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Abstract

Methods to detect aneurysms in the brain have existed for some decades. A relatively new
method, 3D rotational angiography (3DRA), has received a lot of attention in the last decade,
because with it additional smaller aneurysms can be detected more easily in comparison to more
conventional methods. The voxel data of 3DRA allows for reconstruction of the blood vessel
geometry with relative ease, which makes it of particular interest in the study of computational
fluid dynamics (CFD). Predictions made based on a CFD analysis are believed to become more
and more important and may have consequences for the type of treatment a particular patient
receives.

The immersed boundary (IB) method is one of many CFD methods available to perform nu-
merical simulations. The strength of the IB method is that no complex or time consuming grid
generation is required. Instead, it uses a Cartesian grid in which the geometry is immersed,
and is only concerned with determining whether a grid cell is part of the geometry or not. Its
simplicity makes the IB method an excellent combination with 3DRA. A disadvantage of the
IB method is that often only a small portion of the grid cells is part of the geometry, especially
for complex geometries, making it a rather expensive method in terms of computation time. In
this thesis an effort is made to utilise the simplicity of the IB method to perform numerical
simulations of blood flow in the human brain without having to rely on grid cells which are not
part of the geometry. Simulations are performed with an open source CFD software package,
called OpenFOAM, which requires a number of input files to specify the grid. The challenge is
to find an efficient way to remove the cells which are not part of the geometry from the grid and
to generate the input files accordingly.

This is succesfully done and different steps which have to be taken to ensure that the input files
are according to the OpenFOAM format are presented in this thesis. The previously mentioned
approach is validated by studying flow through simple model geometries and subsequently a
realistic geometry, reconstructed from 3DRA data. Comparable results are found to a study
adopting the IB method. Potential differences are pointed out and discussed.





Contents

1 Introduction 1

2 Computational model 3
2.1 Navier-Stokes equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Numerical method and OpenFOAM . . . . . . . . . . . . . . . . . . . . . . . . . 3

3 Immersed boundary representation 13
3.1 From masking function to OpenFOAM . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2 Poiseuille flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4 Applications 23
4.1 Curved and realistic vessels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.2 Realistic geometry and flow conditions . . . . . . . . . . . . . . . . . . . . . . . . 38

5 Discussion and outlook 49

Bibliography 51

iii





Chapter 1

Introduction

A description is given of how the equations which govern fluid flow are solved using the open
source CFD software package OpenFOAM and how these computations can be done in parallel.
First, the governing equations for fluid flow, the Navier-Stokes equations, are presented. Subse-
quently, an explanation of the adopted numerical method in OpenFOAM is given. Finally, it is
shown how parallel computation can be done in OpenFOAM.

Starting from a masking function, the key element in a volume-penalising immersed boundary
method which represents the geometry by taking either values ’0’ or ’1’ depending on whether a
cell is in the fluid part or in the solid part of the domain, a geometry is constructed in OpenFOAM
which only consists of cells which are in the fluid part of the domain. The method is validated
with Poiseuille flow through a cylindrical pipe. Several measures are defined which are used to
check how sensitive the solution is to refinement of the grid. Finally, the computational domain
of the cylindrical pipe is decomposed in different ways, which is then used to see how the speedup
of the computation is affected by different decompositions.

Another convergence study is done for Poiseuille flow through curved pipes, which have a
sinusoidal shape. For these type of flows no analytical solution exists. Therefore, the previously
mentioned measures are slightly altered such that they can still be used to investigate how sensi-
tive the solution is to grid refinement. Finally, a realistic geometry is taken under consideration.
A comparison is done between Poiseuille flow and physiologically relevant flow. Significant differ-
ences in flow behavior are observed and an attempt is made to test the sensitivity of the solution
to refinement of the grid.

The thesis is organised as follows. In Chapter 2 the adopted numerical method in OpenFOAM
is described, followed by an explanation of parallel computation in OpenFOAM. The construction
of geometries from the masking function of a volume-penalising immersed boundary method is
explained in Chapter 3, after which it is validated with Poiseuille flow through a cylindrical pipe.
The speedup of computation is tested by decomposing the cylindrical pipe in several ways. In
Chapter 4 also Poiseuille flow through curved pipes is considered, which then bridges the gap
to Poiseuille flow through realistic geometries. The chapter is concluded with physiologically
relevant flow through through a realistic geometry.
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Chapter 2

Computational model

This chapter is devoted to the Navier-Stokes equations and their respresentation in OpenFOAM.
The process of solving these equations in OpenFOAM is explained in detail through an example
of an initial-boundary value problem for the diffusion equation.

2.1 Navier-Stokes equations

The motion of incompressible Newtonian fluids in Cartesian coordinates is governed by the
continuity equation

∇ · u = 0, (2.1)

which reflects the conservation of mass, and the equations describing conservation of momentum,
which are known as the Navier-Stokes equations,

∂tu +∇ · (uuT ) = −∇P +∇ · (ν∇u), (2.2)

with fluid velocity u(x, t), kinematic pressure P (x, t) and kinematic viscosity ν.
Boundary conditions are u = 0 at solid boundaries and the domain is periodic in the x-

direction. Because pressure is relative in a closed incompressible system, the absolute value of
pressure is not important. Hence, the initial conditions for velocity are chosen as u = 0 and for
pressure as P = 0.

The volumetric flow rate Q is fixed and a pressure drop is imposed to force the flow. To be
able to impose periodic boundary conditions on the pressure and to have a pressure drop, the
pressure term has to be modified. This can be achieved by splitting the pressure gradient in a
gradient of the periodic component of the pressure and a term which gives the desired pressure
drop as follows

∇P (x, t) = ∇p̃(x, t) +∇p(t). (2.3)

2.2 Numerical method and OpenFOAM

Consider the diffusion equation

∂tT −∇ · (DT∇T ) = 0, (2.4)

with temperature T = T (x, t) and diffusion coefficient DT . This equation is represented in
OpenFOAM as

3
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solve

(

fvm::ddt(T) - fvm:: laplacian(DT , T)

);

which is very intuitive; it looks similar to (2.4). Terms starting with fvm:: are implicit terms and
explicit terms start with fvc::.

