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Summary ii

Summary: Behaviors over Finite Fields

Discrete time behaviors given by B = {w : Z+ → F |R(σ)w = 0}, where F is a finite
field, σ a shift operator, and R(ξ) a polynomial with coefficients in F, can be determined
explicitly if R(ξ) splits over F, i.e. can be factored into linear factors. We discuss the case
that R(ξ) does not split over F. There holds that for every polynomial there exists a field
extension E of F such that it splits over E. We give an explicit expression for solutions of
R(σ)w = 0 in case all roots in E are mutually distinct. The solution is extended to the
multivariable case for autonomous systems. Again it is assumed that the characteristic
values are mutually distinct. Single input, single output systems are discussed in the last
chapter.



Notation 1

Notation

Z set of integers
Z+ set of nonnegative integers
N set of positive integers
C set of complex numbers
Q set of rational numbers
R set of real numbers
R∗ the set of nonzero elements of R
F[ξ] set of polynomials with coefficients in F, in the indeterminate ξ
char(F) the characteristic of F

|F| the order of F

E/F a field extension of F

[E : F] degree of E over F

Fq or GF(q) finite field of order q
Fm×n set of m × n matrices, with elements in F

Fm×n[ξ] set of m × n polynomial matrices, with coefficients in F

F(a1, a2, . . . , an) smallest field that contains F and a1, . . . , an

WT set of all maps from T to W

L
q the set of behaviors in q variables

that admit a kernel representation R(σ)w = 0



Chapter 1

Introduction

In the behavioral approach to systems theory, a dynamical system is determined by a
set of possible time trajectories. This set is called the behavior of a system. No a priori
distinction is made between input and output variables. Notions like controllability, time
invariance and linearity are viewed (and defined) as properties of the system and not as a
consequence of its representation. A time-invariant and linear behavior can be represented
in various ways, such as kernel representations, image representations and state space
representations.
In a more mathematical setting: a dynamical system Σ is a triple Σ = (T, W, B) where T

is the time set, W is the signal space and B ⊂ WT the behavior.

In this part, we will discuss discrete time linear time-invariant complete behaviors over
finite fields. By this we mean sets of time trajectories w that take their values in Fq, where
F is a finite field and q is the number of variables. The time set T is the set of nonnegative
integers Z+.

A field is an algebraic structure in which the operations of addition, subtraction, multi-
plication and division (except division by zero) may be performed, and the same rules
hold which are familiar from the arithmetic of ordinary numbers. A finite field or Galois
field (so named in honor of Évariste Galois) is a field that contains only finitely many
elements. Finite fields are important in number theory, algebraic geometry, Galois theory,
cryptography, and coding theory.
Chapter 2 contains a brief survey of the algebra that is needed to understand the concept
of finite fields and also a number of important properties of finite fields.

Linear, time invariant and complete behaviors over finite fields admit a kernel represen-
tation, i.e. B = {w : Z+ → Fq |R(σ)w(k) = 0} where σ denotes the backward shift
(σw)(k) = w(k + 1). R(ξ) is a g × q polynomial matrix, whose coefficients are elements
of finite field F. In Chapter 3 a number of definitions is given that reflect the behavioral
approach to systems theory.

In Chapter 4 we will give explicit expressions for the behavior of autonomous systems.
For autonomous systems there holds that the future of every trajectory is completely de-
termined by its past. Their behavior can be represented by R(σ)w = 0 where R(ξ) is a
square polynomial matrix in Fq×q[ξ] of which the determinant is a nonzero polynomial.
In their paper R-S list decoding from a system theoretic perspective [4], M. Kuijper and
J.W. Polderman give an explicit description of such behaviors, in case all roots of detR(ξ)
are elements of finite field F. The problem is that detR(ξ) may contain irreducible poly-
nomials as factors, i.e., polynomials that do not have roots in F. For finite fields holds that
there exist extension fields, finite fields of which F is a subfield, over which detR(ξ) splits
into linear factors. The behaviors over these extension fields can be determined explicitly.
In Chapter 4 we will restrict the expressions for the time trajectories such that they belong
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to finite field F. We will do this for the special case that detR(ξ) has mutually distinct
roots (in the extension field).



Chapter 2

Preliminaries: Finite fields

In this Chapter we will give a brief survey of the algebra that is needed to understand the
concept of finite fields and also a number of important properties of finite fields. Most of
the definitions, theorems and proofs can be found in [5]; some in [1] or [2].

2.1 Definitions

2.1.1 Groups, Rings, Fields and Ideals

Definition 2.1.1 (Group) A group is a set G together with a binary operator · on G
such that the following three properties hold.
1) · is associative, i.e ∀x, y, z ∈ G : x · (y · z) = (x · y) · z.
2) there exists an identity element 1 s.t. for all x ∈ G, x · 1 = 1 · x = x
3) For each x ∈ G, there exists an inverse element x−1 ∈ G such that x · x−1 = 1
The group is called Abelian or commutative if also holds
4) ∀x, y ∈ G, x · y = y · x.

In the additive notation x · y, 1 and x−1 become x + y, 0 and −x respectively.

Definition 2.1.2 (Finite group, Order) A group G is called finite if it contains finitely
many elements. The number of elements in a finite group is called its order. We will use
|G| to denote the order of a group.

Definition 2.1.3 (Cyclic group) A multiplicative group G is called cyclic if there exists
an element x ∈ G such that for any y ∈ G there is some integer n with y = xn. Such an
element x is called a generator of G. We write G = 〈x〉.

Definition 2.1.4 (Ring) [R, +, ·] is called a ring with +, · binary operations, if
1) R is an Abelian group with respect to +
2) · is associative
3) the distributive laws hold: for all x, y, z ∈ R we have x · (y + z) = x · y + x · z and
(y + z) · x = y · x + z · x
A ring is called commutative if · is commutative.

Definition 2.1.5 (Integral domain) A commutative ring [R, +, ·] is called an integral
domain R has no zero divisors, that is ∀x, y ∈ R : x · y = 0 ⇒ x = 0 or y = 0), and R is
not the trivial zero ring {0}.

Definition 2.1.6 (Field) An commutative ring [R, +, ·] is called a field if every nonzero
element has a multiplicative inverse in R, that is ∀x ∈ R∗,∃y ∈ R : x · y = y · x = 1

So [R, +, ·] is a field if

4



2.1 Definitions 5

i. [R, +] is an Abelian group

ii. [R∗, ·] is a commutative group

iii. both distributive laws hold in [R, +, ·]

Definition 2.1.7 (Finite field, Galois field) A field F is called finite if the number of
elements |F | is finite. Such a field is also called Galois field. A finite field with q elements
is denoted as Fq or as GF(q).

From now on we will denote a ring or a field simply as R or F and not as [R, +, ·].

Definition 2.1.8 (Characteristic) If there exists a positive integer n such that nr = 0
for every element r of ring R then the least such positive integer n is called the charac-
teristic of R, denoted by char(R). If no such positive integer n exists, R is said to have
characteristic 0.

Definition 2.1.9 (Subring) A subset S of a ring R is a subring of R if S is itself a ring
with the operations of R. A subgroup and a subfield are defined similarly.

Definition 2.1.10 (Ideal) A subset J of a ring R is called an ideal provided J is a
subring of R and for all x ∈ J and r ∈ R we have xr ∈ J and rx ∈ J .

Definition 2.1.11 (Principle ideal) Let R be a commutative ring. An ideal J of R is
said to be principle if there is an a ∈ R such that J = (a), where (a) = {ra + na | r ∈
R, n ∈ Z}, or, if R contains an identity, then (a) = {ra | r ∈ R}. The principle ideal J is
generated by a.

Definition 2.1.12 (Principle ideal domain) The commutative ring R is called a prin-
ciple ideal domain if R is an integral domain and if every ideal J of R is principle.

Definition 2.1.13 (Residue class, Factor ring) An ideal of J of a ring R defines a
partition of R into disjoint cosets, called residue classes modulo J . The residue class of the
element x of R modulo J is denoted by [x] = x+J . Elements x, y ∈ R are congruent modulo
J , written x ≡ y mod J if they are in the same residue class modulo J , i.e. x − y ∈ J .
The set of residue classes forms a ring w.r.t. operations (x + J) + (y + J) = (x + y) + J
and (x + J)(y + J) = xy + J . The residue class ring (or factor ring) is denoted by R/J

Example 2.1.14 Examples of (infinite) fields are the set of integers Z, the set of rational
numbers Q, and the set of real numbers R.
Let Zp denote the set of integers modulo p, p ∈ N. So Zp = {0, 1, . . . , p− 1}. Then Zp is a
finite field if and only if p is prime.
Z/(p), p prime, is isomorphic to Zp with the isomorphism defined by φ(a+(p)) = a mod p.

