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Abstract

The magnetoresistance is calculated for thin-film Bi2Te3, a topological insulator. As a
first step, the band structure is obtained through self-consistently solving a set of coupled
Schrödinger-Poisson equations within the numerical package NEMO5. The Schrödinger
equation is solved using a tight-binding Hamiltonian. The Poisson equation is solved by
a FEM routine. As a next step, the group velocities, effective masses and wave function
overlaps are obtained from the band structure. With these results, the conductivity is
calculated by solving the linearized Boltzmann equation. A nonzero electrostatic potential
is fixed on one of the surfaces, to mimic gating and the presence of charged adsorbates
on the surface. Effects of a magnetic field on the band structure and on the alignment
of the spin are investigated. The resulting energy shifts of the bands are smaller than
observed in literature. The calculations for the magnetoresistance do not predict positive,
linear magnetoresistance when only topological surface states contribute to the transport.
When bulk conduction bands contribute as well, positive magnetoresistance is observed.
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1. Introduction

Topological insulators have been a subject of interest in recent years. The term ‘topological’
refers to the fact that certain fundamental properties of such materials are insensitive to
smooth changes in material parameters[1]. Like (semi)conductors, topological insulators
have a band gap separating the valence and conduction bands. In topological insulators,
however, this gap is spanned by the so-called Dirac cone, which consists of states bound
to the surfaces of the material.

Such a material can be conducting on the surfaces while being an insulator in the bulk.
Practical applications are still explored, but the use of ‘Majorana particles’ for quantum
computers is regularly mentioned in literature.

Topological insulators such as Bi2Te3[2] and Bi2Se3[3] have been shown to exhibit
positive linear magnetoresistance for transverse magnetic fields. In cited literature, it
is suggested that the states in the Dirac cone play an important role in this effect. It
would, however, be optimistic to say that the effect is fully understood. A model that
can replicate the specific magnetoresistance behavior can, hopefully, give more insight in
the involved mechanisms.

The rest of this chapter gives a general introduction to the unit cell of Bi2Te3, and to
important concepts in solid state physics, specifically the tight-binding model, topological
insulators and magnetoresistance.

1.1. Bismuth Telluride unit cell

Bismuth telluride is built up from layers of identical atom types. Figure 1.2 shows the unit
cell, its top view and the layer structure. There are two types of inequivalent tellurium
atoms. They are distinct due to their different nearest neighbors: Te1 has another Te1
and a Bi atom, while Te2 has two Bi atoms as its neighbors.

The unit cell is, technically speaking, a rhombohedron with lattice vectors t1..3 in
figure 1.2. Here, it will be described using a hexagonal unit cell with the lattice vectors
in figure 1.1a, top view. Their lengths are 3.0487 nm in the C-direction and 0.4383 nm in
the A-B-plane. Those last two vectors make an angle of 120◦. A different choice for the
lattice vectors could have resulted in a smaller unit cell. In section 2.1.1 this choice is
explained.

During the calculations, integrals over the lattice will be calculated. A summation over
all positions in the lattice in real space is equivalent to summing over the wave vectors in
just the first Brillouin zone. The corresponding reciprocal lattice vectors are obtained by
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1. Introduction
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Figure 1.1.: Top view of unit cell

the usual transformation:

A′ = 2π
B × C

A · (B × C)
(1.1)

B′ = 2π
C ×A

B · (C ×A)
(1.2)

C ′ = 2π
A×B

C · (A×B)
(1.3)

which is just the Fourier transform of the real space Bravais lattice. The reciprocal
vectors are shown in figure 1.1b. The first Brillouin zone is the primitive unit cell in
reciprocal space and is encapsulated by the red lines. Its ‘volume’ is 2.45× 1029 m−3.
Points of high symmetry include Γ, M and K. Band structure plots will often sweep
through the first Brillouin zone along the directions K-Γ-M.

This thesis will focus on a specific Bi2Te3 system. It consists of fifteen quintuple layers
(QL) of Bi2Te3 on top of a substrate of strontium titanate (SrTiO3). A quintuple layer is
approximately one nanometer thick. The thin-film is grown along the crystallographic
C-axis, which is directed along the z-axis of the model. Throughout this thesis, it is
assumed that the system is an infinite slab in the A-B-plane, which is modeled by periodic
boundary conditions along the x- and y- axes. Electrons are tightly confined in the
z-direction. This causes a large quantization energy for the out-of-plane axis. Therefore,
states with wave vector component kz unequal to zero are neglected. The surface states
in Bi2Te3 result from strong spin-orbit coupling.
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1. Introduction

Figure 1.2.: Bi2Se3 unit cell, from Zhang et al. [4]. The Bi2Te3 unit cell looks similar
after substituting Te for Se.

1.2. Solid state physics

This section will give an introduction to some concepts of solid-state physics that are used
in this thesis. Solid state physics is a branch of physics that studies various properties of
solids. Quantum mechanics is one of the methods used to predict those properties, using
the atomistic structure. The atoms are organized in a periodic structure, or crystal. This
idealized picture enables the use of useful tools as the Bloch theorem.

1.2.1. Time-independent Schrödinger equation

The Schrödinger equation is a tool to describe the electronic structure of a system.
Solving this equation is the main objective in theoretical solid state physics and quantum
mechanics in general. For a system at rest or describing a periodic motion, the time-
independent Schrödinger equation can be used. In Dirac notation it is written as

H |ψn〉 = En |ψn〉 . (1.4)

This is the eigenvalue problem for the Hamiltonian H. The Hamiltonian is a Hermitian
operator on a Hilbert space, corresponding to the energy of a system. To find an
expression for it, one must thus use a physical model that describes the energy for the
system of interest. The eigenvalues of the Hamiltonian are the allowed energies of a
system. For a free particle, the spectrum is continuous, so that it can have any energy.
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1. Introduction

For electrons that are confined by a potential, as is the case in a solid, these energies are
quantized.

For each eigenvalue En there is an accompanying eigenvector |ψn〉. A specific |ψa〉
describes one of the allowed states of a system and is often called an eigenstate. What
exactly such a state is, depends on the system. The dimensionality of the Hilbert space
depends on the physical model that was used to construct the Hamiltonian. An example
of a two-dimensional Hilbert space is the spin state of an electron. A measurement can

only result in spin ‘up’ or ‘down’. The two eigenvectors are

(
1
0

)
for up and

(
0
1

)
for

down and these two vectors form an orthogonal basis for the space. A linear combination
of the two can describe any state of the system.

The problem becomes infinite dimensional when also the position of the electron is
taken in account. Consider the one-dimensional infinite potential well. In this case,
the state |φ〉 is described by the wave function. When squared, it gives the probability
density of finding the electron at certain x: it is a continuous and differentiable function
f : R→ C. An orthogonal basis is formed by the Fourier series, hence an infinite number
of |ψn〉 are needed.

1.2.2. Tight-binding Hamiltonian

Consulted literature for this section is Ashcroft and Mermin [5, Chapter 10]. A Hamilto-
nian must be chosen that captures the essential features of the physical system. Here,
a tight-binding Hamiltonian will be used. The tight-binding approach is suitable when
the electrons in the system remain tightly bound to the atom to which they belong.
They have little interaction with surrounding atoms and their electrons. Still, electrons
are allowed to hop to neighboring atoms. It is then reasonable to assume that the
wave functions of the electrons look a lot like the wave functions of a free atom. The
total Hamiltonian is just the sum of the Hamiltonian for all the separate atoms plus a
perturbation:

H(r) =
∑
Rn

(r −Rn) + ∆U(r). (1.5)

However, this perturbation is small enough to assume that a wave function that solves
the Hamiltonian is of the shape

ψ(r) =
∑
m,Rn

bm(Rn)ψm(r −Rn), (1.6)

where ψm(r) are the atomic orbitals. The wave function is thus given by a linear
combination of the atomic orbitals.

On the other hand, there is the Bloch theorem, which states that the eigenstates in a
crystal obey the relation

ψ(r +Rl) = eik·Rlψ(r). (1.7)

This theorem is very general and says that the wave functions in an infinite crystal have
a certain periodicity in the lattice. By combining these two equations, one can derive
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1. Introduction

that the general shape of a solution to the tight-binding Hamiltonian is

ψ(r) =
1√
N

∑
m,Rn

eik·Rnψm(r −Rn), (1.8)

with ψm atomic orbitals and Rn the positions of the atoms in real space. The indices
m and n run over the orbitals and atoms, respectively. A finite number of both is used,
which reduces the Hilbert space to a mtot · ntot dimensional space. The Hamiltonian is
thus a matrix. With this shape of the wave equation, it is possible to derive a general
expression for the energies, or eigenvalues of the Hamiltonian:

En(k) =

∫
ψ∗(r)Hψ(r)d3r = f(βm, γm, αm). (1.9)

where the tight-binding parameters are given by

βm,m = −
∫
ψ∗m(r)∆U(r)ψm(r)d3r (1.10)

γm,l = −
∫
ψ∗m(r)∆U(r)ψl(r −Rn)d3r (1.11)

αm,l =

∫
ψ∗m(r)ψl(r −Rn)d3r, (1.12)

which are the atomic energy shift, the inter atomic matrix element and the overlap
integral, respectively. These parameters are used to fill the Hamiltonian matrix together
with information about the geometric structure of the material to model. The tight-
binding parameters have to be known in advance. In this case, the parameters were
obtained by fitting the band structure to a density functional theory (DFT) calculation
by Lee and Allmen [6].