Now consider the following one-dimensional initial-boundary value problem for the diffusion
equation 

∂tT − ∂x(DT∂xT ) = 0 for 0 < x < Lx and t > 0,

T (x, 0) = f(x), for 0 < x < Lx,

T (0, t) = T (Lx, t) = 0, for t > 0,

(2.5)

with constant diffusion coefficient DT .
By introducing the scaling

x̂ =
x

X
, t̂ =

t

τ
, T̂ =

T

T
, f̂ =

f

T
, (2.6)

the problem can be transformed to the dimensionless initial-boundary value problem
∂tT − ∂x(1 ∂xT ) = 0 for 0 < x < 1 and t > 0,

T (x, 0) = f(x), for 0 < x < 1,

T (0, t) = T (1, t) = 0, for t > 0,

(2.7)

where hats have been dropped.
In the following an example case in OpenFOAM will be worked out. The problem given above

will be represented as a rectangular copper rod with 1 meter length with initial temperature
distribution f(x) = T0 = 100. OpenFOAM uses physical quantities to be able to perform
dimension checks in its calculations. An analytical solution from the dimensionless problem
will be used later, after rescaling, to validate the numerical solution which is obtained with
OpenFOAM.

Setting up a case consists of several steps:

• Construct the mesh in the OpenFOAM mesh format, polyMesh

• Set parameters related to the problem

• Define initial and boundary conditions for each of the variables

• Select numerical schemes for each of the terms in the differential equation

• Specify solving algorithm and stop criteria per variable

• Set time control parameters and output settings

For a simple case like this, the geometry can easily be constructed using the mesh generation
utility blockMesh, which is supplied with OpenFOAM. Geometries in OpenFOAM are always
three-dimensional, even for a one-dimensional problem like in this example. In a dictionary file
called blockMeshDict, which is located in the ‘constant/polyMesh’ directory for a given case,
settings denoted by keywords are specified which are used by blockMesh to generate mesh files
according to the polyMesh format. Below is the relevant part of the blockMeshDict file for this
case. The scale of the problem is defined with the keyword convertToMeters, which is 1 meter in
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this case. With the keyword vertices the (unscaled) coordinates of the corners of the rod are
defined. The position of each coordinate in the list determines its label (0, 1, . . . ). On the line
labeled with the keyword blocks three characteristics of the mesh are defined. First the geometry
is defined by giving the coordinate labels in a specific order, followed by the number of cells in
each direction and finally the expansion ratios of the cells in each direction. These expansion
ratios are defined as the ratio between the width of the last cell to the width of the first cell.
The boundaries are specified in the last part denoted by the keyword boundary.

convertToMeters 1;

vertices

(

(0 0 0)

(1 0 0)

(1 0.1 0)

(0 0.1 0)

(0 0 0.1)

(1 0 0.1)

(1 0.1 0.1)

(0 0.1 0.l)

);

blocks

(

hex (0 1 2 3 4 5 6 7) (1000 1 1) simpleGrading (1 1 1)

);

boundary

(

patch1

{

type patch;

faces

(

(0 4 7 3)

);

}

patch2

{

type patch;

faces

(

(1 2 6 5)

);

}

patch3

{

type empty;

faces

(

(0 3 2 1)

(4 5 6 7)

(0 1 5 4)

(2 3 7 6)

);

}

);

The keywords patch1 and patch2 correspond to the boundaries at x = 0 and x = 1 respectively
and the part denoted by the keyword patch3 labels the remaining sides of the rod as empty,
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which causes OpenFOAM to interpret the problem as a one-dimensional problem. After running
blockMesh a number of files will be generated in the ‘constant/polyMesh’ directory. The file
points containing coordinates of vertices of the cells, the file faces defining faces of the cells,
the files owner and neighbour defining connectivity of the mesh and the file boundary giving
information about boundaries of the mesh.

The only parameter in this problem is the diffusion coefficient, which for copper is DT =
1.11 · 10−4, and it is specified in the dictionary file transportProperties, which can be found in
the ‘constant’ directory, as follows

DT DT [ 0 2 -1 0 0 0 0 ] 1.11e-04;

The seven scalars delimited by square brackets correspond to the powers of the SI base units,
which are defining the units of measurement (m2/s) for the specified quantity.

Initial and boundary conditions are specified in the file T in the ‘0’ directory. For this example
the file is shown below. First, the dimensions of the variable T (K) are defined. Of course, for
this particular example one would rather think in degrees Celcius (◦C), but a transformation
from degrees Celcius to Kelvin does not change the nature of the problem. On the next line,
denoted by internalField, the initial value (100) is assigned to all cells. More specificly, the values
are defined at the centres of the cells. The last part, with the keyword boundaryField, specifies
boundary conditions; T = 0 at x = 0 and x = 1, and an empty boundary on the remaining sides
of the rod, as before.

dimensions [0 0 0 1 0 0 0];

internalField uniform 100;

boundaryField

{

patch1

{

type fixedValue;

value uniform 0;

}

patch2

{

type fixedValue;

value uniform 0;

}

patch3

{

type empty;

}

}

Integration of (2.4) over a control volume V with boundary S gives

∂t

∫
V

T dV −
∫
S

(DT∇T ) · dS = 0. (2.8)

If Ti is defined as

Tni := Ti(t = tn) =
1

Vi

∫
Vi

T (x, t = tn) dV , (2.9)

then (2.8) becomes

(∂tTi)
n+1 − 1

Vi

∑
fi

(DT∇T )n+1
fi
· Sfi = 0. (2.10)



7 2.2. Numerical method and OpenFOAM

The numerical schemes used for the discretisation in (2.10) can be found in the dictionary file
fvSchemes, which is located in the ‘system’ directory. Several entries which are typically found
in the fvSchemes file are shown below. The time derivative is discretised using a backward Euler
method. The value of (∇T )fi is computed by using the values of Ti in the adjoining cells, thus
assuming a linear change over the face.

ddtSchemes

{

default Euler;

}

gradSchemes

{

default none;

grad(T) Gauss linear;

}

divSchemes

{

default none;

}

laplacianSchemes

{

default none;

laplacian(DT,T) Gauss linear corrected;

}

interpolationSchemes

{

default none;

}

snGradSchemes

{

default none;

}

fluxRequired

{

default no;

}

Hence, the worked out discretisation looks like

Tn+1
i − Tni

∆t
∆xi −DT

Tn+1
i−1 − 2Tn+1

i + Tn+1
i+1

∆xi
= 0. (2.11)

