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Abstract

This report discusses the conductance-based network model, described in [1], of
the interactions of the external segments of the globus pallidus (gpe) with the
subthalamic nucleus (stn) in the basal ganglia (bg). Analysis of this important
network in the bg can lead to a better understanding on correlated synchronous
rhythmic activity of the network, which is a major characteristic of Parkinson’s
Disease (pd).

A codim-1 bifurcation analysis is applied to each individual model which
represents a certain type of neuron within the stn or gpe. The stn- and
gpe-models consist of the same type of currents but the difference in constant
parameter values cause their behaviour to differ. The parameter which is varied
is the applied current, Iapp, to the specific neuron. This current simulates the
synaptic input to the neuron. Bifurcation analysis gives a detailed division of
the parameter line in different regions, bounded by transition/bifurcation points.
Within these regions the specific model-neuron, behaves qualitatively different
from other regions. Values for Iapp at which transitions between spiking and
quiescent states are present can therefore be indicated accurately.

Simulations of the behaviour of the two neuron-models show the spiking
characteristics described in literature. We find that the stn-model represents
a stn-neuron which is unable to generate plateau potentials. Such a neuron
is present in the stn but represents the least interesting one when networks of
stn- and gpe-neurons are considered. With and without input the stn- and
gpe-models show the correct behaviour. Both models miss the pronounced slow
part of the afterhyperpolarization (ahp) though. Comparison of the fI-curves of
both models with ones from experimental literature, shows that the parameter
Iapp needs scaling. The parameter range in which all essential events take place
is simply too small for both models. Although much is uncertain on the exact
behaviour-characteristics of the two neurons in vivo, some improvements for
future modelling are considered.

A codim-2 equilibrium bifurcation analysis is applied to the two-cell recip-
rocally connected stn-gpe network-model. This network is too small and too
tightly connected to really resemble the network in vivo or provide us with
further knowledge on synchronization properties of the network. A complete
understanding of the results from the simulations and bifurcation analyis of this
small network, is necessary though to extend the network to larger sizes with
different architecture. The codim-2 equilibrium bifurcation analysis showed that
the model-network will never be quiescent in the physical parameter regime and
the solution of the coupled system of odes will always converge to a stable
limit cycle. Because a codim-2 limit cycle bifurcation analysis has not been
performed, knowledge on the possible bistable regions, or on the transitions
between different types of spiking of this network has not been gained.

Analysis of larger stn-gpe-network models with different architectures can
give us more insight in pd-related phenomena as synchronized bursting, of the
network. When MatCont, the bifurcation software in Matlab, is linked to
Simulink the bifurcation analysis, described in this report, can be easily ex-
tended to larger networks. Neurons can then be added to the network by a click
of the mouse.
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Chapter 1

Introduction

The title of this report and the subject of this msc-research is:

The stn-gpe-network - a bifurcation analysis

Which will not ring any bells to people who do not work in the area of neurody-
namics. This chapter is for that reason devoted to explain this title and thereby
to explain the subject of this research.

To be able to clearly explain the subject of this research, the various uncer-
tainties in the neurodynamical research field of the stn-gpe-network (see title)
will first have to be explained. The stn-gpe-network is a subnetwork of the
‘Basal Ganglia’ (bg) which on its turn is a part of the brain. Thus to be able to
explain these various uncertainties, the basic neurophysiological aspects of the
brain, and the bg need to be explained first. These concepts can be found in
Section 1.1.1. Because in this research neurodynamical methods (mathematical
instead of experimental methods) are used to look at the stn-gpe-network, the
concepts of neurodynamics need a short explanation as well and can be found
in Section 1.1.2. The interested reader is referred to [2] for more information
on the physiology of the brain and to [3] for the neurodynamical approach to
describe the brain’s behaviour.

After the short introduction to the subject the various uncertainties and
unanswered questions in the research field of the bg, and in particular of the
stn-gpe-network, can be listed and will naturally lead to the motivation to
conduct this specific research. This motivation can be found in Section 1.2.

In Section 1.3 the formal problem definition for this research is given. In
short, the aim is to learn more about the stn-gpe-network by using mathemat-
ical techniques as bifurcation theory on an already present computational model
of the network. Although it is called a ‘problem definition’ it is more a descrip-
tion of the aim of this research based on the motivation given in Section 1.2.
The delimitation of the problem for this research is given and the division of
this problem into subproblems defines the approach to this research.

The definition of this approach in Section 1.3 also defines the structure of
the report, which consists of different parts in which the different sub-problems
are discussed. The structure of this report is given in Section 1.4 for the reader
who wants to be able to skip to the relevant chapter or section instantly.
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2 1.1 Introduction to the subject

1.1 Introduction to the subject

This section gives an introduction to the subject of this research by first ex-
plaining some general neurophysiological concepts of the brain in the beginning
of Section 1.1.1. The physiological arrangement of the various nuclei within the
bg and their type of connections is also described. Parkinson’s Disease (pd)
originates in the bg, but it is still uncertain where and how the various tremor
frequencies, related to this disease, exactly originate. This is one of the strong
motivations for this and other research of the bg. The knowledge present at
the moment on pd and on its quite successful treatment for symptom-reduction
(Deep Brain Stimulation (dbs)) is described in Section 1.1.1 as well. All infor-
mation given in Section 1.1.1 is derived from [2].

In Section 1.1.2 the role mathematics can play in brain science is explained
and discussed. This application of mathematics on neuroscience is called neu-
rodynamics. The various concepts of the conductance-based Hodgkin-Huxley
(hh) type of models and the powerful tool bifurcation theory can play in their
analysis are explained.

1.1.1 Neurophysiology

The brain consists of many functionally different parts. For example the sen-
sory information (visual, auditory, touch) ‘travels’ through sensory pathways to
specific nuclei of the thalamus and then to regions of the cerebral cortex that
are specific to each sensory system: the visual system, the auditory system, and
the somatosensory system. To control movement the brain has several parallel
systems of muscle control. The motor system controls the voluntary muscle
movement and is aided by the motor cortex, the cerebellum, and the basal gan-
glia. The motor system eventually projects to the spinal cord and then out to
the muscle neurons.

To perform all these tasks the human brain consists of about 1011 neurons
which project altogether to 1014 other neurons (there are 1014 synapses). Given
the diversity of functions performed by neurons in different parts of the nervous
system, there is, as expected, a wide variety in the shape, size, and electrochem-
ical properties of neurons. Although this is the case, all neurons have certain
anatomical and morphological similarities: they all consist of a soma (cell body
with the nucleus of the cell), axons and dendrites (see Figure 1.1).

The soma is usually about 10-25 µm in diameter and often is not much larger
than the cell nucleus it contains. The smallest soma is 4µm in diameter and
the largest 100µm.

The axon is the ‘output road’ through which the generated signal of the
neuron can travel almost undisturbed and undiminished to its end-points (axon
terminals) and eventually innervate other neurons by projecting on their den-
drites. This process of innervation is explained later. The part of the axon
which is closest to the soma is called the axon hillock and is important for the
neuron’s action potential generation.

Dendrites are the main ‘input roads’ to the neuron. The majority of in-
formation arrives there. Other neurons project to the dendrites of the specific
neuron and innervate it. Projections are also possible on the soma or axon, but
are less often encountered. Axons and dendrites in the brain are typically only
about 1 µm thick.
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Figure 1.1: The anatomy of a neuron. All neurons consist of a soma with several
dendrites and a branched axon.

Differences in neurons can be described in many ways. One way is to distin-
guish between neurons by looking at their direction of projection:

1. Afferent neurons convey information from tissues and organs into the
central nervous system. They are also called sensory neurons.

2. Efferent neurons transmit signals from the central nervous system to the
effector cells (which control muscles) and are also called motor neurons.

3. Interneurons connect neurons within specific regions of the central nervous
system.

The longest axon in the nervous system, of a human motor neuron, can be
over 1 m long, reaching from the base of the spine (location motor neuron) to the
muscles of the toes which the neuron innervates. Sensory neurons have axons
that can reach over 1.5 m in adult humans. These specific sensory neurons run
from the toes to the spinal cord.

The neuron’s intracellular fluid is separated from the extracellular fluid by its
membrane. The extracellular fluid consists of concentrations of various ion types
such as sodium (Na+), potassium (K+), calcium (Ca2+), chloride (Cl−) and
other cations (positively charged ions) and anions (negatively charged ions). The
neuron’s intracellular fluid consists of the same type of ions. The concentrations
differ though and due to the difference in ion concentrations, between the intra-
and extracellular fluid, a potential difference V = Vin − Vout is present across
the neuron’s membrane. V is almost always less than zero. Ions in- and outside
the membrane tend to flow across the membrane due to:

- The concentration gradient present between the in- and outside of the
neuron for the specific type of ion.

- The potential difference, which results in an electrical force on the charged
ions.

The membrane consists of channels made out of proteins. These channels
are permeable to a certain type of ion and can open or close dependent on the
change in voltage (voltage-gated channels) or dependent on the intracellular
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concentration of a specific type of ion (ligand-gated). When the channels are
open (or partly open) ions of the specific type can flow through the channels,
resulting in a membrane current. When positive ions flow out (into the extra-
cellular fluid), the current is called ‘outward’ and indicated as positive (‘+’).
This current makes the membrane potential more negative, and is called a hy-
perpolarizing current. When positive ions flow into the cell the current is called
‘inward’ and is indicated as negative (‘-’). This current makes the membrane
potential more positive and is called a depolarizing current. The flow of negative
ions such as Cl− for example into the cell, is therefore indicated as an outward
and positive current (influx of negative ions has the same effect as an efflux of
positive ions). A small note has to be made about this convention: When the
membrane potential gets more positive (V = −80 mV → −30 mV for example),
we call this an ‘increase’ in membrane potential, while others (as in Figure 1.2)
see this as a decrease, because the difference V = Vin − Vout indeed decreases.
This may be confusing in the beginning.

Voltage-gated channels are opened and closed by activation and inactiva-
tion gates. Some channels only have activation gates (resulting in persistent
currents), some have both (transient currents), and some channels do not have
any gates (are thus independent on V ) and are always in an open state (ohmic
leak currents). For every voltage-gated channel, for a specific ion-type C, an
equilibrium (Nernst)-potential EC can be defined. When the membrane poten-
tial V is equal to EC , the in- and efflux of these ions is zero. When V = EC

the diffuse forces (due to the concentration gradient) and the electrical forces
(due to the membrane potential difference ∆V ) working on ions from type C
balance each other. The value of the equilibrium potential EC is defined by the
Nernst-equation given in (1.1).

EC =
RT

zF
ln

[C]out

[C]in
(1.1)

With EC the equilibrium potential of the specific ion in mV, T the absolute tem-
perature in K, z the valence of the ion (for example −1 for Cl−), F the Faraday
constant (96485.3 C/mol), and R the ideal gas constant (8.31451 Jmol−1 K−1).
[C]out/[C]in is the ratio between the extracellular and intracellular concentra-
tion of the specific ion.

If only one ion type C were present in the intracellular and extracellular fluid,
the resting membrane potential rmp would be given by the Nernst potential
of this ion EC . Because many types can be found in both fluids, which all
have different concentrations and Nernst potentials, the rmp will be a weighed
average of all equilibrium potentials with the weights for each EC given by
the conductance of the membrane to ion-type C (often indicated by gC). The
conductance gC is the reciprocal of the resistance RC of the membrane with
respect to a flux of ions of type C (see (1.2)) and is dependent on the number
of C-channels present in the membrane.

gC =
1

RC
(1.2)

This gives the Goldman equation for the calculation of the rmp of a certain
neuron. In the following the Goldman equation for a neuron with only three
types of ions is given:
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Figure 1.2: The regenerative process of increase in membrane potential which
opens up sodium-channels (top), which causes an influx of positive sodium-ions
(bottom) and increases the membrane potential even more. This process repeats
itself until the membrane potential is near ENa and K+-channels open up.

rmp =
gNaENa + gKEK + gClECl

gNa + gK + gCl

It is clear that with only channels present for Na+, rmp = ENa. When the
membrane gets de- or hyperpolarized and tends to return to its rmp this process
is called repolarization. Because Veq #= EC for every ion-type C, in- and efflux of
ions of every type C is present (of course when channels permeable to ion-type
C are open) to cause Veq → EC , which will never completely succeed.

The voltage-gated channels (in comparison to the ligand-gated ones) are
mainly responsible for action potential generation, the major neuron charac-
teristic to communicate with others. Before explaining this phenomenon the
influence of changes in voltage on channel dynamics is explained. A de- or
hyperpolarization of the membrane might bring the potential in a range in
which certain channels become activated, deactivated, inactivated or deinacti-
vated (dependent on the voltage-dependence of the specific gates). This alters
the opening of the channel and thereby influence the magnitude of certain ion
fluxes. These fluxes effect the membrane potential again and might cause other
channels to open or close, which changes the potential again, etc etc. This
causes the membrane potential to behave dynamically after the occurrence of
an event.

Dependent on the channel-type the (de)activation (or possible (in)activation)
can be anything in between fast and slow. In most neurons sodium (Na+)
contributes the most to the generation of action potentials. Now assume some
event (discussed later) depolarizes the neuron’s membrane, at a certain location,
causing an increase in V . After such a depolarization, sodium-channels open,
causing an influx of sodium-ions, which increases the membrane potential even
more, causing more gates to open etc etc. This could lead to a regenerative
process (depending on the threshold above which the membrane potential should
come to trigger this process) which increases the potential extremely fast until
it almost approaches ENa ≈ 50 mV. The threshold for this process is the lowest
at the axon hillock. The regenerative process is graphically shown in Figure 1.2.
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Figure 1.3: The time diagram of the membrane potential V (in black) shows
an action potential. The red and blue curves represent the sodium-conductance
PNa and the potassium conductance respectively, both dependent on V and
thus on t. The slow dynamics of PK is clear.

This is called action potential generation. During the rising phase of the
action potential, potassium (K+) channels are activated. This activation is
much slower than the activation of Na+-channels. This generates an outward,
and thus hyperpolarizing, current which repolarizes the membrane back to rmp.
This inactivates the sodium channels as well. Due to the slow response of
the potassium channels to changes in potential, the potential hyperpolarizes
below rmp until the potassium channels are all deactivated. This part after
the generation of an action potential is called the afterhyperpolarization (ahp).
During this phase and the subsequent slow depolarizing phase toward rmp the
sodium channels are still inactivated and can not respond to a new event. This
is called the absolute refractory period. It is followed by a relative one in
which an increased stimulus is needed to generate an action potential again. A
time diagram of an action potential is shown in Figure 1.3 with the dynamical
behaviour of the conductances for sodium (indicated in the figure by the red
curve PNa, often called gNa) and potassium (the blue curve PK = gK), both
dependent on V , drawn as well. The dynamical behaviour of the conductances
show the slow activation and deactivation of the potassium current, leading to
the ahp, which can be seen in the time diagram of V .

There are many different channels with one or two types of gates and their
own dynamical behaviour. Some channels, and therefore currents, are activated
at hyperpolarized levels, others such as sodium are activated at higher poten-
tials. Their speed of (in)activation determines their influence on the dynamics of
the membrane potential. Time scales of variables are therefore very important.

But which events can trigger the neuron to start this regenerative process
and generate an action potential? The firing of other cells which project to the
specific neuron are such events, which will be described later. When neuron 1
receives input from neuron 2 at a certain time instant, neuron 1 is called the
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Figure 1.4: When the generated action potential of the presynaptic neuron
arrives at the synaptic terminal, the synaptic vesicles release neurotransmit-
ter molecules in the synaptic cleft between the pre- and postsynaptic neuron.
These molecules bind to receptor channels on the membrane of the postsynap-
tic cell. On the right side of the picture an example with the neurotransmitter
glycoprotein is shown.

postsynaptic neuron and neuron 2 the presynaptic neuron. This is indicated in
Figure 1.4.

Beside the different ion-types present in the presynaptic neuron, other molecules,
with a totally different function, are present as well. Every neuron keeps these
neurotransmitter molecules such as dopamine, glutamate, serotonine or gabaA

within the synaptic vesicles of the synaptic terminal (see Figure 1.4). These
neurotransmitters can bind to ligand-gated receptor channels, specific for the
neurotransmitter, in the postsynaptic cell membrane. Through ligand-gating
these channels, permeable to a certain ion-type, open up. Small de- or hy-
perpolarizing effects can then be seen in the postsynaptic cell. The type of
neurotransmitter of the presynaptic neuron therefore classifies this neuron in
another way: by looking at how they exactly change the membrane potential of
the postsynaptic neuron they project on. This leads to the following classifica-
tion:

1. Excitatory neurons excite their target (postsynaptic) neurons (increase
their membrane potential). Excitatory neurons are often glutamatergic.
The stn-neuron in this research is such an excitatory neuron.

2. Inhibitory neurons inhibit their target neurons. Inhibitory neurons are
often interneurons. The output of some brain structures (neostriatum,
globus pallidus, cerebellum) are inhibitory. The primary inhibitory neu-
rotransmitters are gaba (a and b) and glycine. The gpe-neuron in this
research is such an inhibitory gabaA-inhibitory neuron.

3. Modulatory neurons evoke more complex effects, called neuromodulation,
in the postsynaptic neuron. These neurons use such neurotransmitters as
dopamine, acetylcholine, serotonin and others.
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Although this is a good classification, it is not the neurotransmitter that decides
excitatory or inhibitory action, but rather it is the postsynaptic receptor that
is responsible for the action of the neurotransmitter.

When the presynaptic neuron fires an action potential at the axon hillock
(due to another event occurring on its membrane), this action potential ‘travels’
through the axon to its synaptic terminal. Due to the good isolation of the axon
the amplitude of the action potential does not decrease during the ‘trip’. When
the action potential arrives in the synaptic terminal the increase in membrane
potential there opens channels permeable to Ca2+, which results in an inward
current increasing V even more. This triggers the release of neurotransmitter
molecules in the synaptic cleft by the synaptic vesicles. These molecules bind
to receptor channels, specific for this neurotransmitter, in the membrane of
the postsynaptic cell. Due to this binding-process these channels, which are
permeable to a certain ion, open up. An influx of these specific ions is the
result, and it leads to a postsynaptic membrane response many times smaller
than an action potential. In the case of an influx of cations (often Na+-ions)
an excitatory postsynaptic potential (epsp) is the result. In the case of an
influx of anions (often Cl−-ions) an inhibitory postsynaptic potential (ipsp) can
be seen. In the case of binding of gabaA-neurotransmitter (released by for
example the gpe-cell) to receptor-channels in the postsynaptic cell (in that case
the stn-membrane), an influx of Cl−-ions into the postsynaptic cell follows after
the opening of the channels. This hyperpolarizes the membrane resulting in a
decrease in probability that the postsynaptic cell will fire an action potential.
In the case of binding of glutamate by the stn-neuron to receptor-channels of,
in this case, the gpe-neuron, an influx of calcium-ions results, which depolarizes
the membrane and increases the chance of action potential generation in the
gpe-neuron.

Because many aspects of a neuron clearly show dynamical behaviour (as
the membrane potential, the channel gates and ion concentrations), and these
processes are often coupled, the behaviour of a neuron or a network of neurons,
exciting and inhibiting each other, can be naturally captured in a mathematical
nonlinear dynamical model. This description of the dynamical behaviour of a
network of neurons is described in the next section. Now the anatomy and
functional arrangement of a special part of the brain, called the Basal Ganglia
(bg), is discussed. A sub-network of the Basal Ganglia consisting of two coupled
nuclei, the subthalamic nucleus (stn) and the external segments of the globus
pallidus (gpe) receive special attention as this network is the main subject for
this research.

The Basal Ganglia

The Basal Ganglia (or basal nuclei) are a group of nuclei located deeply in
the brain which are interconnected with the cerebral cortex, the thalamus and
brainstem. In humans the basal ganglia are associated with a variety of functions
among which motor control, cognition, emotions and learning are the most
important. The location of the bg in the brain is shown in Figure 1.5, in a
horizontal cross section of the brain at ear height.

The five individual nuclei that make up the primate basal ganglia (see Fig-
ure 1.5), along with their major subdivisions, are:

1. The striatum, which consists of:



Introduction 9

Figure 1.5: The location of the bg is shown in a horizontal cross section of the
brain at ear height. The different nuclei of the bg, which come in pairs mirrored
in the two hemispheres, are indicated in the figure.

- The putamen
- The caudate nucleus
- The nucleus accumbens (not indicated in Figure 1.5)

2. The external segment of the globus pallidus (gpe) (the outer part of the
gp in Figure 1.5)

3. The internal segment of the globus pallidus (gpi) (the inner part of the
gp in Figure 1.5)

4. The subthalamic nucleus (stn)
5. The substantia nigra (sn), which consists of:

- The substantia nigra pars compacta (snc)
- The substantia nigra pars reticulata (snr)
- The substantia nigra pars lateralis (snl)

There are 2 sets of basal ganglia in the brain, mirrored in the left and right
hemispheres as can also be seen in Figure 1.5.

In Figure 1.6 the different nuclei of the bg are shown with their intercon-
nections with each other and with other parts of the brain.

The blue square in Figure 1.6 indicates the nuclei of the bg. The cortex and
thalamus project to the basal ganglia, and the output nuclei are the gpi and
snr. Indicated are the excitatory (purple), inhibitory (blue) and dopaminergic
(can be excitatory and inhibitory) connections (green) between the nuclei.

The striatum is the main input zone for other areas of the brain to connect
with the bg. Via the striatum, the basal ganglia receives input from the cortex.
The circuitry (see Figure 1.6) of the basal ganglia is often divided into two
major pathways, the direct and the indirect pathway (when the connection is
inhibitory a ‘-’ can be seen above the projection arrow, when is it excitatory a
‘+’):

1. The direct pathway: striatum −−→ gpi/snr −−→ thalamus +−→ cortex.
2. The indirect pathway: striatum −−→ gpe −−→ stn

+−→ gpi/snr −−→ thalamus
+−→ cortex
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Figure 1.6: Schematic view of the Basal Ganglia, with connections present be-
tween the nuclei. Excitatory (glutamatergic) connections in purple, inhibitory
(gabaergic) connections in blue and dopaminergic connections in green [4].

It is thought that the cortex, exciting the striatum in the indirect pathway,
inhibits the thalamus while via the direct pathway it excites the thalamus.

Dopamine from the snc stimulates all of the dopamine receptors in the bg,
but because the different pathways express different receptor channels (d1 and
d2), which express different effects, the following effects of dopamine can be
observed: dopamine activates the direct pathway through d1-receptor channels
and inhibits the indirect pathway through d2 receptor channels. In this way
dopamine excites the thalamus by ‘choosing’ the direct pathway instead of the
indirect pathway.

The STN-GPe-network

The focus of this research lies on the stn-gpe-network, which is a part of the
indirect pathway of the bg. The stn-neurons are glutamatergic and therefore
excitatory. The gpe-neurons are gabaergic (gabaA) and therefore inhibitory.
The following characteristics of the network have been described in [4, 5]:

- The stn-gpe-network is innervated by the principal afferent of the bg,
the cortex through the direct pathway, and through striatal neurons or
thalamic neurons in the indirect pathway.

- The network has the most extensive connections with the output nuclei
of the bg, the gpi and snr. In this way the stn-gpe-network has a major
influence on the communication between the bg and the rest of the brain.

- With their strong interconnections the two nuclei consitute a feedback
system called a Central Pacemaker Generator (cpg), which means it can
keep itself active (non-quiescent) without external input. Striatal inhibi-
tion only modulates the firing of the network [4].
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- The network behaves differently in normal compared to parkinsonian
states:

- During normal information processing the firing of the various stn-
and gpe-neurons is uncorrelated and displays a difficult spatiotem-
poral pattern.

- In parkinsonian states, the pattern of firing of the network seems
highly correlated and synchronous. The neurons seem to fire syn-
chronically at low frequencies associated with the resting tremor fre-
quency (0.4–1.8 Hz [5]), and the mechanisms, underlying this syn-
chronized bursting, are uncertain:

- There are contradictory results on the origin of synchronized be-
haviour seen in the stn-gpe-network and other nuclei of the bg.
Three hypotheses:
1. The synchronous rhythms start in the thalamus and are trans-

ferred through the thalamus to the gp (external and internal
segments) [4].

2. Rhythmic activity of the cortex drives the synchronized bursting
in the stn-gpe-network [4]. This hypothesis is contradicted by
results in [5] which show that cortical lesion does not abolish
synchronized oscillatory bursting in the different nuclei.

3. Synchronized oscillatory bursts are generated within the basal
ganglia and specifically in the stn-gpe feedback system. [5] states
that together with striatal modulation this cpg network gener-
ates oscillatory correlated bursting which is transferred to the
other nuclei of the bg. Lesion of this stn-gpe-network abolishes
the synchronized bursting behaviour.

Parkinson’s Disease (pd), which originates in the bg, has been mentioned
in the list above, and its characteristics with their link to the stn-gpe-network
are discussed now.

Parkinson’s Disease

Parkinson’s Disease (pd) is a movement disorder which originates in the bg.
It is caused by a decreased stimulation of the motor cortex by the bg. This
on its turn is caused by a decrease in formation and action of dopamine of the
snc, due to the loss of these cells. Due to the decrease in dopamine-secretion
by the snc, the indirect pathway gets less inhibited while the direct pathway
gets less excited (see the end of the bg-section). The thalamus (and thus the
cortex) therefore gets more inhibited and less excited which leads to for example
muscle rigidity (stiffness), a tremor in muscles (of about 4–7 Hz), a difficulty to
start/stop movement (akinesia), a slowing of physical movement (bradykinesia)
and postural instability. Also cognitive disfunction, mood disturbances and lan-
guage problems can be the result of this disease. It is a chronic and progressive
disease.

The disinhibition of the indirect pathway can be seen as follows (the classical
view): due to the loss of snc-cells, the striatum over-inhibits the gpe, which
therefore is unable to inhibit the stn. These become overactive and overexcite
the output nuclei of the bg. They then overinhibit the thalamus and therefore
the cortex.
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The behaviour of the stn-gpe-network changes due to the over-inhibition
of the gpe by the striatum. In normal states, the neurons within the network
fire irregularly and show difficult uncorrelated spatiotemporal patterns, which
possibly encodes information efficiently. In parkinsonian states the stn shows
rhythmic correlated behaviour which leads to rhythmic and synchronous burst-
ing in the output nucleus gpi that negatively affects thalamic cell responsiveness
to sensorimotor depolarizing signals. It also could encode received and trans-
ferred information less efficiently [1].

Although the follow-up of events in the indirect pathway due to the over-
activity of the striatum can be understood quite well, the influence of loss of
dopamine on the generation of synchronous and correlated behaviour in the
stn-gpe-network (and therefore also in the gpi), while with dopamine, it was
uncorrelated and irregular, is not yet understood. Also the origin of the syn-
chronized bursting behaviour in the different nuclei is uncertain (see the list in
the previous section).

Because the pd-patient lacks dopamine molecules in the bg, medicines as
l-dopa, which is converted into dopamine in the brain of the pd-patient, can
treat the pd-patient. Unfortunately only 1–5% of l-dopa effectively enters the
dopaminergic neurons in the snc, and beside this drawback the medicine be-
comes counterproductive after a while due to the tolerance the patient develops
to the drug.

Beside medicinal treatment, surgical treatments become more common. Deep
Brain Stimulation of the stn has proven to be an effective treatment for the mo-
tor symptoms of pd. It dramatically alleviates motor symptoms and decreases
dependence on dopaminergic drugs as l-dopa. After the implantation of the
electrode it typically sends high-frequency pulses (> 100 Hz) to the stn [6]. It
is clear that dbs works, but how does dbs actually modulate the activity in
the target areas? Many neurosurgeons do not have the slightest idea [7]. One
theory is that dbs suppresses the firing of the stn when the electrode is placed
on the soma of a stn-neuron. This treatment then mimicks the effect of the
lesion of the stn. If this is the case it then leads to less excitation of the output
nuclei and therefore less inhibition of the thalamus and cortex. An opposite
theory on the other hand states that dbs enhances activity of the stn when the
electrode is placed on the axons of the neuron. This does not resemble the effect
of a lesion of the stn at all and should inhibit the thalamus by the gpi even
further [7]. How can enhancement of stn-activity oppose the pd-inhibition of
the thalamus, caused by the overactive stn? The hypothesis is that in this case
dbs modulates periodic high-frequency tonic firing of the bg (higher frequency
than of normal irregular firing and of pathological bursting [8]) to “mask” the
pathological firing patterns (synchronized rhythmic bursting) that characterize
the parkinsonian state [6, 9].

There are some negative aspects to dbs. Because little is known on the exact
role dbs plays in reducing the synchrony between neurons it could cause serious
complications and side-effects. The effects of the high-frequency pulses on other
neurons in the brain is also unsure.

Lesioning of the stn or gpi is another surgical treatment of pd but is less
often applied than dbs at the moment.
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1.1.2 Neurodynamics

After the description of some general concepts of neurophysiology and describing
the physiology behind pd and dbs, the field of neurodynamics will be explained,
a field which applies mathematical (nonlinear) dynamical systems theory on
problems and questions arising from neuroscience. First some reasons will be
given why mathematics can be of great importance for the community of neu-
roscientists. Then one of the first dynamical models to describe the behaviour
of a neuron’s membrane potential is shortly explained: the conductance-based
Hodgkin-Huxley model. Many neural models today are of this type, because of
its accuracy, and so is the model used in this research. The different variables
used in the conductance-based model given in [1], which is used in this research,
can then be understood easily. Finally some initial information is given on bifur-
cation theory which is a theory within dynamical systems theory, which looks
at the influence of parameters in dynamical systems on the behaviour of the
solutions. This theory is used extensively in this research as well.

Applied mathematics versus classical neuroscience

Many people will wonder why we should use mathematical models and theo-
ries to analyse neuronal behaviour, while results from experiments on neurons
in vivo/vitro should suffice to describe this? Some arguments will be given
why mathematics can provide a useful and necessary tool to analyse the more
dynamical behaviour of a neuron or a network of neurons.

As described in the previous section the neuron’s variables as membrane
potential, gating ‘variables’ and intracellular ion concentrations, all change in
time and are often dependent on each other in their dynamics. When this
dynamical behaviour is not taken into account and only static models of neurons
are analysed, a fundamental flaw of traditional neuroscience is discovered: the
dynamical behaviour of a neuron is often described in average values [7].

Some examples of other flaws of the traditional approach of neurons by
certain biologists. The following is for example not even questionned by many
biologists:

“Excitation increases firing rates and inhibition decreases them”

But chemical inhibitors are not merely an off switch for neurons, but more a
kind of control knob that reduces or increases the amount of synchronization
among sets of neurons [7].

Another flaw described in [3]:

“Knowing the membrane currents of a neuron suffices to determine what the
cell is doing and why”

This is contradicted by cells which have similar membrane currents but quite
different types of dynamical behaviour [3] (due to different bifurcation mecha-
nisms described later).

When oscillations and synchronization between firing patterns within net-
works are discussed this time factor can definitely not be left out anymore. These
phenomena are mathematically related to dynamical systems theory. When an
accurate model of the specific network is defined, mathematical analysis of this
model can give valuable information on for example phase relations between



14 1.1 Introduction to the subject

the cells, and transitions between different types of spiking the neurons can go
through [7].

There are many reasons why the mathematical analysis of an accurate dy-
namical model of a neuron, or network of neurons, can give a richer picture on
the various types of behaviour the neuron or network can show. Also possible
synchronization between neurons in networks can be found by such an analysis.
Experiments performed on neurons often give a more limited view on aspects
of dynamical behaviour.

The conductance-based HH-model

The Hodgkin-Huxley model developed in the fifties to describe the dynamics of a
neuron’s behaviour as a system of coupled odes [10], was a revolutionary result
then but is still used nowadays as one of the most accurate neuronal models.
Because the stn-gpe-model described in [1] is such a hh-type of model, the
basic concepts of these type of models will be shortly explained in this section.

The model is developed as a single-compartment model. This means that
the spatial component is not taken into account in the model and the model
therefore describes the dynamical behaviour of the neuron at a specific ‘point’-
location on the membrane. An infinitely small point of the membrane does not
contain any channels of course, and the hh-model is therefore an approximation
of a small area of the neuron’s membrane. Assumptions are therefore:

1. The model describes V (t) at a specific location x = x0 on for example the
axon.

2. At x = x0 it is assumed that V is constant along the membrane surround-
ing the axon.

3. dV/dt is related to the net membrane current in a infinitesimally small
time interval dt at location x = x0. The net membrane current is then
given in unit of current per unit of area, like pA/µm2.

The concepts will now be explained for the model of a simple neuron, with
only channels permeable to sodium and potassium located in its membrane.
Channels of both currents are voltage-gated, INa+ is a transient current (the
channels have activation and inactivation gates), and IK+ is a persistent current
(with only activation gates). An ohmic leak current IL (with its conductance
independent on V ) is also present due to resting channels which are always in
the open state.

An equivalent circuit of the membrane is shown in Figure 1.7. ‘Outside’
indicates the extracellular fluid and ‘inside’ the intracellular fluid.

Because the membrane of a neuron is a lipid bilayer, and the charge of the
extracellular fluid differs from the intracellular one (resulting in the potential
difference over the membrane), the membrane can be represented as a capacitor
due to its separation of charge. An electrical field is present in the membrane.
The capacitance Cm, is a measure of the amount of charge on each ‘plate’ (a
layer of the membrane) for a given potential difference (in F):

Cm =
Q

V

For neurons this capacitance is often normalized to 1.0 pF/µm2, where the area
of the membrane is included, just as in the currents. Due to this separation of
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Figure 1.7: The membrane can be represented by an equivalent circuit. The
membrane is presented as a capacitor with the inner and outer membrane being
the conductors. The conductances are indicated as a (variable when depen-
dent on V ) resistance, because they are inversely proportional to the resistance.
The batteries, which provide the energy for the current, are the equilibrium
potentials EX for the currents of ion-type X and the capacitance Cm for the
capacitive current.

charge a capacitative current
IC = CmV̇

is therefore present next to the ionic currents. The current is dependent on V̇
because it takes time to charge the capacitor (membrane).

The total net current across the membrane is the sum of the individual
currents:

I = CV̇ + INa+ + IK+ + IL

Rearranging the terms gives the hh-model of this simple neuron in (1.3). It
relates the time derivative of the neuron’s membrane potential to the currents
flowing through the channels (in this case only two).

CV̇ = I − INA+ − IK+ − IL (1.3)

I #= 0 when sources or sinks are present (such as an applied current). The
formula for INa+ is given by:

INa+ = gNa+(V − ENa+)

With gNa+ the membrane conductance with respect to Na+-ions (dependent on
V !), V the membrane potential and ENa+ the equilibrium potential for Na+.

gNa+ is given by:
gNa+ = gNa+mahb

With: gNa+ the maximal conductance, a the number of activation gates, b the
number of inactivation gates and m and h the probability of these gates to
be in the open state. These gating variables m and h are dependent on the
membrane potential, because the channels are voltage-gated. Only when h and
m are nonzero ((partially) deinactivated and activated) a current is present.
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When both are 1, the current is at its maximum (mahb = 1 and gNa+ = gNa+).
The odes for these gating variables m and h are given by (X ∈ {m,h}):

dX

dt
=

X∞(V )−X

τX(V )

In Figure 1.8 the steady-states m∞(V ) and h∞(V ) for m and h are plotted
together. X∞(V ) (with X ∈ {m,h}) is the steady state (in)activation function,
which gives the values for m and h for voltage values V , to which they will
converge. τX(V ) is the time constant for the specific current. In regions of V
where the time constant is small the (in)activation is fast, and where τX is large
the response to changes in V is slow.

The steady states together determine the voltage-range (yellow in Figure 1.8)
in which the current is nonzero. Only in the voltage-range in which both h∞(V )
and m∞(V ) are nonzero a sodium-current is present.

Figure 1.8: The steady state (in)activation functions for INa+ together deter-
mine the voltage-range in which INa+ is nonzero (yellow region).

Together this simple neuron already has a 4d coupled ode-system with m
and h the gating variables for INa+ , n the gating variable for IK+ and V the
membrane potential, all four given by an ode. Often it is assumed that m(V ) =
m∞(V ) due to the fast activation of INa+ (τm(V ) ≈ 0 for all V ). This reduces
the number of variables and thereby the complexity of the model. Most neurons
consist of various types of channels, voltage- and ligand-gated, with their own
speed of (in)activation. When all of the resulting currents would be included in
the model, high-dimensional models would be the result. Difficult choices are
therefore always which currents should at least be included in the hh-type of
model of the neuron, to represent the neuron’s behaviour as accurate as possible,
while keeping the size of the model moderate.

Bifurcation theory

Conductance-based models, in which parameters are still present can be anal-
ysed with a powerful mathematical tool called bifurcation theory. When certain
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characteristics as conductances gX or responses of a neuron to an applied cur-
rent Iapp are for example unknown, bifurcation analysis can give a detailed
insight in the influence of the specific parameter on the dynamics of the system.
The quality of the analysis of course depends drastically on the accuracy of the
model.

When a codim-1 bifurcation analysis is applied to a model as in (1.3), with
the parameter being varied the applied current I (often called Iapp) and the
variables being V , m, h and n, the aim is to divide the parameter line for I
in different regions in which System (1.3) behaves qualitatively different from
other regions. This can be done by first looking at the equilibria of the system.
The system is at an equilibrium when the right hand sides of all four odes are
zero:

V̇ = 0
ṁ = 0
ṅ = 0

ḣ = 0

Such a 4d-solution to these equations, is one-dimensional (a curve) in R5

due to the five unknowns (in the four equations). With two parameters the
solution would be twodimensional (a surface)) in R6. The projection of this
curve on the IV-plane gives the IV equilibrium curve in a plane. Thus for every
value of the parameter I, the values of the variables in the equilibrium have
changed. Also more than one equilibrium can be present in one range of I while
in another range only one is present. The eigenvalues of the equilibria determine
the type of equilibrium (saddle, focus, node) and its stability. This will not be
explained here, but the interested reader is referred to any introductory book
on dynamical systems. The rest of the mathematics concerning codim-1 and
codim-2 bifurcation theory can be found in the rest of the report and especially
in Appendix C. What is of importance is that along this curve the stability of
the equilibrium can change (because the eigenvalues change). A stable equilib-
rium can become unstable and this transition is called a bifurcation, because
the behaviour of the system changes qualitatively. When the system analysed
represents the behaviour of a neuron, the neuron would have been quiescent
when the equilibrium was stable (in a certain range of applied current), and
nonquiescent when the equilibrium had become unstable (in a different range).
Codim-1 bifurcations of stable equilibria are of Hopf- or saddle-node type.

When a supercritical Hopf-bifurcation occurs the stable equilibrium loses its
stability and a stable limit cycle is born. This means mathematically that the
solution to the neural system will not converge to the equilibrium anymore (it is
unstable in this new parameter region) but will converge to the stable limit cycle.
For the behaviour of the neuron this means that before the Hopf bifurcation, for
certain values of I, the neuron was quiescent, but for a somewhat stronger (or
weaker) applied current I the membrane potential will spike repetitively with a
certain amplitude and frequency.

