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ABSTRACT

In this Master’s Thesis the problem of variation in the probability of false alarm is treated,
when testing the null hypothesis “Target not present” against the alternative hypothesis “Target
present”, using sequential likelihood ratio tests in noisy and clutter background environments.
The hypothesis testing is performed with a Track Before Detect (TBD) approach, where the
tracking is performed by a Sequential Markov Chain Monte Carlo (SMCMC) filter. Insurmount-
able problems with applying Wald’s theory with filtered data are discussed. A new sequential
detection scheme is designed that uses Neyman-Pearson theory in a sequential setting. Several
models are proposed to control the probability of false alarm of this detection scheme by inte-
grating these models in the threshold calculations. The models can be applied within a Gaussian
noise environment. Furthermore, expressions are given to properly apply the models in a (sea)
clutter. The results for applying the new sequential detection scheme, with integrated models,
fulfill the desired Constant False Alarm Rate (CFAR) property in noise. Finally, a proposed
implementation of the detection scheme in the SMCMC filter is given.
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Chapter 1

Introduction

Radars are used to detect and track moving or fixed objects. Detection schemes are used to decide
whether or not an object (target) is present. Measures of the performance of a detection scheme
are the probability of detection and the probability of a false alarm. Detection schemes used
for detecting large objects, show good performances in general. The detection of small objects
is in general a lot more difficult, especially in a clutter background. Special tracking filters are
used to track possible small objects in order to make an informed decision over the presence of
targets. Current detection schemes, employed within Thales, for filtering based Radar detection
of small targets in sea clutter can show a large variation in the false alarm rate with varying sea
conditions. Such a detection scheme is the subject of this thesis.

1.1 Problem description

The goal of this thesis is to design a Constant False Alarm Rate (CFAR) detector. This means
that regardless of the background noise/(sea) clutter, the detector exhibits a constant (fixed)
probability of false alarm. The detector is meant to sequentially detect within a Track Before
Detect (TBD) approach, using a sequential likelihood ratio test to test the null hypothesis “Target
not present” against the alternative hypothesis “Target present”. A particle filter is used to
approximate target and clutter distributions.

1.2 Outline

In Chapter 2, the reader is provided with knowledge about basic Radar detection procedures,
filtering processes and target and environment modulations. In Chapter 3, Wald’s theory and
Neyman-Pearson theory are discussed and tested with both i.i.d. generated data and filtered data
from the particle filter. Also a newly designed sequential detection scheme will be introduced
that uses Neyman-Pearson theory in a sequential setting. In Chapter 4, problems when applying
current detection schemes are discussed, together with possible explanations. These problems
consist of applying Wald’s theory and Neyman-Pearson theory with filtered data, due to particle
filter characteristics. Also models to avoid these problems and to improve the performance of
the detection schemes are discussed. At the end of Chapter 4, the results of these models are
presented with ultimately the presentation of the designed CFAR sequential detection scheme.
In Chapter 5, the research is summarized with in Section 5.1 some analyses and comments about
the results. In Section 5.2, the conclusions of this research are presented. In Section 5.3 the
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2 CHAPTER 1. INTRODUCTION

contributions of the research to Thales are presented. In Section 5.4, several recommendations for
further research are proposed. These recommendations are interesting for Thales when applying
the derived models/methods in practical Radar applications. Appendices A to D will provide
you with some further knowledge about the used distributions, made assumptions and obtained
results.



Chapter 2

Background knowledge

RAdio Detection And Ranging (RADAR) systems are widely used for safety purposes, for exam-
ple at airports to safely regulate the air traffic or in a military context to defend against hostile
missiles.
This chapter provides the basics of Radar tracking and detecting. Firstly, the basic principles
of the Radar and the differences between classical Radar detection and a Track Before Detect
(TBD) approach are discussed. Secondly, the filtering process used in the (TBD) approach is
discussed, where theoretical filters are distinguished from filters that use numerical approxima-
tions for practical implementations purposes. At last, some important properties of the filter are
discussed in detail to provide the information needed in this thesis.

2.1 Radar Detection

A Radar uses electromagnetic pulses. Radio-frequency (Rf) energy is transmitted to, and re-
flected from, a reflecting object. The reflected energy is called echo. Only a small portion of the
reflected energy is received by the radar. The process from generating Rf energy to the video
on the screen is shown in Figure 2.1. A Radar transmitter produces short high power Rf pulses.
These pulses are transmitted towards a flying or cruising object by the antenna. The reflected
energy (echo signal) is also received by the antenna. However, the antenna can not transmit and
receive at the same time. When the antenna is transmitting, the antenna is considered blind.
The duplexer manages the switching between transmitter and receiver. The received echo signal
is processed by a signal processor and finally displayed as a video on the screen.

3



4 CHAPTER 2. BACKGROUND KNOWLEDGE

Figure 2.1: Radar principles

Based on the time between transmitting the pulse and receiving the echo, the distance to the
object can be measured. The power of a reflected echo signal, Pr, can be calculated with the
Radar equation [1]:

Pr =
Pt ·G ·Ae · σ

(4π)2 ·R4
, (2.1)

where

• Pt is the transmitted power.

• G is the Radar gain.

• Ae is the effective area.

• σ is the Radar Cross Section (RCS).

• R is the range of the object, determined by

R =
c · Tr

2
,

where

• c is the speed of light (≈ 2.998 · 108).

• Tr is the time between transmitting and receiving the pulse.
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2.1.1 Classical Radar detection

The classical detection approach consists of three stages: the detection stage, the cluster/extrac-
tion stage and the tracking stage. In the following, these stages are briefly discussed.

Detection: detection on hit level
In the first stage, the surface area of the Radar is divided in a number of cells. The reflected
energy (measurement) in each cell is compared to a predetermined threshold. When the power
of the measurement exceeds the threshold, a hit is declared. This process is called detection on
hit level. In practice, a single scan consists of multiple bursts. Detection of the scan is performed
by integration over the burst. In this thesis, this is simplified by assuming one burst per scan.

Clustering and Extraction: detection on plot level
In the second stage, all neighboring cells where a hit is declared are clustered. The power in
these cells should match in range, Doppler, bearing and elevation. The clustered cells are called
a plot. Detection on plot level is performed by comparing the number of clustered cells with a
predetermined threshold. When the number of cells exceeds this threshold, extraction is per-
formed by determining the center of a plot.

Tracking: detection on track level
In the third stage, a track filter is initialized at each plot. The filter prediction for successive
scans is used to classify possible target plots that can be assigned to a track. After a number of
scans, the number of plots assigned to a track is compared to a predetermined threshold. When
the number of plots assigned to a track exceeds this threshold, a target is declared. This is called
detection on track level.

The thresholds used in the three stages are usually chosen such that the probability of false
declaration of a target is smaller than a desired false alarm rate. This classical approach works
well when target reflections consist of high power compared to the reflections from background
noise, i.e. a high Signal to Noise Ratio (SNR). However, for targets with a low SNR the proba-
bility of detection using this classical approach is low. Because the purpose of this thesis is to
satisfy a constant false alarm rate detection scheme while detecting small targets, ideally in a
sea clutter environment, the Track Before Detect (TBD) [2, 3] approach is used.

2.1.2 Track Before Detect

In the Track Before Detect approach, the detection decision is postponed until after the tracking
stage. This allows the user to gather more information before the detection decision is made.
The filters that perform the tracking are discussed in Section 2.2. Because time integration is
performed over the filtered information, i.e. the information is constantly updated when new
measurements are received, TBD can be seen as an integrated processing method.

The measurements that are compared to a threshold in the classical approach, serve in the
TBD approach only as indication where a target might be. Because it will be computationally
inefficient to start tracks all over the state space, tracks are only initialized at measurement cells
where the power exceeds a startup threshold, denoted by τstart. The purpose of the integrated
processing is to make a detection decision only when enough information is available to make it
reliable.
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In the TBD approach, weaker targets will be tracked for a longer time and will have more time
to produce reflections towards the Radar. As a result, the probability of detection for targets
with a low SNR significantly increases when using the TBD approach compared to the classical
approach. Figure 2.2 shows the difference between classical and TBD approach schematically.

Figure 2.2: Classical data and signal processing (separate boxes) and TBD (large box)

2.2 Filtering

In this section, first the Bayes filter is discussed and later the particle filter and the Sequential
Markov Chain Monte Carlo (SMCMC) filter, which are implementations of the Bayes filter based
on point mass approximations, are discussed.

2.2.1 Bayes Filter

Bayesian filtering [4][5] is a probabilistic approach for estimating unknown dynamical systems
recursively over time using prior knowledge and incoming evidence. Probability distributions
are used to describe all relevant unknown quantities by measuring the probability of an event
conditioned on the stochastic occurrence of the event. Consider the discrete-time stochastic
state-space model of a dynamical system. At each time instant n, information about the system
is described by state vector xn ∈ Rdx . The time evolution of the state vector is described by a
stochastic state space model in form of a Markov transition:

xn = pn(xn−1, vn−1), n ∈ N.

This gives the transformation of a given state vector xn−1 and system noise vn−1 at time n− 1
into a new state vector xn at time n where,

• vn−1 is an independent identically distributed (i.i.d.) process noise vector,

• pn : Rdx × Rdv 7→ Rdx is a function (possible non-linear) of the state xn−1 and vn−1,

• dx and dv are the dimensions of the state space and the process noise vectors.

The system state is indirectly observed via a noisy measurement vector taking values in an
observation space Z, zn ∈ Rdz . The measurement model is described by the observation equation:

zn = hn(xn, wn), n ∈ N.

This specifies at time n the transformation of a given state vector xn and measurement noise
sample wn into a measurement vector zn, where

• wn is an i.i.d. measurement noise sample,
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• hn : Rdx × Rdw 7→ Rdz is a function (possible non-linear) of the state xn and wn,

• dz and dw are the dimensions of the measurement and measurement noise vectors.

From a Bayesian perspective, the tracking problem consists in inferring knowledge about the
unobserved state xn of a dynamic system, which changes over time, using a sequence of noisy
measurements z1:n. Bayesian estimation is used to recursively construct a time involving posterior
distribution p(xn|z1:n), which describes state xn given all measurements up to time n, z1:n. The
initial prior density of the state vector

p(x0) , p0(x0|z0), z0 ∈ ∅,

is assumed to be known. The required pdf, pn(xn|z1:n), can be recursively propagated by the
Bayes recursion in two steps; the prediction step and the update step. Suppose that at time
n− 1, pn−1(xn−1|z1:n−1) is available. The prediction step is performed by using the Chapman-
Kolmogorov equation:

p(xn|z1:n−1) =

∫
p(xn|xn−1)p(xn−1|z1:n−1)dxn−1, (2.2)

where,

• p(xn|xn−1) is the Markov process of order one that models the between-measurements
target motion,

• p(xn−1|z1:n−1) is the posterior distribution at time n− 1 conditioned on all measurements
up to time and including n− 1, z1:n−1.

When at time n a new measurement zn becomes available, the update step is performed using
Bayes’ rule

p(xn|z1:n) =
p(zn|xn)p(xn|z1:n−1)∫
p(zn|xn)p(xn|z1:n−1)dxn

(2.3a)

=
p(zn|xn)p(xn|z1:n−1)

p(zn|z1:n−1)
, (2.3b)

where, p(zn|xn) is the likelihood function, which measures the adequacy of the guessed state
xn with respect to the measurement zn, given state xn. The Bayesian discrete-time recursive
nonlinear filtering equations eqs.(2.2)-(2.3b) constitute the theoretical foundation for optimal
single-sensor, single-target detection, tracking and identification. However, due to the multiple
integrations in the Bayes recursion (2.2)-(2.3b), the full implementation of the Bayes filter is
generally intractable in practice. Therefore, in case of strong non-linear system dynamics and
non-Gaussian noises, numerical approximation performed by Sequential Monte Carlo (SMC)
methods are preferred.

2.2.2 Particle Filtering

The Particle Filter [4, 6–8] performs SMC estimations based on point mass approximation of the
probability densities in the Bayes filter. Assume it is possible to draw a set of i.i.d. samples,
called particles, with the number of particles (NoP )� 1, according to an arbitrary probability
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density π(x), denoted by {x(j)}NoPj=1 . Then the particle filter approximates the density π(x) by
the point mass representation

π(x) ≈ 1

NoP

NoP∑
j=1

δxj (x), (2.4)

where δ(·) is the delta Dirac function. Following the Strong Law of Large Numbers (SLLN) [9]
for i.i.d. random samples, the approximation of eq.(2.4) ensures asymptotic convergence almost
surely in the sense that

1

NoP

NoP∑
j=1

p(xj)
a.s.−−−−−−→

NoP→∞

∫
π(x)p(x)dx. (2.5)

See [10, 11] for more details about convergence results for particle filtering.
Unfortunately, it is usually impossible to sample efficiently from the posterior distribution π(x),
because π(x) is multivariate, non standard and often only known up to a proportionally constant,
i.e. π(x) ∝ p(x). In this case, an alternative solution consists of using the Bayesian Importance
Sampling method. The idea is to generate samples from a known density q(·), referred to as
the proposal density, which is close to π(·). These samples are weighted to construct a weighted
point mass approximation of π(·). Let {xj , wj}NoPj=1 be the set of particles with corresponding
weights that approximated the posterior density π(x) by a weighted point mass representation:

π(x) ≈
NoP∑
j=1

w(xj)δxj (x),

where the weights

w̃(xj) =
p(xj)

q(xj)
, w(xj) =

w̃(xj)∑NoP
j=1 w̃(xj)

,

are the importance weights and the normalized importance weights. In the sequential case, the
approximation of the posterior distribution π(x) is calculated iteratively. Suppose at time n− 1,
the posterior distribution pn−1(xn−1|z1:n−1) is approximated by a set of particles {xjn−1, w

j
n−1}NoPj=1 :

pn−1(xn−1|z1:n−1) ≈
NoP∑
j=1

wjn−1δxjn−1
(xn−1).

Then for a given proposal density

xjn ∼ qn(xn|xjn−1, zn)

and the weight update is given by

wjn =
w̃jn∑NoP
j=1 w̃jn

,

where

w̃jn = wjn−1

pn(zn|xjn)pn|n−1(xjn|x
j
n−1)

qn(xjn|xjn−1, zn)

such that the new set of weighted particles {xjn, wjn}NoPj=1 approximates pn(xn|z1:n):

pn(xn|z1:n) ≈
NoP∑
j=1

wjnδxjn(xn).
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After a certain number of iterations, the weights of many particles will be negligible. This is
called the Degeneracy problem. The degeneracy implies that a lot of computational time is
lost (inefficient), because the contribution of many particles to the approximate of π(x) is zero.
Therefore, in Sampling Importance Re-sampling (SIR) filters a re-sample step is introduced. In
[12] an effective number of particles is defined as:

Neff =
NoP

1 + Var[w̃jn]
,

where

w̃jn =
pn(xjn|z1:n)

qn(xjn|xjn−1, zn)
.

Because this expression can not be calculated exactly, an approximation is given by

N̂eff =
1∑Nop

j=1 (wjn)2
.

In SIR filters, the re-sample step is performed if N̂eff ≤ Nthr, where Nthr is a predetermined
value. In Algorithm 1, the SIR particle filter [6, 8] is summarized.

Algorithm 1: SIR particle filter

Input :{xjn−1, w
j
n−1}NoPj=1 , new measurement zn

Output :{xjn, wjn}NoPj=1

Generate initial particles {xj0}NoPj=1 from p0(x);

Set weights wj0 at 1
NoP ;

1 - Prediction;
for j:=1 to NoP do

Draw particle x̃jn ∼ qn(xn|xjn−1, zn);
end
2 - Update;
for j:=1 to NoP do

Compute weights: w̃jn ∝ w
j
n−1

pn(zn|x̃jn)pn|n−1(x̃jn|x
j
n−1)

qn(x̃jn|xjn−1,zn)
;

end

Normalize weights : wjn =
w̃jn∑NoP
j=1 w̃jn

;

3 - Compute particle degeneracy: N̂eff = 1∑Nop
j=1 (wjn)2

;

4 - Re-sample;

if N̂eff ≤ Nthr then
Generate a new set of particles {xjn}NoPj=1 , from the set {x̃jn}NoPj=1 according to

normalized importance weights wjn;

Set weights wjn at 1
NoP ;

else

New set particles {xjn−1, w
j
n−1}NoPj=1 = {x̃jn−1, w

j
n−1}NoPj=1 ;

end
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2.2.3 Sequential Markov Chain Monte Carlo

When the dimension of the state space grows and multiple targets are present, the performance
of SIR filters decreases. The main problem with these filters is the need to perform importance
sampling in very high dimensional spaces if many targets are present. First, if too few particles
are used, all but a few importance weights will be near zero. Re-sampling will then lead to
a loss of diversity among the particles, known as sample impoverishment problem. Second,
it can be difficult to find an efficient proposal distribution. The re-sample step causes a loss
of diversity in high dimensional state spaces and also finding a good proposal distribution is
difficult. Therefore, although the dimension of the state space is low and only one possible
target is considered, a Sequential Markov Chain Monte Carlo (SMCMC) filter [13, 14] is used in
this thesis. In an SMCMC filter, the inefficient importance sampling step of the standard SIR
particle filter implementation is replaced by an efficient MCMC sampling step.
Within the Bayesian framework, our aim is to compute the filtering pdf pn(xn|z1:n), recursively
by

pn|n−1(xn|z1:n−1) =

∫
pn|n−1(xn|xn−1)pn−1(xn−1|z1:n−1)dxn−1. (2.6)

and
pn(xn|z1:n) ∝ pn(zn|xn)pn|n−1(xn|z1:n−1). (2.7)

Let us define the set of unweighted particles {xjn−1}NoPj=1 that approximates the posterior distri-
bution pn−1(xn−1|z1:n−1) by the point mass, i.e.

1

NoP

NoP∑
j=1

δxjn−1
(xn−1) ≈ pn−1(xn−1|z1:n−1). (2.8)

By substituting eq.(2.6) and eq.(2.8) in eq.(2.7), pn(xn|z1:n) can be written as

pn(xn|z1:n) ≈ 1

NoP
pn(zn|xn)

NoP∑
j=1

pn|n−1(xn|xjn−1). (2.9)

Once the filtered distribution is approximated by eq.(2.9), the MCMC sampling step is per-
formed to obtain a better approximation of pn(xn|z1:n). The set of particles with corresponding
likelihoods that serve as input of the MCMC step, is considered the predicted posterior set with
corresponding predicted posterior likelihoods. For simplicity, the set of predicted posterior parti-
cles with corresponding likelihoods will be referred to as the set of predicted particles in the thesis,
denoted by {xjpred}NoPj=1 , with corresponding predicted likelihoods, denoted by p(z|xjpred). The

output of the MCMC will be referred to as the set of posterior particles, denoted by {xjpost}NoPj=1 ,

with corresponding posterior likelihoods p(z|xjpost). A summary of the SMCMC is given in
Algorithm 2.

Remark 1. It is important not to confuse the predicted set of particles in this thesis (in a SMCMC
sense) with the set of predicted particles in a SIR [6, 8]. The important difference is that the set
of predicted particles with likelihoods at time n, in the way it is defined in this thesis, contains
the measurements up to and including time n, where the set of predicted particles at time n in
a SIR only contains the measurements up to time and including time n− 1.
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Algorithm 2: SMCMC

Input :{xjn−1}NoPj=1 , new measurement zn
Output :{xjn}NoPj=1

Generate initial particles {xj0}NoPj=1 from p0(x);

1 - Prediction;
for j:=1 to NoP do

Draw particle xjnpred ∼ qn(xn|xjn−1, zn);

end
2 - Update;
for j:=1 to NoP do

Compute predicted likelihood ratios λ(xjnpred) =
p(zn|xjnpred )

p(zn) ;

end

3 - Perform MCMC step: Do MH algorithm; Obtain set of posterior particles {xjnpost}
NoP
j=1

with posterior likelihood ratios λ(xjnpost);

4 - Copy set of posterior particles: {xjn}NoPj=1 = {xjnpost}
NoP
j=1 ;

Metropolis-Hastings algorithm

The Metropolis-Hastings (MH) algorithm is used to perform the MCMC step. The MH algorithm
sets up a Markov chain which must be aperiodic, irreducible and positive recurrent in order to
be ergodic [15, 16], such that it will eventually reach all points of the space and that the time
average equals the space average. Hence, the use of the MH algorithm allows us to simulate
a Markov chain such that its stationary distribution is in fact the desired target distribution.
Hence, the samples obtained from the Markov chain are equivalent to correlated samples drawn
from the target distribution. This can be implemented, even if the normalization constant is
unknown. The algorithm works as follows:

1. Given state x, draw proposed state x∗ from transition density q(x∗|x).

2. Calculate acceptance probability

α(x∗|x) = min

(
1,
p(x∗|z)q(x|x∗)
p(x|z)q(x∗|x)

)
(2.10)

= min

(
1,
p(z|x∗)p(x∗)q(x|x∗)
p(z|x)p(x)q(x∗|x)

)
. (2.11)

When the proposal distribution is chosen to be the predicted distribution, i.e. q(x∗|x) ,
p(x∗), eq.(2.11) can be rewritten as

α(x∗|x) = min

(
1,
p(z|x∗)
p(z|x)

)
. (2.12)

3. Draw u ∼ U [0, 1]

4. Let

x =

x
∗, α(x∗|x) ≥ u

x, α(x∗|x) < u
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The MH algorithm is designed in a sequential setting in order to approximate the filtering
distribution eq.(2.7). This is achieved by using a conditional density q(x∗|x), also known as
proposal distribution, to generate a Markov chain with invariant distribution the approximate
posterior eq(2.9). Then to compensate a probability of move and to satisfy reversibility condition,
an acceptance α(x∗|x) is introduced. The MH algorithm is discussed further in Section 2.3.5.
See [14, 17, 18] for complete details. The MH algorithm is summarized in Algorithm 3.