The solving algorithm is specified in the dictionary file fvSolution, which can be found in the
‘system’ directory. For this case a conjugate gradient method (PCG) is used, which is precondi-
tioned with an incomplete Cholesky factorization (DIC), as can be seen below. The algorithm
stops once the error between the left- and right-hand side of Equation 2.10 is smaller than 10−6.
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solvers

{

T

{

solver PCG;

preconditioner DIC;

tolerance 1e-06;

relTol 0;

}

}

SIMPLE

{

nNonOrthogonalCorrectors 0;

}

The most relevant parts of the dictionary file controlDict located in the ‘system’ directory, in
which time and output control are specified are shown below. The keywords are very intuitive.
The simulated time is from t = 0 to t = 900 (s) with time steps ∆t = 1. Every 60 seconds of
simulated time the solution is written to a file in a directory named after the corresponding time
(60, 120, . . . ), with six significant figures.

startFrom startTime;

startTime 0;

stopAt endTime;

endTime 900;

deltaT 1;

writeControl runTime;

writeInterval 60;

writeFormat ascii;

writePrecision 6;

An analytical solution to (2.7) is

T (x, t) ≈ 4T0
π

sin(πx)e−π
2t, for t ≥ 1

π2
(2.12)

Figure 2.1 shows the numerical solution to (2.5) for the copper rod at several times and the
analytical solution in (2.12) at t = 9.99 · 10−2, which is slightly less than 1

π2 and corresponds to
t = 900 in physical quantities. The numerical solution clearly agrees very well to the analytical
solution.

In OpenFOAM the Navier-Stokes equations can be solved using a method which splits the
solution procedure for velocity and pressure, called the PISO (Pressure-Implicit with Splitting of
Operators) method [1]. The PISO method consists of several steps, a predictor step and several
corrector steps. The most relevant parts of the implementation of the Navier-Stokes equations
and the PISO method are seen below.
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Figure 2.1: Numerical solution to the diffusion problem in a copper rod with an initial constant
temperature at different times. Time ranges from t = 0 to t = 900 with increment ∆t = 300.
The solid curve corresponds to the analytical solution to (2.7) rescaled to physical quantities.
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fvVectorMatrix UEqn

(

fvm::ddt(U)

+ fvm::div(phi , U)

+ sgsModel ->divDevBeff(U)

==

flowDirection*gradP

);

if (momentumPredictor)

{

solve(UEqn == -fvc::grad(p));

}

volScalarField rAU (1.0/ UEqn.A());

for (int corr =0; corr <nCorr; corr ++)

{

U = rAU*UEqn.H();

phi = (fvc:: interpolate(U) & mesh.Sf())

+ fvc:: ddtPhiCorr(rAU , U, phi);

fvScalarMatrix pEqn

(

fvm:: laplacian(rAU , p) == fvc::div(phi)

);

pEqn.setReference(pRefCell , pRefValue );

if (corr == nCorr -1)

{

pEqn.solve(mesh.solver(p.name() + ‘‘Final’’));

}

else

{

pEqn.solve(mesh.solver(p.name ()));

}

phi -= pEqn.flux ();

U -= rAU*fvc:grad(p);

U.correctBoundaryConditions ();

}

The Navier-Stokes equations can be easily recognised.
Integration of the Navier-Stokes equations over a control volume V with boundary S and

simplifying the diffusion term, as was done in the implementation in OpenFOAM, gives after
applying the divergence theorem,

∂t

∫
V

u dV +

∫
S

(uuT ) dS = −
∫
S

p̃ dS−∇p
∫
V

dV +

∫
S

(ν∇u) dS. (2.13)

If Ui and pi are defined as

Un
i := Ui(t = tn) =

1

Vi

∫
Vi

u(x, t = tn) dV , (2.14)

pni := pi(t = tn) =
1

Vi

∫
Vi

p̃(x, t = tn) dV . (2.15)
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then (2.13) becomes

∂tUi +
1

Vi

∑
fi

(UfiU
T
fi)Sfi = − 1

Vi

∑
fi

pfiSfi −∇p+
1

Vi

∑
fi

(ν(∇U)fi)Sfi (2.16)

on a Cartesian grid, where Sfi is the outward pointing normal vector of face fi of control volume
Vi.





Chapter 3

Immersed boundary
representation

In this chapter the problem of defining a flow problem suitable for simulation within OpenFOAM
is looked into, starting from an alternative respresentation of the problem in terms of a masking
function. In Section 3.1 these steps are specified for a cylindrical geometry and Section 3.2 is
devoted to a computational analysis of Poiseuille flow.

3.1 From masking function to OpenFOAM

In this section the problem of creating a mesh from a masking function of a circle is considered.
First, the requirements of OpenFOAM on the generated files is discussed. Second, the procedure
is illustrated with an example.

Requirements of OpenFOAM on mesh

The OpenFOAM mesh format, polyMesh, supports arbitrary polyhedral cells with arbitrary
polygonal faces, provided a set of conditions is satisfied [3].

• The position of each point is specified by three Cartesian coordinates, even when, for
example, a two-dimensional problem is considered.

• The computational domain is completely covered by cells and cells do not overlap.

• Cells are convex and the cell centre is inside the cell.

• When all face area vectors of a cell point outwards, their sum should equal the zero vector
up to machine precision. Additionally, edges of a cell are used by exactly two of its faces.

• Faces connect no more than two cells.

• For internal faces the face normal vector points into the cell with the larger label, and for
boundary faces the face normal vector points outwards.

13
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Masking function of a circle

In the volume-penalising immersed boundary method adopted by Mikhal [2] geometries are
respresented by immersing it in a Cartesian grid. A forcing term in the Navier-Stokes equations,
which can be either switched ‘off’ and ‘on’ depending on whether the grid cell is in the ‘fluid’
or ‘solid’ part of the domain, ensures that there is no flow outside the geometry. Consider an
example of a masking function of a circle on a grid with five cells in both the horizontal and the
vertical direction, as seen in Figure 3.1. If a cell is entirely within the circle, it is treated as part
of the fluid domain. Otherwise, it is labeled as part of the solid domain. In the fluid domain the
masking function attains the value 0 and in the solid domain the value 1. Because this is a fairly
simple case, it is readily checked whether a cell is entirely within the geometry. For other cases
later on in this thesis, the only condition on whether a cell is ‘fluid’ or ‘solid’ is whether the cell
centre is inside the geometry.

