sufficient. Nevertheless,
we implement this controller in the feedback of the bilinear model of our
system. Figure 4.24 shows the simulation results. The lamp intensity curve
K(t) shows oscillations with large amplitudes. The bacteria concentration
on the output of the system peaks become larger with time. The system is
nearly unstable at a certain frequency. Thus, the results are unsatisfactory,
as we had already expected.

63

0 100 200 300 400 500 600 700 800 900 1000
0

0.2

0.4

0.6

0.8

1

1.2

1.4
×10−4

Time (sec)

O
u

tp
u

t
b

a
ct

er
ia

co
n

ce
n
tr

a
ti

o
n

Figure 4.23: Bacteria concentration output of the bilinear system with linear
the LQG feedback controller.

0 200 400 600 800 1000
-200

0

200

400

600

800

1000

1200

Time (sec)

In
p

u
t

la
m

p
in

te
n

si
ty

(a) Lamp intensity input into the bilinear sys-
tem.

0 200 400 600 800 1000
0.01

0

0.01

0.02

0.03

0.04

0.05

Time (sec)

O
u

tp
u

t
b

a
ct

er
ia

co
n

ce
n
tr

a
ti

o
n

(b) Bacteria concentration output.

Figure 4.24: Simulation results of the bilinear system using the I-PID con-
troller in the feedback.

64

Chapter 5

Conclusions and
recommendations

In this report we designed a controller for a UV disinfection system, which is
on average able to achieve a reduction of 99,99% in the bacteria concentra-
tion. This controller is designed for the linearized model of the system. The
model is based on the experimentally measured residence time distribution
of the bacteria inside the tank. Assuming as well that the reaction of the
UV light with the bacteria taking place inside the reactor is of first order, we
derived a model for the system which is bilinear in the state.

We compared four different system identification methods to estimate the
residence time distribution. The identification was surprisingly not straight-
forward and the results we got did not always match our expectations. We
found out that the identification in time-domain from impulse response is
not possible with the parametric model structures, such as ARX. We did
get good identification results using methods from realization theory, such
as balanced truncation and the eigensystem realization algorithm. In this
project we got the best estimation results by using the methods from the
realization theory together with an estimated time-delay of the system. In
the last section of Chapter 3 we tried, but did not succeed in finding a more
realistic positive realization of low order of the system. From the literature
we know that to find such a positive realization is a difficult task with a lot
of not yet solved problems. Nevertheless, for further research it would be
interesting to find a (minimal) positive realization of the system.

In the final chapter of this report we designed a controller for the lin-
earized model of our system using two different approaches. The compen-

65

sated integral controller shows a good performance. When it is implemented
on the bilinear model of the system, the integral controller with lead com-
pensation gives us satisfactory results. Implemented on the bilinear model,
the designed LQG controller seems to give even better results – without over-
shoot in the output bacteria concentration. The LQG controller achieves this
by making relatively small adjustments of the lamp intensity, which is hard
to believe. This would need more research, because at the moment we are
unable to explain this result.

In this research we did not use the model with a time-delay to design
a controller for the linearized model of the system. Because using a time-
delay we got better identification results, we would expect that the controller
design for the linearized model with a time-delay to give better performance
as well. It is also interesting to see if there are any advantages of designing
a nonlinear controller for the bilinear state-space model. Then we could
compare the performances of the controller designed for the linearized model
to the controller designed for the bilinear model.

66

Appendices

67

Appendix A

Mathematical background

A.1 Definitions

Definition A.1.1. A system described by the differential equation ẋ =
f(x, u) with state x ∈ Rn and the input u ∈ R is called positive if for
x(0) ∈ Rn

+ and u(t) ∈ R+, ∀t > 0, there holds x(t) ∈ Rn
+,∀t > 0, where the

positive real numbers are denoted by R+ = {a ∈ R, a > 0}.

Definition A.1.2. The Hankel Singular Values are the square root of the
eigenvalues of the product of the controllability and observability Gramians,
i.e., the square root of the eigenvalues of

∫ t
0
eAτBBT eA

T τdτ·
∫ t

0
eA

T τCTCeAτdτ .