Algorithm 3: Metropolis-Hastings algorithm

Input :x0, number of particles NoP , burn in period B
Output :{xj}NoPj=1

for j:=1 to NoP+B do
Draw state x∗ ∼ q(x∗|xj−1);

Calculate acceptance ratio: α(x∗|xj−1) = min
(

1, p(z|x∗)
p(z|xj−1)

)
;

Draw u ∼ U [0, 1];
if α ≥ u then

Accept x∗: xj = x∗;
else

Reject x∗: xj = xj−1;
end

end
Discard first B samples, store other NoP samples.
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2.3 Important specifications of the filter

In this section, a few important properties of the SMCMC are discussed. These properties will
be important during the rest of this thesis. First, the background models are discussed. Second,
the target model. Then the combined target+background model is described, followed by the
measurement model. Finally, a more detailed description of the MH algorithm in the SMCMC
is given.

2.3.1 Background models

When a Radar antenna transmits Rf pulses, besides a target object, also background environ-
ment reflects echo signals back to the receiver. Hence not only targets echo samples, but also
background samples (also referred to as background scatter) will appear on the video display.

For good performance of the filter, a good background model p0(x) is needed. A reflected
signal is converted into two electrical components, a real valued component I and an imaginary
valued component Q, given by

I = A cos(θ),

Q = A sin(θ),

where

• A is the amplitude of the complex signal.

• θ is the phase angle of the complex signal.

The power of the signal is the amplitude squared:

P = A2.

When a Radar is transmitting pulses towards, for example, a peaceful sky, the background noise
is often modeled as Gaussian noise. When the background is modeled by Gaussian noise, it
means that the echo signals are Gaussian distributed in the I/Q domain, i.e.

zI ∼ N (0, σ2
n), p(zI) =

1

σn
√

2π
e−z

2
I/2σ

2
n , zI ∈ R, (2.13a)

zQ ∼ N (0, σ2
n), p(zQ) =

1

σn
√

2π
e−z

2
Q/2σ

2
n , zQ ∈ R. (2.13b)

In Appendix A, the calculations for going from the I/Q domain to power domain and vice versa
are performed. The amplitude distribution is given by

p(zA) =
zA
σ2
n

e−z
2
A/2σ

2
n , zA ∈ R+, (2.14)

also known as the Rayleigh distribution. The power distribution is

p(zP ) =
1

2σ2
n

e−zP /2σ
2
n , zP ∈ R+, (2.15)
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which is an exponential distribution with mean 2σ2
n. When a Radar is transmitting towards a

rough sea, the exponential power distribution is not an accurate model. In this thesis, the power
samples from sea (sea clutter) are modeled by a generalized Pareto distribution, i.e.

p(zP ) =
1

s

(
1 + k

zP − θ
s

)−1−1/k

, zP ∈ R+, (2.16)

with

• shape parameter k > 0,

• scale parameter s > 0,

• location parameter θ, assumed to be 0,

• measurement zP > θ = 0.

The distribution of the amplitude of a clutter sample is given by (see Appendix A.2)

p(zA) =
2zA
s

(
1 + k

z2
A

s

)−1−1/k

, zA ≥ 0, k > 0, s > 0 (2.17)

and the distributions for the I and Q samples are (see Appendix A.2)

p(zI) =
1√
πs

(
1 + k

z2
I

s

)−1−1/k

, z2
I ≥ 0, k > 0, s > 0, (2.18a)

p(zQ) =
1√
πs

(
1 + k

z2
Q

s

)−1−1/k

, z2
Q ≥ 0, k > 0, s > 0. (2.18b)

2.3.2 Target model

Tracked targets do not always reflect an echo signal of the same power. It depends on the surface
where transmitted pulses hit, the neighborhood of the target and on many more variables. Small
targets may not even reflect an echo signal back, for example when a small sea mine is positioned
behind a wave. Swerling models [19–21] describe the target reflection characteristics of the RCS,
denoted by σ, of a target for different scenarios, varying from Swerling I, to a Swerling V model
(also referred to as Swerling 0). According to the Swerling model, the RCS fluctuation of a target
is modeled by a chi-square distribution with m degrees of freedom, i.e. p(σ) ∼ χ2

2m(σ):

p(σ) =
m

Γ(m)σavg

(
mσ

σavg

)m−1

e−mσ/σavg , σ ∈ R+, (2.19)

where

• σavg is the mean value of σ,

• m = 1 represents Swerling I and Swerling II targets where p(σ) reduces to an exponential
distribution,

• m = 2 represents Swerling III and Swerling IV targets,

• m→∞ represents a Swerling 0 target.
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In this thesis, a Swerling I model is used. It means that the backscattered signal varies inde-
pendent from scan to scan and it varies according to an exponential distribution. Practically, it
means that sometimes the target is visible on the video and sometimes it is not. More difficult
models embrace variations from burst to burst (Swerling II and IV) or embrace larger variation
by using four degrees of freedom in eq. (2.19) (Swerling III and IV). A Swerling 0 will be dis-
cussed at some point in this thesis as well. The Swerling 0 target has a constant RCS and is
used as reference to compare the probability of detection between a Swerling I and a Swerling 0
target.
Because the Swerling I model indicates that the target does not reflects an echo signal at any
time, the I/Q samples of the target are modeled by a normal distribution with zero mean. This
means that the target samples are similarly distributed as the Gaussian noise samples. i.e.

p(zI) =
1

σt
√

2π
e−z

2
I/2σ

2
t , zI ∈ R (2.20a)

p(zQ) =
1

σt
√

2π
e−z

2
Q/2σ

2
t , zQ ∈ R (2.20b)

p(zA) =
zA
σ2
t

e−z
2
A/2σ

2
t , zA ∈ R+ (2.20c)

p(zP ) =
1

2σ2
t

e−zP /2σ
2
t , zP ∈ R+, (2.20d)

where σt is the standard deviation of the target I/Q samples. From Appendix A, the power
distribution can be rewritten as

p(zP ) =
1

µt
e−zP /µt , zP ∈ R+,

with µt = 2σ2
t .

Within the particle filter, the time evolution of a possible target through the state space is
predicted according to a dynamic model with a certain error. This model is iteratively updated
when new information from measurements are available.

2.3.3 Target + background model

In Sections 2.3.1 and 2.3.2, the distribution of noise/clutter and target samples are given in three
different domains. Since a reflected target echo signal will partly consist of background echo as
well, the distribution of the sum of target and background samples is needed. In this section,
these distributions are given with a brief motivation. For further details and proofs, let us refer
to Appendix B.

Target + noise

The target and noise distributions for the three domains are given in eqs.(2.13)-(2.15) and
eq.(2.20). Physically, target and noise samples are added in the I/Q domain. Hence to de-
termine the distribution of the sum of target and noise samples, the distribution of eqs.(2.13a)
and (2.20a) and eqs.(2.13b) and (2.20b) are needed. Since the I samples are independently nor-
mally distributed r.v.’s, their sum is normally distributed with the mean being the sum of the
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means and the variance being the sum of the two variances (see Appendix B.1), i.e.

p(zI) =
1

σ
√

2π
e−z

2
I/2σ

2

, zI ∈ R, (2.21)

where σ2 = σ2
t + σ2

n. The I and Q samples are identically distributed, so

p(zQ) =
1

σ
√

2π
e−z

2
Q/2σ

2

, zQ ∈ R, (2.22)

Given the calculations in Appendix A, the amplitude and power distributions for the sum of
target and noise samples are

p(zA) =
zA
σ2

e−z
2
A/2σ

2

, zA ∈ R+ (2.23a)

p(zP ) =
1

2σ2
e−zP /2σ

2

, zP ∈ R+, (2.23b)

From eq.(2.23b), the power distribution for target+noise is an exponential distribution with
mean µ, i.e.

p(x) =
1

µ
e−x/µ, x ∈ R+, (2.24)

with
µ = 2σ2 = 2σ2

n + 2σ2
t = µn + µt.

Target + clutter (analytical)

Now, some calculations about the distribution of target + clutter are discussed. Contrary to the
distributions of target+noise, the distribution of target+clutter is very difficult to find. Let us
refer to Appendix B.2.1 for more details and calculations. Similar to the case of target+noise,
the distribution of the I samples is used, given by eqs. (2.18a) and (2.20a). It seems hopeless
to calculate the convolution of eqs.(2.18a) and (2.20a) directly. Therefore the characteristic
functions are introduced. Unfortunately, the characteristic function of eq.(2.18a) is not helpful
either (see Appendix B.2.1). Therefore, instead of calculating the sum of the I and Q samples,
a transformation to the complex signal is proposed:

z̄ = x+ iy, (2.25)

where

• x = zI ,

• y = zQ.

This is proper because the I and Q samples are uncorrelated. First the distribution for the target
complex signal is given. Using the transform of eq.(2.25) in the joint distribution function of the
I and Q samples

p(x, y) =
1

2πσ2
t

e−(x2+y2)/(2σ2
t ), x, y ∈ R

transforms into

p(z̄) =
1

2πσ2
t

e−|z̄|
2/(2σ2

t ), z̄ ∈ C (2.26)
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Likewise, using the transform of eq.(2.25), the joint distribution of clutter I and Q samples

p(x, y) =
1

2πs2

(
1 + k

x2 + y2

2s2

)−1−1/k

, x, y ∈ R

transforms into

p(z̄) =
1

2πs2

(
1 + k

|z̄|2

2s2

)−1−1/k

, z̄ ∈ C. (2.27)

Now, to find the characteristic function of eqs.(2.26) and (2.27) a transformation to polar coor-
dinates is used. The characteristic function is given by

ϕz̄(t) = E[eitz̄] =

∫ ∞
−∞

eitz̄p(z̄)dz̄ =

∫ 2π

0

∫ r

0

eitrp(r, θ)drdθ, (2.28)

where p(r, θ) for target and clutter are given by respectively

p(r, θ) =
r

2πσ2
t

e−r
2/(2σ2

t ), r ∈ R+, θ ∈ [0, 2π], (2.29a)

p(r, θ) =
r

2πs2

(
1 + k

r2

2s2

)−1−1/k

, r ∈ R+, θ ∈ [0, 2π]. (2.29b)

Unfortunately, calculations of ϕz̄(t) with p(r, θ) from eq.(2.29b) does not give a useful expression
either (see Appendix B.2.1). Therefore, instead of calculating the distribution of target+clutter
analytically, parameter estimation is performed to approximate this density.

Target + clutter (parameter estimation)

The parameter estimation is based on performed numerical approximations. For details, let us
refer to Appendix B.2.2.
Let the joint distributions of the I and Q samples for target and clutter be given by

p(zI , zQ) =
1

2πσ2
t

e−(z2I+z2Q)/(2σ2
t ), zI , zQ ∈ R (2.30a)

p(zI , zQ) =
1

2πs2

(
1 + k

z2
I + z2

Q

2s2

)−1−1/k

, zI , zQ ∈ R. (2.30b)

Based on numerical evaluation, the convolution of a generalized Pareto distributed r.v. and
a normal distributed r.v. seems to be again (generalized) Pareto distributed. The questions
remains, what the shape parameter k and the scale parameter s of this new distribution are (θ
is still assumed to be 0). The proposed distribution joint distribution of I and Q samples for
target+clutter is given by

p(zI , zQ) =
1

π(µt + µc)

(
1 + k̃

z2
I + z2

Q

µt + µc

)−1−1/k̃

, zI , zQ ∈ R, (2.31)

where

• k̃ = k µc
µc+µt

,
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• µt is the mean of the target power distribution, equal to 2σ2
t ,

• µc is the mean of the clutter power distribution, given by s
1−k .

By using, the transformations in Appendix A.2, eq.(2.31) yields to

p(zP ) =
1

s̃

(
1 + k̃

zP
s̃

)−1−1/k̃

, zP ∈ R+ (2.32)

where

• s̃ = s+ µt,

• k̃ = k·s
s̃ = k·s

s+µt
.

The figures in Appendix B.2.2 show the accuracy of the new parameters in eq.(2.32).

2.3.4 Measurement model

In this section, the measurement model is discussed. First the impulse response (point spread
function) from a reflecting object is discussed. Second, the processing of the point spread function
in the likelihood function is explained.

Point spread function

Transmitted pulses are very short but have extremely high power. They can be described math-
ematically by a delta pulse. A reflected echo signal has a different character. The point spread
function (PSF), in more general terms the impulse response, is a way to describe the response of
an imaging system to a point source. Instead of a delta pulse, the PSF can be seen as a blurred
signal. Physically, it comes from the fact that a signal from a point source is spread out such
that, when it is received by an antenna, it can be measured in multiple cells. The higher the
spread (beam width), the vaguer the image of the object.
To model the impulse response of a point source, the point spread function is used to predict
particles in the measurement model. The PSF is assigned to the particles around their predicted
position. In general, a -3dB beam width is used, which means a beam width, such that the ampli-
tude of the beam is decreased by 50%, i.e. power by 75%, when it is absorbed by the Radar. To
avoid bias, the point spread function should be a density (integrating to one), to ensure proper
results. For computational efficiency, the PSF is often discretized over the measurement cells.
Hence the cells around the particles will get a (point spread) value, where the values sum up to
1.

Likelihood function

The blurred signals measured by the radar are compared to the PSF around the particles. In
2D, the resulting measurement of the particle is given by the inner product of the received
signal vector and the predicted point spread vector. The resulting measurement will be used to
calculated the likelihood function, p(z|xj), of the particles.

2.3.5 Metropolis-Hastings algorithm

In Section 2.2.3, the MH algorithm has been introduced. The algorithm is used in a sequential
setting in order to approximate the posterior distribution eq.(2.9). Within the hypothesis testing,



2.3. IMPORTANT SPECIFICATIONS OF THE FILTER 19

thoroughly discussed in Chapter 3, eq.(2.9) approximates the target (+background) distribution,
denoted by p1(x). This distribution is compared to a background hypothesis with a background
distribution, denoted by p0(x). This distribution is independent of the particle cloud. The
likelihood functions of p1(x) and p0(x), denoted by p1(z|x) and p0(z|x) are used to construct a
likelihood ratio, denoted by λ(x) in the following way

λ(x) =
p1(z|x)

p0(z|x)
.

This likelihood ratio is used to assign a track to a target or to noise. Without loss of generality
the scaling by p0(x) can be included in the MH algorithm, because p0(x) does not depend on the
particle cloud. Hence, instead of using the likelihood function p1(x), the likelihood ratio λ(x) is
used in the MH algorithm. Therefore eq.(2.11) at time n, becomes

α(x∗n|xn) = min

(
1,
λ(x∗n)pn(x∗n)qn(xn|x∗n)

λ(xn)pn(xn)qn(x∗n|xn)

)
. (2.33)

Again, when the proposal distribution is chosen to be the predicted distribution, i.e. qn(x∗n|xn) =
pn(x∗n), where pn(x∗n) in our case is given by pn(x∗n) = pn|n−1(x∗n|xn−1)pn−1(xn−1), eq.(2.33) can
be rewritten as

α(x∗n|xn) = min

(
1,
λ(x∗n)

λ(xn)

)
. (2.34)

The MH algorithm as used in the SMCMC is summarized in Algorithm 4.

Algorithm 4: Metropolis-Hastings algorithm in SMCMC

Input :{xjpred;λ(xjpred)}NoPj=1 , number of particles NoP , burn in period B

Output :{xmpost, λ(xmpost)}NoPm=1

for m:=1 to NoP+B do
if m = 1 then

Randomly select particle xjpred out {xjpred}NoPj=1 ;

Store xjpred: x
m
post = xjpred, λ(xmpost) = λ(xjpred);

else

Draw proposed particle xj∗pred ∼ q(xj∗|xj−1), with associate likelihood ratio

λ(xj∗pred);

Calculate acceptance ratio: α(x∗|x) = min

(
1,

λ(xj∗pred)

λ(xm−1
post )

)
;

Draw u ∼ U [0, 1];
if α ≥ u then

Accept xj∗: xmpost = xj∗, λ(xmpost) = λ(xj∗pred);

else
Reject xj∗: xmpost = xm−1

post , λ(xmpost) = λ(xm−1
post );

end

end

end

Discard first B samples, store other NoP samples: {xmpost}NoP+B
m=B+1 → {xmpost}NoPm=1
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Chapter 3

Hypothesis Testing

In Chapter 2, the basic principles of Radar detection and filtering are explained. Particle filtering
is used to perform the tracking of possible targets. Based on the information from the particle
filter, a decision is made about the presence of a target. In this chapter, the theory behind
hypothesis testing is explained. Let us first consider simple hypotheses of the form

Hi : x1, x2, . . . , xN
iid∼ , i = 0, 1. (3.1)

H0 corresponds to the hypothesis ”Target is not present” and is called the null hypothesis. H1 is
called the alternative hypothesis and refers to the hypothesis ”Target is present”. Two possible
errors can be made while testing the null hypothesis H0 against the alternative hypothesis H1. A
false-positive or false alarm occurs when concluding H1 while in fact H0 is true. The probability
of false alarm (PFA) is given by

PFA = P (Conclude H1|H0) = α,

where α is called the significance level of the test. A false-negative or miss detection occurs when
concluding H0 while in fact H1 is true. The probability of miss detection (PMD) is given by

PMD = P (Conclude H0|H1) = β.

A correct detection is made when the test decides H1 when H1 is true. The probability of correct
detection (PD) is given by

PD = P (Conclude H1|H1) = 1− β,

where 1− β is called the power of the test and where the last equality holds if always a decision
is made at a certain point. The error probabilities decrease as N (the number of i.i.d. observa-
tions) increases, and the minimum number N needed to achieve desired levels of error can be
characterized. Rather than fixing N ahead of time, it is natural to consider a sequential approach
to testing which continues to gather samples until a confident decision can be made. This idea
is usually referred to as a sequential likelihood ratio test (SLRT). In [22] the Receiver Operating
Characteristic (ROC) curves of the SLRT show a better performance than the ROC curves of
the likelihood ratio test (LRT) in terms of PD against PFA at an arbitrary (finite) time. Hence
following [22], the SLRT is a more powerful test than the LRT. Therefore, a sequential likelihood
ratio test will be used in the detection scheme in this thesis. Furthermore, the Neyman-Pearson
lemma [23], which gives the most powerful test for a fixed sample LRT, is applied and integrated
in a sequential detection scheme.

21
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3.1 Sequential Likelihood Ratio Test

Again consider the hypothesis (3.1). The SLRT is based on considering the likelihood ratio as a
function of the number of observations. Define

λ(x1, x2, . . . , xn) =

n∏
i=1

p1(xi)

p0(xi)
, n = 1, 2, . . .

To simplify the notation, let xn := (x1, x2, . . . , xn). The goal of the SLRT is to decide which
hypothesis is correct as soon as possible (i.e., for the smallest value of N). To do this the SLRT
requires two thresholds, an upper threshold τu and a lower threshold τl, with

τu > τl.

The SLRT is defined as:

Definition 2 (Sequential likelihood ratio test).

1. If λ(xn) ≥ τu, choose H1, else go to 2.

2. If λ(xn) ≤ τl, choose H0, else n=n+1 go to 1.

Let us define S as the stopping (decision) time of a test. Assume that the SLRT will eventually
decide (stop), i.e.

Pi(S <∞) = 1, i = 0, 1.

At time n, PFA and PMD are given by

PnFA = P (Conclude H1|H0) = P (λ(xn) ≥ τu|H0) = α,

PnMD = P (Conclude H0|H1) = P (λ(xn) ≤ τl|H1) = β.