This emerged limit cycle can bifurcate as well. The multipliers of the
Poincaré map corresponding to the limit cycle determine its stability and type.
The multipliers of this limit cycle vary dependent on the parameter I. When the
stability of the limit cycle changes, or the limit cycle disappears, a bifurcation
takes place. At such bifurcations extra limit cycles can emerge and surround
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the original (possibly unstable one). This results in tori, and two instead of
one frequency can be observed during spiking. When for example the stable
limit cycle has become unstable, the neuron will stop spiking and converge to
the stable equilibrium possibly present in this region of the parameter. The
neuron’s behaviour has thus qualitatively changed at a certain parameter value,
the bifurcation point. Codim-1 limit cycle bifurcations are explained in Ap-
pendix C.1.2 and are encountered, and also discussed, in the analyses of the
stn- and gpe-models.

The saddle-node type of codim-1 equilibrium bifurcation has not yet been
explained. To show this type of bifurcation the analysis of a simple neural
model is shown. A phase portrait of the system is shown in Figure 1.9, with the
projection on the V, n-plane.

Figure 1.9: The phase portrait of the system with I < Ibif ≈ 4.51. Two
variables, V and n, are plotted on the x- and y-axis respectively. On the V -
nullcline V̇ = 0 and on the n-nullcline ṅ = 0. The intersections of these curves
give the equilibria: two unstable equilibria (open dots) and one stable (black
dot) one are present. A heteroclinic orbit connects the stable and an unstable
node [3].

The activation variable n for the K+-current is plotted on the y-axis and the
membrane potential V on the x-axis. The V - and n-nullcline indicate where
V̇ = 0 respectively ṅ = 0. Where the two curves intersect the system is thus in
equilibrium (both variables do not change in time). Three equilibria can be seen
in Figure 1.9. Only the filled dot indicates a stable equilibrium (a node), the
two open dots are unstable ones (focus and node saddles). An orbit connects
the unstable and stable equilibrium, and is called a heteroclinic orbit. Due to
the stable equilibrium, the neuron is quiescent in this region of the parameter
line. This figure corresponds to the situation I < Ibif where I is the parameter
and Ibif is the bifurcation value. The bifurcation has thus not yet occurred and
the neuron is quiescent.

In Figure 1.10 the situation is drawn for I = Ibif . The V -nullcline has shifted
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up. The stable and unstable equilibrium, which both were on the heteroclinic
orbit, have coalesced and become one. The heteroclinic orbit has become a
homoclinic one.

Figure 1.10: The phase portrait of the system for I = Ibif ≈ 4.51. A stable and
unstable equilibrium have coalesced on the invariant circle [3].

The situation for I > Ibif is shown in Figure 1.11 where the V -nullcline has
shifted up even more, resulting in the total disappearance of the two equilibria.

Figure 1.11: The phase portrait of the system for I > Ibif ≈ 4.51. The stable
and unstable equilibrium have disappeared and a stable limit cycle has been
born from the invariant circle [3].
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The invariant circle has become a limit cycle attractor. Due to the instability
of the only equilibrium, the solution will converge to the stable limit cycle and
the neuron will show spiking behaviour. The time diagram for V (t) is shown in
Figure 1.12 which shows the dynamical behaviour of the membrane potential
when I is gradually increased. It is clear that the behaviour of the system (and
thus neuron) has qualitatively changed at the bifurcation value (from quiescent
to spiking behaviour).

Figure 1.12: The time diagram for V (t) is shown when I increases gradually
past the bifurcation value Ibif . For I < Ibif the neuron is quiescent (stable
equilibrium). For I > Ibif the neuron spikes (stable limit cycle) [3].

Because bifurcation theory is such a powerful tool to really understand a
neuron or network’s behaviour this mathematical theory can hopefully give us
more insight in the behaviour of the stn-gpe-network, such that the unanswered
questions, described in the previous section, can be answered. Bifurcation anal-
ysis of course can only give much insight when good models are present for the
stn-gpe-network. All the information given in this introduction then brings us
to the motivation to conduct the research described in this report.

1.2 Motivation

After the description of some neurophysiological and neurodynamical concepts,
the following unanswered questions on the behaviour of the stn-gpe-network
can be listed from the above theory:

1. Concerning the synchronized correlated low-frequency firing seen in the
parkinsonian stn-gpe-network:

- Where does it originate? The thalamus, cortex or in the network
itself?

- What is the influence of the loss of snc cells, and thereby the decrease
in secretion of dopamine, on this synchronized behaviour?

- What is the influence of the stn and gpe individually on these
rhythms?
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- How does the striatum exactly modulate these rhythms?

2. On dbs applied to the stn:

- Does dbs excite the stn or inhibit it?
- How does dbs eliminate this firing at tremor frequency when it pos-

sibly excites the stn-neuron even more?
- What is the necessary amplitude and frequency of pulses necessary

to eliminate the tremor frequency, and why these numbers?

3. On the analysis of the network using bifurcation theory on a good stn-gpe
network-model:

- Are there accurate models for the stn-gpe-network which can be
analysed using bifurcation theory? What are the main uncertainties
in the model?

- If yes: how can we use bifurcation theory in such a way that more
understanding can be gained on the synchronization between the two
nuclei? Which parameters should be chosen in the model, to give us
more insight?

- What type of architecture should be chosen in the model for the
connections between the various neurons of the two nuclei? Is it
known how the nuclei are connected?

- Which other external nuclei should at least be included in the network-
model to represent a situation of the stn-gpe-network which is com-
parable with reality?

The incentive to do this research lies in these various unanswered questions
concerning the origin of the synchronized bursting behaviour seen in the various
nuclei of the bg corresponding to Parkinson’s Disease (pd) within the bg. Much
is still uncertain in this area, while for proper treatment of pd-patients this
knowledge is indispensable. Of course trying to answer all these questions might
take years of study. Therefore a delimitation of the scope of the problem is
necessary. This delimitation leads to the problem definition of this research,
described in the next section.

1.3 Problem definition and approach

To use bifurcation theory to gain more knowledge on the stn-gpe-network, and
to be able to answer some of the questions listed above somewhere in the future,
first a conductance-based model of the network should be chosen. Because only
one is present for the total network ([1, 9]) this one will be used for this research.

The global aim of this research, resulting from the considerations described
in the previous section, is:

“To gain more knowledge on the behaviour of the stn-gpe-network by apply-
ing bifurcation theory to the network model given in [1], using the Matlab
bifurcation software, MatCont. The different conductances between the nuclei
should be taken as the parameters for the bifurcation analysis, just as in [1],
to test the influence of the strength of the connections on the type of network
behaviour. When larger networks are considered different architectures of con-
nections between the neurons should be analysed. By varying the parameters
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and architectures the parkinsonian behaviour of the network can possibly be
seen and could give us more insight on the influence of the parameters and ar-
chitectures on this generation of pathological rhythms. An extra aim is to make
the figures in [1] which indicate the transition boundaries between various types
of network-firing behaviour, more accurate and detailed.”

A delimitation of this global problem definition is necessary to make it suit-
able for a msc-project, which consists of approximately six months of research.
Unfortunately only a start can be made with the defined problem/aim which
then hopefully can be finished by other researchers. The following subproblems
should be solved during this research (using the same model from [1] and the
bifurcation software MatCont):

Analysis of the models of the individual neurons: To compare the model-
behaviour with experimental literature, simulations of the model need to
be made. A bifurcation analysis of each neuron-model with the parameter
begin the applied current (simulating the synaptic current of the other
nucleus), can give insight in the possible behaviour of each neuron and
the influence of the other nucleus on this behaviour. Good evaluations of
both models can then be made.

The analysis of a small two-cell network: A seemingly trivial network of
one stn- and one gpe-neuron, reciprocally connected, should first be un-
derstood thoroughly before extensions to larger networks are possible.
First the model synaptic connection chosen in [1] should be evaluated. A
bifurcation analysis, with the two conductances taken as the parameters,
should give more insight on the types of network behaviour possible in the
various regions of the parameter plane. The influence of the strength of
the connections on the type of behaviour of this small network can then
be deduced.

1.4 Structure of the report

The report consists of three chapters and each has the same structure given
below. The next two chapters, 2 and 3, describe the analysis of the stn- and
gpe-models respectively (the first point of the two problems just above this
section). Chapter 4 describes the analysis of the two-cell network consisting of
one stn- and one gpe-cell (the last point of the problems above). Every chapter
has the same structure:

1. Literature

(a) Experimental (and computational) results
(b) The model

2. Analysis

(a) Bifurcation analysis
(b) Simulations

3. Discussion
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Simulations of both model-neurons (analysis part) are compared with exper-
imental results (literature part) of the specific neuron . Experimental results for
a two cell stn-gpe-network are not present. Therefore simulations of the two-
cell model (analysis part) are compared to computational results from studies
with similar, but larger, networks (literature part). The bifurcation analyses
(codim-1 for the two individual neuron-models and codim-2 for the two-cell
network) aims to give a detailed division of the parameter space in regions in
which the neuron or neurons behave qualitatively different from other regions.
The discussion at the end of each of the three chapters evaluates the results
from simulations and the bifurcation analysis. In Chapter 5 the overall con-
clusion of the research can be found and in Chapter 6 recommendations for
future research, extending this research and analysis to larger networks. The
references and appendices finish the report where the appendices consist of the
model constants from [1] (Appendix A), Matlab code (Appendix B), the possi-
ble codim-1 and codim-2 bifurcations with their characteristics (Appendix C),
and the description of pulse-coupled models (Appendix D).
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Chapter 2

The STN-neuron

This chapter discusses the stn-neuron by thoroughly analysing a mathematical
model describing the dynamics of the stn-neuron’s membrane potential and
comparing the results with literature.

Section 2.1 describes experimental results for the stn-neuron and a specific
dynamical model for the stn-neuron.

In Section 2.2 the results of this research will be presented, consisting of a
detailed bifurcation analysis of the model described in Section 2.1 and various
simulations. For this analysis and especially for the influence of the synap-
tic current IG→S on the model-neuron’s behaviour, an applied current Iapp is
substituted for IG→S and worked with further on. In Section 2.2.1 the codim-
1 bifurcations will be sought where the parameter is taken to be this applied
current Iapp, simulating the synaptic current from the gpe. These codim-1 bi-
furcations for equilibria and limit cycles indicate the ranges of applied current
Iapp in which the neuron spikes or is quiescent or where the system is bistable.
The transitions between these states occur exactly at the found bifurcations. To
illustrate the different types of behaviour of the model within these regions in
parameter space, simulations of the model will be shown in Section 2.2.2. Initial
conditions for the variables and parameter are taken from these regions. The dif-
ferent outcomes will be linked to the bifurcation diagram in Section 2.2.1. Also
step- and pulse currents will be taken for Iapp to record the neuron’s response
to fast and strong stimulation.

In Section 2.3 the results of the model, described in Section 2.2, will be
shortly listed and discussed by comparing them with the experimental results.
Possible differences between the model and experiments are evaluated and con-
siderations for modelling are mentioned.

2.1 Literature

This section describes experimentally found results for the stn-neuron, and a
specific conductance-based model which will be analysed in Section 2.2. In
Section 2.1.1 the various spontaneous firing characteristics of the neuron are
mentioned, as well as the neuron’s reaction to various types of input. The
currents measured through the membrane are listed at the end of the section.
All results are found during experiments in vitro and in vivo. In Section 2.1.2 a
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conductance-based model given in [1], is described. This model forms the basis
for the analysis in Section 2.2.

2.1.1 Experimentally found results

This section will describe the electrophysiological properties of the neurons
within the stn.

The stn is an oval-shaped small nucleus [11] which receives inhibitory and
excitatory inputs from other neurons within the Basal Ganglia (as can be seen
in Figure 1.6 on Page 10). Often various types of neurons can be found within
a certain nucleus (see for example Section 3 on the gpe). Different types can
be distinguished on the basis of electrophysiological characteristics. In contrast
to the gpe, in which three totally different types of neurons occur, literature on
stn-neurons seems to agree that within the stn only two electrophysiological
types of neurons can be found which differ on only one characteristic: the ability
of these neurons to generate plateau potentials (at the end of this section this
phenomenon is explained). A subpopulation of stn-neurons is able to generate
these plateaus while the rest is not. The ability to generate plateau potentials
is the only characteristic on which these neurons seem to differ. For this reason
the characteristics of the stn-neuron are described until the last section on
hyperpolarizing input. In this section the generation of plateau potentials is
discussed, and therefore a distinction should be made in this section between
the two types. That distinction is not necessary during the discussion of the
other characteristics.

When input to the stn-neuron is absent the neuron shows spontaneous spik-
ing behaviour. The characteristics of this firing behaviour is described in the
next section. The experimentally found responses of stn-neurons to de- and
hyperpolarizing current injections will be described in the last two sections.

Experimentally found results can differ between articles because [12]:

- Experiments are done either in vivo or in vitro which give different results.
In vivo other neurons are still present which can innervate the tested stn-
neuron. In vitro the influence of other neurons can be limited.

- Different animals are tested: rats, primates and guinea pigs. Results from
these animals are likely to differ.

- The results from in vitro experiments can differ because:

- Results from experiments on brain slices where the other neurons
and axons are still in tact, differ from acutely isolated neurons, which
often only consist of the soma with the axon.

- The preparation of the neurons makes a difference. The molecules of
the preparation can transfer electrical energy and therefore influence
the measured electrophysiological reaction of the tested stn-neuron.

- Different recording techniques or stimulating techniques influence the
results as well.

The experiments with stn-neurons, referred to in this section, are often in vitro
instead of in vivo. The reason for this is that the stn is located very deeply in
the brain and can not be reached easily [13]. When results of different articles
differ too much, the method of experiments will be mentioned.
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Spontaneous spiking

When input to a stn-neuron is absent (in vivo this means: in awake-and-resting
state), most stn-neurons in vitro show regular spontaneous single-spiking be-
haviour also called the resting oscillation. In vivo a more irregular firing pattern
is observed where also doublet and triplet spikes are fired [14]. An example of
a spontaneous firing stn-neuron in vitro can be seen in Figure 2.1. The most
important characteristics of this spontaneous spiking behaviour are [14, 15]:

1. The depolarization phase ranges from ± -60 mV to ± 45 mV.
2. The spikes show a high level of regularity : the interspike interval is ap-

proximately constant after a while and the shape of the spikes does not
change significantly.

3. The average interspike interval is approximately 500 ms which represents
a firing frequency of 0–10 Hz. In vitro this frequency is approximately
10–30 Hz [14].

4. A cycle of a resting oscillation consists of (see Figure 2.2):

- A single action potential, followed by:
- A strong and long-duration afterhyperpolarization (ahp). This ahp

consists of a fast one followed by a longer -lasting one. The long-
lasting afterhyperpolarization is the cause of the low-frequency of
the firing pattern. The ahp is followed by:

- A slow-ramp depolarization, which brings the membrane potential
near the threshold for firing another action potential. Mathematically
this slow depolarization means that the trajectory (still on the cycle)
follows the separatrix of a saddle, and stays close to the saddle for a
while [3].

Figure 2.1: An example of a spontaneous firing stn-neuron [14].

Depolarizing input

The stn-neuron receives excitatory input from the thalamus, cortex and the
substantia nigra pars compacta (snc) (see Figure 1.6). stn-neurons do not
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Figure 2.2: The fast and slow ahp and the slow depolarization ramp (figure is
adjusted from [14]).

excite other stn-neurons (as we will see later on, this is different for the gpe-
neurons) [14].

In Figure 2.3 the shape of an applied depolarizing current step is shown.
Here a is the strength of the step (in pA/µm2) and b the duration of the step
(inms). For a depolarizing applied step it holds that a > 0.

b (ms)

mµ Depol.

Hyperpol.

2

0

a )(pA/

Figure 2.3: An example of a step current injection with a the strength of the
step in pA/µm2and b the duration inms. Depolarizing: a > 0 (shown in the
figure), hyperpolarizing a < 0.

The strength a of an applied current-step influences the frequency of the gen-
erated action potentials. The larger a > 0, the higher the number of generated
action potentials per time period. The stn-neuron fires at very low frequencies
during spontaneous spiking but can reach up to 300–500Hz when injected with
a depolarizing current [14]. The increase in frequency of firing during the appli-
cation of a depolarizing current step can be seen in Figure 2.4. A typical fI-curve
of a stn-neuron, in which the frequency is plotted against the input current, can
be seen in Figure 2.5. The curve looks sigmoidal and consists of three ranges.
The secondary range is the sensitive range where a small increase in current
strength gives the largest increase in frequency. The curve is often assumed
linear up to 200Hz [13] which seems not the case in Figure 2.5. In literature the
slope of this ‘approximately linear’ part ranges from ± 500 Hz/nA(inferred from
Figure 2.5 [14]) to 900 Hz/nA [13]. Both [13] and [14] use brain slices from the
same type of rats for their experiments. The brain slices in [13] are somewhat
thicker (100µm) than in [14] and the brain slices are kept in different solutions
but these differences can not cause the large difference in slope. At very large
applied currents the repetitive firing fails when the membrane potential fails to
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repolarize sufficiently. The high-frequency firing is then replaced by a constant
depolarized plateau. Although in Figure 2.5 the frequency of spontaneous firing
(at I = 0) seems to be zero, this is of course not the case. The spontaneous
spiking frequency is in the order of 0–10Hz and can therefore not be seen in the
figure.

Although the frequency increases, the voltage range which is traversed by the
stn-neuron should be approximately the same as during spontaneous firing [14].
At membrane potentials more depolarized than -30mV, spike amplitude does
seem to decrease with an increase in a [15].

Another consequence of an increase in the strength of the depolarizing step
(with the duration kept constant) is that the afterhyperpolarization (ahp) after
the break of the step lasts longer before spontaneous spiking takes over again.
ahp-duration after the applied step thus increases smoothly with frequency [14].

The duration of an applied current-step influences the spike-frequency adap-
tation. The frequency of firing of the stn-neuron speeds up significantly during
the first few intervals of applied current (not at the lowest firing rates). Af-
ter that, slow spike frequency adaptation occurs, which gradually lowers the
frequency [14]. This can be seen in Figure 2.6.

Figure 2.4: Influence of the strength of an applied depolarizing current-step on
the firing rate of a stn-neuron [14].

Figure 2.5: The typical sigmoidal shape of the fI-curve of a stn-neuron [14].
The offset is approximately zero.
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Hyperpolarizing input

As already mentioned in the introduction of this section, a distinction can be
made within the stn between neurons which are able to generate plateau po-
tentials and neurons which are not able to do so. The meaning of a plateau
potential will be explained in this section. Only in this section it is necessary to
make that distinction because it has a large influence on the various responses to
hyperpolarizing stimuli. Both types of neurons react differently to these current
injections. For a hyperpolarizing step, a in Figure 2.3 is smaller than zero.

The response of the stn-neuron to hyperpolarizing steps is not that clear
yet. There are contradictory articles on the subject. What is definitely clear is
that all stn-neurons become quiescent during the application of a sufficiently
strong hyperpolarizing step current and that all neurons show rebound bursting
behaviour after the break of the hyperpolarizing pulse. The two populations
only differ in the decay of the rebound bursts. What exactly occurs during
the application of a hyperpolarizing step (not sufficient to make the neuron
quiescent), and which ion channels become active, is still unclear.

A subpopulation of the stn-neurons is able to generate voltage-dependent
plateau potentials when they are more hyperpolarized than approximately−75 mV
and are innervated by glutamate receptor-mediated epsps [5, 11, 16, 13]. A
plateau potential is a stable membrane potential more depolarized than the
resting membrane potential. It is thus an increase in membrane potential of-
ten due to an applied de- or hyperpolarizing pulse and this increased potential
does not disappear after the break of the pulse. The generation of a plateau
potential requires the steady state IV-curve to cross the zero current line with
a negative slope [16]. Because of the increase in membrane potential a plateau
potential is often accompanied by the generation of a burst of action potentials.
The depolarization necessary to generate a plateau potential is approximately
10 pA/µm2 [16]. The early phase of the plateau potential is resistant to mem-
brane perturbations. When the membrane is not hyperpolarized sufficiently the
plateau does not outlast the applied current pulse. The plateau-generating stn-
neurons are also able to generate long-lasting rebound bursts after the break of
an applied hyperpolarizing step of less than again -75 mV [17, 16]. See Fig-
ure 2.6 for such rebound activity. After this burst the plateau potential shows
a very slow decay [16] after which spontaneous spiking sets in again.

The rest of the stn-neurons, which do not have this plateau-generating abil-
ity, only show an increase in membrane potential during the application of the
current pulse, which decays very fast after the break of the pulse. They show no
difference in response when the potential is hyperpolarized more than -75 mV.
These neurons also respond with rebound bursting after the break of a hyper-
polarizing step, but these bursts stop quite abruptly, with a fast decay of the
membrane potential to resting potential [16].

The stn-neurons which are able to generate plateau potentials can also dis-
play burst firing when the membrane potential is sufficiently hyperpolarized
according to [15]. See Figure 2.7 for an indication of this bursting. The stn-
neuron then generates bursts of action potentials more than once. This claim
is contradicted by the articles [16, 5], which state that rhythmic burst firing is
seldom observed in stn-neurons alone, but only when the plateau-generating
stn-neuron is present in a network with gpe-neurons. They claim that a short
train of spikes in gpe-neurons can hyperpolarize the stn-neuron sufficiently to



The STN-neuron 31

Figure 2.6: In a subpopulation of stn-neurons, long-lasting plateau potentials
are the result of applications of de- or hyperpolarizing pulses [15].

cause rebound burst activity to occur, which can not be eliminated by gpe
inhibition because the starting phase of the plateau potential is resistant to per-
turbations [16]. The methods of experiments of [15] are comparable to those
of [16]. The type of rats from which brain slices are used and the thickness of
the slices differ but this can not cause the opposite results of the two articles. [5]
uses brain slices from rats with the cortex and striatum cultured. Results from
these slices are therefore likely to differ. The cause for the contradicting results
on bursting during hyperpolarization, is therefore unknown.

[17] claims that gpe-input by itself can not be sufficient to hyperpolarize
the membrane enough. The equilibrium potential vG→S of the synaptic gpe-
current is approximately -79mV [17], which is more negative than the threshold
for rebound bursting. Therefore the only possibility to bring a stn-neuron
into rebound burst activity, by only using the hyperpolarizing synaptic gpe-
current is to have the gpe-neurons fire several barrages synchronically. During
normal movement this is unlikely to occur because stn- and gpe-neurons fire
asynchronously [17]. This characteristic of stn- and gpe-neurons shows that
(rebound) bursting in stn-neurons is likely to be generated by the cortex and
thalamus instead of by the gpe. The gpe input would then only regulate and
time the stn-spikes [18].

A decrease in firing frequency is observed in stn-neurons with increasing
strength of the applied hyperpolarizing current [14] which contradicts the burst-
ing activity during the application of small hyperpolarizing stimuli. All stn-
neurons terminate firing (become quiescent) with sufficient strength of the ap-
plied current [14] as can also be seen in Figure 2.7. After the break of such
sufficient hyperpolarization, rebound bursting is observed. The rebound bursts
firing modes are [17]:

- A short duration burst followed by:

1. Spontaneous firing.
2. A deep ahp (sometimes followed by second weaker rebound).

- Long duration rebound bursts.
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Figure 2.7: Switch from firing to pure bursting to quiescent mode by increasing
the strength of the hyperpolarizing current injection [15].

Currents

According to literature the stn-membrane consists of various channels, ligand-
and voltage-gated, permeable to various types of ions. Due to the flow of ions
through these channels, the membrane potential changes in time. The currents
found experimentally will be listed in this section.

leak currents

In all neurons, thus also in the stn-neuron, an Ohmic leak current IL is present
due to open resting channels.

potassium (k+) currents

A persistent outward potassium current IK is present which is activated by
depolarization [19, 11]. This current restricts the action potential duration. The
channels responsible for this type of current are of Kv3.1 type, which means the
channels are activated at high thresholds and the kinetics are fast [19]. IK

influences the repolarization of the plateau potential [16].
The ability of the stn-neuron to fire at very low frequencies (see Figure 2.5)

shows the presence of a transient outward A-type potassium current IA [20].
In the stn-model [11] this IA is indeed included. IA activates rapidly at low
thresholds and inactivates slowly according to [20] although [11] has taken both
the activation and inactivation to be fast. When a slow inactivation rate is taken
for IA in the stn-model, complex firing patterns, as periodic bursting, can occur
in parameter regions. IA opposes rebound bursting because it deinactivates
during hyperpolarization resulting in a finite window of hyperpolarization from
which the cell can only fire upon release [20, 11]. This is confirmed by [17]
and [16] discussed in the previous section. IA together with IK influence the
repolarization of the plateau potential [16].

A Ca2+-dependent potassium current IAHP has been recorded. It seems
to be partly responsible for the slow part of the ahp [14]. It also limits the
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excitability of the neuron for very strong depolarizing currents. Because the
frequency of firing is very high for a strong depolarizing current, the internal
concentration of Ca2+ increases extremely in a very short time. The result is a
very large IAHP . This of course limits the effect of the depolarizing input [14].
IAHP also influences the repolarization phase of the plateau potential [16].

sodium (na+) currents

A transient inward sodium current INa has been recorded in stn-neurons [14].
INa is responsible for the action potential generation: without INa spontaneous
firing would be absent [14, 21]. INa is slowly inactivating so the current is still
present during the repolarizing phase after the spike [21].

Beside this transient sodium current, a persistent one has also been recorded [14,
21, 16]. This current has no influence on the plateau potential [11].

calcium (ca2+) currents

Various inward calcium currents have been recorded in stn-neurons. In general
an inward calcium current of 10 pA/µm2 is always present in a stn-neuron, even
at very hyperpolarized levels [14]. Four high-threshold currents (with the chan-
nels of N-, L-, Q- and R-type located in the soma) and one low-threshold-current
(a T-type channel located in the dendrites near the gpe-synapses) [22] have been
recorded. The high-threshold currents have a similar voltage dependence (acti-
vation curves have similar shapes but slightly different parameters). The N-type
calcium current constitutes the largest part of the total calcium current. The R-
type current has the lowest threshold together with the L-type [22]. All currents
influence the plateau potential [13, 22, 16, 15, 21], the generation of rebound
activities, the regulation of Ca2+-dependent conductances (for IAHP and the
Ca2+-dependent inward cation currents) [22], and bursting behaviour [15, 21].

But which Ca2+-currents are mainly responsible for the characteristic be-
haviour of the stn-neuron? The long-lasting plateau potential is mainly medi-
ated by the L-type calcium current [22, 16, 15]. The inactivation of this current
influences the repolarization phase of the plateau potential [11]. This current is
also explicitly included in the stn-model described in [11] with two inactivation
variables, one dependent on the voltage, the other on the intracellular calcium
concentration.

Beside the important L-type calcium current, the low-threshold T-type cur-
rent IT is responsible for the large increase in membrane potential after the
break of a hyperpolarizing step. IT is therefore essential for the rebound poten-
tial [21].

non-specific cation currents

There are possibly also Ca2+-dependent inward cation currents which regulate
the duration of the plateau potential [16, 11, 15]. They may slow down the
decay of a plateau potential [15].

The presence of a H-current IH has been confirmed as well [16, 22, 11, 21].
It is a hyperpolarization-activated inward cation current. It deactivates very
slowly [11]. It seems to be responsible for the depolarizing sag during hyper-
polarization [21] thereby increasing the chance of rebound bursting. According
to [11] IH has no influence on the plateau potential while [21] claims that deac-
tivation of IH can regulate the repolarization phase of the plateau potential.
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2.1.2 The STN-model

A mathematical single-compartment conductance-based model for the stn-neuron
will be discussed in this section and analysed in the following ones. It is a hh-
type of model describing the dynamics of the membrane potential as a function
of the ion currents flowing through the neuron’s membrane. It is developed by
Terman et al. in 2002 [1] and it is given by Equation (2.1).

Cm
dvs

dt
= −IL − IK − INa − IT − ICa − IAHP − IG→S (2.1)

Here vs is the membrane potential of a specific stn-neuron in mV, and Cm

the membrane conductance (normalized to 1 pF/µm2. The currents (in pA/µm2

are given by Equations (2.2).

IL = gL(vs − vL) (2.2a)

IK = gKn4(vs − vK) (2.2b)

INa = gNam3
∞(vs)h(vs − vNa) (2.2c)

IT = gT a3
∞(vs)b2

∞(r)(vs − vCa) (2.2d)

ICa = gCas2
∞(vs)(vs − vCa) (2.2e)

IAHP = gAHP (vs − vK)
[Ca]i

[Ca]i + k1
(2.2f)

IG→S = gG→S(vs − vG→S)
∑

j

sj (2.2g)

The currents chosen in this model will be described shortly in the following
subsections, assuming that the reader is familiar with the Hodgkin-Huxley type
of models (see Section 1.2 for a short introduction). The parameter values can
be found in Appendix A.

There are not many other mathematical models present at the moment to de-
scribe the membrane dynamics of a stn-neuron accurately. Another conductance-
based model is the model developed by Otsuka et al. in 2004 [11], which includes
more currents than the one described above. Some of the type of currents cho-
sen there to influence the membrane’s potential are of the same type but are
often described in a totally different manner. Beside this difference, the constant
parameters have totally different values as well.

Model (2.1) is 5-dimensional with ode’s for the variables vs inmV, n, h, r
and [Ca]i inmmol. A further explanation of these ode’s and the currents can
be found in the sections below.

The gating variables

All currents given in (2.2) have a maximal conductance to their specific ion,
given by gX (in nS/µm2), with X the ion-type, and equilibrium potentials spe-
cific for that ion given by vX . The (in)activation variables are given by n, h, r,
s, m and a. These will be shortly discussed in this subsection.

Because the gating variables n, h and r are slowly operating (in comparison
to s, m, a which are taken to be instantaneous) they are given by the following
equation (where X ∈ {n, h, r}):

dX

dt
= φX

X∞(vs)−X

τX(vs)
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This is just according to the hh-formalism (except that a constant φX has
been added which together with τX(vs) influences the speed of the variable
dynamics. Variable X’s steady state X∞(vs), with X ∈ {n, h, r, s,m, a}, is
given by Boltzmann equation:

X∞(vs) =
1

1 + e−
vs−θX

σX

θX is the half-activation voltage for variable X and σX the slope factor. The
time-constants τX(vs) for the slow variables X ∈ {n, h, r}, are modelled by
Equation (2.3).

τX(vs) = τ0
X +

τ1
X

1 + e−(vs−θτ
X)/στ

X
(2.3)

In (2.3) the minimum time constant for the specific variable X is given by

τ0
X

φX

and the maximum time constant by

τ0
X + τ1

X

φX

θτ
X is the voltage at which the time constant is midway between its maximum

and minimum values and the slope factor for the voltage-dependence of the time
constant is στ

X .
The leak-, sodium- and potassium-currents given in (2.2a), (2.2b) and (2.2c)

are the standard currents included in every conductance-based model of spiking
neurons. These will therefore not be discussed. For a description of these
currents see Section 1.2. The calcium-currents on the other hand are rarer and
also very important for the stn-neuron as was described in Section 2.1.1. These
are discussed in the next subsection.

The calcium currents ICa and IT

Two calcium currents ICa and IT are included in the model (see Equations (2.2d)
and (2.2e)). IT is a low-threshold inward (IT < 0) current, as can be seen in
Figure 2.8. In this figure r is taken to be equal to its steady state r∞. ICa

is a high-threshold inward current (see Figure 2.9). Both calcium currents are
essentially always inward because the extremely high equilibrium potential of
calcium (155 mV) is never reached. ICa is active during spontaneous spiking
while IT is not.

The inactivation for IT is not just r, the inactivation gating variable, but a
function of r, b∞(r). The function is given by:

b∞(r) =
1

1 + e
r−θb

σb

− 1

1 + e
−θb
σb

According to [1] this function accounts for the rebound potentials characteristic
for stn-neurons. In Section 2.2.2 it can be seen that the model is indeed able to
rebound burst after the break of a hyperpolarizing step. In Figure 2.10 b∞(r∞)
is plotted together with r∞. The difference is subtle but has large consequences.
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Figure 2.8: The inward low-threshold current IT as function of the voltage vs

assuming instantaneous dynamics.
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Figure 2.9: The inward high-threshold current ICa as function of the voltage vs.

Because b∞(r) has a steeper decay from 1 to 0, the membrane just needs to be
hyperpolarized a little for the T-current to be deinactivated. This results in an
inward current during hyperpolarization, which increases the chance of rebound
bursting.

The Ca2+-dependent potassium current IAHP

The outward Ca2+-dependent potassium current is given by (2.2f). The cur-
rent flows through ligand-gated channels, which can be seen by the absence of
(in)activation variables in the equation (they would indicate the presence of
voltage-gated channels). The conductance of these ligand-gated channels to K+

gAHP is given by

gAHP
[Ca]i

[Ca]i + k1

where [Ca]i is the intracellular calcium concentration. When k1 (the dissociation
constant) is zero IAHP is just an Ohmic current with the maximum constant
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Figure 2.10: b∞(r∞(v)) plotted together with r∞(v).

conductance, gAHP . A positive k1, causes the current to become non-Ohmic and
dependent on the intracellular calcium concentration which changes in time due
to the calcium currents. A positive k1 limits the conductance significantly for
small [Ca]i but approaches the maximal conductance for larger [Ca]i.

The dynamics of the intracellular calcium concentration [Ca]i are given by
Equation (2.4) with ε a small constant parameter and [Ca]′i the time derivative
of [Ca]i.

[Ca]′i = ε (−ICa − IT − kCa[Ca]i) (2.4)

When ICa and IT are nonzero, they both increase the internal calcium con-
centration (see (2.4)), because they are essentially always inward (and thus
negative). The term kCa[Ca]i indicates the clearance mechanisms of Ca2+ by
channel pumps with kCa the calcium pump rate constant. An indication of the
current IAHP for various membrane potentials is given in Figure 2.11 assuming
[Ca]′i = 0. Clearly:
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Figure 2.11: The outward current IAHP as a function of the voltage vs assuming
instantaneous dynamics for [Ca]i and r.

IAHP > 0 for vs > −50 mV

This current thus opposes the upstroking character of the action potential and
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repolarizes the membrane potential afterwards. Assuming [Ca]′i = 0 (for draw-
ing Figure 2.11) implies that [Ca]i has very fast dynamics, while the extremely
small value for ε shows this is not the case. This is thus a very strong assump-
tion.

The synaptic current IG→S

IG→S is the synaptic hyperpolarizing current, being nonzero when the gpe-
neurons are active, and is given by (2.2g). Because in this chapter one stn-
neuron (model) is analysed, and couplings of one gpe-neuron to a stn-neuron
will be discussed in Chapter 4, a detailed description about this current will be
postponed to that chapter. In this chapter only an applied current Iapp will be
varied to simulate synaptic input (for example from a gpe-neuron) to a stn-
neuron and to investigate the influence of various types of input on the stn’s
membrane potential’s dynamics. When an applied current Iapp is used for the
further analysis instead of the synaptic current IG→S , which we cannot control,
Model (2.1) becomes as in (2.5).

Cm
dvs

dt
= −IL − IK − INa − IT − ICa − IAHP + Iapp (2.5)

As one can see in (2.5) the sign in front of Iapp is positive (in contrary to
the sign in front of IG→S). This means that when a depolarizing step-current is
simulated to be injected Iapp should be taken a positive number (because v̇s >
0). For the same reason Iapp is smaller than zero when a hyperpolarizing step-
current is simulated to be injected. For synaptic currents the sign-convention
for an inward, and thus depolarizing current is negative (IG→S < 0) and for an
outward and thus hyperpolarizing current it is positive (IG→S > 0). Because
the injection of a current is not accompanied by a flow of positive ions through
the membrane, we can not speak of ‘inward’ and ’outward’ current. Then the
ordinary convention is taken into account that a depolarizing current is taken
’+’ because it increases the membrane potential and a hyperpolarizing current
is taken ‘-’ because it lowers the membrane potential.

In the next section Model (2.5) will be used for the codim-1 bifurcation
analysis. The parameter which will be varied is Iapp, simulating the synaptic
input from afferents of the stn-neuron. A detailed analysis can give us valuable
information on the changes in behaviour of the model and thus in some sense on
a stn-neuron in vivo) dependent on the input to the neuron. It can give us exact
information in which intervals of Iapp the stn-neuron is always quiescent, always
spiking (with some frequency) or can be both quiescent and spiking dependent
on the initial conditions (the system is then bistable).

2.2 Analysis

2.2.1 Bifurcation analysis

This section will analyse Model (2.5) in detail by searching for the codim-1
bifurcations of the equilibria and limit cycles of the system. These bifurcations
indicate boundaries of regions of the parameter Iapp, in which the model behaves
qualitatively different compared to the other parameter-regions. Knowing these
bifurcations thus gives us full information on the influence of the applied current
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Iapp (simulating in this case the synaptic input from the gpe IG→S) on the firing
behaviour of the model. Although a model of a neuron is never as accurate as
the real neuron, this analysis can thus indirectly give us valuable qualitative
information on the firing behaviour of the stn-neuron in vivo.

In Appendix C.1 the possible codim-1 bifurcations of equilibria and limit
cycles are shortly explained for a general system. Knowing the limited number of
possible equilibrium-bifurcations these can then be sought for our system (2.5).
The equilibrium IV-curve for physiologically reasonable values of the membrane
potential vs is drawn. On this curve the system and thus the neuron is quiescent.
The bifurcations of the equilibria are indicated on the curve when found by
MatCont1. Figures of the eigenvalues of the equilibria are plotted to give more
information on the found equilibrium bifurcations and the ones that MatCont
missed. At the end of this section the regions for Iapp are listed in which the
equilibrium is stable or unstable. This already gives us an idea on the amount
of input needed to make the model quiescent.

Because Hopf-bifurcations of equilibria indicate the emergence of limit cycles,
and thus possible spiking behaviour of the model, the Hopf-point will be further
analysed. The emerged limit cycle is followed to search for possible limit cycle
bifurcations. At the end of the section a detailed picture can be made of the
influence of different values of the input Iapp on the firing behaviour of the model.
For some intervals of Iapp the neuron is or eventually becomes quiescent. That
is independent of the initial conditions chosen. In other regions the neuron will
always spike, where the frequency of spiking is dependent on the value of Iapp.
The last possibiliy is that the system is bistable for a certain parameter interval.
The behaviour of the neuron in this case, is dependent on the initial conditions
chosen.

To show these different types of behaviour time diagrams are drawn in Sec-
tion 2.2.2 for some of the variables. The initial conditions are taken from the
different regions presented in this section. In that section Iapp will also be taken
equal to various step- and pulse-currents to analyse the influence of such instant
applications on the system’s behaviour.