1.2.3. Band structure

Some textbook problems in quantum mechanics are easily solved analytically, such as the
infinite potential well and the harmonic oscillator. Most interesting problems have no
exact solution and need to be solved numerically. The Hamiltonian for an n-dimensional
problem is a n×n matrix, so solving an infinite dimensional system is problematic. Such
systems are often solved by taking a finite part of the system and invoking periodic
boundary conditions. The problem is then reduced to a finite dimensional version with a
finite number of solutions.

In the tight binding Hamiltonian, the wave vector k appears. For an electron in a
crystal, it is related to its crystal momentum by

pcrystal = ~k. (1.13)

Since the wave vector appears in the Hamiltonian, the eigenvectors will depend on it as
well. An n-dimensional system has n eigenvectors, which all continuously depend on k.
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1. Introduction

(a) Band structure diagram of conventional ma-
terials

(b) Idealized band structure of a topo-
logical insulator, from Hasan and
Kane [1]

Figure 1.3.: Schematic band structures

The eigenstates and energies can now be denoted as |ψn,k〉 and En,k. Both are periodic
in k with a periodicity of 2π/A′, with A′ the appropriate reciprocal lattice vector.

It is common in solid state physics to plot the dispersion relation: the eigenenergies
as a function of the wave vector. Since the latter one is a three dimensional vector it is
common to plot a range of k values between points of high-symmetry in the Brillouin
zone. For each k there are as many energies as the dimension of the Hamiltonian. The
energies vary continuously with k so that when the resolution is high enough, smooth
bands appear. These plots are appropriately named band structure plots. Note that
the resolution is something fundamental: the Bloch waves must fit in the lattice. The
wave vector is inversely proportional to an integer times one of the lattice constants, and
its minimum value is limited by the size of the system. For a ‘real’ system the band
structure becomes continuous due to the large system size.

Band gap

A schematic of three different band diagrams is shown in figure 1.3a. The bands are
drawn as continuous regions but are in reality a very large number of discrete dots.
There are more states available than electrons, so some bottom portion of the band
structure will be filled with electrons. The average number of electrons in a state depends
on its energy and is given by the Fermi-Dirac distribution. At zero temperature, the
Fermi-Dirac distribution is a step function. The value of this function is one below the
electrochemical potential, or Fermi level, and zero above it. Thus, all states with an
energy below the Fermi level are filled with exactly one electron. Bands below the Fermi
level are called valence bands, bands above it are conduction bands.

For metals, the Fermi level lies in the conduction band. This means that in a metal,
electrons around the Fermi level can make an infinitesimally small jump to another,
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1. Introduction

unoccupied state. The electrons are said to be in a metallic state. Such electrons can
move around, explaining why metals conduct electricity.

Insulators have gap between the valence and conduction bands, with the Fermi level
in between. There are no allowed states in the gap. Electrons would have to gain a lot
of energy to jump to a free state in the conduction band. All electrons are stuck where
they are, and no electrical conduction is possible.

Insulators with a small band gap are called semiconductors. They are insulating at
zero temperature. At higher temperatures, an electron might be able to jump from the
valence band to the conduction band with the help of thermal energy, following from
the Fermi-Dirac distribution. The semiconductor then becomes conducting. The Fermi
level can be shifted by adding or subtracting electrons from the system, also resulting in
an increase of conductivity. One way to do this is through gating, which means that an
electric field is invoked at a surface of the semiconductor.

Bi2Te3 is a narrow gap semiconductor, with a band gap of ±0.2 eV.

1.3. Topological insulators

Bi2Te3 is a topological insulator, which is characterized by a full insulating gap in
the bulk and gapless surface states which are protected by time-reversal symmetry[7].
The dispersion of the surface states spans the usual gap between the valence and the
conduction bands in a semiconductor. A schematic band diagram is shown in figure 1.3b.
The states that span the gap are referred to as the ‘Dirac cone’, because of the linear
dispersion of the topological surface states. An electron which occupies a surface state
is bound to a surface in real space. The surface states are metallic. Therefore, if the
Fermi level is placed in the band gap, a topological insulator is insulating in the bulk and
conducting on its surfaces. The direction of the spin of these states is tightly coupled to
their momentum.

The surface states in Bi2Te3 exist as a result of strong spin-orbit coupling[4]. Spin-orbit
coupling enters the Hamiltonian as an extra term

HSO = αSO(L · S), (1.14)

for orbital angular momentum L and spin angular momentum S. The parameter αSO

determines the strength of the coupling. In the tight-binding Hamiltonian matrix, spin-
orbit coupling appears as an extra tight-binding parameter between the different p orbitals
of single atoms.

The strong spin-orbit coupling causes band inversion, which drives the system in a
topological insulator phase. Specifically, the p orbitals invert in Bi2Te3. This process is
shown in figure 1.4, which starts with the separate p orbitals. The first stage (I) shows
the effect of chemical bonding between bismuth and tellurium within a quintuple layer.
The bonding results in five hybridized orbitals. In stage (II) the crystal-field splitting
is turned on. The effect is caused by the static electric field of the neighboring atoms.
It breaks the degeneracy of some hybridized orbitals, bringing a bismuth orbital and
a tellurium orbital closer together in energy. The spin-orbit coupling is turned on in

7



1. Introduction

Figure 1.4.: Schematic diagram of the evolution from the atomic px,y,z orbitals of Bi2Te3

at the gamma point. The diagram looks qualitatively the same for Bi2Te3.
Image from Zhang et al. [4]

stage (III). The energy of the bismuth orbital is further decreased, while the energy
of the tellurium orbital is increased, causing them to cross. As a result, the system is
topologically non-trivial.

1.3.1. Surface states

This subsection will qualitatively discuss some mechanisms to create protected surface
states. The goal is not to fully explain the workings of a three dimensional topological
insulator, but rather to get a feeling for how the surface states behave. Consulted
literature includes Kane and Moore [8], which is also the source of the images. Lecture
notes for the course ‘Advanced Condensed Matter Physics’, by Kai Sun at the University
of Michigan, were used as well[9].

Quantum Hall effect

Different quantum mechanical effects can cause pro-
tected surface states to exist. They come with different
types of protection. A two dimensional electron system
can be in the quantum Hall state, which can only occur
in strong magnetic fields for sufficiently low tempera-
tures. Instead of surface states, such a system has one
dimensional edge states. These are topologically pro-
tected, meaning that they are unaffected by any type
of local impurities. Transport along the edges is dissipa-
tionless. On each edge, the current flows in only one direction. Spin and momentum are
locked together, thus on each edge the current is spin polarized. To scatter back on an
impurity, an electron would have to change its momentum by 180 degrees and, thus, flip

8



1. Introduction

its spin. The probability of such an event is zero since the two quantum states have no
overlap. The quantum Hall state can only exist in two dimensions.

Quantum spin Hall effect

The quantum spin Hall effect is another way to create
protected states and it works in both, two and three
dimensions; for now, consider a two dimensional system.
Rather than an external magnetic field, strong spin-
orbit coupling drives this mechanism. Magnetic fields
are produced internally by this coupling and, loosely
speaking, they play the role of the external field of the
quantum Hall effect. Spin up and spin down particles
feel this field in opposite directions, which causes two
edge states to exist at each edge. These states have opposite spin polarization and
opposite velocity. As no net charge is transported, it is appropriate to speak of ‘spin
currents’. The edge states in a quantum spin Hall state are not topologically protected.
Rather, they are protected as long as time-reversal symmetry is not broken. One way to
break time-reversal symmetry is by applying a magnetic field. Magnetic impurities, which
do not affect the quantum Hall state, can also destroy the edge states of the quantum
spin Hall state. Transport is dissipationless, for the same reasons as for the quantum
Hall state.

The quantum spin Hall state can be generalized to
three dimensions. In this case, the system contains
surface states, which means that current can flow in
all directions in the x–y plane. Spin and momentum
are still locked, a state cannot backscatter to the state
with opposite momentum. It can, however, scatter to
states with close-by momenta. Transport in a quantum
spin Hall state is, therefore, not dissipationless, but the
spin-orbit coupling certainly reduces resistivity.

A three dimensional topological insulator behaves
similar to the quantum spin Hall state. The resistivity
is reduced in the same manner. A Dirac appears in the band structure, with states
that are bound to one of the surfaces. The spin of these states is perpendicular to their
momentum. The surface states are not protected by topology. They are only protected if
time-reversal symmetry is not broken. Therefore, the Dirac cone can be destroyed by
applying a magnetic field or by magnetic impurities.