The challenge is to set the thresholds so that a certain level of errors is guaranteed. Making τu
larger and τl smaller yields a test that will tend to stop later and produce more accurate decisions.
On the other hand, making τu smaller and τl larger yields to a test that makes a quicker decision,
but yields to a test which produces more errors. Hence, the values for τu and τl are crucial for
the PFA and PD. Section 3.1.1 discusses some theorems and results from Wald’s theory [24].
Section 3.1.2 discusses Neyman-Pearson theory [23], and highlights important difference with
respect to Wald’s theory. Finally, both theories are applied to define a SLRT and compared, first
in Section 3.2 with i.i.d. samples and second, in Section 3.3, with samples from a particle filter.

3.1.1 Wald’s theory

In [24], expressions for the upper and lower thresholds, τu and τl, are given as well as an expression
for the expected stopping time denoted by E[S]. In what follows, expressions for τu and τl are
derived differently using decision sets/critical regions of the test. These expressions are derived
with the aim to provide a test that satisfies desired probabilities of detection, PD, and false
alarm, PFA. Also an expression for E[S] is derived using Wald’s equation [25][26] and the
Kullback-Leibler Divergence [27]. To simplify the notation, let xS := (x1, . . . , xS) and write

pj(xS) :=
∏S
i=1 pj(xi), j = 0, 1. At time S, PD can be written in terms of the critical region

C1 := {xS : λ(xS) ≥ τl} as follows

PD =

∫
C1

p1(xS)dxS =

∫
C1

p1(xS)

p0(xS)
p0(xS)dxS (3.2a)
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=

∫
C1

λ(xS)p0(xS)dxS (3.2b)

=

∫
{xS :λ(xS)≥τu}

λ(xS)p0(xS)dxS +

∫
{xS :τl≤λ(xS)<τu}

λ(xS)p0(xS)dxS (3.2c)

=

∫
{xS :λ(xS)≥τu}

λ(xS)p0(xS)dxS (3.2d)

≥ τuPFA, (3.2e)

where eq.(3.2d) follows from the assumption Pi(S < ∞) = 1, i = 0, 1. Via same procedure,
1− PFA at time S can be written as

1− PFA = 1−
∫
C1

p0(xS)dxS =

∫
C0

p0(xS)dxS (3.3a)

=

∫
C0

p0(xS)

p1(xS)
p1(xS)dxS =

∫
C0

p1(xS)

λ(xS)
dxS ≥

1

τl

∫
C0

p1(xS)dxS (3.3b)

≥ 1− PD
τl

, (3.3c)

where

C0 = {xS : λ(xS) ≤ τl}.

Equations eqs.(3.2e)-(3.3c) give us bounds on the thresholds necessary to achieve the desired PD
and PFA:

τu ≤
PD
PFA

, τl ≥
1− PD
1− PFA

.

Let us set

τu =
1− β
α

, (3.4)

τl =
β

1− α
. (3.5)

These thresholds guarantee that the error probabilities of the test will be at least as small as
specified by choice of PD and PFA, i.e. by choice of α and 1 − β. Let us refer to [24] for more
details. From now on, let us denote PFA ≤ α and PD ≥ 1− β as Wald’s criteria and denote τu
and τl, given by eqs.(3.4) and (3.5) as Wald’s thresholds. Despite the fact that Wald’s criteria
are guaranteed, Wald’s thresholds may be too conservative. The expected stopping time E[S]
can be found by using Wald’s Equation [25][26]:

Theorem 3 (Wald’s Equation). If S is a stopping time with respect to an i.i.d. sequence
{Xi : i ≥ 1} and if E[S] <∞ and E[|X|] <∞, then

E

[
S∑
i=1

Xi

]
= E[S]E[X]. (3.6)
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For later purposes, eq.(3.6) is rewritten as

E

[
S∑
i=1

ln(Xi)

]
= E[S]E[ln(X)]. (3.7)

This is proper if E[|ln(X)|] <∞ holds. Using that at stopping time S,

λ(xS) =

S∏
i=1

p1(xi)

p0(xi)
,

ln(λ(xS)) can be written as

ln (λ(xS)) =

S∑
i=1

ln

(
p1(xi)

p0(xi)

)
=

S∑
i=1

ln(Xi).

Let Ej denote the expectation with respect to pj , j = 0, 1. Ej [ln (λ(xS))] = Ej

[∑S
i=1 ln(Xi)

]
can be approximated with the following assumption: when ln (λ(xS)) ≥ ln(τu), the SLRT decides
H1 and ln(λ(xS)) will be just slightly higher than ln(τu) and also when ln (λ(xS)) ≤ ln(τl),
ln(λ(xS)) will be just slightly lower than ln(τl). Hence, expressions for the approximate values
of Ej [ln (λ(xS))] are given by:

E1[ln (λ(xS))] ≈ PD · ln(τu) + (1− PD) · ln(τl)

≈ PD · ln
(

1− β
α

)
+ (1− PD) · ln

(
β

1− α

)
, (3.8)

and

E0[ln (λ(xS))] ≈ PFA · ln(τu) + (1− PFA) · ln(τl)

≈ PFA · ln
(

1− β
α

)
+ (1− PFA) · ln

(
β

1− α

)
. (3.9)

Ej [ln(X)] = Ej [ln(λ(x))] can be calculated with the Kullback-Leibler divergence [27]:

Theorem 4 (Kullback-Leibler Divergence). For distributions P1 and P0 of a continuous random
variable, the Kullback-Leibler divergence is defined to be the integral:

DKL(P1||P0) =

∫ ∞
−∞

p1(x)ln

(
p1(x)

p0(x)

)
dx,

where p1 and p0 denote the densities of P1 and P0.

Observe that ln
(
p1(x)
p0(x)

)
= ln(λ(x)), such that Ej [ln(λ(x))] is given by

Ej [ln(λ(x))] = Ej

[
ln

(
p1(x)

p0(x)

)]

=

∫ ∞
−∞

ln

(
p1(x)

p0(x)

)
pj(x)dx
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=


∫∞
−∞ p1(x)ln

(
p1(x)
p0(x)

)
dx, j = 1

−
∫∞
−∞ p0(x)ln

[(
p1(x)
p0(x)

)−1
]

dx, j = 0

=

 DKL(P1||P0), j = 1

−DKL(P0||P1), j = 0
(3.10)

In (3.7), substitute Ej

[∑S
i=1 ln(Xi)

]
by eqs.(3.8) and (3.9) and substitute Ej [ln(X)] by eq.(3.10),

such that the expected stopping time can be written as

E[S] ≈


E1[
∑S
i=1 ln(Xi)]

E1[ln(X)] , j = 1

E0[
∑S
i=1 ln(Xi)]

E0[ln(X)] , j = 0

≈


PD·ln( 1−β

α )+(1−PD)·ln( β
1−α )

DKL(P1||P0) , j = 1

−PFA·ln( 1−β
α )+(1−PFA)·ln( β

1−α )
DKL(P0||P1) , j = 0

(3.11)

Next, the expression for the expected stopping times for two different often used probability
density functions are derived by calculating DKL(P1||P0) and DKL(P0||P1).

Example 5. Assume p0 is Gaussian background noise whose power distribution is given by

p0(x) =
1

µb
e−x/µb , x ∈ R+

and that p1 is the distribution of a target and background, given by

p1(x) =
1

µb + µt
e−x/(µb+µt), x ∈ R+.

Then, DKL(P1||P0) is given by

DKL(P1||P0) =

∫ ∞
∞

p1(x)ln

(
p1(x)

p0(x)

)
dx

=

∫ ∞
0

e−x/(µb+µt)

µb + µt
ln

(
1

µb+µt
e−x/(µb+µt)

1
µb

e−x/µb

)
dx

=

∫ ∞
0

e−x/(µb+µt)

µb + µt
ln

((
µb

µb + µt

)
e−x/(µb+µt)+x/µb

)
dx

=

∫ ∞
0

e−x/(µb+µt)

µb + µt

(
ln

(
µb

µb + µt

)
+

µtx

µb(µb + µt)

)
dx
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= ln

(
µb

µb + µt

)[
−e−x/(µb+µt)

]∞
0
−
[

µtx

µb(µb + µt)
e−x/(µb+µt)

]∞
0

−
[
µt
µb

e−x/(µb+µt)
]∞

0

= ln

(
µb

µb + µt

)
+
µt
µb
. (3.12)

Similar calculations are used to find DKL(P0||P1):

DKL(P0||P1) =

∫ ∞
∞

p1(x)ln

(
p1(x)

p0(x)

)
dx

=

∫ ∞
0

e−x/µb

µb
ln

(
1
µb

e−x/µb

1
µb+µt

e−x/(µb+µt)

)
dx

=

∫ ∞
0

e−x/µb

µb

(
ln

(
1 +

µt
µb

)
− µtx

µb(µb + µt)

)
dx

= ln

(
1 +

µt
µb

)
− µt
µb + µt

(3.13)

Plugging in eq.(3.12) and eq.(3.13) in eq.(3.11), the expected stopping time in Gaussian noise is
given by

E[S] ≈



PD·ln( 1−β
α )+(1−PD)·ln( β

1−α )
ln
(

µb
µb+µt

)
+
µt
µb

, j = 1

−PFA·ln( 1−β
α )+(1−PFA)·ln( β

1−α )
ln
(

1+
µt
µb

)
− µt
µb+µt

, j = 0

(3.14)
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Example 6. A commonly used distribution to model (sea) clutter is a generalized Pareto dis-
tribution:

p0(x) =
1

s

(
1 + k

x

s

)−1−1/k

, k, s > 0, x ∈ R+.

In Section 2.3.3 it is assumed that p1(x) (target+clutter) is generalized Pareto distributed as
well, with new parameters:

p1(x) =
1

s̃

(
1 + k̃

x

s̃

)−1−1/k̃

k̃, s̃ > 0, x ∈ R+.

Now,

DKL(P1||P0) =

∫ ∞
−∞

p1(x)ln

(
p1(x)

p0(x)

)
dx

=

∫ ∞
0

1

s̃

(
1 + k̃

x

s̃

)−1−1/k̃

ln

[
s

s̃

(
1 + k̃

x

s̃

)−1−1/k̃ (
1 + k

x

s

)1+1/k
]

dx

=

∫ ∞
0

1

s̃

(
1 + k̃

x

s̃

)−1−1/k̃
[
ln
(s
s̃

)
−
(

1 +
1

k̃

)
ln
(

1 + k̃
x

s̃

)
+

(
1 +

1

k

)
ln
(

1 + k
x

s

)]
dx

=

∫ ∞
0

ln(s/s̃)

s̃

(
1 + k̃

x

s̃

)−1−1/k̃

dx I1

+

∫ ∞
0

−1

s̃

(
1 + k̃

x

s̃

)−1−1/k̃
[(

1 +
1

k̃

)
ln
(

1 + k̃
x

s̃

)]
dx I2

+

∫ ∞
0

1

s̃

(
1 + k̃

x

s̃

)−1−1/k̃
[(

1 +
1

k

)
ln
(

1 + k
x

s

)]
dx I3,

with

I1 =

[
−
(

1 + k̃
x

s̃

)−1/k̃

ln
(s
s̃

)]∞
0

= ln
(s
s̃

)
,

I2 =

 (k̃ + 1)
(

1 + k̃ xs̃

)−1/k̃ (
ln
(

1 + k̃x
s̃

)
+ k̃
)

k̃


∞

0

= −(k̃ + 1)

I3 =

[(
1

k
+ 1

)(
1 + k̃

x

s̃

)−1/k̃
(
k̃ · 2F1

(
1;
−1

k̃
;
k̃ − 1

k̃
;
k(s̃+ k̃x)

ks̃− k̃s

)
− ln

(
1 +

kx

s

)
− k̃

)]∞
0

=

(
1

k
+ 1

)π(ks̃
k̃s

)1/k̃ (
1− ks̃

k̃s

)−1/k̃

csc
(
π/k̃

)
−
ks̃ · 2F1

(
1; 1; 2− 1

k̃
; ks̃
k̃s

)
s(k̃ − 1)

 ,
where I3 is calculated with Wolfram Mathematica [28], with

csc(θ) =
1

sin(θ)

and where 2F1 is the Hypergeometric function [29]. Unfortunately, the result of I3 is not a useful

expression as the value 2F1

(
1; 1; 2− 1

k̃
; ks̃
k̃s

)
is not clear.
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3.1.2 Neyman-Pearson testing

In this section the Neyman-Pearson theory is discussed. Consider the simple hypothesis

Hi : x1, x2, . . . , xN ∼ pi, i = 0, 1, (3.15)

and the likelihood ratio test

λ(x1, x2, . . . , xN ) =
p(x1, x2, . . . , xN |H1)

p(x1, x2, . . . , xN |H0)

H1

≷
H0

τ

with i.i.d. xi and a predetermined decision time N . The LRT is summarized as follows:

Definition 7 (Likelihood ratio test).

If λ(xN ) ≥ τ , choose H1, else choose H0

The most powerful test is the test that maximizes PD for a certain significance level PFA ≤ α.
Neyman-Pearson solves this optimization problem

argmaxxPD(x), s.t. PFA(x) ≤ α,

with Lagrange multipliers [30], which led to the following theorem [23]:

Theorem 8 (Neyman-Pearson theorem). To maximize PD for a given PFA = α, decide H1 if

λ(x) =
p(x|H1)

p(x|H0)
> τ,

where the threshold τ is found by

PFA =

∫
{x:λ(x)>τ}

p(x|H0)dx = α.

Now a new SLRT is defined that uses Neyman-Pearson theory to calculate the threshold at each
time iteratively to. Hence, in contrary to Wald’s thresholds, Neyman-Pearson threshold is time
dependent, because with each additional sample, λ(x) and p(x|H0) change. Let us define the
sequential likelihood ratio test (SLRT) with Neyman-Pearson as follows:

Definition 9 (SLRT with Neyman-Pearson).

1. If λ(xn) ≥ τn, choose H1, else go to 2

2. If n < N, n = n+ 1, go to 1, else go to 3

3. choose H0

The test at time n is given by

λ(xn) =

n∏
i=1

λ(xi) (3.16)

=

∏n
i=1 p(xi|H1)∏n
i=1 p(xi|H0)

(3.17)
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=
p(xn|H1)

p(xn|H0)
> τn, with xn ∈ Rn

where the threshold τn is found by solving

PFA =

∫
{xn:λ(xn)>τn}

p(xn|H0)dxn = α, (3.18)

Example 10. Again, assume p0 and p1 to be the power distributions as in Example 5. At time
n, the critical region {xn : λ(x1, x2, . . . , xn) > τn} is given by

{xn : λ(x1, x2, . . . , xn) > τn} =

{
xn :

p(xn|H1)

p(xn|H0)
> τn

}

=

{
xn :

(
µb

µb + µt

)n
eµt(

∑n
i=1 xi)/(µb(µb+µt)) > τn

}

=

{
xn : ln(τn) < nln

(
µb

µb + µt

)
+

µt
∑n
i=1 xi

µb(µb + µt)

}

=

{
xn :

n∑
i=1

xi >

(
ln(τn)− nln

(
µb

µb + µt

))
µb(µb + µt)

µt
= τ̃n

}
(3.19)

Lemma 11. The sum of n independent identically exponentially distributed random variables
with mean (µ) is Gamma distributed with parameters (n, µ). Furthermore, when n is an integer,
the Gamma distribution is the same as the Erlang distribution. See [31, 32] for proof.

Hence from Lemma 11, the pdf for the sum of n i.i.d. exponential distributed samples is given
by

f(x, n, µ) =
1

µnΓ(n)
xn−1e−x/µ, µ > 0, n ∈ N+, x ∈ R+. (3.20)

As a result, PFA is given by

PFA =

∫ ∞
τ̃n

1

Γ(n)µnb
xn−1e−x/µbdx = α

= −
[

1

Γ(n)µn−1
b

xn−1e−x/µb
]∞
τ̃n

+

∫ ∞
τ̃n

1

Γ(n− 1)µn−1
b

xn−2e−x/µbdx

=
τ̃n−1
n e−x/µb

Γ(n)µn−1
b

−
[

1

Γ(n− 1)µn−2
b

xn−2e−x/µb
]∞
τ̃n

+

∫ ∞
τ̃n

1

Γ(n− 2)µn−2
b

xn−3e−x/µbdx

After performing these calculations n times, PFA will be given by

PFA =

n∑
i=1

(
(τ̃n/µb)

i−1

Γ(i)

)
e−τ̃n/µb = α. (3.21)
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τ̃n can be found numerically by setting α at a desired level and using the cumulative distribution
function (cdf) of the Gamma distribution to find the maximum value for τ̃n such that PFA ≤ α.
Once, τ̃ is found, τn can be found from

τn =

(
µb

µb + µt

)n
eτ̃nµt/(µb(µb+µt)). (3.22)

Finding τn in eq.(3.18) for the clutter distribution requires the pdf for the sum of i.i.d. gen-
eralized Pareto distributed r.v’s. In [33] the expression for the sum of two samples is derived.
Unfortunately, the expression for multiple samples (> 3) is not clear. Therefore, no example of
performing the calculations likewise Example 10 are given.

3.2 Simulation results i.i.d. data

In this section, the hypothesis testing theories described in Section 3.1 are tested with generated
i.i.d. samples. The results will be thoroughly compared later with the results with the data from
the particle filter. Also discussions regarding to the desired CFAR property are given.

Data samples are generated according to either p1(x) or p0(x). In this section, these are as-

sumed to be known exactly. The likelihood ratios, λ(x) = p1(x)
p0(x) , are calculated for the two data

sets. These likelihood ratios are tested against Wald’s thresholds (3.4)-(3.5) and Neyman-Pearson
threshold (3.18) to obtain the PFA and PD values.

3.2.1 Results Wald’s theory with i.i.d. data

Gaussian Noise

In Gaussian noise, the expected stopping time E[S] can be calculated with eq.(3.14). First, two
scenarios are given for which E[S] is calculated.
Scenario 1: suppose that µt = 10, µb = 1 (SNR = 10dB), α ≤ 0.001 and 1−β ≥ 0.9, then E[S]
is given by:

E[S] ≈


0.9·ln( 0.9

0.001 )+(1−0.9)·ln( 0.1
1−0.001 )

ln( 1
1+10 )+ 10

1

, j = 1

− 0.001·ln( 0.9
0.001 )+(1−0.001)·ln( 0.1

1−0.001 )
ln(1+ 10

1 )− 10
1+10

, j = 0

≈

0.775, j = 1

1.540, j = 0
(3.23)

Scenario 2: suppose that µt = 10, µb = 5 (SNR = 3dB), α ≤ 0.001 and 1− β ≥ 0.5, then E[S]
is

E[S] ≈


0.5·ln( 0.5

0.001 )+(1−0.5)·ln( 0.5
1−0.001 )

ln( 5
5+10 )+ 10

5

, j = 1

− 0.001·ln( 0.5
0.001 )+(1−0.001)·ln( 0.5

1−0.001 )
ln(1+ 10

5 )− 10
5+10

, j = 0

≈

3.063, j = 1

1.586, j = 0.
(3.24)
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In Figure 3.1 the PFA and PD curves are plotted for three different noise powers (µ = 1, 2 and
5) and target power µt = 10 for 106 i.i.d. generated samples. First of all, following Appendix A
in [22], this sample size gives very reliable results for the values plotted in the figure. Figure 3.1a
shows that all three curves fulfill the PFA criterion (PFA ≤ α). However, the curves do not reach
the purple line, which could indicate that the lower threshold τl is too high. Furthermore, since
three different PD criteria (PD ≥ 1− β) are used for the three noise powers, the likelihoods for
the corresponding noise powers are tested against different upper and lower thresholds. Hence,
nothing general can be said about the CFAR property, because the CFAR property acquires the
condition of the same threshold for all background conditions. Figure 3.1b shows that all PD
curves (solid lines) fulfill the corresponding PD criterion (dotted lines) as well. It also shows that
with a higher noise power level, it takes longer to reach the criterion, which coincides with the
calculations of E[S] in Scenario 1 and 2.