Equilibrium bifurcations

The neuron is quiescent means that the total system is in rest. This means that
the neuron does not fire any spikes and has a constant membrane potential. That
means that all five of the variables should be constant in time. The following
thus must hold for the gating variable n:

ṅ = 0 ⇒ φn
n∞(vs)− n

τn(vs)
= 0

The same holds for the other slow gating variables h and r. This then leads to
the equilibrium values for n, h and r, dependent on the membrane potential vs,

1MatCont is a toolbox developed for Matlab for doing numerical bifurcation analysis of all
kinds of ode-systems. For further information on MatCont see [23] for the numerical methods
needed to calculate the various limit cycle continuations and equilibrium curves. See [24], [25],
and the MatCont manual [26] for more information on the program itself
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and denoted by the subscript eq:

neq(vs) = n∞(vs) (2.6a)
heq(vs) = h∞(vs) (2.6b)
req(vs) = r∞(vs) (2.6c)

For the intracellular calcium concentration [Ca]i the following can be de-
duced:

˙[Ca]i = 0 ⇒ ε (−ICa − IT − kCa[Ca]i) = 0 ⇒ −ICa − IT − kCa[Ca]i = 0

This gives (2.7) for [Ca]ieq still dependent on vs.

[Ca]ieq = −
ITeq + ICaeq

kCa
(2.7)

The currents ITeq and ICaeq in (2.7) are the calcium currents given by (2.2d)
and (2.2e) with the variable r replaced by req.

The same should be done for the equation for veqs :

Cmv̇s = 0 ⇒ −IL − IK − INa − IT − ICa − IAHP + Iapp

Cm
= 0

This gives the Equation (2.8) for Iappeq (often indicated by I∞(vs) in literature)
for the input current needed to keep the system in the resting state, when all
five coordinates are already at their steady state values.

Iappeq = ILeq + IKeq + INaeq + ITeq + ICaeq + IAHPeq (2.8)

In (2.8) the various currents are the equilibrium currents with the gating vari-
ables and [Ca]i at their equilibrium states.

These formulae for the equilibria of the system are programmed in Matlab.
In Listing 2.2.1 these various Matlab functions can be found. The equilibrium
IV-curve can be directly made using Bifdiagram(v). The other function names
speak for themselves. The implementation of these functions can be found in
Appendix B.

Functions for the five coordinate and parameter equilibrium values
function I=Bifdiagram (v )
function N=Ninf ( v )
function H=Hinf ( v )
function R=Rinf ( v )
function Ca=CaConc(v )

For every v (or an array of v) the functions calculate the values for the other
variables and the parameter Iapp for which the system is in rest. These val-
ues are needed to let MatCont continue a specific equilibrium. In Figure 2.12
this continuation of Matlab can be found. It is the equilibrium curve of the
system for vs and Iapp within physiologically normal ranges. While drawing
the curve, MatCont continuously calculates the equilibrium’s five eigenvalues.
While monitoring the eigenvalues, MatCont found various bifurcations, which
can be seen in Figure 2.12 (the three red dots on the left side of the picture
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are neutral saddles and the red dot with ‘H’ alongside it is the subcritical Hopf
bifurcation). The values are given in Table 2.1 where Si for i ∈ {1, 2, 3} are
the neutral saddles. The values are rounded. These bifurcations occur on the
center manifold of the system (2d for a Hopf and otherwise 1d). Off this center
manifold the orbits behave according to the standard saddle (see the beginning
of this section). From now on the center manifold will not be named explicitly
every time a bifurcation is discussed.

As one can see two obvious saddle-node bifurcations have been missed by
MatCont. MatCont would have denoted the points as fold-points labelling them
as ‘lp’s’. Even with smaller stepsizes chosen, these points were missed by the
program. Later when plots of the eigenvalues are investigated these limit points
might become apparent.

Another observation is that I∞(v) (Figure 2.12 rotated 90 degrees counter-
clockwise) is clearly non-monotonic. This allows for the stn-neuron to exhibit
all four possible codim-1 bifurcations of an equilibrium.
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Figure 2.12: The equilibrium IV-curve for the stn-neuron. A subcritical Hopf-
point is found for Iapp ≈ 150.

Coordinates Parameter L. coeff.
vs n h r [Ca]i I l1

H -32.47 0.485 0.108 0.000 1.843 151.52 5.73e− 2 > 0
S1 -40.31 0.261 0.604 0.000002 0.845 -28.20 -
S2 -41.64 0.231 0.701 0.000003 0.706 -33.70 -
S3 -56.49 0.045 0.996 0.005 0.045 -5.45 -

Table 2.1: The values for the Hopf-bifurcation H, and the neutral saddles S1,
S2 and S3 of equilibria of the stn-system.

The subcritical Hopf bifurcation (indicated in the table by H), which takes
place at a parameter value Iapp ≈ 151 pA/µm2 (a depolarizing current injection)
at a membrane potential of vs ≈ −32 mV, is the most valuable one because a
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transition between spiking and rest takes place there. The Lyapunov coefficient
l1 at this point is positive, showing that the Hopf is indeed a subcritical one.
That means that for increasing Iapp the equilibrium becomes stable, and an un-
stable limit cycle emerges from the Hopf-point (to the right in the picture). The
two eigenvalues which cross the imaginary axis are λ1,2 = ±ω0 i = ±2.77538 i,
so the period of the subthreshold oscillations are

T =
2π

ω0
=

2π

2.77538
≈ 2.2639 ms

In Section 2.2.1 this limit cycle will be analysed further.
The other three ‘bifurcations’ (indicated in the table by Si with i ∈ {1, 2, 3})

are neutral saddles. The equilibrium does not undergo a qualitative change at
those points, but the sum of two real eigenvalues becomes zero (as is the case
for the purely imaginary eigenvalues for a Hopf-bifurcation) and is therefore
recognized as a Hopf-point at first. The vectorfield does not change drastically
at these points, and are therefore not bifurcation points.

Beside the knowledge that left of the Hopf-point the equilibria are unstable
and to the right are stable (not knowing when this stability changes) the stabil-
ity properties for the rest of the equilibrium curve Figure 2.12 are still unknown.
Plots of the five eigenvalues for increasing Iapp can give more information. In
Figure 2.13 the real part of the five eigenvalues is plotted. The Matlab function
[E,R,Im]=EigenwaardenSN(v) can be used for this purpose. The implementa-
tion can be found in Appendix B. These figures are made using the mat-file
from MatCont.
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Figure 2.13: The real part of the five eigenvalues of the equilibria of the stn-
system.

Some remarks about Figure 2.13: because in a region of Iapp (between -50
and 0) several equilibria are present (see Figure 2.12) in this specific region it is
very difficult to see which eigenvalues belong to which equilibrium in Figure 2.13.
The choice for the large marks instead of a thin line between the eigenvalues
was made because Matlab does not seem to orden the eigenvalues everytime it
calculates them. Therefore a smooth line can not be drawn between the points
of one eigenvalue and marks has to be chosen. Also it seems that some of the
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eigenvalues are approximately equal to zero. This is not the case though as
can be seen in Figure 2.14 where only the very small (vertical) area around
'{λ} = 0 is plotted. The real parts are small but definitely nonzero.
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Figure 2.14: The real part of the five eigenvalues: zoom-in from Figure 2.13
with '{λi} ∈ [−0.005, 0.001].

What can be seen from Figure 2.14 are the limit point bifurcations that Mat-
Cont missed. At these points the equilibrium is nonhyperbolic ('(λi) = 0 and
((λi) = 0 for some i). At Iapp ≈ −5.43 pA/µm2 and at Iapp ≈ −34.56 pA/µm2

it can be seen in Figure 2.14 that the condition that the real part is zero, is met.
Looking at Figure 2.15 where the imaginary parts of the eigenvalues are plotted,
it can be seen that around these values for Iapp the eigenvalues are indeed real.
Saddle-node bifurcations thus occur for these, unfortunately approximate, val-
ues of Iapp. The nondegeneracy conditions for a limit point should be checked
as well.
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Figure 2.15: The imaginary parts of the five eigenvalues of the equilibria of the
stn-system.

In Figure 2.16, where a small area around Iapp = 150 is plotted, the Hopf
bifurcation can clearly be seen. The real part decreases to zero and looking
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at the imaginary parts of the eigenvalues in Figure 2.15 one can see that the
two eigenvalues are still imaginary, and thus purely imaginary at the Hopf point.
Also it is clear from the figure that for smaller Iapp than the bifurcation value the
equilibrium is unstable and for larger values it is stable, indicating a subcritical
Hopf-bifurcation.
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Figure 2.16: The real part of the eigenvalues: the subcritical Hopf occurs at
Iapp ≈ 150.

Looking at Figures 2.13, 2.14 and 2.16 one can say that the equilibrium is
stable in the following regions (follow the curve in Figure 2.12 starting at the
right side of the Hopf bifurcation): The equilibrium on the right of the Hopf-
point H is stable. Between H and the limit point (around Iapp ≈ −34) the
equilibrium is 2d unstable (two eigenvalues have crossed the imaginary axis).
Between the two limit points the equilibrium becomes 1d unstable. After the
last limit point the equilibrium is totally stable again. For Iapp between approx-
imately -34 and -5 the system has three equilibria from which only one is stable.
Outside this region only a stable equilibrium is present. We will see in the next
section whether the solution is always attracted to these equilibria when Iapp is
chosen in these regions, or that stable limit cycles are present as well to which
the solution is drawn.

Limit cycle bifurcations

Because not all equilibria are stable, the attraction domains of the stable ones
do not attract the whole state space, and because we have observed that the
stn-neuron can indeed spike (even without input), limit cycles are definitely
present in the 6d variable-parameter space. In the previous section we saw that
a subcritical Hopf bifurcation occurred for a parameter value of Iapp ≈ 151 and
a membrane potential of approximately -32 mV. for a large depolarizing input.
An unstable limit cycle thus emerges. Orbits are therefore not attracted to this
limit cycle. We are searching for stable limit cycles, which we can possibly find
by continuing the unstable limit cycle emerged at the Hopf point.

In Figure 2.17 this continuation for increasing Iapp can be seen. The contin-
uation starts at the Hopf point in the left side of the figure, where v ≈ −32 mV
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and n ≈ 0.48. Clearly (unstable) limit cycles emerge with the starting ampli-
tude approximately zero and increasing for increasing Iapp. The bifurcations
found during the continuation process can be found in Table 2.2. In Figure 2.17
the ‘ns’-marks at the left side (at the point of the hat) are the neutral saddles
close to the Hopf bifurcation. They will not be discussed here because they do
not indicate bifurcations.
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Figure 2.17: A subcritical Hopf occurs at (v, n) ≈ (−32, 0.48). For increasing
Iapp the unstable limit cycle grows in amplitude and finally coalesces with the
stable limit cycle circling around it.

During the continuation MatCont finds very near to each other a Neimark-
Sacker bifurcation (indicated by ‘ns’) and a limit point of cycles (indicated by
‘lpc’). The Neimark-Sacker bifurcation is found due to a numerical error. Us-
ing more discretization points limits the possibilities of numerical artifacts. The
multipliers are real at the found ns so can never indicate a Neimark-Sacker
bifurcation although the normal form coefficient is given by MatCont. In Fig-
ure 2.17 the red circle on the right indicates the fold bifurcation of limit cycles.
The limit point of cycles is discussed. From the figure it is understandable that
the fold bifurcation is also called a turning point bifurcation. A stable limit cy-
cle surrounds the unstable one for Iapp ∈ [151, 205]. They approach each other
for increasing Iapp, coalesce at the limit point and then disappear. Figure 2.17
looks like a pointed hat. The unstable cycles form the point, and the stable
limit cycles the side flaps.

In Figure 2.18, the period of the limit cycle (in ms) is plotted against Iapp

which makes it clear as well that the period of the unstable limit cycle grows for
increasing Iapp (the lower branch of the figure), and that the period of the stable
limit cycle, surrounding the unstable one, approaches infinity when Iapp → 0.
The latter indicates the possible presence of a saddle homoclinic bifurcation or
a saddle node on invariant circle bifurcation. Later we will find out which of
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Type Period T Value of Iapp Normal form coeff.
NS1 2.263984 151.408
NS2 2.264 151.6147
LPC 2.771262 205.0175 0.1088715
NS3 2.776580 205.0175
NS4 2.78622 205.0112 −2.954137 10−9

Table 2.2: The limit cycle bifurcations found by MatCont using a Hopf-limit
cycle continuation.

the two occurs.
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Figure 2.18: The period increases to infinity for Iapp → 0 indicating the presence
of a saddle homoclinic or snic bifurcation.

In Figure 2.19 the fI-curve is drawn which is related to the period (T) drawn
in Figure 2.18 by

f =
1000
T

Because only the first part of Figure 2.19 (starting in approximately the
origin and ending before the turning point) corresponds to the frequency of the
stable limit cycle and thus the spiking behaviour of the model, this part is drawn
again in Figure 2.20 next to the fI-curve which is drawn during experiments with
stn-neurons.

The first observation that can be made from Figure 2.20 is the difference in
Iapp for which the model and experiments guarantee the neuron’s spiking be-
haviour (the x-axis). According to the model the stn-neuron is unable to spike
for Iapp > 205 pA/µm2 (past the limit point of cycles), because the unstable
and stable limit cycles have coalesced and disappeared at Iapp ≈ 205 pA/µm2.
A stable equilibrium (the upper branch in Figure 2.12) is present though in this
parameter region. All solutions will converge to this equilibrium and the neuron
will thus be quiescent for Iapp > 205. Looking at the left figure in Figure 2.20
the neuron can be induced to fire at least up to Iapp ≈ 600 pA/µm2 according
to literature. The model-fI-curve (right in Figure 2.20) can thus only at best be
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Figure 2.19: The fI-curve of the stable and unstable limit cycle.
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Figure 2.20: The fI-plot from [14] (left) with Iapp < 600 compared to the fI-plot
from model [1] (right) with Iapp < 200.

compared to the first initial part (with f < 200Hz) of the experimental fI-curve
(left in Figure 2.20). The slope of the fI-curve for the model, up to 200 Hz,
is approximately 1350 Hz/nA. This is a significantly larger slope than claimed
by [14] (500Hz/nA) or [13] (900 Hz/nA). Because the fI-curves in experimental
articles often plot the averaged frequency fav over the total duration of the ap-
plied current step and the fI-curve of the model, drawn by MatCont, indicates
the asymptotic frequency fas of spiking for Iapp to which f converges due to
spike frequency adaptation, this may indicate that the slope of the model-fI-
curve is not too large after all. But looking at the meaning of the average and
asymptotic frequency it even makes things worse: fas is practically always less
than the average frequency fav, due to the high initial frequency. Therefore the
asymptotic frequency of the model fas = 1350Hz/nA is equivalent to an even
higher fav and thus is definitely too large.

The other observation can be made by looking at the frequencies reached (the
y-axis) by the firing stn-neuron due to the injection of an applied current. The
model is able to reach a firing frequency of about 300 Hz after the application
of a current of approximately 200 pA/µm2. The application of this amount of
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current in the experiments described in [14] results in a firing frequency of about
only 60 Hz.

If the parameter only needs scaling (that the period over which the 300 Hz
is traversed needs to be stretched up), there is still the problem of the shape
of the fI-curve from the model. It has an inverse sigmoidal shape with steeper
slopes in the first and third region compared to the second. In the experiments
described in [14] and [13] the shape is simply sigmoidal.

After the analysis of the frequency of spiking of the model, the amplitude
of the stable and unstable limit cycle will be plotted. In Figure 2.21 the mini-
mum and maximum of the membrane potential vs are plotted together with the
equilibrium curve from the previous section. At the end of the simulation the
period of the stable limit cycle became that large that it took too much time to
draw more points than here indicated. When it is discussed whether a saddle
homoclinic orbit bifurcation or a saddle node on invariant circle results, these
last points of Figure 2.21 will be continuated with larger stepsizes.
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Figure 2.21: The maximum (left) and minimum (right) of the membrane poten-
tial on the (un)stable limit cycle is plotted together with the equilibrium curve.

An extension of Figure 2.17 can be seen in Figure 2.22. The unstable limit
cycle is totally surrounded by the stable one and can thus not be seen anymore.

Because the period of the stable limit cycle tends to infinity while approach-
ing Iapp = 0 this could indicate that the limit cycle will bifurcate according to
a saddle node on invariant circle bifurcation (a snic bifurcation) or according
to a saddle homoclinic orbit bifurcation. For a snic bifurcation a saddle and
a node will both be on the limit cycle (the invariant circle) and will coalesce
and disappear. This is only possible at the two limit points Iapp ≈ −5.43 and
Iapp ≈ −34.56. There a saddle and a node coalesce and disappear for increas-
ing Iapp. The limit cycle approaches the equilibrium curve for decreasing Iapp

indicating that in the case of a snic bifurcation a saddle and a node appear
instead of disappear. When the oscillations continue for Iapp < −5.54 it is clear
that T → ∞ does not indicate the presence of a snic bifurcation at this limit
point. Then a saddle homoclinic orbit bifurcation is possible on the middle and
top branch (saddle node homoclinic orbit bifurcation is a codim-2 bifurcation)
or if this does not occur, a snic at the other limit point Iapp ≈ −34.56. In the
case of the saddle homoclinic orbit bifurcation the stable and unstable manifolds
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Figure 2.22: The stable limit cycle totally surrounds the unstable limit cycle
(only a small part of this cycle was shown in Figure 2.17.

of a saddle of the system intersect (a homoclinic orbit results). In the case of
this bifurcation the limit cycle bifurcates to this homoclinic orbit, resulting in
oscillations with infinite period.

In Figure 2.23 it is shown that a snic bifurcation does not occur at the limit
point Iapp ≈ −5.43 because the limit cycle is still present after the limit point.
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Figure 2.23: The limit cycle passes the first limit point Iapp ≈ −5.43 without
bifurcating.

As the limit cycle has passed the first limit point the cycle can undergo
a saddle homoclinic orbit bifurcation on the middle and top branch (not the
bottom branch because those equilibria only have stable manifolds). Because
the limit cycles seem to converge far before the second limit point for decreasing
Iapp (see Figure 2.24) a snic bifurcation is unlikely to occur.

A saddle homoclinic orbit bifurcation has to be found: on which branch,
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Figure 2.24: The convergence of the limit cycles far before the second limit point
indicates a saddle homoclinic orbit bifurcation.

middle or top, will the stable and unstable manifolds of the saddle be joined
by a homoclinic orbit? It is clear that the limit cycle will ‘hit’ the middle or
top branch and this often occurs at the sharp corners of the cycles. The orbits
converging to the limit cycle stay in the neighbourhoods of these corners, which
are near saddles, for a long time resulting in the large period of the oscillation.
In Figure 2.25 two sharp corners of the cycles can be seen.
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Figure 2.25: The lower left and right corner are sharp and can both indicate
the homoclinic bifurcation occurring there.

By writing down the equilibrium values for the five coordinates for Iapp be-
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tween approximately -5.43 (the limit points) and -6 pA/µm2it can easily be
seen which corner is nearest to a saddle. Then it is also clear on which branch
this saddle is and on thus on which branch the saddle homoclinic orbit bifurca-
tion occurs. In this range for Iapp two of the equilibrium values (vs, n) on the
top branch are around (vs, n) ≈ (−38.14, 0.317) and on the middle branch are
(vs, n) ≈ (−55, 0.054). Because the lower right corner of the limit cycles con-
verges to (vs, n) ≈ (−75, 0.53) and the lower left corner to (vs, n) ≈ (−61, 0.025)
it would indicate that the lower left corner converges to a saddle on the middle
branch. This is confirmed by the 3d Figure 2.26.
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Figure 2.26: The lower left corner of the limit cycle converges to the middle
branch of the equilibrium curve, also drawn in the figure.

Where the saddle homoclinic orbit bifurcation exactly occurs cannot be cal-
culated explicitly by MatCont. The guess is that between Iapp = −5.5 and
Iapp ≈ −6. After the bifurcation (thus for smaller values of Iapp) the limit cycle
has disappeared.

Qualitatively different parameter regions

Now we have drawn the equilibrium curve with its bifurcations, the different
pictures for the unstable limit cycle that emerged from the subcritical Hopf
bifurcation and the bifurcations of this limit cycle (fold- and saddle homoclinic),
we can draw some initial conclusions about the model’s behaviour for various
values of Iapp. In figure 2.27 the onedimensional parameter-region is drawn with
the different bifurcations indicated on the line (a shob is a saddle homoclinic
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Figure 2.27: The qualitatively different regions in parameter space. For the
values indicated in this figure draw a vertical line at these values in Figure 2.21.

orbit bifurcation). In the six parameter regions shown in the figure the model
behaves differently, sometimes is even dependent on the chosen initial data for
the coordinates, because the system is bistable.

The following numbered list gives the equilibria and limit cycles present in
the various regions with the corresponding numbers with their stability proper-
ties. Also the behaviour of the stn-neuron will be guessed for all six regions.

1. In this region (Iapp < lp1 ≈ −34.6) only one stable equilibrium is present.
Independent on the initial conditions taken for the coordinates, the solu-
tion to the system will converge to this equilibrium. For the neuron this
means that it will be quiescent when Iapp < −34 where the right boundary
of -34 is approximate.

2. In this region (Iapp ∈ [lp1, shob] ≈ [−34.6,−6]) one stable equilibrium
(the lower branch in Figure 2.21) is present and two unstable ones (1d
on the middle branch and 2d unstable on the top branch). Numerically
all solutions will converge to the stable equilibrium resulting in a quies-
cent neuron. When the initial data are chosen on the stable manifolds
of the saddles the solution will in theory converge to the saddle, but this
behaviour can never be captured by MatCont.

3. In this small region (Iapp ∈ [shob, lp2] ≈ [−6,−5.4]) the stable limit cycle
has not yet disappeared (which has in region 2). Therefore in this region
one stable and two unstable equilibria are present, together with a stable
limit cycle. The system is thus bistable. It depends on the chosen initial
data whether the solution will converge to the limit cycle (the neuron
spikes), or will converge to the stable equilibrium (the neuron is quiescent).

4. In this region (Iapp ∈ [lp2,h] ≈ [−5.4, 151]) an unstable equilibrium is
present (the top branch in Figure 2.21) and a stable limit cycle. The
solution will converge to this stable limit cycle independent on the initial
data chosen, when Iapp is taken in this region. Because Iapp = 0 in this
region, spontaneous spiking is guaranteed.

5. In this region (Iapp ∈ [h, lpc] ≈ [151, 205.02]) the system is bistable. An
equilibrium has become stable on the top branch due to the Hopf bifur-
cation. Beside this stable equilibrium a stable limit cycle is also present.
The stable limit cycle circles around the unstable limit cycle. It thus de-
pends on the chosen initial data whether the neuron will spike or become
quiescent in this region.

6. In this region (Iapp > lpc ≈ 205.02) only a stable equilibrium is present
to which the solution will be attracted independent of the chosen initial
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data. The neuron is therefore always quiescent when Iapp is chosen in this
region.

In the next section initial data within these various regions of parameter and
phase space will be taken to verify whether the behaviour is indeed as described
above. In regions of bistability it will be tested whether the neuron’s state can
be reset by a sufficient current pulse or step. Also it will be tested whether
the model is capable of generating the behaviour described in literature (see
Section 2.1.1).

2.2.2 Simulations

In the previous section Model (2.5) was analysed thoroughly using bifurcation
theory, which resulted in a detailed picture of the possible behaviour of the model
(Figure 2.27) for various intervals of the applied current Iapp. In Section 2.2.2
System (2.5) will be simulated for Iapp in the six different regions indicated
in Figure 2.27 to check whether the neuron behaves in these regions as was
guessed in the previous section. Especially the regions in which the system is
bistable (regions 3 and 5) are interesting because the initial conditions chosen
for the coordinates critically decide whether the model will fire or becomes
quiescent. The simulations of the system for Iapp = 0 (in region 4) will be
compared to experimental data for a spontaneous spiking stn-neuron described
in Section 2.1.1. At the end of this section, the responses of the model to de-
and hyperpolarizing steps and pulses will be tested in simulations. Specific
stimulating steps and pulses for which experimental results are described (see
Section 2.1.1) will be chosen for Iapp to compare these model’s responses with
experimentally found responses to the same type of stimuli.

Simulations in the different regions

In this section Iapp will be assigned values in the six different regions from
Figure 2.27. The initial data for the five coordinates vs, n, h, r and [Ca]i will
decide, in regions where the system is bistable (regions 3 and 5), whether the
neuron will spike or not. In the other regions the initial data is taken arbitrarily
because every orbit will converge to the only stable solution present in the region
anyway.

region 1

In region 1 only a stable equilibrium is present to which all orbits converge
independent on the initial data chosen. As can be seen in Figure 2.28 the orbit
with initial data as in Table 2.3 converges to the stable equilibrium which is
also indicated in Table 2.3 for Iapp = −50.

vs n h r [Ca]i Iapp

Initial data -60 0.1 0.2 1e-5 1.5 -50
Stable equilibrium -82.1 0.0019 1 0.995 0.0025 -50

Table 2.3: For Iapp in region 1 (Iapp = −50), every orbit, independent of its
initial data, converges to the stable equilibrium.
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Figure 2.28: Every orbit with Iapp in region 1 converges to the stable equilib-
rium.

The eigenvalues are all real and negative, thus indicating that the equilib-
rium is a stable node. Therefore no subthreshold oscillations are present.

region 2

For Iapp in region 2, two unstable nodes are always present together with a sta-
ble node. The top branch in Figure 2.12 is 2d unstable and the middle branch
in the same figure is 1d unstable. The stable nodes are on the lower branch. In-
dependent on the initial data chosen for the five coordinates, the orbits converge
to the stable equilibrium when Iapp is chosen in this region. The convergence
can be distorted though by the unstable manifolds of the saddles. The initial
data chosen for the simulations are listed in Table 2.4 and are deliberately taken
on the top- and middle-branch to show the slow convergence. For both initial
data the stable equilibrium to which the orbit converges is listed directly below.

vs n h r [Ca]i Iapp

Top-branch -40 0.2689 0.5800 1.3710e-06 0.8791 -26.0971
Stable equilibrium -70.3 0.0083 1 0.8389 0.1001 -26.0971
Middle-branch -50 0.0953 0.9720 2.0343e-04 0.1720 -12.9428
Stable equilibrium -64.1 0.0178 0.9997 0.1900 0.0116 -12.9428

Table 2.4: For Iapp in region 2, the initial data for the coordinates are chosen
on the top and middle branches which are saddles. The solution converges to
the stable equilibrium on the lower branch.

The slow convergence to the slow equilibrium from the top-branch can be
seen in Figure 2.29 and from the middle-branch in Figure 2.30.

The slow convergence is due to the stable (for Figure 2.30) and unstable (for
Figure 2.29) manifolds of the saddle. No pictures are shown for other initial
data but the solutions then converge more directly to the stable equilibrium.

region 3
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Figure 2.29: Starting in the 2d unstable node on the top branch the orbit
eventually converges to the stable equilibrium on the lower branch.
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Figure 2.30: Starting in the 1d unstable node on the middle branch the orbit
eventually converges to the stable equilibrium on the lower branch.

Region number 3 consists of few parameter values and they are all very close to
the limit point bifurcation around Iapp ≈ −5.5 and the saddle homoclinic orbit
bifurcation value around Iapp ≈ −6. In this region a stable limit cycle is present
(which is about to disappear) together with a stable node (on the lower branch)
and 2d and 1d unstable nodes (on the top- and middle-branch respectively).
The system is thus bistable.

In Table 2.5 the initial data of the different figures are listed. The bold
numbers are the only changes from the data from the previous figure.
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vs n h r [Ca]i Iapp

Figure 2.31 -55.141 0.0525 0.9946 0.0027 0.0597 -5.6
Figure 2.32 -55.141 0.0525 0.9946 1 0 -5.6
Stable equilibrium -57.183 0.0412 0.9972 0.0073 0.0382 -5.6

Table 2.5: The initial data for Figures 2.31 and 2.32. Also the coordinate values
of the stable equilibrium are listed.

In Figure 2.31 the initial data are chosen on the middle branch (see Fig-
ure 2.12), thus in the 1d unstable node. After initiating a spike (see Figure 2.31)
the solution eventually still converges to the stable equilibrium (not shown in
the figure). Because it looks as convergence in 2d cross sections, but could be
spiking with a large period (Iapp is very near the saddle homoclinic orbit bifur-
cation value) the numerical data has to be checked whether in R5 all five values
of the equilibrium are approached. This is indeed the case. The initial spike can
be due to a short convergence to the stable limit cycle after which it is drawn
into the attraction domain of the stable equilibrium. This domain seems to be
a large portion of the physiological range.
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Figure 2.31: With initial data as on the first row in Table 2.5 the orbit is first
attracted to the large-period stable limit cycle after which it converges to the
stable node.

In Figure 2.32 the large influence of r = 1 on the generation of rebound
bursts can be seen. Although a stable limit cycle is present in this region, the
solution does not converge to it. Sometimes initially it does (the system shows
a few or a lot of rebound spikes), but eventually all orbits (with the initial data
tested of course) tend to converge to the stable equilibrium.

region 4

In region 4 a stable limit cycle is present together with a 2d unstable node.
Independent on the initial data chosen the solution will always converge to
the stable cycle. This thus guarantees that the stn-neuron fires when Iapp ∈
[−5.4, 151] so also with zero input (Iapp = 0). This agrees with experimental
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Figure 2.32: With r = 1 and [Ca]i = 0 the orbit is initially attracted to the
stable limit cycle, and the neuron spikes with a high frequency (rebound bursts).
Eventually the solution again converges to the stable node.

results which claim that the stn-neuron is able to spontaneously spike. Only
simulations for Iapp = 0 will be shown, to verify the various spontaneous firing
properties of stn-neurons described in Section 2.1.1 with the model’s behaviour.
Time diagrams and some limit cycle cross sections are drawn.

All other values for Iapp in this region will also show a convergence to the
stable limit cycle, which for that value of the applied current, may have a
different frequency and amplitude. The depolarizing range of region 4 will be
shown in the following section when depolarizing values for Iapp are taken with
Iapp not at its specific value initially: a step-current is taken for Iapp.

The initial data for the five coordinates and the parameter are given in
Table 2.6.

vs n h r [Ca]i Iapp

-55 0.2 0.5 0.5 1 0

Table 2.6: Initial data for spontaneous spiking

In Figure 2.33 the vs,t-diagram of the model (right) is shown together with
the same type of picture found in experimental literature (left). Spikes are shown
for the stabilised system, when the orbit has already converged sufficiently close
to the limit cycle.

Spike frequency adaptation can not be seen from Figure 2.33 because stabil-
isation has already occurred. In Figure 2.34 the initial spikes are shown and a
decrease in the interspike interval towards a stable interval can be seen.

The average interspike interval approaches ±400 ms which corresponds to a
spike frequency of approximately 2.5 Hz. 3Hz was claimed for this model in [1]
and a spike frequency of 0–10 Hz is mentioned in literature. The interspike
interval of 400 ms agrees with the 500 ms found by experiments and indicated
in the left picture of Figure 2.33. The voltage range, which is traversed during
spontaneous spiking, is approximately -70–40 mV, and the shape of the spikes
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Figure 2.33: A spontaneous firing stn-neuron. Left: from experiments, right:
from model.

0 500 1000 1500 2000 2500 3000 3500 4000
−80

−60

−40

−20

0

20

40

t

v s

Figure 2.34: The initial spikes of spontaneous spiking show spike frequency
adaptation: a decrease in interspike interval can be seen until it approaches a
certain level.

hardly changes during spiking indicating a high level of regularity. This all
agrees with the experimentally found results described in Section 2.1.1.

In the right picture of Figure 2.35 two spikes of Figure 2.33 are zoomed
in and displayed together with the same type of curve from experiments for
spontaneous spiking stn-neurons. One can clearly see in the right picture, that
the duration of the action potential is very short whereas the ahp following the
spike lasts quite long. The oscillation cycle of this model-neuron largely agrees
with the cycle described in Section 2.1.1. The only difference is that the model
does not have two phases of ahp (a slow and a fast one). Only a fast one is
present. The fast ahp is directly followed by a slow depolarization.

In Figure 2.36 the intracellular calcium concentration [Ca]i is plotted for
increasing time t. The concentration clearly decreases with the exception of
some small peaks, when vs spikes. These small peaks could be due to the
high-threshold calcium-current ICa which is activated during the peaks in vs.
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Figure 2.35: Left: two spikes of the left picture in Figure 2.33 zoomed in. Right:
two spikes from the model simulation zoomed in.

Apparently during spontaneous spiking, the calcium clearance mechanism (de-
noted by −kCa[Ca]i in (2.4)), exceeds the influx of calcium through ICa and
IT . The time diagrams of h and r are not shown here, but both show spiking

Figure 2.36: Decrease in intracellular calcium concentration during spontaneous
spiking.

behaviour as vs and n did. In Figure 2.37 the h, vs-solution is plotted for a
simulation time of 6000 ms. The solution approaches the stable cycle, which is
shown in this 2d cross section of R5.

The initial point (indicated by ‘start’ in the figure) is not very near the stable
cycle it finally approaches indicating spike frequency adaptation. The arrow in
the figure indicates the direction of the solution. The ‘thick’ area is the limit
cycle to which the solution is attracted.

As one can see from Figure 2.38 the intracellular calcium concentration starts
around 1 and decreases during spontaneous spiking.

region 5

The system is also bistable in region 5 (Iapp ∈ [h, lpc] ≈ [151, 205.02]) but the
difference with region 3 is that there is a stable focus (instead of a stable node)
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Figure 2.37: 6000 ms of spiking: a stable limit cycle is present.
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Figure 2.38: During spontaneous spiking of vs, the intracellular calcium con-
centration decreases.

present together with the stable limit cycle. The stable focus is present on the
top branch in Figure 2.12 together with an unstable (branch of max(vs) and
min(vs) emerging from h in Figure 2.21) and a stable limit cycle (branch of
max(vs) and min(vs) emerging from lpc and not from h in Figure 2.21).

In Figure 2.39 the initial data are as in the first row of Table 2.7. The
solution converges to the stable focus which is also listed in the table. It is
clear that it is a focus instead of a node because of the subthreshold oscillations
which are present.

For the same applied current Iapp = 170 but different data for all coordinates
except vs, the solution converges to the stable limit cycle and thus shows spiking
behaviour. This can be seen in Figure 2.40. These two figures clearly show
that for the same applied current it depends on the initial data chosen for the
coordinates whether the neuron will spike or becomes quiescent. The bistability
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vs n h r [Ca]i Iapp

To equilibrium (Fig 2.39) -80 0 1 1 0 170
To limit cycle (Fig 2.40) -80 1 0 0 1 170
Stable equilibrium -32.053 0.498 0.096 2.58e-8 1.897 170

Table 2.7: The orbit starting in this point converges to the stable focus.

0 2 4 6 8 10 12 14 16 18 20
−80

−60

−40

−20

0

20

40

60

t

v s

Figure 2.39: For the initial data as in the first row of Table 2.7 the solution
converges to the stable focus (with values given in the last row of the same
table).
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Figure 2.40: For the initial data as in the second row of Table 2.7 the solution
converges to the stable limit cycle.

of region 5 is thereby shown.

region 6

In region 6 only a stable focus is present (on the top branch), which becomes
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a stable node when the eigenvalues become real again (see Figure 2.15). Any
solution will converge to this stable focus independent on the initial data chosen
for the coordinates. In Figure 2.41 the initial data are as in the first row in
Table 2.8.

vs n h r [Ca]i Iapp

Figure 2.41 -40 0.8 0 0 1 210
Figure 2.42 -50 0 0 0 1 210
Stable focus -31.23 0.5240 0.0754 1.7086e-08 2.0021 210

Table 2.8: The orbit starting in the points from row 1 and 2 converges to the
stable focus listed in the last row, each in a different manner.
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Figure 2.41: With the initial data as in row 1 of Table 2.8, the orbit oscillatory
converges to the stable focus.

The orbit oscillatory converges to the stable focus. It is clear that the initial
data are quite far away from the stable focus, causing the large spike in the
beginning of the simulation. The values of this focus are given in the last row of
Table 2.8. In Figure 2.42 the initial data are as in the second row of Table 2.8.

The oscillatory behaviour is less apparant in this figure. This is a different
convergent behaviour compared to that shown in Figure 2.41.

Responses to depolaring steps and pulses

In the previous section simulations were shown for Iapp in the different regions
indicated in Figure 2.27. The spontaneous spiking behaviour of the model has
already been compared to experimental results while discussing region 3. Other
experimental results described in Section 2.1.1 involved the response of a stn-
neuron to various types and amounts of de- and hyperpolarizing inputs. This
section will therefore describe the response of the model to depolarizing cur-
rent steps and pulses (Iapp > 0) (the next section deals with hyperpolarizing
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Figure 2.42: With the initial data as in row 2 of Table 2.8 the neuron converges
more smoothly toward the focus than in Figure 2.41.

(Iapp < 0) steps and pulses) and compare these responses to those described in
Section 2.1.1.

Inputs can be ‘applied’ in three different ways [3]: through ramps, steps,
and brief pulses. All three reset the initial data in a different way. Ramps are
currents for which their strength increases linearly in time, starting with Iapp = 0
at t = 0. They are the currents used for continuations in MatCont. The limit
cycle or equilibrium is followed for small changes in the applied current. The
variables have time to follow the equilibrium or limit cycle so no change in the
variables can be seen (the system is still quiescent or spikes). The system is not
pushed in a completely different area of phase space evoking different behaviour.
Ramps have been used in the bifurcation analysis of the model and are therefore
dealt with already.

Steps will be discussed in this and the next section. They look like presented
in Figure 2.3 (depolarizing). The strength a and duration b of the step can
be varied, to verify whether the model reacts to these changes as it should.
When the current is stepped the system changes instantly resulting in an instant
change in the location and characteristics of the equilibria and limit cycles (if
still present). The response of the orbit to this instant change depends on
the timescales of the different variables. Slow variables as gating variables in
this system do not have time to catch up with the instant change. Even if for
example the stable equilibrium in which the system was, is only relocated, a
spike is evoked due to the slow response of the system.

In the case of a brief current pulse the system is, as in the case of the step,
instantly changed. Whether the neuron returns to its initial state (from before
the application of the pulse) after the break of the pulse, depends on the possible
bistability of the system. For example, the system in its stable equilibrium state
before the application of the pulse, can be ‘pushed in’ the attraction domain of
a stable limit cycle (the system is thus bistable) during the pulse application
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and will not return to its resting state after the break of the pulse. Because
experimental results with pulses have only been recorded for already hyperpo-
larized stn-membranes, the depolarizing pulse will be mentioned in the section
on the hyperpolarizing step.

See Section 2.1.1 to compare the responses of the model to a depolarizing
step with the experimentally found responses. The step equation used for Iapp

is as in (2.9), with a the strength of the step in pA/µm2and b = b2 − b1 the
duration of the step in ms (see Figure 2.3). H(t) is the heaviside stepfunction.
a > 0 in this section, for a depolarizing step. The initial conditions for the five
variables are taken as in Table 2.6.