By removing the cells that are part of the solid domain, the number of cells is reduced in
this example by 80%. For more complex geometries, which are quite slender and possibly highly
3D contorted, the reduction in the number of cells can amount to 95%, which could result in
a significant reduction of the amount of time needed to compute velocity and pressure fields,
especially for large cases. The ‘fluid’ cells are labeled, starting from 0. The labeling as shown
in Figure 3.2 is just one way to do it. In principle, other choices can be accepted as well. The
labeling of the faces is restricted by one of the conditions mentioned above. Internal faces are
labeled first and the labeling finishes with boundary faces. For each cell the faces are checked
and the faces without label are given a label. If a cell has two or more faces without a label, the
face which connects to the cell with the lower label is labeled first.

The face normal vectors are such that they point into the cell with the larger label for internal
faces and outwards for boundary faces, as in Figure 3.3. The cell with the lower label is called
the owner of the face and the cell with the larger label is called the neighbour of the face.

Figure 3.4 shows the masking function as the grid is refined twice, where the number of cells
is doubled in each direction with each refinement. ‘Solid’ cells are shown in black and ‘fluid’ cells
are shown in white. Clearly, with only two refinements, already a quite acceptable approximation
to the circle is achieved, which obviously improves further with increasing resolution.

3.2 Poiseuille flow

In this section Poiseuille flow through a pipe is considered. First, the setting and several flow
parameters are presented. Second, velocity profiles for different resolutions are compared to the
analytical solution. Third, the observed convergence is quantified with several mathematical
measures.

Setting and control parameters

Flow through a pipe with radius R = 1 (m) and length Lx = 3 (m) with volumetric flow rate
Q = π

2 (m3/s), thus with average streamwise velocity ū = 1
2 , and kinematic viscosity ν = 1

2 is
considered. This flow corresponds to a Reynolds number Re = 1.

The analytical solution to the Navier-Stokes equation for this flow is

u(x, y, z) = R(1− y2 − z2), v(x, y, z) = w(x, y, z) = 0. (3.1)

In order to simulate the flow the immersed boundary method is used as a starting point and
the pipe is considered to be immersed in a box of dimensions 3×3×3 (m), and a uniform grid is
applied to it with resolution 4×2k×2k with k = 3 . . . 7. In Figure 3.5 profiles, both numerical and
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Figure 3.1: Illustration of a masking function for a cross section of a pipe. Cells which are entirely
within the circle are part of the fluid domain and the masking function has value 0 there. For
the remaining cells, which are part of the solid domain, the masking function has value 1.
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Figure 3.2: Illustration of the labeling of cells and faces. The labeling of cells is arbitrary, but
the labeling of faces has to satisfy certain conditions.
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Figure 3.3: Illustration of the direction of the face normal vectors. Normal vectors of internal
faces point into the cell with the larger label. Normal vectors of boundary faces points outwards.
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(a) (b) (c)

Figure 3.4: Illustration of the masking function as the grid is refined.

analytical, of the streamwise velocity u are shown. For k ≥ 5 the numerical solution is already
visually close to the analytical solution and the approximation gets better as k is increased. In
order to quantify the apparent convergence different ways to measure the distance between the
numerical and analytical solution are introduced.

To check convergence the distance between the numerical solutions and the analytical solution
is measured with two different norms, i.e. the l2-norm

||uNz
− u||2 =

√√√√ Nz∑
n=1

(uNz (0, 0, zn)− u(0, 0, zn))2, (3.2)

where zn is a grid point, which depends on Nz, and the l∞-norm

||uNz − u||∞ = max
n=1...Nz

|uNz (0, 0, zn)− u(0, 0, zn)|. (3.3)

In Figure 3.6 these distances are compared as a function of Nz. Clearly, both distances converge
with first order.

Being able to compare a numerical solution to an analytical solution is convenient but is
often not possible for more complex geometries. For that reason, one might want to measure
distances between a numerical solution and the analytical solution differently. Figure 3.7 shows
how three different quantities converge to the exact value. Two lines, one showing the difference
in the diameter of the pipe, measured as the difference between z1 and zNz , and one showing
the difference between the integrals over the streamwise velocity u from z1 to zNz , where the
integral over the numerical solution is found with a trapezoidal rule, marked with crosses and
circles respectively, indicate first order convergence. The difference in the maximum streamwise
velocity, which is shown as a line with triangle markers, appears to converge faster with second
order.

Instead of measuring distances over a line one could compare quantities related to the entire
volume of the pipe. Figure 3.8 shows the differences in the volume of the pipe (crosses), the
volume integral over the streamwise velocity u (circles) and the volume integral over the kinetic
energy E = 1

2 (u2 + v2 + w2) (triangles). The straight lines without markers have slope −1 and
−2 respectively. Clearly, the three quantities converge with first order.
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Figure 3.5: Velocity profiles for Poiseuille flow through a pipe of radius R = 1 for several
resolutions. The number of grid points in the z-direction is Nz = 2k, where k = 3 . . . 7, marked
with pluses, crosses, stars, open and filled squares respectively. The solid line corresponds to the
analytical solution u(x, 0, z) = R(1− z2).
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Figure 3.6: Convergence of the streamwise velocity for Poiseuille flow through a pipe of radius
R = 1 towards the analytical solution u(x, 0, z) = R(1 − z2) in both the l2-norm (crosses) and
the l∞-norm (circles). The straight line has slope −1.
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Figure 3.7: Convergence of several quantities with respect to the exact value for Poiseuille flow
through a pipe of radius R = 1. The crosses correspond to the length of the line from bottom
to top of the pipe in the z-direction, the circles to the integral of the streamwise velocity u over
this line and triangles to the maximum streamwise velocity along this line. The straight lines
have slope −1 and −2 respectively.
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Figure 3.8: Convergence of several quantities with respect to the exact value for Poiseuille flow
through a pipe of radius R = 1. The crosses correspond to the volume of the pipe, the circles to
the streamwise velocity u integrated over the volume of the pipe and the triangles to the kinetic
energy E integrated over the volume of the pipe, where E = 1

2 (u2 + v2 +w2). The straight lines
without markers have slope −1 and −2 respectively.



Chapter 4

Applications

In this chapter flow through more realistic geometries is considered. First laminar flow through
curved vessels is considered in Section 4.1 and this section is concluded with flow through a real-
istic geometry. In Section 4.2 flow with realistic flow parameters is examined and a comparison
is made with laminar flow.