2.1.2 Morphisms

Definition 2.1.15 (Homomorphism) A mapping φ from a ring R to a ring S is called
a ring homomorphism if it preserves the two ring operations φ(a + b) = φ(a) + φ(b) and
φ(ab) = φ(a)φ(b).

Definition 2.1.16 An injective homomorphism is called a monomorphism. An epimor-
phism is surjective. An isomorphism is bijective.
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A homomorphism from S to itself is called an endomorphism. An isomorphism from S
onto itself is called an automorphism.

2.1.3 Polynomials

Definition 2.1.17 (Polynomial) Let R be an arbitrary ring. A polynomial over R is an
expression of the form

∑n
i=0 aix

i, n ∈ Z+, The coefficients ai, i = 1, . . . , n are elements of
R.

Definition 2.1.18 (Polynomial ring) The ring formed by the polynomials over R is
called the polynomial ring and is denoted by R[x].

Definition 2.1.19 (Irreducible) Let F be an arbitrary field. A polynomial p(x) ∈ F[x]
is called irreducible over F (or irreducible in F[x]) if p(x) has a positive degree and p(x) =
a(x)b(x) with a(x), b(x) ∈ F[x] implies that a(x) or b(x) is a constant polynomial.

Definition 2.1.20 (Derivative) The derivative of a polynomial p(x) =
∑n

i=0 aix
i ∈ F[x]

is defined by p′(x) =
∑n

i=1 iaix
i−1 ∈ F[x].

Definition 2.1.21 (Split) Let F be a field. A polynomial p(x) ∈ F[x] of positive degree
n is said to split in F if it can be written as a product of linear factors in F[x], i.e. if
∃a, α1, α2, . . . , αn ∈ F such that p(x) = a(x − α1)(x − α2) · · · (x − αn).

2.1.4 Field extensions

Definition 2.1.22 (Extension field) A field E is called an extension field of F if F is a
subfield of E. The field extension is denoted as E/F (read as E over F). If F 6= E then F

is called a proper subfield.

Definition 2.1.23 (Prime field) A field containing no proper subfields is called a prime
field.

Definition 2.1.24 (Prime subfield) The intersection of all subfields of F is a prime
field. It is called the prime subfield.

Definition 2.1.25 (Finite extension, Degree) Let E be an extension field of F. If E,
considered as a vector space over F, is finite-dimensional then E/F is called a finite exten-
sion. The dimension of E over F is called the degree and is denoted as [E : F].

Definition 2.1.26 (Adjunction, simple field) Let E be an extension field of F, and
let a1, a2, . . . , an be elements of E. The smallest subfield of E that contains F and the set
{a1, a2, . . . , an} is denoted by F(a1, a2, . . . , an). The elements a1, . . . , an are adjoined to F.
If a single element a is adjoined, the field F(a) is called simple.

Definition 2.1.27 (Splitting field) An extension field E of field F is called a split-
ting field for p(x) ∈ F[x] if p(x) splits in E but in no proper subfield of E, i.e.
p(x) = a

∏n
i=1 (x − αi), a, α1, . . . , αn ∈ E and E = F(α1, . . . , αn).

Definition 2.1.28 (Algebraic, Transcendental) Let E be an extension field of F. An
element u ∈ E is called algebraic over F if u is a root of some polynomial p(x) ∈ F[x]∗.
If such a nonzero polynomial does not exist, u is called transcendental. E is called an
algebraic extension of F if all u ∈ F are algebraic over E.
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Definition 2.1.29 (Minimal polynomial) If u ∈ E is algebraic over F, then the
uniquely determined monic polynomial p(x) ∈ F[x] generating the ideal J = {p(x) ∈
F[x] | p(u) = 0} of F[x] is called the minimal polynomial. The minimal polynomial is irre-
ducible in F[x]. p(x) is the monic polynomial in F[x] of least degree having u as a root.

Definition 2.1.30 (Conjugates) Let Fqm be an extension of Fq and let α ∈ Fm
q . Then

the elements α, αq, αq2

, . . . , αqm−1

are called the conjugates of α with respect to Fq.

The conjugates of α ∈ Fqm w.r.t. Fq are distinct if and only if the minimal polynomial of
α over Fq has degree m.

2.2 Properties of finite fields

Theorem 2.2.1 A finite field has prime characteristic.

Theorem 2.2.2 The prime subfield of a finite field F is isomorphic to Fp, where p =
char(F).

Theorem 2.2.3 ([5] Lemma 2.1) Let E be a finite field containing a subfield F with q
elements. Then E has qm elements, where m = [E : F].

Theorem 2.2.4 ([5] Theorem 2.2) Let F be a finite field. Then F has pn elements,
where p is the characteristic of F and n is the degree of F over its prime subfield.

Theorem 2.2.5 ([5] Lemma 2.3) If F is a finite field with q elements, then every a ∈ F

satisfies aq = a.

Theorem 2.2.6 ([5] Theorem 2.5 Existence and Uniqueness of Finite Fields)
For every prime p and every positive integer n there exists a finite field with pn elements.
Any finite field with q = pn elements is isomorphic to the splitting field of xq − x over Fp.

Theorem 2.2.7 ([5] Theorem 2.6 Subfield criterion) Let Fq be the finite field with
q = pn elements. Then every subfield of Fq has order pm, where m is a positive divisor of
n. Conversely if m is a positive divisor of n, then there is exactly one subfield of Fq with
pm elements.

Theorem 2.2.8 ([5] Theorem 2.8) For every finite field Fq the multiplicative group F∗
q

of nonzero elements of Fq is cyclic.

Definition 2.2.9 (Primitive element) A generator of the cyclic group F∗
q is called a

primitive element of Fq.

Theorem 2.2.10 ([5] Theorem 1.61) Let f(ξ) ∈ F[ξ]. The residue class ring F[ξ]/f(ξ)
is a field if and only f(ξ) is irreducible over F.

Theorem 2.2.11 If E is a finite extension of F and D is a finite extension of E then D

is a finite extension of F with [D : F] = [D : E][E : F].

Theorem 2.2.12 ([5] Theorem 1.69) The polynomial f(ξ) ∈ F[ξ] of degree 2 or 3 is
irreducible in F[ξ] if and only if f(ξ) has no root in F.
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Theorem 2.2.13 ([5] Theorem 1.82) If a ∈ E is algebraic over F then its minimal
polynomial g(ξ) over F has the following properties
(i) g(ξ) is irreducible in F[ξ]
(ii) For f(ξ) ∈ F[ξ], we have f(a) = 0 if and only g(ξ) divides f(ξ)
(iii) g(ξ) is the monic polynomial in F[ξ] of least degree having a as a root

Theorem 2.2.14 ([5] Theorem 1.86) Let a ∈ E be algebraic of degree n over F and let
f(ξ) be the minimal polynomial of a over F. Then
(i) F(a) is isomorphic to F[ξ]/(f(ξ))
(ii) [F(a) : F] = n and {1, a, . . . , an−1} is a basis of F(a) over F

(iii) Every α ∈ F(α) is algebraic over F and its degree over F is a divisor of n.

Theorem 2.2.15 ([5] Theorem 1.91, Existence and Uniqueness of Splitting Field)
If F is a field and f(ξ) any polynomial of positive degree in F[ξ], then there exists a
splitting field of f(x) over F. Any two splitting fields of f(x) over F are isomorphic under
an isomorphism which keeps the elements of F fixed and maps roots of f into each other.

Because isomorphic fields may be identified, one may speak of the splitting field. It is
obtained from F by adjoining finitely many algebraic elements over F, it follows that the
splitting field of f(x) over F is a finite extension of F.

Theorem 2.2.16 ([5] Theorem 2.14) If f(ξ) is an irreducible polynomial in Fq[ξ] of
degree m then f(x) has a root α in Fqm. Furthermore, all roots of f(x) are simple and are

given by the distinct elements α, αq, αq2

, . . . , αqm−1

of Fqm.

Corollary 2.2.17 ([5] Corollary 2.15) Let f(ξ) be an irreducible polynomial in Fq[ξ]
of degree m. Then the splitting field of f(x) over Fq is given by Fqm.