Iapp = a (H(t− b1)−H(t− b2)) (2.9)

In Figure 2.43 a step with a = 10pA/µm2, and b = 1000ms (b1 = 2000 ms and
b2 = 3000 ms) is simulated. Indeed an increase in frequency can be seen during
the application of the step. In Figure 2.44 a = 50pA/µm2 with the same values
for b, b1 and b2.
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Figure 2.43: A step of amplitude 10 pA/µm2 is applied between t = 2000 ms
and t = 3000 ms.

The frequency of spiking clearly increases with the strength of the applied
step which agrees with experimental results listed in Section 2.1.1. What does
not agree with literature, is the voltage range, which is traversed during the
application of the step. The voltage range is clearly smaller, which can also be
seen in Figure 2.45. During the step-application the solution is attracted to a
smaller limit cycle (showing the decrease in traversed voltage range). The speed
in which the solution approaches this limit cycle is clearly larger (showing the
increase in frequency). The latter can not be seen from Figure 2.45 but can be
seen from the timediagrams in Figure 2.43 and 2.44.
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Figure 2.44: A step of amplitude 50 pA/µm2 is applied between t = 1000 ms
and t = 1500 ms.

Experiments have also shown that the duration of the ahp after the break
of the step, increases smoothly with frequency and thus with applied current.
Whether they mean the total interspike interval following the application of
the step or only the repolarization phase (so not the depolarization phase) is
unclear. Both increase in duration after the step break which can be seen by
comparing this interval in Figure 2.43 with that in Figure 2.44. A small increase
in the duration of the repolarization phase can be seen as well an increase in
interspike interval. Both are small but present.
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Figure 2.45: During the depolarizing step application the solution is attracted
to a smaller limit cycle (see arrows).
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Spike frequency adaptation which is observed in experiments during the
application of a depolarizing step, is more difficult to show in static plots, but
as can be seen in the figure of the limit cycle (Figure 2.45) the solution is drawn
to another limit cycle than it traverses before the step is applied. As is intuitive,
the longer the step is applied, the closer the solution gets to this new limit cycle
and the frequency of the spikes will converge to a constant level. This is not
possible when the step duration is too short. Therefore indeed the duration of
the step influences this spike frequency adaptation.

The fI-curve of the model (based on applied current ramps) was already
compared with an experimentally found fI-curve in Section 2.2.1. The slope of
the model fI-curve was more than twice the largest slope found in literature and
could even be larger if not the asymptotic frequency but the average frequency
had been plotted.

Responses to hyperpolaring steps and pulses

This section is dedicated to compare the responses of the model to hyperpolariz-
ing steps and pulses with the responses registered in experiments and described
in Section 2.1.1. It is especially interesting to know if the model represents
a plateau-generating stn-neuron or one which is not able to do so. For the
analysis of networks with stn- and gpe-neurons this ability can make a large
difference in network behaviour.

As was described in Section 2.1.1 contradictory results can be found in lit-
erature how a stn-neuron behaves during the application of hyperpolarizing
currents. According to [15] the neuron shows bursting behaviour while this be-
haviour is never observed in other experiments with stn-neurons alone. Some
articles agree on certain aspects of the response, so the focus will lie on testing
those responses. They will be repeated here for the sake of convenience.

When the model is able to generate plateau potentials (approximately half
of all stn-neurons) it should have the following firing characteristics:

- When the neuron is more hyperpolarized than approximately -75 mV, it
should react to a depolarizing pulse of at least 10 pA/µm2by generating a
plateau potential often accompanied by the generation of action potentials.

- When the neuron is strongly hyperpolarized it should become quiescent.
- When a hyperpolarizing step is applied more hyperpolarizing than -75

mV, long-lasting rebound bursting should occur, which ends with a slow
decay of the membrane potential to resting potential.

, When the model is not able to generate plateau potentials (approximately the
other half of all stn-neurons):

- Independent on the hyperpolarization level of the neuron it responds to a
depolarizing pulse by an increase in membrane potential during the appli-
cation of the pulse. After the break of the pulse the membrane potential
repolarizes rapidly.

- When the neuron is strongly hyperpolarized it should become quiescent.
- After the break of a hyperpolarizing step rebound bursting should oc-

cur, which ends with a fast decay of the membrane potential to resting
potential.
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What exactly happens during the application of a hyperpolarizing step which
not yet makes the neuron quiescent is unclear. It could burst according to some
articles or just spike at lower frequencies. See Section 2.1.1 for more details.

Now the model will be simulated and hyperpolarizing steps will be applied
with a strength of apA/µm2 during a timeperiod of b ms (see Figure 2.3. A
hyperpolarizing step means that Iapp < 0 in (2.5) with (2.9) still used as formula
for Iapp but with a < 0. The initial data for the other variables are as in
Table 2.6.

In Figure 2.46 a hyperpolarizing step with a strength of a = −4 pA/µm2

is applied for a duration of b = 2000ms. During the application of the ramp
between t = 2000ms and t = 4000ms the neuron still evokes a spike. The
frequency of spiking is thus decreased but not yet terminated. Bursting is not
observed.
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Figure 2.46: Hyperpolarizing step with a = −4 pA/µm2 applied between t =
2000 ms and t = 4000 ms: the frequency decreases.

When a decreases from −4 pA/µm2 to −10 pA/µm2 (with the same duration
of b = 2000 ms) the neuron is not able to spike anymore during the application
of the step. This can be seen in Figure 2.47. The step is not that strong that re-
bound bursts are evoked after the step breaks. Spontaneous spiking continuous
after the break of the step. In Figure 2.48 the strength of the applied hyperpolar-
izing step has decreased even more (a = −50 pA/µm2) with the same duration
of b = 2000ms. During the step application the neuron is quiescent as before.
Now the neuron does evoke rebound bursts after the step breaks. The rebound
burstings stops quite abruptly with a short ahp and returns to spontaneous spik-
ing behaviour very fast. This could indicate that the stn-neuron represented
by the model is not able to generate plateau potentials. A plateau-generating
neuron would have shown a slow decay after rebound bursting. This can only be
checked by applying a short pulse when the membrane is hyperpolarized below
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Figure 2.47: Hyperpolarizing step with a = −10 pA/µm2 applied between t =
2000 ms and t = 4000 ms: it lowers the resting potential but evokes no rebound
bursts.

-75 mV. This is not possible in simulations because this has to mean kicking the
neuron out of its stable equilibrium state around -75 mV(or lower). Limit cycles
are absent in this region (region 1). Also applying a hyperpolarizing step during
which the pulse is applied does not work because after the break of the pulse the
system still receives the hyperpolarizing step, therefore not giving the neuron
the chance to generate a plateau potential. Unfortunately this characteristic of
plateau-generating stn-neurons can therefore not be tested.

According to the second and third items of the list presented at the beginning
of this section, this model seems to represent a neuron which is not able to
generate plateau potentials because the decay to resting potential after the
rebound bursts is too fast. It still has to be tested though whether a sufficiently
hyperpolarized neuron is able to generate a plateau potential in response to a
depolarizing pulse of at least 10 pA/µm2 (the first item). Because the plateau
potential did not occur during rebound bursting, the chance of this happening
appears to be quite small. Bursting during the application of the hyperpolarizing
step has also not been observed (only a decrease in the frequency of firing) which
confirms [16] and [5] and contradicts [15]. A stn-neuron which is not able to
generate plateau potentials can exist but is the least interesting neuron in the
stn, to analyse. The model described in the model [11] is a plateau-generating
one.

The most realistic simulation of hyperpolarization of the stn-neuron would
have been a spiking Iapp, because the gpe-neuron will fire barrages of spikes
instead of a step or pulse. A train of current pulses can be a nice simulation for
a realistic Iapp and therefore for the synaptic current IG→S . This has not been
done here.
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Figure 2.48: Rebound bursts occur after the break of a hyperpolarizing step
with strength a = −50 pA/µm2 and application between t = 2000ms and t =
4000 ms.

2.3 Discussion

This section will summarise the different results which were derived from the
analysis of the model and described in Section 2.2.1 and 2.2.2. The agreements
and differences between the behaviour of the model and the experimentally
found behaviour of stn-neurons (described in Section 2.1.1) will be concisely
listed and discussed. It should be taken into account that [1] from which the
model is derived, already states that the stn-model (and the gpe-model) is a
simplified version of the stn-neuron.

This discussion and evaluation of the results of the model should first take
into account the objectives for the model by the authors of [1]. Otherwise the
model is critized or complimented on characteristics of the model on which the
development was not even aimed. The stn-model is developed together with
the model for the gpe-neuron in [1]. The article mainly focuses on the analysis
of different types of networks of these two neurons. The focus does therefore
not lie on the analysis of the stn-neuron alone, as is the case in this chapter.
Choices always have to be made during the development of a model, especially
when large networks are considered. A balance has to be sought between a
perfectly accurate model (if possible with the limited data available), which is
less practical because of the cpu-time it takes to simulate the model, and a really
fast but not accurate model, which therefore does not represent the neuron well
enough. Concessions therefore always have to be made in the accuracy to keep
the model ‘fast’. Whether these concessions made in the model by Terman et.
al. in 2002 have still preserved the most important characteristics known for
the stn-neuron in their model, will be discussed in this section. The model is
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already fast enough for simulations for one neuron alone. The speed therefore
does not have to be increased.

Beside the objectives of the model the validity of the experiments with which
the results are compared should be taken into account during the evaluation. It
should not be the case that the behaviour found during an experiment is directly
the true behaviour of the stn-neuron. As already mentioned in Section 2.1.1
the results in experiments are dependent on the type of animal on which the
tests are exhibited, the preparation of the brain slice, the recording method
and other external factors [12]. When ‘several’ articles claim to have observed
a certain firing characteristic of the stn-neuron under various circumstances,
this characteristic will be assumed to be a real characteristic of the neuron.
Contradictory results on a certain aspect of the neuron, are not expected to be
represented by the model.

Taking all these things into account, the important discrepancies between
the model and experiments will be discussed thoroughly and considerations for
modelling, for example using other currents or a different description of the
present currents, mentioned.

2.3.1 Summary of the results

This section will shortly list the results from the bifurcation analysis of the
model and the simulations made of the model. The observed differences and
agreements between the model and experiments are listed objectively as well.
Because Section 2.1.1 divided the characteristic firing behaviour of the stn-
neuron in characteristics of spontaneous firing (with a zero applied current to
the stn-neuron), and characteristics of the neuron in response to de- and hy-
perpolarizing applied currents, this differentiation in characteristics will also be
made in this section.

The bifurcation analysis of the model showed us in detail how the model-
neuron behaves for different values of the parameter Iapp. Regions for Iapp for
which the neuron behaves qualitatively different from other regions are bounded
by the bifurcation points of the equilibria and limit cycles. In some regions the
model-neuron appears to be sometimes with some subthreshold oscillations due
to the convergence to this equilibrium. In others the neuron is always spiking
(with different amplitudes and frequencies dependent on the exact value for
Iapp). This quiescence and spiking behaviour are both independent on the initial
data chosen. In two other regions the system is bistable and it therefore does
depend on the initial data chosen whether the neuron becomes quiescent or will
spike. In Figure 2.49 the picture of the regions is repeated for convenience sake.

Comparison of our system with experimental results shows the following:

- The specific regions and boundaries of these regions can not be checked
with experiments because these have not been found that accurately.

- Experiments showed that with a ‘sufficiently’ large hyperpolarizing cur-
rent the neuron can be made quiescent. This is indeed also the case for
the model for Iapp < −6. Only the value for which the model-neuron
can be made quiescent is too small (approximately -75 mVwas claimed in
literature). Later we will see that other values in the depolarizing range
of Iapp need to be ‘stretched up’ as well in the model.

- Some experiments have shown (contradicted by others) that for a small
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Figure 2.49: The qualitatively different regions in parameter space. See the last
part of Section 2.2.1 for an extensive explanation.

applied hyperpolarizing current the neuron continues firing but at a lower
frequency. This agrees with region 3 where the frequency of an already
spiking neuron can approach zero, while approaching the shob-bifurcation
value for Iapp. It is a bistable region for the model, thus hyperpolarizing
the model-neuron might make it quiescent as well.

- Experiments have shown that most stn-neurons show spontaneous spiking
behaviour. Because the model has a large region in which Iapp = 0 is
enclosed (region 3), and in which only a stable limit cycle is present,
the spontaneous spiking of the model-neuron is guaranteed. Later the
characteristics of the spontaneous spiking behaviour of the model will be
compared with the characteristics listed in Section 2.1.1.

- The small bistable regions found for the model, have not been described
in literature. Either the neuron was found quiescent for a certain applied
current or spiking.

- The quiescence of the model-neuron for Iapp > 205.02 is not mentioned
in experimental literature. Articles talk about saturation in the high-
frequency range. More applied current can not increase the frequency
even more, but spiking is still present. The disappearance of spiking for a
large applied current has not been described.

- The stable limit cycle is present for Iapp ∈ [−6, 205.02]. This limit cycle
will be analysed later, by looking at its fI-curve and comparing this with
the one made during experiments.

- When a stable focus is present for a certain value of Iapp subthreshold
oscillations can be seen due to the oscillatory convergence to the focus.

Spontaneous spiking

Simulations of the model for Iapp = 0 (in region 4) showed the following char-
acteristics:

- As can be seen in Figure 2.50, the spikes have a fast action potential, a
fast ahp and a slow depolarization phase, in agreement with literature on
spontaneous spiking. The slow ahp is the only phase missing, which can
be seen by comparing the left and right picture in Figure 2.50.

- The asymptotic frequency during spontaneous spiking of the model is
approximately 2.5Hz, which agrees with the claim of 0–10Hzin literature.

- The voltage range which is traversed during spontaneous spiking is -70–
40 mV.
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- Spike frequency adaptation occurs.
- The spikes show a high level of regularity (the shape of the spikes hardly

change during spiking).

5900 6000 6100 6200 6300 6400 6500
−80

−60

−40

−20

0

20

40

t

v s

Experiments Model

Figure 2.50: Left: two spikes of the left picture in Figure 2.33 zoomed in. Right:
two spikes from the model simulation zoomed in.

Response to depolarizing input

The frequency of the stable limit cycle, which is present in the range Iapp ∈
[−6, 205.02] (on the left side of the region the cycle bifurcates into a homoclinic
orbit before it disappears and right the cycle coalesces with an unstable cycle at
a fold bifurcation), can be plotted for values of Iapp in this region. In Figure 2.51
the model-fI curve is plotted next to an experimental fI curve again.
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Figure 2.51: The fI-plot from [14] (left) with Iapp < 600 compared to the fI-plot
from model [1] (right) with Iapp < 200.

The differences between the model fI-curve and the experimental one are as
in Table 2.9:

The first row states that according to experiments applied currents up to
600 pA/µm2can still induce spiking at higher frequencies, whereas the bifurca-
tion analysis of the model showed that right to the lpc and left to the shob the
stable limit cycle has disappeared, causing the spiking behaviour to be absent
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Experiments Model
Iapp( pA/µm2) ∈. . . ≈ [−6, 205.02] ≈ [0, 600]
Slope of first part( Hz/nA) 500 [14]–900 [13] ≈ 1350
Shape curve Sigmoidal Inverse sigmoidal

Table 2.9: The differences between the model fI-curve and the experimental
fI-curve

outside [shob, lpc] ≈ [−6, 205.02]. These ranges differ a lot. Approximately
the same range of frequencies is traversed for these different ranges of applied
current. This results in the large difference in slope of the first part of the curve
(up to 200Hz) between the two curves. Up to 200Hzthe fI-curve is assumed to
be linear. The slopes of these parts are compared in the second row of Table 2.9.
Because the asymptotic value of the frequency (plotted in the fI-curve of the
model) is in nearly all cases lower than the averaged frequency (plotted in the
fI-curve of experiments), due to the high initial frequency, the found asymptotic
frequency of approximately 1350Hz/nAis definitely too large (the translation of
this number to the average frequency would even be larger). ‘Only’ the range
for Iapp seems to differ from experimental results, but unfortunately a ‘simple’
scaling of the parameter Iapp will not do the trick. The shape of the model
fI-curve is also inverse sigmoidal, showing the steeper parts in the first and
third segment, instead of in the second segment. According to various experi-
ments [14, 13] this should be the other way around, a sigmoidal shape. This is
mentioned in the third row of the table.

Beside these differences the model fI-curve agrees with literature on other
things:

- The model shows an increase in frequency due to an increase in applied
current.

- The frequencies which can be reached by the model agree with the fre-
quency ranges described in literature.

- The stn-neuron is able to fire at very low frequencies. Due to the shob
which occurs around Iapp ≈ −6 the period of the oscillation tends to
infinity in close surroundings of this bifurcation value. Extremely low
frequencies can therefore be reached. This can also be seen in the fI-curve
of the model in Figure 2.51.

Simulations of the model before and during the application of a depolarizing
step, show other differences and agreements:

- The voltage range which is traversed during the application of the de-
polarizing step is clearly smaller than during spontaneous spiking. This
contradicts experimental results, which state that this traversed range
hardly changes.

- The duration of the ahp which occurs after the application of the step,
increases with an increase in strength of the applied step. Whether the
increase in ahp is smooth, as claimed in literature, can not be seen from
the simulation pictures.

- Spike frequency adaptation seems to occur during the application of the
step current, which agrees with experimental results.
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Response to hyperpolarizing input

Experimental results on the response of stn-neurons to hyperpolarizing current
steps Simulations of the model during and after the application of hyperpolar-
izing current steps show the following results:

- The model shows a decrease in frequency of firing during the application
of a small hyperpolarizing current.

- The model-neuron becomes quiescent but does not show rebound bursts
after the break of a stronger hyperpolarizing current, which lowers the
membrane potential to approximately -75 mV. This voltage agrees with
experimental results.

- After the application of an even stronger hyperpolarizing current the
model-neuron still becomes quiescent but shows rebound bursts after the
break of the step. This rebound burst showed a fast decay after returning
to spontaneous spiking.

- Because the rebound bursts did not show a slow decay which would have
indicated the generation of a plateau potential, the model seems to repre-
sent a stn-neuron which is not able to generate plateau potentials. This
is not an error of the model because two types of stn-neurons are indeed
present in the nucleus. The plateau-generating neuron on the other hand
is the more interesting one for analysis of stn-gpe-networks.

- The bursting during the application of a small hyperpolarizing current,
claimed by [15] is not confirmed by the model’s behaviour. The model
thus follows [16] and [5].

2.3.2 Evaluation

Model [1] is a single-compartment model, meaning that the neuron is modelled
as a point. This is an assumption made by all hh-models and thus also in the
stn-model [11]. Multi-compartment models have been developed for the stn-
neuron as well such as the model presented in [27]. Multi-compartment models
are of course more accurate because delays between for example the genera-
tion of an epsp in the dendrite of the neuron and the generation of an action
potential as a consequence of this epsp is taken into account. Because multi-
compartment models take the spatial component into account, the distribution
of the channel-types over the various compartments can be altered, for testing
their influence. Because the channels for the low-threshold calcium current IT

are mainly located in the dendrites of the stn-neuron (the other channels are
located in the membrane of the soma), a multi-compartment model could shine
a light on the influence of the distance between these channels and the trigger
region, on the firing behaviour of the neuron. Multi-compartment models are
large, consisting of many spatial derivatives next to time derivatives as well, and
because only the low-threshold calcium channels are not present in the soma, the
spatial distribution of the channels over the soma-membrane does not make the
model that more accurate, that the increase in variables is a small disadvantage
compared to that. Multi-compartment models on the other hand are recom-
mendations for future modelling of the stn-neuron, when more information is
available on the morphology of the neuron and the density and distribution of
the various channels over the membrane. Model [27] gives a good idea for this
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multi-compartment modelling. A difference is made between active and passive
properties of the stn-membrane.

Model characteristics

What can be concluded from the previous summary of the results is that the
model behaves quite well for the limited number of (gating) variables chosen.
It unfortunately represents a stn-neuron which is not able to generate plateau
potentials. This does not contradict experimental results because indeed two
types of stn-neurons are present in the nucleus. The plateau-generation might
be an interesting phenomenon of the stn for further analysis, and could therefore
be added to the model as was done in [11].

Especially the characteristics of the spontaneous spiking behaviour agree
well with experimental results. Aspects as frequency of spiking and traversed
voltage range agree well, except for the slow ahp which misses after the action
potential and fast ahp.

For the response of the model to de- and hyperpolarizing steps and pulses it
can be said that the parameter Iapp mainly needs scaling. The range in which
all essential events takes place is simply too small. The hyperpolarizing current
which is needed to make the neuron quiescent is too small compared to liter-
ature and the depolarizing current which is needed to make the model-neuron
fire at for example 300Hz is less than half the current needed in experiments.
Beside this scaling problem the response of the model to de- and hyperpolarizing
currents largely agrees with literature. The frequency of spiking of the model
is able to approach the zero-level due to the saddle homoclinic orbit bifurcation
and the frequency of spiking increases with an increase in Iapp. The range of
frequencies which can be reached by the model agrees as well. For depolariz-
ing input on the other hand the slope of the fI-curve is too large (still due to
the scaling problem), and the shape of the fI-curve is inverse sigmoidal, which
contradicts results from experiments. Also the voltage range which is traversed
during the application of the depolarizing step is smaller than during sponta-
neous spiking. According to experiments this range should remain constant.
The disappearance of the limit cycle for a certain depolarizing value for Iapp,
which in the model occurs for Iapp ≈ 205 pA/µm2, has not been observed in
experiments. The quiescence of the neuron for larger values of Iapp, shown for
the model, is therefore also discutable.

Model improvement

The model thus mainly shows the right stn-behaviour, but can of course be
improved in such a way that the neuron generates plateau potentials, the range
for Iapp becomes ‘stretched up’, that a slow ahp follows the fast one and that the
shape of the fI-curve becomes sigmoidal. Each of these improvements could be
seperate subjects for study where everytime a trade-off must be made between
accuracy and simulation time. Besides, some recommendations for modelling
can be done but exact methods to for example ‘add a slow ahp’ is not known,
and maybe even impossible.

The following changes for the model can be considered:

1. The constant values for various parameters as conductances and equilib-
rium potentials differ a lot between this model [1] and [11]. The values
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for IK in [11] are for example derived from [19], which is the only ar-
ticle on the type of channels of the voltage-gated potassium current and
therefore quite valuable. The constants in [1] are derived from data-fitting
procedures. Thus changing these values can possibly change some charac-
teristics of the model.

2. Currents can be added to the model (with the disadvantage of having a
larger and slower model) and the formulae for the currents in the model
can be changed. All changes should significantly improve the behaviour
of the model, to exceed the disadvantage of the extra variable(s). To re-
ally improve the model the possible currents which can be added, should
activate and inactivate at the right timescales. When for example the acti-
vation is too slow in comparison to the activation of the existing variables,
the behaviour of the extra variable is hardly dynamical and can be taken
as a constant current. Certain currents can also be active in voltage-ranges
which are never reached by the stn-neuron and can therefore be omitted
from the model. There can be good reasons why currents have not been
added to the model, with the best reason being the increase in complexity
of the model, causing an increase in cpu-time while simulating the model.
The currents which can be changed or added are:

- Because the model presented in [11] is a plateau-generating one the
currents present in that model can be used in this model to add this
plateau-generating characteristic. Because the L-type of calcium-
current is the most important current for the plateau generation, this
current (IL in [11]) can replace the existing high-threshold calcium
current ICa, which was possibly also intended as a L-type of calcium
current. Other high-threshold calcium currents as the N-type can be
of importance as well. This current is present in model [27] next to
the L-type of calcium current.

- A Ca2+-dependent inward nonspecific cation current ICaN seems to
be present in the stn-membrane and is not present in the model.
This current can slow the decay of the plateau potential and there-
fore influence the duration of it. This current can thus increase the
possibility of plateau generation.

- A delayed rectifier potassium current is included in model [27], next
to the normal fast rectifier IK . Because the timescales for this potas-
sium current are too large for this single-compartment model, this
current can not influence the model’s behaviour significantly. In a
multi-compartment model it can change behaviour.

- The persistent sodium current found in experiments [14] did not seem
to influence the important characteristics of the stn-neuron (when
blocked, nothing changed). Although this is the case, the persistent
sodium current is used in model [27].

- A hyperpolarization-activated cation current Ih is recorded as well.
It seems to generate the depolarization sag during hyperpolarization,
thereby increasing the chance of rebound bursting activities after the
break of the hyperpolarization. Because the rebound activities are al-
ready as they should be (due to IT which has the same (in)activation
characteristics as Ih), this current is not as necessary as other cur-
rents. It is used in the model [27].
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- The slow part of the ahp should have been present, although other
experimental figures as in [11] do not show these slow parts. Be-
cause IAHP (ICa−K in [11]) is partly responsible for the slow part of
the ahp, the dependency of the current on [Ca]i should possibly be
altered. The formulation of this current in [11] can also be used.

- During the application of the depolarizing step, in which the fre-
quency increased according to literature, a smaller voltage range was
traversed than during spontaneous spiking. This should have been
the same. Which current can change this behaviour is not known.

- The transient potassium current IA is measured in experiments and
needed to have the stn-neuron fire at very low frequencies. Because
the model is already able to fire at very low frequencies this current
does not need to be added to the model. When complex firing pat-
terns as periodic bursting is proven to occur in stn-neurons alone,
this current can be considered as well. At the moment the burst-
ing behaviour of the stn-neuron is discutable. IA is included in the
model by Otsuka et al. [11] although other activation dynamics are
assumed there than given in [20].

Model comparison

Model [11] also shows a fI-curve with a slope, which is too steep. The range for
Iapp is too small for the frequency range reached. The slow ahp is also missing,
but not necessary for stn-neurons shown with experimental pictures. Model [11]
on the other hand is able to generate plateau potentials during and after the
application of a current pulse. The inactivation of the L-type of calcium current
plays a large role in the plateau generation according to [11]. Although the
model [11] has some similar errors with regard to the behaviour of the >stn-
neuron, both models can be combined in some way to have the benefits of both.
The fI-curve then still needs adjustments with addition and change in currents
mentioned above.

[8] discusses the validity of model [9] and [1]. The article questions the
usefulness of computational models as a tool to give insight in the Parkinsonian
and normal behaviour of the Basal Ganglia. The article does not discuss the
validity of the model of the stn-neuron alone but of the model of the total
network of the Basal Ganglia described in [9]. According to the article the total
model is too complex and not robust with respect to small perturbations in
the parameters. Besides, time-delays miss in the model because every neuron
is modelled as a point in space and synaptic connections or relay points do not
include time delay functions. The models [27] and [1] have been cited rarely
according to this article, showing the low scientific importance of models on
explaining phenomena in the Basal Ganglia. During testing of the models the
authors of [8] experienced the same problems as we did during the testing of
the stn-model. Some results mentioned in [9] from the model described in the
same article, differed to some degree with the results found during testing by
the authors of [8]. We experienced the same type of problems during testing
of the stn-model alone. In [1] it is for example claimed that the voltage range
which is traversed during the application of a depolarizing step current, is the
same as during spontaneous spiking behaviour. This is not the case according
to the test of the model with MatCont.
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Sensitivity analysis of the stn-model is a recommendation because param-
eters between this model and [11] already differ so much that the hope is that
small perturbations in these parameters (due to the inaccuracy of the values)
do not have large effects on the behaviour of the model-neuron. If this somehow
is the case, the model can give less reliable predictive information and therefore
becomes almost useless.

Model analysis

A general conclusion can be made about the method used to analyse the model,
the bifurcation analysis using MatCont. This method can be applied to any
model, possibly better than this one, to give a more detailed idea on the be-
haviour of the neuron in various parameter regions. Provided the accuracy of
the analysed model is sufficient, this bifurcation analysis then can give a good
idea on the firing behaviour of the stn-neuron in vitro, in response to various
amount of input. Because it is a mathematical analysis the physiological reality
should be taken into account: the disappearance of a limit cycle at a certain
parameter value might not be that instant in real life. The physiological range
for Iapp should also be checked, because nice mathematical phenomena might
occur for values of Iapp which will never be reached in vitro. Because MatCont
is a program which is still being developed some bifurcation points were missed
during continuations. The output of the improved program might be more re-
liable than the current output. The nice thing about bifurcation analysis is
that the analysis can give more insight in the model and that it can be used to
change the model. For example a certain transition between spiking and rest
exists for the model but is not seen in experiments. By changing the model this
bifurcation point can be ‘erased’ or, when needed, moved to a different value of
Iapp.



Chapter 3

The GPe-neuron

The gabaergic external Globus Pallidus (gpe) is a nuclei within the Basal Gan-
glia, and is innervated by the glutamatergic stn, the gabaergic striatum and
the dopaminergic Substantia Nigra pars compacta (SNc). The gpe on its turn
inhibits the stn, the striatum and the output nuclei of the Basal Ganglia, the
Substantia Nigra pars reticulata (snr) and the internal segment of the Globus
Pallidus (the gpi) [4].

The previous chapter compared the in vivo/vitro properties of the stn-
neuron with the [1]-model-stn’s properties. This section will do the same for
the [1]-model-gpe-neuron by first presenting the gpe-model as described in [1]
and then comparing the choices made with experimental results for the gpe-
neuron, by looking at the bifurcation analysis of the model.

3.1 Literature

3.1.1 Experimentally found results

Unfortunately less is known for the gpe- neuron, resulting in a much shorter
gpe-discussion compared to the one for the stn-neuron. Beside the little infor-
mation available on the gpe-neuron the few published articles also often give
contradictory information. The possible reasons for these discrepancies between
articles can be found in [12] and were already listed at the beginning of Sec-
tion 2.1.1. Another disadvantage is that the gpe-model presented in [1] is the
only mathematical gpe-model at the moment, so a comparison between models
as was done for the stn-neuron, is not possible here.

On some aspects of gpe-neurons the different articles are very clear. Certain
neuron types are for example encountered far more often during experiments
than others and are therefore ‘typical’ gpe-neurons. These neurons also project
to the stn and other nuclei within the Basal Ganglia (in comparison to interneu-
rons which do not) and are able to burst in some cases. The latter is necessary
for the gpe-neurons because they appear to be the cause of the rebound bursting
in stn-neurons [28]. The bursting of gpe-neurons is not essential for rhythmic
population activity though [1].

According to [1] the model-gpe-neuron matches the characteristics of three
types of gpe-neurons described in different articles, which are similar in a lot of
characteristics. Different neurons belong to a type based on their electrophysi-
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ological properties (instead of for example their morphological properties). The
three types are the type 2 described in [29], the type A described in [12] and
the repetitive firing neuron described in [28]. The reader is referred to these
articles for the definitions of these types. Only 37% of the tested neurons were
of this type according to [29]. In [12] this was 63% and more than 70% in [28].
Looking at these numbers, the choice for this type of gpe-neuron as the ‘typical’
gpe-neuron in the [1]-model seems justified. The three articles also found two
other types. These were often assumed to be interneurons which do not project
to other nuclei in the Basal Ganglia, or cholinergic neurons. The characteristics
of this ‘typical’ gpe-neuron are described below. When the three types differ
too much on a certain aspect, it will be noted.

Spontaneous spiking

The ‘typical’ gpe-neuron seems to be able to spontaneously spike. The charac-
teristics of this spiking behaviour are somewhat uncertain:

- The resting membrane potential of the neuron is -59 ± 9 mV [29].
- In vitro the neuron fires spontaneously at the resting membrane poten-

tial [29, 12, 30]. The neuron can be quiescent as well at resting membrane
potential [12].

- The firing frequency during spontaneous spiking is approximately 200 Hz
according to [29]. This is a significant difference with the 2–40 Hz men-
tioned in [28] supported by the 10–15 Hz claimed in [30].

- The gpe-neuron is also able to autonomously discharge at high-frequency,
interrupted by pauses [12, 30]. According to [30] this can only occur in
vivo at resting membrane potential. According to [12] it only occurs during
the application of weak hyperpolarizing currents and is very common in
fast-spiking neurons such as interneurons so not in projection neurons we
consider.

- The afterhyperpolarization consists of a fast and a slow part [28, 12].
- A slow depolarization occurs after the ahp [28]. Mathematically this

slow depolarization means that the trajectory follows the separatrix of a
saddle, stays close to the saddle for a while after eventually converging to
the stable cycle [3].

- When the membrane is depolarized, sodium-dependent subthreshold os-
cillations occur with a frequency of 20–100 Hz [29].

Depolarizing input

The reaction of this type of gpe-neuron to depolarizing current injections are:

- The neuron fires in frequencies up to 350 Hz [12]. According to [28] the
maximum firing rate is only about 100 Hz because of the occurrence of
spike accommodation. The fI curve looks as in Figure 3.1.

- Spike accommodation occurs according to [28], which is contradicted by [30].
- Spike frequency adaptation occurs [28].
- When the membrane is kept at a hyperpolarized level it reacts to de- and

hyperpolarizing input in a ramp-like manner [28].
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Figure 3.1: The firing frequency of the repetitively firing neuron as a function
of the input [28]

Currents

The following currents are described for the ‘typical’ gpe-neuron:

- A low-threshold calcium current (IT ) is present [29, 12].
- A voltage-dependent inward rectifier (Ih) is observed [12].
- Fast and slow Ca2+-dependent K+-currents have been identified. These

cause the slow and fast parts of the afterhyperpolarization [28].
- A slowly in- and deactivating delayed rectifier K+-current has been recorded

in the gpe-neuron. Also a rapidly deactivating K+-current is present. The
ratio between the number of fast deactivating channels and slowly deacti-
vating ones is approximately 1.5 [31].

- Two types of A-type potassium currents have been observed: a low- and
high-threshold one [31].

- Slowly deactivating hyperpolarization-activated cation channels (hcn) are
important for the discharge rate and the regularity of autonomous firing.
The currents have a fast and slow component, due to two different chan-
nels. The currents are activated by striatal inhition which takes place
at the gpe-dendrites and reset the rhythmic discharge. The currents are
activated during the foot of Na+-activation curve (around -55 mV in gpe-
neurons) therefore prohibiting the sodium-current to become inactive [30].

Synaptic connections

In experiments the amount of gpe-neurons innervated by other nuclei have been
tested. Also the number of gpe-neurons which send their axons to these nuclei
have been counted. The results can be of use for the analysis of the possible
architecture of the stn-gpe-network.

The results are as follows: 75% of the gpe-neurons are innervated by stn-
neurons and half of the gpe-neurons send their axons to stn-neurons. These
neurons had latencies of stn-stimulation of only 1 ms, which agrees with the
fast inhibition of stn-neurons by gpe-firing. One third of the gpe-neurons are
inhibited by striatal input. This specific inhibition is capable of resetting the
pacemaking mechanism in gpe projection neurons [28].
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3.1.2 The GPe-model

The gpe-model is as follows [1]:

Cmv̇g = −IL − IK − INa − IT − ICa − IAHP − IS→G (3.1)

As one can see the gpe-model (3.1) is similar to the stn-model discussed
in the previous chapter. (3.1) differs somewhat from the original gpe-model
described in [1]. The additional current IG→G, present in [1], has been omitted
in (3.1) because in this small network no input from other gpe-neurons is taken
into account (see Figure 4.1). Also the input from the striatum (in the article
called Iapp) to the gpe-neuron, as included in the original model is left out. The
reason for this is that all external input (such as input from the striatum) to the
two-cell network is ignored for the moment (see Figure 4.1). The reduced gpe-
model (3.1) includes the same type of currents (and thus equations) as the stn-
model, which together influence the dynamics of the gpe-neuron’s membrane
potential. Beside the agreements between the type of currents included, the
constant variables as for example conductances, half-activation voltages and
timeconstants differ of course.

IS→G has exactly the same form as IG→S , with appropriately renamed
synaptic parameters. As was done for the stn-model for the further analysis the
synaptic current −IS→G is replaced in the model by an applied current +Iapp.
See the text above (2.5) for the explanation of this replacement. Model (3.2)
will be analysed in Section 3.2.

Cmv̇g = −IL − IK − INa − IT − ICa − IAHP + Iapp (3.2)

From all the currents in (3.2) only IT takes a simpler form than in the
stn-model. The formula for IT becomes:

IT = gT a3
∞(vg)r(v − vCa)

Comparing this IT -equation with (2.2d) it is clear that no ‘inactivation function’
but just the inactivation variable r is included. According to [1] this choice
reduces the posthyperpolarization rebound in gpe-cells compared to the rebound
in stn-cells. Whether reducing rebound bursting in gpe-neurons and assuming
the similarity between the models for two different neurons, is justified, is now
discussed.

3.2 Analysis

This section analyses the gpe-model using MatCont for the bifurcation analysis,
just as was done for the stn-model. First the equilibrium bifurcations will be
sought, and possible Hopf-bifurcations will be analysed further in the section on
limit cycle bifurcations of the gpe-system. Because the gpe-system also has one
parameter (Iapp) and five coordinates (vg, ng, hg, rg and [Ca]ig ) the possible
equilibrium and limit cycle bifurcations are the same codim-1 bifurcations as
mentioned in the beginning of Section 2.2.1. The center manifold theorems still
need to be applied to derive the dimension of the center manifold on which all
essential events of the bifurcation occur. See the beginning of Section 2.2.1 for
more details. The aim is to give a detailed division of the parameter line for
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Iapp, such that the behaviour of the model-gpe-neuron can be predicted within
the different regions for Iapp. Some simulations will be made as well, to compare
certain characteristics of the model’s behaviour with experimental results.

3.2.1 Bifurcation analysis

Bifurcations of equilibria

The gpe-system is in an equilibrium state when the five time derivatives of the
coordinates are equal to zero. This means that the three gating variables ng,
hg and rg are at their steady states n∞g (vg), h∞g (vg) and r∞g (vg). For [Ca]ig

in an equilibrium the following must hold (the derivation is analogues to the
derivation for [Ca]is , see Section 2.2.1):

[Ca]ig =
IT + ICa

kCa

Where IT and ICa are at their equilibrium levels (with the gating variables at
their steady states and vg as the independent variable).

With the three gating variables and the internal calcium concentration at
their constant levels, the potential’s time derivative also needs to be equal to
zero in an equilibrium. This then gives an equation for the applied current Iapp

as a function of vg (for the derivation again see Section 2.2.1) (3.3):

Iapp = IL + IK + INa + IT + ICa + IAHP (3.3)

With again the currents only dependent on vg, because for the other four vari-
ables their constant values are substituted in IT and ICa.

Plotting (3.3) gives the equilibrium-curve of the model-gpe-neuron and is
shown in Figure 3.2.

Figure 3.2: The monotonic equilibrium curve with a sub- and supercritical
Hopf-bifurcation. Notice the steep increase in vg for Iapp around zero.
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As can be seen the equilibrium curve, projected on the 2d Iapp,vg-space, is
monotonically increasing for increasing Iapp. This means that limit point bifur-
cations are not possible (as was possible for the stn-neuron). The only codim-1
equilibrium bifurcations possible are therefore the Andronov-Hopf bifurcations,
and both types are indeed found.