4.1 Curved and realistic vessels

In this section laminar flow through several curved vessels is considered and is concluded with
laminar flow through a realistic geometry which is constructed from a masking function obtained
after manipulation of a 3DRA scan.

The centerline of the curved vessels in this section is described by the curve (xc(s), yc(s), zc(s))

xc = 12s, yc = 2, zc = 4 + 2ε sin(2π(s− 1

4
)) + 2(1− ε) sin(2π(s3 − 1

4
)), (4.1)

with skewness-parameter ε ∈ [0, 1]. The reference case with ε = 1 is considered first. Two addi-
tional cases, with ε = 0.5 and ε = 0.25 respectively, are considered to try to explain unexpected
behavior of the solution in the reference case.

Figure 4.1 shows slices of the velocity field through the center of the vessel for three different
resolutions. At a coarse grid with resolution 32× 8× 16 the solution respresents the flow rather
poorly, but with one refinement to a resolution of 64× 16× 32 the solution shows qualitatively
agreement with the next refinement to a resolution of 128× 32× 64.

In Figure 4.2 an illustration of the masking function on a plane through the center of the
vessel is given together with profiles of the streamwise velocity at different streamwise locations
at resolution 64× 16× 32. These velocity profiles look similar to what was found in [2].

For different resolutions profiles of the streamwise velocity at several equidistant streamwise
locations are shown in Figure 4.3. Note that grids with different resolution do not have coinciding
grid points, because OpenFOAM uses a collocated grid, which results in slightly different stream-
wise locations as the resolution is increased. As the resolution is increased from 32 × 8 × 16,
the profiles clearly converge when viewed graphically. To quantify the convergence, measures
similar to those introduced in Chapter 3 are used. An analytical solution is not available for this
case, so each value is compared to the value obtained on the grid with the highest resolution
of 512 × 128 × 256 instead. Convergence of the geometrical representation, as measured by the
length of lines from bottom to top of the vessel at different x can be seen in Figure 4.4. For

23
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(a) (b)

(c)

Figure 4.1: Slices of the velocity field through the center of a curved vessel with ε = 1. Resolutions
are (a) 32× 8× 16 (b) 64× 16× 32 (c) 128× 32× 64. Colors correspond to the magnitude of the
velocity vector, where blue corresponds to zero and red corresponds to the maximum velocity.
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Figure 4.2: (a) Masking function on a plane through the center of a curved vessel with ε = 1.
(b) Velocity profiles on this plane at resolution 64× 16× 32.
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two locations this length does not change as the resolution is increased from 32 × 8 × 16, since
at these locations the outermost edges of the geometry coincide with grid points at the coarsest
grid. At the other locations the length converges slightly faster than first order.
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Figure 4.3: Velocity profiles on a plane through the center of a curved vessel with ε = 1.
Resolutions are ranging from 32 × 8 × 16 to 512 × 128 × 256, where the number of grid cells
is doubled in every direction with each refinement, indicated by dots, dash-dot-dot, dash-dot,
dashed and solid lines respectively.

Figure 4.5 shows the error of the integral of the streamwise velocity over lines from bottom
to top of the vessel with respect to the value of the integral for a solution found on a grid
with resolution 512× 128× 256. The error clearly shows second order convergence and at some
locations even higher order convergence is achieved.

The maximum streamwise velocity along lines from bottom to top of the vessel converges
with second or even higher order, as can be seen in Figure 4.6. At two locations this maximum
value gets very close to the maximum value found on a grid with resolution 512× 128× 256.

Integrals over the entire volume of the vessel are also considered. In Figure 4.7 the error with
respect to the value at resolution 512×128×256 of the volume of the vessel, the volume integral
of the streamwise velocity and the volume integral over the kinetic energy E can be seen. These
three quantities show convergence which is close to second order.

By chosing ε = 0.5 the vessel becomes slightly skewed. This skewness presents a problem.
Although the centerline of the vessel is nicely periodic, the currently generated boundary is not.
Extension of the geometry with a mirrored geometry solves this problem and a new geometry
which is periodic in the x-direction is obtained. Slices of the velocity field are presented in
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Figure 4.4: Error with respect to the numerical solution of the flow through the curved vessel
with ε = 1 at resolution 512 × 128 × 256 of the length of the line from bottom to top in the
z-direction at different streamwise locations xk = (kNx

4 − 1
2 )Lx

Nx
, k = 1 . . . 4, where Lx = 12.

The straight lines without markers have slope −1 and −2 respectively. For k = 1, 3 (crosses and
triangles respectively) it converges with second order to a certain value.
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Figure 4.5: Error with respect to the numerical solution of the flow through the curved vessel
with ε = 1 at resolution 512×128×256 of the streamwise velocity u integrated over the line from
bottom to top in the z-direction at different streamwise locations xk = (kNx

4 −
1
2 )Lx

Nx
, k = 1 . . . 4,

marked with crosses, circles, triangles and diamonds respectively, where Lx = 12. The straight
lines without markers have slope −1 and −2 respectively.
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Figure 4.6: Error with respect to the numerical solution of the flow through the curved vessel
with ε = 1 at resolution 512× 128× 256 of the maximum value of the streamwise velocity along
the line from bottom to top at different streamwise locations xk = (kNx

4 − 1
2 )Lx

Nx
, k = 1 . . . 4,

marked with crosses, circles, triangles and diamonds respectively, where Lx = 12. The straight
lines without markers have slope −1 and −2 respectively.
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Figure 4.7: Error with respect to the numerical solution of the flow through the curved vessel
with ε = 1 at resolution 512 × 128 × 256 of the integral

∫
V

1 dV (crosses), the integral
∫
V
u dV

(circles) and the integral
∫
V
E dV (triangles), where E = 1

2 (u2 + v2 + w2). The straight lines
without markers have slope −1 and −2 respectively.
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Figure 4.8, which clearly shows how the new geometry is formed from the original geometry and
a mirrored geometry. Similar to the case with ε = 1, the solution is poor at a coarse grid, but
after refining the grid once good agreement can be seen with the solution which is found when
the grid is refined even further.