Definition A.1.3. The matrix A ∈ Rn×n is called Metzler if all off-diagonal
elements of A are nonnegative, ∀aij ≥ 0 for ∀i 6= j.

A.2 Mathematical norms

In this Appendix we define a few norms used elsewhere in this report.

We denote functions in the time-domain by using lowercase characters,
like g(t). We denote functions in the frequency-domain by using uppercase
characters, like G(iω) with frequency ω. The functions G(·) and g(·) are
related by the Laplace transform, G(s) =

∫∞
0

exp(−st)g(t)dt.

We introduce two norms that are closely related to the system character-
istics in time- and frequency-domains:

The L1-norm

‖g(t)‖L1 =

∫ ∞
−∞
|g(t)|dt,

68

is the same as the area under the IR plot of the system,

and the H∞-norm

‖G(iω)‖H∞ = sup
ω
|G(iω)|,

which is the peak value of the Bode magnitude plot of the system.

The following inequality gives a relationship between the H∞- and the
L1-norms:

‖G(s)‖∞ := sup
s∈C+

0

|G(s)| ≤
∫ ∞
−∞
|g(t)|dt =: ‖g(t)‖1. (A.1)

From Eq. (A.1) we see that the peak value on Bode plot is smaller or equal
to the area under the IR function of a system.

The next relationship also holds:

‖g(t)‖∞ ≤
1

2π
‖G(s)‖1,

where ‖g(t)‖∞ := max
t∈R
|g(t)| is the maximum value of the IR and ‖G(s)‖1 :=∫∞

−∞ |G(iω)|dω is the area under the Bode magnitude plot. To prove this, use

the inverse Fourier transform g(t) =
1

2π

∫ ∞
−∞

G(iω) exp(iωt)dω. Thus

‖g(t)‖∞ = max
t∈R

∣∣∣∣ 1

2π

∫ ∞
−∞

G(iω) exp(iωt)dω

∣∣∣∣
≤ 1

2π

∫ ∞
−∞

max
t∈R
|G(iω) exp iωt|dω

=
1

2π

∫ ∞
−∞
|G(iω)|dω =

1

2π
‖G(s)‖1.

A.3 Discrete to continuous system transfor-

mation

When discretizing a continuous system a primal assumption would usually
be that the systems input u(t) is constant on each discrete time interval
[kT, (k + 1)T], i.e., u(kT) = u(kT + τ) for τ ∈ [0, T), as in Fig. A.1.

Consider the continuous-time system with state-space representation

ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t)
(A.2)

69

t

continuous

discretized

Figure A.1: A discretized continuous signal, the so called Zero-order hold
transform of a signal from continuous to discrete time.

and the discrete-time system representation

xk+1 = Adxk +Bduk

yk = Cdxk,
(A.3)

where t = kT and T is the discrete time step. We show that the following
relations hold:

Ad = exp(AT)

Bd =

(∫ T

0

exp (Aτ)dτ

)
B = A−1(Ad − I)B

Cd = C.

(A.4)

The solution of the continuous-time state equation (A.2) is:

x(t) = exp (At)x0 +

∫ t

0

exp (A(t− τ))Bu(τ)dτ

and of the discrete-time state equation (A.3):

xk = Ak−k0d x0 +
k−1∑
j=k0

Ak−1−j
d Bdu(j).

Comparing the solutions with zero initial conditions, i.e., k0 = 0 and
t0 = k0T = 0, after one time step T . In continuous time we find

x(kT + T) = exp (AT)x(kT) +

∫ kT+T

kT

exp (A(kT + T − τ))Bu(τ)dτ

(∗)
= exp (AT)x(kT) +

(∫ T

0

exp (Aτ)dτ

)
Bu(kT),

70

where (∗) holds because of the Zero-order hold assumption, i.e., the input
u(t) is constant on the interval [kT, kT +T), see Figure A.1. In discrete time
the solution of the state equation after one discrete time step at time k + 1
is:

xk+1 = Adxk +Bduk.