The bifurcations found by MatCont during the drawing of the equilibrium
curve are listed in Table 3.1. Here H1 corresponds to the point with the letter
‘H’ most left in Figure 3.2 and H2 to the point with the letter ‘H’ most right in
the figure. The other points indicated in the figure are neutral saddles (in these
points the sum of two eigenvalues is zero), and are not bifurcation points.

vg ng hg rg [Ca]ig Iapp L. coeff ω0

H1 -66.03 0.241 0.661 0.121 1e-6 -1.031 7.923e-3 0.173
H2 -26.10 0.847 0.066 0.000 1.071 6.000e+2 -1.159e-2 4.979

Table 3.1: The equilibrium bifurcations of the gpe-model

For H1 the Lyapunov coefficient l1 > 0 which corresponds to a subcritical
Hopf-bifurcation. For decreasing Iapp (the equilibrium was continued by Mat-
Cont for decreasing parameter values) the unstable focus regains its stability
while simultaneously an unstable limit cycle appears. Thus for Iapp > −1.031
an unstable focus is present and for Iapp < −1.031 a stable focus and an unstable
limit cycle coexist.

Because for H2 the Lyapunov-coefficient l1 < 0, a supercritical Hopf-bifurcation
takes place there. For decreasing Iapp this means that a stable focus turns un-
stable while a stable limit cycle emerges. Thus for Iapp > 600 a stable focus is
present, which is unstable for Iapp < 600. For Iapp < 600 a stable limit cycle is
present next to the unstable focus.

In Figure 3.3 the real parts of the five eigenvalues of the system in the
equilibrium are plotted for Iapp ∈ [−10, 1000] pA/µm2.

Figure 3.3: The real part of the five eigenvalues of the system at the equilibrium
are plotted for Iapp ∈ [−10, 1000] pA/µm2.

It is already clear from this figure that a supercritical Hopf-bifurcation takes
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place around Iapp ≈ 600 pA/µm2. This is even more clear when this region is
zoomed-in as has been done in Figure 3.4.

Figure 3.4: Around Iapp = 600 a supercritical Hopf-bifurcation takes place: the
focus becomes stable for increasing Iapp. Compare with Figure 3.5.

In Figure 3.5 the parameter region around H1 is focused on where it is clear
that the stable focus loses its stability for increasing values of Iapp.

Figure 3.5: Around Iapp = −1.031 a subcritical Hopf-bifurcation takes place:
the focus loses its stability for increasing Iapp. Compare with Figure 3.4.

Not only the real part of the eigenvalues should be zero at the Hopf-bifurcation
but the imaginary parts of the eigenvalues should be nonzero at the bifurcation
point. When these conditions are both satisfied the eigenvalues are purely imagi-
nary at the bifurcation point and a Hopf-bifurcation indeed occurs. In Figure 3.6
the imaginary parts of the five eigenvalues of the system at the equilibrium are
plotted. The vertical lines around Iapp = 600 pA/µm2 are caused by the lack of
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arrangement of the five eigenvalues within Matlab, and should be ignored by the
reader. It is then clear that around Iapp = 600 pA/µm2 at least two eigenvalues
are imaginary and because the real parts of these two eigenvalues become zero
at this point, the eigenvalues are purely imaginary for a specific value of Iapp.

Figure 3.6: The imaginary parts of the five eigenvalues: around the second
Hopf-bifurcation the eigenvalues are indeed not all real.

The same can be seen in Figure 3.7 for the imaginary parts of the five
eigenvalues around Iapp = −1.031 pA/µm2. The vertical lines can be ignored
for the same reasons as mentioned above. The imaginary parts of at least more
than two eigenvalues are indeed nonzero around the bifurcation value.

Figure 3.7: The imaginary parts of the eigenvalues around H1: the eigenvalues
are indeed not all real.

For the equilibrium it can be said in which regions of Iapp the equilibrium
is stable: for Iapp < H1 ≈ −1.031 pA/µm2 the focus is stable and becomes a
stable node for Iapp approximately smaller than -2.2 pA/µm2 (see Figure 3.7).
For Iapp ∈ [H1,H2] ≈ [−1.031, 600] pA/µm2 the equilibrium is unstable. Close



The GPe-neuron 87

to the two Hopf-points the equilibrium is an unstable focus (see Figure 3.6
and 3.7), but in the area in between, the equilibrium is an unstable node. For
Iapp > H2 ≈ 600 pA/µm2 a stable focus is present which becomes a stable node
around Iapp ≈ 900 pA/µm2. The area Iapp ∈ [H1,H2] in which the system
only has an unstable equilibrium is large. The gpe-neuron will therefore not be
quiescent for a large range of applied current. For a very large applied current
and for hyperpolarizing current stronger than approximately -1 pA/µm2 the
neuron is quiescent though. Because 0 ∈ [H1,H2] and a stable limit cycle is
present in this range as well, the model-neuron will indeed spontaneously spike
which agrees with experimental results for the types of gpe-neurons represented
by the model.

Bifurcations of limit cycles

In this section the limit cycles, unstable and stable, emerging from the two
Hopf-points found in the previous section will be continued by MatCont. Limit
cycle bifurcations found during the continuation process will be listed and dis-
cussed. For the possible codim-1 limit cycle bifurcations see the beginning of
Section 2.2.1. From the two global bifurcations only a saddle homoclinic orbit
bifurcation (shob) is possible. A saddle-node on invariant circle bifurcation (a
snic) is not possible due to the monotonic character of the equilibrium curve of
the gpe-model.

Unfortunately both continuation processes became unreliable in the neigh-
bourhood of the steep part of the equilibrium curve (see Figure 3.2). The stable
limit cyle, which emerges from the Hopf-point around Iapp ≈ 600 pA/µm2 re-
mains stable up to at least Iapp ≈ 0 pA/µm2 but during the continuation for
negative Iapp the multipliers of the limit cycle oscillate too much, to really trust
the result. The multiplier, which should remain 1 during the continuation, be-
gins oscillating extremely around Iapp ≈ 0 pA/µm2, even with a large decrease
in stepsize. Unfortunately a possible change in stability or disappearance of the
stable limit cycle can therefore not be known for certain.

The 1d unstable limit cycle emerging from the Hopf-point around Iapp ≈
−1.031 pA/µm2 bifurcates to a 2d unstable limit cycle at a limit point of cy-
cles (a turning point). This unstable cycle approaches the steep part of the
equilibrium curve from the opposite side than the stable limit cycle did. The
continuation of this 2d unstable limit cycle becomes unreliable close to the equi-
librium curve as well, as the multipliers of the fixed point of the Poincaré map
corresponding to the cycle, start to oscillate extremely.

The results which can be trusted will be listed here, and guesses about
possible global bifurcations will be drawn. At the end of this section limited
conclusions will be drawn on the behaviour of the model-gpe-neuron in the
different regions of the 1d Iapp-space.

continuation of H1

In Table 3.2 the limit cycle bifurcations are listed, which were found by MatCont
during the continuation of the first Hopf-point (H1 → Iapp ≈ −1.031 pA/µm2).
The first lpc is found for increasing Iapp and corresponds to the disappearance
of the limit cycle at the Hopf-point. The second is a real turning point. At
this lpc the 1d unstable limit cycle becomes 2d unstable. Mathematically
it is a nice phenomenon but physiologically the solution of the system will
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not change drastically. The neuron will still be attracted to either the stable
equilibrium present in this range (vg ≈ −66.87 mV), or the stable limit cycle
originated around Iapp = 600 pA/µm2, which is possibly still present around
Iapp ≈ 0 pA/µm2. The latter will be discussed in the next section on the
continuation of H2.

Type Iapp Period ( ms) Normal form coeff.
lpc -1.030974 36.236 0.30605
lpc -1.1698 51.64 1.659e-2

Table 3.2: The limit cycle bifurcations found during the continuation of H1.

In Figure 3.8 and 3.9 the maximum and minimum values for the membrane
potential vg are plotted for a very small region of Iapp in which the essential
events near the lpc take place. The lpc is clearly a turning point. The 2d and
1d unstable limit cycles coalesce for decreasing parameter values and disappear.

Figure 3.8: The maximum value of vg for the two unstable limit cycles around
Iapp = −1 pA/µm2.

For Iapp > −1 pA/µm2, when the limit cycle approaches the steep part of
the equilibrium curve, the results become unreliable. The difficulty during the
calculation could indicate that the limit cycle will become a homoclinic orbit
with a saddle on the equilibrium curve. This guess is strengthened by the sharp
corner in the limit cycle, which is present close to the equilibrium curve (see
Figure 3.10). This then would indicate a shob. As can be seen in Figure 3.10
the corner in the limit cycle, at which the saddle will be located, lies on the top
half of the cycle.

Figure 3.10 was plotted for Iapp ≈ −1.07 pA/µm2. This is on the left side
of the equilibrium curve. The equilibrium value for this value of Iapp therefore
lies on the stable part of the equilibrium curve, ‘below’ H1. The value of the
equilibrium is (vg, ng) = (−66.26, 0.2384). This point lies below the corner of
the limit cycle (see Figure 3.10). With a further increase in Iapp the corner
will approach this equilibrium, because the equilibrium curve is monotonically
increasing. At a certain point the equilibrium will be ‘above’ H1 and therefore
unstable. The corner will not move too much as can be seen in Figure 3.13
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Figure 3.9: The minimum value of vg for the two unstable limit cycles around
Iapp = −1 pA/µm2.

from the slow increase in maximum value of vg (the corner is at the maximum
value). My guess is that a shob will take place close to, but ‘above’, H1. The
limit cycle is then right to the steepest part of the equilibrium curve, thus for
Iapp > −1.031 pA/µm2 (H1). Further analysis needs to be done to verify this.

0.2 0.25 0.3 0.35 0.4
−74

−72

−70

−68

−66

−64

−62

−60

−58

ng

v g

Figure 3.10: The shape of the last reliable 2d limit cycle (for Iapp ≈
−1.07 pA/µm2) could indicate that the limit cycle will bifurcate into a homo-
clinic orbit: a shob.

In Figure 3.11 and 3.12 the period and frequency of the two unstable limit
cycles, circling around each other, are plotted for the same small range of Iapp.
In Figure 3.11 the curve beneath the lpc corresponds to the 1d unstable limit
cycle, which bifurcated directly from H1 and the top curve to the 2d unstable
limit cycle. The top curve is the most interesting one because the period should
tend to infinity when near the shob. Unfortunately this task has not been
succeeded yet, due to numerical errors. To be sure a shob indeed occurs, the



90 3.2 Analysis

period curve needs to be extended.

Figure 3.11: The period of the two unstable limit cycles around Iapp =
−1 pA/µm2. Beneath the lpc corresponds to the period of the 1d unstable
limit cycle and above the lpc to the 2d unstable one.

Figure 3.12: The frequency of the two unstable limit cycles around Iapp =
−1 pA/µm2. The top-curve corresponds to the frequency of the 1d unstable
limit cycle and the lower curve to the 2d unstable one.

The frequency thus decreases for both cycles and the frequency of the 2d
unstable cycle is smaller than that of the 1d unstable one. Therefore the top-
curve in Figure 3.12 corresponds to the 1d unstable cycle and the lower curve
to the 2d unstable one. With a shob the frequency should approach 0 Hz when
near the bifurcation point. The fI-curve thus needs to be extended to find out
whether such a bifurcation takes place.

continuation of H2

The Hopf-point around Iapp = 600 pA/µm2 gives rise to a stable limit cycle.
During the continuation of this cycle, no bifurcations were found. When the
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cycle, circling around the top-branch of the equilibrium curve, approaches the
more vertical part of the curve (Iapp ≈ 0 pA/µm2) MatCont has trouble contin-
uing the cycle. For negative values of Iapp the results are therefore unreliable.
This is unfortunate while this region is the most interesting one, for a possible
bifurcation of the stable limit cycle.

During the continuation only two branching points of cycle (bpc) were found.
See Table 3.3 for the values.

Number bpc Iapp Period ( ms)
bpc1 562.6 1.447
bpc2 525.4 1.522

Table 3.3: The values of the branching points of cycle.

Branching points are not bifurcation points but are points found during the
continuation process and indicate that the curve satisfying the continuation
problem intersects itself. See chapter 10 in [32] for more information.

In Figure 3.13 and 3.14 the maximum and minimum values of vg are plotted
for Iapp ∈ [0, 600] pA/µm2. The values are of the stable limit cycle emerging
for decreasing Iapp around Iapp = 600 pA/µm2. As can be seen in Figure 3.14
the curve ‘stops’ very near the steep part of the equilibrium curve. After this
point the part of the curve drawn by MatCont cannot be trusted, as the mul-
tiplier, which should stay close to 1 at all times, begins to oscillate extremely.
Unfortunately this problem is not yet solved.

Figure 3.13: The maximum value for vg of the stable limit cycle which emerges
from the Hopf-point around Iapp = 600 pA/µm2.

As for H1 a disappearance of the cycle through a shob needs to be consid-
ered. In Figure 3.15 the stable limit cycle is drawn for Iapp ≈ −0.39 pA/µm2,
and a sharp corner can be seen, at (vg, ng) ≈ (−70, 0.2). The cycle is still on the
right side of the equilibrium curve because the equilibrium values for vg and ng

when Iapp = −0.39 pA/µm2 are −63.2 mV and 0.2803 respectively located left
to the corner. For a decrease in Iapp the equilibrium will decrease as well, and
very fast due to the steep decay. For the shob to actually occur the coalescence
between the equilibrium and the cycle, needs to occur for vg > −66 mV (H1)
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Figure 3.14: The minimum value for vg of the stable limit cycle which emerges
from the Hopf-point around Iapp = 600 pA/µm2.

and therefore, due to the steepness of the equilibrium curve, has to take place
after a very short decrease in Iapp. The values of vg and ng of the corner then
also need to increase a bit. The limit cycle is then still on the right side of the
steepest part of the equilibrium curve. Whether these conditions are all met
needs to be tested but all signs point to a shob.
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Figure 3.15: The stable limit cycle for Iapp ≈ −0.39 pA/µm2. A sharp cor-
ner near the unstable equilibrium (vg, ng) = (−63.2, 0.2803) could indicate the
nearness to a shob.

In Figure 3.16 and 3.17 the period and frequency of the stable limit cycle
are plotted for Iapp ∈ [0, 600] pA/µm2. An almost linear fI-curve can be seen.
Because the period of the stable limit cycle seems to decrease exponentially for
increasing Iapp, this could as well as the sharp corner, indicate the presence of a
shob in the neighbourhood of Iapp = −1. The presence of a shob is a guess and
has not (yet) been shown by MatCont because around Iapp = −1 the output of
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MatCont became unreliable.

Figure 3.16: The period (in ms) of the stable limit cycle which emerges from
the Hopf-point around Iapp = 600 pA/µm2. The exponential decrease in period
of the cycle for increasing Iapp could indicate the presence of a shob around
Iapp = 0.

Figure 3.17: The frequency (in Hz) of the stable limit cycle which emerges from
the Hopf-point around Iapp = 600 pA/µm2. An almost linear relation between
the frequency and the applied current is present.

It is also possible that the stable limit cycle and the 2d unstable limit cycle
will meet, because both shob’s occur close to, and above, H1.

Qualitatively different parameter regions

Some guesses can be made on the model’s behaviour in the various regions,
although the two saddle homoclinic orbits are not verified yet. Assuming these
two shob’s do occur, the model-neuron will behave as in the following list.
The abbreviations correspond to the ones in Figure 3.18: H1 and H2 are the
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Hopf-points, lpc the limit point of cycles for the unstable limit cycle, shobi

the shob for the limit cycle emerging from Hi. In the figure the shob’s are
located randomly in the interval [H1, shob2] ≈ [−1.031,−0.39] pA/µm2. Only
when the neuron behaves qualitatively different this will be noted as a different
region.

SHOB 2H1 SHOB
1

I app

appI

−20

H

600 10000

LPC

2

−1.17 −1.031 −0.39

Figure 3.18: The different bifurcations for the gpe-model indicated on the pa-
rameter (Iapp) line. The shob-bifurcations are not verified yet. These bifur-
cations give rise to four, possibly three qualitatively different regions for the
model-neuron.

1. For Iapp < H1 ≈ −1.031 pA/µm2 the neuron will be quiescent due to the
presence of the stable equilibrium. For the subregion Iapp ∈ [lpc,H1] ≈
[−1.17,−1.031] pA/µm2 a 1d and a 2d unstable limit cycle are present
next to the equilibrium. A possibly slower convergence to the stable equi-
librium can be seen in this region, but the neuron will still become quies-
cent.

2. For Iapp ∈ [H1, shob2] where the location of the shob-bifurcation of the
stable limit cycle (shob2) is still uncertain, no stable state is present (right
to H1 the equilibrium is unstable and the stable limit cycle has disappeared
through shob2). This is physiologically unreasonable, meaning that this
region should be very small and the shob-bifurcation of the stable limit
cycle should be located very close to H1.

3. For Iapp ∈ [shob2,H2] (H2 corresponds to Iapp ≈ 600 pA/µm2) the neuron
will spike due to the presence of the stable limit cycle. The equilibrium is
unstable in this range.

4. For Iapp > H2 ≈ 600 pA/µm2 the neuron is quiescent due to the disap-
pearance of the stable limit cycle at the Hopf-point and the regaining of
stability by the equilibrium.

3.2.2 Simulations

This section will shortly compare some results described in Section 3.1.1 with
the same type of results for the gpe-model. As was described in the previous
section for Iapp = 0 only a stable limit cycle is present thus the gpe-neuron will
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indeed spontaneously spike. This agrees with experimental results. The char-
acteristics of the model’s spontaneous spiking behaviour will be compared with
the characteristics observed during experiments. Also the reaction of the model-
gpe-neuron to depolarizing input, represented in the fI-curve of the model, will
be compared with the one given in [28].

The equilibrium corresponding to Iapp = 0 (the resting membrane potential
rmp) is approximately vg = −62 mV. This agrees with the resting membrane
potential of vg = −59± 9 mV [29].

In Figure 3.19 and 3.20 a time diagram is shown for vg with the initial data
chosen as in Table 3.4. Figure 3.20 is a zoom-in of Figure 3.19. As can be seen
in Figure 3.19 the initial point is far away from the stable limit cycle, because
the convergence to the stable limit cycle is initially slow, and speeds up while
approaching the cycle. In Figure 3.20 two spikes from Figure 3.19 are zoomed-
in, to look at the ahp and slow depolarization phase of the spiking. The fast
ahp and slow depolarization phase are clearly present. It also seems as if the
model-gpe-neuron indeed has a phase which appears to be a slow ahp-phase.
It does not fit in the fast ahp part or in the depolarization phase. It is more a
‘constant’ phase but comes closer to a slow ahp than any of the phases of the
stn-neuron do.
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Figure 3.19: With the initial data as in Table 3.4 the neuron shows spiking
behaviour, which is spontaneous because Iapp = 0.

vg ( mV) ng hg rg [Ca]ig ( mmol) Iapp ( pA/µm2)
-60 0.8 0.1 0 0.6 0

Table 3.4: The initial data for the spontaneous spiking Figures 3.19 and 3.20.
Iapp = 0 pA/µm2 for spontaneous spiking.

Because it was claimed in [1] that for a small hyperpolarizing current (Iapp =
−0.5 pA/µm2) the gpe-neuron would show bursting behaviour, we tested this
as well and indeed, as can be seen in Figure 3.21 the GPe-neuron shows bursts
of spiking followed by a short period of quiescence. Iapp = −0.5 pA/µm2 is
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Figure 3.20: A zoom-in of Figure 3.19 to show the ahp after and the depolar-
ization phase before the action potential.

located in the region where the stable limit cycle has not yet disappeared but
which will bifurcate into a homoclinic orbit for a somewhat smaller Iapp. The
orbit therefore converges to the stable limit cycle, and during the convergence
comes close to the sharp corner, close to the equilibrium which is still stable for
Iapp = −0.5 pA/µm2. The orbit spends some time in this region (the quiescent
phase) due to the attraction to the equilibrium as well, until it is attracted to the
stable limit cycle again. The quiescent phase is at approximately vg = −70 mV
and the sharp corner is indeed located there. According to literature the gpe-
neuron is indeed able to discharge at high frequencies interrupted by pauses,
indeed after a weak hyperpolarization [12] although [30] claims the neuron only
shows this type of behaviour at rmp.

In Figure 3.22 the fI-curve from experiments [28] and the fI-curve from the
gpe-model [1] are plotted together to make a good comparison. The following
differences and agreements between the figures can be noticed:

- The firing frequency during spontaneous spiking is in the order of 50 Hz.
Because the continuation of the stable limit cycle could not be finished in
the neighbourhood of Iapp = 0 this value of 50 Hz comes from a simple
extrapolation. The real value for the frequency around Iapp = 0 can there-
fore differ from the 50 Hz. Because the frequency ranges differ between
articles (10–15 Hz [30], 2–40 Hz [28] (see left picture in Figure 3.22) and in
the order of 200 Hz [29]) the model’s spontaneous firing frequency can not
be verified. Assuming the lower frequencies from literature to be correct
the model-neuron spontaneously fires at the right frequency.

- The shape of the two curves differs. The model fI-curve does not have a
clear decreasing slope as the experimental fI-curve has. The model fI curve
remains approximately linear with a tendency to the inverse sigmoidal
shape also seen in the model fI-curve of the stn-neuron.

- The steepness of the approximately linear part of the curves (up to ap-
proximately 600 pA/µm2) differs by a large factor. The steepness of this
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Figure 3.21: For Iapp = −0.5 pA/µm2 the gpe-neuron shows bursting behaviour.

(Experiments) (Model)

Figure 3.22: The model fI-curve (right) has a 25-fold steepness compared to the
fI-curve from experiments [28] (left).

part of the curve for the experimental curve is approximately 0.07 Hz/nA
and for the model-curve it is 1.17 Hz/nA. The slope of the model fI-curve
is therefore almost 25 times too large.

These differences between the two fI-curves are based on the little infor-
mation available on gpe-neurons in general and their responses to depolariz-
ing input in particular. Therefore more experimental data is needed to really
make a good comparison between model and experiments. Unfortunately this is
the only information available at the moment. Therefore the conclusion can be
drawn that the model-neuron behaves quite well, assuming the little information
on gpe-neurons available, is correct, Only the steepness of the model fI-curve
is too large, and should be reduced. Possible model-changes can be sought in
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the parameter values of the model, the description of the model-currents and
addition of other currents to the model which are described in Section 3.1.1.

3.3 Discussion

The bifurcation analysis of the gpe-model presented in [1] showed the following:
although the two saddle homoclinic orbit bifurcations have not been verified to
really take place, and the exact location of these possible bifurcations is for now
unknown, the analysis showed that the model represents a gpe-neuron which
almost always spikes when not inhibited. In the Basal Ganglia this of course is
not the case as the gpe-neurons inhibit each other. In the small network of only
one stn- and one gpe-neuron, discussed in the next section, the gpe-neuron
is not inhibited though. For Iapp < H1 ≈ −1.031 pA/µm2 and Iapp > H2 ≈
600 pA/µm2 the model-neuron is always quiescent. The shob of the stable limit
cycle, if present, is assumed to occur close to H1 ≈ −1.031 pA/µm2, because
otherwise the system would have no stable states between H1 and this shob.
This is mathematically but not physiologically possible. By assuming this, the
system is monostable with a stable limit cycle for:

Iapp ∈ [shob2,H2] ≈ [H1,H2] ≈ [−1.031, 600] pA/µm2

The model-neuron will therefore always spike in this region, also when no current
is applied (Iapp = 0 pA/µm2). This indeed agrees with experimental results
which state the spontaneous spiking behaviour of the gpe-neuron.

When the shob’s do not take place a totally different division of the pa-
rameter line for qualitatively different regions can be made. Therefore either
these bifurcation points need to be found or ruled out as possibilities. Future
versions of MatCont might be able to locate global bifurcations as well and be
more accurate in the neighbourhood of such a bifurcation. If the shob of the
stable limit cycle occurs, a region exists where the system does not have any
stable states to which it can converge. No matter how small this region, it ex-
ists and does not agree with the physiological reality and should be adjusted. A
neuronal model should always have at least one stable solution for every value
of the parameter.

The simulations of the spontaneous spiking model-neuron showed a correct
fast ahp and slow depolarization. A ‘constant’ phase follows the fast ahp
and approximates the slow ahp in a better way than the model for the stn-
neuron does. The resting membrane potential of the model agrees with the
one measured in experiments. The fI-curve of the model is approximately lin-
ear up to 600 pA/µm2 which agrees with the fI-curve presented in [28]. For
Iapp > 600 pA/µm2 the stable limit cycle could not be continued any further.
Therefore frequencies are missing in that range. Whether the slope decreases
for larger Iapp as it does in the experimental fI-curve can therefore not be con-
cluded. The slope of the linear part of the model fI-curve is 25 times the slope
of the experimental fI-curve. Although this is the only experimental fI-curve
with which the model is compared, reducing the slope might approach reality
more.

Because little information is available on the different neurons within the
gpe, it is difficult to compare the model-behaviour with the neuronal behaviour
measured in experiments. With the limited articles available on the gpe it can be
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concluded to some extent that the model indeed represents the behaviour of the
three types of gpe-neurons described in Section 3.1.1. For future modelling of
gpe-neurons more experimental data is necessary for data-fitting of the formulae
and for comparing the behaviour of the model with experiments. Because the
model behaves quite well and the differences between model and experiments are
based on little information, no drastic changes to the gpe-model are suggested.
Besides [1] already mention in their discussion that the models for both the stn-
and gpe-neurons are simplified representations of reality. Possible reduction in
the slope of the fI-curve and a more pronounced slow ahp can be achieved by
adding currents described in Section 3.1.1 or changing descriptions of currents
present in the model now.

The final remark which can be made by looking at the bifurcation analyses
of the gpe- and stn-model, is that the gpe-model might consist of the same
type of currents as the stn-model but the differences in parameters account for
a qualitatively different behaviour of the two model-neurons.
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Chapter 4

The STN-GPe network

The previous chapters discussed the two neurons present in the stn-gpe-network
in the Basal Ganglia. In this chapter a network of only one stn- and one gpe-
neuron will be analysed thoroughly in the sections following. A schematic view
of this specific network can be seen in Figure 4.1.
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Figure 4.1: The stn- and gpe model are coupled, resulting in two extra variables

Before analysing this model-network, some results from literature will be
presented in Section 4.1. First the synaptic coupling of the two neurons in
our network is discussed by looking at the mathematical description of these
chemical synapses in articles by Destexhe et al. [33] and [34]. Mathematical
and experimental articles discuss the coupling of an excitatory to an inhibitory
neuron, and analyse these types of synaptically coupled networks by for ex-
ample looking at their ability to phase-lock, synchronize and cluster. One or
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two articles specifically discuss the stn-gpe-network and their characteristics.
By first describing and critically evaluating these results, the two-cell-model-
network can be more easily analysed. The model of the two-cell network will be
presented at the end of Section 4.1 where the variables mentioned in Figure 4.1
become clearer.

After the description of the model and its expected network behaviour, the
model-network is analysed in Section 4.2 using MatCont. Because two pa-
rameters (gG→S and gS→G) are present in the model, codim-1 and codim-2
bifurcations can occur, giving rise to interesting phase portraits in different
regions of the parameter-plane. The goal is to produce a detailed picture of
the parameter-plane, with clear bounded regions in which the neurons behave
qualitatively different. These bifurcation boundaries indicate the transition be-
tween these regions. The final emphasis lies on the physical interpretation of
this picture. What do the boundaries, regions and phase portraits imply for the
behaviour of the two neurons in the network?

The bifurcation method used in Section 4.2 to analyse this small network
in detail, can be applied to larger stn-gpe networks consisting of several stn-
and gpe-neurons. Networks as in [1] can then be analysed, using this method.
More detailed bifurcation pictures as the ones presented in [1] can then be
made. Because gpe-neurons innervate eachother (in contrary to stn-neurons)
an additional parameter gG→G, representing the conductance of the gpe-neuron
for the synaptic gpe-current, is present in these models. More difficult codim-3
analysis is therefore also possible which was not the case for this small network
consisting of only one gpe-neuron. Because the architecture of a real stn-gpe-
network is still largely unknown, the influence of different architectures on the
firing pattern of the neurons in the network can then also be tested. As can be
seen in Figure 4.1 inputs of other nuclei to the two neurons are not included
in the model-network for the moment. These might be added with substantial
effort. See [9] for an example of coupling of the cortex, thalamus and striatum
to the stn-gpe-network.

All results presented in this chapter of course only apply for the model -
network, where the models for the two neurons and the synaptic connections
are the ones presented in [1]. In Section 4.3 it is therefore discussed to what
extent the results found for the model-network can be linked to the same two-
cell-network in vitro/vivo. Of course this specific network, where all input to
the two cells is ignored, is not present in vivo. It could give us some insight on
the behaviour of larger networks of stn- and gpe-neurons.

4.1 Literature

This section will present relevant results from experiments and computational
studies for small networks of excitatory and inhibitory neurons in general and the
stn-gpe network in particular. Experiments for this type of two-cell network are
of course not present and computational studies also often want to simulate more
realistic and larger networks of stn- and gpe-neurons. Relevant results from
literature for this small network are the results for the tightly and reciprocally
connected (although larger) networks of excitatory and inhibitory neurons.
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4.1.1 Computational and experimental results

In contrast to the gpe- and stn-neuron, there are results from computational
studies of stn-gpe-networks and many mathematicians have tried to describe
the behaviour of a network of inhibitory and excitatory neurons in general [35,
36, 37, 38]. Therefore not only relevant experimental results for our two-cell
network are listed but also computational results. In Appendix D general con-
cepts often used in articles on neurodynamics are explained and mathematical
results on the transformation of a hh-model to a pulse-coupled model (reveal-
ing more on the dynamics of the phases of the neurons) are described. Because
such a transformation unfortunately does not exist for our network (the network
should only consist of class I excitable neurons), the still interesting results can
be found in the appendix instead of here.

Computational results

This section will describe some computational results for specifically the stn-
gpe-network. In [1] the results are presented from simulations of larger stn-gpe-
networks using the models presented in this report. The ‘tightly reciprocally
connected network’ has the most similarities with the two-cell network which will
be analysed in the next section. The two cells are also reciprocally connected.
The results for this ‘tight’ network presented in [1] will be shortly listed to get
an idea on the possible behaviour of the two-cell network.

The results for the tightly connected network are all graphically presented in
Figure 4.2. The differences between our small network-model and their (larger)
network model are:

1. The conductance for the synaptic current between the gpe-neurons, gG→G,
is varied in [1] while in our network with one gpe-neuron and thus no
inhibition by others, gG→G is set to 0 nS/µm2 corresponding to the x-axis
in Figure 4.2.

2. An applied current Iapp is also included in the gpe-models of the network.
Iapp is an applied current which simulates the inhibiting influence of the
striatum on the gpe-neuron and thus on the network. The aim of this
research does not lie on the investigation of the influence of the striatum
on the behaviour of the stn-gpe-network as was a part of the aim in [1].
For this reason Iapp = 0 pA/µm2 in our model (no input from the striatum)
but is −1.2 pA/µm2 in the results presented below.

3. In [1] gG→S = 1.0 nS/µm2 for all simulations while in our network it is
one of the two bifurcation parameters. The other one is gS→G and is also
a varying parameter in [1].

The results are (following the x-axis in Figure 4.2 from left to right):

- When gS→G is small the neurons hardly influence each other and the
stn-neuron shows its slow pacemaker activity.

- When gS→G is somewhat larger, episodic pattern firing can be seen. Every
cell spikes repetitively, separated by periods of silence. These episodes are
repeated at frequencies of 1–2 Hz. There may be little synchrony between
individual spikes generated by different cells [39].

- When gS→G is above a certain boundary, the continuous mode sets in:
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Figure 4.2: Results from [1] for a tightly connected network. gG→S =
1.0 nS/µm2 and Iapp = 1.2 pA/µm2. gS→G and gG→G are varied. The x-axis
(gG→G = 0 nS/µm2) corresponds to our network: the absence of other gpe-input
to our one gpe-neuron.

the stn- and gpe-cell spike tonically. With further increase in gS→G the
frequency increases to approximately 25Hz.

The maximal conductance for the synaptic current flowing through the gabaA-
receptor channels (gG→S) is assumed to be in the range of 500 pS per synapse [40],
which is approximately 0.5 nS/µm2. The fixed value of 1.0 nS/µm2 for gG→S

in [1] seems quite correct, knowing that the 500 pS is an approximate value. For
all maximal synaptic conductances beside the gabaA- and gabaB-gated synap-
tic currents, the maximal conductances are often set to 200 pS per synapse [40],
thus also for glutamate-gated synaptic currents. The range of variation for
gS→G ∈ [0.005, 0.03] nS/µm2 therefore seems justified.

Because the maximal conductances are all far more smaller than 1, these
gG→S and gS→G play the role of ε in the weakly connected networks (see previous
section) and then the stn-gpe-network is indeed a weakly connected network
as it should be (see Appendix D for the definition of weakly coupled networks).

Some other results for the stn-gpe-network [39] are:

- Clustered patterns are shown when clusters of cells synchronize. With a
tight network, clustered patterns are unlikely to occur.

- In a network of one stn- and one gpe-neuron the neurons can trigger
each other to burst by their spontaneous spiking behaviour. This bursting
behaviour stops due to the activation of the outward current IAHP in the
gpe-neuron, which becomes activated due to the calcium build-up with
each additional spike. Due to this outward current, on a certain moment
the gpe-neuron will not be able to respond to a spike of the stn-neuron
and the gpe-neuron will terminate its spiking behaviour. The stn-neuron
will fire one rebound burst as a response to the last gpe-spike and stops
firing as well.
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- The time duration between the events (such as bursts or spikes) is deter-
mined by the IAHP in stn-neurons. The calcium build-up in these neurons
is fast due to the rapid firing of action potentials. When the event then
terminates, a prolonged ahp can be seen in the stn-cell due to IAHP .
After this prolonged ahp regular spiking returns and a new event can be
initiated.

- The time duration of an event is dependent on:
1. The calcium build-up rate in gpe-neurons. The higher this rate the

faster IAHP is activated and makes the gpe-neuron quiescent. This
build-up rate depends on the synaptic connectivity strength gS→G.

2. The duration of rapid spiking of stn-neurons, which is dependent on
the inactivation rate of IT .

When larger networks of stn- and gpe-cells are modelled in the future it
becomes more difficult to choose which neurons to connect with each other.
This architecture of connections within the stn-gpe-network is still uncertain.
For this reason various architectures have been tested in [1] to investigate their
influence on the network firing behaviour. There has been some evidence that
different parts of the network might oscillate separately from each other (some
in-phase some out-of-phase for example) [39]. When random connections are
present between the cells (no structured arrangement), efficient spreading of
activity through the network occurs. In Figure 4.3 from [39] the influence of
the strength of the connections between the different nuclei on the level of syn-
chrony is indicated. A moderate connection strength between the gpe-neurons
and strong connections between the other nuclei seems to promote synchronous
firing of the stn- and gpe-neurons, whereas the strength of the connection
strong between the gpe-neurons and moderate between the other nuclei pro-
motes asynchronous solutions [39].

Figure 4.3: The strength of the connection between the gpe-neurons seems to
have a large influence on the level of synchrony between the two nuclei and
within the nuclei [39].

As has been shown in [5] the possible cause of the tremor frequency present
in pd-patients, could lie in the stn-gpe-network which is able to generate syn-
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chronized bursts which are modulated by striatal inhibition. Many of the com-
putational studies done on the stn-gpe-network, from which two have been de-
scribed here, have been aimed on finding the origin of the synchronized bursting
behaviour in this network. There are indications that the origins can be found
in the intrinsic properties of the network itself, but new sounds are heard that
the cortical (external) rhythmic input to the network might influence the tremor
frequency [4]. In a dopamine-depleted state the stn- and gpe seem to be more
sensitive to the cortical rhythm of approximately 1Hz [4].

Experimental results

The following results on bursting behaviour (possibly synchronized) of the stn-
gpe-network, come from experimental studies with preparations of stn- and
gpe-neurons in vitro (and sometimes in vivo) where the connections between
the two nuclei are kept intact:

- The stn and gpe form a central pacemaker generator (cpg) which is a
feedback system which can be active without external input. The stn-
gpe-network is modulated by striatal inhibition which is directed at the
gpe [5]. Both nuclei can burst synchronically at low frequencies of 0.4 Hz,
0.8 Hz and 1.8 Hz [5]. Some of these frequencies correlate with the tremor
frequency according to [5]. These frequencies are lower than observed
in conscious patients with pd [4]. It states that higher frequencies are
assumed to be present in vivo [4]. It is clear that the synchronized be-
haviour of the network has been acknowledged to be possible, but the
various characteristics of the synchronized firing are still uncertain.
The network behaves differently in normal and Parkinsonian states:

1. In normal/healthy states the information is processed by the stn and
gpe using complex spatiotemporal patterns of firing [4]. These same
uncorrelated patterns can be seen in the output nuclei of the Basal
Ganglia.

2. In Parkinsonian states the stn and gpe show more correlated, syn-
chronous and rhythmic patterns of activity [4], which can again be
seen in the Basal Ganglia output nuclei as well. Because correlated
activity is possibly a less efficient coding mechanism of the Basal
Ganglia, the symptoms of pd can partly be explained [1]. The cor-
related rhythmic bursts have frequencies in two ranges: 4–10 Hz and
15–30 Hz. The correlation between the nuclei can be seen in a wide
spectrum of phase relations which exist between and within the nu-
clei.

- The gpe is crucial for the generation of synchronized bursting in the net-
work. Input of gpe-neurons to stn-neurons is primarily responsible for the
temporal organization of stn-activity. It hardly influences the frequency
of firing of stn-neurons [5].

- Oscillatory bursts are less often encountered in the gpe than in the stn
and the strength of bursting of gpe-units is less than that of stn-units [5].

The firing of gpe-neurons has a large influence on the timing of firing of the
innervated stn-neurons and thus on the phase of the oscillation [4, 18]:
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- The principal permeant ion of the gabaA-receptor is chloride Cl−. The
equilibrium potential of this gabaA-current is therefore approximately -
80 mV. Due to this relatively low equilibrium potential several ipsps can
lower the stn membrane potential by 10–20 mV under the lowest possible
membrane potential a stn-neuron can reach during spontaneous spiking.

- Small ipsps do not change the interspike interval of stn-neurons sig-
nificantly, regardless of the phase at which the ipsp is evoked. Phase-
independent delays in firing can therefore be the result, which can lead to
desynchronization.

- As the magnitude of the ipsp increases, the effectiveness in prolonging the
interspike interval is related more strongly to the phase of the oscillation
at which the ipsp occurs, than to. Thus large ipsps reset the oscillatory
cycle and are likely to lead to synchronization.

- The effect of multiple ipsps is that they can produce a sufficient hyperpo-
larization to activate a rebound depolarization in the stn-neuron which
can restore rhythmic spiking, reduce or prevent action potential genera-
tion and/or can generate a burst of activity. The pattern and rate of ipsps
stipulates the response in the stn-neuron.