1.4. Magnetoresistance

Electrical conductivity σ is defined to be the proportionality factor between the electric
field E at a point in a material and the current density j that it induces. This relation is

9



1. Introduction

Figure 1.5.: Field dependence of the transverse magnetoresistance (inset) and the MR
ratio between 3 and 340 K for a 20 QL Bi2Te3 nanosheet, from Wang et al.
[2].

given by
j = σE. (1.15)

The conductivity is a tensor for systems of more than one dimension. For the thin-film
considered in this thesis it is a 2x2 matrix. The resistivity tensor is the inverse of the
conductivity tensor, defined as

ρ =

[
ρxx ρxy
ρyx ρyy

]
= σ−1. (1.16)

For some materials, the resistivity changes when an external magnetic field is applied.
This magnetic field-dependent resistivity is the magnetoresistance. In this thesis the
magnetic field is applied perpendicularly to the current, so that the transverse magne-
toresistance is considered. Measurements of the resistivity of thin-film Bi2Te3 show a
positive linear correlation with the magnitude of a perpendicularly applied magnetic field,
see figure 1.5.

Wang et al. [2] claim that the linear magnetoresistance is mainly due to the topological
surface states. He et al. [3] make a similar claim for topological insulator Bi2Se3 thin-films.
However, Leusink et al. [10] observe large magnetoresistance in the conducing bulk state
of Bi2Te3. They propose a mechanism for magnetoresistance that is applicable to a wide
class of systems with spin-orbit coupling. The mechanism could explain magnetoresistance
for surface states, which have strong spin-orbit coupling, and for bulk states, which have
weaker spin-orbit coupling.

In absence of a magnetic field, the spin and momentum of a state with strong spin-orbit
coupling are perpendicular. This makes it improbable for an electron to scatter to a
state with opposite momentum, see figure 1.6. This reduction in backscattering results
in a lower resistivity. Assume that the surfaces of the thin-film lies in the x–y plane.
When a magnetic field is switched on along the z-axis, the spins are forced to align (up

10
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Figure 1.6.: Angular distribution of the wave function overlap for a state in the Dirac
cone. The figure is a result of calculations in later chapters.

or down) with this field. Spins of states which were previously orthogonal, i.e., the spins
were pointing in opposite directions in the x–y plane, now have a finite overlap. The
resistivity of the material increases in the magnetic field.

1.5. Project goal

The goal of this project is to calculate the magnetoresistance in bismuth telluride, Bi2Te3.
Measurements have shown that the magnetoresistance in comparable Bi2Te3 samples is
positive and linear. This positive linear relation is sometimes attributed to transport by
the topological surface states. However, bulk states might be involved as well.

The project was carried out in two phases. First it is necessary to obtain the band
structure. This is be done in part I, using a self-consistent Schrödinger-Poisson calculation.
The band structure is used to determine which states contribute to transport for a certain
Fermi level. The group velocity, effective mass and overlap to other states are obtained
as well. The second step is to use these data to calculate the magnetoresistance. This is
done in part II, using the linearized Boltzmann equation. Pure surface state transport is
compared with mixed transport by topological surface states and bulk states. Finally,
part III gives the conclusion and outlook.

11



Part I.

Band structure
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2. Method

The first step towards obtaining a model for the magnetoresistance is solving the
Schrödinger-Poisson equation for the system. As mentioned before, a tight-binding
model will be applied to do so. While the underlying principles of the method are not
very hard to grasp, writing a stable code is a complex task. Therefore, it was decided to
make use of the numerical package NEMO5 [11]. NEMO5 also includes a FEM solver
for the Poisson calculations, and it can compute inner products to obtain wave function
overlaps. These are used in the calculation of the relaxation time, which is required to
calculate the magnetoresistance.

2.1. Model in NEMO

2.1.1. Unit cell

To build the Hamiltonian, information about the geometrical structure is required.
NEMO5 uses a unit cell consisting of three quintuple layers, as depicted in figure 2.1. It
is, therefore, as thick as the entire unit cell in figure 1.2; only after fifteen layers does
the exact pattern of atoms repeat itself. This convention is chosen, because it allows
the use of two lattice vectors in the x–y plane and one along the z-axis, rather than
angled ones. As a consequence, the thickness of the thin-film can only be chosen to be a
multiple of three quintuple layers. In the following, a system is considered which is 15
QL thick. Periodic boundary conditions are assumed in the x–y plane in order to keep
the computational cost reasonable. In practice, this means that each atom is connected
to each of its neighbors six times, with a sixty-degree offset between the bonds.

Notice that the surfaces can be terminated by one bismuth layer and one tellurium
layer, or by two tellurium layers, depending on where the unit cell is defined to start.
The asymmetrical case is less stable because of an intrinsic potential difference between
the two surfaces. It does not occur in nature. Therefore, the symmetric is considered.

2.1.2. Tight-binding basis states

The tight-binding implementation in NEMO5 uses the sp3d5s∗ model for the atomic
orbitals. The tight-binding parameters were obtained by fitting the band structure to
the results of a first-principles calculation[6]. Because spin-orbit coupling is the driving
mechanism for the topological surface states in Bi2Te3, spin is included as well. Each
orbit appears both in a spin-up and a spin-down configuration. A general state of an
isolated atom, thus, has twenty components:

|ψ〉 =
∣∣s ↑, px ↑, py ↑, pz ↑, dxy ↑, dyz ↑, dzx ↑, dx2−y2 ↑, dz2 ↑, s∗ ↑, s ↓, . . .〉 . (2.1)

13



2. Method

Figure 2.1.: The unit cell in NEMO5

A unit cell contains fifteen atoms which means that each quintuple layer consists of five
atoms. For the fifteen quintuple layer system this means that 75 atoms are considered.
The Hamiltonian and its eigenvectors are thus

H ∈ Cn×n, |ψ〉 ∈ Cn, (2.2)

where
n = 20 orbits× no. of QL× 5 atoms per QL. (2.3)

Specifically, NEMO5 will solve an eigenvalue problem of dimension 1500 for each k-point.
Since this is done numerically, the Hamiltonian has to be rebuilt for each k-point as well.

2.1.3. Spin

For overlap calculations, it is not necessary to extract spin data for the states as that is
a simple matter of taking an inner product. All spin information is taken into account
implicitly. Extraction of spin expectation values is still useful to visualize the effect of
strong spin-orbit coupling and to see whether the surface states indeed have opposite

spin currents. A general spin state can be described as

(
a
b

)
, with expectation values

〈Sx〉 =
~
2

(a∗b+ b∗a) (2.4)

〈Sy〉 = i
~
2

(b∗a− a∗b) (2.5)

〈Sz〉 =
~
2

(|a|2 − |b|2). (2.6)

For a single atom, the output of NEMO5 is structured

|a|2 = 〈ψi|ψi〉 , i = 1 . . . 10 (2.7)

|b|2 = 〈ψi|ψi〉 , i = 11 . . . 20 (2.8)

b∗a = 〈ψi|ψi+10〉 , i = 1 . . . 10 (2.9)
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2. Method
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Figure 2.2.: The band structure for a Schrödinger calculation

from which the expectation values can be calculated easily. For the Bi2Te3 model, the
index i runs over (20 orbitals) x (15 atoms/u.c.) x (5 unit cells).

2.1.4. 2D k-space grid

For a typical band structure plot, k-space sampling is done along a line. Usually, kz is
set to zero and a certain path is chosen in the kx–ky plane. For the magnetoresistance
calculations, however, all contributing states on the Fermi surface must be found. It is,
therefore, necessary to mesh the entire kx–ky plane plane while, again, kz is set to zero.
The grid points can lie along the reciprocal vectors, although they are not normalized.
Another option is to use Cartesian coordinates to create a square grid. Building the grid
in such a way that it just includes all bands crossing the surface, obviously, results in
the best resolution at lowest cost. Because the unit cell, and thus the contours of the
bands at a certain energy level, are approximately hexagonal, a coarse grid will result
in a distorted slice. Meanwhile, the computational cost of the Schrödinger calculation
increases linearly with the number of k-points.

2.2. Schrödinger solver

A first attempt to solve the Schrödinger equation results in the band structure of
figure 2.2b. The positive x-axis covers half of one of the reciprocal vectors, in the
direction of the M points in the Brillouin zone. The negative x-axis shows points towards
the K point. Notice that this is a cropped plot. Most of the valence and conduction bands
are not shown here because they are not relevant for the low-energy physics that are
studied here. Figure 2.2a shows the full band structure. It is possible to avoid calculating
all these obsolete solutions to the eigenvalue problem by using an iterative Krylov method.
In practice, this was not faster than the direct solver while sometimes problems with
convergence arose. All results in this paper were derived using direct eigenvalue solvers.
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2. Method

The most eye-catching aspect of the band structure is the double Dirac cone. One can
distinguish two separate cones; one for each surface. Experimentally this is not observed.
One should keep in mind that a Schrödinger calculation without its Poisson counterpart
is hardly physical, for it neglects the electrostatics of the problem. It turns out that
indeed a self-consistent approach makes the bands coincide.