Pareto Clutter

Although, the final expression for E[S] has not been derived in case of Pareto clutter, Wald’s
theory is tested regardless to see whether or not Wald’s criteria are reached in finite time. In
Figure 3.2 the PFA and PD curves are plotted for 106 i.i.d. clutter samples. The figure shows
that for all three shape parameters k, Wald’s PD criterion are reached in finite time, while still
fulfilling the PFA criterion as well. Figure 3.2a indicates that the lower threshold might be a bit
too high as no PFA comes very close to the purple line.
Contrary to the Gaussian noise case where three different thresholds were used, in the Pareto
case the thresholds for all three shape parameters k are the same. Unfortunately, the PFA curves
still do not show signs of the CFAR property as the values for different k, both for n is low and
n is high, are very different.
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Figure 3.1: PFA and PD curves with Wald’s criteria for i.i.d. noise samples
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Figure 3.2: PFA and PD curves with Wald’s criteria for i.i.d. clutter samples
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3.2.2 Results Neyman-Pearson theory with i.i.d. data

In this section, Neyman-Pearson Theory is tested and the results for the standard LRT detection
scheme with Neyman-Pearson threshold are compared to the new sequential detection scheme 9.
Note again that the threshold is varying in time, because at each time n, a new sample will be
available and as a result, the threshold needs to be updated. Only Gaussian background noise
is considered, because the expressions for the critical region {xn : λ(xn) > τn} and p0(xn) with
xn ∈ Rn in case of Pareto clutter are not clear, as mentioned in Section 3.1.2.

The desired significance level α is constructed as follows: a final time horizon is set at N = 25.
Hence, following detection scheme 9, the sequential test has 25 time steps to decide p1. If p1 is
not decided after N = 25, automatically p0 will be decided. At N = 25, Sum α is set at 10−3 in
the sense that the summed PFA values from 1 to N should satisfy PFA ≤ α. Assuming that at
each time, the probability of a false alarm is the same, the threshold at each time n is calculated

using α = 10−3

N in eq.(3.18).

In Figure 3.4a, the PFA curves of both the LRT and the SLRT are plotted for three differ-
ent noise powers (µ = 1, µ = 2 and µ = 5). 107 i.i.d. samples are used, which are generated
as explained in the beginning of Section 3.2. The solid lines (–) represent the (integrated) PFA
values for the SLRT. The dotted lines (- -) represent the PFA values for the LRT at each time,
when a predetermined fixed horizon n would have been used. For proper comparison between

the two detection schemes, α is set at 10−3

N at each time in the LRT as well. The circled lines
(-o-) show the summed PFA values of the LRT, up to and including time n.

From Figure 3.4a, some interesting observations can be made. First, the dotted lines of the
LRT circle closely around the pink line. This indicates that when the number of samples goes
to infinity, the PFA values for all three power levels will be exactly α. This shows that Neyman-
Pearson theory indeed constructs the most powerful test (PD is maximized when PFA = α, see
[23] for more details). As a result of the PFA values for the LRT at times 1 to N individually,
the summed values (-o- lines) for all noise levels approximately match with the summed α (the
purple -o- line). Ideally the solid lines from the SLRT should be close to this purple circled line as
well. This would indicate that the time depending threshold in the SLRT, calculated by solving
eq.(3.18), is not too high and that Neyman Pearson theory constructs the most powerful test
for the sequential detection scheme, defined in 9 as well. However, the actual curves show a bit
different behavior. Although the PFA values for the three noise levels are again approximately
the same, they do not reach the value of the desired PFA (pink -o- line). The explanation is
that once a false alarm is detected, the SLRT stops, whereas in the summed LRT curves, the
possibility of detect a false alarm at for example time n = 3 and again at say time n = 5 is
included. Hence a direct consequence of using the SLRT, is that the integrated PFA values can
not be controlled exactly by using Neyman-Pearson lemma. From now, the difference between
the SLRT and LRT PFA values will be referred to as Sequential Loss.

In Figure 3.4b, PD curves are given for both noise levels and both the LRT and the SLRT.
The target power is in both cases µt = 10, which makes the SNR respectively 10dB (blue),
7dB(green) and 3dB (red). For the case when the SNR equals 10dB, the curves of the LRT and
the SLRT are the same. Hence, for powerful targets, compared to the background, it does not
matter which test is used. Note that when the SNR is really high, say bigger than 20dB, the
TBD approach is not even needed and the classical detecting approach is preferred, as explained
in Section 2.1.
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For the target with SNR = 3dB, the LRT and the SLRT curves are different. The SLRT has a
slightly higher PD which shows the advantage of the SLRT to detect at each time: for example,
the SLRT could have made a detection at n = 4, while at n = 8, the integrated likelihood ratio
is lower than the threshold at time 8. This results in no target detection for the LRT, while the
SLRT already made this detection at n = 4.

In Figure 3.3, the thresholds are given for all noise levels in the log domain. Again, these
threshold are calculated by solving eq.(3.18), where all parameters are known. Clearly, the
thresholds are very different. The threshold for µ = 1 (blue) is decreasing from approximately
7 till −15 at n = 25. This means that linearly, this threshold converges to 0 very quickly. The
threshold for µ = 2 converges less quick to 0 and the threshold for µ = 5 (red) is most stable.
It increases a bit in the beginning, and decreases a bit when more samples are available. An
important note is that although the PFA curves in Figure 3.4a for the three power levels were
approximately similar, the CFAR property is not fulfilled, because the likelihood ratios are tested
against different threshold.

time (n)
0 5 10 15 20 25

ln
(τ

)

-25

-20

-15

-10

-5

0

5

Threshold, µ=1
Threshold, µ=2
Threshold, µ=5

Figure 3.3: Threshold ln(τ) for Neyman-Pearson theory
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3.3 Simulation results with data from particle filter

In this section, the results for the hypothesis testing theories are shown for data acquired from
the particle filter. The data samples (posterior likelihood ratios) are obtained from the filter
with 105 Monte Carlo (MC) simulations. The results will be compared with those for the i.i.d.
data in Section 3.2.

3.3.1 Results Wald’s theory with filtered data

Gaussian Noise

In Figure 3.5, the results for Wald theory are shown in Gaussian noise. Figure 3.5b shows that
the PD criterion for all power levels are reached, similar to the i.i.d. data in Figure 3.1b. Also
the stopping times and even the actual PFA values show similarities to the results of the i.i.d.
data. However, Figure 3.5a shows different results. All PFA curves cross the PFA criterion,
which means that the lower threshold τl is too low to use with the filtered data. Also, at the
time that the PFA criterion is crossed (around n = 7), not all PD criteria are fulfilled. Since the
PD criterion for µ = 5 is not reached until n = 11, is seems that for high power levels, one Wald
criterion can not be fulfilled without damaging the other.

Pareto Clutter

Figure 3.6 shows the results of Wald’s theory for filtered samples in clutter. Similar to the results
for Gaussian noise, the PD curves satisfy the PD criterion, although it is very close for k = 0.5 (red
line). Also similar to Figure 3.5, the PFA curves in Figure 3.6a do not fulfill Wald’s PFA criterion.

Overall, based on Figures 3.5 and 3.6, the observation is that Wald’s theory does not work
properly for filtered data from the particle filter. The explanation is given in Chapter 4.

3.3.2 Results Neyman-Pearson theory with filtered data

In Figure 3.7, the results of Neyman-Pearson theory are shown with data from the particle filter.
Just as in Section 3.2.2, only results for Gaussian noise are considered. Similar to the results
for Wald’s theory with filtered data, the PD curves in Figure 3.7b converge to 1 for all power
levels. Unfortunately, the PFA curves in Figure 3.7a eventually converge to 1 as well. This is a
major difference compared to the results for the i.i.d. data, where the PFA curves did not even
reach significance level α (the solid lines in Figure 3.4a). So the thresholds, calculated by solving
eq.(3.18) and shown (for µ = 1 and µ = 5) in Figure 3.3, seem to be far too low. Furthermore, the
false alarm rate in Figure 3.7a is certainly not constant as the PFA curves for the different power
levels are not close to each other. Based on these results, it seems that also Neyman-Pearson
theory is not suitable for the data from the particle filter.

Remark 12. Because of the computational time of the filter, only 105 data samples are generated

for each power level. Therefore at each time step, α is set at 10−3, instead of 10−3

N as in
Section 3.2.2. Hence, the actual PFA values in Figure 3.7 are not comparable to the values in
Figures 3.4a and 3.4b. However, the behavior of the curves are comparable, which makes the
comments on the results in Sections 3.3.1 and 3.3.2 proper.
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Figure 3.5: PFA and PD curves Wald’s theory in noise with data from filter
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Chapter 4

Problems with filtered data and
Solutions

The results in Sections 3.2 and 3.3 for the i.i.d. generated samples coincide with both Wald’s
theory and Neyman-Pearson theory. However, the results of the data acquired from the parti-
cle filter show significant differences. In this chapter, possible reasons for these differences are
discussed and models are proposed to correct some wrong assumptions or to improve the perfor-
mance of the detection schemes.

The most important assumption is that the samples are independent identically distributed.
In Section 3.2 the samples are generated such that they are indeed i.i.d. and the results coin-
cided with the theory. The results of the filtered data indicate that the samples might not be
i.i.d. at all. Several observations are made that could explain these undesired results. In Sec-
tion 4.1, these observations are discussed and in Section 4.2 models/solutions are proposed. In
Section 4.3, the results will be presented for the new models. Finally in Section 4.4, a proposed
implementation of the CFAR detection scheme within the TBD approach is presented.

Remark 13. In Section 3.1.1, Wald’s threshold are derived with use of the assumption that
the sequential test will decide eventually, i.e. P (S < ∞) = 1. Despite not giving proof that
P (S <∞) = 1 holds, by for example plotting PMD together with PD, it is verified that the test
at N = 25 ensures

P (Conclude H0|H0) + P (Conclude H1|H0) = 1, (4.1a)

P (Conclude H0|H1) + P (Conclude H1|H1) = 1. (4.1b)

Hence, Wald’s thresholds are derived while satisfying the condition of P (S <∞) = 1.

4.1 Observations in filter

In this section, the reasons behind the differences between the results of the i.i.d. data and the
results of the data from the particle filter are discussed. First, the influence of the spread of the
particle cloud on the observed measurement by the cloud is discussed, as well as the influence
on the RCS and velocity estimations. Also the result of the MCMC step on the tested data in
Section 3.3 is discussed. Finally, some comments on the target model are given.

41
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To start, three figures are presented that present the output for a single run of the filter in
case of tracking respectively Gaussian noise, Pareto clutter and an actual target (in Gaussian
noise), where all plotted particles represent the posterior estimations. The noise has mean power
µn = 1, the clutter parameters are k = 0.3, s = 1 which results in a mean power µc = 1.43 and
the target has mean power µt = 10. In Figures 4.1a, 4.2a and 4.3a, the spread of the particle
cloud over the range measurement cells is shown. The power of this measurement cell is forced
to be above the startup threshold τstart. The particle spread in Figures 4.1a and 4.2a is way
more than in Figure 4.3a. It also seems that the spread in Figure 4.2a is a bit more compact
than the spread in Figure 4.1a in the sense that the range that is covered by the cloud is less in
Figure 4.2a than in Figure 4.1a. It also seems that there are less individually “living” particles in
Figure 4.2a. This can be explained by the fact that the variance of clutter power samples is much
higher than the variance of noise samples and hence there will be more high clutter samples that
can initiate particles to track them. In Figure 4.3a, the true target position is plotted (in purple)
alongside the particle cloud and corresponding estimates. The target has a relatively high SNR
(10dB) and as a result the particles track the target very closely.

In Figures 4.1b, 4.1c, 4.2b, 4.2c, 4.3b and 4.3c, the RCS estimation and velocity estimation
of the particles is given during the filter. The RCS is initialized based on the first power mea-
surement, by solving the Radar equation (2.1). In (2.1), the transmitted power Pt, the Radar
gain G are known and as soon as a measurement is received, the effective area Ae, the range of
an reflecting object R and the reflected power Pr are estimated. Based on the parameters, the
RCS can be estimated by

σ =
Pr ·R4 · (4π)2

Pt ·G ·Ae
. (4.2)

In Figures 4.1b and 4.2b, the RCS estimate decreases as the filter progresses. The RCS in clutter
is initiated higher than the RCS in noise and also the estimation at n = 25 is higher in case
of clutter, due to the higher variance of clutter samples and hence the higher probability of
occurrence of high power samples. In Figure 4.3b, the true target RCS is plotted alongside the
particle estimates. After a small decrease in the estimates during the first time steps (due to a
too high initiation), the estimate of the particles cloud circles around the true value.

In Figures 4.1c, 4.2c and 4.3c, the estimate of the velocity of the target is plotted. The ve-
locity is initialized around 0 and a dynamic state model is used where the velocity is estimated
to be 0 as well. Hence, Figures 4.1 to 4.3 are results from perfect filters in the sense that the
track position and the dynamic system model, match perfectly with the true position of the
target. Again, the spread in velocity in noise and clutter is much bigger than the spread of the
particles cloud that tracks the actual target. Furthermore, the spread in noise seems again to be
a bit more than the spread in clutter by the same reason that high clutter samples are less rare
than high noise samples.

The integrated predicted and posterior log likelihood ratios are shown in Figures 4.1d, 4.2d
and 4.3d. The likelihood ratio at time n is given by the mean over all the particles, i.e.

λ(xn) =
1

NoP

NoP∑
j=1

λ(xjn). (4.3)

Time integration is performed by

λ(xn) =

n∏
i=1

λ(xi). (4.4)
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4.1.1 RCS fluctuations

The RCS of the particles is initialized based on solving eq.(4.2). Figures 4.1b, 4.2b and 4.3b
show that the estimate of the RCS is far from constant. During the track, the estimates change
based on incoming measurements. For example, when the first measurement turns out to be a
fortuitous rare noise/clutter sample, the RCS estimate will drop heavily, which is the case in
Figures 4.1b and 4.2b, because new measurements contain (far) less power. As a result, the
estimate of the mean target power, µt, also changes with each incoming measurement. These
fluctuations should be considered in threshold calculations. Furthermore, background estimates
change during the filter as well and also these fluctuations should be considered in threshold
calculations. In this research the background parameters, µb in case of Gaussian noise and k, s
and θ in case of Pareto clutter, are known and held constant during the filtering.

4.1.2 Spreading particles

A particle cloud that tracks a possible target does not constantly have the same shape. During
the prediction step in the particle filter, the particles are predicted according to a state model
with a certain error. This error causes the particles to spread out at each time n. During
the MCMC step the particles are judged and rescheduled based on their likelihood ratio. In
summary, the higher the likelihood ratio of a particle, the more likely that particle is to be
accepted. After the MCMC step, the accepted particles form the posterior particle cloud, which
will be clustered towards high power measurements. When the particle cloud receives many high
power measurement (probably from a target), the MCMC step ensures that the cloud tracks
the target closely, because many particles will have a high likelihood ratio. This is illustrated
in Figure 4.3a. However, when the cloud is actually tracking noise of clutter, not many parti-
cles will have a high likelihood ratio and after the MCMC step the cloud will not be clustered.
The next prediction step causes the particles to be spread even more and this phenomenon re-
peats itself. Figures 4.1a and 4.2a illustrate the resulting divergent behavior of the particle cloud.

Due to the spreading particles, the cloud will cover a varying number of measurement cells
during the track. In Figures 4.1a and 4.2a, the cloud only covers a few cells in the beginning, but
is spread over many cells in the end. Consequently, the particle cloud contains a varying number
of cell measurements during the track. Since the likelihood ratio at time n is the mean over the
likelihood ratios of all particles (4.3), it seems that the input in the likelihood ratio expression is
not identically distributed, because the number of measurement cells fluctuates. Let us denote
the number of range measurement cells covered by the particle cloud by c and let us consider
the following example for clearness.

Example 14. Let us assume for simplicity that the particle cloud during the track is equally
spread over a varying number of cells, i.e. the number of cells covered by the cloud c varies,
but at each time the number of particles in each cell is NoP

c . Furthermore, let us neglect the
point spread function and let us only consider the measurement in the cell where the respective
particle is positioned. Using these assumptions, each particle gets a likelihood function p(z|xj),
where z is only the measurement cell where the respective particle is positioned. Let us now
assume that at time n = 1, the whole particle cloud is positioned in one measurement cell. Then,
the likelihood of all particles will be based on the same measurement cell. As a result, the input
in the likelihood ratio expression (4.3) is practically one measurement cell. Assume that at time
n = 5, the particle cloud is equally spread over 5 measurement cells, i.e. c = 5. Now the input
in (4.3) contains 5 measurement cells. Hence, λ(xn) is based on the mean of the 5 measurement
cells.
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Because λ(xn) is the mean of all likelihood ratios of the particle cloud (eq.(4.3)), where the cloud
covers a varying number of measurement cells c during the track, it seems that the resulting sam-
ple of the complete particle cloud is not identically distributed over time. This has consequences
as for Wald’s theory and Neyman-Pearson theory in Sections 3.1.1 and 3.1.2 is it assumed that
the samples are i.i.d. The fact that this assumption might not hold causes immediate problems
in applying Wald’s theory, because the whole theory is based on the assumption that the samples
are i.i.d. Also Neyman-Pearson theory is based on the assumption of i.i.d. samples. However, the
theory is applied in a sequential detection scheme as Definition 9. The advantage of the design
in Definition 9 is that the samples for different times do not have to be identically distributed as
long as at each time, a proper distribution is used in the threshold calculations.

4.1.3 MCMC step

The MCMC step is an important step in the SMCMC. As explained in Sections 2.2.3 and 2.3.5,
MCMC works by defining a Markov chain over the state space X such that the stationary
distribution of the chain, π(X ), equals the posterior distribution p1(X|Z) over the configuration
X , given measurements Z. Because of the acceptance/rejection step in the MH algorithm, the
posterior particle cloud is expected to be more clustered towards high measurements samples.
As a direct consequence, despite the fact that both the predicted and the posterior particle cloud
as defined in Section 2.2.3 approximate the same target distribution, the expected mean of the
posterior likelihood ratio is bigger than the mean of the predicted likelihood ratio:

E[λpost(x)] = E

 1

NoP

NoP∑
j=1

λpost(x
j)

 > 1

NoP

NoP∑
j=1

λpred(x
j) = λpred(x).

In practice, the posterior likelihood will always be bigger than the predicted likelihood, when
the number of particles is big enough. In Figures 4.1d, 4.2d and 4.3d the differences between the
time integrated (4.4) predicted and posterior likelihood ratio are illustrated. Clearly the poste-
rior likelihood ratio is bigger than the predicted likelihood ratio in all three cases. Furthermore,
it seems that the MCMC step has a relatively bigger influences when tracking noise or clutter
(Figures 4.1d and 4.2d), than when tracking a target (Figure 4.3d). Also, the influence seems to
depend on the shape of the particle cloud, because the effect of the MCMC is not the same for
each time.

Since the posterior likelihood ratio is used in the hypothesis testing, the effect of the MCMC
illustrated in Figures 4.1d and 4.2d could explain the undesired PFA values in Section 3.3. In
Figure 4.4, the PFA curves illustrate the resulting effect of the MCMC on the false alarm prob-
ability. In this figure, the curves show the PFA values for tracks in noise where the likelihood
ratios are tested against Wald’s thresholds (eqs.(3.4)-(3.5)), where 1 − β is set to respectively
0.9 for µn = 1, 0.7 for µn = 2 and 0.5 for µn = 5 and α is set to 10−3. 105 Monte Carlo runs
are performed, where the number of particles is 104, which is sufficient to show the effect of
the MCMC. In Figure 4.4a, all PFA curves fulfill Wald’s PFA criterion, while in Figure 4.4b all
curves clearly cross the PFA criterion. In Figure 4.5, the corresponding PD curves are given.
Contrary to the PFA curves, the posterior values do fulfill Wald’s criterion in Figure 4.5b and
one predicted value in Figure 4.5a do not (the red line corresponding to µ = 5). At first, this
might seem confusing as the reasoning behind presenting the PFA curves was to show that the
predicted likelihood ratios fulfill Wald’s PFA criterion, while the posterior likelihood ratios do
not. However, the fact that the PD criterion is not reached for all power levels, is caused by
another phenomenon, further discussed in Section 4.1.4.
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Overall, it’s important to know the impact of the MCMC step to obtain proper results. An
accurate model is necessary to enclose the MCMC step, such that it can be integrated in the
threshold calculations. A proposed model is discussed in Section 4.2.3.

4.1.4 Swerling Case

In Section 2.3.2, different Swerling models are discussed. Since a Swerling I target model is
used in this theses, target power reflections are not always measured in the cells. Depending on
whether or not the target reflections are measured, power samples from different distributions
are measured. This immediately contradicts the assumption that the samples are identically
distributed. In calculating Neyman-Pearson threshold in Algorithm 3, this is not a problem as
long as the distributions p0 and p1 are well estimated. However, in applying Wald’s theory this
contradicts the most important assumptions of i.i.d. samples. Furthermore, a more practical
problem could arise: Wald’s thresholds do not depend on underlying distributions, but they do
depend on the criteria PFA ≤ α and PD ≥ 1 − β. When the measurements from the targets
behave according to a Swerling I model, it obviously takes longer to detect the target. Hence,
the expected stopping time E[S] will increase. Theoretically, this is not a big problem as long
as decision can be made within a finite time horizon. However, the particle cloud will spread
out when it does not get high power measurements from a target as illustrated for example in
Figures 4.1a and 4.2a. This makes it even harder to detect a possible target. As a result, the
PD for targets with a low SNR might not fulfill the PD criterion.