Corollary 2.2.18 ([5] Corollary 2.16) Any two irreducible polynomials in Fq[ξ] of the
same degree have isomorphic splitting fields.

Theorem 2.2.19 Let f(ξ) ∈ Fq[ξ]. The degree of the splitting field of f(ξ) over Fq is the
least common multiple of the degrees of its irreducible factors. Let m be this l.c.m. then
f(ξ) splits over Fqm.



Chapter 3

Preliminaries: The behavioral

approach

In this chapter we will discuss the behavior of discrete time, linear, time-invariant, complete
autonomous systems over finite fields. In the following section we will explain briefly what
we mean by that. The definitions are mainly taken from [6].

3.1 Definitions and properties

A dynamical system is determined by a set of possible time trajectories. This set is called
the behavior of a system.

Definition 3.1.1 A dynamical system Σ is a triple Σ = (T, W, B) where T is the time
set, W is the signal space and B the behavior. The behavior is the set of signals w : T → W

that are possible.

Definition 3.1.2 A dynamical system Σ = (T, W, B) is linear if W is a vector space over
a field F, and B is a linear subspace of WT, where WT denotes the collection of all maps
from T to W.

Linear systems obey the superposition principle, i.e. if w1, w2 ∈ B then αw1 + βw2 ∈ B

for all α, β ∈ F.

A discrete time system is time invariant if all trajectories in the behavior are also elements
of the behavior when they are (backwardly) shifted.

Definition 3.1.3 A discrete time system with time axis T = Z is time-invariant if σB =
B where σ denotes the backward time shift σw(k) = w(k + 1). If T = Z+ then the system
is time invariant if σB ⊂ B.

Definition 3.1.4 A time invariant system Σ = (T, W, B) is complete if w ∈ B ⇐⇒
w|T∩[t1,t2] ∈ B|T∩[t1,t2] for all t1, t2 ∈ T, t1 ≤ t2.

Completeness means that the behavior at infinity is of no consequence for deciding wether
the function w : T → W belongs to the behavior.

Discrete time, linear, time-invariant, complete systems admit a kernel representation. The
class of behaviors in q variables that admit a representation of the form R(σ)w = 0 is
denoted by L

q.

A system is autonomous if trajectories are uniquely defined by their restriction to a finite
time-window.

9



3.1 Definitions and properties 10

Definition 3.1.5 A system Σ = (Z+, W, B) is autonomous if there exists a (finite) inter-
val T ⊂ Z+ such that the mapping π : B → B|T defined by the restriction πw := w|T is
injective.

An autonomous behavior B ∈ L
q can be represented by R(σ)w = 0 with R(ξ) ∈ Fq×q[ξ]

and detR(ξ) a nonzero polynomial.

Definition 3.1.6 A polynomial matrix U(ξ) ∈ Fg×g[ξ], with F a field is called unimodular
if there exists a polynomial matrix V (ξ) ∈ Fg×g[ξ] such that V (ξ)U(ξ) = I, with I ∈ Fg×g

the identity matrix. Equivalently, if detU(ξ) is equal to a nonzero constant.

Theorem 3.1.7 (Representation theorem) Two polynomial matrices of the same di-
mensions define the same behavior if and only if they are related through a left unimodular
transformation. Let B1, B2 ∈ L

q be given by R1(σ)w = 0 and R2(σ)w = 0 respectively,
with R1(ξ), R2(ξ) ∈ Fg×q[ξ], F a field. Then

B1 = B2 ⇐⇒ R1(ξ) = U(ξ)R2(ξ) with U(ξ) ∈ Fg×g[ξ] unimodular.



Chapter 4

Autonomous behaviors over finite

fields

4.1 Problem Description

An autonomous behavior B ∈ L
q is given by B = {w : Z+ → Fq |R(σ)w = 0} with R(ξ) ∈

Fq×q[ξ] and detR(ξ) ∈ F[ξ] is a nonzero polynomial. The monic polynomial χ(ξ) that
is obtained when detR(ξ) is divided by its leading coefficient is called the characteristic
polynomial.

Note that, without loss of generality R(ξ) can be chosen such that det R(ξ) is monic.
(Follows from the Representation Theorem 3.1.7.)

4.1.1 Autonomous behaviors over R, the scalar case

Now let us assume that F is the set of real numbers R and that q = 1, so w is scalar. The
general solution of the difference equation R(σ)w = 0 is well-known and given by.

w(k) =
N∑

i=1

mi−1∑

j=0

aijk
jλk

i , k ∈ Z+

where λi, i = 1, . . . , N are the distinct complex (!) roots of R(ξ) and mi the corresponding
multiplicity. The coefficients aij are elements of C. There holds that for every root λi with
a nonzero imaginary part, its complex conjugate λi is also a root of R(ξ) with the same
multiplicity. Let us assume that this root has index hi, that is λi = λhi

. To ensure that the
values w(k) are elements of R there must hold that the coefficients ahij are the complex
conjugates of the coefficients aij : w(k) ∈ R, k ∈ Z+ ⇐⇒ aij = ahij for all i for which λi

has a nonzero imaginary part.

We see that to derive a general solution of R(σ)w = 0 with w : Z+ → R we need the
extension field C = R(i) of R with i2 + 1 = 0 if detR(ξ) does not split in R.

4.1.2 When the characteristic polynomial splits over finite field F

In [4] M. Kuijper and J.W. Polderman present a theorem, that describes the behavior over
a finite field F if detR(ξ) splits over F. We will give this theorem here.

In the theorem the Hasse derivative is used. The jth Hasse derivative of a polynomial
P (ξ) =

∑n
i=0 piξ

i is defined by Dj
HP (ξ) :=

∑n
i=j

(
i
j

)
piξ

i−j .

11
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Theorem 4.1.1 ([4], Theorem 2.13) Let R(ξ) ∈ Fq×q[ξ], let det R(ξ) be a polynomial
of degree n, and let B = {w : Z+ → Fq |R(σ)w = 0}. Then B is an n-dimensional subspace
of (Fq)Z+. If

detR(ξ) = c
N∏

i=1

(ξ − λi)
mi

with c 6= 0 and λi ∈ F, then all trajectories in B are of the form

w =

N∑

i=1

mi−1∑

j=0

bijD
j
H(λk

i )

with bij ∈ Fq satisfying the linear restrictions

mi−1∑

j=l

[

Dj−l
H R(λi)

]

bij = 0 , l = 0, . . . , mi − 1, i = 1, . . . , N.

The following theorem is a scalar version of Theorem 4.1.1. The Hasse derivatives have
been evaluated.

Theorem 4.1.2 Let F be a finite field and R(ξ) ∈ F[ξ] a monic polynomial of degree n.
The behavior B, given by B = {w : Z+ → F |R(σ)w = 0}, is an n-dimensional subspace
of FZ+. If the roots of R(ξ) belong to F, say R(ξ) =

∏N
i=1(ξ − λi)

mi, then

B = span{wj
i | i = 1, . . . , N ; j = 0, . . . , mi − 1} (4.1.1)

where the trajectories wj
i : Z+ → F are defined by

wj
i (k) :=

{(
k
j

)
λk−j

i for k ≥ j ,

0 for k < j .
(4.1.2)

That is, w ∈ B if and only if there exist coefficients bij ∈ F such that

w(k) =
N∑

i=1

mi−1∑

j=0

(
k
j

)

bijλ
k−j
i (4.1.3)

4.1.3 Problem formulation

As we have seen in subsection 4.1.1, the behavior B̃ = {w : Z+ → C |R(σ)w = 0} with
R(ξ) ∈ R[ξ], where C = R(i) is an extension field of R, can be explicitly described.
By putting restrictions on the coefficients (such that they are complex conjugates), the
behavior B = {w : Z+ → R |R(σ)w = 0} is obtained.

The question is now whether we can do something similar for Theorem 4.1.2. Can we
define a field extension E for finite field F such that R(ξ) splits over E, derive the general
solution from Theorem 4.1.2 for W = E and then restrict the coefficients such that the
values of all solutions w(k) are elements of F. This problem is discussed in Section 4.2.
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The next question is if we can do this in the multivariable case. This is answered in
Section 4.3.

It is important to note that every polynomial R(ξ) ∈ R[ξ] splits over C. C is the algebraic
closure of R. This is, in general, not true for finite fields, i.e. there does not exist a
finite field extension E for a finite field F such that every polynomial R(ξ) ∈ F[ξ] splits
over E. That is why we will define a field extension E/F for a given specific polynomial
R(ξ) ∈ F(ξ), such that R(ξ) splits over E.