(a)

(b)

(c)

Figure 4.8: Slices of the velocity field through the center of a curved vessel with ε = 0.5.
Resolutions are (a) 32 × 8 × 16 (b) 64 × 16 × 32 (c) 128 × 32 × 64. Colors correspond to the
magnitude of the velocity vector, where blue corresponds to zero and red corresponds to the
maximum velocity.

Figure 4.9 shows the masking function and profiles of the streamwise velocity at several
streamwise locations on a plane through the center of the vessel. These profiles look similar to
the profiles which were found for the case with ε = 1.

In Figure 4.10 profiles of the streamwise velocity for different resolutions, ranging from 32×
8×16 to 512×128×256, at several equidistant streamwise locations are shown. At each location
the profiles appear to converge.

Figure 4.11 shows the error of the integral of the streamwise velocity over the lines from
bottom to top of the vessel with respect to the value of the integral at resolution 512×128×256.
This integral clearly converges with second order, where convergence seems to be somewhat faster
at locations where the profiles are more symmetrical.

The maximum value of the streamwise velocity along the lines from bottom to top of the
vessel seems to behave in a similar way. As can be seen in Figure 4.12 these values also converge
with second order with respect to the value at resolution 512× 128× 256.

Figure 4.13 shows that for the integrals over the entire volume of the vessel the order of
convergence is second order for the volume integrals indicated with crosses and circles and first
order for the volume integral indicated with triangles. Similar orders of convergence were already



31 4.1. Curved and realistic vessels

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0  2  4  6  8  10  12

z

x (a)

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0  2  4  6  8  10  12
z

x (b)

Figure 4.9: Velocity profiles on a plane through the center of a curved vessel with ε = 0.5. The
resolution shown here is 64× 16× 32.
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Figure 4.10: Velocity profiles on a plane through the center of a curved vessel with ε = 0.5.
Resulotions are ranging from 32 × 8 × 16 to 512 × 128 × 256, where the number of grid cells
are doubled in every direction for each refinement, indicated with dots, dash-dot-dot, dash-dot,
dashed and solid lines respectively.
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Figure 4.11: Error with respect to the numerical solution of the flow through the curved pipe
with ε = 0.5 at resolution 512 × 128 × 256 of the integral

∫
IN (xk)

u dz for xk = (kNx

4 − 1
2 )Lx

Nx
,

k = 1 . . . 4, marked with crosses, circles, triangles and diamonds respectively, where Lx = 12.
The straight lines without markers have slope −1 and −2 respectively.
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Figure 4.12: Error with respect to the numerical solution of the flow through the curved pipe
with ε = 0.5 at resolution 512×128×256 of the maximum value of the streamwise velocity along
the line from bottom to top of the vessel for different streamwise locations xk = (kNx

4 −
1
2 )Lx

Nx
,

k = 1 . . . 4, marked with crosses, circles, triangles and diamonds respectively, where Lx = 12.
The straight lines without markers have slope −1 and −2 respectively.
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observed for the case with ε = 1.
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Figure 4.13: Error with respect to the numerical solution of the flow through the curved pipe
with ε = 0.5 at resolution 512× 128× 256 of the integral

∫
V

1 dV (crosses), the integral
∫
V
u dV

(circles) and the integral
∫
V
E dV (triangles), where E = 1

2 (u2 + v2 + w2). The straight lines
without markers have slope −1 and −2 respectively.

With ε = 0.25 the vessel becomes even more skewed. Also with this case a mirrored geometry
is used as extension to the original geometry to obtain periodicity in the x-direction. Figure 4.14
shows slices of the velocity field through the center of the vessel. Typical behavior is observed,
where starting from a coarse grid with resolution 32 × 8 × 16 the solution obtained after one
refinement shows qualitative agreement with the solution at even finer grids.

In Figure 4.15 the masking function and profiles of the streamwise velocity on a plane through
the centre of the vessel are shown. The increased skewness creates a fairly sharp transition in
the geometry, as can be seen from the masking function, but this does not seem to affect the
solution in a dramatic way at the selected flow conditions.

Profiles of the streamwise velocity at equidistant streamwise locations are shown in Fig-
ure 4.16. The profiles clearly converge. Even at locations where the geometry changes rapidly,
convergence seems to be fairly good.

Convergence of the integral of the streamwise velocity over the line from top to bottom for
several streamwise locations is clearly second order, as can be seen in Figure 4.17. The rate of
convergence of the error with respect to the value of the integral at resolution 512 × 128 × 256
seems to depend less on the location than for the previous two cases.

Again, the error of the maximum streamwise velocity with respect to the value at resolution
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(a)

(b)

(c)

Figure 4.14: Slices of the velocity field through the center of a curved vessel with ε = 0.25 with
ε = 0.25. Resolutions are (a) 32× 8× 16 (b) 64× 16× 32 (c) 128× 32× 64. Colors correspond
to the magnitude of the velocity vector, where blue corresponds to zero and red corresponds to
the maximum velocity.
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Figure 4.15: Velocity profiles on a plane through the centre of a curved vessel with ε = 0.25. The
resolution is 64× 16× 32.
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Figure 4.16: Velocity profiles on a plane through the center of a curved pipe with ε = 0.25.
Resolutions are ranging from 32× 8× 16 to 512× 128× 256, where the number of grid cells are
doubled in every direction for each refinement.
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Figure 4.17: Error with respect to the numerical solution of the flow through the curved pipe
with ε = 0.25 at resolution 512 × 128 × 256 of the integral

∫
IN (xk)

u dz for xk = (kNx

4 −
1
2 )Lx

Nx
,

k = 1 . . . 4, marked with crosses, circles, triangles and diamonds respectively, where Lx = 12. All
lines seem to indicate second order convergence. The straight lines without markers have slope
−1 and −2 respectively.
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512× 128× 256 seems to give the same conclusion as the error of the integral of the streamwise
velocity. As can be seen in Figure 4.18, the maximum streamwise velocity converges with second
order, and at one location even with higher order.
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Figure 4.18: Error with respect to the numerical solution of the flow through the curved pipe
with ε = 0.25 at resolution 512 × 128 × 256 of the maximum value of the streamwise velocity
along a line from bottom to top for streamwise locations xk = (kNx

4 −
1
2 )Lx

Nx
, k = 1 . . . 4, marked

with crosses, circles, triangles and diamonds respectively, where Lx = 12. The straight lines
without markers have slope −1 and −2 respectively.