In Figure 4.6 the differences in PD between a Swerling I and a Swerling 0 target are shown,
tested against Wald’s thresholds. The target has a mean power of µt = 10, and the desired
criteria are

PFA ≤ α = 10−3 PD ≥ 1− β = 0.6.

In Figure 4.6b, the PD criterion are quickly reached for all three shape parameters k, which
suggests that also the PD for targets with less power will fulfill the criterion. Figure 4.6a shows
the Swerling I model used during this thesis. For k = 0.5 the PD criterion is barely reached.
This suggests that for targets with lower Signal to Clutter Ratio (SCR) , the PD criterion can
not longer be reached. Hence, it seems that by using a Swerling I target model, Wald’s theory
can no longer be applied, because the assumption of i.i.d. samples is not fulfilled which results
in a PD criterion that can not be reached.

Remark 15. Although it is discussed that Wald theory can not be applied properly when using a
Swerling I model, a Swerling 0 target model is often not realistic in practice. In some fortunate
scenarios a target can be modeled with a Swerling 0, for example when transmitting towards
the nose of a missile in clear weather. However, because the application of this thesis will
be primarily tracking small targets in (heavy) sea clutter, a Swerling 0 target model is not
representative. Therefore, a Swerling I target model will still be used and no adjustments to this
model will be discussed in Section 4.2.
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Figure 4.4: Difference PFA curves between predicted and posterior likelihood ratios
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Figure 4.5: Difference PD curves between predicted and posterior likelihood ratios
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Figure 4.6: Difference in PD between Swerling I and Swerling 0 target.
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4.2 Models as solution

In this section, models and methods will be proposed to improve the performance of detection
schemes. First, the fluctuations in the RCS estimations are discussed. Second, a method is
proposed to model the spread of the particle cloud. Finally, a method to model the MCMC step
is derived. From Remark 15, the Swerling models will not be discussed in this section.

4.2.1 Handling the RCS fluctuations

Section 4.1.1 explained that parameter estimates of target and background change during the
filtering. Despite simplifying the filtering by fixing the background power, the fluctuations in tar-
get power estimates heavily influence the PFA curves when the likelihood ratio is tested against
a threshold that is calculated without considering these fluctuations. In Sections 3.2 and 3.3 the
thresholds are calculated according to a priori knowledge of the parameters. When the param-
eters are constant over time, the results of Wald’s theory and Neyman-Pearson theory coincide
with theoretically expected results as shown in Section 3.2. Unfortunately when the parameter
estimates change over time, as in Section 3.3, the PFA curves show undesired behavior as the
PFA values do not satisfy the set significance level. Note that even if the true parameter values
are known a priori and the threshold is properly calculated according to this known quantities,
using this threshold with filtered data will not give proper results.

To overcome this problem, the filtered parameter estimates should be used in the threshold cal-
culations. These parameter estimates could be stored for all time to calculate a proper threshold
afterwards, but ideally the threshold is updated iteratively according to new filtered estimates
per time such that the most recent estimates are directly used.

4.2.2 Model spreading particles

In Section 4.1, it is discussed that the input sample of the particle cloud in λ(xn) seems to be not
identically distributed due to the spreading particle cloud. Let us denote this input sample in
what follows by the total measurement sample. The fact that the total measurement sample is
not identically distributed causes problems in applying the hypothesis testing theories. It makes
it impossible to guarantee Wald’s criteria and it also makes adjustments necessary in applying
Neyman-Pearson Theory.

The use of a grid based particle filter could be a solution. In these grid based filters, the position
of the particles is forced to be constant and consequently the spread of the particle cloud over the
cells is constant. For further details, let us refer to [8, 34, 35]. Two naive ways of constructing a
filter that gives i.i.d. total measurement samples are

• The use of an infinite number of particles

• Predict the particle cloud according to the state model without process noise (error) and
skip the MCMC step.

The first solution does not only solve the problem of the total measurement samples being not
identically distributed, but it solves many more irregularities in the particle filter by covering
the whole measurement space at any time by an infinite number of particles. However, it will
be computationally impossible to process an infinite number of particles. Hence in practice
this idea is not useful. The second solution could be used in practice. However, the PD will
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be horrible when the dynamic target model is not absolutely accurate, because in this case the
target will evolve different than predicted and the particles will eventually lose sight of the target.

Since these two naive solutions will not be used in practice, it is important to look at the
particle cloud and to model this in a way that is useful, at least for applying Neyman-Pearson
theory. Following Example 14, the distribution of a sample xn in λ(xn) of a particle cloud spread
over one measurement cell is different from the distribution of a sample xn in λ(xn) of a particle
cloud spread over a number (c) cells, with c > 1. For now it is assumed that the particles are
equally spread over the measurement cells, as in Example 14. As a result, xn in λ(xn) is now
distributed according to the sample mean of c samples. In case of Gaussian noise it will be shown
how to integrate the spread of the particle cloud in the threshold calculations. In case of Pareto
clutter only an expression is derived for the probability density function of the sample mean.

Gaussian Noise

In case of Gaussian noise, the power of noise samples is exponentially distributed. The sample
mean of c exponential distributed random variables with mean µ is known to be Gamma dis-
tributed with parameters (k = c, θ = µ/c) [31]. The probability density function of the sample
mean of c exponential distributed r.v.’s is given by

p(x, k, θ) =
1

θkΓ(k)
xk−1e−x/θ, k, θ > 0, x ∈ R+

=
cc

µcΓ(c)
xc−1e−xc/µ, c, µ > 0, x ∈ R+. (4.5)

Ultimately, the distribution of the sample mean should be used in the threshold calculation, given
by (3.18). However, it seems impossible to integrate the distribution of the sample mean (4.5)
together with the distribution of the time integrated sample (3.20) simultaneously. Therefore,
the threshold calculations for the integrated time sample in Example 10 are changed using the
following observation: the threshold found by eqs.(3.21)-(3.22) can also be found with the use
of the pdf of the sample mean of n of i.i.d. exponential distributed r.v.’s, instead of the pdf of
the sum of n i.i.d. exponential distributed r.v.’s. In exchange, also the critical region has to be
changed. The critical region becomes:

{x̄n : λ(x̄n) > τn} =

{
x̄n :

p(x̄n|H1)

p(x̄n|H0)
> τn

}

=

{
x̄n :

(
µb

µb + µt

)n
eµt(

1
n

∑n
i=1 xi)n/(µb(µb+µt)) > τn

}

=

{
x̄n :

1

n

n∑
i=1

xi >

(
ln(τn)− nln

(
µb

µb + µt

))
µb(µb + µt)

nµt
= τ̃n

}
, (4.6)

where x̄n is the mean of the elements in the vector xn. Now, the pdf of the sample mean of n
i.i.d. exponential random variables (4.5) is used to find τ̃n by solving
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PFA =

∫ ∞
τ̃n

nn

Γ(n)µnb
xn−1e−xn/µbdx = α

= −
[

nn−1

Γ(n)µn−1
b

xn−1e−xn/µb
]∞
τ̃n

+

∫ ∞
τ̃n

nn−1

Γ(n− 1)µn−1
b

xn−2e−xn/µbdx

=
nn−1e−nτ̃n/µb

Γ(n)µn−1
b

−
[

nn−2

Γ(n− 1)µn−2
b

xn−2e−xn/µb
]∞
τ̃n

+

∫ ∞
τ̃n

nn−2

Γ(n− 2)µn−2
b

xn−3e−xn/µbdx

After performing these calculations n times, PFA will be given by

PFA =

n∑
i=1

(
(nτ̃n/µb)

i−1

Γ(i)

)
e−nτ̃n/µb . (4.7)

Once τ̃n is derived, τn can be found from

τn =

(
µb

µb + µt

)n
enτ̃nµt/(µb(µb+µt)).

Now the threshold calculations for the integrated time samples are rewritten as a sample mean
calculation, the integrated time sample and the sample mean of the c measurement cells can
easily be integrated in the threshold calculations simultaneously. Suppose that the number of
measurement cells that is covered at time n is cn, then τ̃n can be calculated by solving

PFA =

∫ ∞
τ̃n

c̃n
c̃n

Γ(c̃n)µc̃nb
xc̃n−1e−xc̃n/µbdx =

c̃n∑
i=1

(
(c̃nτ̃n/µb)

i−1

Γ(i)

)
e−c̃nτ̃n/µb , (4.8)

where c̃n is given by

c̃n =

n∑
i=1

ci. (4.9)

Finally, τn is given by

τn =

(
µb

µb + µt

)c̃n
ec̃nτ̃nµt/(µb(µb+µt)). (4.10)

Remark 16. In these threshold calculations, it is assumed that the particle cloud is equally spread
over the measurement cells. Also the influence of the point spread function on the measurement
samples is neglected. Hence in practical application, the PFA values using eqs. (4.8)-(4.10) might
not satisfy the exact level of significance α, but the performance in PFA should at least improve
compared to the threshold calculation in Example 10.

Remark 17. It is not possible to predict the spread of the particle cloud beforehand. Hence
for accurate threshold calculations, it is important to update the information about the particle
cloud iteratively.
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Generalized Pareto Clutter

In case of generalized Pareto clutter, the pdf of the power is given by

pX(x) =


1
s

(
1 + k

(
x−θ
s

))−1−1/k
, x ≥ θ, k > 0, s > 0, θ ∈ R,

1
se−( x−θs ), k = 0,

(4.11)

with θ location parameter, s scale parameter, k shape parameter respectively. The cdf of the
power is given by

FX(x) =


1−

[
1 + k

(
x−θ
s

)]−1−1/k
, k > 0,

1− e−( x−θs ), k = 0,

(4.12)

The distribution of the sample mean of c Pareto distributed r.v.’s is not clear at first sight. The
method of characteristic functions, is applied to find an expression for this distribution of the
sample mean. First, change of variables is applied to find the weighted distribution of a single
measurement. y = x/c → x = c · y and the Jacobian is dx

dy = c. Hence, the pdf of a weighted
sample is given by

pY (y) =


c
s

(
1 + k

(
cy−θ
s

))−1−1/k

, y ≥ θ, k > 0, s > 0, θ ∈ R,

1
se−( cy−θs ), k = 0,

(4.13)

The characteristic function ϕY (t) for the weighted sample is given by (see Appendix C)

ϕy(t) =


e(itθ/c)

∑∞
m=0

(its/c)m∏m
b=0(1−bk) , k > 0,

e(itθ/c)
∑∞
m=0(its/c)m, k = 0.

(4.14)

The Cauchy product [36] is applied to find

ϕȲ (t) = ϕ∑
`
y` =

∏
`

ϕY (y`)

In Appendix C it is derived that ϕȲ (t) is given by

ϕȲ (t) = eitθ
∞∑

m1=0

m1∑
m2=0

. . .

mc−1∑
mc=0

(its/c)m1∏mc
b1=0(1− b1k)

∏mc−1−mc
b2=0 (1− b2k) . . .

∏m1−m2

bc=0 (1− bck)
.
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The pdf, pȲ (y), is found by using the inverse Fourier transform [37] of ϕȲ (t):

pȲ (y) =
1

2π

∫
R
e−inyϕȲ (n)dn

In Appendix C the final expression for the pdf of the sample mean of c i.i.d. Pareto r.v.’s pȲ (y)
is found to be

pȲ (y) =

∞∑
m1=0

m1∑
m2=0

[
(−1)m1+1 + (−1)m1+m2(2πi(θ − y))m2e2πi(θ−y)

]
(F)

2πi(θ − y)m1+1
, (4.15)

with

(F) =

m2∑
m3=0

m3∑
m4=0

. . .

mc−1∑
mc=0

(s/c)m1∏mc
b1=0(1− b1k)

∏mc−1−mc
b2=0 (1− b2k) . . .

∏m1−m2

bc=0 (1− bck)
.

Although this expression for the sample mean of c i.i.d. Pareto distributed r.v.’s is analytically
correct, this expression is impossible to use in threshold calculations for now. The Lindeberg-
Levý Central Limit Theorem (CLT) [38] states that the series converges in distribution (for
k < 0.5):

Theorem 18 (Lindeberg-Levý Central Limit Theorem).
Suppose {x1, x2, . . . , xn} is a sequence of i.i.d. random variables with E[xi] = µ and Var[xi] =
σ2 <∞. Then as n approaches infinity, the random variables

√
n (Sn − µ), with Sn = x1+x2+...+xn

n
converge in distribution to a normal distribution N (0, σ2):

√
(n)

((
1

n

n∑
i=1

xi

)
− µ

)
d−→ N (0, σ2).

Remark 19. Although it is clear from the CLT that the series will converge in distribution for
k < 0.5, the rate of convergence should be investigated first to see how many iterations are
needed to approximate the distribution well enough. When this number of iterations is too
large, expression (4.15) might not be useful in sequential threshold calculations because of the
computational time it will take.
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4.2.3 Proposed model MCMC step

In Section 4.1.3 it is explained that the MCMC step has a huge impact on the PFA and PD.
To control the PFA values, a good insight in the MCMC step is necessary. In this section the
details of the MCMC step are discussed and by making some assumptions, a method is derived
to model the impact of the MCMC step to the posterior likelihood ratio.

As discussed in Section 2.2.2, the particles only approximate the distribution under hypothe-
sis H1, which is the distribution under the assumption that a target is present. In Section 2.2.3
it is discussed that the Metropolis-Hastings (MH) algorithm is used to perform the MCMC step.
The MH algorithm is summarized in Algorithm 3.

Now the working of the algorithm is used to model the influence of the MCMC step on the
posterior likelihood ratio. Suppose a set of predicted likelihoods, {p(z|xjpred)}NoPj=1 , is available.
For simplicity it is assumed that the likelihood functions are calculated conditioned on a state
vector xjpred with dimension 1. Suppose furthermore that I = [0, b] is a closed interval contained

in [0,∞), where b is the first integer greater than the highest (scalar) state value xjpred, in our
case range value, i.e.

b =
⌈
max{xjpred}

NoP
j=1

⌉
. (4.16)

Using this value for b, the whole domain of p(z|xjpred) is contained in I. Now I is divided into

S parts (segments) of equal length. Let us denote segment i by si and let us define the value of
segment i, denoted by Si, as

Si =
((i− 1) + i)

2
=

2i− 1

2
, i = 1, 2, . . . , S

where the counting of the segments starts at the origin. Note that the value of the segment
is monotonically increasing as the number of the segment is increasing. Instead of using the
set of likelihoods {p(z|xjpred)}NoPj=1 , the set of segment values {Si}Si=1 can now be used in the
acceptance/rejection step in MH algorithm, which allows us to the derive a model for the MCMC
step, independent of the particles. Similar to the set of particles with corresponding likelihood
ratios, the set of segments as input and output of the MCMC are referred to as the set of
predicted and posterior segments, denoted respectively by {sipred}Si=1 and {sipost}Si=1. The MH
algorithm with input the set of predicted segments with corresponding values, is summarized in
Algorithm 5.
The set of predicted segments, approximates the target distribution as follows:

p(x|z) ≈
NoP∑
j=1

δxjpred
(xpred) ≈

S∑
i=1

w(sipred)δSi(S), (4.17)

where

w(sipred) =
w̃(sipred)∑S
i=1 w̃(sipred)

, (4.18)

where
w̃(si) =

∣∣{j|si−1 ≤ {xj}NoPj=1 < si}
∣∣ , i = 1, 2, . . . , S, (4.19)

where |·| is the Cardinality of the set. The model for the MCMC has to be derived to find the
approximation for the target distribution of the posterior set of segments.
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Algorithm 5: Metropolis-Hastings algorithm with segments

Input :{sipred, Si}Si=1, number of segments S, burn in period B

Output :{sipost}Si=1

for m:=1 to S+B do
if m=1 then

Randomly select segment sipred out {sipred}Si=1;

Store sipred: s
m
post = sipred, Sm = Si;

else
Randomly draw proposed segment si∗pred out {sipred}Si=1 with corresponding value

Si∗;

Calculate acceptance ratio: α = min
(

1, S
i∗

Si

)
;

Draw u ∼ U [0, 1];
if α ≥ u then

Accept si∗pred: s
m
post = si∗pred, Sm = Si∗;

else
Reject si∗pred: s

m
post = smpost, Sm = Sm;

end

end

end

Discard first B samples, store other S segments: {smpost}S+B
m=B+1 → {smpost}NoPm=1

Since the following things are known,

• The value of segment Si

• The acceptance probability of a proposed segment (which is equal to the acceptance ratio
α, since u ∼ U [0, 1])

• Each segment is drawn with probability 1
S ,

the idea is to set up a transition matrix P over all segments, where element Pi,j represents the
probability to go from segment i to segment j and where the probability vector π represents the
stationary distribution of the segments. Assuming that interval I is divided in a sufficiently large
number of segments and that Algorithm 5, converges to the stationary distribution within the
first B burn in iterations, the stationary state vector π will represent the resulting model for the
MCMC step. Vector π can be found by solving

πP = π.

In P , all transition probabilities Pi,j 6=i can be filled in directly from the acceptance probabilities.
The diagonal elements Pi,i are given by the sum of probabilities of rejecting segment sj∗ in favor
of segment s(i) multiplied by the probability of drawing proposal segment sj∗, i.e.

Pi,i =
∑

(j≤i)

(1− Pi,j)P (sj∗),
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where P (sj) is the probability of drawing proposal segment sj∗ (equal to 1
S ). Making use of the

fact that ∑
j

Pi,j = 1,

these probabilities can be found easily by

Pi,i = 1−
∑
∀j 6=i

Pi,j . (4.20)

For illustration, Example 20 is used to show how to determine the transition probabilities.

Example 20. In this example, I = [0, b] with b = S = 10. Now, all probabilities Pi,j>i will be

Pi,j>i = P (α > u) · P (sj∗) = P (1 ≥ u) · P (sj∗) = 1 · 1

10
=

1

10
.

All probabilities Pi,j<i will be

Pi,j<i = P (α > u) · P (sj∗) = P

(
2j − 1

2i− 1
≥ u

)
· P (sj∗) =

2j − 1

10(2i− 1)
.

So P5,2, the probability of going from segment 5 to segment 2 is

P5,2 =
2 · 2− 1

10(2 · 5− 1)
=

3

90
=

1

30
.

The diagonal elements Pi,i are calculated with (4.20). For example P1,1 is given by

P1,1 = 1−
10∑
j=2

(P1,j) · P (sj∗) = 1− 9

10
=

1

10

and P10,10 is given by

P10,10 = 1−
9∑
j=1

(P10,j)·P (sj∗) = 1−
9∑
j=1

P

(
2j − 1

10(2 · 10− 1)
≥ u

)
·P (sj∗) = 1−

∑9
j=1 2j − 1

190
=

109

190
.

Eventually, matrix P will be given by

P =



1/10 1/10 1/10 1/10 1/10 1/10 1/10 1/10 1/10 1/10

1/30 1/6 1/10 1/10 1/10 1/10 1/10 1/10 1/10 1/10

1/50 3/50 11/50 1/10 1/10 1/10 1/10 1/10 1/10 1/10

1/70 3/70 1/14 19/70 1/10 1/10 1/10 1/10 1/10 1/10

1/90 1/30 1/18 7/90 29/90 1/10 1/10 1/10 1/10 1/10

1/110 3/110 1/22 7/110 9/110 41/110 1/10 1/10 1/10 1/10

1/130 3/130 1/26 7/130 9/130 11/130 11/26 1/10 1/10 1/10

1/150 1/50 1/30 7/150 3/50 11/150 13/150 71/150 1/10 1/10

1/170 3/170 1/34 7/170 9/170 11/170 13/170 3/34 89/170 1/10

1/190 3/190 1/38 7/190 9/190 11/190 13/190 3/38 17/190 109/190
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Now, the stationary state π can be found by solving

πP = π

πP − π = 0

π(P − I) = 0

π ∈ Null(P − I),

where Null(P − I) is the Null space of matrix (P − I). Since π represents a density it is scaled:

π =
π

||π||1
. (4.21)

For Example 20, π is given by

π =
[
0.01 0.03 0.05 0.07 0.09 0.11 0.13 0.15 0.17 0.19

]
In Figure 4.7, π(i) is plotted against i, where i means the ith element in the vector π. The figure
shows the model for the MCMC step graphically. Extrapolating towards the origin, a good
analytical model for the MCMC step seems eq.(4.21), where the elements of π increase linearly
with the number of elements. As a result, the posterior set of segments will approximate the
target distribution by:

p(x|z) ≈
S∑
i=1

w(sipred)δSi(S)π(i), (4.22)

where w(sipred) is given by eq.(4.18).
In Figure 4.8, three different predicted probability density distributions are given. Figure 4.9
shows the corresponding posterior densities when the model from eq.(4.21) is used. Let us refer
to Appendix D for proof by simulations to show the correctness of model (4.21).
Following Algorithm 4 in Section 2.3.5, instead of the likelihoods of the particles, the MCMC step
is performed on the likelihood ratio of the particles. Note that the scaling by p0, the distribution
under the hypothesis that no target is present, does not influence the model for the MCMC. The
scaling by p0 can be seen as a factorization of the length of the interval I, and the length of the
segments simultaneously. Therefore, the scaling does neither affect the transition probabilities
nor the resulting model for the MCMC.
Since an accurate model for the MCMC step is available now, let us try to determine the influence
of this model on the likelihood ratio per time, λ(xn), given by eq(4.3) in Section 4.1. Let us skip
dependency of time and use the result of eq.(2.5) to model λ(xpred) by the expected value of the
density approximated by the predicted particles, i.e.