4.2 Behaviors over extension fields, the scalar case

In this section we discuss behaviors that are linear subsets of FZ
+, given by B = {w : Z+ →

F |P (σ)w = 0}. Where F is a finite field and P (ξ) ∈ F[ξ] is a nonzero polynomial of
degree n.

4.2.1 Construction of a splitting field

According to Theorem 2.2.15 there exists for every polynomial P (ξ) ∈ F[ξ] a finite field
extension E/F such that P (ξ) splits over E. In order to determine a splitting field E for
P (ξ), the polynomial can be factorized into linear factors and irreducible polynomials of
higher degree. Factorization of polynomials over fields is discussed extensively in Chapter
4 of [5], we will not go into this.
A very useful property is Corollary 2.2.18: any two irreducible polynomials in Fq[ξ] of
the same degree have isomorphic splitting fields. So if α is defined as a root of one of the
irreducible factors f(ξ) of degree m then, according to Theorem 2.2.16 and Corollary 2.2.17
all irreducible factors of degree m split over field extension F(α) ∼= F[ξ]/(f(ξ)) ∼= Fqm .
Let Fq be the finite field with q = pn elements. From Theorem 2.2.7 it follows that every
subfield of Fq has order pm, where m is a positive divisor of n. Conversely if m is a positive
divisor of n, then there is exactly one subfield of Fq with pm elements.
From this it follows that given an extension field F(α) = Fpnk , where α is the root of a
k-th degree irreducible polynomial, then all irreducible polynomials of degree l split over
Fpnl which is a subfield of Fpnk = F(α) if l divides k. So l-th degree irreducible polynomials
split over F(α).
According to Theorem 2.2.19 is the degree of the splitting field of f(ξ) over Fq equal to
the least common multiple of the degrees of its irreducible factors.
A splitting field of f(ξ) can be constructed by consecutively adjoining roots of irreducible
factors to F. Starting with a factor f1(ξ) of highest degree, adjoin its root λ1 to F. Factorize
f(ξ)/f1(ξ) over F(λ1), adjoin root λ2 of a irreducible nonlinear factor of highest degree
f2(ξ) ∈ F(λ1)[ξ]. Etcetera.

Example 4.2.1 (Adjoining roots) Let F = Z7. Consider the polynomial

(x2 + 3x + 1)(x3 + x + 1)(x4 + x + 1)

This polynomial is already factored into irreducible polynomials over Z7. Now let λ be
a root of (x4 + x + 1). Then the dimension of F(λ) over F is [F(λ) : F] = 4. A basis for
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F(λ) over F is {1, λ, λ2, λ3}. The 4-th degree factor splits over F(λ). And its roots are
λ, λ7 = 6λ3 + λ + 1, λ49 = λ3 + 6λ2 + 6 and λ343 = λ2 + 4λ.
The second degree polynomial also splits over F(λ) because 2 divides 4. Its roots are
6λ3 + λ2 + 5λ + 3 and λ3 + 6λ2 + 2λ + 1.
The third degree polynomial does not split over F (λ). Adjoining µ, defined as the root of
(x3 + x + 1) yields F(λ, µ). The dimension over F is [F(λ, µ) : F] = [F(λ, µ) : F(λ)][F(λ) :
F] = 3 · 4 = 12 = lcm(2, 3, 4). A basis of F(λ, µ) over F is {λiµj | i = 0, . . . 3, j = 0, . . . , 2}.
The roots of polynomial (x3 + x + 1) are µ, µ7 = 2µ2 + 6 and µ49 = 5µ2 + 6µ + 1.
We have done the calculations using Maple commands Nextprime, RootOf, Roots and
Factor.

4.2.2 Constraints on coefficients

A finite extension E = Frm of F = Fr can be considered as a vector space over F. Then
E has dimension m over F and if {α1, . . . , αm} is a basis of E over F, each element α ∈ E

can be uniquely represented in the form

α = c1α1 + · · · + cmαm with cj ∈ F for 1 ≤ j ≤ m

A basis can be chosen such that αm = 1 ∈ F. Now let us consider the solution in (4.1.3),
where the signal space is E. The coefficients bij are elements of E, and so are the values
w(k), k ∈ Z+.

w(k) =
N∑

i=1

mi−1∑

j=0

(
k
j

)

bijλ
k−j
i

The question is how the coefficients bij := cij1α1 + · · · + cij(m−1)αm−1 + cijm should be
chosen to ensure that w(k) ∈ F. One way to solve this is to evaluate w(k) = c̃1(k)α1 +
· · · + c̃m−1(k)αm−1 + c̃m(k) for a number of time instants k, where w(k) is written as a
linear combination of {α1, . . . , αm−1, 1}. The coefficients c̃h(k) are linear combinations of
cij1, . . . cijm, i = 1 . . . N, j = 0, . . .mi − 1. There holds that w(k) ∈ F if and only if c̃1(k) =
· · · = c̃m−1(k) = 0. This yields a number of linear equations, and for a sufficiently large
number of time-instants k the coefficients bij can be determined. This is quite cumbersome.
In the next subsection we will express the coefficients as linear combinations of powers of
the characteristic values, assuming that they are mutually distinct (so mi = 0). That way
it is possible to ensure that w(k) ∈ F.

4.2.3 The case that the characteristic values are mutually distinct

Theorem 4.2.2 Let F be a finite field. Let P (ξ) ∈ F[ξ] be a monic polynomial of degree
n, and let B = {w : Z+ → F |P (σ)w = 0}. Then B is an n-dimensional subspace of FZ+.
Let E/F be a finite field extension such that P (ξ) splits over E, i.e. P (ξ) =

∏n
i=1(ξ − λi),

λi ∈ E. If the roots λi ∈ E, i = 1 . . . n are mutually distinct then there holds w ∈ B if and
only if w of the form

w(k) =

n∑

i=1

(a0 + a1λi + · · · + an−1λ
n−1
i )(λi)

k (4.2.1)

with am ∈ F, m = 0, . . . , n − 1.
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Remark 4.2.3 Note that if F equals infinite field R and field extension E = R(i) = C

then trajectories given by (4.2.1) are solutions that belong to RZ+ .
Let λ1 = (a + bi) and λ2 = λ1 = (a − bi) with b 6= 0 be two complex conjugate roots of
P (ξ). Then (a0+a1λ1+· · ·+an−1λ

n−1
1 )(λ1)

k = (a0(λ1)
k +a1(λ1)

k+1+· · ·+an−1λ
k+n−1
1 ) =

(a0(λ2)
k +a1(λ2)k+1 + · · ·+an−1λ

k+n−1
2 ). So we see that all imaginary parts are cancelled

out.

Lemma 4.2.4 Let P (ξ) = ξn + pn−1ξ
n−1 + · · · + p0 ∈ F[ξ], with F a field. Let E/F be

a finite field extension such that P (ξ) splits over E, i.e. P (ξ) =
∏n

i=1(ξ − λi), λi ∈ E,
i = 1 . . . n. For the power sums, defined by

sk :=

n∑

i=1

λk
i , k ∈ Z+ (4.2.2)

holds that sk ∈ F for k ∈ Z+.

Proof follows from Newton’s identities that relate the power sums with the coefficients
of polynomial P (ξ). The identities are given by

s0 = n · 1 (4.2.3)

s1 = −pn−1 (4.2.4)

sk = −kpn−k −
k−1∑

i=1

pn−k+i si (2 ≤ k ≤ n) (4.2.5)

sk = −(pn−1sk−1 + · · · + p0sk−n) (k > n) (4.2.6)

Obviously s0, s1 ∈ F. It is easy to see that indeed pn−1 = −(λ1 + · · · + λn). It follows by
induction from (4.2.5) that sk ∈ F for k = 2 . . . n, and from (4.2.6) that sk ∈ F for k > n.

A very nice proof of Newton’s identities is presented in [3]. It provides us with an alternative
proof. Let C ∈ Fn×n be the companion matrix of P (ξ).

C =










0 1 0 · · · 0
0 0 1 0
...