4.1.2 The two-cell model

Because both the stn- and gpe-neuron have been described in detail in the
previous chapter, only the synaptic coupling of both neurons in the two-cell
network needs to be discussed. First the different models which can be used
for synaptic coupling in networks are described and discussed. Then the chosen
model for the synaptic connection in the stn-gpe-network in [1], and used for
our analysis, is compared with the just described models in literature. At the
end of this section the two-cell network model consisting of 12 odes is presented.

The synaptic connection in literature

This section will discuss and verify the model equations chosen in [1] for the two
synaptic currents IG→S and IS→G and the corresponding ode’s for the fractions
of open channels sG→S and sS→G.

As has been described in Section 1.1.1 and graphically shown in Figure 1.4a
presynaptic neuron (for the stn-neuron this is the gpe-neuron and vice versa)
projects to a postsynaptic neuron (the ‘receiving’ neuron). An action poten-
tial in the presynaptic cell causes the cell to release certain neurotransmitter
molecules (the stn-neuron releases glutamate (excitatory) and the gpe-neuron
gabaA (inhibitory)) in the synaptic cleft. These molecules bind to receptor
channels for this neurotransmitter in the membrane of the postsynaptic cell. A
fraction of these receptor channels open and dependent on the neurotransmitter
and type of channel an epsp or ipsp is generated in the postsynaptic cell. But
how to model the relation between the action potential in the presynaptic cell
and the gating of the receptor channels in the postsynaptic cell?

Destexhe et al. have written various articles on, among other subjects, mod-
elling synaptic currents and other gating kinetics of neurons. The following
information is deduced from [33] and [34] on kinetic models of synaptic trans-
mission. The results are for one axon of the presynaptic neuron projection on a
certain location on the postsynaptic cell (see Figure 4.4), where a high concen-
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tration of receptor channels is availale. The model by Terman et al. can be used
for several gpe-neurons projecting to one stn-neuron and vice versa. Therefore
the results presented here need to be extended to the general case. This will be
done in the next section.

Figure 4.4: The presynaptic neuron fires an action potential, releases neuro-
transmitter in the synaptic cleft (between end axon presynaptic cell and soma
postsynaptic cell), which binds to the receptor channels in the membrane of the
postsynaptic cell. This triggers a postsynaptic potential.

Often the synaptic conductance gsyn is modelled as a waveform which varies
in time and is dependent on the frequency of presynaptic release events. The
most common one is the α-function:

gsyn(t) =
t− t0

τ
exp[−(t− t0)/τ ], for t ≥ t0

Here t0 is the time of transmitter release and τ is a certain time constant. With
multiple events at the presynaptic synapse the total conductance at a certain
time instant is the sum of these individual waveforms. There are several disad-
vantages to this approach of the synaptic current such as inaccuracy, inefficiency
of the calculation and the absence of a representation of saturation of the con-
ductance. A kinetic model is the more logical approach to the synaptic current,
but needs numerical integration which is computationally expensive. [34] shows
some reasonable biophysical assumptions which results in a strongly reduced
kinetic model which can be solved analytically and is still very accurate. Satu-
ration of synaptic conductance is also taken into account.

When R is the postsynaptic receptor channel to which the neurotransmitter
has not yet bounded. If T are the neurotransmitter molecules released by a
presynaptic terminal after the arrival of an action potential, and TR is the
bounded version of the receptor channel. This then is a two-state ligand-gated
channel with the two states the open (bound) and closed (unbound) state. The
reaction is given by:

R + T
α
!
β

TR

α and β are the forward and backward rate constants for transmitter binding
which can be seen as the transition probability (as in Markovian systems) from
state R to state TR and vice versa [33].

When s is the fraction of the receptors which are bound, due to the release
of the neurotransmitter molecules by the presynaptic neuron the change in time
of this fraction is given by (4.1)

ds

dt
= α[T ](1− s)− βs (4.1)

With [T ] the concentration in the synaptic cleft of the neurotransmitter released
by the presynaptic neuron. There is evidence that d[T ]

dt = ∞ during the rising



The STN-GPe network 109

phase, after the release of the neurotransmitter molecules in the synaptic cleft
by the presynaptic neuron. Also d[T ]

dt = −∞ during the binding of the molecules
to the receptor channels at the postsynaptic cell and due to the fast clearance
mechanism by the presynaptic cell after release. Because the rise and fall of [T ]
seems to be extremely fast, [T ] is assumed to change as a block pulse in time.
In this case (4.1) can be solved analytically:

During a pulse (t0 < t < t1), [T ] is at its maximum value Tmax. Then the
solution to (4.1) is given by (4.2):

s(t− t0) = s∞ + (s(t0)− s∞) exp[−(t− t0)/τs] (4.2)

With the equilibrium value (t→∞):

s∞ =
α Tmax

α Tmax + β
(4.3)

And the time constant τs given by:

τs =
1

α Tmax + β

Directly after a pulse (t > t1), due to the assumption that the fall of the
concentration is infinitely fast, [T ] = 0 and the solution to (4.1) is almost trivial:

s(t− t1) = s(t1) exp[−β(t− t1)] (4.4)

Assuming that binding of the neurotransmitter directly gates the opening of
the associated receptor channel, then the total conductance through all receptor
channels of the synapse is sgsyn. When only one presynaptic neuron of a specific
type adds to the synaptic current Isyn(t) in the postsynaptic cell, the formula
for Isyn(t) is then given by (4.5).

Isyn(t) = gsyn (Vsyn(t)− Esyn) s(t) (4.5)

With Vsyn(t) the postsynaptic membrane potential and Esyn the synaptic equi-
librium potential. Saturation of the response of the postsynaptic cell is imple-
mented in this model when s → 1 (all channels reach the open state). In the
next section it is shown that the kinetic model developed by Destexhe et al. in
1994 is used in the model [1] for the synaptic connections between the stn- and
gpe-neuron.

The model synaptic connection

The previous section discussed some accurate and computationally efficient re-
sults for the modelling of the relation between the membrane potential of one
presynaptic cell and the gating of the receptor channels in the part of the mem-
brane of the postsynaptic cell, to which the presynaptic cell projects. These
results have been used in model [1] as well, but are generalized for larger net-
works of stn- and gpe-neurons. Let’s take the model for the stn-neuron as an
example (the results are analogues for the gpe-neuron). The time course of the
stn-model is given by:

Cm
dvs

dt
= −IL − IK − INa − IT − ICa − IAHP − IG→S
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With IG→S the total synaptic current from all gpe-neurons projecting to this
particular stn-neuron. Although the stn-neuron is modelled as a single-compartment
and not many synapses can therefore end on this ‘point’-neuron, the physiologi-
cal reality is that many synapses of gpe-neurons can end on a stn-neuron. This
IG→S thus consists of the sum of the n individual synaptic currents through the
stn-membrane, due to the release of neurotransmitter by the n different gpe-
neurons. In equation form this becomes (4.6).

IG→S = IG1→S + IG2→S + IG3→S + . . . + IGn→S (4.6)

Because every IGi→S (for i = 1 . . . n) is given by (4.5), with appropriately
renamed parameters, (4.6) becomes (4.7).

IG→S(t) =
[
gG→S

(
vs(t)− vG→S

)
sG1→S(t)

]
+

[
gG→S

(
vs(t)− vG→S

)
sG2→S(t)

]

+ . . . +
[
gG→S

(
vs(t)− vG→S

)
sGn→S(t)

]

=
[
gG→S

(
vs(t)− vG→S

) ∑

i

sGi→S(t)
]

(4.7)

The reason that only sGi→S(t) is dependent on the index i is because the
gpe-neurons are assumed to be identical. This causes the maximal conductance
gsyn = gG→S and the synaptic reversal potential Esyn = vG→S = −85 mV
to be constant for every gpe-neuron with index i. Beside this assumption,
the postsynaptic membrane potential Vsyn(t) = vs(t) is assumed the same for
every presynaptic gpe-neuron i, which is a reasonable assumption when the
stn-neuron is modelled as a single compartment. When multi compartments
would have been used the postsynaptic membrane potential would have varied
between the different compartments and vs(t) could not have been independent
of the index i. The fraction of open receptor channels sGi→S(t) at synapse
i corresponding to gpe-neuron i, on time t, differs between the various gpe-
neurons because the chance that vgi(t) = vgj (t) for i #= j on time t is very small.
Because vgi(t) on time t influences sGi→S(t) directly, sGi→S(t) #= sGj→S(t) for
i #= j on time t as well.

(4.7) is indeed chosen for the synaptic current IG→S for the stn-neuron. In
the following, α and β are the forward and backward rate constant for trans-
mitter binding (see previous section). θg is the ‘threshold’ above which the gpe
membrane potentials vgi must rise before they release neurotransmitter and can
influence the postsynaptic membrane potential vs by generating an ipsp in the
stn-neuron. θg is taken as a constant and equal for all gpe-neurons projecting
to this stn-neuron. H(v) is the heaviside function, which is defined as:

H(v) =
{

0 if v < 0
1 if v ≥ 0

The dynamics of sGi→S(t), the fraction of open receptor channels at the
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location at which gpe-neuron i projects, is then given by (4.8).
dsGi→S

dt
= αH(vgi − θg)(1− sGi→S)− βsGi→S

=
{
−βsGi→S if vgi < θg

α(1− sGi→S)− βsGi→S if vgi ≥ θg

(4.8)

Equation (4.1) from [34] is indeed used in [1]. There are two differences
between (4.8) and (4.1):

1. The concentration of neurotransmitter in the synaptic cleft is called [T ]
in (4.1) and for this case is [gabaA]. The dynamics of [gabaA] are as-
sumed to behave according to a pulse (see previous section), and thus only
the values 0 and gabaAmax , are assigned to [gabaA]. Looking at (4.8)
this gabaAmax is apparently normalized to 1 in [1].

2. The heaviside function in (4.8) can not be used for computational purposes
due to the infinitely large derivative of H at vgj = θg. Therefore the
Heaviside function H(v) is approximated in [1] by H∞(v) and is given by:

H∞(v) =
1

1 + exp
[
−

(
v − θH

g

)
/σH

g

]

This is the same type of function as is taken for the steady state voltage
dependence for the gating variables in the models. θH

g is the half-activation
voltage and σH

g is the slope factor. Together they determine the speed in
which H∞(v) steps from 0 to 1, which is less than ∞ as was the speed for
H(v). Because of this finite speed, we are able to actually use the stn-
and gpe-models in numerical programs as Matlab.

The solutions to the two ode’s (4.8) were already given in the previous sec-
tion. (4.2) is the solution to the firstode, when vgi > θg, gpe-neuron i releases
neurotransmitter in the synaptic cleft and [gabaA]→ gabaAmax = 1 infinitely
fast (replace Tmax by 1 in (4.2)). The equilibrium value for sGi→S when the
concentration neurotransmitter remains maximal for a time period t→∞. This
equilibrium value is given by (4.3) and is in this normalized case:

(sGi→S)∞ =
α

α + β

The solution to the second ode is given by (4.4) when vgi < θg, gpe-neuron i
stops releasing neurotransmitter and the concentration of neurotransmitter in
the synaptic cleft drops to 0 infinitely fast.

Analogues to the above the synaptic current from the presynaptic stn-
neurons to the postsynaptic gpe-neurons, IS→G, is given by:

IS→G =
[
gS→G

(
vg(t)− vS→G

) ∑

j

sSj→G(t)
]

vS→G = 0 mV and the dynamics of the fraction of open receptor channels
in the gpe-membrane at the location where stn-neuron j projects, is given
by (4.9):

dsSj→G

dt
= αH(vsj − θg)(1− sSj→G)− βsSj→G

=
{
−βsSj→G if vsj < θs

α(1− sSj→G)− βsSj→G if vsj ≥ θs

(4.9)
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The values for α, β, θg, θH
g and σH

g are different for both neuron-models.
In the chapter on the stn-neuron and the section on the gpe-neuron the

synaptic currents IG→S and IS→G were replaced by an applied current Iapp,
which became the parameter for the codim-1 bifurcation analysis. For this
network the two synaptic conductances gG→S and gS→G, which are largely un-
known in literature, will be taken as the parameters for the codim-2 bifurcation
analysis in Section 4.2.

In the following section, results from literature on behaviour of networks
of excitatory and inhibitory neurons will be listed. This is done to list the
possible reactions of the two neurons to the synaptic coupling. Phase-locking,
synchronization and other common network phenomena are explained as well.
The results come from a variety of studies, experimental and computational.
Because less is known for the stn-gpe network behaviour, a good comparison
between the network behaviour shown in experiments and the model-network-
behaviour is unfortunately very difficult.

The total model

Adding the synaptic connection to the models of the two cells gives the total
two-cell model (4.10) where the subscripts κ and ζ are elements of {s, g}, and
κ #= ζ holds. It is a coupled system due to the two synaptic currents. The
formulae of the currents are given in (4.11). When no κ or ζ-subscript hangs
under a constant, it has the same value for both neurons. See Appendix A for
the values of all constants.

Cm
dvκ

dt
= −ILκ − IKκ − INaκ − ITκ − ICaκ − IAHPκ − Iζ→κ (4.10)

ILκ = gLκ(vκ − vLκ) (4.11a)

IKκ = gKκn4
κ(vκ − vK) (4.11b)

INaκ = gNaκm3
∞κ

(vκ)hκ(vκ − vNa) (4.11c)

ICaκ = gCaκs2
∞κ

(vκ)(vκ − vCaκ) (4.11d)

IAHPκ = gAHPκ(vκ − vK)
[Ca]iκ

[Ca]iκ + k1κ

(4.11e)

(4.11f)

The low-threshold T-current differs between the two cells. For the stn-
neuron the following description holds:

ITs = gTsa
3
∞s

(vs)b2
∞s

(rs)(vs − vCas)

With b∞s(rs) is an inactivation ‘function’ of the inactivation variable rs.
For the gpe-neuron the following more simple formula for IT is given:

ITg = gTga3
∞g

(vg)rg(vg − vCag )

The synaptic currents are given by (κ and ζ still in {s, g}):

Iκ→ζ = gκ→ζ(vζ − vκ→ζ)
∑

j

sκj→ζ
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(4.10) defines two odes. For the six gating variables nκ, hκ and rκ the ode
is given by (X ∈ {n, h, r}):

dXκ

dt
= φXκ

X∞κ(vκ)−Xκ

τXκ(vκ)

With X∞κ(vκ) the steady-state (in) activation function.
For the internal calcium concentration two additional odes are given:

[Ca]′iκ
= εκ (−ICaκ − ITκ − kCaκ [Ca]iκ)

Due to the synaptic coupling two extra (synaptic) variables, and thus two
extra odes are added to this model.

dsκj→ζ

dt
= αζH(vκj − θζ)(1− sκj→ζ)− βsκj→ζ

In total the system consists of 12 variables (and thus 12 odes) and 2 con-
ductances as parameters. The system is thus R12 × R2-dimensional.

4.2 Analysis

This section is devoted to the analysis of (4.10) by looking at its equilibrium
bifurcation analysis in Section 4.2.1 and by plotting the time diagrams of vs and
vg in different physiologically reasonable regions of the parameter plane. The
equilibrium bifurcation analysis of this small network differs from the codim-
1 bifurcation analyses for the stn- and gpe-neuron in the previous chapters.
Because two parameters instead of one are present in the two-cell model (4.10),
Hopf- and fold-curves, instead of these bifurcation points, can be drawn in the
parameter plane. Codim-2 bifurcation points can then be found on these curves.
In chapter 8 of [32] the detailed definition and characteristics of these two types
of curves and codim-2 bifurcation points can be found. For easy reference the
possible codim-2 bifurcations are listed in Appendix C.2 as well, with the curve
on which they can be encountered. The qualitative characteristics are mentioned
as well.

In the following section the equilibrium bifurcations of the system are con-
tinued in the two parameters gS→G and gG→S of the system using MatCont.
Fold- and Hopf-curves divide the 2d parameter space in different regions, which
will be shown in a figure. The codim-2 bifurcations found by MatCont along
the curves are shown as well and the coordinate and coefficient values of the
point will be listed in a table. The stability of the equilibrium in the various
regions is also indicated.

Because only the equilibrium of the system is analysed, possible bifurcations
of the limit cycles which emerge from the Hopf curves, can not be seen from this
figure. In addition, curves often ‘emerge’ from codim-2 bifurcation points which
can divide parameter space in even more regions. These are often curves at
which limit cycles also bifurcate. The figure presented in the next section thus
gives a limited view into the behaviour of the network. The bifurcation analysis
of the equilibria of the two-cell network, is just the beginning of a detailed
analysis of this small network, and indirectly thus for a larger network. Such
a detailed analysis with equilibrium and limit cycle bifurcations, as was done
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for the gpe- and stn-neuron in the previous chapters, can give us a detailed
division of, in this case, 2d parameter space. In the different regions it can be
predicted how the network will behave. This can unfortunately not be done
with an equilibrium analysis alone.

For only one parameter the total analysis is much easier than for two. This
has various reasons. When the curves emerging from the codim-2 bifurcation
points of equilibria are drawn as well as the codim-2 limit cycle bifurcation
curves (for which a lot is unknown according to chapter 9 in [32]) it will be
a chaotic picture with a large number of regions. Complex solutions to the
system will bifurcate at these various boundaries. Because of the incomplete
descriptions of the codim-2 limit cycle bifurcations, the difficulty in drawing the
curves from the generalized- and double-Hopf points with MatCont, and due to
the limited time left available for this msc-project, the addition of these curves
to the equilibrium bifurcation figure, will be added to the recommendation list
at the end of the analysis-section.

For larger networks the same method for finding the equilibrium bifurca-
tions can be used, but an extra parameter gG→G is added to the system when
additional gpe-neurons are included in the network. Beside the codim-2 anal-
ysis described in this section, codim-3 analysis is then also possible, and more
complicated as well. As was done in [1] one parameter can then be fixed to a
certain value to keep it a codim-2 analysis.

In Section 4.2.2 time diagrams of the two membrane potentials vg and vs

can already give an idea on the behaviour of the two neurons in the network
although the parameter plane have not been divided accurately enough. The
two time diagrams will be plotted together to see the dynamics of their phase
difference |φGPe − φSTN | as well. In Section 4.2.2 some results from literature
described in 4.1.1 will be checked for this small network.

4.2.1 Equilibrium bifurcation analysis

This section describes the different bifurcations the equilibria of the two-cell
system (4.10) undergo for different combinations of the two parameters in a
physiologically relevant region of the parameter plane. The limit cycles which
emerge from the many Hopf-points are not followed, and their presence or sta-
bility in the parameter plane is therefore unknown. Of course guesses can be
made about the presence and stability of the emerged limit cycle in the close sur-
roundings of the Hopf-curve. There may be many limit cycle bifurcation curves,
emerging from the various codim-2 equilibrium bifurcation points (as the gh-
points), present in the parameter plane in addition to the equilibrium bifurcation
curves. Simulations in the relevant regions, shown in the next section, might
give some insight on the presence of the stable limit cycles. A thorough limit
cycle bifurcation analysis is therefore necessary to give a detailed picture of the
parameter plane with the various regions in which the two-cell system behaves
qualitatively different from the other regions.

In Figure 4.5 the 2d parameter space is divided into various regions by five
Hopf-curves and one fold-curve. This figure will be discussed very shortly as
the ranges taken for both conductance parameters gG→S and gS→G are physi-
ologically not very interesting. Conductances are always positive thus only the
first quadrant of the plane is useful to us. Beside this the values for the conduc-
tances are relatively small (in nS/µm2). Later this physiologically reasonable
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region will be analysed further.

Figure 4.5: A large (physiologically unreasonable) region of the parameter plane
is shown with 5 Hopf-curves and one fold-curve, dividing the plane in various
regions. The number of equilibria is indicated in these regions with their sta-
bility. The region in which three equilibria coexist is larger than can be shown
here.

As can be seen a stable equilibrium is only present for very negative values
of gG→S and positive values of gS→G. If negative values for conductances would
have been possible, and no stable limit cycles are present in this region, the
stn- and gpe-neuron will be quiescent in this region independent on the chosen
initial data for the twelve variables. In the figure it is indicated that only in
the region in the lower right corner (the region does not stop at the nearest
boundaries of the region) more than one equilibrium is present. In all other
regions only one equilibrium of the system exists and its stability is indicated
in the various region.

Looking at Figure 4.5 it is clear that around gS→G = 0nS/µm2 and gG→S ∈
[10, 60] nS/µm2 many bifurcation curves come together and it can not be seen
quite clearly how these curves are located relative to each other. A close-up of
the fourth quadrant of Figure 4.5 is therefore shown in Figure 4.6. There are
three curves (curves 1 and 3 are Hopf curves and curve 2 is a fold curve) very
close to one another with their tails (downward) almost on top of each other.
Number 4 is an almost straight Hopf-curve.

The red dots with a 2-letter abbreviations indicated in Figure 4.5 and 4.6
represent codim-2 bifurcation points. A gh indicates a generalized-Hopf/Bautin
point, a hh a double-Hopf point and a cp a cusp-point (see Appendix C.2 for
more details on these bifurcations). The values of the potentials, parameters,
and possible frequency are listed in Table 4.1. The coefficients of the points,
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Figure 4.6: A zoom-in of a part of the fourth quadrant of Figure 4.5. Curves 1,
3 and 4 are Hopf curves and curve 2 is a fold curve. Curves 1, 2 and 3 overlap
on the vertical downward parts of their curves.

which define their types are listed in Table 4.2.

Type vs ( mV) vg ( mV) gG→S ( nS/µm2) gS→G ( nS/µm2) ω2

gh1 -40.186 -30.518 2.536 15.066 19.693
gh2 -56.083 -61.956 28.384 0.000 0.000
gh3 -49.709 -53.179 19.926 3.491 0.000
gh4 -54.280 -66.921 55.023 -3.996 0.071
gh5 -56.376 -63.420 34.438 -4.668 0.052
hh1 -27.194 -30.496 -34.922 12.717 20.668
cp1 -53.052 -59.000 23.524 2.955 -

Table 4.1: On the Hopf-curves five gh-bifurcations and one hh-bifurcation was
found. On the fold-curve a cp-bifurcation was detected. The coefficients are
listed in Table 4.2

The double-Hopf point is mathematically very interesting but is present in
a nonphysiological region. For the interested mathematicians, the type of the
hh is a type V of the difficult cases (p11p22 = −1) because θ < 0, δ < 0 and
θδ = 0.9705 < 1. See Section 8.6 in [32] for the parametric portraits of this nice
codim-2 bifurcation type.

The fold-curve will now be looked at more thoroughly because it bounds a
region in which three equilibria coexist. Outside this region only one equilibrium
of the system is present. On the two boundaries, divided by the cusp bifurcation
point, two equilibria coalesce and then disappear. These equilibria are different
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Type Coefficient Value
gh1 l2 -3.147e-3
gh2 l2 -68.484
gh3 l2 -7.919e-5
gh4 l2 -1.193e-3
gh5 l2 0.194
hh1 p11p22 -1

θ -0.1043
δ -9.305
Θ 9.272
∆ -7030

cp1 c 2.666e-5

Table 4.2: The coefficients of the codim-2 equilibrium bifurcations listed in
Table 4.1

for both boundaries. In Figure 4.7 only the fold-curve is drawn in the same
lower right corner as in Figure 4.6.

Figure 4.7: The lower right corner of Figure 4.5 with only the fold-curve is
drawn. A cusp-bifurcation point (indicated with cp) separates the two fold
curves on which different equilibria coalesce and disappear.

To indicate what exactly happens at the fold-curve and at the cusp-point our
semicubic parabola from Figure 4.7 is scetched in Figure 4.8 (in the middle of
the figure). In the squares the situation in the different regions is schematically
presented on the equilibrium curve. For our system we of course have an equi-
librium surface but projecting this on, in this case, the plane {gG→S = 0} (see
x- and y-axis within the squares) shows the projection curve of the equilibrium
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surface. The equilibrium surface and thus also equilibrium projection is clearly
folded in this region which is the reason for the presence of the fold-curve.

Figure 4.8: A schematic presentation of the influence of the fold-curve and cusp
bifurcation point on the equilibria of the two-cell system.

For parameter values within the wedge (region 1a and 1b) three equilibria are
present. When only moving vertically downward (gS→G ↓ while gG→S remains
constant) from region 1a to 2a, equilibrium 1 and 2 coalesce at T2 and only
equilibrium 3 persists in region 2a. The same happens for equilibrium 2 and 3
which coalesce at T1 when moving ‘downward’ from region 1b to region 2b. Only
equilibrium 1 persists in region 2b. Remember Figure 4.8 only gives a scetch
of the situation because in reality the folded equilibrium surface (and thus also
the projection curve) changes shape when moving in the parameter plane. In
Figure 4.8 this shape is drawn the same in every region, causing trouble for the
interpretation at the cusp point. The equilibrium curve becomes more ‘compact’
within the wedge for decreasing values of gS→G (nearer to the cusp-point). This
means that the two fold points approach each other (as indeed can be seen in
the decreasing distance between the branches T1 and T2. At the cusp-point the
distance between the fold-points is zero, meaning that the three equilibria collide
when crossing the fold-curve at exactly the cusp point and that only one persists
in region 2. Because outside the wedge the equilibrium surface becomes more
compact as well for decreasing gS→G, the initially different equilibria in regions
2a and 2b, become the same one after the total ‘stretch-out’ of the equilibrium-
surface for gS→G below the cusp-point. Although in this explanation the two
fold curves were crossed for a constant value of gG→S this is not necessary to
notice the phenomena described here.

In Figure 4.9 the parameter plane for positive conductances is drawn. Part
of two Hopf-curves and part of the fold-curve are present in this region. Three
generalized Hopf-points and the cusp-point are present as well. Four of the five
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regions in which the system will be simulated are indicated in Figure 4.9. The
small fifth one (indicated by R.5) can be seen in a close-up in Figure 4.10.

Figure 4.9: The part of the parameter plane which is physiologically relevant
consists of parts of two Hopf-curves and the fold curve. Three generalized Hopf-
points and the cusp point are present. Four regions in which the system will
be simulated, are indicated. The fifth can be seen in Figure 4.10 (indicated by
R.5).

As can be seen values of 30 nS/µm2 and 20 nS/µm2 for the conductances are
still visible. Although values as gG→S = 30 nS/µm2 and gS→G = 20 nS/µm2

are very large for synaptic conductances (see Section 4.1.1) they are not im-
possible (as negative conductances are), because we saw in the chapters on the
stn- and gpe-neuron that the parameter regions for both models needed to be
‘stretched up’ by a possible scaling. When this is needed the value of 30 nS/µm2

or 20 nS/µm2 in the model might not be that large.
Because part of the fold-curve is present in this region the hysteresis phe-

nomenon so common and interesting in neurodynamical models, can possibly
be seen in the regions around the fold-curve (all but region 1).

By continuing and following the three equilibria within the wedge, using
MatCont, the following can be said about their stability in the different regions
(the numbers of the list refer to the regions and the numbers of the equilibria
are refer to the equilibrium numbers in Figure 4.8). Starting in region 1 with
equilibrium one we follow this equilibrium in the clockwise direction, following
the numbers of the regions. The emergence of limit cycles at Hopf-points and
their stabilities are noted as well. How they persist or bifurcate in this parameter
plane is unfortunately unknown.

1. Only equilibrium 1 is present here, which is 2d unstable. Somewhat to the
left this equilibrium was stable and lost its stability at another Hopf-curve.
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Figure 4.10: A close-up of Figure 4.9 to show the small fifth region indicated by
R.5 between the Hopf and fold-curve.

Possibly the stable limit cycle which emerged from this Hopf-point, is still
present in this region.

2. Only equilibrium 1 is present, which now has become 4d unstable. A
stable limit cycle exists at least initially.

3. Still only equilibrium 1 is present (the equilibrium surface is still flat in
this part of the parameter plane). It has become 2d unstable again, due
to a subcritical Hopf-bifurcation. An unstable limit cycle at least initially
is present in this region.

4. In this region, the system is inside the wedge and three equilibria are
therefore present. Their stability is (the numbers refer to the equilibrium
number in Figure 4.8):

(a) 2d unstable
(b) 3d unstable
(c) 4d unstable

5. The system is still inside the wedge but equilibrium 1 has become 4d
unstable due to a supercritical Hopf-bifurcation. A stable limit cycle is at
least initially present in region 5. The stability of the three equilibria is:

(a) 4d unstable
(b) 3d unstable
(c) 4d unstable

Travelling from region 5 to region 2 again, equilibrium 1 and 2 have coalesced
and disappeared. Only equilibrium 3 persists in region 2 and is still 4d unstable.
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Notice that equilibrium 1 and 3 indicate the same equilibrium in region 2 (as
well as in region 1 and 3), but are different ones in regions 4 and 5. This is
due to the compacting of the equilibrium surface near the cusp point. Here
the hysteresis phenomenon can clearly be seen. Starting in region 1, 2 or 3 at
equilibrium 1 which in these regions is the same as equilibrium 3, and moving
to region 4 in a clockwise manner, brings you to equilibrium 1. Equilibrium 1
in region 4 is for example on the top surface of the folded equilibrium surface
as in Figure 4.8. Starting in the same equilibrium (1 = 3) at the same point in
the parameter plane, but going to region 4 in a counterclockwise manner puts
the system at equilibrium 3 (on the lowest surface in Figure 4.8). In region 4 it
is clear that equilibrium 1 and 3 are not equal anymore. Thus the system can
end up in a completely different state by changing its path from its initial state
to a state within region 4.

In the next section some simulations will be shown of the two-cell system
within the physiologically relevant parameter plane. The three equilibria are
unstable or nonexisting (for two out of three) in all five regions, showing that
the two neurons will not be quiescent, at least not both at the same time, in
the physiologically relevant region of the parameter plane. Stable limit cycles,
possibly more than one should therefore be present in all five regions.

4.2.2 Simulations

When more stable limit cycles (or tori) coexist in a region, the initial data chosen
for the 12 coordinates, decide to which cycle/torus the orbit converges. Without
the knowledge on the presence and stability of the cycles, the initial data can
only be chosen randomly. Also values for the two parameters need to be chosen
randomly, because the boundaries in Figure 4.9 do not indicate a qualitative
change in firing behaviour of the two neurons. The already unstable equilibria
just bifurcate at these boundaries. Although everything is chosen randomly for
the simulations it is expected that the firing of the neurons near the cusp-point
might slow down (due to the many unstable manifolds) and that a stable limit
cycle bifurcates at a limit point of cycle curve near a generalized Hopf-point.
During simulations (for fixed values) a lpc or other limit cycle bifurcation can
unfortunately not be found.

The initial data for the 12 coordinates, which are used for all the simulation
figures shown in this section, are listed in Table 4.3. Here the membrane poten-
tials vs and vg are in mV, the internal calcium concentrations [Ca]is and [Ca]ig

inmmol. The time t in all figures is inms. In the time diagrams the top figure
always corresponds to the stn membrane potential vs and the bottom figure to
the gpe membrane potential vg.

vs ns hs rs [Ca]is sG→S vg ng hg rg [Ca]ig sS→G

-55 0.01 0.65 0.001 0.1 0.25 -65 0.2 0.5 0.1 0.1 0.3

Table 4.3: The initial data chosen for the twelve variables of the two-cell model
for simulation purposes.

In Figure 4.11 a simulation is shown for gG→S = 1 nS/µm2 and gS→G =
16 nS/µm2, which is located in region 1 of Figure 4.9. Due to the high con-
ductance of the synaptic current from the stn- to the gpe-neuron, relative to
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the conductance backward, the gpe-neuron is highly sensitive to the firing of
the stn-neuron. As can be seen the stn-neuron is not able to fire due to the
almost-spontaneous bursting of the gpe-neuron, because gG→S = 1.0 nS/µm2

seems small relative to the 16 nS/µm2 but is a significant conductance [40].

Figure 4.11: For gG→S = 1 nS/µm2 and gS→G = 16 nS/µm2 (region 1 in Fig-
ure 4.9) the stn-neuron shows a tonic spiking behaviour (top) and the gpe-
neuron bursts (bottom).

In Figure 4.12 two bursts of the gpe-neuron and two spikes of the stn-neuron
are zoomed-in. It is clear that the stn-neuron is only able to spike (one time)
in a short quiescent period in the bursting of the gpe-neuron. The bursts of
the gpe-neuron consist of two parts, one in which the amplitude of spiking and
frequency remains approximately the same and one in which bursting starts at
an almost zero amplitude, at a high frequency, which grows smoothly (with a
decrease in frequency) to the same voltage range which was traversed during
the first part of the burst. It seems as if the stn-spike pushes the gpe-neuron
out of its quiescent and stable state, due to the high gS→G, in the attraction
domain of the stable limit cycle to which it converges (showing the increase in
amplitude and decrease in frequency). Because the interspike interval of the
gpe-spikes in the first part of the burst is larger than in the second, the stn-
neuron has more time to repolarize (increase) its membrane potential after a
gpe-spike. This is not possible due to the almost constant inhibition by the
gpe-neuron in the second part of the burst. That is possibly the reason that the
stn-neuron does not regain its spontaneous spiking behaviour during the long
quiescent period of the gpe-neuron. It can also be the case that the stn-system
is at a stable equilibrium and can not be pushed-out of it very easily. This is
my guess. When this is the case, the spike-response of the stn-neuron to an
inhibiting spike shows the resonant character of the stn-neuron. The break of
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the gpe-event is caused by the calcium build-up in the gpe-neuron during its
spiking. IAHP is activated and finally stops the firing.

Figure 4.12: Two bursts (gpe) and spikes (stn) of Figure 4.11 are shown in
a close-up. Clearly the bursts of the gpe-neuron consist of two phases, while
the stn-neuron is almost always quiescent except during a short silent phase in
bursting of the gpe-neuron.

In the first part of Section 4.1.1 results from [1] were described for tightly
connected networks of 8–12 stn- and gpe-cells. The x-axis in Figure 4.2 agrees
the most with our system. On this x-axis gG→G = 0nS/µm2, which means that
the gpe-neurons in the network are not inhibited by other gpe-neurons. Our
gpe-neuron in the two-cell network is indeed not inhibited by other gpe-neurons
(because they are absent), and therefore the results in Figure 4.2 on the line
{gG→G = 0 nS/µm2} correspond the most the possible results for our network.
Because only gS→G is varied along this zero-gpe-conductance line in [1], with
gG→S set to a constant value of 1 nS/µm2, in the following simulations the same
range of values for gS→G are taken together with the constant value for gG→S .
Because the striatal inhibition Iapp = −1.2 pA/µm2 in the results of [1], and
we do not have striatal inhibition in our small network (Iapp = 0pA/µm2),
the question is how this striatal inhibition affects the results. Discrepancies
between our and their simulations might be the result of this inclusion of the
striatal input. Also the larger size of the network in [1] might result in differences
between our simulations and theirs.

In Figure 4.13 gG→S = 1nS/µm2 and gS→G = 0.006 nS/µm2 which lies
in the ‘decoupled’ range on the gS→G-axis in Figure 4.2. As can be seen in
Figure 4.13 the neurons indeed hardly influence each other. The gpe-neuron
inhibits the stn-neuron, which can be seen in the small hyperpolarization of vs

during spiking of vg. Because gG→S = 1 nS/µm2 is quite large (0.5 nS/µm2 is
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often chosen for the synaptic current through gabaA-gated receptor channels),
the inhibition can clearly be seen. This inhibition does not change the pattern of
tonic spiking of the stn-neuron though. The firing of vg also does not show any
change in pattern or firing rate at spiking moments of vs. Indeed our simulations
show that for gG→G = 0 nS/µm2, gG→S = 1nS/µm2 and gS→G = 0.006 nS/µm2

both neurons behave as if they were decoupled. This agrees with the results
from [1]. In the simulations of [1] the gpe-neurons were mainly quiescent for
these parameter values, and nonbursting as in our simulations. This difference
can be attributed to the inhibition of the gpe-neurons by the striatum in their
simulations. This inhibition misses here, and gpe-neurons can therefore spike
without being stopped.

Figure 4.13: For gG→S = 1 nS/µm2 and gS→G = 0.006 nS/µm2 both neurons
behave as if they were decoupled. This agrees with Figure 4.2 from [1].

In Figure 4.14 gG→S = 1 nS/µm2 still and gS→G = 0.015 nS/µm2, which lies
in the ‘episodic spiking’-range on the gS→G-axis in Figure 4.2. The neurons do
not act as if decoupled (as was the case in Figure 4.13), because the start and
break of their events are approximately the same. In [1] both neurons show
events of repetitive spiking behaviour separated by periods of quiescence when
the parameter values are taken in this ‘episodic spiking’-range. The events are
repeated periodically at 1–2 Hz. In our simulations the stn-neuron does not
show these events of repetitive spiking, assuming that a single spike does not
satisfy conditions which define ‘repetitivity’ within an event. The events are
separated by periods of quiescence and the events are repeated periodically at
approximately 2.3 Hz. The gpe-neuron does spike repetitively during an event
which is then followed by a period of quiescence. The events are repeated pe-
riodically at 4 Hz which is higher than the 1–2 Hz in [1]. This is probably also
the result from the absence of striatal inhibition of the gpe-neuron in our simu-
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lation. The gpe-neuron is therefore able to fire at a higher rate and apparently
twice the rate it reaches with a striatal inhibition of Iapp = −1.2 pA/µm2.

Figure 4.14: For gG→S = 1nS/µm2 and gS→G = 0.015 nS/µm2 (in the ‘episodic
spiking’-range of Figure 4.2) the stn-neuron does not show episodic spiking
behaviour, which the gpe-neuron does. The firing frequency of vg is twice the
rate of that in [1] due to the absence of striatal inhibition in our simulations.

The simulation of the two-cell network with gS→G chosen in the ‘continu-
ous spiking’-region on the gS→G-axis in Figure 4.2, is not shown here, because
the firing behaviour of the two neurons is almost exactly the same as in the
‘episodic spiking’ region depicted in Figure 4.14. According to [1] the neurons
should both spike tonically in this region, with their frequency rate increasing to
approximately 25Hz for increasing gS→G within this range. Figure 4.14 which
also applies for the ‘continuous spiking’-region, does not show continuous spik-
ing behaviour but episodes of bursts or single spikes. When inhibition of the
gpe-neuron by the striatum would have been included in our simulation, the
frequency rate of firing would decrease resulting in a decrease in the calcium
build-up rate as well. When the interspike interval has increased to a certain
level due to the striatal inhibition, that the calcium build-up during the spike is
completely reduced by removal of calcium during the interspike interval follow-
ing the spike, the gpe-neuron will indeed show continuous spiking behaviour,
because spiking will simply not stop. When this is the case, the longer inter-
spike intervals for the gpe-neuron will lead to less inhibition of the stn-neuron
within the same time interval, which leads to an increase in firing rate of the
stn-neuron. This leads to continuous spiking behaviour of the stn-neuron as
well. Beside the influence of Iapp on the difference in result, the large difference
in size and architecture of our networks can of course lead to different results.
The relation between the network architecture and results is more difficult to
quantify.