Spin information is represented by the coloring. A red state has a positive expectation
value for its spin component in the x-direction; a black state a negative one. This explains
the symmetry around the gamma point, caused by spin-momentum locking. Compare
with figure 2.4f, which shows the spin-x and spin-y expectation values from a top view
for E = 0.

2.2.1. Derivatives

For the magnetoresistance calculations, it is necessary to calculate first- and- second
order derivatives of the energy in the kx–ky plane. Since the grid is discrete this is done
using a straightforward finite difference method. The relevant derivatives with their
second order (except for the mixed derivative) approximations are

∂E

∂kx
≈ Ei−2 − 8Ei−1 + 8Ei+1 − Ei−2

12∆x
figure 2.4a (2.10)

∂E

∂ky
≈ Ej−2 − 8Ej−1 + 8Ej+1 − Ej−2

12∆y
figure 2.4b (2.11)

∂2E

∂k2
x

≈ −Ei−2 + 16Ei−1 − 30Ei + 16Ei+1 − Ei+2

12(∆x)2
figure 2.4c (2.12)

∂2E

∂k2
y

≈ −Ej−2 + 16Ej−1 − 30Ej + 16Ej+1 − Ej+2

12(∆y)2
figure 2.4d (2.13)

∂2E

∂kx∂ky
≈ Ei+1,j+1 − Ei+1,j−1 − Ei−1,j+1 + Ei−1,j−1

4∆x∆y
figure 2.4e. (2.14)

The first derivatives are used to calculate the group velocity of the states. The velocity
is given by

vα = ~−1 ∂E

∂kα
, (2.15)

where α = x, y. The second derivatives are required for calculation of the effective mass
tensor in the parabolic band approximation:

[
m−1

]
αβ

= ~−2 ∂2E

∂kα∂kβ
. (2.16)

Note that here a matrix inverse is meant, rather than a scalar reciprocal.

16



2. Method

-1 -0.5 0 0.5 1
Group velocity v

x
 [m/s] #106

0

50

100

150

200

250
O

cc
ur

re
nc

es
First order
Second order

(a) vx

-3 -2 -1 0 1 2 3
Effective mass m

xx
/m

e

0

200

400

600

800

O
cc

ur
re

nc
es

First order
Second order

(b) mxx

Figure 2.3.: Distribution of the velocity and effective mass, calculated using both a first
and a second order central differences scheme. Derivatives were calculated
on the grid from figure 2.4b.

The derivatives were calculated using a first order method as well and then compared
on the grid that was used for magnetoresistance calculations. That grid is limited in
density, thus using a higher order scheme makes sense. There is a drawback. The
derivatives should be taken using energies belonging to the same band. The computer
has no notion of bands. For each point in the kx–ky plane, it just has an ordered set of
eigenvalues. Thus when bands cross exactly where a derivative is taken, it might be that
a wrong state is used in the calculation. A first order scheme reduces the chances of this
happening because it used only direct neighbors of the state.

In figure 2.4, the value of the derivative in each state is represented by its color.
The figure shows slices through three different band structures. The double hexagon
resulted from the Schrödinger equation without electrostatics. The other slices result from
more realistic Schrödinger-Poisson calculations, that will be used for magnetoresistance
calculations later on. The figures reveal the expected symmetry in the first and second
order derivatives. One can also see the expectation values for the spin, which are strictly
correlated to the wave vector due to strong spin-orbit coupling. The two circles have
opposite spin direction.

2.3. Schrödinger-Poisson calculation

After solving the Schrödinger equation, the wave functions of all electrons in the system
are known. They will not be spread homogeneously: after all, some electrons will stick
to the surfaces. The charge distribution will result in an electrostatic potential in the
thin-film. Since the charge distribution is known, the potential can be calculated using
Poisson’s equation:

∇2φ(r) = −ρ(r)

ε
. (2.17)
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Figure 2.4.: These figures show all the different derivatives and the expectation values
for the spin. Most figures show the kx − ky surface for E = 0 in figure 2.2.
Figures 2.4b and 2.4d demonstrate the surfaces for the last two cases in
section 7.1.1 and 7.1.2, respectively.
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Figure 2.5.: Schematic of the Schrödinger-Poisson solver. Blue boxes represent solvers,
red boxes results.

The Poisson equation is a partial differential equation of elliptic type. Here, ρ is the
charge density and φ the potential. The dielectric constant of Bi2Te3 is taken ε = 218
based on measurements by Zimmer et al. [12].

The charge distribution is given on the domain Ω ⊂ R3. NEMO5 solves Poisson’s
equation using a finite element method. The FEM domain is based on the atomistic unit
cell. The first two Dirichlet boundary conditions are

φ = v1 on ∂Ω1, φ = v2 on ∂Ω2. (2.18)

These are the boundaries of the domain that lie on the surfaces of the thin-film, on which
the voltages v1 and v2 are applied. The boundary connects through the thin-film, where
the FEM solver implements periodic boundary conditions.

In the first iteration of the Schrödinger equation, the electrostatic potential was set to
zero to obtain a guess for the wave functions. To obtain the correct band structure it is
necessary to solve the Schrödinger and Poisson’s equations self-consistently as sketched in
figure 2.5. The former provides the band structure, the latter the potential, and both are
solved alternately up to some convergence criterium. As boundary conditions, the voltage
is set to zero at the surfaces. Two different Schrödinger solvers are used in NEMO5: a
low resolution density solver in the self-consistent loop, and a solver with higher accuracy
that runs only once after convergence.

Figure 2.6a shows the band structure calculated using the self-consistent Schrödinger-
Poisson solver. The dispersion of the Dirac cones is no longer linear as in the Schrödinger
calculation, and the Dirac point has shifted down. The double cones now overlap, but
there are still four bands involved. The M and K directions still show qualitatively
different behavior. The electric potential plot shows a clear maximum in the middle
of the film. Note that the chemical potential is obtained by multiplying the electric
potential by a factor of −1, due to the negative charge of electrons. A maximum thus
indicates that the mobile electrons are redistributed to the surfaces. That makes sense,
for that is where the surface states should be.
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Figure 2.6.: Self-consistent Schrödinger-Poisson calculation.
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2.3.1. Surface states

A simple verification of the Schrödinger-Poisson solver is to plot the wave function for
some state in the Dirac cone. The wave functions should still be clearly bound to one of
the two surfaces. Figure 2.6b shows the wave functions for the four states in the Dirac
point. Only two functions can be seen, as each surface has two states with opposite spin
with overlapping wave functions in real space.
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3. Validation

The band structure will first be compared to verified calculations using NEMO5, to make
sure it works correctly. After that, the convergence is investigated for the Schrödinger-
Poisson calculation. Lastly, the band structure is compared with experimental results.

3.1. Comparison with sample problems

3.1.1. Schrödinger

NEMO5 comes bundled with a number of reference systems and the corresponding
results to verify the installation of the software. One of these tests calculates the band
structure of a 9 QL Bi2Te3 film without taking any potential in consideration. This
simple Schrödinger calculation itself is not interesting, but it was used to validate the
installation because of its similarities to the simulations for the project.

The reference data consists of 60 points in k-space, for each of which there are 900
eigenvalues. It is thus a 60× 900 matrix with entries En,k. Define the locally calculated

eigenvalues as Ên,k. The relative matrix error is then given by

||Ê − E||2
||E||2

= 4.878 · 10−14. (3.1)

Since for each point in k-space an independent eigenvalue problem is solved, it makes
sense to also look at the error per k-point. The relative error in the vectors is

||Êk − Ek||2
||Ek||2

. (3.2)

This error is shown in figure 3.1. Symmetry around the y-axis is expected since the band
structure itself is, for these paths in k-space, symmetric around it as well. Although the
peaks are remarkable, one can safely conclude that the sets of eigenvalues approximate
the reference data up to 13 decimal digits.

3.1.2. Schrödinger-Poisson

Another test with reference data is available for a Schrödinger-Poisson calculation on the
same system as in the previous chapter. The data comes in the form of the potential
along the z-axis. When comparing to the local calculations, no error was observed at all,
indicating that the FEM solver works as it should.
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Figure 3.1.: Relative error in the 2-norm per point in k-space

3.2. Convergence and accuracy

The Schrödinger-Poisson solver functions properly, but it is necessary to determine which
precision should be used. A criterion on the L2 norm of the difference in potential is
used to determine if the self consistent loop has converged. It is set to a precision of
six decimals (in Volts) by default, and this was not changed. Two other factors are
important here:

k-space sampling density, which sets the number of k-points that are used in the
Schrödinger solver each iteration. Note that this is not the high-resolution solver
that runs only once after convergence of the self consistent loop. A higher resolution
in k-space gives a more accurate picture of where the wave functions are located.
In other words, it hands a more precise charge distribution to the Poisson solver.

FEM mesh density, which influences the level of detail in the obtained potential land-
scape. The FEM mesh is built up from the atomistic grid. NEMO5 gives the option
to refine this mesh, which is done by placing an extra node between all existing
nodes.