From this we directly see that the relations in (A.4) hold.

A.4 Convolution and Impulse Response

In a continuous-time system the input function u(t) is transformed into the
output function y(t). We call this transformation operator Tt{u} (the sub-
script t refers to the transformation in time-domain). We can write down
the relation between the input u and the output y of our system as:

y(t) = Tt{u}.

In the special case when the input is a Dirac delta function, u(t) = δ(t), we
call the output of the system the Impulse Response (IR) function, h(t):

h(t) = Tt{δ}.

We know that we can write any continuous function u(t) in terms of weighted
delta functions, by definition:

u(t) =

∫ ∞
−∞

u(τ)δ(t− τ)dτ.

For a continuous LTI system, the transformation operator Tt{·} must satisfy
equalities 1© for linearity and continuity and 2© for time-invariance. Thus

y(t) = Tt{u} = Tt

{∫ ∞
−∞

u(τ)δ(t− τ)dτ
}

1©
=

∫ ∞
−∞

u(τ)Tt{δ(t− τ)}dτ

2©
=

∫ ∞
−∞

u(τ)h(t− τ)dτ

= u(t) ∗ h(t),

(A.5)

where the ‘∗’-sign denotes the convolution between two functions. Thus in
time-domain we can express the output, y(t), of any continuous LTI system
as a convolution of the input function, u(t), and the IR of the system, h(t).

71

Finally, using the causality assumption, h(t) = 0, ∀ t < 0, together with
(A.5), we get the relation between input u(t) and output y(t) that is presented
in Equation (2.1)

y(t) =

∫ ∞
−∞

u(τ)h(t− τ)dτ =

∫ t

−∞
h(t− τ)u(τ)dτ,

where in (2.1) instead of the IR h(t) there is the RTD function ρ(t).

A.5 Proof Conservation of mass

In the beginning of Chapter 3, see the system identification objectives (B-
2.), we claim that the following holds for a causal LTI system with input
u(t) = 0, ∀t < 0,

Claim A.5.1.∫ ∞
0

h(t)dt = 1 ⇐⇒
∫ ∞

0

u(t)dt =

∫ ∞
0

y(t)dt.

Proof. The output can be written in terms of the IR h(t) of the system and
the input:

y(t) =

∫ t

0

h(t− τ)u(τ)dτ , t > 0.

Substituting this in the equation for the total output and than changing
the order of integration, we get:∫ ∞

0

y(t)dt =

∫ ∞
0

∫ t

0

h(t− τ)u(τ)dτdt =

∫ ∞
0

[∫ ∞
τ

h(t− τ)dt

]
u(τ)dτ.

(A.6)

Performing the change of variables t − τ = t̃ and using our assumption
about the total IR

∫∞
0
h(t)dt = 1, we get:∫ ∞

0

y(t)dt =

∫ ∞
0

[∫ ∞
0

h(t̃)dt̃

]
︸ ︷︷ ︸

1

u(τ)dτ =

∫ ∞
0

u(t)dt.

Thus we have proven ”⇒”.

From (A.6) we see directly that
∫∞

0
u(t)dt =

∫∞
0
y(t)dt is true only if∫∞

0
h(t)dt = 1. Thus we have also proven ”⇐”.

72

Appendix B

Likelihood function derivatives

The Likelihood function in Section 3.4 is defined as:

L(θ) =
N∏
k=1

P(zk = nk) =
αn1

1 · . . . · α
nN
N

n1! · . . . · nN !
exp

(
−

N∑
k=1

αk

)
, (B.1)

where N is the number of measurements of our system and αk is a function of
the vector of the unknowns θ =

(
r1 r2 r3 λ1 λ2 λ3

)
T, defined as follows:

αk(θ) =
1

∆

3∑
j=1

rj
λj
eλjk∆(1− e−λj∆),

where ∆ is a time step.