In Figure 4.15 gG→S = 24 nS/µm2 and gS→G = 2.5 nS/µm2, which lies
near the cusp-point (in the projection on the parameter plane of course, not
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in R14) in Figure 4.9. Both parameter values have increased in comparison to
the simulation shown in Figure 4.14. The increase in gS→G can be seen by
the increased influence of repetitive spiking of the stn-neuron on the firing of
the gpe-neuron. After vs elicits a spike the gpe-neuron becomes active again
after a period of quiescence, and the rate of firing is high initially. This reduces
to a constant rate until vs spikes again and the rate increases to a large value
again. The calcium builds up rapidly during these high rates (and in between)
and the gpe-event stops at some time due to the activation of IAHP . Due to
the increase in rate of firing of vg and thus in the rate of calcium build-up the
duration of the gpe-events is shorter than in Figure 4.14. The increase in gG→S

can be seen in the larger down-peaks in vs when vg spikes. Due to the rapid
firing of vg the stn-neuron is inhibited below a certain level that vs polarizes
(in a rebound manner) fast after the summation of a number of ipsps. rebound
polarization. This is due to the activation of IT . Therefore two spikes (instead
of one in Figure 4.14) are elicited by the stn-neuron.

Figure 4.15: For gG→S = 24 nS/µm2 and gS→G = 2.5 nS/µm2 (close to the
cusp-point in Figure 4.9) the two neurons have a large influence on each other.
Both conductances have increased in comparison to Figure 4.14 leading to short-
duration events and higher firing rates of both neurons.

In Figure 4.16 gG→S = 27.5 nS/µm2 and gS→G = 0.36 nS/µm2 (in region 5
in Figure 4.9). One event of both neurons is shown in close-up to show the direct
influence of the firing of each neuron on the firing of the other neuron. After a
spike of vs, the firing rate of vg becomes somewhat larger (not that large as in
Figure 4.15 due to the small value for gS→G). The spikes of vg lowers the stn
membrane potential but due to the relatively large interspike interval of vg the
membrane potential repolarizes (increases) to a larger value than reached during
the previous repolarization phase. Therefore a slow depolarization of the values
of vs just before the next spike sets in, can be seen. When the depolarization
reaches a certain threshold the stn-neuron fires again and the process repeats
itself.
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Figure 4.16: For gG→S = 27.5 nS/µm2 and gS→G = 0.36 nS/µm2 (in region 5
in Figure 4.9), a close-up of one event is shown, to indicate the direct influence
of firing of the two neurons on each other.

4.3 Discussion

This chapter discussed the model of a small network of only one stn- and one
gpe-neuron. The model for this two-cell network is given in (4.10) and consists
of the two models for the individual neurons (discussed in previous chapters)
with the addition of the synaptic currents IG→S (from gpe to stn) and IS→G

(from stn to gpe).
Because the models of the individual neurons within the network are already

evaluated in the previous chapters, only the synaptic connection between the
two neurons needed discussion. The model of the synaptic connection between
the two cells, described in [1], agrees with the model suggested in [33] and [34].
The model is optimized for simulation purposes by approximating the heaviside
function using numerical programs as Matlab.

The two-cell network analysed in this chapter of course does not resemble the
stn-gpe-network in vivo which receives external input. Such a network consists
of many more cells, and two neurons are almost never reciprocally connected.
Because two neurons are reciprocally connected, interesting phenomena as syn-
chronization between neurons or phase-locking can not be observed. Although
our small network hardly resembles the stn-gpe-network in vivo, and does not
provide us with more knowledge on synchronization and other pd-related phe-
nomena, it is a good network to start with. The equilibrium bifurcation curves
in the parameter plane already gave rise to a complex hysteresis phenomenon
(although stable equilibria were absent) and the simulations of both membrane
potentials can easily be interpreted for different parameter combinations. Un-
derstanding the total bifurcation diagram (with codim-2 limit cycle bifurcation
and equilibrium bifurcation curves) of such a small system is necessary to extend
the network to larger sizes with different types of architecture.

Because in experimental studies either one cell or a large network of cells
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(within a brain slice) is analysed, experimental results for the behaviour of this
specific two-cell network could not be found. Due to the small size of the network
the network behaviour can be guessed quite easily by looking at extreme values
for the conductances, such as gG→S - gS→G.

In [1], from which this network model is derived, larger networks of stn-
and gpe-neurons are analysed, for different types of architectures. The ranges
of values which are chosen in [1] for the conductances can not be easily discussed
because these are unknown or at least uncertain at the moment. In [40] values
of 0.5 nS/µm2 for gG→S and of 0.2 nS/µm2 for gS→G are suggested. In [1] a
constant value gG→S = 1.0 nS/µm2 is assigned which is twice the value suggested
in [40] but due to uncertainties the order of magnitude is of importance and thus
seems correct. gS→G is varied within a range of [0.005, 0.03] nS/µm2 and nicely
surrounds the average value of 0.2 nS/µm2 suggested in [40]. The small average
values of both conductances indicate that the neurons are weakly connected
within the network. This means that firing of the presynaptic neuron does
not change the shape of the action potential in the postsynaptic cell, but only
influences the firing rate. See Appendix D for a more precise definition.

The ‘tightly connected network’ described in the article, resembles our small
network the most, because some two-cell combinations are reciprocally con-
nected within the larger network. The situation gG→G = 0nS/µm2 applies to
our network as gpe-gpe-inhibition is absent with only one gpe-neuron. Because
striatal inhibition is present in the simulations in [1] (which is not in our two-cell
network) the results for this ‘tightly connected network’ differ somewhat from
the simulations of our two-cell model when all other values of the conductances
are taken equally.

A codim-2 equilibrium bifurcation analysis was conducted for this small net-
work, showing the mathematically nice phenomena around a cusp bifurcation
point. Because only in a nonphysiological range (for negative conductances) an
equilibrium is stable, the mathematically nice transitions between the unstable
equilibria can not be seen in the behaviour of the two neurons. The solutions
to (4.10) will all converge to a stable limit cycle which is always present. Due
to shortage in time and due to the difficulties of drawing codim-2 limit cycle
bifurcation curves using MatCont, a limit cycle bifurcation analysis of the two-
cell system has not been done yet. This is necessary (more than the equilibrium
bifurcation analysis) to know for example the bistable regions. The limit cycle
bifurcation curves indicate the possible emergence of tori or disappearance of
cycles. A detailed description can then be given of the qualitatively different
behaviour of the two neurons in the network. The codim-2 limit cycle bifurca-
tion points which can be found on the curves, are unfortunately theoretically
not completely understood.
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Conclusion

The motivation to conduct this neurodynamical research, described in the pre-
vious chapters, was to be able to predict the behaviour of the stn-gpe-network
for different types of architectures and different connection strengths between
the nuclei. This would possibly give us more information on the type of architec-
ture and region in parameter space, for which the specific pathological type of
behaviour occurs. Interpretation of these results could lead to more understand-
ing on the origin of this synchronized and correlated behaviour in pd-patients.
When this pathological behaviour had been encountered, models of dbs could
then be used to analyse the effect different amplitudes and frequencies of dbs
have on the behaviour of the network. Possibly the desynchronization between
the nuclei can be seen. Interpretation of the conditions under which this desyn-
chronization occurs could give us more information on the precise influence dbs
has on the stn to which it is applied, and thereby on the stn-gpe-network.

Unfortunately these nice results have not yet been observed. Only a small
part of this interesting field of research has been analysed in this research. The
aim of this research was initially larger than described in Section 1.3. Analysing
the two individual models showed more obstacles that needed to be understood,
that fast extension of smaller networks to larger networks was not possible. Al-
though larger networks are indeed necessary to grasp the synchronization phe-
nomena of the original network, a thorough analysis of the model is to my opin-
ion extremely important to be able to draw scientifically correct conclusions in
the future on these larger network-models. The analysis of the individual models
provided us with valuable information, which was not expected in advance.

The two aims of the research were:

The analysis of the models of the individual neurons To verify the model-
behaviour with experimental literature, simulations of the model need to
be made. A codim-1 bifurcation analysis of each neuron-model with an
applied current (simulating the synaptic current of the other nucleus) as
the parameter, can give insight in the possible behaviour of each neuron,
for various amounts of input.

The analysis of a small two-cell network : this network consists of one
stn- and one gpe-neuron. First the model synaptic connection chosen
in [1] should be evaluated. Then a codim-2 bifurcation analysis with the
two conductances taken as the parameters, should give more insight on
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the types of network behaviour possible in the various regions of the pa-
rameter plane. The influence of the strength of the connections on the
type of behaviour can then be deduced.

The problems defined in the problem definition are almost all solved (and
analysed), except for the detailed division of the parameter plane into qualita-
tively different regions. This division could only have been made by the drawing
of limit cycle bifurcation curves, because the performed equilibrium bifurcation
analysis showed the instability of all equilibria in the physiologically relevant
region of the parameter plane. Due to lack of time and difficulties drawing
these limit cycle curves with MatCont, the limit cycle bifurcation analysis is
not finished. All other analyses and evaluations have been done. The results of
the analyses have been described in the three discussion-sections of the different
chapters and will therefore not be repeated here. A summary of the results can
be found in the abstract.

Although larger networks have not been analysed in this research the method
of analysis, applied here to the two-cell network can be applied almost with-
out adjustments to larger networks. When the extra paramer gG→G in larger
network-models is taken equal to a constant, the analysis is exactly the same,
namely codim-2. Thus the bifurcation method used here is a powerful one,
which only depends on the number of parameters. MatCont is a program which
is further developed and extended constantly. The limit cycle bifurcation curves
can therefore be drawn more easily in the future, making it possible to indicate
the bifurcation boundaries indicated in [1] more accurately.

The conductance-based network-model described in [1] can be used, after
some small adjustments, for future research of larger networks of the subtha-
lamic nucleus and the external part of the globus pallidus. Analysis of larger
stn-gpe-network models with different architectures can give us more insight
in pd-related phenomena as synchronized bursting, of the network. Bifurcation
theory and its numerical implementation in MatCont, gives us a valuable tool
for detailed analyses of networks. When MatCont, the bifurcation software in
Matlab, is linked to Simulink the bifurcation analysis, described in this report,
can be easily extended to larger networks.
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Recommendations

For future research in this field of the stn-gpe-network it would in general be
helpful for the development of accurate models of this network, to be able to
use more accurate (and more in general) experimental information. Accurate
information leads to more accurate models, which can only then be analysed for
predictive purposes.

For the improvement of the results of the research described in this report,
the following is recommended:

- Improve the models of the individual neurons (especially the stn-model)
by the recommendations given in the separate discussions. Improvements
should be in such a way that simulations performed with these models are
still fast but which show a slow ahp and a flatter fI-curve.

- For the bifurcation analysis of the individual models, the applied current
can be set to a step current with a certain amplitude a and duration b. A
codim-2 bifurcation analysis could then give us more detailed information,
then the simulations with de- and hyperpolarizing input, on the exact
influence of a and b on the firing properties of the neuron-models.

- For the two-cell network a limit cycle bifurcation analysis still needs to
be performed to be able to divide the parameter plane accurately in qual-
itatively different regions. Limit point of cycle curves emerge from the
various gh-points and can be drawn by MatCont very soon.

- When larger networks of stn- and gpe-neurons are considered, three pa-
rameters are present. A new result would be to draw a 3d parameter figure
which consists of the different bifurcation boundaries. In [1] one param-
eter was always fixed to a certain constant value. Besides their analysis
was ‘approximate’ which a bifurcation analysis is not.

- When the analysis of larger networks of only stn- and gpe-cells has been
finished, the addition of models of other nuclei can be thought of. Es-
pecially the striatum appears to modulate the network’s behaviour. But
how exactly is unknown. The addition of the snc, in which the cause of
pd is located, is not added in the network-model of [9]. The addition of
a good model of this dopaminergic nucleus, might give some indication of
the influence of lack of dopamine on the synchronization properties of the
stn-gpe-network.

- When the addition of extra nuclei to the stn-gpe network-model is con-
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sidered and the models of the thalamus, gpi, striatum and the external
stimulus dbs are used from [9], a good evaluation of each model, as has
been done in this report for the stn-, and gpe-models, is recommended. [8]
for example already states that the model for the thalamus in [9] is an ex-
treme simplification of the real thalamus.

- When synchronization phenomena and correlated bursting are the inter-
esting phenomena one tries to find during the analysis of a network-model,
the quesion arises how these phenomena can be seen in a bifurcation dia-
gram. What kind of transitions should be present or what kind of possibly
complex and attracting cycles/tori should emerge from these bifurcation
curves/surfaces.

- Whether it is possible or not it would be a complete and detailed analysis
when the bifurcation boundaries in the 2d or 3d parameter space could be
explicitly given by a function (when of course it is a well-defined function),
such as:

gG→G(gS→G, gG→S)

As was mentioned in the previous section of the conclusion, MatCont is
a powerful tool to analyse neural models quite fast using bifurcation theory.
Because the software is still under development, some aspects of the software
can and hopefully will be improved:

- MatCont has not found any limit points of equilibria during the analysis
of the three models, although they were clearly present in the stn- and
network model. Fortunately a limit point can be easily noticed by staying
present and alert during the continuation of the equilibrium. Although
this is the case, one logically questions whether MatCont does not miss
any other bifurcations, and whether the output of MatCont is reliable.

- For the two-cell network-model analysed in this research, introducing the
model to network took some time already, by adding the subscripts for
both type of cells to all constants, variables and odes. This is undoable
for large-size networks. A link between Simulink and MatCont should
be made possible and is to my knowledge under development. Simulink
would be very handy for the addition of a certain type of neuron to the
network.



References

[1] D. Terman, J.E. Rubin, A.C. Yew, and C.J. Wilson. Activity patterns
in a model for the subthalamopallidal network of the Basal Ganglia. The
journal of Neuroscience, 22(7):2963–2976, April 2002.

[2] Eric R. Kandel, James H. Schwartz, and Thomas M. Jessell. Principles of
neural science, pages 5–317, 853–867. McGraw-Hill, New York, 2000.

[3] E.M. Izhikevich. Dynamical systems in neuroscience: the geometry of ex-
citability and bursting. MIT-press, Cambridge, July 2007.

[4] Mark D. Bevan, Peter J. Magill, David Terman, J. Paul Bolam, and
Charles J. Wilson. Move to the rhythm: oscillations in the subthala-
mic nucleus-external globus pallidus network. Trends in neuroscience,
25(10):525–531, October 2002.

[5] D. Plenz and S. Kitai. A Basal Ganglia pacemaker formed by the subtha-
lamic nucleus and external globus pallidus. Nature, 400:677–682, 1999.

[6] Xiao Jiang Feng, Brian Greenwald, Herschel Rabitz, Eric Shea-Brown, and
Robert Kosut. Optimal deep brain stimulation of the subthalamic nucleus -
a computational study. Journal of computational neuroscience online, May
2007.

[7] Dana MacKenzie. Mathematical modellers help plumb mysteries of Parkin-
son’s Disease. Website, May 2003. http://www.siam.org/news/news.php?id=
322.

[8] Alejandro Pascual, Julien Modolo, and Anne Beuter. Is a computational
model useful to understand the effect of deep brain stimulation in Parkin-
son’s disease? Journal of integrative neuroscience, 5(4):541–559, 2006.

[9] J.E. Rubin and D. Terman. High frequency stimulation of the subthala-
mic nucleus eliminates pathological thalamic rythmicity in a computational
model. Journal of computational neuroscience, 16:211–235, January 2004.

[10] A.L. Hodgkin and A.F. Huxley. A quantitive description of membrane
current and its application to conduction and excitation in a nerve. Journal
of physiology, 117:165–181, 1952.

[11] T. Otsuka, Takafumi Abe, Takahisa Tsukagawa, and Wen-Jie Song.
Conductance-based model of the voltage-dependent generation of a plateau
potential in subthalamic neurons. Journal of Neurophysiology, 92:255–264,
February 2004.

133



134 REFERENCES

[12] A.J. Cooper and I.M. Stanford. Electrophysiological and morphological
characteristics of three subtypes of rat globus pallidus neurone in vitro.
Journal of Physiology, 527(2):291–304, 2000.

[13] H. Nakanishi, H. Kita, and S.T. Kitai. Electrical membrane properties of
rat subthalamic neurons in an in vitro slice preparation. Brain research,
437:35–44, 1987.

[14] Mark D. Bevan and Charles J. Wilson. Mechanisms underlying sponta-
neous oscillation and rhythmic firing in rat subthalamic neurons. Journal
of neuroscience, 19(17):7617–7628, September 1999.

[15] Corinne Beurrier, Patrice Congar, Bernard Bioulac, and Constance Ham-
mond. Subthalamic nucleus neurons switch from single-spike activity to
burst-firing mode. Journal of Neuroscience, 19(2):599–609, January 1999.

[16] Takeshi Otsuka, Fujio Murakami, and Wen Jie Song. Excitatory postsy-
naptic potentials trigger a plateau potential in rat subthalamic neurons at
hyperpolarized states. Journal of neurophysiology, 86:1816–1825, 2001.

[17] Mark D. Bevan, Charles J. Wilson, J. Paul Bolam, and Peter J. Mag-
ill. Equilibrium potential of GABAA current and implications for rebound
burst firing in rat subthalamic neurons in vitro. Journal of Neurophysiology,
83(5):3169–3172, May 2000.

[18] M.D. Bevan, P.J. Magill, N.E. Hallworth, J.P. Bolam, and C.J. Wilson.
Regulation of the timing and pattern of action potential generation in rat
subthalamic neurons in vitro by GABAA IPSPs. Journal of Neurophysiol-
ogy, 87:1348–1362, March 2002.

[19] Mark A. Wigmore and Michael G. Lacey. A Kv3-like persistent, outwardly
rectifying, Cs+-permeable, K+-current in rat subthalamic nucleus neurons.
Journal of physiology, 527:493–506, 2000.

[20] Maureen E. Rush and John Rinzel. The potassium A-current, low-firing
rates and rebound excitation in Hodgkin-Huxley models. Bulletin of Math-
ematical Biology, 57(6):899–929, 1995.

[21] Corinne Beurrier, Bernard Bioulac, and Constance Hammond. Slowly inac-
tivating sodium current (INaP ) underlies single-spike activity in rat subtha-
lamic neurons. Journal of Neurophysiology, 83(4):1951–1957, April 2000.

[22] Wen Jie Song, Yosuke Baba, Takeshi Otsuka, and Fujio Murakami. Char-
acterization of CA2+ channels in rat subthalamic nucleus neurons. Journal
of neurophysiology, 84:2630–2637, 2000.

[23] W. Govaerts. Numerical bifurcation analysis for ODEs. Journal of compu-
tational and applied mathematics, 125:57–68, 2000.

[24] Willy Govaerts and Bart Sautois. Bifurcation software in Matlab with
applications in neuronal modeling. Computer methods and programs in
biomedicine, 77:141–153, 2005.



REFERENCES 135

[25] A. Dhooge and W. Govaerts. MatCont: a Matlab package for numerical bi-
furcation analysis of ODEs. ACM transactions and mathematical software,
29(2):141–164, June 2003.

[26] A. Dhooge, W. Govaerts, Yu. A. Kuznetsov, W. Mestrom, A.M. Riet, and
B. Sautois. MatCont and CL MatCont: continuation toolboxes in Matlab.
University of Gent and Utrecht university, December 2006.

[27] Andrew Gillies and David Willshaw. Membrane channel interactions un-
derlying rat subthalamic projection neuron rhythmic and bursting activity.
Journal of neurophysiology, 95:2352–2365, 2006.

[28] H. Kita and S.T. Kitai. Intracellular study of rat globus pallidus neurons:
membrane properties and responses to neostriatal, subthalamic and nigral
stimulation. Brain Research, 564:296–305, 1991.
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Appendix A

Model constants

The values for the various constants used in the stn- and gpe-model are listed
in table A.1.

Conductances gX for X ∈ {L,K, Na, T,Ca,AHP} are in nS/µm2. Equilib-
rium potentials vL, vK , vNa, vCa and vG→S are in mV. The six parameters for
the three timeconstants τ i

x, for x ∈ {h, n, r} and i ∈ {0, 1} are in ms. The unit
of ε, α and β is ms−1.
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STN GPe
Parameter Value Value
gL 2.25 0.1
gK 45.0 30.0
gNa 37.5 120.0
gT 0.5 0.5
gCa 0.5 0.15
gAHP 9.0 30.0
vL -60.0 -55.0
vK -80.0 -80.0
vNa 55.0 55.0
vCa 140.0 120.0
τ1
h 500.0 0.27

τ1
n 100.0 0.27

τ1
r 17.5

τ0
h 1.0 0.05

τ0
n 1.0 0.05

τ0
r 40.0

τr 30.0
φh 0.75 0.05
φn 0.75 0.05
φr 0.2 1.0
k1 15.0 30.0
kCa 22.5 20.0
ε 3.75e-5 1e-4
θm -30.0 -37.0
θh -39.0 -58.0
θn -32.0 -50.0
θr -67.0 -70.0
θa -63.0 -57.0
θb 0.4
θs -39.0 -35.0
θτ

h -57.0 -40.0
θτ

n -80.0 -40.0
θτ

r 68.0
θH

g -39.0 -57.0
θg 30.0 20.0
α 5.0 2.0
vG→S -85.0
vG→G -100.0
vS→G 0.0
σm 15.0 10.0
σh -3.1 -12.0
σn 8.0 14.0
σr -2.0 -2.0
σa 7.8 2.0
σb -0.1
σs 8.0 2.0
στ

h -3.0 -12.0
στ

n -26.0 -12.0
στ

r -2.2
σH

g 8.0 2.0
β 1.0 0.08

Table A.1: The parameters of the STN- and GPe model from [1]



Appendix B

Some M-files

In this appendix some M-files for the calculation of equilibria (the first 5), their
eigenvalues ([E,R,I]=Eigenwaarden(v)) and for the simulation of time diagrams
of the system (RHS and Main). These functions are for the stn-model but are
also made for the other models. They show different equations but the same
approach. In the comments of the files more is explained on the functions.

Listing B.1: M-file for the calculation of the bifurcation diagram

function I i n p s = Bifdiagram ( v s )
%This func t i on c a l c u l a t e s the input Igs , such t ha t the
%system i s in an e qu i l i b r i um . I t f i r s t c a l c u l a t e s
%the e qu i l i b r i um va lue s f o r the o ther four v a r i a b l e s n , h ,

5 %r , c a c on c i s ( [Ca ] ) , and then uses v ’=0 to c a l c u l a t e
%the va lue f o r the synap t i c current from a GPe neuron to
%a STN neuron

%Experimental cons tan t s
10 gca s =0.5 ;

gahp s =9.0 ;
g l s =2.25;
gk s =45.0 ;
gna s =37.5;

15 g t s =0.5 ;
vna s =55.0;
vk s =−80.0;
v l s =−60.0;
vca s =140.0;

20 theta m s =−30.0;
t h e t a a s =−63.0;
t h e t a s s =−39.0;
t h e t a n s =−32.0;
t h e t a h s =−39.0;

25 t h e t a r s =−67.0;

139
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sigma m s =15.0 ;
s i gma a s =7.8 ;
s i gma s s =8.0 ;
s igma n s =8.0 ;

30 s igma h s =−3.1;
s i gma r s =−2.0;
t h e t a b s =0.4 ;
s igma b s =−0.1;
k1 s =15.0 ;

35 kca s =22.5 ;

%The s teady s t a t e s (n=ninf , h=hinf , r=r i n f ) .
minf s =1./(1+exp(−( v s−theta m s ) . / sigma m s ) ) ;
a i n f s =1./(1+exp(−( v s−t h e t a a s ) . / s i gma a s ) ) ;

40 s i n f s =1./(1+exp(−( v s−t h e t a s s ) . / s i gma s s ) ) ;
n i n f s =1./(1+exp(−( v s−t h e t a n s ) . / s igma n s ) ) ;
h i n f s =1./(1+exp(−( v s−t h e t a h s ) . / s igma h s ) ) ;
r i n f s =1./(1+exp(−( v s−t h e t a r s ) . / s i gma r s ) ) ;
b i n f s =1./(1+exp ( ( r i n f s −t h e t a b s ) . / s igma b s ) ) . . .

45 . . .−1/(1+exp(− t h e t a b s / s igma b s ) ) ;

%The s teady cur ren t s . Use the s t eady s t a t e s : n , h , r
I l s=g l s ∗( v s−v l s ) ;
I k s=gk s ∗ n i n f s . ˆ 4 . ∗ ( v s−vk s ) ;

50 Ina s=gna s ∗minf s . ˆ 3 . ∗ h i n f s . ∗ ( v s−vna s ) ;
I t s=g t s ∗ a i n f s . ˆ 3 . ∗ b i n f s . ˆ 2 . ∗ ( v s−vca s ) ;
I c a s=gca s ∗ s i n f s . ˆ 2 . ∗ ( v s−vca s ) ;

%ca conc i s ’=0
55 c a c o n c i s=−( I c a s+I t s )/ kca s ;

%Iahp f o r the e qu i l i b r i um va lue o f c a c on c i s
Iahp s=gahp s ∗( v s−vk s ) . ∗ ( c a c o n c i s /( c a c o n c i s+k1 s ) ) ;

60 %v ’=0 , g i v e s t h i s equa t ion . Eq curren t s
I i n p s=I l s+I k s+Ina s+I t s+I c a s+Iahp s ;

Listing B.2: M-file for the calculation of the equilibrium value for n

function n in f = Ninf ( v )
%Function which c a l c u l a t e s the e qu i l i b r i um va lue f o r n
%(n’=0) when the p o t e n t i a l v i s g i ven .

64
theta=−32;
sigma=8;

n in f = 1./(1+exp(−(v−theta ) . / sigma ) ) ;

Listing B.3: M-file for the calculation of the equilibrium value for h
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function h in f = Hin f s ( v )
69 %Ca l cu l a t e s the e qu i l i b r i um va lue o f h (h ’=0) , when the

%po t e n t i a l i s v

theta=−39;
sigma=−3.1;

74
h in f =1./(1+exp(−(v−theta ) . / sigma ) ) ;

Listing B.4: M-file for the calculation of the equilibrium value for r

function r i n f = Rinf ( v )
%Function which c a l c u l a t e s the e qu i l i b r i um va lue f o r r
%( r ’=0) when the p o t e n t i a l i s equa l to v

79 theta = −67;
sigma = −2.0;

r i n f =1./(1+exp(−(v−theta ) . / sigma ) ) ;

Listing B.5: M-file for the calculation of the equilibrium value for Ca

function conc = CaConc(v )
84

%Experimental cons tan t s
gt=0.5;
gca=0.5;
kca =22.5 ;

89 vca=140;
the ta a=−63;
theta b =0.4;
t h e t a s =−39;
t h e t a r =−67;

94 sigma a =7.8;
sigma b=−0.1;
s igma s =8;
s igma r=−2;

99 %The s teady s t a t e s
a i n f =1./(1+exp(−(v−the ta a ) . / s igma a ) ) ;
s i n f =1./(1+exp(−(v−t h e t a s ) . / s igma s ) ) ;
r i n f =1./(1+exp(−(v−t h e t a r ) . / s igma r ) ) ;
b i n f =1./(1+exp ( ( r i n f−theta b ) . / sigma b ) ) . . .

104 −1/(1+exp(− theta b / sigma b ) ) ;

%The equ i l i b r i um curren t s
I t=gt∗ a i n f . ˆ 3 . ∗ b in f . ˆ 2 . ∗ ( v−vca ) ;
I ca=gca∗ s i n f . ˆ 2 . ∗ ( v−vca ) ;

109
%The concen t ra t ion at the e qu i l i b r i um
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conc = −( I ca+I t )/ kca ;

Listing B.6: The calculation of the real and imaginary parts of the eigenvalues
of the equilibrium

function [ EIG , Real , Imag ] = EigenwaardenSN ( v0 )
%This func t i on c a l c u l a t e s the e i g enva l u e s f o r the

114 %e q u i l i b r i a o f the system fo r the STN−neuron . The
%argument o f the func t i on i s a vec t o r o f p o t e n t i a l s .
%For every entry o f the vec t o r the o ther four v a r i a b l e s
%in the e qu i l i b r i um are ca l cu l a t e d , t o g e t h e r wi th the
%parameter va l u e s o f I g s . The f unc t i on s Ninf ( v0 ) ,

119 %Hinf ( v0 ) , Rinf ( v0 ) , CaConc( v0 ) and Bifdiagram ( v0 )
%are used . When the s e v e c t o r s f o r the v a r i a b l e s and
%parameter are genera ted as we l l , the jacob ian matrix
%can be eva lua t ed at a l l t h e s e e q u i l i b r i a . The d e r i v a t i v e s
%of the r i g h t hand s i d e o f the ode−system are a n a l y t i c a l l y

124 %ca l c u l a t e d us ing Maple . For every entry i o f the v e c t o r s
%the f i v e e i g enva l u e s o f the jacob ian are c a l c u l a t e d .
%These are put in column i o f EIG. In Real ( : , i )
%( Imag ( : , i ) ) the r e a l ( imaginary ) par t o f EIG( : , i )
%i s wr i t t en .

129
%Experimental cons tan t s
gca s =0.5 ;
gahp s =9.0 ;
g l s =2.25;

134 gk s =45.0 ;
gna s =37.5;
g t s =0.5 ;
vna s =55.0;
vk s =−80.0;

139 vca s =140.0;
Cm s=1;
tau n0 s =1.0 ;
t au n1 s =100.0;
t h e t a n t au s =−80.0;

144 s i gma n tau s =−26.0;
t au h0 s =1.0 ;
t au h1 s =500.0;
t h e t a h t au s =−57.0;
s i gma h tau s =−3.0;

149 t au r 0 s =40.0;
t a u r 1 s =17.5;
t h e t a r t a u s =68.0 ;
s i gma r t au s =−2.2;
theta m s =−30.0;

154 t h e t a a s =−63.0;
t h e t a s s =−39.0;
t h e t a n s =−32.0;
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th e t a h s =−39.0;
t h e t a r s =−67.0;

159 sigma m s =15.0 ;
s i gma a s =7.8 ;
s i gma s s =8.0 ;
s igma n s =8.0 ;
s igma h s =−3.1;

164 s i gma r s =−2.0;
t h e t a b s =0.4 ;
s igma b s =−0.1;
ph i n s =0.75;
ph i h s =0.75;

169 p h i r s =0.2 ;
e p s i l o n s =0.0000375;
k1 s =15.0 ;
kca s =22.5 ;

174 %Dec lara t ion o f the l e n g t h o f input v0 and output matr ices
N=length ( v0 ) ;
EIG=zeros (5 ,N) ;
Real=zeros (5 ,N) ;
Imag=zeros (5 ,N) ;

179
%The equ i l i b r i um va lue s f o r I , n , r , h and [Ca ]
I0=Bifdiagram ( v0 ) ; %Zie Bifdiagram .m
n0=Ninf ( v0 ) ; %npunt i s 0 a l s n=nin f
r0=Rinf ( v0 ) ; %rpunt i s 0 a l s r=r i n f

184 h0=Hin f s ( v0 ) ; %hpunt i s 0 a l s h=h in f
Ca0=CaConc( v0 ) ; %z i e CaConc .m

%The c a l c u l a t i o n o f the e i g enva l u e s o f the jacob ian matrix
%eva lua t ed at e qu i l i b r i um [ v0 ( i ) n0 ( i ) r0 ( i ) h0 ( i ) Ca0( i ) ]

189 for i = 1 :N
%The t imecons tan t s are dependent on v
t au n s=tau n0 s+tau n1 s /(1+exp(−(v0 ( i ) − . . .

t h e t a n t au s )/ s i gma n tau s ) ) ;
t au h s=tau h0 s+tau h1 s /(1+exp(−(v0 ( i ) − . . .

194 th e t a h t au s )/ s i gma h tau s ) ) ;
t a u r s=tau r 0 s+t au r 1 s /(1+exp(−(v0 ( i ) − . . .

t h e t a r t a u s )/ s i gma r t au s ) ) ;

%The en t r i e s o f the Jacobian matrix ( the p a r t i a l
199 %de r i v a t i v e s o f the RHS of the ode−system ) are

%ca l c u l a t e d us ing Maple . The RHS func t i on s can be
%found in RHS.m. The en t r i e s , named
%Ci ( f o r i = 1:14) are eva lua t ed at the e qu i l i b r i um
%[ v0 ( i ) n0 ( i ) r0 ( i ) h0 ( i ) Ca0( i ) ] .

204
%In the f o l l ow i n g :
%x=[n , h , r , [ Ca ] , v ]
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%n’=N( x )
%h’=H( x )

209 %r ’=R( x )
%ca ’=CA( x )
%v ’=V( x )

dNdn = −ph i n s / tau n s ;
214 dNdv = ph i n s /(1+exp(−(v0 ( i )− t h e t a n s )/ s igma n s ) ) . . .

ˆ2/ s igma n s ∗exp(−(v0 ( i )− t h e t a n s )/ s igma n s ) / . . .
( t au n0 s+tau n1 s /(1+exp(−(v0 ( i )− t h e t a n t au s ) . . .
/ s i gma n tau s )))− ph i n s ∗(1/(1+exp(−(v0 ( i ) − . . .
t h e t a n s )/ s igma n s ))−n0 ( i ) ) / ( tau n0 s+tau n1 s . . .

219 /(1+exp(−(v0 ( i )− t h e t a n t au s )/ s i gma n tau s ) ) ) . . .
ˆ2∗ tau n1 s /(1+exp(−(v0 ( i )− t h e t a n t au s ) / . . .
s i gma n tau s ))ˆ2/ s i gma n tau s ∗exp(−(v0 ( i ) − . . .
t h e t a n t au s )/ s i gma n tau s ) ;

dHdh= −ph i h s / tau h s ;
224 dHdv = ph i h s /(1+exp(−(v0 ( i )− t h e t a h s ) / . . .

s i gma h s ))ˆ2/ s igma h s ∗exp(−(v0 ( i )− t h e t a h s ) / . . .
s i gma h s )/ ( tau h0 s+tau h1 s /(1+exp(−(v0 ( i ) − . . .
t h e t a h t au s )/ s i gma h tau s )))− ph i h s ∗ ( 1 / . . .
(1+exp(−(v0 ( i )− t h e t a h s )/ s igma h s ))−h0 ( i ) ) / . . .

229 ( tau h0 s+tau h1 s /(1+exp(−(v0 ( i )− t h e t a h t au s ) . . .
/ s i gma h tau s ) ) )ˆ2∗ tau h1 s /(1+exp(−(v0 ( i ) − . . .
t h e t a h t au s )/ s i gma h tau s ))ˆ2/ s i gma h tau s ∗ . . .
exp(−(v0 ( i )− t h e t a h t au s )/ s i gma h tau s ) ;

dRdr = −ph i r s / t a u r s ;
234 dRdv = ph i r s /(1+exp(−(v0 ( i )− t h e t a r s )/ s i gma r s ) ) . . .

ˆ2/ s i gma r s ∗exp(−(v0 ( i )− t h e t a r s )/ s i gma r s ) / . . .
( t a u r 0 s+t au r 1 s /(1+exp(−(v0 ( i )− t h e t a r t a u s ) . . .
/ s i gma r t au s )))− ph i r s ∗(1/(1+exp(−(v0 ( i ) − . . .
t h e t a r s )/ s i gma r s ))− r0 ( i ) ) / ( t au r 0 s+t au r 1 s / . . .

239 (1+exp(−(v0 ( i )− t h e t a r t a u s )/ s i gma r t au s ) ) ) ˆ 2 ∗ . . .
t a u r 1 s /(1+exp(−(v0 ( i )− t h e t a r t a u s ) / . . .
s i gma r t au s ))ˆ2/ s i gma r t au s ∗exp(−(v0 ( i ) − . . .
t h e t a r t a u s )/ s i gma r t au s ) ;

dCAdr = 2∗ e p s i l o n s ∗ g t s /(1+exp(−(v0 ( i )− t h e t a a s ) / . . .
244 s igma a s ))ˆ3∗(1/(1+exp ( ( r0 ( i )− t h e t a b s ) / . . .

s i gma b s ))−1/(1+exp(− t h e t a b s / s igma b s ) ) ) ∗ . . .
( v0 ( i )−vca s )/(1+exp ( ( r0 ( i )− t h e t a b s ) / . . .
s i gma b s ))ˆ2/ s igma b s ∗exp ( ( r0 ( i )− t h e t a b s ) / . . .
s i gma b s ) ;

249 dCAdca = −e p s i l o n s ∗ kca s ;
dCAdv = ep s i l o n s ∗(−2∗ gca s /(1+exp(−(v0 ( i ) − . . .

t h e t a s s )/ s i gma s s ) )ˆ3∗ ( v0 ( i )−vca s ) / . . .
s i gma s s ∗exp(−(v0 ( i )− t h e t a s s )/ s i gma s s ) − . . .
g ca s /(1+exp(−(v0 ( i )− t h e t a s s )/ s i gma s s ) ) . . .

254 ˆ2−3∗ g t s /(1+exp(−(v0 ( i )− t h e t a a s ) / . . .
s i gma a s ))ˆ4∗(1/(1+exp ( ( r0 ( i )− t h e t a b s ) / . . .
s i gma b s ))−1/(1+exp(− t h e t a b s / s igma b s ) ) ) ˆ 2 ∗ . . .
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( v0 ( i )−vca s )/ s i gma a s ∗exp(−(v0 ( i )− t h e t a a s ) / . . .
s i gma a s )− g t s /(1+exp(−(v0 ( i )− t h e t a a s ) / . . .

259 s igma a s ))ˆ3∗(1/(1+exp ( ( r0 ( i )− t h e t a b s ) / . . .
s i gma b s ))−1/(1+exp(− t h e t a b s / s igma b s ) ) ) ˆ 2 ) ;

dVdn = −4∗gk s ∗n0 ( i )ˆ3∗ ( v0 ( i )−vk s )/Cm s ;
dVdh = −gna s /(1+exp(−(v0 ( i )− theta m s )/ sigma m s ) ) . . .

ˆ3∗( v0 ( i )−vna s )/Cm s ;
264 dVdr = 2∗ g t s /(1+exp(−(v0 ( i )− t h e t a a s )/ s igma a s ) ) . . .

ˆ3∗(1/(1+exp ( ( r0 ( i )− t h e t a b s )/ s igma b s ) ) −1/ . . .
(1+exp(− t h e t a b s / s igma b s ) ) ) ∗ ( v0 ( i )−vca s ) / . . .
(1+exp ( ( r0 ( i )− t h e t a b s )/ s igma b s ) ) ˆ 2 / . . .
s igma b s ∗exp ( ( r0 ( i )− t h e t a b s )/ s igma b s )/Cm s ;

269 dVdca = (−gahp s ∗( v0 ( i )−vk s )/ (Ca0( i )+k1 s )+ . . .
gahp s ∗( v0 ( i )−vk s )∗Ca0( i )/ (Ca0( i )+k1 s )ˆ2)/Cm s ;

dVdv = (− g l s−gk s ∗n0 ( i )ˆ4−3∗ gna s /(1+exp(−(v0 ( i ) − . . .
theta m s )/ sigma m s ))ˆ4∗ h0 ( i )∗ ( v0 ( i )−vna s ) / . . .
s igma m s∗exp(−(v0 ( i )− theta m s )/ sigma m s ) − . . .