...
0 0 0 1

−p0 −p1 −p2 · · · −pn−1










(4.2.7)

The characteristic polynomial of C is P (ξ). The roots of P (ξ) are the eigenvalues of C,
and more generally, the k-th powers of the roots of P (ξ) are the eigenvalues of Ck.
There also holds that the power sum sk is the trace of Ck. Since C ∈ Fn×n, it follows that
Ck ∈ Fn×n for k ∈ Z+. Therefore

sk = trace(Ck) ∈ F , ∀k ∈ Z+ (4.2.8)

�

Proof of Theorem 4.2.2 First we prove the if part. We have to show that if w is given
by (4.2.1) then w(k) ∈ F for all k ∈ Z+. Let wm, m = 0, . . . , n − 1 be defined by

wm(k) =
n∑

i=1

λk+m
i (4.2.9)
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then (4.2.1) can be written as

w(k) =
n−1∑

m=0

amwm(k), with am ∈ F, m = 0, . . . , n − 1. (4.2.10)

In Lemma 4.2.4 it is shown that
∑n

i=1 λk
i ∈ F for all k ∈ Z+. This means that ∀k ∈ Z+

wm(k) ∈ F, with m = 0, . . . , n − 1. From (4.2.10) it follows that for all k ∈ Z+ holds that
w(k) ∈ F.
Now we have to show that w satisfies P (σ)w = 0. There holds

P (σ)wm(k) = P (σ)
n∑

i=1

λk+m
i =

n∑

i=1

P (σ)λk+m
i

=
n∑

i=1

P (λi)λ
k+m
i = 0

The last equality holds because the λis are roots of P (ξ). Hence

P (σ)w(k) = P (σ)
n−1∑

m=0

amwm(k) =
n−1∑

m=0

amP (σ)wm(k) = 0

Now we shall prove the only if part. First we show that the dimension of behavior B

equals deg(P (ξ)) = n. A solution of (4.2.2) is completely determined by its initial values
w(0), . . . , w(n − 1). Let w̄m denote the solution of (4.2.2) with

w̄m(k) =

{

1 if k = m

0 if k 6= m
m = 0, . . . , n − 1 (4.2.11)

then B is spanned by w̄0, . . . , w̄m. The solutions w̄m, m = 0, . . . , n − 1 are obviously
linearly independent. And every solution w ∈ B is a linear combination of the solutions
w̄m, m = 0, . . . , n − 1, given by

w =

n−1∑

m=0

γmw̄m , with γm = w(m) , m = 0, . . . , n − 1 (4.2.12)

We will now show that the n solutions wm, m = 0, . . . n − 1 are linearly independent. Let
αm ∈ F, m = 0, . . . , n − 1 be such that

∑n−1
m=0 αmwm = 0. That is

α0

n∑

i=1

λk
i + α1

n∑

i=1

λk+1
i + · · · + αn−1

n∑

i=1

λk+n−1
i = 0 , for all k ∈ Z+ (4.2.13)

Alternatively we may write

[
α0 α1 · · · αn−1

]








1 1 · · · 1
λ1 λ2 · · · λn

...
...

λn−1
1 λn

2 · · · λn−1
n








︸ ︷︷ ︸

V








λk
1

λk
2
...

λk
n








= 0 (4.2.14)
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evaluating for k = 0, . . . , n − 1 yields

[
α0 α1 · · · αn−1

]








1 1 · · · 1
λ1 λ2 · · · λn

...
...

λn−1
1 λn

2 · · · λn−1
n















1 λ1 · · · λn−1
1

1 λ2 · · · λn−1
2

...
...

1 λn · · · λn−1
n








=
[
0 · · · 0

]
(4.2.15)

or
[
α0 α1 · · · αn

]
V V T = 0 (4.2.16)

Matrix V ∈ En×n is a Vandermonde matrix. Its determinant is given by detV =
∏

1≤i<j≤n(λj − λi). Because the finite field E has no zero divisors, and λ1, . . . , λn are
mutually distinct, the Vandermonde matrix V is nonsingular. (In the proof of Lemma
4.3.6 in the next section, we give an alternative proof that V is nonsingular by showing
that V has full row rank.) It follows that α0, . . . , αn−1 must all be zero. This means that
the solutions w0, . . . wn−1 are linearly independent over F. The dimension of B is n, hence
B is spanned by w0, . . . wn−1. So all solutions are of the form (4.2.1). �

Example 4.2.5 Let F = Z7 and P (ξ) = (ξ2+ξ+3)(ξ3+ξ+1). The second and third degree
factors are irreducible because none of the elements of Z7 is a root of either. Adjoining µ
as root of ξ3 + ξ + 1 and λ as root of ξ2 + ξ + 3 yields F(λ, µ). The roots of ξ3 + ξ + 1
are λ1 = µ, λ2 = 2µ2 + 6 and λ3 = 5µ2 + 6µ + 1. The roots of ξ2 + ξ + 3 are λ4 = λ and
λ5 = 6λ + 1. The general solution is.

w(k) =
5∑

i=1

(a0 + a1λi + · · · + a4λ
4
i )(λi)

k , a0, . . . , a4 ∈ Z7

Example 4.2.6 Let the system Σ(Z+, Z7, B) be given by

R(σ)w = 0 with R(ξ) = ξ4 + 5ξ2 + 4.

We can write R(ξ) as a product of two 2nd-degree polynomials

R(ξ) = (ξ2 + 1)(ξ2 + 4)

These two 2nd-degree polynomials are irreducible over Z7 because they don’t have roots
in Z7. Define λ as a root of ξ2 + 1 then in Z7(λ) the roots of ξ2 + 1 are λ and −λ ∼ 6λ.

(ξ − λ)(ξ + λ) = (ξ2 − λ2) = (ξ2 + 1)

The second polynomial also splits over Z7(λ). It has roots 2λ and 5λ

(ξ − 2λ)(ξ − 5λ) = ξ2 + 3λ2 = ξ2 + 4

We see that Z7(λ) ∼= Z7[ξ]/(ξ2 + 1) is a splitting field for R(ξ).

The solution is given by

w(k) =a0

(

λk + (6λ)k + (2λ)k + (5λ)k
)

+

a1

(

λk+1 + (6λ)k+1 + (2λ)k+1 + (5λ)k+1
)

+

a2

(

λk+2 + (6λ)k+2 + (2λ)k+2 + (5λ)k+2
)

+

a3

(

λk+3 + (6λ)k+3 + (2λ)k+3 + (5λ)k+3
)
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Evaluating w(k) for k = 0, . . . , 3 yields

k w(k)

0 4a0 + 4a2

1 4a1 + 6a3

2 4a0 + 6a2

3 6a1 + 3a3

The scalar system is given by R(σ)w = 0 with R(ξ) a 4-th degree polynomial. A solution
w is therefore completely determined by the initial conditions

w(k) = wk for k=0,1,2,3

We can express a0, . . . , a3 in the initial values w0, . . . , w3. There holds







w0

w1

w2

w3







=







4 0 4 0
0 4 0 6
4 0 6 0
0 6 0 3







︸ ︷︷ ︸

M







a0

a1

a2

a3







⇒







a0

a1

a2

a3







=







6 0 3 0
0 6 0 2
3 0 4 0
0 2 0 1







︸ ︷︷ ︸

M−1







w0

w1

w2

w3







The solution should satisfy (σ4 + 5σ2 + 4)w = 0, that is

w(k + 4) = 2w(k + 2) + 3w(k) (4.2.17)

Evaluating w(k) for k = 0, . . . , 23 yields

k w(k) k w(k) k w(k) k w(k)

0 w0 6 6w0 12 w0 18 6w0

1 w1 7 6w1 13 w1 19 6w1

2 w2 8 6w2 14 w2 20 6w2

3 w3 9 6w3 15 w3 21 6w3

4 3w0 + 2w2 10 4w0 + 5w2 16 3w0 + 2w2 22 4w0 + 5w2

5 3w1 + 2w3 11 4w1 + 5w2 17 3w1 + 2w3 23 4w1 + 5w2

It is obvious that (4.2.17) is satisfied for k = 0 and k = 1. Also

w(6) = 2w(4) + 3w(2) = (6w0 + 4w2) + 3w2 = 6w0

w(7) = 2w(5) + 3w(3) = (6w1 + 4w3) + 3w3 = 6w1

w(8) = 2w(6) + 3w(4) = (5w0) + (2w0 + 6w2) = 6w2



4.3 Multivariable autonomous systems 19

4.3 Multivariable autonomous systems

We consider the multivariable autonomous system Σ = (Z+, Fq, B) with F a finite field.
The behavior B is given by

R(σ)w = 0 (4.3.1)

with R(ξ) ∈ Fq×q[ξ] and detR(ξ) 6= 0. Let χ(ξ) be the corresponding characteristic poly-
nomial and n the degree of χ(ξ). Let E be an extension field of F such that χ(ξ) splits
over E.