The density of the k-space sampling is set by a scalar option kdens. This scalar sets the
number of steps along the x, y and z axis, meaning that the actual number of k-points
equals k3

dens. In figure 3.3, kdens was varied from 10 to 40. Based on the error shown in
figure 3.2 it was decided to use kdens = 20 for following calculations.

The FEM mesh is more troublesome. When refining the mesh more than once, the
Poisson solver suddenly converges to a potential which is orders of magnitude larger and
clearly non-physical. It is likely caused by the way the mesh is created from the atomistic
grid. The difference between no refinement and refining once is clearly visible. Even
though the energy shift is small, it causes the degenerate bands to separate a little more.
This is clearly seen from the coloring of the bands, which seems more consistent.
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Figure 3.2.: Relative error of the total band structure in the 2-norm
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(a) kdens = 10, FEM refinement steps: 0
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(b) kdens = 10, FEM refinement steps: 1

-4 -2 0 2 4
Wave vector [1/nm]

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

E
ne

rg
y 

[e
V

]

(c) kdens = 40, FEM refinement steps: 0
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(d) kdens = 40, FEM refinement steps: 1

Figure 3.3.: Convergence plots, along the M-Γ-M path
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Figure 3.4.: Comparison with ARPES.

3.3. Comparison with experiment

The calculated band structure is compared with experimental results. These are obtained
trough angle-resolved photoemission spectroscopy, or ARPES. A beam of photons is
directed at the sample. Electrons can absorb these photons and escape, which is known
as the photoelectric effect. The kinetic energy that they carry is related to the difference
between the energy of the incoming electrons and the binding energy. The angle at which
electrons escape reveals their momentum prior to absorption of the photon.

Figure 3.4 compares the calculated band structure with ARPES measurements. Those
experiments were performed for a 15 QL thin-film, just like the calculations. A difference
is the substrate of SrTiO, which is not included in the model. The rightmost figure is
calculated by NEMO5. The middle figure is the same band structure, shifted to match
the energy of the Dirac point with that of the experiment. The experiment was likely
performed in the M direction, but this was not documented. The calculations produce an
M-shape in the bulk valence band around the Dirac point. However, it is wider than in
the ARPES figure. For |k| ≥ 2 nm−1, the bands disappear in ARPES but are visible in
the calculated band structure. The wave function in figure 3.5 is from the same band as
the Dirac cone. It reveals that the surface states are further in the bulk for larger wave
vectors. It might be that the ARPES cannot detect these electrons.

This image reveals that the Fermi level of the experiment comes close to some bulk
conduction bands. This supports the idea that bulk conduction bands could contribute
to transport. The Fermi level raises further towards the bulk bands after exposure to air,
due to adsorbates collecting on the surface.
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Figure 3.5.: A surface state wave function for |k| = 2.14 nm−1.
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4. Results for physical scenarios

This chapter will present various results of calculations made with NEMO5. The aim
is to simulate physically relevant scenarios. Some of these scenarios will be used for
magnetoresistance calculations in chapter 7.

This thesis focuses on a thin-film that consists of 15 QL. In the first scenario, the
thickness is reduced even further. It is expected that the topological surface states will
break down, due to hybridization, in the ultra-thin-film limit.

The second scenario will try to simulate a thin-film that has been exposed to air or
chemicals. Such exposure leads to surface doping by adsorbates. This process will be
mimicked by adjusting the electrostatic boundary conditions in the FEM solver.

In the third scenario, an external magnetic field will be applied on the thin-film. First,
the implementation in the tight-binding method is discussed. Next, the effect of the
magnetic field on the spin expectation value in the bulk and surface bands is studied.
The Zeeman effect turns out to be much weaker than expected.

4.1. Ultra-thin-films

For ultra-thin-films, the Dirac cone will open so that a gap is observed in the band
structure [14, 15]. Here, it is investigated if the tight-binding model can replicate this
phenomenon. One way to understand gapping of the surface states for ultra-thin-film
Bi2Te3 is by picturing their wave functions. As the film gets thinner, the electrons that
were confined at the surfaces start interact with one another. Their wave functions begin
to overlap and hybridize, increasing their energy. This means that no true surface states
exist anymore and the material is no longer a topological insulator. In figure 4.1, the
previous surface state wave functions and band structure can be seen for a sample of
6 QL. A gap has opened in the Dirac cone. Due to the unit cell formed by 3 QL in
NEMO5, not any thickness can be simulated. For 3 QL, a gap opens as well. For 9, 12
and for 15 QL, the Dirac cone is not gapped.

4.2. Electrostatic boundary conditions

When a thin-film sample is exposed to air, adsorbates and contaminants collect on the
surface. The same happens when the sample comes in contact with chemicals during
its fabrication. Such pollutants can be charged. These extra surface charges cause an
(unwanted) potential near the thin-film surface. The resulting electric field is screened
in the bulk of the material, so that the electrons near the surface feel a larger shift
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Figure 4.1.: Schrödinger-Poisson calculation for 6 QL.

Figure 4.2.: Schematic of the Bi2Te3 system with back gating

in chemical potential than those further in the bulk. Bands are shifted in energy as a
function of their position in the material. This effect is called band bending.

Band bending can also be caused by electrostatic gating. The thin-films are grown on a
dielectric substrate. In the case of back gating, a voltage difference is applied between the
thin-film and the backside of the substrate, as shown in figure 4.2. The voltage difference
induces an electric field near the bottom surface of the substrate. The field is screened in
the thin-film, and this results in band bending.

Both effects are simulated by applying nonzero electrostatic potentials to the surfaces.
The electrochemical potential is not changed from previous calculations. Figure 4.3 shows
band structures and potentials for substrates with the bottom surface potential fixed at
0 V and the top surface potential set to ± 0.5 V. Electrons have a negative charge, and
are thus attracted to regions with a positive potential. The asymmetry of both potential
landscapes is striking. The negative voltage is quickly screened by depletion of electrons
in that region, while this is not the case for the positive voltage.

In the sample with a negative potential applied, electrons are forced away from the
top surface. For electrons that are still near the top surface, the chemical potential is
increased considerably. One of the Dirac cones is shifted upwards in the band structure
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Figure 4.3.: Band splitting for different surface potentials.

as a result. Most of the states in the bulk and near the bottom surface have only a slight
increase in chemical potential. This if reflected by a minor shift for other bands in the
band structure.

The positive potential causes a negative shift in the chemical potential of electrons,
that is almost linear along the thin-film. Compared to the previous case, a larger portion
of the bulk bands is significantly shifted.

4.3. Magnetic field

4.3.1. Tight-binding model

A magnetic field will have an influence on the band structure of a material. To account
for these effects, it is necessary to make adjustments to the Hamiltonian. NEMO5 has
options for making two of these adjustments to the tight-binding model. They can be
turned on an off separately, but will always be used together.
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4. Results for physical scenarios

Peierls subsitution

The first adjustment is the Peierls substitution. It describes the effect of a magnetic field
on the orbit of an electron. The Peierls substitution is an approximation, suitable for a
slowly varying vector potential A(r, t). The substitution is usually described in second
quantization.

In second quantization, the tight-binding parameters α, β, γ are replaced with hopping
parameters t. They describe how electrons hop in different directions in the material.
The Peierls substitution adds the Peierls phase to the hopping parameters:

tij → tije
i e~

∫ j
i A·dl. (4.1)

Here,
∫ j
i A · dl is the line integral of the vector potential along the hopping path.

Zeeman splitting

The Peierls substitution describes the effect of the magnetic field on the orbit of the
electrons. Another term is necessary for the effect of the field on the spin. Unfortunately,
the exact implementation of the Zeeman splitting in NEMO5 is not known.

4.3.2. Spin alignment

In absence of a magnetic field, the spin-orbit coupling in Bi2Te3 causes perpendicular
spin-momentum locking. It is interesting to see how a magnetic field breaks this locking,
because this is believed to be a mechanism for magnetoresistance[10]. Figure 4.4 shows
the band structure diagram for a thin-film, with and without a perpendicular magnetic
field. The color indicates the absolute value of the spin-z component. For zero magnetic
field, the spin-z component is relatively small. In the right part of the plot, the states
have no spin-z component because it runs in a specific (M) direction. Along this line
in the Fermi surface, the spin-z component happens to change sign. The fact that the
z-components are all zero is convenient when comparing with the case with a magnetic
field. When a magnetic field is applied, almost all states align their spin with (or against)
the field. An important exception is the Dirac cone. It seems that the spin of a topological
surface state is very robust against a magnetic field.

This difference in spin alignment indicates that the spin-orbit interaction is not constant
through the thin-film. More precisely, the topological surface states have stronger spin-
momentum locking than the states in the bulk.

The theory from section 1.4 relates magnetoresistance to spin alignment under influence
of a magnetic field. Based on the observations, no positive magnetoresistance should
occur if only the topological surface states contribute to the transport. When the lowest
bulk conduction bands are involved as well, positive magnetoresistance can be expected.