λ(xpred) = lim
NoP→∞

1

NoP

NoP∑
j=1

λ(xjpred) (4.23a)

=
1

NoP

∑NoP
j=1 p1(xjpred)

p0(x)
(4.23b)

=
E1[X]

p0(x)
, (4.23c)
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where E1[X] is the expected value of the density p1(x). Now the model for the MCMC step us
used to model λ(xpost) by

λ(xpost) = lim
NoP→∞

1

NoP

NoP∑
j=1

λ(xjpost) (4.24a)

=
lim

NoP→∞
1

NoP

∑NoP
j=1 p1(xjpost)

p0(x)
(4.24b)

=
lim

NoP→∞
1

NoP

∑NoP
j=1 π(x)p1(xjpred)

p0(x)
(4.24c)

=
lim

NoP→∞
1

NoP

∑NoP
j=1 xp1(xjpred)

p0(x)
(4.24d)

=
E1[X2]

p0(x)
. (4.24e)

By (4.23a) and (4.24a), the influence of the on posterior likelihood ratio per time is given by a
constant, denoted by C, satisfying

C =
λ(xpost)

λ(xpred)
=
E1[X2]/p0(x)

E1[X]/p0(x)
=
E1[X2]

E1[X]
(4.25)

As a result of this section, C can be calculated and implemented in the threshold calculations
when the target pdf is a known density and approximated well enough by the particles. In
Table 4.1, the values of C are given for the probability density functions of interest in this thesis.

Distribution Uniform(a, b) Exponential(µ) Gamma(k, θ) Generalized Pareto(k, s, 0)
E1[X] 1

2 (a+ b) µ kθ = nµn = n s
1−k

E1[X2] a2+ab+b2

3 2µ2 θ2(k2 + k) = µ(n2+n)
n

2s2

(k−1)(2k−1)

C 2(a2+ab+b2)
3(a+b) 2µ θ(k + 1) = µ(n+1)

n
2s

(1−2k)

Table 4.1: Constant C for several distributions

Remark 21. For a good calculation of C, the (predicted) particle cloud should approximate a
known probability density function. In practical application, it is often impossible to assign a
good pdf to the particle cloud as the plots in Appendix D show. This makes it hard to use the
factor C in threshold calculations.

Remark 22. As explained in Section 2.2.3, the MCMC step is performed to get a better approx-
imation of the target distribution and to prevent the particles from degeneration. Remark 21
explained that it is very hard to model the influence of the MCMC step in practice. This makes
it almost impossible to calculate a proper threshold for the posterior likelihood ratio. Hence, it
might be better to use the predicted likelihood ratio instead.
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Figure 4.7: Graphical representation for model MCMC step
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Figure 4.8: Predicted distributions
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Figure 4.9: Posterior distributions
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4.3 Results proposed models

In this section, the results of the ideas in Section 4.2 will be presented. Section 4.2.3 concluded
with the remark that in practice it is almost impossible to integrate the derived model for the
MCMC step in threshold calculations because the particle cloud will not show a proper and
known pdf in general. Therefore, rather than giving the results of the posterior likelihood ratios,
as in Section 3.2 and Section 3.3 the results of the predicted likelihood ratios are presented. The
results for the ideas in Section 4.2 will be compared to the results of predicted likelihood ratios
for the same tracks used in Section 3.3. The results are obtained by gathering data from the
filter and doing the hypothesis testing afterwards. The likelihood ratios obtained from the filter
are tested against a threshold, where the mean of the estimated target power per time and a
model for the spread of the particles are integrated in the threshold calculations.

In Figures 4.10 and 4.11, the PFA and PD curves for different scenarios are given. The curves
correspond to data from the particle filter with Gaussian background noise for three different
power levels, µ = 1, µ = 2 and µ = 5. The results are obtained by testing the likelihood ratios
against the thresholds given in Figure 4.12. These threshold are calculated by applying Neyman-
Pearson theory. First of all, Figure 4.10a shows the PFA curves of predicted likelihood ratios (for
the SLRT) with data from the filter without using the parameter estimate fluctuations or the
method to model the particle cloud. Despite the conclusion in Section 4.2.3 that the predicted
likelihood ratios can be controlled much better than the posterior likelihood ratios, the PFA
values in Figure 4.10a show similar bad behavior to the curves of the posterior likelihood ratios
in Figure 3.7a. Furthermore, Figure 4.12a shows that the thresholds for the different power levels
are very different. This is a problem in achieving a useful CFAR detection scheme, because for
CFAR detectors to be useful in practice, the threshold should be the same for varying background
parameters.

In Figures 4.10b and 4.10c the PFA curves for both the SLRT as the LRT are given. The
LRT values are plotted for comparison with Figure 3.4a. Figure 4.10b shows that when the
estimates of the RCS , σ, and consequently the target power, µt are integrated in the threshold
calculations, the PFA curves for both the SLRT and the LRT immediately fulfill the desired
significance level, PFA ≤ α. Unfortunately, the PFA values are still not exactly the same and
all three curves converge to values far beneath the time-integrated α. This indicates that the
calculated thresholds may be too high. These thresholds are shown in Figure 4.12b. The first
notable is that the threshold values for all three different power levels are exactly the same. This
shows that when integrating the particle cloud estimate of σ and hence µt in the threshold cal-
culations, already the same threshold can be applied for varying noise power levels. The second
notable thing is that the threshold is no longer (almost) monotonically decreasing in time as in
Figure 4.12a. This observation can be explained as follows. In Section 4.1.1, it is discussed that
the estimate of the RCS and consequently the estimation of the mean target power drop heavily
in the first few time steps when incoming measurements do not match with a high initialization
(shown in Figures 4.1b and 4.2b). As a result, the threshold given by eq.(3.22) also drops during
the first few time steps of the track. After some time, the estimate of µt stabilized and the
thresholds slightly increases, due to the increasing variance of the time integrated measurement
samples.

In Figures 4.10c, 4.11c and 4.12c also the spread of the particle cloud is integrated in the thresh-
old calculations. The spread of the particle cloud can not be determined in advance because it
depends on for example the target power, background power levels and the performance of the
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filter. Let us refer back to Section 4.1 for figures and more comments about the variation in the
spreading. To integrate the spread in the threshold calculations, a general model is needed to
represent the “effective” number of cells covered by the cloud. This number is significantly lower
than the total number of covered measurement cells in Figures 4.1a and 4.2a, because the number
of particles in a cell should be sufficiently high to influence the likelihood ratio. Therefore the
cells where very few particles are positioned, should not be counted. The model for the effective
number of cells is chosen to be a linear model, starting at with 1 cell at time 1. By some quick
simulations, where the gradient is interpolated between 0.2 and 0.5, a gradient of 0.33 seemed to
be sufficient. As a results, the function used to model the (effective) number of cells covered by
the particle cloud is

cn = 1 + 0.33(n− 1), n = 1, 2, . . . (4.26)

Since, time integration is performed on the likelihood ratios, also time integration on cn is used
in the threshold calculations. Let us refer back to Section 4.2.2 for the exact calculations.

Figures 4.10c, 4.11c and 4.12c show promising results. In Figure 4.10c the PFA values for
both the SLRT and the LRT are approximately the same. Also the calculated threshold, given
in Figure 4.12c, is the same. The small deviations in the threshold starting around n = 12
are caused by numerical approximation errors. The Gamma distribution is used to find τ̃ by
solving eq.(4.8). As a result, the exact value of τ̃ can not be found and is therefore approximated
with use of the cumulative Gamma distribution in Matlab. This causes the small deviations in
the threshold. Compared to the thresholds in Figure 4.12b, the thresholds in Figure 4.12c are
significantly lower. This can be explained by the fact that by integrating the spreading parti-
cle cloud using the sample mean, as discussed in Section 4.2.2, the variance of the sample mean
is lower than the variance of the time integrated samples. Consequently, the thresholds are lower.

The combined results from Figures 4.10c and 4.12c fulfill the CFAR property. It seems that
the particle cloud spread for different power levels in noise do not show a large variation. This
suggests that the function in eq.(4.26) is an accurate model for all three power levels. The
PFA values for the LRT at n = 25 are extremely close to the desired significance level α. The
PFA values for the SLRT show approximately the same Sequential loss as for the i.i.d. gen-
erated data in Figure 3.4a. Also the PD in Figure 4.11c show good results as even for µ = 5
(SNR = 3dB) the probability of detection is nearly one at n = 25. Furthermore, it seems that
using the thresholds Figure 4.12c instead of the threshold in Figure 4.12a, does not affect the PD.

In Figure 4.13a it is shown that it is even possible to empirically tune the effective number
of cells covered by the particle cloud in such a way, that the PFA values for the LRT are ex-
actly the same as the desired α. This suggests that if cn can be modeled very accurately, the
Neyman-Pearson theory defines the most powerful LRT (even without satisfying the condition
of i.i.d. samples) when the ideas and methods described in Sections 4.1 and 4.2 are integrated
in the threshold calculations.
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Figure 4.10: PFA curves for predicted likelihood ratios with and without models implemented
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Figure 4.11: PD curves for predicted likelihood ratios with and without models implemented
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Figure 4.12: Thresholds ln(τ) using Neyman-Pearson theory with and without models imple-
mented
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Figure 4.13: Results for empirically tuned values of cn
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4.4 Proposed CFAR detection scheme

In this section, a sequential detection scheme is proposed that could be applied during the track-
ing. This detection scheme uses the ideas from Section 4.2, such that the results should fulfill
the CFAR property, likewise the results of Section 4.3.

In Section 4.1 it is discussed that the integrated likelihood ratio at time n, λ(xn), is used for the
hypothesis testing, where λ(xn) is given by

λ(xn) =

n∏
i=1

λ(xi), (4.27)

and λ(xi) is given by the mean over the particles, i.e.

λ(xi) =
1

NoP

NoP∑
j=1

λ(xji ). (4.28)

Instead of testing λ(xn) against τn, the idea is to scale the likelihood ratio per particle at time n,
λ(xjn) in a way that the threshold is contained in the scalings factor such that the new likelihood
ratio can be tested against a new threshold, denoted by τnew, equal to 1. The advantage is that
this new likelihood ratio can be tested against a constant threshold, and available parameter
estimates and information about spread particle cloud can be directly used in the design of the
scalings factor. Let us refer to the scalings factor as “threshold likelihood ratio”, denoted at time
n by

λT (τn) =
p(τn|H1)

p(xn|H1)
, (4.29)

where τn can be found from solving

PFA =

∫
{xn:λ(xn)>τn}

p(xn|H0)dxn = α. (4.30)

Note that λT (τn) varies per particle because of different estimates of µt. Let us define λD(xjn)
as the detection likelihood ratio per particle, denoted by

λD(xjn) =
λ(xjn)

λT (τn)
.

Since the desired significance level α is included in λT (τn), each particle should satisfy PFA ≤ α
when testing λD(xjn) ≷ 1. As a result, the mean over the particles of the detection likelihood
ratio, given by

λD(xn) =
1

NoP

NoP∑
j=1

λD(xjn) (4.31)

should approximately satisfy PFA ≤ α as well. Unfortunately, time integration over λD(xn) by

λD(xn) =

n∏
i=1

λD(xn),
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would results in λD(xn) being scaled n times by a threshold likelihood ratio in a way that testing
λD(xn) ≷ 1 satisfies PFA ≤ αn. This would ruin the probability of detection. To overcome this
problem, λD(xn) is defined as

λD(xn) =

(
n−1∏
i=1

λ(xi)

)
λD(xn), (4.32)

where λD(xn) is given by eq.(4.31) and λ(xi) by eq.(4.28).

Testing λD(xn) ≷ 1 is a bit different than λ(xn) ≷ τn. When testing λ(xn) ≷ τn, the threshold
is calculated according to the distribution of time integrated measurements, where the mean
of RCS estimates is used as explained in Section 4.3 and possibly with c̃n from eq.(4.9) imple-
mented. By design of λD(xn), λD(xn) ≷ 1 is tested based on the threshold implemented in
λD(xn), calculated according to only the RCS estimates and possibly the number of cells at time
n. Furthermore, a proper implementation of cn as in Section 4.2.2 is not clear. In Section 4.2.2
the implementation of cn, and later c̃n, is performed by the sample mean, based on taking the
mean of all particles to find λ(xn) as in eq.(4.3). Since in the implementation of λD(xn) the
threshold is already implemented in the scaling of particles, using the idea of the sample mean
might not seem valid. However, because λD(xn) is the mean over the particles as in eq.(4.31),
the sample mean is used nonetheless.

Two methods for testing the idea of the sample mean are tested. In both methods τn is found by
solving eq.(4.30), where the function for cn (eq.(4.26)) is integrated in p(xn|H0). In method 1,
λT1(τn) is given by eq.(4.29). This scaling might not be strong enough, because cn is only used
to find τn but not again in constructing λT1(τn). Therefore in method 2, λT2(τn) is defined as

λT2(τn) =
(
λT (τn)

)cn
(4.33)

such that cn is also used in the likelihood ratio.

The results for the proposed detection scheme in Gaussian noise are presented in Figures 4.14
and 4.15. Results for Pareto clutter are presented in Figures 4.16 and 4.17. The results of
noise are compared to the results in Section 4.3 to discuss performance of the proposed detec-
tion scheme. Let us first compare Figure 4.14 with Figure 4.10b. These figures both show the
PFA curves when the RCS estimates are used in the threshold. The PFA curves in both figures
for the LRT show slightly different values as the curves in Figure 4.14 keep increasing in time.
The curves for the SLRT seem to be exactly the same. This shows that the proposed detection
scheme works approximately the same as the method in Section 4.3, at least when the spread of
the particle cloud is not modeled.

In Figure 4.14b and Figure 4.14c, the PFA results are given when the particle cloud is mod-
eled with method 1 and 2 respectively. As expected, the PFA values for method 1 are higher
than for method 2. Compared to Section 4.3, the values of method 1 are higher and the values for
method 2 are lower than the values in Figure 4.10c. Assuming that the threshold used to obtain
Figure 4.10c is properly derived, the proper scaling of λT (τn) seems therefore to be somewhere
in between the scalings of method 1 and 2. Important is that the PFA values for method 1 and 2
for the three power levels are approximately the same, just as in Figure 4.10c. This means that
the proposed detection satisfies the CFAR property as a constant false alarm rate is acquired by
testing λD(xn) ≷ 1 at all n. The PD curves in Figure 4.15 also show promising results. The PD
curves for method 1 and 2 are slightly different as expected, but even for µ = 5 (SNR = 3dB),
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the probability of detection for the SLRT converges to 1.

In Figures 4.16 and 4.17 the PFA and PD curves of the SLRT for clutter are given for 6 differ-
ent values of shape parameter k. Scale parameter s is fixed at 1 and θ is assumed to be 0. In
Figures 4.16a and 4.17a, the particle cloud is not modeled and therefore these figures can be com-
pared with Figures 4.14a and 4.15a, because the scaling with the threshold parameter is properly
applied (assuming that eq.(2.32) approximates the pdf of the convolution of target+clutter close
enough). In Figures 4.16b and 4.17b, the particle cloud is integrated using the scaling in method
1 and the Gamma distribution, knowing that this Gamma distribution does not coincide with
the samples mean of clutter samples. Nonetheless, it is tested to see if the PFA curves are merged
compared to curves in Figure 4.16a.

In Figures 4.16 and 4.17, the PFA and PD values are given for k varying from 10−5 to 0.5.
k = 10−5 is chosen such that eq.(2.16) is still valid, but 10−5 will now be referred to as 0. The
values of k correspond to mean background powers of respectively 2, 2.1, 2.22, 2.35, 2.5 and
2.67. Despite these small changes in the mean clutter power, the PFA curves significantly more
spread than the curves in Figure 4.14a. This shows the difficulty of controlling the PFA values in
clutter. Compared to Figure 4.16a, the lines in Figure 4.16b are merged a bit. This shows again
that integrating the spread of the particle cloud helps towards achieving the CFAR property.
In Figure 4.15, the values for k lead to a Signal to Clutter Ratio (SCR) of respectively 7dB, 6.8dB,
6.5dB, 6.3dB, 6dB and 5.7dB. The PD curves show expected behavior as the PD increases when
SCR increases. Also, the PD values in Figure 4.17b are higher than in Figure 4.17a similar to
the results for noise. Furthermore, the PD for all SCR’s converges to 1 eventually.

Overall, for better performances of the PFA values in clutter, the expression of the sample
mean in Equation (4.15) could be investigated. Also investigation of the variation of the particle
cloud spread is needed to integrate cn in the threshold properly. The complete SMCMC filter
with integrated detection scheme is summarized in Algorithm 6.
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Algorithm 6: SMCMC with integrated CFAR detection scheme.

Input: Measurement z0, Number of particles NoP , Significance level α, Maximum time
horizon N .
Output: Either H1 or H0.

1 - Initialize track;
Start track at measurement cell ∈ z0 with highest power;

Generate initial particles {xj0}NoPj=1 from p(x0);

for n:=1 to N do
if n=1 then

2 - Prediction;
for j:=1 to NoP do

Draw particle xjnpred ∼ qn(xn|xjn−1, zn);

end
3 - Update;
for j:=1 to NoP do

Compute predicted likelihood ratios λ(xjnpred) =
p
(
zn|xjnpred

)
p(zn) ;

end
7 - Perform MCMC step: Apply MH algorithm;

{xmpost, λ(xmpost)}NoPm=1 = MH({xjpred;λ(xjpred)}NoPj=1 );

8 - Copy set of posterior particles: {xjn}NoPj=1 = {xjnpost}
NoP
j=1 ;

else
2 - Prediction;
for j:=1 to NoP do

Draw particle xjnpred ∼ qn(xn|xjn−1, zn);

end
3 - Update;
for j:=1 to NoP do

Compute predicted likelihood ratios λ(xjnpred) =
p
(
zn|xjnpred

)
p(zn) ;

end
4 - Calculate threshold likelihood ratio;
for j:=1 to NoP do

Solve PFA =
∫
{xn:λ(xn)>τn} p(xn|H0)dxn = α.;

end

5 - Calculate detection likelihood ratio λD(xn);
6 - Perform hypothesis testing;

if λD(xn) ≥ 1 then
Conclude H1, break;

else
No decision, go to next step;

end
7 - Perform MCMC step: Apply MH algorithm;

{xmpost, λ(xmpost)}NoPm=1 = MH({xjpred;λ(xjpred)}NoPj=1 );

8 - Copy set of posterior particles: {xjn}NoPj=1 = {xjnpost}
NoP
j=1 ;

end

end
if n=N then

Conclude H0;
else

Conclude H1;
end
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(c) Particle cloud modeled, method 2

Figure 4.14: PFA curves proposed detection scheme
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(b) Particle cloud modeled, method 1
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(c) Particle cloud modeled, method 2

Figure 4.15: PD curves proposed detection scheme
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(b) Particle cloud modeled, (method 1)

Figure 4.16: PFA curves with scaling of λ(xn)
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Figure 4.17: PD curves with scaling of λ(xn)



Chapter 5

Conclusions and
recommendations

In this chapter the conclusions of this research will be presented and recommendations for fur-
ther research are given. First, the results in Sections 4.3 and 4.4 are discussed together with
simplifications to the models. Based on the results and the discussion, the conclusions about the
research are given in Section 5.2. The contributions for Thales are summarized in Section 5.3.
Finally, several recommendations for further research are given

5.1 Discussion

In this section, the results of the research are discussed. Also, the most important properties,
made assumptions and observations that play a role in this thesis are discussed. First, simplifi-
cations in the particle filter will be discussed. Second, comments about the assumptions of the
hypothesis testing theories, i.e. Wald’s theory and Neyman-Pearson Theory are given. Third,
the reasoning behind the observations and the ideas for the models in Sections 4.1 and 4.2 are
discussed. Finally, the results in Sections 4.3 and 4.4 are elaborated upon.