χ(ξ) =
n∏

i=1

(ξ − λi) with λi ∈ E

As before, we only consider the case that λ1, . . . , λn are mutually distinct.

Since each characteristic value λi is a simple root of χ(ξ) in E, the kernel of R(λi) ∈ Eq×q

is one-dimensional.

Theorem 4.3.1 There exists a nonzero polynomial vector v(ξ) ∈ Fq[ξ] such that

kerE R(λi) = {v(λi)}

where λi, i = 1, . . . , n are the distinct roots of detR(ξ).

Proof First we will show that there exists a polynomial vector v(ξ) such that v(λi) 6= 0
and R(λi)v(λi) = 0 for i = 1, . . . , n. Polynomial matrix R(ξ) can be brought into Smith
form.1 That is, there exist unimodular matrices U(ξ), V (ξ) ∈ Fq×q[ξ] such that

U(ξ)R(ξ)V (ξ) = D(ξ)

with D(ξ) a diagonal matrix D(ξ) = diag(d1(ξ), d2(ξ), . . . , dq(ξ)), where di(ξ), i = 1, . . . , q
are monic polynomials in F[ξ] and di(ξ) divides di+1(ξ). Because det R(ξ) 6= 0, there holds
di(ξ) 6= 0 for i = 1, . . . , q. The roots of detR(ξ) in extension field E are simple. This
implies that D(ξ) is given by

D(ξ) = diag(1, . . . , 1, χ(ξ))

Define v(ξ) as the last column of V (ξ), that is

v(ξ) = V (ξ)u with u =
[
0 0 · · · 0 1

]T

then

R(ξ)v(ξ) = U−1(ξ)D(ξ)V −1(ξ)V (ξ)u = U−1(ξ)D(ξ)u

= U−1(ξ)
[
0 0 · · · 0 χ(ξ)

]T

For every λi, i = 1, . . . , n holds R(λi)v(λi) = 0 and v(λi) = V (λi)u 6= 0 because V (ξ) is
unimodular. The determinant of V (λi) is nonzero, so the last column of V (λi) has nonzero
elements.

1cf. [6] Appendix B.1.
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Now we will show that kerE R(λi) = {v(λi)}. Let R(λi)ṽ = 0 then
U−1(λi)D(λi)V

−1(λi)ṽ = 0. So D(λi)V
−1(λi)ṽ = 0. This means that V −1(λi)ṽ =

[
0, . . . , 0, c

]T
and thus ṽ = cv(λi) for c ∈ E. �

The multivariable version of Theorem 4.2.2 is

Theorem 4.3.2 Let v(ξ) ∈ Fq[ξ] be a polynomial vector such that kerE R(λi) = {v(λi)}.
Then w ∈ B if and only if w of the form

w(k) =
n∑

i=1

(a0 + a1λi + · · · + an−1λ
n−1
i )v(λi)(λi)

k (4.3.2)

with ai ∈ F, i = 0, . . . , n − 1.

Lemma 4.3.3 Let w be given by (4.3.2). If aj ∈ F, j = 1, . . . , n then w(k) ∈ Fq for all
k ∈ Z+

Proof Let r be the maximum row degree of polynomial vector v(ξ). Then v(ξ) can be
written as

v(ξ) =
r∑

j=0

vjξ
j , with vj ∈ Fq, j = 0, . . . , r

Rewriting (4.3.2) yields

w(k) =

n∑

i=1

(
n−1∑

m=0

amλm
i

)



r∑

j=0

vjλ
j
i



 (λi)
k

=
n∑

i=1

r∑

j=0

n−1∑

m=0

amvjλ
m+j+k
i

=
r∑

j=0

n−1∑

m=0

amvj

(
n∑

i=1

λm+j+k
i

)

Because for m = 0, . . . , n − 1, j = 0, . . . , n − 1, and for all k ∈ Z+ holds am ∈ F, vj ∈ Fq

and, by Lemma 4.2.4,
∑n

i=1 λm+j+k
i ∈ F. It follows that w(k) ∈ Fq for all k ∈ Z+ �

Lemma 4.3.4 4.3.2 Let w be given by (4.3.2) then there holds R(σ)w = 0.

Proof For all k ∈ Z+

R(σ)w(k) = R(σ)
n∑

i=1

(a0 + a1λi + · · · + an−1λ
n−1
i )v(λi)(λi)

k

=

n∑

i=1

(a0 + a1λi + · · · + an−1λ
n−1
i )R(σ)

(

v(λi)(λi)
k
)

=
n∑

i=1

(a0 + a1λi + · · · + an−1λ
n−1
i )R(λi)v(λi)(λi)

k

= 0

�
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Lemma 4.3.5 Behavior B has dimension n.

Proof Let U(ξ)D(ξ)V (ξ) be a Smith form decomposition of R(ξ). So D(ξ) =
diag(1, . . . , 1, χ(ξ)) and U(ξ) and V (ξ) are unimodular matrices. Let B̃ be the behav-
ior defined by

B̃ = {w̃ : Z+ → Fq |D(σ)w̃ = 0} .

It is obvious that w̃ ∈ B if and only if w̃ = (0, . . . , 0, w̃n) where w̃n is a solution of the
scalar differential equation

χ(σ)w̃n = 0 . (4.3.3)

It follows from Theorem 4.2.2 that B̃ has dimension n. Now let w̃ ∈ B̃ then w =
V −1(σ)w̃ ∈ B because R(σ)w = U(σ)D(σ)V (σ)V −1(σ)w̃ = U(σ)D(σ)w̃ = 0 Also
if w ∈ B then w̃ = V (σ)w ∈ B̃ because D(σ)w̃ = U−1(σ)R(σ)V −1(σ)V (σ)w =
U−1(σ)R(σ)w = 0 So V (σ) defines an isomorphism between B and B̃. Therefore B has
the same dimension as B̃, that is n. �

We can rewrite equation 4.3.2 as a linear combination

w(k) =
n−1∑

m=0

amwm(k) with a0, . . . , an−1 ∈ F and (4.3.4)

wm(k) :=
n∑

i=1

v(λi)λ
k+m
i m = 0, . . . , n − 1 , k ∈ Z+ . (4.3.5)

It follows from Lemmas 4.3.3 and 4.3.4 that w0, . . . , wn−1 are elements of B.

Lemma 4.3.6 The solutions w0, . . . , wn−1 as defined in (4.3.5) are independent.

Proof Let w(k) = 0 for k ∈ Z+ with w as given in (4.3.4). Then for all k ∈ Z+

M(k)








a0

a1
...

an−1








=








0
0
...
0








(4.3.6)

with M(k) the q × n matrix given by

M(k) =
[
w0(k) w1(k) · · · wn−1(k)

]
(4.3.7)

=

[
n∑

i=1
v(λi)λ

k
i

n∑

i=1
v(λi)λ

k+1
i · · ·

n∑

i=1
v(λi)λ

k+n−1
i

]

(4.3.8)

=
[
λk

1v(λ1) λk
2v(λ2) · · · λk

nv(λn)
]








1 λ1 · · · λn−1
1

1 λ2 · · · λn−1
2

...
...

...
1 λn · · · λn−1

n








(4.3.9)
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Evaluating (4.3.6) for k = 0, . . . , n−1 yields the following equation, where the first matrix
is formed by stacking the first matrix in (4.3.9) for k = 0, . . . , n − 1.







v(λ1) v(λ2) · · · v(λn)
λ1v(λ1) λ2v(λ2) · · · λnv(λn)

λn−1
1 v(λ1) λn−1

2 v(λ2) · · · λn−1
n v(λn)














1 λ1 · · · λn−1
1

1 λ2 · · · λn−1
2

...
...

...
1 λn · · · λn−1

n















a0

a1
...

an−1








=








0
0
...
0








(4.3.10)

We can write the first matrix in (4.3.10) as a product of a big nq × nq VanderMonde-like
matrix and a nq × n matrix








Iq Iq · · · Iq

λ1Iq λ2Iq · · · λnIq

...
...

...

λn−1
1 Iq λn−1

2 Iq · · · λn−1
n Iq








︸ ︷︷ ︸

W









v(λ1) 0 · · · 0

0 v(λ2)
. . .

...
...