The errors of the integrals over the entire volume of the vessel with respect to the value at
resolution 512 × 128 × 256, which are presented in Figure 4.19, very clearly show second order
convergence.

With these three cases it was shown that it is possible to simulate laminar flow in curved
vessels, even if they are skewed. Results in terms of profiles and convergence of different quantities
are convincing enough to assume that it is possible to simulate laminar flow in realistic geometries
as well.

4.2 Realistic geometry and flow conditions

In this section flow through a realistic geometry is considered. This geometry is constructed from
a masking function, which was obtained after manipulation of a 3DRA scan. Both laminar flow
and flow at a realistic Reynolds number are considered. After a qualitative inspection of the flow
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Figure 4.19: Error with respect to the numerical solution of the flow through the curved pipe
with ε = 0.25 at resolution 512× 128× 256 of the integral

∫
V

1 dV (solid), the integral
∫
V
u dV

(dashed) and the integral
∫
V
E dV (dotted), where E = 1

2 (u2 + v2 + w2). The bold lines have
slope −1 and −2 respectively.
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by looking at streamlines and contour plots of the streamwise velocity, a convergence study is
done for the laminar flow. It will become clear that convergence is much harder to achieve for
the realistic flow.

The vessel under consideration has radius R = 1.94 · 10−3(m), a typical value for a vessel
in the circle of Willis, the mayor system supplying blood to the brain. The kinematic viscosity
of blood is ν = 3.01 · 10−6 (m2/s). Figure 4.20 shows streamlines of laminar flow with average
streamwise velocity ū = 1.55·10−3 (m/s) through the vessel, corresponding to a Reynolds number
Re = 1. The streamlines indicate that the main flow does not enter the cavity of the aneurysm
at the selected flow condition.

Figure 4.20: Streamlines of laminar flow through a geometry constructed from a masking func-
tion, which was obtained after manipulation of a 3DRA scan, at resolution 256× 128× 256.

In Figure 4.21 the streamlines of realistic flow with average streamwise velocity ū = 0.388
(m/s) is shown, corresponding to Re = 250. The behavior of the flow changes drastically,
compared to Re = 1. Streamlines now do enter the cavity of the aneurysm and the flow appears
to become somewhat unsteady, even in parts of the domain where the geometry changes smoothly.

Contour lines of the streamwise velocity of laminar flow at two different locations, one being
in the part of the domain where the geometry changes smoothly and one near the opening of
the cavity of the aneurysm, are shown in Figure 4.22. Both in Figure 4.22(a) and the lower part
of Figure 4.22(b) a flow reminiscent of Poiseuille flow can be recognised. Figure 4.22(b) also
confirms that the main flow does not enter the cavity of the aneurysm. The solutions seems to
converge relatively fast, the contour lines at resolution 128× 64× 128 look a lot like the contour
lines at resolution 256× 128× 256.

Figure 4.23 shows contour lines of the streamwise velocity of realistic flow at the previously
mentioned locations at different times. Although the unsteady character of the flow is clearly
visible, similar structures arise at different times. Figure 4.23(a) shows that flow is mainly in the
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Figure 4.21: Streamlines of flow at Re = 250 through a geometry constructed from a masking
function, which was obtained after manipulation of a 3DRA scan, at resolution 256× 128× 256.

streamwise direction and small areas of backflow appear at the top of the vessel. In Figure 4.23-
(b) a large area of backflow can be recognised at the top of the vessel, while areas of flow in the
streamwise direction are mainly at the bottom and at the right side of the vessel.

In Figure 4.24 profiles of the streamwise velocity of laminar flow through the vessel are shown.
The convergence of the solution, which dominates especially in the smooth part of the domain,
can be very clearly seen in this figure.

When looking at profiles of the streamwise velocity in the developing phase of realistic flow
through the vessel, as can be seen in Figure 4.25, it is clear that the solution indeed converges
rather poorly. However, certain features of the flow can be recognised over different resolutions.
The locations of extreme values are approximately the same for different resolutions.

The convergence of the profiles of the streamwise velocity that was observed for laminar flow
also becomes apparent in Figure 4.26, which shows that the integral over the streamwise velocity
and the maximum streamwise velocity converge with second or higher order.

The volume of the vessel and the integrals of the streamwise velocity and kinetic energy over
the volume of the vessel very clearly converge with second order, as can be seen in Figure 4.27.

Although the profiles of the streamwise velocity of realistic flow showed very little convergence,
the integral of the streamwise velocity over a line in the smooth part of the domain still converges
with second order, as can be seen in Figure 4.28. The integral of the streamwise velocity over a
line near the opening of the cavity of the aneurysm and the maximum streamwise velocity along
these lines converge with an order which is much closer to first order.

Figure 4.29 shows that the integral of the streamwise velocity over the volume of the vessel
converges with second order, as was the case for laminar flow. It also shows that the integral of
the kinetic energy over the volume of the vessel converges with an order which is at least higher
than first order.
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(a)

(b)

Figure 4.22: Contour lines of the streamwise velocity of laminar flow on cross sections in the
y−z plane at 1/16th (a) and half (b) of the domain in the x-direction. The values of the contour
lines in (a) are uniformly distributed on the interval [0, 6.30 · 10−3] and in (b) on the interval
[−7.53 · 10−6, 4.58 · 10−3]. From left to right the resolutions are 64× 32× 64, 128× 64× 128 and
256× 128× 256.
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(a)

(b)

Figure 4.23: Contour lines of the streamwise velocity of realistic flow with Re = 250 on cross
sections in the y−z plane at 1/16th (a) and half (b) of the domain in the x-direction at resolution
256× 128× 256. The values of the contour lines in (a) are uniformly distributed on the interval
[−0.292, 2.16] and in (b) on the interval [−0.909, 1.42]. From left to right time increases from
0.01 to 0.4 with increment ∆t = 0.13.
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Figure 4.24: Profiles of the streamwise velocity in dimensionless quantities of laminar flow at
1/16th of the domain in the x-direction and 13/16th of the domain in the y-direction (a), and at
half of the domain in both the x-direction and the y-direction (b). Resolutions are 32× 16× 32
(dots), 64× 32× 64 (dash-dot), 128× 64× 128 (dash) and 256× 128× 256 (solid).
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Figure 4.25: Profiles of the streamwise velocity in dimensionless quantities in the developing
phase, at t = 0.01, of realistic flow with Re = 250 at 1/16th of the domain in the x-direction and
13/16th of the domain in the y-direction (a), and at half of the domain in both the x-direction
and the y-direction (b). Resolutions are 32×16×32 (dots), 64×32×64 (dash-dot), 128×64×128
(dash) and 256× 128× 256 (solid).