4.3.3. Band shift

In presence of a magnetic field, a magnetic dipole will feel a shift in potential energy.
This energy depends on the angle between the magnetic field and the magnetic moment
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Figure 4.4.: Spin-z expectation value

B = 0 B = 20 B = 60 B = 200 g-factor

Surface 0 0.29 0.85 2.82 0.24
Bulk 0 1.4 4.4 13.8 1.08

Table 4.1.: Energy gaps in meV for surface and bulk states.

of the dipole. In the band structure of Bi2Te3, all bands are double degenerate for spin
up and down. When applying a magnetic field, the bands will therefore shift in opposite
directions. The splitting of bands is called Zeeman splitting.

The energy shift in the band structure is described by

∆E =
1

2
geffµBB, (4.2)

for effective g-factor geff and Bohr magneton µB. The effective g-factor is different for
different bands in the band structure. To calculate it, energy shifts were measured at the
gamma point. This was done for the Dirac cone (see figure 4.5) and a bulk band at ±500
meV. The energy shifts were obtained by measuring the energy difference between two
bands and dividing this by a factor of two, to account for the fact that both bands shift
simultaneously.

The results are gathered in 4.1. It shows the energy distance between states had
exactly the same energy when no magnetic field was applied. An approximation of the
effective g-factor was calculated by a linear fit.

4.4. Discussion

The effective g-factor is calculated for a surface and for a bulk band at the gamma
point. A significant discrepancy exists between the calculated effective g-factor and those
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Figure 4.5.: Band splitting for various magnetic fields.
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4. Results for physical scenarios

observed in literature, which are as large as 20[16, 17]. The band shifts were much smaller
than expected.

It is unlikely that the discrepancy is caused by the Peierls substitution. It has been
implemented in NEMO5 for a long time and was thoroughly tested. However, the effect
of the magnetic field on the spin is clearly observed. That is an indication that at least a
part of the Zeeman term works correctly. The unexplained behavior in a magnetic field
must be kept in mind when interpreting the results of the magnetoresistance calculations.
Until this issue is resolved, it makes only sense to do qualitative predictions.
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Part II.

Magnetoresistance
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5. Theory

The next objective is to calculate the resistivity of the thin-film as a function of a
perpendicular magnetic field. To this end, the conductivity will be calculated using
the Boltzmann model. Various results of the Schrödinger-Poisson calculations are
required to obtain the conductivity. This chapter will discuss the relevant theory,
including the Boltzmann model, the linearized Boltzmann equation, and the relaxation
time approximation. Consulted literature for this chapter is Ashcroft and Mermin [5,
Chapters 13, 16].

The conductivity will be calculated using the Boltzmann model. The simpler Drude
model makes the assumption of isotropic bands, which is not true for the Bi2Te3 system.
The energy of an isotropic band depends only on the magnitude of the wave vector,
not on the direction. With the Boltzmann model, this assumption will still be made
implicitly through the relaxation time approximation. An improvement over the Drude
model is that the relaxation time can depend on the wave vector.

First, the distribution function is defined as

fn(r,k, t)
d3rd3k

(2π)3
, (5.1)

which equals the number of electrons in band n at time t within the phase space volume
d3r d3k around the point r, k. The current density is given by

j = −e
∑
n

∫
BZ
fn(r,k, t)vn(k)

d3k

(2π)3
, (5.2)

for bands n, group velocity vn and distribution function fn(r,k, t). Summing over the
bands will not be done explicitly in the implementation. The integral will be evaluated
for all states, irrespective of their band.

The group velocities can be calculated directly from the band structure as follows:

v = ~−1 ∂E

∂kT
. (5.3)

It is necessary to find and expression for the distribution function. The Fermi-Dirac
distribution is defined as

f0(k) =

(
e
E(k)−µ
kBT + 1

)−1

, (5.4)

where kB is Boltzmann’s constant, T is the temperature and µ the chemical potential.
The distribution is written as the sum of the Fermi-Dirac distribution f0 and a deviation
δf

f(r,k, t) = f0(k) + δf(r,k, t). (5.5)
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5. Theory

These functions will be written as a function of the wave vector for clarity.
When inserted in equation 5.2, the Fermi-Dirac distribution will not contribute to the

conductivity, because it describes the occupation of states in equilibrium. It is therefore
only necessary to calculate the deviation. This deviation is described by the linearized
Boltzmann equation (LBE), which reads

∂δf(k)

∂t
− e

~
v ×B · ∂δf(k)

∂k
+ v ·

[
eE +

E − µ
T
∇T
](
−∂f

0(k)

∂E

)
= T (f(k)). (5.6)

For a static electric field, the distribution function is not a function of time, so that the
time derivative becomes zero. T is the collision integral. A general expression is given by

T = −
∫

d3k

(2π)3

(
Wk,k′f(k)[1− f(k′)]−Wk′,k′f(k′)[1− f(k)]

)
. (5.7)

Wk,k′ is defined using the scattering probability. The probability that an electron with
wave vector k scatters to a state with wave vector contained in dk′ around k′, in the
time interval dt, assuming that the state is unoccupied, is given by

Wk,k′dtdk′

(2π)3
. (5.8)

The scattering is assumed to be elastic. This means that electrons can only scatter to
states with the same energy. Furthermore, it is assumed that the impurities which cause
scattering are dilute enough. Then it can be shown that

Wk,k′ =
2π

~
nimp|

〈
ψ(k′)

∣∣U |ψ(k)〉 |2δ(Ek − Ek′) = Wk′,k. (5.9)

The impurity density, nimp, is the number of scatterers per unit volume. U describes the
interaction between an electron and an impurity. The symmetry in W follows from the
fact that U is Hermitian. With this symmetry, equation 5.7 for the collision integral can
be simplified to

T = −
∫

d3k

(2π)3
Wk,k′ [f(k)− f(k′)]. (5.10)

5.1. Relaxation time approximation

It is not possible to solve the LBE with expression 5.10 for the collision integral analytically.
Therefore, the relaxation time approximation (RTA) is used. In the RTA, the collision
integral is written as

T = −δf(k)

τ(k)
. (5.11)

Where the relaxation time τ(k) does not depend on the distribution function. While this
simplifies the collision integral, it is still necessary to find an expression for the scattering
time τ .
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5. Theory

For very specific cases, solving the LBE with the RTA gives the same result as solving
the LBE without the RTA. The material must have isotropic bands and isotropic elastic
impurity scattering. Thus, the energy must depend only on the magnitude k of the wave
vector. The scattering probability between two states must depend only on the common
value of their energy, and on the angle between their wave vectors. Furthermore, the
electric field must be spatially uniform and static. Note that these requirements are not
met in the Bi2Te3 system. Applying the RTA will, therefore, have an influence on the
calculated conductivity.

By comparing the two cases, an expression for the relaxation time can be found.
Demand that ∫

d3k

(2π)3
Wk,k′

(
[f(k)− f(k′)]

)
=
δf(k)

τ(k)
. (5.12)

In the RTA, for a system that meets all the described requirements, the distribution
function is of the form

f(k) = f(k)0 + k ·A(E). (5.13)

The vector function A(E) depends on k only through its magnitude, i.e., only through E.
Since Wk,k′ is only nonzero for E(k) = E(k′), this reduces equation 5.12 to

A(E) ·
∫

d3k

(2π)3
Wk,k′(k − k′) =

1

τ(k)
k ·A(E). (5.14)

Now, rewrite the vector k′ as a sum of its components parallel and perpendicular to k

k′ = (k̂ · k′)k̂ + k′⊥. (5.15)

The scattering is isotropic, so Wk,k′ must not depend on k′⊥. For Wk,k′ to be nonzero,
the two involved energies must be the same, since elastic scattering was assumed. For
isotropic bands, this means that the two involved wave vectors must have the same
magnitude, so that (k̂ · k′)k̂ = (k̂ · k̂′)k. Now it is possible to write

Wk,k′k′ = kWk,k′(k̂ · k̂′). (5.16)

Again, a limitation of the RTA appears. When an electron scatters to another band, the
two involved states can have the same energy but wave vectors with different magnitudes.

Insertion in equation 5.14 gives the relaxation time∫
d3k

(2π)3
Wk,k′(1− k̂ · k̂′) =

1

τ(k)
. (5.17)

The exact form of Wk,k′ depends on the scattering mechanism. A two dimensional
Coulomb potential with Thomas-Fermi screening[5, Chapter 17] is used, given by

U =
e2

2ε0εr

1

(|k− k′|+ ξ−1)
. (5.18)

It is inversely proportional to the sum of the magnitude of the difference in wave vectors
and inverse of the the Thomas-Fermi screening length ξ.
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The final expression for the relaxation time is given by

τ−1(k) =

∫
d3k

(2π)3

2π

~
nimp

(
e2

2ε0εr

)2

|
〈
ψ(k′)

∣∣ψ(k)〉 |2 (1− k̂ · k̂′)
(|k− k′|+ ξ−1)2

δ(Ek − Ek′).