. . .
. . . 0

0 · · · 0 v(λn)









(4.3.11)

The rank of W is nq. Close inspectation of the rows of W shows that they are linearly
independent. We will prove this. Let

[
c1 c2 · · · cqn

]
W = 0 then for j = 1, . . . , q

n−1∑

k=0

cj+kqλ
k = 0 for λ = λ1, λ2, . . . , λn (4.3.12)

The n− 1 degree polynomial given in (4.3.12) has n distinct roots! From the fundamental
theorem of algebra it follows that the coefficients cj+kq, k = 0, . . . , n− 1 are all zero, with
j = 1, . . . , q. So all coefficients c1, . . . , cnq are equal to zero. Square matrix W has full row
rank and is therefore invertible. If we premultiply both sides of (4.3.10) with W−1 we get









v(λ1) 0 · · · 0

0 v(λ2)
. . .

...
...

. . .
. . . 0

0 · · · 0 v(λn)
















1 λ1 · · · λn−1
1

1 λ2 · · · λn−1
2

...
...

...
1 λn · · · λn−1

n















a0

a1
...

an−1








=








0
0
...
0








(4.3.13)

Since all vectors v(λ1), . . . , v(λn) are nonzero, the first matrix has full column rank. The
transposed Vandermonde matrix in this equation is nonsingular, as we have seen in Sec-
tion 4.2. The product of these matrices is of full column rank. Therefore a0, . . . , an−1 must
be equal to zero. The solutions w0, w1, . . . , wn−1 are independent. �

Proof of Theorem 4.3.2 The if part follows from Lemmas 4.3.3 and 4.3.4.
The only if part goes as follows. We see in Lemma 4.3.5 that dim B = n. Equation 4.3.5
and Lemma 4.3.6 show that w0, . . . , wn−1 are n independent solutions in B. It follows that
B is spanned by those solutions. So any solution w ∈ B can be written as in (4.3.4), that
is as in (4.3.2). �

Remark 4.3.7 There are many polynomial vectors v(ξ) that satisfy kerE R(λi) =
{v(λi)}, i = 1, . . . , n. It doesn’t have to be the polynomial vector v(ξ) we have derived
in the proof of Theorem 4.3.1.
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4.3.1 Relation with the scalar case

How does Theorem 4.3.2 relate to Theorem 4.2.2? Let P (ξ) be a scalar polynomial of degree
n and λ1, . . . , λn the distinct roots of P (ξ). Obviously, since P (λi) = 0, i = 1, . . . , n, the
polynomial v(ξ) = 1 satisfies kerE P (λi) = {v(λi)} = {1} for all i = 1, . . . , n. Substitution
of v(ξ) = 1 in (4.3.2) yields (4.2.1).
Note that we may also take for example v(ξ) = ξ if all roots are nonzero. Then (4.3.2)
becomes

w(k) =
n∑

i=1

(a0λi + a1λ
2
i + · · · + an−1λ

n
i )(λi)

k

Because P (λi) = 0 for all roots of P (ξ) = ξn + pn−1ξ
n−1 + · · · + p0 there holds λn

i =
−pn−1λ

n−1
i −· · ·−p0, i = 1, . . . , n. So again the solution can be written in the form (4.2.1).

4.3.2 Irreducible characteristic polynomials

Consider the multivariable system Σ = (Z+, Fq, B) with F a finite field. Let the behavior
be given by

R(σ)w = 0, with R(ξ) ∈ Fq×q[ξ]

If the characteristic polynomial χ(ξ) is irreducible over F, we can define a splitting field
F(λ) ∼= F[ξ]/(χ(ξ)) of F with λ defined as a root of χ(ξ). The polynomial χ(ξ) splits
over F(λ), and according to Theorem 2.2.16 the characteristic values λi, i = 1, . . . n are
mutually distinct and given by

λi = λ(ri−1), i = 1, . . . , n with r = |F| = pm, p prime.

The minimum polynomial of λ over F is χ(λ).

Theorem 4.3.8 Let vλ ∈ F(λ)q be such that kerF(λ) R(λ) = {vλ}. Vector vλ can be written

as
∑n−1

i=0 viλ
i with vi ∈ Fq because {1, λ, λ2, . . . , λn−1} is a basis of F(λ) over F.

Now define v(ξ) :=
∑n−1

i=0 viξ
i ∈ Fq[ξ]. Then there holds

R(λi)v(λi) = 0, i = 1, . . . , n

Proof Define w(ξ) = R(ξ)v(ξ) then w(λ) = 0, so λ is a root of each element of w(ξ).
Since χ(ξ) is the minimum polynomial of λ over F, χ(ξ) divides all elements of w(ξ)
(Theorem 2.2.13). Each λi, i = 1, . . . , n is by definition a root of χ(ξ), hence w(λi) = 0.

Since the elements of v(ξ) are polynomials of degree < n, it follows that v(λi) 6= 0 for
i = 1, . . . , n because the λis are roots of the n-th degree minimal polynomial χ(ξ). �

We see that for an irreducible characteristic polynomial it is very easy to obtain a poly-
nomial vector v(ξ) that can be applied in Theorem 4.3.2.

Example 4.3.9 (Two variable system with irreducible characteristic polynomial)
Consider the system Σ(Z+, Zq

p, B), with p = 5, q = 2 and the behavior given by

R(σ)w = 0, with R(ξ) =

[
1 3ξ2 + 1
3ξ 4ξ + 1

]
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The determinant is

detR(ξ) = (4ξ + 1) − (3ξ2 + 1)(3ξ) = ξ3 + ξ + 1

This polynomial is monic, the characteristic polynomial is therefore χ(ξ) = ξ3 +ξ +1. The
3rd degree polynomial χ(ξ) has no roots in Z5 and is thus irreducible over Z5 (Theorem
2.2.12).

In field extension Z5(λ), with λ defined as a root of χ(ξ), the roots of χ(ξ) are given by

λ1 = λ,

λ2 = λ5 = λ2(λ3) = λ2(4λ + 4) = 4λ3 + 4λ2 = 4λ2 + λ + 1

λ3 = λ25 = · · · = λ2 + 3λ + 4

We see that the roots are mutually distinct.

The kernel of R(λ) is {v(λ)} with v(λ) =
[
4λ + 1 −3λ

]T
∼
[
4λ + 1 2λ

]T
. To verify this

we calculate R(λ)v(λ).

[
1 3λ2 + 1
3λ 4λ + 1

] [
4λ + 1

2λ

]

=

[
6λ3 + 6λ + 1
20λ2 + 5λ

]

=

[
λ3 + λ + 1

0

]

=

[
0
0

]

Substituting λ1, λ2 and λ3 yields

v(λ1) =

[
4λ + 1

2λ

]

, v(λ2) =

[
λ2 + 4λ

3λ2 + 2λ + 2

]

, v(λ3) =

[
4λ2 + 2λ + 2
2λ2 + λ + 3

]

The general solution of R(σ)w = 0 is given by

w(k) =
3∑

i=1

(a0 + a1λi + a2λ
2
i )v(λi)(λi)

k with a0, a1, a2 ∈ Z5.

Evaluating w(k) for k = 0, . . . , 5 yields

k 0 1 2

w(k)

[
3a0 + 2a1 + a2

a1 + 4a2

] [
2a0 + a1

a0 + 4a1 + 4a2

] [
a0 + 2a2

4a0 + 4a1

]

k 3 4 5

w(k)

[
2a1 + 4a2

4a0 + 2a2

] [
2a0 + 4a1 + 3a2

2a1 + a2

] [
4a0 + 3a1 + 4a2

2a0 + a1 + 3a2

]

We see that w(0), . . . , w(5) ∈ Z2
5. We now check if this solution satisfies R(σ)w = 0. There

should hold

w1(k) + 3w2(k + 2) + w2(k) = 0

3w1(k + 1) + 4w2(k + 1) + w2(k) = 0

Substituting k = 0 yields

(3a0 + 2a1 + a2) + 3(4a0 + 4a1) + (a1 + 4a2) = 0

3(2a0 + a1) + 4(a0 + 4a1 + 4a2) + (a1 + 4a2) = 0
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Substituting k = 1 yields

(2a0 + a1) + 3(4a0 + 2a2) + (a0 + 4a1 + 4a2) = 0

3(a0 + 2a2) + 4(4a0 + 4a1) + (a0 + 4a1 + 4a2) = 0

We could have derived another polynomial v(ξ) by bringing R(ξ) into Smith form, using
Theorem 4.3.1. There holds that

[
1 0
2ξ 1

]

︸ ︷︷ ︸

U(ξ)

[
1 3ξ2 + 1
3ξ 4ξ + 1

]

︸ ︷︷ ︸

R(ξ)

[
1 2ξ2 + 4
0 1

]

︸ ︷︷ ︸

V (ξ)

=

[
1 0
0 ξ3 + ξ + 1

]

︸ ︷︷ ︸

D(ξ)

Take v(ξ) = V∗2(ξ) =

[
2ξ2 + 4

1

]

. Note that 2λv(λ) = · · · =

[
4λ + 1

2λ

]

. �

Remark 4.3.10 If we define

Ai := (a0 + a1λi + a2λ
2
i )v(λi) for i = 1, . . . , 3

then w(k) = A1λ
k
1 + A2λ

k
2 + A3λ

k
3. There holds that the vectors A1, A2, A3 ∈ Z5(λ) are

conjugated. By this we mean that

(ξ − A11)(ξ − A12)(ξ − A13) ∈ Z5[ξ], i = 1, 2.

where Aij denotes element i of vector Aj . We have checked this using Maple.