 1e-08

 1e-07

 1e-06

 1e-05

 10

er
ro

r

Nz (a)

 1e-05

 0.0001

 0.001

 10

er
ro

r

Nz (b)

Figure 4.26: Error with respect to the numerical solution of laminar flow through the vessel at
resolution 256× 128× 256 on lines from bottom to top of the vessel at 1/16th of the domain in
the x-direction and 13/16th of the domain in the y-direction (crosses), and at half of the domain
in both the x-direction and the y-direction (circles). In (a) the error of the integral of the
streamwise velocity over the lines is shown and (b) shows the error of the maximum streamwise
velocity along the lines. The straight lines without markers have slope −1 and −2 respectively.
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Figure 4.27: Error with respect to the numerical solution of laminar flow through the vessel at
resolution 256 × 128 × 256 of the integral

∫
V

1 dV (crosses), the integral
∫
V
u dV (circles) and

the integral
∫
V
E dV (triangles), where E = 1

2 (u2 + v2 +w2). The straight lines without markers
have slope −1 and −2 respectively.
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Figure 4.28: Error with respect to the numerical solution of realistic flow at Re = 250 through
the vessel at resolution 256 × 128 × 256 on lines from bottom to top of the vessel at 1/16th
of the domain in the x-direction and 13/16th of the domain in the y-direction (crosses), and
at half of the domain in both the x-direction and the y-direction (circles). In (a) the error of
the integral of the streamwise velocity over the lines is shown and (b) shows the error of the
maximum streamwise velocity along the lines. The straight lines without markers have slope −1
and −2 respectively.

When comparing the average pressure drop over the vessel for laminar and realistic flow in
Figure 4.30, a significant difference in temporal behavior can be seen. After a short period of
highly oscillatory behavior associated with the transient following the unrealistic initial condition
of zero flow, the global pressure gradient stabilises and remains constant for laminar flow, whereas
the global pressure gradient for realistic flow continues with a lower amplitude oscillation.

The initial errors for each of the components of the fluid velocity in the iterative method
to solve the momentum equations are shown in Figure 4.31. The termination criterion for the
iterative method requires that this error is lower than 10−5. Even after this criterion is met by
the initial errors, the initial errors continue to decrease and have decreased with nine decades by
the end of the simulation for laminar flow. In case of realistic flow at Re = 250 the criterion is
never met by the initial errors. In fact, the initial errors decrease with four decades and then
level out with a small amplitude oscillation. This corresponds with the observed unsteady flow
behavior. The residuals never can become very small in such conditions.
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Figure 4.29: Error with respect to the numerical solution of realistic flow at Re = 250 through
the vessel at resolution 256 × 128 × 256 of the integral
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(circles) and the integral
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E dV (triangles), where E = 1

2 (u2 + v2 + w2). The straight lines
without markers have slope −1 and −2 respectively.
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Figure 4.30: Evolution of the global pressure gradient in the streamwise direction, shown in
dimensionless quantities, at different resolutions for both laminar flow (a) and realistic flow (b).
Resolutions are 64× 32× 64 (dash-dot), 128× 64× 128 (dash) and 256× 128× 256 (solid).
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Figure 4.31: Initial errors in the iterative method to solve the momentum equations for each
time step of the velocity in the x-direction (solid), y-direction (dashed), z-direction (dash-dot)
for both laminar flow (a) and realistic flow (b) through the vessel.



Chapter 5

Discussion and outlook

The main goal of this project was to simulate blood flow in the human brain with OpenFOAM.
The immersed boundary (IB) method has proven to be a suitable method for these type of
simulations. With the IB method, a geometry is simply immersed in a Cartesian grid and is
respresented by means of a masking function. This masking function is a binary function which
equals zero if a grid cell is part of the geometry and one otherwise. While complex and time
consuming grid generation is prevented, the simplicity of the IB method is in itself a disadvantage.
Namely, often only a small portion of the grid cells are part of the geometry, which makes the IB
method a rather inefficient method in terms of computation time. In this project an effort was
made to construct a grid in OpenFOAM from the masking function, including only grid cells
which are part of the geometry. To construct the grid, OpenFOAM requires a number of input
files. The challenge was to extract the grid cells which are part of the geometry from the masking
function in an efficient way and generate the input files accordingly. This was done succesfully
and the most important requirements posed by OpenFOAM on the input files were presented in
this thesis.

To validate the approach in this thesis, Poiseuille flow through a cylindrical pipe was con-
sidered. As expected, a first-order convergence of the numerical solution was observed. This
corresponds to what was found by Mikhal [2]. When laminar flow through a curved pipe was
also examined, the numerical solution showed an unexpected second-order convergence. In the
study by Mikhal this superconvergence, which was attributed to the symmetry of the domain
in this thesis, was not observed. Attempts to recover first-order convergence by increasing the
skewness of the curved pipe, thus breaking symmetry, did not succeed. The superconvergence
of the numerical solutions for curved pipes deserves further attention. Results from simulations
of flow through these model geometries were convincing enough to assume that simulations of
laminar flow through a realistic geometry, which was extracted from 3D rotational angiography
(3DRA) data, would give reliable results as well. Indeed, the resulting numerical solutions be-
haved as expected and showed no abnormalities. Velocity profiles at different locations in the
blood vessel even suggested a second-order convergence. Simulations at higher resolutions could
confirm this. Naturally, the resolution of the grid is limited by the resolution of the original
3DRA data. Simulations of flow at physiological flow rates revealed unsteady behavior of the
flow. This is a remarkable result, since Mikhal explicitly reports steady flow at these flow rates.

The current approach can be improved upon in several ways. The staircase approximation
of the geometry led to first-order, and even second-order, convergence of the numerical solution.
It would be an interesting topic of research to do a similar study with a smoothened geometry,
e.g. by adding cells with a prism shape. A crucial part in further development of the currently
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available tools is automation. To smoothen the process from masking function to performing
simulations in OpenFOAM, the fact that OpenFOAM allows its users to create their own appli-
cations could be utilised to build an application which generates the input files for the grid, if a
masking function is supplied.
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