As explained in Chapter 2, the particle filter used in this research is a Sequential Markov Chain
Monte Carlo (SMCMC) filter. Because of the complexity of the treated problem in this research,
some simplifications in the filter are used compared to the filters in practical Radar application.
The first simplification is that the background power is assumed to be known. Furthermore, fil-
tered data is generated such that the used dynamic target model fits well with the data. Process
noise is generated to simulate the uncertainty of the dynamic model in practice
The second simplification is the reduction in dimension of the state space X . In this research
the state space has dimension three (range, velocity and RCS), where only the range and RCS
are used to compute the likelihood functions. The velocity associated to the single target is used
to predict the target time evolution. In practice, the dimension of the state space X is often at
least 6, such that the range, Doppler speed and azimuth of possible targets can be calculated.
Furthermore, in this thesis is a single state space model. Hence it is assumed that a maximum
of one target is present, while in practice multiple targets could be present simultaneously.
The third simplification is the assumption that a single scan of the Radar consist of only one
burst, as briefly mentioned in Section 2.1.1. As a result, a Swerling I target model could be used
where in case of multiple burst per scan a more complex Swerling II or Swerling IV should have
been used, in which the RCS fluctuations are modeled from burst to burst.
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A general remark is that during this research noise and clutter are modeled by respectively ex-
ponential and generalized Pareto power distributions. These distributions are generally accepted
as good background models. The modeling of sea clutter by generalized Pareto distributions is
primarily chosen because samples from clutter show a higher variance than the noise samples and
the Pareto distribution allows us to model this higher variance accurately. The simplifications
make the problem more tractable but the results not less applicable.
A second general remark is that a point spread function is used around the position of the par-
ticles to match the point spread function/impulse response of a reflected signal, as explained
in Section 2.3.4. This point spread function plays a role in the likelihood ratio calculations,
but in practice, the point spread depends on certain Radar properties that can vary per Radar.
Despite the fact that the principle is the same for each Radar, this could lead to slightly different
likelihood ratios.

In Chapter 3 it is explained that Wald’s theory and Neyman-Pearson theory hold under cer-
tain conditions/assumptions. Wald’s theory is widely used in sequential likelihood ratio tests,
but in Chapter 4 it is discussed that the necessary condition of i.i.d. samples does not hold with
filtered data and that therefore Wald’s theory does not apply within a TBD approach. A newly
designed sequential detection scheme is tested that uses Neyman-Pearson theory. Despite the
fact that this theory uses a fixed time horizon as in an LRT, it is constructed such that it could
work properly within the new sequential scheme.

In Sections 4.1 and 4.2 observations about the behavior of the particle filter are given together
with some solutions to correct certain irregularities. Among others, a method is proposed to
model the spread of the particles. This method is useful in the simplified filter in this research,
but it needs some adjustments in the threshold calculations, when higher order state spaces are
used to calculate likelihood ratios. Also the model for the MCMC step is designed with a scalar
input in the likelihood functions and hence also this model needs adjustments in higher order
state spaces. Nevertheless, the ideas behind the models do apply in higher order state spaces.
Furthermore, the idea to use the predicted likelihood ratios instead of the posterior likelihood
ratios (defined in Section 2.2.3) as proposed at the end of Section 4.2.3 is also immediately useful
in higher order state spaces and multi target tracking filters.

The results for the proposed models and for the proposed detection scheme in Sections 4.3
and 4.4 show improved results compared to the results of detection schemes with current thresh-
olds. Despite the simple and rough approximation of the linear model for the number of cells
covered by the particle cloud in eq.(4.26), the PFA curves for noise in Section 4.3 satisfy the
CFAR property. Also the PFA curves in noise for the proposed sequential detection scheme in
Section 4.4 satisfy the CFAR property. However, the scaling of the particles with λT (xn) with
both method 1 and 2 give other PFA values than the values in Section 4.3; the values of scaling
with method 1 are higher than the values in Section 4.3 and the values of scaling with method
2 are lower. Furthermore, in the proposed detection scheme, the parameter estimates of the
particle cloud is immediately integrated in the calculation of λT (xn) where in Section 4.3 the
threshold is calculated afterwards based on the mean parameters estimates of all Monte Carlo
runs.

Unfortunately, the results of the PFA curves for clutter in Section 4.4 do not satisfy the CFAR
property. A number of reasons could cause this undesired behavior. First, as explained in Sec-
tion 2.3.3, the used pdf for H1 is an empirical approximated density, because the analytical
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expression is unknown/computationally inefficient. Furthermore, in the calculation of λT (xn)
where also cn is considered, the Gamma distribution is used to approximate the distribution
of the sample mean of generalized Pareto distributed samples. This is not entirely proper as
this sample mean is not Gamma distributed. However, the derived expression in Appendix C is
computationally inefficient and first has to be investigated on convergence properties. Conspic-
uous is the fact that the PFA curves in Figure 4.16a are more spread than the (SLRT) curves
in Figure 4.14a. This is caused by the higher variance of clutter samples and this shows the
difficulty of achieving the CFAR property in clutter. Also conspicuous in Figure 4.16a is the
fact that the PFA values for k = 0.2 (black) are below the values for k = 0.1 (dark blue). No
reasonable explanation is found for this phenomenon, but when the spread of the particle cloud is
modeled as well (Figure 4.16b), this irregularity is corrected. A last note on Figure 4.16 concerns
the slightly different behavior of the PFA curve for k=0 (yellow). This is explained by the fact
that the generalized Pareto distribution with k approaching 0, transforms into the exponential
distribution, which leads to a different scaling and hence to different PFA values.

5.2 Conclusions

In this section, the conclusions of this research are presented. The conclusions follow from
the observations and sub results during the research and the main results from Sections 4.3
and 4.4, earlier discussed in Section 5.1. In this thesis two sequential detection detection schemes,
one based on Wald’s theory and one newly designed based on the Neyman-Pearson theory, are
tested. Both these detection schemes showed proper and expected results when tested with
i.i.d. generated data. Both schemes showed undesired results when tested against filtered data,
acquired from the simplified SMCMC filter. Thorough analysis of the SMCMC provided us with
observations/explanations for these undesired results. These observations lead to the conclusion
that Wald’s theory is not suitable for applying a sequential likelihood ratio test with filtered data
because the important condition for this theory, namely the condition of i.i.d. samples, does not
hold.
To properly apply the new sequential detection scheme, methods have been designed to correct
or improve the threshold, calculated recursively with Neyman-Pearson theory namely

• It is explained how to recursively update and integrate parameter estimates in threshold
calculations.

• A method is designed to integrate the spread of particle cloud in the threshold calculations.
To achieve this useful method, the sum of exponential distributed r.v.’s is transformed into
a r.v. of the sample mean using properties of the Gamma distribution. Ultimately this
method allows us to integrate over time and integrate the spread of the particle cloud
simultaneously. Furthermore, an analytical expression for the sample mean of i.i.d. gen-
eralized Pareto clutter samples is derived, which is unfortunately not useful in threshold
calculations yet.

• In Section 4.2.3 a method is designed to model the MCMC sampling step in the SMCMC,
performed by the MH algorithm. It is also discussed that instead of using the designed
model, it is advised to use the predicted likelihood ratio, as defined as in Section 2.2.3,
rather than the posterior likelihood ratio.

The developed methods are tested separately and the conclusion is that each of them, improved
the performance of the detection scheme. When these methods are used collectively, the PFA
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curves for Gaussian noise satisfy the CFAR property in Section 4.3. On top of that, it is shown
in Section 4.3, that with an empirically tuned number of cells covered by the particle cloud, the
PD can be maximized by satisfying PFA = α. This means that the combined methods could
lead to the most powerful sequential test, at least for Gaussian noise. The method improves the
performance of the detection scheme when tested against filtered clutter samples as well. Un-
fortunately, the PFA curves for clutter background samples still show variety for different power
levels.
Eventually, the methods are integrated within the SMCMC which enables us to sequentially
detect, while tracking a possible target. The results of this combined filter and detection scheme
fulfill the CFAR property when used in Gaussian noise.

Overall, the conclusion of this research is that a desired sequential CFAR detection scheme
is designed and successfully implemented in an SMCMC filter such that it can be use within a
TBD approach. The detection scheme is CFAR when tested against Gaussian noise. Additional
research is necessary to check the CFAR property when tested against sea clutter.

5.3 Contribution to Thales

After presenting the conclusions in Section 5.2, the contribution of this research to Thales can be
summarized. Despite using several simplifications to the filter/models in this research compared
to filters used in practical Radar application, there certainly are beneficial aspects for Thales.
First, more insights in hypothesis testing theories is provided. It has become clear that Wald’s
theory, which is a widely used theory in applying sequential hypothesis testing, is not suitable
for the purposes of Thales. Furthermore it is shown that the use of Neyman-Pearson theory can
be useful in controlling a certain significance level of the detection scheme.

Second, ideas and methods are presented which improve the controllability of the probability
of false alarm. Some ideas are immediately useful, such as the idea to use the predicted rather
than the posterior likelihood ratio (when using an SMCMC filter). Other ideas need further
research, such as a more accurate implementation of the spreading particle cloud.

Third, an expression is derived for the sample mean of c i.i.d. generalized Pareto distributed
r.v.’s. This expression can be very useful in implementing the spreading particle cloud. Also
research on the distribution of convoluted target+clutter samples has been done. Furthermore, it
is shown that the empirical derived pdf for this convolution works well as the distribution for H1.

The final and most important contribution of this research is the implementation of the CFAR
detection scheme within the TBD approach. An advantage is that not the exact threshold needs
to be calculated at each time, but a so called threshold likelihood ratio can be used to scale
the filtered likelihood ratio. As a result, the detection likelihood ratio λD(xn) can always be
tested against threshold τnew = 1 (Tnew = 0 when log(λD(xn)) is used). The results in Sec-
tion 4.4 show that the PFA values can be easily controlled in satisfying a certain significance level.
Furthermore, in Gaussian noise the PFA values immediately fulfill the desired CFAR property.

5.4 Recommendations for further research

In this section several recommendations for further research are given, based on the experiences
in this research. These recommendations are intended for researchers linked to Thales or new
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students who continue to work in this subject as Thales.

The first recommendations are based on the different results for noise and clutter in Sections 4.3
and 4.4. Contrary to the CFAR results when applying newly designed sequential detection
scheme in noise, applying this scheme in clutter still leads to varying PFA values for different
power levels. It is recommended to investigate and improve the ideas and models derived in this
thesis. Improvements could be achieved by finding an analytical expression for the pdf of the
convolution of target+clutter (if possible). Furthermore, the derived expression for the pdf of the
sample mean of i.i.d. clutter samples should be investigated on convergence and computational
efficiency. When the conclusion after further research is that efficient and analytically proper
pdf’s for the convolution and sample mean of clutter samples are not available, it recommended
to use other distributions to model the power samples of clutter. The Weibull distribution is a
distribution that could be used.

The second recommendation is based on the observations that modeling the spread of the particle
cloud heavily improves the PFA curves towards fulfilling the CFAR property. In this thesis a
simple linear model is used to predict the particle spread but it is recommended to design a better
model. Especially, because it is shown in Figure 4.13 that by empirically tuning the spread of
the particle cloud it is possible that Neyman-Pearon theory constructs the most powerful test in
an LRT application. A suggestion to start further research on the particle cloud spread, could be
the use of a normal distribution over the measurement cells, centered on the cell with the highest
particle population. This seems to be an accurate model in practice. It is also recommended to
analyze the influence of the measurement model such that also the influence of the point spread
function can be integrated in modeling the spreading particle cloud.

The third recommendation involves the MCMC step by the MH algorithm. The output of
the MCMC could be a particle cloud with certain correlation, which contradicts the assumption
of individually distributed samples. Therefore, it is recommended to investigate the correlation
of samples in particle clouds. Strong correlation (relatively) between particles should be another
reason the use the predicted rather than the posterior particle cloud for the hypothesis testing.

In Section 4.4 the ideas and models in Section 4.2 are successfully integrated within the SMCMC.
However, it is explained that the influence of the scaling by λT (xn) is not totally clear, especially
when cn is included in the scaling. Further research is recommended to investigate proper scaling
in the proposed detection scheme.

The last recommendation involves the time instants of false alarms. In applying Neyman-Pearson
theory in the sequential detection scheme, it is assumed that the probability of a false alarm is
constant for all time when calculating the thresholds. This assumption might be not correct in
a sequential setting and also the PFA curves of the LRT show that relatively more false alarms
occur in the beginning. A better understanding of the time instants of false alarms could lead
to better threshold setting.

Overall, further research is recommended to investigate the utility of the newly designed CFAR
detection scheme and proposed models in practical Radar application by for example increasing
the dimension of the state space, using multi target models and implementing multiple burst
per scan, with the ultimate goal of designing a sequential CFAR detection scheme in the TBD
approach to detect small targets in clutter with total control of the PFA values.
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Appendix A

Different domain calculations

In Section 2.3.1, the distributions for Gaussian noise and Pareto clutter are given for the I/Q
domain, amplitude/phase domain as well as the power domain. In this section the results are
recalled and the calculations are presented, first for Gaussian noise, later for Pareto clutter.

A.1 Gaussian Noise

IQ to Amplitude

In Gaussian noise, the I and Q samples are assumed to be identically distributed according to a
normal distribution with zero mean:

zI ∼ N (0, σ2), zI ∈ R

zQ ∼ N (0, σ2), zQ ∈ R

The distribution of the amplitude zP is given by the Rayleigh distribution

p(zA) =
zA
σ2

e−z
2
A/2σ

2

, zA ∈ R+. (A.1)

Proof.

Proposition 23. Let us consider two random variables zI and zQ distributed according to a
Normal distribution with parameters µ = 0 and σ = σn. Then the random variable zA :=√
z2
I + z2

Q is distributed according to a Rayleigh distribution.

Lemma 24. The general formula for integration by substitution of two independent variables is:∫ ∫
Rx

p(x1, x2)dx1dx2 =

∫ ∫
Ry

f (x1(y1, y2), x2(y1, y2))
∂(x1, x2)

∂(y1, y2)
dy1dy2.

The transformation functions, y1(x1, x2) and y2(x1, x2), and their inverses are x1(y1, y2) and
x1(y1, y2) are used. The regions Rx and Ry are identical subject to the first being specified in the

x1x2 plane and the second being specified in the y1y2 plane. The Jacobian ∂(x1,x2)
∂(y1,y2) is defined as:

∂(x1, x2)

∂(y1, y2)
=

[
∂x1

∂y1
∂x1

∂y2
∂x2

∂y1
∂x2

∂y2

]
=
∂x1

∂y1

∂x2

∂y2
− ∂x1

∂y2

∂x2

∂y1
.
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Let us denote x1 := zI , x2 := zQ, y1 := zA and y2 := θ, then the transformation functions are
given by:

y1 =
√
x2

1 + x2
2, y2 = arctan

(
x2

x1

)
,

with inverses

x1 = y1 cos(y2), x2 = y1 sin(y2).

Hence
∂(x1, x2)

∂(y1, y2)
=

[
cos(y2) −y1 sin(y2)
sin(y2) y1 cos(y2)

]
= y1 cos2(y2) + y1 sin2(y2) = y1.

As a result ∫ ∫
Rx

p(x1, x2)dx1dx2 =

∫ ∫
Ry

p (y1 cos(y2), y1 sin(y2)) y1dy1dy2.

=

∫ ∞
−∞

∫ ∞
−∞

pZI (x1)pZQ(x2)dx1dx2

=

∫ ∞
−∞

∫ ∞
−∞

1

σ
√

2π
exp

(
−x

2
1 + x2

2

2σ2

)
dx1dx2,

equals ∫ ∫
Ry

p(y1, y2)dy1dy2 =

∫ ∞
0

∫ 2π

0

pzA(y1)pθ(y2)dy1dy2

=

∫ ∞
0

∫ 2π

0

1

2πσ2
exp

(
− y2

1

2σ2

)
y1dy1dy2.

Hence

pzA(y1) =

∫ 2π

0

p(y1, y2)dy2

=

∫ 2π

0

1

2πσ2
exp

(
−1

2

y2
1

σ2

)
y1dy2

=
y1

σ2
exp

(
− y2

1

2σ2

)
, y1 ∈ R+,

which is the Rayleigh distribution.

Amplitude to Power

If the amplitude distribution is given by the Rayleigh distribution (A.1), then the power distri-
bution is given by

p(zP ) =
1

2σ2
e−z

2
P /2σ

2

, zP ∈ R+. (A.2)



A.1. GAUSSIAN NOISE 91

Proof. Let us consider the Rayleigh distributed random variable X, i.e.

X ∼ xe−x
2/2σ2

σ2
dx,

and let us apply change of variables y := x2, then x =
√
y and dx = 1

2
√
ydy. Hence Y is

distributed according to an exponential distribution:

Y ∼
(
√
y)e−(

√
y)

2
/2σ2

σ2

1

2
√
y

dy =
e−y/2σ

2

2σ2
dy.

Power to Amplitude

Now the reversed results are proven, i.e. when the power distribution is exponentially distributed,
then the amplitude distribution is the Rayleigh distribution with scale parameter σ =

√
µ/2:

p(zA) =
2zA
µ

e−z
2
A/µ. (A.3)

Theorem 25. If X has an exponential distribution with parameter λ = 1/σ, i.e. X has the pdf:

pX(x) = λ exp (−λx) , x ∈ R+,

then Y :=
√

2Xσ2λ =
√

2Xσ is distributed according a Rayleigh distribution with scale parameter
σ. The Rayleigh distribution has the pdf:

pX(x) =
x

σ2
exp

(
− x2

2σ2

)
, x ∈ R+.

Proof. Let us consider an exponential random variable X, i.e.

X ∼ λ exp (−λx) dx,

and let apply the change of variable y :=
√

2xσ2λ, then y2 = 2xσ2λ and thus x = y2

2σ2λ , and
dx = y

σ2λdy. Hence, Y is distributed according the Rayleigh distribution:

Y ∼ λ exp

(
−λ y2

2σ2λ

)
y

σ2λ
dy =

y

σ2
exp

(
− y2

2σ2

)
dy.

Amplitude to IQ domain

Finally, when the amplitude is given by the Rayleigh distribution (A.1), then the distribution of
the I/Q samples is given by the Normal distribution with zero mean and variance σ2, i.e.

p(zI/Q) =
1

σ
√

2π
e−(z2I/Q)/2σ2

. (A.4)

Proof. Let us use the controversy of Proposition 23:
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Proposition 26. Let us consider a random variable zA distributed according a Rayleigh distribu-
tion with scale parameter σ = σn. Let us assume a random phase θ on [0, 2π]. Then the random
variables zI := zA cos(φ) and zQ := zA sin(φ) are distributed according a Normal distribution
with parameters µ = 0, σ = σn.

Now, let us use Lemma 24 and let us denote by x1 := zA, x2 := θ, y1 := zI and y2 := zQ, then
the transformation functions are given by:

y1 = x1 cos(x2), y2 = x1 sin(x2),

with inverses

x2 =
√
y2

1 + y2
2 , x2 = arctan

(
y2

y1

)
.

Now the Jacobian becomes

∂(x1, x2)

∂(y1, y2)
=

[ y1√
y21+y22

y2√
y21+y22

− y2
y21+y22

y1
y21+y22

]
=

1√
y2

1 + y2
2

.

Hence ∫ ∫
Rx

p(x1, x2)dx1dx2 =

∫ ∫
Ry

p

(√
y2

1 + y2
2 , arctan

(
y2

y1

))
1√

y2
1 + y2

2

dy1dy2.

=

∫ ∞
0

∫ 2π

0

pzA(x1)pθ(x2)dx1dx2

=

∫ ∞
0

∫ 2π

0

x1

σ2
exp

(
− x2

1

2σ2

)
1

2π
dx1dx2

is equal to∫ ∫
Ry

p(y1, y2)dy1dy2 =

∫ ∞
−∞

∫ ∞
−∞

pzI (y1)pzQ(y2)dy1dy2

=

∫ ∞
−∞

∫ ∞
−∞

√
y2

1 + y2
2

2πσ2
exp

(
−y

2
1 + y2

2

2σ2

)
1√

y2
1 + y2

2

dy1dy2

=

∫ ∞
−∞

∫ ∞
−∞

1

2πσ2
exp

(
−y

2
1 + y2

2

2σ2

)
dy1dy2.