(5.19)
The relaxation time is related to the probability that a certain state scatters to any

other state, expressed by the overlap integral of the wave functions ψ. These overlaps
will change with the magnetic field. The δ term ensures elastic scattering: particles only
scatter to states with the same energy. The term (1 − k̂ · k̂′) is a result of the RTA.
It ensures that scattering to a state that travels in the same direction as the incoming
electron does not influence the conductivity.

5.2. Conductivity

With the expression for the relaxation time, it is possible to solve the LBE. Assume that
the system is in a steady state, so that the derivative with respect to time vanishes. The
temperature is assumed to be constant, so that the temperature gradient disappears as
well. The LBE then becomes

ev · E ∂f
0

∂E
+

e

~c
v ×B · ∂δf

∂k
=
δf

τ
. (5.20)

Or, in tensor notation:

evαEα
∂f0

∂E
+
e

~
εαβγv

αBβ ∂δf(k)

∂kγ
=
δf(k)

τ
. (5.21)

The density function was already assumed to be of the form δf(k) = k ·A(E). This
specific form can be used to simplify the term with the magnetic field in the LBE:

εαβγv
αBβ ∂δf(k)

∂kγ
= εαβγv

αBβ ∂k
µAµ(E)

∂kγ
(5.22)

= εαβγv
αBβ

(
Aγ + kµ

∂Aµ(E)

∂kγ

)
(5.23)

= εαβγv
αBβ

(
Aγ + kµ

∂Aµ(E)

∂ε

∂E

∂kγ

)
(5.24)

= εαβγv
αBβ

(
Aγ + ~kµvγ

∂Aµ(E)

∂E

)
(5.25)

= εαβγv
αBβAγ . (5.26)

In the last step, it was used that εαβγv
αvγ = 0, due to the asymmetry of the Levi-Civita

tensor. The LBE becomes

evαEα
∂f0

∂E
+
e

~
εαβγv

αBγAβ =
kβAβ(E)

τ
. (5.27)
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The effective mass is defined proportional to the Hessian of the energy:

[
m−1

]
αβ

= ~−2 ∂2E

∂kα∂kβ
. (5.28)

In combination with the expression for the group velocity, this gives ~kα = mαβv
β . Now,

the LBE becomes

evαEα
∂f0

∂E
+
e

~
εαβγv

αBγAβ =
mαβv

αAβ(E)

~τ
. (5.29)

Dividing by the group velocity and multiplying by ~ gives

e~Eα
∂f0

∂E
= e

[
eεαβγB

γ +
mαβ

τ

]
Aβ(E). (5.30)

Rewriting gives an expression for the distribution function as

δf(k) = k ·A(E) (5.31)

= eEβvνmνα
∂f0

∂E

[
eεαβγB

γ +
mαβ

τ

]−1
. (5.32)

It is now possible to write an explicit expression for the conductivity. The temperature
is set to zero, so that the derivative of the Fermi-Dirac distribution becomes a negative
delta function.

σξβ(B) = 2e2

∫
Ef

vξvνmνα

[
eεαβγB

γ +
mαβ

τ

]−1 d3k

(2π)3
. (5.33)

For higher temperatures, the integral would be over the entire Brillouin zone weighted
by the Fermi-Dirac distribution.

5.3. Numerical approach

To improve the accuracy of magnetoresistance calculations, the LBE could be solved
numerically without the relaxation time approximation. The equation to solve would
then be

∂δf(k)

∂t
− e
~
v×B·∂δf(k)

∂k
+v·

[
eE +

E − µ
T
∇T
](
−∂f

0(k)

∂E

)
= −

∫
d3k

(2π)3
Wk,k′ [f(k)−f(k′)].

(5.34)
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Post-processing of the data from NEMO5 is done using MATLAB. NEMO5 outputs the
band structure and the overlap between all states within a given energy range. MATLAB
is used to calculate the derivatives for the group velocities and effective masses, and to
perform the summations for the relaxation time and the conductivity.

6.1. Studied cases

Magnetoresistance calculations will be done for three cases. The first case corresponds
to a sample without doping or gating. The surface potentials are fixed to zero volt and
the Fermi level is at 0 eV. The second case is not physical, but can be used to explore
the effect of bulk bands on the transport. The same band structure is used, but the
Fermi level is chosen at 200 meV. The third case in unphysical as well. One of the
surfaces is fixed at 0 V and the other at 0.5 V, while the Fermi level is chosen at 100 meV.
Qualitative differences are to be expected. In the first case, only surface states contribute
to the transport. In the other two cases, bulk bands contribute to the transport as well.

An alternative to choosing an artificial, higher Fermi level, would have been to increase
the surface potentials until the bulk bands intersect with the Fermi level at 0 meV.

6.1.1. Energy tolerance

A state is considered to be at the Fermi level if its energy falls within a certain tolerance
around it. The size of this tolerance should be zero ideally, since the assumption of
zero temperature was made. In practice, it is limited by the finite grid density in the
kx–ky plane. If the tolerance is too small, entire regions of the band structure drop out
of the selection. It was found that a tolerance of ±4 meV works well. Using E = kBT ,
this can be translated to a temperature of 46.4 K.

Unfortunately, increasing the grid density becomes expensive quickly. It is necessary
to calculate the overlap of the wave functions between all sets of two states at the Fermi
level. The number of overlap integrals thus equals the number of states at the Fermi
level squared.

6.2. Parameter fitting

Not all quantities in the definition of the relaxation time, equation 5.19, are known. The
first unknown is the Thomas-Fermi screening length ξ. It is estimated to lie between
1 nm and 10 nm.
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Another unknown quantity is the impurity density nimp of the material, which acts as
a scaling factor for the relaxation time. Furthermore a volume is missing: the summation
is the result of an integral over the Fermi surface. The volume of the Brillouin zone
should thus be included. Rather than treating this separately, all scaling factors are
included in one single scaling parameter:

nscale =
2π

~
VBZ

(
e2

2ε0εr

)2

nimp. (6.1)

The initial guess for nscale will be made by choosing it such that the size of the
relaxation time is realistic. It should be on the order of a tenth of a picosecond. Choosing
nscale too small or too large results matrices that are almost singular. After inversion,
this leads to diverging or oscillating solutions for the magnetoresistance. Therefore, after
the initial guess, the parameters will be fine tuned. A simple selection rule is that the
conductivity σxx may not have a negative value, for that would mean that the current
flows against the potential that induces it. After that, magnetoresistance is calculated
for a small range of the two parameters. The results are fitted using a quadratic fit and
a cubic natural spline. For each fit, a score is assigned to the solution.

For the quadratic fit, the relative error is determined. The score is the inverse of this
error.

For the spline, the absolute value of its second derivative is integrated. The score is
the inverse of the resulting value. It is a measure of the smoothness of the fit. A natural
cubic spline was used because it is the smoothest fit through a set of points.

Together, these scores give a quick insight in where the magnetoresistance is smooth
and does not diverge.

6.3. Practical difficulties

6.3.1. Infinite masses

States which are located in a part of the band structure with zero curvature have an
infinite effective mass, according to equation 5.28. This is not physical; indeed, the
equation is a result of local parabolic approximation of the band structure. In a parabolic
band, the second derivative is never zero. Infinite masses give rise to numerical difficulties.
To prevent this, the determinant of the Hessian matrix is corrected as

Det = Det± ε ~
2

me
. (6.2)

The sign of the correction depends on the sign of the uncorrected determinant, for it
must be steered away from zero. ε is taken to be 0.1. With this correction, the largest
effective mass is set to 20 electron masses.

6.3.2. Different grids

Some difficulties arise when comparing the results of the different cases in the next section.
Different grid densities are used for each case. That is done to get the best possible
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resolution. The integral over the first Brillouin zone in equation 5.19 is calculated by
summing over all the states. It needs to be multiplied by the volume of the Brillouin
zone and divided by the number of grid points:

VBZ

N

∑
n

=

∫
BZ

d3k (6.3)

In the MATLAB code this is not done. The volume was included in the scaling
parameter nscale. However, the number of grid points was not included in the scaling
parameter, because it depends on the grid.

A correction on nscale is required to compare all cases. One of the grids was chosen as
a reference grid, namely that of the second case, although the specific choice does not
influence the results. Correction for the grid density is done by dividing by the relative
grid density:

n̂scale = nscale
grid densityref

grid density
. (6.4)

In following results this correction is already done. The hat on the corrected scaling
parameter will be omitted.
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7. Results and discussion

This chapter presents the results of the magnetoresistance calculations. As discussed,
there is no full agreement on the mechanism behind the positive linear magnetoresistance
in Bi2Te3. It is interesting to see if the topological surface states, or the bulk states play
the most important role. Three cases are compared to come to a conclusion.

One thing to keep in mind is that the relaxation time approximation was applied to
solve the linearized Boltzmann equation. The use of this approximation can be justified
in isotropic systems. For Bi2Te3, it will not give accurate quantitative results. Therefore,
only the relative magnetoresistance is presented. The results in this chapter will hopefully
give a picture of the magnetoresistance that is qualitatively correct.

The figures of the calculated magnetoresistance contain plots for various choices of the
screening length ξ and the scaling parameter nscale, which were defined in the previous
chapters. The scaling parameter scales the magnitude of the relaxation time.