In Section 3.4 we try to maximize the Likelihood function (B.1) by us-
ing the Matlab optimization function fmincon. The direct implementation
of this system identification method in Matlab does not work. A possible
solution for this problem in Matlab could be to provide explicitly the Gra-
dient and Hessian of the Likelihood function and the nonlinear optimization
constraints. This could give better estimation results and reduce the number
of fmincon algorithm iterations.

Next, we calculate analytically the Gradient and Hessian of the Likelihood
function. The derivatives of the nonlinear constraints are calculated with
Maple and are not shown here.

73

The Gradient of the Likelihood function

The partial derivatives of L(θ) :=
N∏
k=1

Lk(nk, αk(θ)) with vector of the un-

knowns θ = (θ)j for k = 1 . . . N and j = 1 . . . 6 are of the form:

∂Lk(nk, αk(θ))

∂θj
=
αk(θ)

nk−1

(nk − 1)!
e−αk(θ)∂αk

∂θj
− Lk(nk, αk)

∂αk
∂θj

= [Lk(nk − 1, αk)− Lk(nk, αk)]
∂αk
∂θj

Here there are two possible derivatives of αk. First the derivative w.r.t. rj,
i.e., θ1, θ2, θ3:

∂αk
∂θj=1,2,3

=
1

∆

eλjk∆

λj
(1− e−λj∆)

and the others w.r.t. λj−3, i.e., θ4, θ5, θ6:

∂αk
∂θj=4,5,6

=
1

∆

(
−αk,j−3

λj−3

+ k∆αk,j−3 +
rj−3

λj−3

∆eλj−3(k−1)∆

)
,

where αk,p = rp
λp
eλpk∆(1− e−λp∆) with in this case p = j − 3.

In Matlab there is a function poisspdf which computes Lk for a given
(array) of nk’s and αk’s.

The derivative of the whole Likelihood function L(θ) is a little lengthy:

∂L(θ)

∂θj
=
∂
(∏N

k=1 Lk(nk, αk(θ))
)

∂θj

=
∂L1

∂θj

N∏
k=2
k 6=1

Lk +
∂L2

∂θj

N∏
k=1
k 6=1

Lk + . . .+
∂LN
∂θj

N−1∏
k=1
k 6=N

Lk

=
N∑
i=1

∂Li
∂θj

N∏
k=1,k 6=i

Lk

If we take Log of the likelihood function, the derivatives seem to become
simpler. The Log-likelihood function then becomes L̄(θ):

L(θ) := logL(θ) =
N∑
k=1

Lk(nk, αk(θ)) =
N∑
k=1

log
αnk
k

nk!
−

N∑
k=1

αk

74

So the partial derivatives are:

∂Lk(θ)

∂θj
=

1
α

nk
k

nk!

αnk−1
k

(nk − 1)!

∂αk
∂θj
− ∂αk
∂θj

=

(
nk
αk
− 1

)
∂αk
∂θj

And the derivative of the whole L(θ) function is, for θ = 1, .., 6:

∂L(θ)

∂θj
=
∂
(∑N

k=1 Lk(θ)
)

∂θj
=

N∑
k=1

∂Lk
∂θj

.

The Gradient is a vector of the partial derivatives:

∇L =

(
∂L(θ)

∂θ1

∂L(θ)

∂θ2

∂L(θ)

∂θ3

∂L(θ)

∂θ4

∂L(θ)

∂θ5

∂L(θ)

∂θ6

)T
.

The Hessian of the Log-Likelihood function

The second derivative, the Hessian, of the log-likelihood function L̄ is a sum
of all partial second order derivatives:

∂2L

∂θi∂θj
=

N∑
k=1

∂

∂θi

(
∂Lk
∂θj

)
.