Therefore,

pzI (y1) =

∫ ∞
−∞

p(y1, y2)dy2 =

∫ ∞
−∞

1

2πσ2
exp

(
−y

2
1 + y2

2

2σ2

)
dy2

=
1

2πσ2
exp

(
− y2

1

2σ2

)∫ ∞
−∞

exp

(
− y2

2

2σ2

)
dy2

=
1

σ
√

2π
exp

(
− y2

1

2σ2

)
, y1 ∈ R.
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Similarly,

pzQ(y2) =

∫ ∞
−∞

p(y1, y2)dy1 =

∫ ∞
−∞

1

2πσ2
exp

(
−y

2
1 + y2

2

2σ2

)
dy1

=
1

σ
√

2π
exp

(
− y2

2

2σ2

)
, y2 ∈ R.

A.2 Generalized Pareto

In Section 2.3.1 it is discussed that the power distribution of clutter samples is given by

p(zP ) =
1

s

(
1 + k

zP
s

)−1−1/k

, k ≥ 0, s > 0, zP ∈ R+.

With the same change of variables as in the Gaussian noise case zp = z2
A and Jacobian J = 2zA

such that the distribution of the amplitude is given by

p(zA) =
2zA
s

(
1 + k

z2
A

s

)−1−1/k

, k ≥ 0, s > 0, zA ∈ R+

and the joint distribution of the amplitude and a random phase p(zA, θ) is given by

p(zA, θ) =
zA
sπ

(
1 + k

z2
A

s

)−1−1/k

, k ≥ 0, s > 0, zA ∈ R+.

Again, the same change of variables is performed to find the joint distribution of the I,Q clutter
samples, i.e

zA =
√
z2
I + z2

Q, θ = arctan(
zQ
zI

),

which gives J = 1
zA

, such that p(zI , zQ) is given by

p(zI , zQ) =
1

sπ

(
1 + k

z2
I + z2

Q

s

)−1−1/k

, k ≥ 0, s > 0, zI , zQ ∈ R+.

Now

p(zI) =

∫ ∞
−∞

1

sπ

(
1 + k

z2
I + z2

Q

s

)−1−1/k

dzQ (A.5)

and

p(zQ) =

∫ ∞
−∞

1

sπ

(
1 + k

z2
I + z2

Q

s

)−1−1/k

dzI . (A.6)
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Let us denote aI = (1 +
z2I
s ), aQ = (1 +

z2Q
s ) to find

p(zI) =

∫ ∞
−∞

p(zI , zQ)dzQ (A.7a)

=

∫ ∞
−∞

1

πs

(
1 + k

(
z2
I + z2

Q

s

))−1−1/k

dzQ (A.7b)

=

[
a
−1−1/k
I

πs
2F1

(
1

2
, 1 +

1

k
;

3

2
;−

kz2
Q

saI

)]∞
−∞

(A.7c)

=
1√
πs

(
1 + k

(
z2
I

s

))−1−1/k

, zI ∈ R; (A.7d)

and similarly

p(zQ) =

∫ ∞
−∞

p(zI , zQ)dzI (A.8a)

=

∫ ∞
−∞

1

πs

(
1 + k

(
z2
I + z2

Q

s

))−1−1/k

dzI (A.8b)

=

[
a
−1−1/k
Q

πs
2F1

(
1

2
, 1 +

1

k
;

3

2
;− kz

2
I

saQ

)]∞
−∞

(A.8c)

=
1√
πs

(
1 + k

(
z2
Q

s

))−1−1/k

, zQ ∈ R; (A.8d)

Let us refer to [39] for more calculations regarding these distributions.



Appendix B

Distributions Target +
Noise/Clutter

An echo signal does never consist only of target reflections. It also consists of background
reflections. In this Appendix, the distributions of target+background reflections are derived.
First, the distribution of a target+noise is given. Later, an expression for the distribution of a
target+clutter is given together with a useful numerical approximation.

B.1 Target + Noise

Physically, the samples from target and noise are added in the I/Q domain. Hence, first the
distribution of target and noise is derived in the I/Q domain. From Section 2.3.1, the target and
noise distributions in the I/Q domain are

p(z) =
1

σi
√

2π
e−z

2/2σ2
i , i = t, b, z ∈ R,

where σt and σb are the standard deviation for respectively the target and background. The
characteristic function of a normal distributed random variable is given by

ϕx(t) = E[eitx] = e−itµ−σ
2t2/2.

Since the I/Q samples from the target and noise are independent, ϕzt+zb(t) is given by

ϕzt+zb(t) = ϕzt(t)ϕzb(t) = e−itµt−σ
2
t t

2/2 · e−itµb−σ
2
b t

2/2 = e−it(µt+µb)−(σ2
t+σ2

b )t2/2,

which is the characteristic function of a normal distribution with mean µt + µb and variance
σ2
t + σ2

b . Hence, the distribution of a I/Q sample from a target and noise is given by

p(z(I/Q)) =
1

(σt + σb)
√

2π
e−z

2
(I/Q)/2(σ2

t+σ2
b ), z(I/Q) ∈ R

and from Appendix A, the power distribution for target and noise results in

p(zP ) =
1

µt + µb
e−zP /µt+µb , zP ∈ R+,

where µt + µb is the mean of the exponential power distribution.
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B.2 Target and Clutter

First the pdf for a target+clutter samples it tried to calculated analytically. Later empirical
derived parameter estimates are shown.

B.2.1 Analytical

From Appendix A.2, the distribution of clutter I samples is given by

p(zI) =
1√
πs

(
1 + k

(
z2
I

s

))−1−1/k

, zI ∈ R; (B.1)

To find the distribution of target+clutter, the characteristic functions are needed. ϕzI (t) for
clutter is given by

ϕzI (t) = E[eitzI ] (B.2a)

=

∫
R

eitzI
1√
πs

(
1 + k

(
z2
I

s

))−1−1/k

dzI (B.2b)

=

eitzI
zI · 2F1

(
1
2 ; 1 + 1

k ; 3
2 ;
−kz2I
s

)
s

∞
−∞

−
∫ ∞
−∞

iteitzI
zI · 2F1

(
1
2 ; 1 + 1

k ; 3
2 ;
−kz2I
s

)
s

dzI ,

(B.2c)

where 2F1 is the Hypergeometric function [29]. This expression is not useful. Therefore the
following transform is used to get the pdf for the complex signal z̄.

z̄ = x+ iy, (B.3)

where

• x = zI ,

• y = zQ.

The distribution p(z̄) for clutter samples is given by

p(z̄) =
1

πs

(
1 + k

|z̄|2

s

)−1−1/k

, z̄ ∈ C. (B.4)

By comparing eq.(B.4) with eq.(B.1), calculating ϕz̄(t) directly seems not useful. Instead, let us
transform to polar coordinates. Then ϕz̄(t) is given by

ϕz̄(t) = E[eitz̄] =

∫
R

eitz̄
1

πs

(
1 + k

(
z̄2

s

))−1−1/k

dz̄ (B.5a)

= E[eitr] =

∫ ∫
R

eitrp(r, θ)drdθ, (B.5b)
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where p(r, θ) for the clutter samples is given by

p(r, θ) =
r

πs

(
1 + k

r2

s

)−1−1/k

, θ ∈ [0, 2π], r ∈ R+.

Hence ϕz̄(t) is given by

ϕz̄(t) = E[eitr] =

∫ ∞
0

∫ 2π

0

eitr
r

πs

(
1 + k

r2

s

)−1−1/k

drdθ (B.6a)

=

∫ ∞
0

eitr
2r

s

(
1 + k

r2

s

)−1−1/k

dr (B.6b)

=

[
−eitr

(
1 + k

r2

s

)−1/k
]∞

0

(B.6c)

+

∫ ∞
0

iteitr
(

1 + k
r2

s

)−1/k

dr, (B.6d)

where eq.(B.6d) will again lead to the usefulness Hypergeometric function.

B.2.2 Parameter estimation

In this Appendix, the accuracy of the parameter estimation proposed in Section 2.3.3 is shown.
The proposed pdf for the target+clutter power samples is given by

p(zP ) =
1

s̃

(
1 + k̃

zP
s̃

)−1−1/k̃

, zP ∈ R+ (B.7)

where

• s̃ = s+ µt,

• k̃ = k·s
s̃ = k·s

s+µt
.

In Figure B.1 the proposed pdf is plotted together with pdf representation of generated tar-
get+clutter samples for three values of k,namely 0.1, 0.3, 0.5. The target power is fixed at
µt = 10. These are settings as used in this thesis. Clearly the proposed parameter estimation is
very accurate as all red lines (from parameter estimation pdf) are very close to the blue lines (pdf
of generated samples). Furthermore, when k increases the approximation seems to be slightly
less accurate.
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Figure B.1: Accuracy parameter estimation of distribution target+clutter



Appendix C

Distribution of sample mean of
i.i.d Pareto distributed r.v.’s

In this Appendix, the derivation is performed to find an expression for the probability density
function of the sample mean of i.i.d. Pareto distributed r.v.’s. The pdf of a single measurement
is given by

pX(x) =
1

s

(
1 + k

(
x− θ
s

))−1−1/k

(C.1)

First, the characteristic function ϕX(x) is calculated.

ϕX(t) = E[eitx]

=

∫ ∞
θ

eitx

s

(
1 + k

x− θ
s

)−1− 1
k

dx

=

[
−
(

1 + k
x− θ
s

)− 1
k

· eitx
]∞
θ

+

∫ ∞
θ

it

(
1 + k

x− θ
s

)− 1
k

· eitxdx

= eitθ +

[
itseitx

k(1− 1
k )

(
1 + k

x− θ
s

)1− 1
k

]∞
θ

+

∫ ∞
θ

(it)2seitx

(1− k)

(
1 + k

x− θ
s

)1− 1
k

dx

= eitθ +
itseitθ

1− k
+

[
its2eitx

(1− k)(2k − 1)

(
1 + k

x− θ
s

)2− 1
k

]∞
θ

+

∫ ∞
θ

(it)3s2eitx

(1− k)(1− 2k)

(
1 + k

x− θ
s

)2− 1
k

dx

After expanding these calculations, ϕX(t) is given by

ϕX(t) =


e(itθ)

∑∞
m=0

(its)m∏m
b=0(1−bk) , k > 0,

e(itθ)
∑∞
m=0(its)m, k = 0.

(C.2)
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Let us use change of variable with y = x/c→ x = c · y, dx
dy = c to find that the pdf of a weighted

sample is

pY (y) =
c

s

(
1 + k

(
cy − θ
s

))−1−1/k

(C.3)

and that ϕY (t) is given by

ϕY (t) =


e(itθ/c)

∑∞
m=0

(its/c)m∏m
b=0(1−bk) , k > 0,

e(itθ/c)
∑∞
m=0(its/c)m, k = 0.

(C.4)

Let use apply the following lemma to find ϕȲ (t) = ϕ∑
` y`

(t) =
∏
` ϕY (y`)

Lemma 27 (Cauchy product). Let an and bn be terms of two series, then the Cauchy product
is defined by( ∞∑

n=0

an

)
·

( ∞∑
m=0

bm

)
=

∞∑
j=0

cj , where cj =

j∑
k=0

akbj−k, n = 0, 1, 2, . . .

For c = 2, this results in

ϕȲ (t) =

(
e(itθ/2)

∞∑
m=0

(its/2)m∏m
b=0(1− bk)

)2

= eitθ
∞∑

m1=0

m1∑
m2=0

(its/2)m2(its/2)m1−m2∏m2

b1=0(1− b1k)
∏m1−m2

b2=0 (1− b2k)

= eitθ
∞∑

m1=0

m1∑
m2=0

(its/2)m1∏m2

b1=0(1− b1k)
∏m1−m2

b2=0 (1− b2k)
. (C.5)

For c = 3, this results in

ϕȲ (t) =

(
e(itθ/3)

∞∑
m=0

(its/3)m∏m
b=0(1− bk)

)3

= eitθ
∞∑

m1=0

m1∑
m2=0

m2∑
m3=0

(its/3)m1∏m3

b1=0(1− b1k)
∏m2−m3

b2=0 (1− b2k)
∏m1−m2

b3=0 (1− b3k)
. (C.6)

Expanding these results for general c yields

ϕȲ (t) = eitθ
∞∑

m1=0

m1∑
m2=0

. . .

mc−1∑
mc=0

(its/c)m1∏mc
b1=0(1− b1k)

∏mc−1−mc
b2=0 (1− b2k) . . .

∏m1−m2

bc=0 (1− bck)
.

(C.7)
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The inverse Fourier transform is used to find the pdf of the mean sample c i.i.d. clutter samples
pȲ (y) by

pȲ (y) =
1

2π

∫
R

e−inyϕȲ (n)dn.

The derivation is performed by calculating the terms of the expansion eq.(C.5) individually,
starting with (m1 = 0). Hence, for c = 2, the first term yields

p(m1=0)(y) =
1

2π

∫ 2π

0

e−inyeinθdn

=
1

2π

[
1

i(θ − y)
ein(θ−y)

]2π

0

=
1

2π

[
e2πi(θ−y)

i(θ − y)
− 1

i(θ − y)

]

=
e2πi(θ−y) − 1

2πi(θ − y)

The second term (m1 = 1) is

p(m1=1)(y) =
1

2π

∫ 2π

0

e−inyeinθ
(

1

(1− k)
+

ins

2(1− k)

)
dn

=
1

2π

(∫ 2π

0

ein(θ−y)

(1− k)
dn+

∫ 2π

0

insein(θ−y)

2(1− k)
dn

)

=
1

2π

([
ein(θ−y)

i(θ − y)(1− k)

]2π

0

+

[
nsein(θ−y)

2(θ − y)(1− k)

]2π

0

−
∫ 2π

0

sein(θ−x)

2(θ − y)(1− k)
dn

)

=
1

2π

([
e2πi(θ−y)

i(θ − y)(1− k)

]
+

[
2πse2πi(θ−y)

2(θ − y)(1− k)

]
−
[

sein(θ−x)

2i(θ − x)2(1− k)

]2π

0

)

=
1

2π

([
e2πi(θ−y)

i(θ − y)(1− k)

]
+

[
2πse2πi(θ−y)

2(θ − y)(1− k)

]
−
[

se2πi(θ−y)

2i(θ − y)2(1− k)

]
+

[
s

2i(θ − x)2(1− k)

])

=

1∑
m2=0

[
(−1)1+1 + (−1)1+m2(2π)m2(θ − y)m2e2πi(θ−y)

]∑1
m2=0

(s/2)∏m2
b1=0(1−b1k)

∏1−m2
b2=0 (1−b2k)

2πi(θ − y)1+1
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The third term (m1 = 2) is

p(m1=2)(y) =
1

2π

∫ 2π

0

e−inyeinθ
(

1

(1− k)(1− 2k)
+

(ins/2)

(1− k)2
+

(ins/2)2

(1− k)(1− 2k)

)
dn

=
1

2π

(∫ 2π

0

ein(θ−y)

(1− k)(1− 2k)
dn+

∫ 2π

0

(ins/2)ein(θ−y)

(1− k)2
dn+

∫ 2π

0

(ins/2)2ein(θ−y)

(1− k)(1− 2k)
dn

)

=
1

2π

([
ein(θ−y)

i(θ − y)(1− k)(1− 2k)

]2π

0

+

[
(ns/2)ein(θ−y)

(θ − y)(1− k)2

]2π

0

+

[
i(ns/2)2ein(θ−y)

(θ − y)(1− k)(1− 2k)

]2π

0

)

− 1

2π

(∫ 2π

0

(s/2)ein(θ−y)

(θ − y)(1− k)2
dn+

∫ 2π

0

in(s/2)2ein(θ−y)

(θ − y)(1− k)(1− 2k)
dn

)

=
1

2π

([
e2πi(θ−y)

i(θ − y)(1− k)(1− 2k)

]
+

[
πse2πi(θ−y)

(θ − y)(1− k)2

]
+

[
i(2πs/2)2e2πi(θ−y)

(θ − y)(1− k)(1− 2k)

])

− 1

2π

([
(s/2)ein(θ−y)

i(θ − y)2(1− k)2

]2π

0

+

[
n(s/2)2ein(θ−y)

(θ − y)2(1− k)(1− 2k)

]2π

0

−
∫ 2π

0

(s/2)2ein(θ−y)

(θ − y)2(1− k)(1− 2k)
dn

)

=
1

2π

([
e2πi(θ−y)

i(θ − y)(1− k)(1− 2k)

]
+

[
πse2πi(θ−y)

(θ − y)(1− k)2

]
+

[
i(2πs/2)2e2πi(θ−y)

(θ − y)(1− k)(1− 2k)

])

− 1

2π

([
(s/2)e2πi(θ−y)

i(θ − y)2(1− k)2

]
+

[
2π(s/2)2e2πi(θ−y)

(θ − y)2(1− k)(1− 2k)

]
−
[

(s/2)2ein(θ−y)

i(θ − y)3(1− k)(1− 2k)

]2π

0

)

=
1

2π

([
e2πi(θ−y)

i(θ − y)(1− k)(1− 2k)

]
+

[
πse2πi(θ−y)

(θ − y)(1− k)2

]
+

[
i(2πs/2)2e2πi(θ−y)

(θ − y)(1− k)(1− 2k)

])

− 1

2π

([
(s/2)e2πi(θ−y)

i(θ − y)2(1− k)2

]
+

[
2π(s/2)2e2πi(θ−y)

(θ − y)2(1− k)(1− 2k)

])

+

([
(s/2)2e2πi(θ−y)

i(θ − y)3(1− k)(1− 2k)

]
−
[

(s/2)2

i(θ − y)3(1− k)(1− 2k)

])

=

2∑
m3=0

[
(−1)2+1 + (−1)2+m3(2πi)m3(θ − y)m3e2πi(θ−x)

]∑2
m3=0

(s/2)2∏m3
b1=0(1−b1k)

∏2−m3
b2=0 (1−b2k)

2πi(θ − y)2+1

Expanding the calculations over all terms, the expression for the pdf for 2 i.i.d. Pareto r.v.’s can
be written as

pȲ (y) =

∞∑
m1=0

m1∑
m2=0

[
(−1)m1+1 + (−1)(m1+m2)(2πi(θ − y))m2e2πi(θ−y)

]
·
∑m1

m2=0
(s/2)m1∏m2

b1=0(1−b1k)
∏m1−m2
b2=0 (1−b2k)

2πi(θ − y)m1+1
.
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Using that for general c, ϕȲ (t) is given by eq.(C.7), he final expression for the pdf of c i.i.d.
samples is

pȲ (y) =

∞∑
m1=0

m1∑
m2=0

[
(−1)m1+1 + (−1)m1+m2(2πi)m2(θ − y)m2e2πi(θ−y)

]
(F)

2πi(θ − y)m1+1
,

with

(F) =

m2∑
m3=0

m3∑
m4=0

. . .

mc−1∑
mc=0

(s/c)m1∏mc
b1=0(1− b1k)

∏mc−1−mc
b2=0 (1− b2k) . . .

∏m1−m2

bc=0 (1− bck)
.
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Appendix D

Histograms from the Filter

In Figures D.1 and D.2, the likelihood ratio distribution of the predicted and posterior particle
cloud is shown during one Monte Carlo run of the SMCMC with 25 time steps. A few plots will
be discussed to make the model in Section 4.2.3 more rationalizable. We pick the figures from
the predicted distribution with the most similarities to one of the distributions of Figure 4.8 and
check whether or not the corresponding posterior distribution also shows similarities with the
corresponding distribution in Figure 4.9.
First of all, some plots for the predicted distribution look empty (time 1,5,8 etc.). At these times,
a few particles had very high measurements (possibly from a target), but most particles had not.
In this case the histogram is almost empty because of the equal length of the segments si.
At some time steps, the predicted distribution show similarities with the uniform distribution in
Figure 4.8a, for example at time 6,10,16 etc. Also the posterior distribution at these times show
similarities with the distribution in Figure 4.9a. Furthermore, at time n = 24, the predicted
distribution looks similar to the exponential distribution in Figure 4.8b. Also the posterior
distribution has some similarities to the corresponding posterior distribution in Figure 4.9b,
although the posterior looks not as similar to Figure 4.9b as in the previous case. This is because
the histogram at n = 24 shows more high samples than the density in Figure 4.8b. At last, the
plots for times n = 4, 19 and 25 have similarities to Figure 4.8c and also the corresponding
posterior distribution looks similar to Figure 4.9c.
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Figure D.1: Predicted likelihood ratio distribution
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Figure D.2: Posterior likelihood ratio distribution
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