For each of the three cases, the total overlap is plotted. This is the overlap integral in
the expression for the relaxation time, summed over all states on the Fermi surface:

total overlap =
∑
k′,k

|
〈
ψ(k′)

∣∣ψ(k)〉 |2. (7.1)

Geometric information is lost since everything is summed. The resulting number gives an
indication of the total coherence between all states. A slight increase can still be relevant
as not all overlaps have the same weight in the summation for the relaxation time. For
each value of the magnetic field, the total overlap was normalized by dividing by the
number of states squared. It is an indication of the average overlap per state.

7.1. Zero boundary conditions

In these cases, the voltage at both surfaces is set to zero. The Fermi level is first chosen
at 0 meV, and afterwards artificially chosen at 200 meV to include bulk conduction bands
in the transport.

7.1.1. Dirac cone

The Fermi surface for the first case is similar to that of figure 2.4a. That surface was the
result of just the Schrödinger solver, without the Poisson part. Here, the full Schrödinger-
Poisson solver is used. The difference with the figure is that now, the two separate bands
are shifted on top of one another. The slightly hexagonal shape remains the same.

No positive linear magnetoresistance is observed for a Fermi level that cuts only the
Dirac cone. For some choices of nscale, it is possible to obtain a smooth but strongly
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Figure 7.1.: Total overlap in the Dirac cone.

negative magnetoresistance, up to about -80% at a magnetic field of 20 Tesla. This
relation is negative and strongly nonlinear. Magnetoresistance plots for these parameters
are not shown. Figure 7.2 shows the magnetoresistance for the same parameters that are
found and shown in section 7.1.2. It makes sense to compare the two cases for the same
parameters, since both cases use the same band structure.

If the results are assumed to be correct, they indicate that the in literature observed
positive, linear magnetoresistance is not purely a surface state effect. There might be
some transport contribution from bulk states involved.

The possibility remains that the way the magnetic field is implemented in the tight-
binding model gives the wrong result for the spin alignment. According to the model,
the surface states do not align their spin with the magnetic field. Because the spins
do not align, the total overlap in figure 7.1 changes hardly. The relaxation time is not
changing with the magnetic field. If, in reality, the surface states do align their spin with
a magnetic field, they might still give rise to positive linear magnetoresistance.

7.1.2. Conduction band

The same band structure is used, but with a Fermi level chosen at 200 meV. Two extra
bulk conduction bands are involved in transport. Figure 2.4b shows the states at this
energy. It makes sense to see if the bulk bands have an influence on the magnetoresistance,
because they do align their spin with a magnetic field. The idea is that contributions of
bulk bands will ensure that the overlap integrals increase significantly. Figure 7.3 shows
that the total overlap indeed increases. Note the different scale on the y-axis compared
to the case where only the surface states were involved. It is interesting to see that the
total overlap is decreasing at first.

As an extra illustration, figure 7.4 shows the overlap between two different reference
states and all other states on the Fermi surface. Both figures show two cases: no magnetic
field, and a field of 20 T. The figure on the left has a reference in the Dirac cone. The
magnetic field has no observable effect. The right figure takes a bulk state as reference.
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(a) ξ = 2, nscale = 1.3, 1.5, 2.0
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Figure 7.2.: Magnetoresistance in the Dirac cone for different parameters.
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Figure 7.3.: Total overlap in the conduction band.
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Figure 7.4.: Polar plots of the relative overlap between two reference states and all other
states, for 0 T and 20 T. The distance from the origin corresponds to the
magnitude of the overlap. The bulk-reference state is on the inner side of
the oval from figure 2.4b

Here, the overlap is enhanced by the magnetic field. One can also see that the relative
positions of the four smaller lobes change.

Figure 7.5 shows the resulting magnetoresistance. The increase in wave function overlap
results clearly in a positive relation for specific values of ξ and nscale. An increase of 23%
at 20 T is the largest increase that was found. Other choices for ξ and nscale can still
cause diverging solutions.

7.2. Band bending

A positive potential of 0.5 V applied on one of the surfaces, and a Fermi level taken at
100 meV, results in the states shown in figure 2.4d. Gaps appear in some bands due
to the energy tolerance around the Fermi level. More bulk bands are present compared
to the previous case. One might, therefore, expect an even stronger magnetoresistance
effect. The opposite turns out to be the case. A first indication is given by the total
overlap in figure 7.6a. Once again it changes, significantly compared to the first case.
However, instead of increasing, it decreases for stronger magnetic fields.

The values of ξ and nscale that gave the strongest magnetoresistance for the previous
case are used here as well. The result is shown as the blue plot in figure 7.6b. The
red plot shows one of the smoothest solutions, found by varying the parameters slightly.
Other parameters were tried as well. The magnetoresistance never becomes positive,
except for diverging solutions.
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Figure 7.5.: Magnetoresistance in the conduction band for different parameters.
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(a) Total overlap for the thin-film with an ap-
plied potential.
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Figure 7.6.: Total overlap and magnetoresistance for a potential difference of 0.5 V.
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7.3. Discussion

It is hard to make a concluding statement about the validity of the results. The screening
length ξ and the scaling factor nscale are not known. Magnetoresistance plots that look
physically plausible (not diverging) are found for screening factors that are physically
plausible as well.

Some approximations are made in the derivation of the linearized Boltzmann equation,
the most important ones being the relaxation time approximation and the parabolic band
approximation. The relaxation time approximation replaces the collision integral with a
simple expression that does not depend on the distribution function. The relaxation time
approximation is exact for systems with isotropic bands and isotropic scattering. Its use
for systems with anisotropic bands and anisotropic scattering is at best questionable[18].
The parabolic band approximation relates mass to the inverse of the curvature of the bands,
which is valid for parabolic bands. To the author’s knowledge, no better alternatives are
available.

The linearized Boltzmann equation needs results from the band structure calculations.
Any errors introduced there, whether numerical or more fundamental, will end up in
the final result. A higher grid resolution could help to increase accuracy, but this
becomes expensive in terms of computational cost. Mimicking the influence of doping by
adsorbates is done by fixing the potential on the surfaces of the sample. NEMO5 has
a specialized option for including surface passivation, which might be a more realistic
treatment. However, this functionality depends on passivation parameters, for which the
correct values are not known.
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8. Conclusion and outlook

8.1. Conclusion

Using a 20 orbital tight-binding Schrödinger-Poisson formalism, the band structure of 15
QL thin-film Bi2Te3 was calculated for various surface potentials and magnetic fields.
Applying a positive potential on one of the surfaces pulls the conduction band down
towards the Dirac cone. A negative potential pushes the valence band up. The potential
landscapes for the two cases are not symmetric. The effects of the magnetic field on
the band structure are not as expected. The effective g-factor is smaller than values
reported in literature. This could not be explained and might be a shortcoming of the
implementation of the tight-binding model in NEMO5. Meanwhile, the spins of almost
all states align with a magnetic field. It is found that states in the Dirac cone refuse
to align their spin with a magnetic field. It was shown that the Dirac cone opens for a
thin-film of 6 QL, because of hybridization of the wave functions of the surface states.

Calculations of the relative magnetoresistance were performed by solving the linearized
Boltzmann equation with the relaxation time approximation. Three different cases were
treated. The first two calculations were done with the two surfaces of the thin-film
fixed at 0 V. This system does not show positive magnetoresistance for a Fermi surface
which includes only states from the Dirac cone. Choosing the Fermi level at 200 meV
results in positive magnetoresistance for screening lengths close to 2 nm. In this case,
the Fermi surface includes states from the Dirac cone and two bulk conduction bands.
These conduction bands do align their spin with the magnetic field. A last calculation
was done for a thin-film with a surface potential difference of 0.5 V. The conduction bulk
bands are pulled down and the Fermi level was chosen to cut a large number of bands.
This did not result in positive magnetoresistance.

Positive magnetoresistance in Bi2Te3 thin-films is predicted when the lowest bulk
conduction bands contribute to the transport. The effects of a magnetic field on the
band structure and spin alignment have yet to be fully understood. If the results are
assumed to be correct, they indicate that the in literature observed positive, linear
magnetoresistance is not purely a surface state effect.
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8.2. Outlook

When continuing this project, the next step should be to validate experimentally that the
surface states do not align their spin with an external magnetic field. This is important,
because spin alignment is crucial for the magnetoresistance calculations. After that, it
makes sense to continue with quantitative predictions for the magnetoresistance. To this
end, the linearized Boltzmann equation should be solved without making the relaxation
time approximation. This needs to be done using numerical methods.

A higher grid density for the band structure calculations will improve the accuracy of
the magnetoresistance calculations as well. However, the computational cost increases
rapidly as the grid density increases. Some way to interpolate wave functions could
help to greatly reduce the computational cost, because then a smaller number of grid
points could be used. The rotational symmetry of the Fermi surface could be exploited
as well. The band structure is then solved only on a part of the grid. Somehow, the wave
functions on the rest of the grid must be reconstructed.
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