The second order partial derivative of Lk is:

∂

∂θi

(
∂Lk
∂θj

)
=

∂

∂θi

[(
nk

αk(θ)
− 1

)
∂αk(θ)

∂θj

]
= − nk

α2
k(θ)

∂αk(θ)

∂θi

∂αk(θ)

∂θj
+

(
nk

αk(θ)
− 1

)
∂2αk(θ)

∂θi∂θj

The only unknown in the equation above is the second partial derivative
of α(θ). The Hessian-matrix of α(θ) is:

∇2α(θ) =
∂2αk(θ)

∂θi∂θj
= ∇2

(i,j) =



0 0 0 ∇2
(1,4) 0 0

0 0 0 0 ∇2
(2,5) 0

0 0 0 0 0 ∇2
(3,6)

∇2
(4,1) 0 0 ∇2

(4,4) 0 0

0 ∇2
(5,2) 0 0 ∇2

(5,5) 0

0 0 ∇2
(6,3) 0 0 ∇2

(6,6)


75

The Hessian-matrix is symmetric around the diagonal, so the terms on the
lower and upper diagonals are equal (∇2

(1,4) = ∇2
(4,1), so on.) So we only have

to calculate 6 second-order partial derivatives.

For i = 1, 2, 3; j = 4, 5, 6 and i = j − 3 holds:

∇2
i=1,2,3
j=4,5,6
i=j−3

=
∂2αk
∂θi∂θj

=
1

∆

(
−αk,i
λiri

+
k∆

ri
αk,i +

∆

λi
eλi(k−1)∆

)
,

and for the partial derivatives on the diagonal of the Hessian of α(θ), i.e., for
i = j = 4, 5, 6 holds:

∇2
i=4,5,6
i=j

=
∂2αk
∂θi∂θj

=
1

∆

([
2

λ2
i−3

− 2k∆

λi−3

+ (k∆)2

]
αk,i−3

+

[
−∆ + 1

λi−3

+ k∆2 + (k − 1)∆

]
ri−3

λi−3

eλi−3(k−1)∆

)
.

The Hessian of L is then a 6× 6 matrix of the sums of the second partial

derivatives
∂2L

∂θi∂θj
.

76

Bibliography

[1] A. Berman, M. Neumann, and R.J. Stern. Nonnegative matrices in
dynamic systems. A Wiley-Interscience publication, 1989.

[2] O.H. Bosgra, H. Kwakernaak, and G. Meinsma. Robust control, 2007.

[3] C. Bruni, G. DiPillo, and G. Koch. Bilinear systems: an appealing class
of ”nearly linear” systems in theory and applications. IEEE Transac-
tions on automatic control, AC-19(4), 1974.

[4] A. De Santis and L. Farina. Identification of positive linear systems with
poisson output transformation. Automatica, 38(5):861–868, 2002.

[5] B. De Schutter. Minimal state-space realization in linear system the-
ory: an overview. Journal of computational and applied mathematics,
121:331–354, 2000.

[6] H. S. Fogler. Elements of chemical reaction engineering. Prentice-Hall,
New Jersey, 3rd edition, 1999.

[7] J. N. Juang and R. S. Pappa. An eigensystem realization algorithm
for modal parameter identification and model reduction. Journal of
Guidance, Control and Dynamics, 8(5), 1985.

[8] T. N. Koutchma, L. J. Forney, and C. I. Moraru. Ultraviolet light in
food technology:Principles and Applications. Taylor and Francis Group
LLC, 2009.

[9] H. Kwakernaak and R. Sivan. Linear optimal control systems. John
Wiley and Sons, Inc., 1972.

[10] L. Ljung. System identification toolbox. For use with MATLAB.

[11] L. Ljung. System identification: theory for the user. Prentice-Hall, New
Jersey, 1987.

[12] T. Söderström and P. Stoica. System identification. Prentice Hall Inter-
national (UK), 1989.

77

[13] Lenntech Water treatment and purification Holding B. V. Uv dis-
infection [web], 1998-2009. http://www.lenntech.com/systems/uv/uv-
disinfection.htm.

[14] S. Van Mourik. Modelling and control of systems with flow. PhD thesis,
University of Twente, 2008.

[15] K. Zhou. Essentials of robust control. Prentice-Hall, New Jersey, 1998.

78