274 gna s /(1+exp(−(v0 ( i )− theta m s )/ sigma m s ) ) . . .
ˆ3∗h0 ( i )−3∗ g t s /(1+exp(−(v0 ( i )− t h e t a a s ) / . . .
s i gma a s ))ˆ4∗(1/(1+exp ( ( r0 ( i )− t h e t a b s ) / . . .
s i gma b s ))−1/(1+exp(− t h e t a b s / s igma b s ) ) ) . . .
ˆ2∗( v0 ( i )−vca s )/ s i gma a s ∗exp(−(v0 ( i ) − . . .

279 t h e t a a s )/ s igma a s )− g t s /(1+exp(−(v0 ( i ) − . . .
t h e t a a s )/ s igma a s ))ˆ3∗(1/(1+exp ( ( r0 ( i ) − . . .
t h e t a b s )/ s igma b s ))−1/(1+exp(− t h e t a b s / . . .
s i gma b s )))ˆ2−2∗ gca s /(1+exp(−(v0 ( i )− t h e t a s s ) / . . .
s i gma s s ) )ˆ3∗ ( v0 ( i )−vca s )/ s i gma s s ∗exp(−(v0 ( i ) − . . .

284 t h e t a s s )/ s i gma s s )−gca s /(1+exp(−(v0 ( i ) − . . .
t h e t a s s )/ s i gma s s ))ˆ2− gahp s ∗Ca0( i ) / . . .
(Ca0( i )+k1 s ) )/Cm s ;

%The Jacobian matrix
289 Jac = [ dNdn 0 0 0 dNdv ; . . .

0 dHdh 0 0 dHdv ; . . .
0 0 dRdr 0 dRdv ; . . .
0 0 dCAdr dCAdca dCAdv ; . . .

dVdn dVdh dVdr dVdca dVdv ] ;
294

%For e qu i l i b r i um ( i )=[ v0 ( i ) n0 ( i ) h0 ( i ) r0 ( i ) Ca0( i ) ]
%the f i v e e i g enva l u e s o f Jac are c a l c u l a t e d and put
%in column i o f EIG
EIG ( : , i )=eig ( Jac ) ;

299 end ;

%The r e a l and imaginary par t s o f EIG are c a l c u l a t e d and
%ass i gned to the o ther re turn v a r i a b l e s Real and Imag .
Real=real (EIG ) ;

304 Imag=imag(EIG ) ;

%Various p l o t s can be made . The ax i s a t the end o f the
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%statement can be ad ju s t ed to zoom−in at c e r t a i n areas

309 f igure (1 ) %rea l par t
plot ( I0 , Real ( 1 , : ) , ’ o ’ , I0 , Real ( 2 , : ) , ’ s ’ , I0 , Real ( 3 , : ) , ’ x ’ . . .

, I0 , Real ( 4 , : ) , ’ p ’ , I0 , Real ( 5 , : ) , ’ h ’ ) ;
AXIS( [ 100 200 −0.01 0 . 0 1 ] ) ;

314 %legend ( ’$Re(\ lambda {1})$ ’ , . . .
% ’$Re(\ lambda {2})$ ’ , ’ $Re(\ lambda {3})$ ’ , . . .
% ’$Re(\ lambda {4})$ ’ , ’ $Re(\ lambda {5})$ ’ , . . .
% ’ i n t e r p r e t e r ’ , ’ l a t e x ’ , ’ Location ’ , ’ East ’ ) ; . . .
%t i t l e ( ’The r e a l pa r t s o f the f i v e e i g enva lue s ’ ) ;

319
%f i g u r e (2) %imaginary par t
%p l o t ( I0 , Imag ( 1 , : ) , ’ o ’ , I0 , Imag ( 2 , : ) , ’ s ’ , I0 , Imag ( 3 , : ) , ’ x ’ . . .
% , I0 , Imag ( 4 , : ) , ’ p ’ , I0 , Imag ( 5 , : ) , ’ h ’ ) ; . . .
% AXIS([−200 ,60 ,−1 ,1]); l e gend ( ’$Im(\ lambda {1})$ ’ , . . .

324 % ’$Im(\ lambda {2})$ ’ , ’ $Im(\ lambda {3})$ ’ , . . .
% ’$Im(\ lambda {4})$ ’ , ’ $Im(\ lambda {5})$ ’ , . . .
% ’ i n t e r p r e t e r ’ , ’ l a t e x ’ , ’ Location ’ , ’ East ’ ) ; . . .
% t i t l e ( ’The imaginary par t s o f the e i genva lue s ’ ) ;

Listing B.7: For an initial value Main.m simulates the STN-neuron using RHS.m

%The main f i l e s o l v i n g the STN ode system fo r i n i t i a l
%cond i t i on ‘ i n i t i a l ’ , and r i g h t hand s i d e func t i on RHS

329 %(RHS.m) . The ode45 s o l v e r i s used . Where the vec t o r
%y=[n ; h ; r ; [ Ca ] , v ] ( wi th o ther names used in RHS.m) :

%y(1)= n s ;
%y(2)= h s ;

334 %y(3)= r s ;
%y(4)= ca c on c i s ;
%y(5)= v s ;

tspan = [0 10000 ] ;
339 i n i t i a l = [ 0 ; 0 ; 0 ; 1 ; − 5 5 ] ;

[ t , y]=ode45 (@RHS, tspan , i n i t i a l ) ;

N=length ( t ) ;
344

plot ( t , y ( 1 :N, 5 ) ) ; %the 5 th column rep r e s en t s v
t i t l e ( ’ Spontaneous sp i k i ng behaviour ’ ) ; %when Ig s=0
xlabel ( ’ t (ms) ’ ) ;
ylabel ( ’ v (mV) ’ ) ;

Listing B.8: RHS.m represents the timederivatives of the five variables

function dydt = RHS( t , y )
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349
%The v a r i a b l e s
n s=y ( 1 ) ;
h s=y ( 2 ) ;
r s=y ( 3 ) ;

354 c a c o n c i s=y ( 4 ) ;
v s=y ( 5 ) ;

%When Ig s i s a s t e p f un c t i on or pu l s e the f o l l ow i n g
%v a r i a b l e s have to be de f ined :

359 %a=−2; %s t r en g t h o f the pu l s e / s t ep (<0 when depo l a r i z i n g ,
%>0 when hyp e r po l a r i z i n g )
%dur = 9200; %durat ion o f the pu l s e / s t ep in ms
%b1=800; % s t a r t o f the pu l s e / s t ep in ms
%b2=b1+dur ; % Break o f the pu l s e / s t ep (don ’ t ad j u s t )

364
%Experimental cons tan t s
gca s =0.5 ;
gahp s =9.0 ;
g l s =2.25;

369 gk s =45.0 ;
gna s =37.5;
g t s =0.5 ;
vna s =55.0;
vk s =−80.0;

374 v l s =−60.0;
vca s =140.0;
Cm s=1;
tau n0 s =1.0 ;
t au n1 s =100.0;

379 th e t a n t au s =−80.0;
s i gma n tau s =−26.0;
t au h0 s =1.0 ;
t au h1 s =500.0;
t h e t a h t au s =−57.0;

384 s i gma h tau s =−3.0;
t a u r 0 s =40.0 ;
t a u r 1 s =17.5 ;
t h e t a r t a u s =68.0;
s i gma r t au s =−2.2;

389 theta m s =−30.0;
t h e t a a s =−63.0;
t h e t a s s =−39.0;
t h e t a n s =−32.0;
t h e t a h s =−39.0;

394 t h e t a r s =−67.0;
sigma m s =15.0 ;
s i gma a s =7.8 ;
s i gma s s =8.0 ;
s igma n s =8.0 ;
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399 s igma h s =−3.1;
s i gma r s =−2.0;
t h e t a b s =0.4 ;
s igma b s =−0.1;
ph i n s =0.75;

404 ph i h s =0.75;
p h i r s =0.2 ;
e p s i l o n s =0.0000375;
k1 s =15.0 ;
kca s =22.5 ;

409
%The s teady s t a t e s
minf s=1/(1+exp(−( v s−theta m s )/ sigma m s ) ) ;
a i n f s =1/(1+exp(−( v s−t h e t a a s )/ s igma a s ) ) ;
s i n f s =1/(1+exp(−( v s−t h e t a s s )/ s i gma s s ) ) ;

414 n i n f s =1/(1+exp(−( v s−t h e t a n s )/ s igma n s ) ) ;
h i n f s =1/(1+exp(−( v s−t h e t a h s )/ s igma h s ) ) ;
r i n f s =1/(1+exp(−( v s−t h e t a r s )/ s i gma r s ) ) ;
b i n f s =1/(1+exp ( ( r s−t h e t a b s )/ s igma b s ) ) − . . .

1/(1+exp(− t h e t a b s / s igma b s ) ) ;
419

%The time−cons tan t s
t au n s=tau n0 s+tau n1 s /(1+exp(−( v s−t h e t a n t au s ) / . . .

s i gma n tau s ) ) ;
t au h s=tau h0 s+tau h1 s /(1+exp(−( v s−t h e t a h t au s ) / . . .

424 s i gma h tau s ) ) ;
t a u r s=t au r 0 s+t au r 1 s /(1+exp(−( v s−t h e t a r t a u s ) / . . .

s i gma r t au s ) ) ;

%The curren t s
429 I l s=g l s ∗( v s−v l s ) ;

I k s=gk s ∗ n s ˆ4∗( v s−vk s ) ;
I na s=gna s ∗minf s ˆ3∗ h s ∗( v s−vna s ) ;
I t s=g t s ∗ a i n f s ˆ3∗ b i n f s ˆ2∗( v s−vca s ) ;
I c a s=gca s ∗ s i n f s ˆ2∗( v s−vca s ) ;

434 Iahp s=gahp s ∗( v s−vk s )∗ ( c a c o n c i s /( c a c o n c i s+k1 s ) ) ;
%Igs=a∗( h e a v i s i d e ( t−b1)−h ea v i s i d e ( t−b2 ) ) ; %when Ig s i s a
%s t ep or pu l s e
I g s =0; %A cons tant I g s ( at the moment zero f o r spontaneous
%sp i k i n g )

439
%The d i f f e r e n t i a l e qua t i ons
dydt=zeros ( 5 , 1 ) ; % a column vec to r
dydt (1)= ph i n s ∗ ( ( n i n f s−n s )/ tau n s ) ;
dydt (2)= ph i h s ∗ ( ( h i n f s−h s )/ tau h s ) ;

444 dydt (3)= ph i r s ∗ ( ( r i n f s −r s )/ t a u r s ) ;
dydt (4)= e p s i l o n s ∗(− I ca s−I t s−kca s ∗ c a c o n c i s ) ;
dydt(5)=(− I l s −Ik s−Ina s−I t s−I ca s−Iahp s−I g s )/Cm s ;



Appendix C

Possible bifurcations

This appendix describes the possible codim-1 and codim-2 equilibrium bifurca-
tions and the possible codim-1 limit cycle bifurcations. This is of course not
complete. The interested, more mathematically oriented, reader is adviced to
read more on bifurcation theory in [32] for the mathematical theory and for
bifurcations in neurodynamical models, one is referred to [3].

C.1 Possible codim-1 bifurcations

Because Model (2.5) presented in Section 2.1.2 has only one parameter, namely
Iapp, the number of possible codim-1 bifurcations of an equilibrium are limited
to only four, independent on the phase dimension. For bifurcations of a limit
cycle the number is dependent on the dimension of the system. These bifurca-
tions will be shortly listed in the following section to make the analysis clearer.
For the precise definitions of the bifurcations, together with an introduction to
bifurcation theory in general, see Section 1.2.

C.1.1 Bifurcations of a stable equilibrium

The possible events that can happen in a dynamicial system of any dimension
with a stable equilibrium are: it can disappear (saddle-node type of bifurcation)
or lose its stability (a Hopf type). In neuronal models the bifurcations often
correspond to a transition between rest and spiking. Of course the equilibrium
can also remain stable, which means that no change occurs.

The possible bifurcations from resting state to periodic spiking state are [3]:

1. Saddle-node (fold,tangent,limit point,turning point) bifurcation
2. Saddle-node on invariant circle bifurcation
3. Supercritical Andronov-Hopf bifurcation
4. Subcritical Andronov-Hopf bifurcation

When the steady-state IV-curve is monotonic, saddle-node bifurcations can
not occur. Only Andronov-Hopf bifurcations are possible. When the curve
is non-monotonic both bifurcations can occur. Also there is always bistabil-
ity of the resting attractor and some other attractor near a subcritical Hopf-
bifurcation and near a saddle-node bifurcation. This does not have to be the
case in the other two cases [3].

149
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Only the saddle-node and subcritical Hopf bifurcation are encountered for
this specific system and will therefore be shortly explained qualitatively. For
the more quantitative description see Section 1.2.

Saddle-node bifurcation

In the case of a saddle-node bifurcation, two equilibria (a saddle and node) of
the system, with one parameter and one coordinate, coalesce at the parameter’s
bifurcation value. Afterward no equilibria are present. One eigenvalue becomes
zero, which means that the coalescence occurs on a one-dimensional manifold.
The real negative eigenvalue, corresponding to the stable equilibrium, increases
during the change of the parameter and becomes 0. The real positive eigen-
value, corresponding to the saddle, decreases and becomes zero. Beside the
conditions that the bifurcation point should be an equilibrium and should have
one eigenvalue real and equal to zero, there are two nondegeneracy conditions
which should be satisfied. See [32] for these conditions.

When System (2.5) exhibits a saddle-node bifurcation this occurs in R5.
But where in R5 does this occur? How can we picture one saddle and one node
to coalesce in R5? Center manifold theories answer these questions, it simply
states that the essential events near the bifurcation value still occur on a one-
dimensional parameter-dependent invariant submanifold Wc

α (called the center
manifold) of R5. The center manifold is attracting for all orbits when the other
four eigenvalues all have negative real parts (n− = 4 and n+ = 0). Off the
center manifold (in R4) the system behaves as a standard saddle. Because the
number of eigenvalues on the imaginary axis (n0) is one in this codim-1 case,
the dimension of the center manifold is also one.

If we introduce a (parameter-dependent) coordinate system on Wc
α with the

coordinate η ∈ Rn0 (thus η ∈ R1), the restriction of the system to Wc
α is lo-

cally topologically equivalent to the normal form for the saddle-node bifurcation
((C.1a).

Shoshitaishvilli’s theorem (1975) then claims that with v ∈ Rn++n− the total
system (in R5, not only on Wc

α ⊂ R1) is locally topologically equivalent to (C.1):

η̇ = α± η2 (C.1a)
v̇ = −v (C.1b)

With the second equation the standard saddle equation. It is clear that these
equations are decoupled. They can be looked at independently, one gives the
behaviour of the system on the center manifold, on which all essential events near
the bifurcation parameter value occurs. The other gives the trivial behaviour
of the system off the center manifold, on the 4d-manifold. The computation of
the center manifold for this system is not easy and will not be discussed here.
The interested reader is referred to Section 5.4. in [32].

Andronov-Hopf bifurcation

In the case of an Andronov-Hopf bifurcation two complex conjugate eigenvalues
with negative real parts approach the imaginary axis from the left side and
become purely imaginary (λ1,2 = ±iω0). If certain nondegeneracy conditions
are satisfied as well (see [32] for these conditions), a Hopf bifurcation takes
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place. In this case the equilibrium loses its stability but does not disappear.
The bifurcation occurs on a two-dimensional manifold because two eigenvalues
become non-hyperbolic. The Lyapunov coefficient l1 decides whether the Hopf
bifurcation is a sub- or a supercritical one. When l1 > 0 a subcritical Hopf
bifurcation occurs. In this case an unstable equilibrium becomes stable and
an unstable limit cycle emerges. When l1 < 0 a supercritical Hopf bifurcation
occurs. In this case a stable equilibrium loses its stability and a stable limit
cycle appears surrounding the unstable equilibrium. The Lyapunov coefficient
is calculated by MatCont in Section 2.2.1. See [26] for the definition of l1 and [32]
for the long formula of l1.

Center manifold theories state that again the essential events near the bifur-
cation point occur in a two-dimensional parameter-dependent invariant subman-
ifold of R5 (two-dimensional because the number of eigenvalues on the imaginary
axis n0 is two). The center manifold is again attracting for all orbits when the
other three eigenvalues all have negative real parts (n+ = 0 and n− = 3).

When the Hopf-conditions and the nondegeneracy conditions are all met by
the original system, we can restrict the system to Wc

α, on which the essen-
tial events of the Hopf bifurcation occur. Introducing a parameter-dependent
coordinate system on Wc

α ⊂ R2, with the coordinate z being the complex vari-
able ρeiφ. The system restricted to Wc

α is then locally topologically equivalent
to (C.2a). The whole of the five-dimensional original system is then locally
topologically equivalent to (C.2) according to Shoshitaishvilli’s theorem with
the last equation representing the standard saddle.

ż = (α + i)z + σz2z̄ (C.2a)
v̇ = −v (C.2b)

Where σ = sign l1(0) = ±1 and v ∈ Rn++n− (thus v ∈ R3).
For more precise mathematical definitions of these bifurcations see [3] and/or [32].

C.1.2 Bifurcations of a stable limit cycle

In this section the codimension 1 bifurcations of limit cycle attractors on a phase
plane will be discussed. These can also occur in higher dimensional spaces, as
is the case for our model. The number of codim-1 limit cycle bifurcations for
n-dimensional systems is not limited to only four as was the case for codim-1
equilibrium bifurcations. Additional bifurcations are possible. First the bifur-
cations possible in a planar case will be listed. Then two other interesting cases
are discussed. They correspond to transitions from repetitive spiking to resting
behaviour.

The bifurcations of a limit cycle attractor in R2 are [3]:

1. Saddle-node on invariant circle bifurcation (snic bifurcation)
2. Supercritical Andronov-Hopf bifurcation
3. Fold limit cycle bifurcation
4. Saddle homoclinic orbit bifurcation

Because a limit cycle L0 of a n-dimensional continuous systems can be seen as
a fixed point (stable if the limit cycle is stable) of the corresponding Poincaré
map in the (n-1)-dimensional local cross section Σ to L0, the multipliers of these
fixed points can give us information on the possible bifurcations of the limit
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cycles. This bifurcation of a limit cycle can occur in n-dimensional systems
with n ≥ 2, and center manifold theorems give us the submanifolds of for
example 5d systems on which the essential events take place. These occur on a
parameter-dependent invariant manifold W c

α ⊂ Σ. The Poincaré map is locally
topologically equivalent to the suspension of its restriction to this submanifold
by the standard saddle map. This is analogues to the center manifold theorems
for equilibrium bifurcations in higher dimensional systems.

The first two bifurcations listed above have been discussed in the previous
section. They now occur in opposite direction though, where the limit cycle
disappears (in the case of the snic bifurcation) or loses its stability (in the case
of the Hopf bifurcation), resulting in an equilibrium.

In the case of a fold limit cycle bifurcation a stable and an unstable limit cycle
coalesce at the bifurcation, and after the bifurcation, the stable limit cycle has
disappeared and a node is the result (often stable). At the point of annihilation
there is a periodic orbit (called a fold). For the Poincaré map this means that an
unstable and stable fixed point coalesce at the bifurcation point, corresponding
to µ1 = 1. After the coalescence no fixed point is present anymore. Because (2.5)
is a 5d continuous system, center manifold theorems should give us an idea where
a fold bifurcation takes place in R5. The restriction of the Poincaré map to the
invariant manifold W c

α is a one-dimensional map (because only one multiplier
crosses the unit circle). The stability of the manifold is determined by the
other 3 multipliers: when they all lie inside the unit circle the one-dimensional
manifold is attracting for all orbits in the 5d vectorfield.

A saddle homoclinic orbit bifurcation is a global bifurcation (as is the snic)
and also comes in two variants: a sub- and a supercritical one. In the following
β(α) is the split function and σ(α) the saddle quantity. See Section 1.2 for defi-
nitions. At the bifurcation value for the parameter (α = 0) a saddle equilibrium
exists (λ1(0) < 0 < λ2(0)) and a homoclinic orbit connects the stable and un-
stable manifolds of this saddle. When σ(0) = λ1(0) + λ2(0) #= 0) and β′(0) #= 0,
then for small α a unique limit cycle bifurcates from the homoclinic orbit. The
cycle is stable and exists for β > 0 if σ(0) < 0 and is unstable and exists for
β < 0 if σ(0) > 0. This is a summary of a theorem by Andronov and Leontovich
(1939). The first case is called a supercritical homoclinic orbit bifurcation and
the latter one a subcritical. The supercritical case is more common in neuronal
models than the subcritical one. The saddle homoclinic orbit bifurcation is only
possible when the steady state IV-curve is non-monotonic (as is the case for the
stn-model). As the split function β approaches its bifurcation value (|β| → 0)
the limit cycle passes closer and closer to the saddle and becomes increasingly
angled. Its period tends to infinity because a phase point spends more and more
time near the equilibrium.

The flip (period-doubling) and Neimark-Sacker bifurcation can occur in n-
dimensional systems with n ≥ 3. Therefore they are not mentioned in the list
above for bifurcations of limit cycles in R2. In the case of a flip bifurcation a
real multiplier of the fixed point of the Poincaré map approaches the limit cycle
(µ1 → −1). As the bifurcation value is approached by the parameter the stable
fixed point of the Poincaré map loses its stability and a period-two cycle emerges.
For the limit cycle in the continuous system this means that the limit cycle (say
L0) loses its stability, and a stable limit cycle with approximately twice the
period of L0 appears. The new cycle makes two big excursions near L0 before
the closure. The essential events occur on a one-dimensional submanifold of R5.
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The other 3 multipliers decide the stability of the manifold.
In the case of a Neimark-Sacker bifurcation the multipliers of the fixed point

of the Poincaré map are complex and approach the unit circle (µ1,2 = e±iθ, with
0 < θ < π). The stable fixed point of the Poincaré map, corresponding to the
stable limit cycle in the continuous system, loses its stability and an isolated
closed invariant curve (corresponding to a torus in one dimension higher) sur-
rounds the fixed point after the bifurcation. This curve is unique and stable.
This is the supercritical case. A subcritical Neimark-Sacker bifurcation causes
an unstable closed invariant curve to disappear and the stable fixed point to
lose its stability during the bifurcation. Because a stable torus bifurcates from
the limit cycle (in the supercritical case), two periods can be seen in the os-
cillations of the coordinates when the orbit converges to the 2d-torus. On a
2d parameter-dependent invariant submanifold off R5 the essential events of
this Neimark-Sacker bifurcation take place. The other two multipliers decide
whether this manifold is stable or unstable.

For preciser mathematical definitions again see [3] and/or [32].

C.2 Possible codim-2 equilibrium bifurcations

Because two parameters instead of one are present in the two-cell model (4.10),
Hopf- and fold-curves, instead of these bifurcation points, can be drawn in the
parameter plane. Codim-2 bifurcation points can then be found on these curves.
In chapter 8 of [32] the detailed definition and characteristics of these two types
of curves and codim-2 bifurcation points can be found. For easy reference the
possible codim-2 bifurcations are listed in Appendix C.2 as well, with the curve
on which they can be encountered. The qualitative characteristics are mentioned
as well.

Let ẋ = f(x,α) with x ∈ R12 and α ∈ R2 for our system (4.10). Then the
solution to the system of 13 equations in (C.3)

f(x,α) = 0 (C.3a)
fx(x,α) = 0 (C.3b)

Defines a 1d manifold Γ ∈ R14 when the nondegeneracy conditions for the fold
bifurcation are satisfied as well. The first 12 equations in (C.3) denote the
conditions for an equilibrium and the 13th equation is the fold-condition. The
projection π : (x, α) /−→ α maps Γ onto a curve B = π Γ on the parameter plane.
A fold-bifurcation takes place on this curve. The restriction of the system to the
centre manifold Wc of the fold-bifurcation is given by (C.4). The normal form
coefficient a in this equation is nonzero at a nondegenerate fold bifurcation point,
and thus defines a nondegeneracy condition. When this condition is violated a
codim-2 bifurcation (Cusp) takes place, and is described below.

ξ̇ = aξ2 +O(ξ3) (C.4)

The solution to the system of 13 equations in (C.5)

f(x, α) = 0 (C.5a)
tr fx(x, α) = 0 (C.5b)
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Defines a 1d manifold Γ ∈ R14 when the nondegeneracy conditions for the
Hopf-bifurcation are satisfied as well. In (C.5b) tr is the sum of the diagonal
matrix elements, and (C.5b) thus defines the sum of the eigenvalues. Each point
on the curve specifies an equilibrium of the system with two purely imaginary
eigenvalues. B = π Γ with π the same projection map as before, defines the
Hopf bifurcation boundary.

On a fold-curve one of the twelve eigenvalues is real and zero. On a Hopf-
curve two of the twelve eigenvalues are purely imaginary. In specific points on
these curves certain genericity conditions can be violated or other eigenvalues
can cross the imaginary axis as well. A codim-2 bifurcation point has then been
found. The possible codim-2 bifurcations for equilibria are listed below. The
ones which are encountered in the next section are discussed more extensively
than the others.

On a fold curve (where '(λ1) = 0), the following codim-2 bifurcations can
be encountered, where the violated genericity conditions or eigenvalue demands
are mentioned as well (the abbreviations for all bifurcations indicate the repre-
sentation of the bifurcation in MatCont):

1. Bogdanov-Takens (bt): an additional real eigenvalue approaches the imag-
inary axis and becomes zero: λ1,2 = 0. The centre manifold Wc becomes
2d instead of 1d. This bifurcation is also called a double-zero bifurcation.

2. Zero-Hopf (zh): two extra complex eigenvalues approach the imaginary
axis and Wc becomes 3d: λ1 = 0 and λ2,3 = ±iω0. This bifurcation is
also called fold-Hopf or Gavrilov-Guckenheimer bifurcation.

3. Cusp (cp): in addition to the fold-condition λ1 = 0 the normal form co-
efficient a in (C.4) becomes zero: λ1 = 0 and a = 0. This bifurcation
defines a semicubic parabola, which divides the parameter plane into two
regions: one where three equilibria coexist and one where only one ex-
ists. Exactly at the cusp bifurcation the three equilibria collide and one
equilibrium persists. At the two lines, which meet at the cusp point, two
equilibria collide and disappear. This bifurcation gives rise to the hystere-
sis phenomenon where solutions ‘jump’ to a different stable (when present)
equilibrium at the two curves of the semicubic parabola. This hysteresis
phenomenon is present in many neural models and also in ours. In the
next section the found cusp-bifurcation will be analysed further and the
semicubic parabola will be shown as well.

On a Hopf-curve (where '(λ1,2) = 0 and ((λ1,2) #= 0) the following codim-2
bifurcations can be encountered [32]:

1. Bogdanov-Takens (bt): the two purely imaginary eigenvalues approach
eachother and collide in the origin of the complex plane. This means that
ω0 → 0 with λ1,2 = ±iω0. This bifurcation is also called a double-zero
bifurcation.

2. Zero-Hopf (zh): in addition to λ1,2 = ±ω0 a real eigenvalue becomes
zero: λ3 = 0. This bifurcation is also called a fold-Hopf or Gavrilov-
Guckenheimer bifurcation.

3. Double-Hopf (hh): two extra complex-conjugate eigenvalues λ3,4 approach
the imaginary axis and the essential Hopf-events will take place on a 4d
centre manifold Wc instead of a 2d one. Thus λ1,2 = ±iω0 and λ3,4 =
±iω1. This bifurcation is also called a double-pair or Hopf-Hopf bifurca-
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tion. This is a complex codim-2 bifurcation with various types divided
into complex and simple, with each different type having a completely dif-
ferent bifurcation enfolding, sometimes extremely complex. Limit cycles,
two- and three-dimensonal tori can be encountered. The type of enfolding
depends on various coefficients which are defined in [32] and will not be re-
peated here. Because MatCont gives the values of these coefficients when
a hh is detected, from these values the type of hh can be deduced (even
without the knowledge of the meaning of these coefficients). These types
will not be discussed here, because the hh-point found for the two-cell
network is mathematically very interesting but does not lie in a physio-
logically relevant region of the parameter plane. The type of enfolding
will be mentioned though.

4. Generalized Hopf (gh): while λ1,2 = ±iω0 remain simple the Lyapunov
coefficient l1 = 0 at the generalized Hopf-point. A subcritical Hopf-
bifurcation turns into a supercritical one. This bifurcation is also called a
Bautin or degenerate-Hopf bifurcation. The second Lyapunov coefficient
l2 is nonzero at the gh-point and decides the type of Bautin bifurcation
to occur. With s = sign l2 #= 0, the toplogical normal form of the system
near the Bautin bifurcation point, is given by (in polar coordinates) (C.6):

ρ̇ = ρ(β1 + β2ρ
2 + sρ4) (C.6a)

φ̇ = 1 (C.6b)

With β1 = 0 defining the Hopf-curve and β2 being the first Lyapunov
coefficient l1. In Figure C.1 the parameters β1 and β2 are indicated for
s = −1, and in the origin the gh-point is located. The trivial solution
to (C.6b) for s = −1 is of course ρ = 0 which corresponds to the only
equilibrium. There can be 0 (only an equilibrium), 1 (an equilibrium and
a limit cycle) or 2 (an equilibrium and 2 limit cycles) positive solutions
for (C.6b). Setting ρ2 to a variable ξ in (C.6) and calculating the discrim-
inant, gives the curve (see Figure C.1):

T = {(β1,β2) : β2
2 + 4β1 = 0, β2 > 0}

On which (C.6b) has one positive solution. Above T (region 3) the system
has two positive solutions and below T (region 1) it has zero positive
solutions and thus only an equilibrium. Beside the fold bifurcation of
cycles on the T -curve for β2 > 0 a subcritical Hopf bifurcation occurs
while crossing the {β1 = 0}-line and for β2 < 0 a supercritical Hopf
bifurcation takes place. In region 1 (left of the Hopf-curve and below the
T -curve) only a stable equilibrium is present, which becomes unstable in
region 2 (supercritical Hopf) and a stable limit cycle is present in region
2. From region 2 to 3 the equilibrium becomes stable again (subcritical
Hopf), the stable limit cycle stays unchanged, and within this stable limit
cycle an unstable limit cycle emerges (still a result from the subcritical
Hopf bifurcation). These two cycles collide at the T -curve and disappear,
leaving the stable equilibrium, stable and unchanged (region 1).
For the system which is topologically equivalent to (C.6) the Hopf-curve
will be curved instead of straight (β1 and β2 are functions of the two
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Figure C.1: A schematic picture of the behaviour of the topological normal
form (C.6) for s = −1 near a gh-point (at the origin). The vertical β2-axis is
the Hopf-‘curve’ and the value of β2 corresponds to the value of l1. The T -curve
is a limit cycle bifurcation curve, instead of an equilibrium one. It represents
the ‘limit-point-of-cycles’ bifurcation curve on which a stable and unstable limit
cycle collide and disappear.

parameters of the original system) and the gh-point will not be located in
the origin. Also the line T branching from the gh point will not be such
a nice parabola. But qualitatively these curves and phenomena can be
expected in the neighbourhood of a gh-point. The gp-point indicates the
beginning of the lpc-curve (the T -curve) and should be possible to make
with MatCont. Unfortunately we have not yet succeeded in drawing this
curve and because this curve is a limit cycle bifurcation curve belongs to
this section.



Appendix D

Pulse-coupled models

General concepts of coupled networks will be first explained shortly to be able to
understand the different results for coupled networks better. Then pulse-coupled
canonical models, to which a Hodgkin-Huxley type of model can be transformed
are presented. These models give a better insight in possible synchronization
properties because the dynamics of the phases of the oscillation of the different
neurons in the network are given instead of the dynamics of for example the
potential.

The following definitions are derived from [41]:

- A neural network model is a hh-type of model which describes the dynam-
ics of state variables as membrane potential, gating variables and ionic
concentrations.

- A pulse-coupled canonical network model describes the dynamics of the
phase φi of the ith neuron. The simplest pulse-coupled 1d model is:

φ′i = ωi + (1 + cos φi)
n∑

j=1

sijδ(φj − π) (D.1)

The variables used are:

- φi(t) ∈ S1 = {eiφ ∈ C} is the phase variable ∈ [−π,π] on time t
that indicates where in the periodic cycle the state is. The period of
the cycle differs between the neurons, but is scaled to 2π for all Ti.
The speed in which φi cycles the unit circle preserves the value of Ti.
φi(t) = π indicates that the ith neuron fires and φi is then reset to
−π, where the periodic cycle starts over. S1 is the unit circle. The
ith and jth neurons are said to be synchronized when [42, 43]

φj(t)− φi(t)→ χ∗ij

With χ∗ij some constant. If χ∗ij = 0 neuron i and j are in-phase. If
χ∗ij = π neuron i and j are in anti-phase. For all other values for χ∗ij
the neurons are out-of phase[43].

- ωi > 0 is the frequency of the ith neuron.
- The synaptic coefficient is a constant −1 < sij < 1. sij > 0 indicates

an excitatory synapse and sij < 0 an inhibitory one.
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- δ(x) is the dirac delta function. Thus δ(φj − π) = 1 when φj = π
(the jth then fires an action potential). This caused an increment
of φi by (1 + cosφi)sij . The absolute and relative refractory period
are taken into account because (1 + cosφi) ≈ 0 when φi just fired
(crossed π).

- A neural network is called weakly connected when the amplitudes of post-
synaptic potentials are much smaller than the amplitude of an action
potential and/or are smaller than the mean epsp size needed to have the
postsynaptic silent cell to fire an action potential. A neural network is
almost always called weakly connected because the size of the postsynap-
tic potential is about 0.1 mV and indeed much smaller than the size of
an action potential (100mV) or the needed epsp-size of 20 mV to trigger
a postsynaptic action potential. The shapes of the action potentials are
not changed by the coupling but their timings are [43]. Weakly connected
networks are described by:

Ẋi = Fi(Xi,λ) + εGi(X1, · · · , Xn,λ, ε)

With Xi the vector with state variables of neuron i and Fi(Xi,λ) describ-
ing the intrinsic membrane properties of neuron i dependent on a vector
of parameters λ. ε0 1 is a dimensionless constant and indicates the weak
connection. The function Gi indicates the influence on the state variables
of neuron i of the state variables of the neurons projecting to it. It is
plausible to have Gi to be the sum of the pairwise coupled forms:

Gi(X1, · · · , Xn,λ, ε) =
n∑

j=1

Gij(Xi, Xj ,λ) +O(ε) (D.2)

In the model used in this report [1] such a dimensionless ε 0 1 is ab-
sent. The only dimensionless parameters are sG→S and sS→G but are not
constant, their dynamics depend on a time varying membrane potential.

When:

1. The neural network is weakly connected, and:
2. The neurons within the network are class I excitable, meaning that they

can generate action potentials with an arbitrarily small frequency. This
on its turn then indicates that the neuron’s activity is near a bifurcation
from quiescent state to period spiking, which is of saddle-node type due
to the necessity of the arbitrarily low frequency of firing directly after the
transition. And:

3. The synapses between the neurons are conventional, thus axo-dendritic
and/or axo-somatic and:

4. The synaptic transmission is slower than an action potential but faster
than the interspike interval and:

5. The synaptic transmission can be considered negligible when the presy-
naptic neurons are at rest, meaning that their spontaneous release of neu-
rotransmitter does not affect the postsynaptic neurons significantly.

Then the neural network model (hh-type) can be transformed to a canonical
pulse-coupled form by a certain change of variables (see [41] for more infor-
mation). This transformation can give more insight than the original model on
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synchronization properties due to the explicit description of the dynamics of the
phases of the neurons within the network. A disadvantage of the pulse-coupled
model is that the change of variables is only valid in a small neighbourhood
of the saddle-node bifurcation, thus for a small range of values of the param-
eter λ and in a range where the interspike interval is very large (close to the
bifurcation).

When a network satisfies the conditions described above where a saddle-node
bifurcation takes place for some λ = λ0, each Gi has the pairwise connected
form given in (D.2), ε is small and λ is in a small neighbourhood of λ0 then a
transformation exists to the canonical model (D.3):

φ′i = (1− cos φi) + (1 + cos φi)ri +
n∑

j=1

wij(φi)δ(φj − π) +O(
√

ε ln ε) (D.3)

With ri the new parameter (in the original network model it was λ). The small
remainder O(

√
ε ln(ε)) can be set to zero due to ε0 1. wij is the phase resetting

curve (prc):

wij(φi) = 2 arctan(tan
φi

2
+ sij)− φi

With sij a constant proportional to |Gij |. In the simple pulse-coupled model (D.1)
wij was simply taken to be equal to sij . wij is a phase resetting curve because
when φj ∈ S1 crosses π (the jth neuron fires a spike) the value of φi is incre-
mented by wij(φi). This means:

tan
φnew

i

2
= tan

φold
i

2
+ sij

φi integrates many such inputs and fires itself when it crosses π. Because when
sij > 0, wij ≥ 0, firing of φj can only advance φi. And an inhibitory synapse
(sij < 0) can only decrease φi.

A weakly connected network of class I excitable neurons can be converted
into (D.3) when |λ − λ0| = O(ε2) and into (D.4) when |λ − λ0| - ε/(ln ε)2
and both neurons have nearly identical frequencies. The latter means that the
neurons become uncoupled. For the coupled stn- and gpe-neurons this means
that they show pacemaker activity regardless of activities of the other neuron.

φ′i = ωi +
n∑

j=1

sijH(φj − φi) (D.4)

With:
H(χ) = 1− cos χ

For a network with an inhibitory and excitatory neuron reciprocally con-
nected and satisfying the assumptions mentioned above, (D.5) holds (with φinh

the phase of the inhibitory neuron and φexc that of the excitatory neuron):

φ′exc = (1− cos φexc) + (1− cos φexc)r + winh→exc(φexc)δ(φinh − π) (D.5a)
φ′inh = (1− cos φinh) + (1− cos φinh)r + wexc→inh(φinh)δ(φexc − π) (D.5b)

Here winh→exc ≤ 0 (inhibitory synapse) and wexc→inh ≥ 0 (excitatory synapse).
If φinh > φexc then firing of φinh advances φexc. Because the firing of φinh
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causes φ′exc < 0 (see (D.5a)) the difference between φexc and φinh becomes even
larger. And the firing of φexc increases φinh even more (see (D.5b)). Thus both
synapses contribute to the instability of the in-phase synchronized solution in
this one direction (φinh > φexc). After a while φinh → φexc + 2π and because
φexc + 2π ≡ φexc the situation of φexc > φinh arises. In this case the phase
difference will decrease. From this side the synchronized in-phase solution is
therefore stable. It means that the pulse-coupled model is at a double limit
cycle bifurcation. This only occurs because r is assumed to be equal for both
neurons which is not generic. When rinh is slightly different from rexc then there
is no synchronized solution when rexc < rinh and a nearly in-phase synchronized
solution with a small phase shift when rexc > rinh. The phase shift increases
though when rexc − rinh increases.