Chapter 5

Single input single output systems

The previous chapter dealt with autonomous behaviors over a finite field. In this chapter
we will give a solution of the single input single output system given by

p(σ)y(k) = q(σ)u(k) , k ∈ Z+ (1)

where p(ξ) = pnξn + · · · + p1ξ + p0 ∈ F[ξ] is a polynomial of degree n ≥ 1, q(ξ) =
qdξ

n + · · ·+ q1ξ + q0 ∈ F[ξ] a polynomial of degree d ≤ n, F a finite field. All input values
u(k), k ∈ Z+ belong to F. The output values y(k) should also belong to F.
Let E be an extension field of F such that p(ξ) splits over E. As in the previous chapter,
we will assume that the roots of p(ξ) are mutually distinct.
Every solution (u, y) of (1) can be written as (0, yh)+ (u, yp), where yh is a solution of the
homogeneous difference equation

p(σ)y = 0 (2)

and (u, yp) is a particular solution of (1). In Theorem 4.2.2 it was shown that any solution
yh ∈ FZ+ of (2) can be written as

yh(k) =
n∑

i=1

(a0 + a1λi + · · · + an−1λ
n−1
i )(λi)

k (3)

with am ∈ F, m = 0, . . . , n − 1.

5.1 A particular solution for a siso system

We can derive a particular solution in case F = R. Let G(s) = q(s)/p(s) be the transfer
function of (1). Then y satisfies (1) if it is given by the convolution sum

y(k) =
k∑

j=0

g(j)u(k − j) (5.1.1)

where g(j) is the inverse z-transform of G(z). We can obtain g(j) from the partial fraction
expansion of G(z). Let λ1, . . . , λn be the mutually distinct roots of p(ξ). (Note that with
F = R, the roots belong to E = C). Then

G(z) =
q(z)

p(z)
= a0 +

a1

z − λ1
+

a2

z − λ2
+ · · · +

an

z − λn

26
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With

a0 =

{

0 if d < n

qd/pn if d = n

where qd, pn are the leading coefficients of q(ξ) and p(ξ) respectively, and

ai =
q(λi)

p̃i(λi)
with p̃i := p(ξ)/(ξ − λi) ∈ E[ξ] .

The inverse z-transform of a0 is a0δ(j). The inverse z-transform of ai/(z − λi) is aiλ
j−1
i

for j ≥ 1 and 0 for j = 0. From (5.1.1) it follows that a particular solution is given by

yp(k) = a0u(k) +
k∑

j=1

n∑

i=1

aiλ
j−1
i u(k − j) (5.1.2)

It is a well-known solution of (1), also in case F is a finite field and E/F the finite field
extension over which p(ξ) splits. It is actually a solution for T = Z where u(k) = y(k) =
0 ∈ F for k < 0. There holds

pny(k + n) = −pn−1y(k + n − 1) − · · · − p0y(k) + qdu(k + d) + · · · + q0u(k) d ≤ n

Since u(k) ∈ F for k ≥ 0, it follows iteratively that y(k) ∈ F for k ≥ 0. So every solution
y(k) = yh(k) + yp(k) ∈ F.
The Appendix contains the Maple code of an example, where p(ξ) = ξ3+ξ+1, q(ξ) = ξ+2
and F = Z5.



Chapter 6

Conclusion and further research

In this part we have discussed discrete time behaviors over finite fields. Explicit ex-
pressions have been obtained for scalar and multivariable autonomous systems given by
B = {w : Z+ → Fq |R(σ)w = 0}, R(ξ) ∈ Fq×q[ξ], F a finite field, for the case that roots
of the characteristic polynomials are not necessarily elements of finite field F. This was
done by constructing an extension field of F in which the characteristic polynomial splits.
Assuming that the characteristic values are mutually distinct, we were able to restrict the
solutions w : Z+ → Eq such that w(k) ∈ Fq for k ∈ Z+. Finally we derived a particular
solution for the single input, single output case.

Suggestions for further research are

• The case that characteristic values have a multiplicity greater than one.
This is more complicated because we have used Newton’s identities, that relate power
sums of the roots of a polynomial (

∑n
i=1 λk

i ) to its coefficients, to prove that solutions
were confined to F. If the characteristic values are not simple, the solutions will not
be linear combinations of power sums.

• multivariable input/output systems.

28
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Appendix

Example Chapter 5

> restart;

F=Z_5

> p:=5;

p := 5

> P:=xi^3+xi+1;

3

P := xi + xi + 1

> Q:=xi+2;

Q := xi + 2

P is irreducible over F

> Irreduc(P) mod p;

true

Define lambda as a root of P

> alias(lambda=RootOf(P));

lambda

Compute all roots

> r:=Roots(P,lambda) mod p:

> Lambda:=r[1..3,1];

2 2

Lambda := [lambda, lambda + 3 lambda + 4, 4 lambda + lambda + 1]

Define the transfer function

> G:=unapply(Q/P,xi);

xi + 2

G := xi -> ------------

3

xi + xi + 1

Compute one coefficient of the pfe, using limits

>

> simplify(limit(G(xi)*(xi-Lambda[1]),xi=Lambda[1])) mod p;

2

2 + 3 lambda

Compute all coefficients a[i] of the pfe by dividing the denominator of G(xi) by

(xi-lambda[i]), then substitute xi=lambda[i])

> for i to 3 do

> numer(G(xi))/((Factor(denom(G(xi)),lambda) mod p)/(xi-Lambda[i] mod p)):

> a[i]:=simplify(subs(xi=Lambda[i],%)) mod p;

> od:

> a[1];a[2];a[3];

2

2 + 3 lambda

2

3 lambda + 2 + lambda
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2

4 lambda + 1 + 4 lambda

Compute a particular solution

> som1:=a[1]*Lambda[1]^(j-1)+a[2]*Lambda[2]^(j-1)+a[3]*Lambda[3]^(j-1):

> yp:=sum(som1*u(k-j),j=1..k) mod p;

>

k

-----

\ 2 (j - 1)

yp := ) ((2 + 3 lambda ) lambda

/

-----

j = 1

2 2 (j - 1)

+ (3 lambda + 2 + lambda) (lambda + 3 lambda + 4)

2 2 (j - 1)

+ (4 lambda + 1 + 4 lambda) (4 lambda + lambda + 1)

) u(k - j)

> ypart:=t->simplify(eval(yp,k=t)) mod p;

ypart := t -> simplify(yp| ) mod p

|k = t

Check whether the solution y(h) belongs to F

> for h from 0 to 8 do ypart(h) od;

0

0

u(0)

u(1) + 2 u(0)

4 u(0) + u(2) + 2 u(1)

4 u(1) + u(3) + 2 u(2) + 2 u(0)

4 u(0) + 4 u(2) + u(4) + 2 u(3) + 2 u(1)

4 u(1) + 4 u(3) + u(5) + 2 u(4) + 4 u(0) + 2 u(2)

4 u(2) + 4 u(4) + u(6) + 2 u(5) + 4 u(0) + 2 u(3) + 4 u(1)

Check whether y(h) is s solution of the differential equation

> for h from 0 to 5 do (ypart(h+3)+ypart(h+1)+ypart(h)) mod p od;

u(1) + 2 u(0)

u(2) + 2 u(1)

u(3) + 2 u(2)

u(4) + 2 u(3)

u(5) + 2 u(4)

u(6) + 2 u(5)
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